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Inflammatory conditions are characterized by activa-
tion of the transcription factor nuclear factor kappa B
(NF-κB), resulting in the expression of NF-κB-regulated,
inflammation-related genes, such as inducible nitric ox-
ide synthase (iNOS) and cyclo-oxygenase-2 (COX-2). Ex-
pression of these genes contributes to the survival of
cells. Indeed, exposure to pro-inflammatory cytokines in
the absence of NF-κB activation leads to apoptosis.1,2

Chronic inflammatory conditions are accompanied by
constitutive activation of NF-κB and hence, to the con-
tinuous expression of pro-survival genes, as has been
observed in chronic gastritis.3 Although beneficial for the
survival of cells during exposure to inflammatory stress,
the continuous activation of NF-κB may also pose a risk:
cells with a pro-survival phenotype may give rise to con-
tinuously proliferating cells and may thus be tumorigenic.
Progression to a malignant phenotype of these cells will
most likely involve additional changes in the expression
of non-NF-κB regulated genes e.g. a shift in the balance
of pro- and anti-apoptotic genes towards a more anti-
apoptotic phenotype. Literature on inflammation-related
genes and the apoptotic balance in pre-malignant and
malignant conditions in the gastro-intestinal tract is still
scarce and conflicting. In this review, we aim to give
an overview of the existing literature and we will fo-
cus on inflammation- and apoptosis-related genes in
the sequence of normal epithelium-inflamed epithelium-
metaplasia-dysplasia-cancer in the gastrointestinal tract,
in particular esophagus (Barrett’s esophagus: BE), stom-
ach (gastritis) and colon (inflammatory bowel disease:
IBD).
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Actions of NF-κB, iNOS and COX-2

iNOS is one of three NO synthases responsible for the pro-
duction of nitric oxide from L-arginine. Whereas endothe-
lial NOS (eNOS, NOS-III) and neuronal NOS (nNOS,
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NOS-I) are calcium-dependent NO synthases and respon-
sible for picomolar nitric oxide concentrations, iNOS
is a calcium-independent NO synthase and responsible
for NO production in the nanomolar range.4 NO, pro-
duced by nNOS and eNOS, is necessary for physiolog-
ical functions in the human body.5,6 In contrast to the
eNOS and nNOS that are active only when intracellu-
lar calcium concentrations are elevated, iNOS activity is
calcium-independent. The expression of iNOS is induced
by various inflammatory cytokines, in particular tumour
necrosis factor alpha (TNFα), interferon-gamma and bac-
terial cell wall products like lipopolysaccharide (LPS).7–9

Anti-apoptotic actions of NO include the inhibition of
caspases, the proteases involved in apoptosis and eleva-
tion of cyclic nucleotides.10 In addition, NO is able to
cause DNA-damage and simultaneously inhibit DNA re-
pair mechanisms.11 This results in the preservation and
propagation of DNA damage in proliferating cells. The
COX-isoenzyme COX-2 is normally expressed at very low
levels but is rapidly induced at sites of inflammation.12,13

COX-2 predominates in inflammatory conditions and is
also induced in cancer cells.14,15 Products of COX-2 pro-
mote cell survival: the COX-2 specific inhibitor celecoxib
causes regression of polyps in patients with familial ade-
nomatous polyposis.16 In cell lines expressing COX-2,
inhibition of COX-2 sensitizes these cells to apoptotic
stimuli. Therefore COX-2 expression may be a target for
the chemoprotective effect of NSAIDs in pre-malignant
conditions.

