Skip to ContentSkip to Navigation
Research Computational Mechanical and Materials Engineering Multi-Scale Mechanics (MSM)

Publications

2024

Rezazadeh, V., Maresca, F., Hoefnagels, J. P. M., Geers, M. G. D., & Peerlings, R. H. J. (2024). An effective anisotropic visco-plastic model dedicated to high contrast ductile laminated microstructures: Application to lath martensite substructure. International Journal of Solids and Structures, 293, Article 112757. https://doi.org/10.1016/j.ijsolstr.2024.112757
Liu, L., Maresca, F., Vermeij, T., Hoefnagels, J. P. M., Geers, M. G. D., & Kouznetsova, V. G. (2024). An integrated experimental-numerical study of martensite/ferrite interface damage initiation in dual-phase steels. Scripta Materialia, 239, Article 115798. https://doi.org/10.1016/j.scriptamat.2023.115798
La Rosa, L., & Maresca, F. (2024). Atomistic simulations of structure and motion of twin interfaces reveal the origin of twinning in NiTi shape memory alloys. Communications Materials, 5(1), Article 142. https://doi.org/10.1038/s43246-024-00587-0
Baruffi, C., Maresca, F., & Curtin, W. A. (2024). Correction: Screw vs. edge dislocation strengthening in body-centered-cubic high entropy alloys and implications for guided alloy design. MRS Communications, 14(1), 130. https://doi.org/10.1557/s43579-023-00507-2
Zhang, L., Csányi, G., van der Giessen, E., & Maresca, F. (2024). Efficiency, accuracy, and transferability of machine learning potentials: Application to dislocations and cracks in iron. Acta Materialia, 270, Article 119788. https://doi.org/10.1016/j.actamat.2024.119788
Rezazadeh, V., Hoefnagels, J. P. M., Maresca, F., Geers, M. G. D., & Peerlings, R. H. J. (2024). Influence of orientation-dependent lath martensite yielding on the hardening behavior of quenched martensitic steels. Scripta Materialia, 251, Article 116211. https://doi.org/10.1016/j.scriptamat.2024.116211
Maresca, F., & van der Giessen, E. (2024). Present and future of atomistic simulations of dislocation plasticity. KIM REVIEW, 2(04). https://doi.org/10.25950/d63d27b5

2023

Zhang, L., Csányi, G., van der Giessen, E., & Maresca, F. (2023). Atomistic fracture in bcc iron revealed by active learning of Gaussian approximation potential. Npj computational materials, 9(1), Article 217. https://doi.org/10.1038/s41524-023-01174-6
Zhang, L., Csanyi, G., van der Giessen, E., & Maresca, F. (2023). Efficient, Accurate, and Transferable Machine Learning Potentials: Application to Dislocations and Cracks in Iron. arXiv. https://doi.org/10.48550/arXiv.2307.10072
Andric, P., Echeverri Restrepo, S., & Maresca, F. (2023). Predicting dislocation density in martensite ab-initio. Acta Materialia, 243, Article 118500. https://doi.org/10.1016/j.actamat.2022.118500

2022

Liu, L., Maresca, F., Hoefnagels, J. P. M., Geers, M. G. D., & Kouznetsova, V. G. (2022). A multi-scale framework to predict damage initiation at martensite/ferrite interface. Journal of the Mechanics and Physics of Solids, 168, Article 105018. https://doi.org/10.1016/j.jmps.2022.105018
Baruffi, C., Maresca, F., & Curtin, W. A. (2022). Screw vs. edge dislocation strengthening in body-centered-cubic high entropy alloys and implications for guided alloy design. MRS Communications, 12(6), 1111-1118. https://doi.org/10.1557/s43579-022-00278-2
Wang, X., Maresca, F., & Cao, P. (2022). The hierarchical energy landscape of screw dislocation motion in refractory high-entropy alloys. Acta Materialia, 234, Article 118022. https://doi.org/10.1016/j.actamat.2022.118022

2021

Eleti, R. R., Stepanov, N., Yurchenko, N., Zherebtsov, S., & Maresca, F. (2022). Cross-kink unpinning controls the medium-to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy. Scripta Materialia, 209, Article 114367. https://doi.org/10.1016/j.scriptamat.2021.114367
la Rosa, L., & Maresca, F. (2022). On the impact of lattice parameter accuracy of atomistic simulations on the microstructure of Ni-Ti shape memory alloys. Modelling and Simulation in Materials Science and Engineering, 30(1), Article 014003. https://doi.org/10.1088/1361-651X/ac3b9e
Cian, L., Lancioni, G., Zhang, L., Ianese, M., Novelli, N., Serra, G., & Maresca, F. (2021). Atomistic Graph Neural Networks for metals: Application to bcc iron. arXiv. https://doi.org/10.48550/arXiv.2109.14012
Kubilay, R. E., Ghafarollahi, A., Maresca, F., & Curtin, W. A. (2021). Author Correction: High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys (npj Computational Materials, (2021), 7, 1, (112), 10.1038/s41524-021-00577-7). Npj computational materials, 7(1), Article 158. https://doi.org/10.1038/s41524-021-00633-2
Kubilay, R. E., Ghafarollahi, A., Maresca, F., & Curtin, W. A. (2021). High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys. Npj computational materials, 7(1), Article 112. https://doi.org/10.1038/s41524-021-00577-7
Liu, L., Maresca, F., Hoefnagels, J. P. M., Vermeij, T., Geers, M. G. D., & Kouznetsova, V. G. (2021). Revisiting the martensite/ferrite interface damage initiation mechanism: The key role of substructure boundary sliding. Acta Materialia, 205, Article 116533. https://doi.org/10.1016/j.actamat.2020.116533
Lee, C., Maresca, F., Feng, R., Chou, Y., Ungar, T., Widom, M., An, K., Poplawsky, J. D., Chou, Y. C., Liaw, P. K., & Curtin, W. A. (2021). Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nature Communications, 12(1), Article 5474. https://doi.org/10.1038/s41467-021-25807-w

