Publications
2024
Rezazadeh,
V., Maresca, F., Hoefnagels, J. P. M., Geers, M. G.
D., & Peerlings, R. H. J. (2024). An effective
anisotropic visco-plastic model dedicated to high contrast ductile
laminated microstructures: Application to lath martensite
substructure. International Journal of Solids and
Structures, 293, Article 112757. https://doi.org/10.1016/j.ijsolstr.2024.112757
Liu,
L., Maresca, F., Vermeij, T., Hoefnagels, J. P. M.,
Geers, M. G. D., & Kouznetsova, V. G. (2024). An
integrated experimental-numerical study of martensite/ferrite
interface damage initiation in dual-phase steels.
Scripta Materialia, 239, Article
115798. https://doi.org/10.1016/j.scriptamat.2023.115798
La
Rosa, L., & Maresca, F. (2024).
Atomistic simulations of structure and motion of twin
interfaces reveal the origin of twinning in NiTi shape memory
alloys. Communications Materials,
5(1), Article 142. https://doi.org/10.1038/s43246-024-00587-0
Baruffi,
C., Maresca, F., & Curtin, W. A. (2024).
Correction: Screw vs. edge dislocation strengthening in
body-centered-cubic high entropy alloys and implications for guided
alloy design. MRS Communications,
14(1), 130. https://doi.org/10.1557/s43579-023-00507-2
Zhang,
L., Csányi, G., van der Giessen, E.,
& Maresca, F. (2024). Efficiency, accuracy, and
transferability of machine learning potentials: Application to
dislocations and cracks in iron. Acta
Materialia, 270, Article 119788. https://doi.org/10.1016/j.actamat.2024.119788
Rezazadeh,
V., Hoefnagels, J. P. M., Maresca, F., Geers, M. G.
D., & Peerlings, R. H. J. (2024). Influence of
orientation-dependent lath martensite yielding on the hardening
behavior of quenched martensitic steels. Scripta
Materialia, 251, Article 116211. https://doi.org/10.1016/j.scriptamat.2024.116211
Maresca,
F., & van der Giessen, E. (2024).
Present and future of atomistic simulations of dislocation
plasticity. KIM REVIEW,
2(04). https://doi.org/10.25950/d63d27b5
2023
Zhang,
L., Csányi, G., van der Giessen, E.,
& Maresca, F. (2023). Atomistic fracture in bcc
iron revealed by active learning of Gaussian approximation
potential. Npj computational
materials, 9(1), Article 217. https://doi.org/10.1038/s41524-023-01174-6
Zhang,
L., Csanyi, G., van der Giessen, E.,
& Maresca, F. (2023). Efficient, Accurate, and
Transferable Machine Learning Potentials: Application to
Dislocations and Cracks in Iron. arXiv. https://doi.org/10.48550/arXiv.2307.10072
Andric,
P., Echeverri Restrepo, S., & Maresca, F. (2023).
Predicting dislocation density in martensite
ab-initio. Acta Materialia,
243, Article 118500. https://doi.org/10.1016/j.actamat.2022.118500
2022
Liu,
L., Maresca, F., Hoefnagels, J. P. M., Geers, M. G.
D., & Kouznetsova, V. G. (2022). A multi-scale framework
to predict damage initiation at martensite/ferrite
interface. Journal of the Mechanics and Physics of
Solids, 168, Article 105018. https://doi.org/10.1016/j.jmps.2022.105018
Baruffi,
C., Maresca, F., & Curtin, W. A. (2022).
Screw vs. edge dislocation strengthening in
body-centered-cubic high entropy alloys and implications for guided
alloy design. MRS Communications,
12(6), 1111-1118. https://doi.org/10.1557/s43579-022-00278-2
Wang,
X., Maresca, F., & Cao, P. (2022). The
hierarchical energy landscape of screw dislocation motion in
refractory high-entropy alloys. Acta
Materialia, 234, Article 118022. https://doi.org/10.1016/j.actamat.2022.118022
2021
Eleti,
R. R., Stepanov, N., Yurchenko, N., Zherebtsov, S., &
Maresca, F. (2022). Cross-kink unpinning controls the
medium-to high-temperature strength of body-centered cubic NbTiZr
medium-entropy alloy. Scripta
Materialia, 209, Article 114367. https://doi.org/10.1016/j.scriptamat.2021.114367
la
Rosa, L., & Maresca, F. (2022). On
the impact of lattice parameter accuracy of atomistic simulations
on the microstructure of Ni-Ti shape memory alloys.