Apoptosis and apoptosis-related
proteins

Apoptosis is important for the removal of unnecessary,
aged or damaged cells. Abnormal resistance to apoptosis
entails malformations, autoimmune disease or cancer due
to the persistence of unwanted cells. Apoptosis is regu-
lated through different pathways.17 In general, apopto-
sis is initiated after activation of death-receptors at the
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plasma membrane. These receptors include the TNF re-
ceptor, activated by TNF, Fas, activated by FasLigand
and TRAIL- or DR-receptors, activated by TRAIL.17 In
contrast to Fas and TRAIL receptor, activation of the
TNF receptor also activates a survival pathway, regulated
by NF-κB. Stimulation of death receptors will lead to
the activation of initiator caspases, such as caspase-8 and
caspase-10. Initiator caspases activate down-stream effec-
tor caspases such as caspase-3 that cleave essential cellular
proteins leading to cell death. Activation of caspase-3 is
amplified by pro-apoptotic signals released from dam-
aged mitochondria.18 These pro-apoptotic proteins from
mitochondria include cytochrome-c , Diablo/Smac and
HtrA2/Omi.18 The release of these proteins into the cy-
toplasm causes activation of caspase-3. Therefore, the in-
tegrity of mitochondrial membranes is essential to avoid
apoptosis. This is regulated to a large extent by mem-
bers of the Bcl-2 family.19 This family comprises both
anti-apoptotic members (e.g. Bcl-2, Bcl-xl, Bfl1/A1) and
pro-apoptotic members (e.g. Bid, Bak, Bad, Bax). Pro-
apoptotic members of the Bcl-2 family contribute to the
formation of pores in the outer mitochondrial membranes,
facilitating leakage of pro-apoptotic proteins into the cy-
toplasm. Anti-apoptotic members of the Bcl-2 family an-
tagonize the pro-apoptotic members, thus inhibiting the
formation of pores. The balance between pro- and anti-
apoptotic Bcl-2 family members within a cell determines
its relative resistance or sensitivity to apoptosis.19 A shift
in this balance towards a more anti-apoptotic phenotype
may result in transformation of a normal cell into a con-
tinuous proliferating malignant tumour cells. Some mem-
bers of the Bcl-2 family, including anti-apoptotic A1/Bfl-
1 and Bcl-xl are under the control of the transcription
factor NF-κB. Overexpression of Bcl-2 family members
in several cancer cell types has been reported, e.g. hepato-
cellular carcinoma and leukemias.20,21

NF-κB, iNOS and COX-2 expression
in Barrett’s esophagus

Barrett’s esophagus (BE) is a typical pre-malignant con-
dition of the esophagus. Normal epithelium is replaced
by columnar epithelium and eventually this can evolve to
adenocarcinoma.22–24 iNOS was reported to be induced in
BE and BE associated carcinoma.25–27 COX-2 expression
in BE is induced in both pre-cancerous and cancerous le-
sions. This could have implications for chemopreventive
therapy. Although data are limited, selective inhibition
of COX-2 in esophageal adenocarcinoma cells suppresses
growth and induces apoptosis.28–30 It was demonstrated
that selective and non-selective COX-2 inhibitors can in-
hibit inflammation, COX-2 activity, and development of
adenocarcinoma induced by reflux.31 On the other hand,
in a retrospective trial among patients with BE, no differ-

ence in cancer risk in BE was found in the presence or ab-
sence of COX-inhibitors of the NSAID-family.32 Finally,
one report observed no COX-2 expression in dysplastic
lesions in BE.33

In summary. iNOS is induced in BE. Due to the scarcity
of investigations, it is not clear what the exact conse-
quences of iNOS in BE epithelium are with respect to
survival and apoptosis. The use of iNOS inhibitors as
chemopreventive intervention in BE has not been reported
yet. The data on COX-2 expression and chemoprevention
in BE are conflicting. No studies report on NF-κB acti-
vation in BE.

Apoptosis and apoptosis-related
proteins in Barrett’s esophagus

Apoptosis measured by counting apoptotic cells in dif-
ferent stages of BE was found to be increased in BE
compared to normal fundus epithelium, whereas apop-
tosis determined by the TUNEL assay in BE was almost
absent.34,35 In BE, with or without dysplasia or carci-
noma, decreased Fas expression has been reported.36 This
suggests a protective mechanism against apoptosis in BE
and BE-associated adenocarcinoma. In addition to gastric
acid in reflux esophagitis there is also reflux of bile in
BE. Bile acids have been shown to activate Fas, inducing
apoptosis in liver cells. The decreased expression of Fas
may be an adaptation of epithelium against exposure to
pro-apoptotic bile acids resulting in decreased sensitiv-
ity to apoptosis. Furthermore, bile acids have been shown
to promote survival of cholangiocyte cell lines by acti-
vating the Epidermal Growth Factor (EGF) receptor.37 If
confirmed, this is an example of an adaptation to inflam-
matory stress, resulting in an anti-apoptotic phenotype
and predisposing to cancer. Reports on the expression of
Bax in BE demonstrated a positive association between
progression to adenocarcinoma and Bax expression.38 In-
creased Bax expression alone in these cells may be not pro-
apoptotic. Only in response to an apoptotic trigger does
Bax translocate from cytoplasm into mitochondrial mem-
branes forming pores. In contrast, anti-apoptotic Bcl-2-
family members are constitutively located in intracel-
lular membranes including mitochondria, and therefore
increased expression of these Bcl-2 members directly con-
tribute to a more apoptosis-resistant phenotype. Reports
on Bcl-2 expression in the neoplastic transformation to
adenocarcinoma are scarce. Some studies showed an in-
creased expression of Bcl-2 in neoplastic transformation,
but others failed to demonstrate Bcl-2 expression at all in
the epithelium of Barrett’s esophagus.39–41 In contrast, ex-
pression of the anti-apoptotic Bcl-2 family member Bcl-xl
increased in the sequence towards adenocarcinoma42 and
this increase may compensate for the observed increase in
Bax expression.
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In summary. There are hardly any reports on apoptosis
in BE. Distinct changes in the expression of Bcl-2 family
members occur, but the consequences for the resistance
against apoptosis are not clear.