2020

Maresca, F., Polatidis, E., Smid, M., Van Swygenhoven, H., & Curtin, W. (2020). Measurement and prediction of the transformation strain that controls ductility and toughness in advanced steels. Acta Materialia, 200, 246-255. https://doi.org/10.1016/j.actamat.2020.08.028
Yin, B., Maresca, F., & Curtin, W. (2020). Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys. Acta Materialia, 188, 486-491. https://doi.org/10.1016/j.actamat.2020.01.062

2019

Maresca, F., & Curtin, W. A. (2020). Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Materialia, 182, 235-249. https://doi.org/10.1016/j.actamat.2019.10.015
Maresca, F., & Curtin, W. A. (2020). Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys. Acta Materialia, 182, 144-162. https://doi.org/10.1016/j.actamat.2019.10.007
Maresca, F., Ghafarollahi, A., & Curtin, WA. (2019). Solute/screw dislocation interaction energy parameter for strengthening in bcc dilute to high entropy alloys. Modelling and Simulation in Materials Science and Engineering, 27(8), Article 085011. https://doi.org/10.1088/1361-651X/ab4969

2018

Maresca, F., Kouznetsova, V. G., Geers, M. G. D., & Curtin, W. A. (2018). Contribution of austenite-martensite transformation to deformability of advanced high strength steels: From atomistic mechanisms to microstructural response. Acta Materialia, 156, 463-478. https://doi.org/10.1016/j.actamat.2018.06.028
Du, C., Maresca, F., Geers, M. G. D., & Hoefnagels, J. P. M. (2018). Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations. Acta Materialia, 146, 314-327. https://doi.org/10.1016/j.actamat.2017.12.054
Maresca, F., Dragoni, D., Csanyi, G., Marzari, N., & Curtin, W. A. (2018). Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential. Npj computational materials, 4, Article 69. https://doi.org/10.1038/s41524-018-0125-4

2017

Maresca, F., & Curtin, W. A. (2017). The austenite/lath martensite interface in steels: Structure, athermal motion, and in-situ transformation strain revealed by simulation and theory. Acta Materialia, 134, 302-323. https://doi.org/10.1016/j.actamat.2017.05.044
Geers, M. G. D., Du, C., Maresca, F., Kouznetsova, V. G., Hoefnagels, J. P. M., & Curtin, W. A. (2017). Unraveling the apparent ductility of lath martensite. In 14th International Conference on Fracture, ICF 2017: Proceedings (Vol. 2, pp. 542-543). International Conference on Fracture (ICF).

2016

Maresca, F., Kouznetsova, V. G., & Geers, M. G. D. (2016). Deformation behaviour of lath martensite in multi-phase steels. Scripta Materialia, 110, 74-77. https://doi.org/10.1016/j.scriptamat.2015.08.004
de Geus, T. W. J., Maresca, F., Peerlings, R. H. J., & Geers, M. G. D. (2016). Microscopic plasticity and damage in two-phase steels: On the competing role of crystallography and phase contrast. Mechanics of Materials, 101, 147-159. https://doi.org/10.1016/j.mechmat.2016.07.014
Van Beeck, J., Maresca, F., De Geus, T. W. J., Schreurs, P. J. G., & Geers, M. G. D. (2016). Predicting deformation-induced polymer-steel interface roughening and failure. European Journal of Mechanics, A/Solids, 55, 1-11. https://doi.org/10.1016/j.euromechsol.2015.08.002
Maresca, F., Kouznetsova, V. G., & Geers, M. G. D. (2016). Predictive modeling of interfacial damage in substructured steels: Application to martensitic microstructures. Modelling and Simulation in Materials Science and Engineering, 24(2), Article 025006. https://doi.org/10.1088/0965-0393/24/2/025006
Maresca, F., Kouznetsova, V. G., & Geers, M. G. D. (2016). Reduced crystal plasticity for materials with constrained slip activity. Mechanics of Materials, 92, 198-210. https://doi.org/10.1016/j.mechmat.2015.09.011

2015

Hoefnagels, J. P. M., Tasan, C. C., Maresca, F., Peters, F. J., & Kouznetsova, V. G. (2015). Retardation of plastic instability via damage-enabled microstrain delocalization. Journal of Materials Science, 50(21), 6882-6897. https://doi.org/10.1007/s10853-015-9164-0

2014

Maresca, F., Kouznetsova, V. G., & Geers, M. G. D. (2014). On the role of interlath retained austenite in the deformation of lath martensite. Modelling and Simulation in Materials Science and Engineering, 22(4), Article 045011. https://doi.org/10.1088/0965-0393/22/4/045011
Maresca, F., Kouznetsova, V. G., & Geers, M. G. D. (2014). Subgrain lath martensite mechanics: A numerical-experimental analysis. Journal of the Mechanics and Physics of Solids, 73, 69-83. https://doi.org/10.1016/j.jmps.2014.09.002
Last modified:24 June 2024 6.37 p.m.