Modelling and Simulation in Materials Science and
Engineering, 30(1), Article 014003. https://doi.org/10.1088/1361-651X/ac3b9e
Cian,
L., Lancioni, G., Zhang, L., Ianese, M., Novelli, N.,
Serra, G., & Maresca, F. (2021).
Atomistic Graph Neural Networks for metals: Application
to bcc iron. arXiv. https://doi.org/10.48550/arXiv.2109.14012
Kubilay,
R. E., Ghafarollahi, A., Maresca, F., & Curtin, W.
A. (2021). Author Correction: High energy barriers for edge
dislocation motion in body-centered cubic high entropy alloys (npj
Computational Materials, (2021), 7, 1, (112),
10.1038/s41524-021-00577-7). Npj computational
materials, 7(1), Article 158. https://doi.org/10.1038/s41524-021-00633-2
Kubilay,
R. E., Ghafarollahi, A., Maresca, F., & Curtin, W.
A. (2021). High energy barriers for edge dislocation motion
in body-centered cubic high entropy alloys. Npj
computational materials, 7(1), Article 112. https://doi.org/10.1038/s41524-021-00577-7
Liu,
L., Maresca, F., Hoefnagels, J. P. M., Vermeij, T.,
Geers, M. G. D., & Kouznetsova, V. G. (2021). Revisiting
the martensite/ferrite interface damage initiation mechanism: The
key role of substructure boundary sliding. Acta
Materialia, 205, Article 116533. https://doi.org/10.1016/j.actamat.2020.116533
Lee,
C., Maresca, F., Feng, R., Chou, Y., Ungar, T., Widom,
M., An, K., Poplawsky, J. D., Chou, Y. C., Liaw, P. K., &
Curtin, W. A. (2021). Strength can be controlled by edge
dislocations in refractory high-entropy alloys.
Nature Communications, 12(1),
Article 5474. https://doi.org/10.1038/s41467-021-25807-w
2020
Maresca,
F., Polatidis, E., Smid, M., Van Swygenhoven, H., &
Curtin, W. (2020). Measurement and prediction of the
transformation strain that controls ductility and toughness in
advanced steels. Acta Materialia,
200, 246-255. https://doi.org/10.1016/j.actamat.2020.08.028
Yin,
B., Maresca, F., & Curtin, W. (2020).
Vanadium is an optimal element for strengthening in both fcc
and bcc high-entropy alloys. Acta
Materialia, 188, 486-491. https://doi.org/10.1016/j.actamat.2020.01.062
2019
Maresca,
F., & Curtin, W. A. (2020). Mechanistic origin of
high strength in refractory BCC high entropy alloys up to
1900K. Acta Materialia, 182,
235-249. https://doi.org/10.1016/j.actamat.2019.10.015
Maresca,
F., & Curtin, W. A. (2020). Theory of screw
dislocation strengthening in random BCC alloys from dilute to
“High-Entropy” alloys. Acta
Materialia, 182, 144-162. https://doi.org/10.1016/j.actamat.2019.10.007
Maresca,
F., Ghafarollahi, A., & Curtin, WA. (2019).
Solute/screw dislocation interaction energy parameter for
strengthening in bcc dilute to high entropy alloys.
Modelling and Simulation in Materials Science and
Engineering, 27(8), Article 085011. https://doi.org/10.1088/1361-651X/ab4969
2018
Maresca,
F., Kouznetsova, V. G., Geers, M. G. D., & Curtin, W. A.
(2018). Contribution of austenite-martensite transformation
to deformability of advanced high strength steels: From atomistic
mechanisms to microstructural response. Acta
Materialia, 156, 463-478. https://doi.org/10.1016/j.actamat.2018.06.028
Du,
C., Maresca, F., Geers, M. G. D., & Hoefnagels, J.
P. M. (2018). Ferrite slip system activation investigated by
uniaxial micro-tensile tests and simulations. Acta
Materialia, 146, 314-327. https://doi.org/10.1016/j.actamat.2017.12.054
Maresca,
F., Dragoni, D., Csanyi, G., Marzari, N., & Curtin, W.
A. (2018). Screw dislocation structure and mobility in body
centered cubic Fe predicted by a Gaussian Approximation
Potential. Npj computational
materials, 4, Article 69. https://doi.org/10.1038/s41524-018-0125-4
2017
Maresca,
F., & Curtin, W. A. (2017). The austenite/lath
martensite interface in steels: Structure, athermal motion, and
in-situ transformation strain revealed by simulation and
theory. Acta Materialia, 134,
302-323. https://doi.org/10.1016/j.actamat.2017.05.044
Geers,
M. G. D., Du, C., Maresca, F., Kouznetsova, V. G.,
Hoefnagels, J. P. M., & Curtin, W. A. (2017). Unraveling
the apparent ductility of lath martensite. In 14th
International Conference on Fracture, ICF 2017: Proceedings
(Vol. 2, pp. 542-543). International Conference on Fracture
(ICF).
2016
Maresca,
F., Kouznetsova, V. G., & Geers, M. G. D. (2016).
Deformation behaviour of lath martensite in multi-phase
steels. Scripta Materialia,
110, 74-77. https://doi.org/10.1016/j.scriptamat.2015.08.004
de
Geus, T. W. J., Maresca, F., Peerlings, R. H. J.,
& Geers, M. G. D. (2016). Microscopic plasticity and
damage in two-phase steels: On the competing role of
crystallography and phase contrast. Mechanics of
Materials, 101, 147-159. https://doi.org/10.1016/j.mechmat.2016.07.014
Van
Beeck, J., Maresca, F., De Geus, T. W. J., Schreurs,
P. J. G., & Geers, M. G. D. (2016). Predicting
deformation-induced polymer-steel interface roughening and
failure. European Journal of Mechanics,
A/Solids, 55, 1-11. https://doi.org/10.1016/j.euromechsol.2015.08.002
Maresca,
F., Kouznetsova, V. G., & Geers, M. G. D. (2016).
Predictive modeling of interfacial damage in substructured
steels: Application to martensitic microstructures.
Modelling and Simulation in Materials Science and
Engineering, 24(2), Article 025006. https://doi.org/10.1088/0965-0393/24/2/025006
Maresca,
F., Kouznetsova, V. G., & Geers, M. G. D. (2016).
Reduced crystal plasticity for materials with constrained
slip activity. Mechanics of Materials,
92, 198-210. https://doi.org/10.1016/j.mechmat.2015.09.011
2015
Hoefnagels,
J. P. M., Tasan, C. C., Maresca, F., Peters, F. J.,
& Kouznetsova, V. G. (2015). Retardation of plastic
instability via damage-enabled microstrain delocalization.
Journal of Materials Science,
50(21), 6882-6897. https://doi.org/10.1007/s10853-015-9164-0
2014
Maresca,
F., Kouznetsova, V. G., & Geers, M. G. D. (2014).
On the role of interlath retained austenite in the
deformation of lath martensite. Modelling and
Simulation in Materials Science and Engineering,
22(4), Article 045011. https://doi.org/10.1088/0965-0393/22/4/045011
Maresca,
F., Kouznetsova, V. G., & Geers, M. G. D. (2014).
Subgrain lath martensite mechanics: A numerical-experimental
analysis. Journal of the Mechanics and Physics of
Solids, 73, 69-83. https://doi.org/10.1016/j.jmps.2014.09.002
Last modified: | 24 June 2024 6.37 p.m. |