NF-κB, iNOS and COX-2 expression
in pre-malignant and malignant
conditions in the stomach

According to the Lauren classification,43 gastric adeno-
carcinomas can be divided into those of the diffuse and
those of the intestinal type. Atrophic gastritis and in-
testinal metaplasia can eventually result in the develop-
ment of pre-malignant and malignant lesions in intesti-
nal type cancer.44 It is well accepted that Helicobacter
pylori-associated gastritis is causally linked to both types
of gastric cancer.45–47

Compared to normal gastric antral mucosa, NF-κB in
Helicobacter pylori (Hp) gastritis is activated and translo-
cated to the nuclei of epithelial cells and its expression
correlates with the activity of gastritis.3,48–51 NF-κB is
not only activated in epithelial cells but also in endothe-
lial cells, macrophages and B lymphocytes in the lamina
propria. Several studies have demonstrated the activation
of NF-κB by Helicobacter pylori in human gastric cancer
cell lines and in vivo activation of NF-κB was demon-
strated in intestinal type gastric carcinoma.52,53 In the
latter report a correlation was found between NF-κB ac-
tivity and clinicopathological features of the carcinoma.
iNOS is induced in the gastric epithelium of patients with
Helicobacter pylori-induced gastritis54,55 and also in ep-
ithelium of intestinal metaplasia.56,57 Reports on the ex-
pression of iNOS in pre-malignant and malignant lesions
showed an increased expression of iNOS.58–63 Further-
more, in these studies, expression of iNOS correlates with
tumour invasiveness, metastatic potential and a worse
prognosis. A relationship between NF-κB activity and
iNOS expression in Helicobacter pylori associated gastri-
tis of humans has been demonstrated.64,65 In these stud-
ies inhibition of NF-κB prevented iNOS expression and
NO production. The authors suggested that iNOS inhi-
bition was restricted to epithelial cells and did not occur
in inflammatory cells of the lamina propria. Most stud-
ies report induction of COX-2 expression in Helicobacter
pylori gastritis.57,66,67 The localisation of COX-2 expres-
sion remains controversial: some studies showed COX-2
expression in both epithelial cells and lamina propria im-
mune cells whereas other studies showed only expression
in lamina propria immune cells. In addition, COX-2 ex-
pression has been demonstrated in epithelium of gastic
atrophy and intestinal metaplasia and in both diffuse and
intestinal type gastric adenocarcinoma,68,69 no difference
in COX-2 expression between diffuse and intestinal type
gastric carcinoma was observed and not all tumour cells

were positive for COX-2.70 Inhibition of NF-κB resulted
in inhibition of COX-2 expression and inhibition of pro-
liferation of gastric cancer cells.71

In summary. NF-κB, iNOS and COX-2 are induced in
Hp-gastritis, intestinal metaplasia, dysplasia and adeno-
carcinoma of the stomach. The localisation and degree of
expression varies between studies. NF-κB activation is
involved in the expression of iNOS, COX-2 and cell pro-
liferation. Some data suggest that inhibition of NF-κB
activation or NF-κB-regulated genes may sensitize gas-
tric cancer cells to apoptosis or inhibit their proliferation.

Apoptosis and apoptosis-related
proteins in pre-malignant and
malignant conditions in the stomach

Gastric intestinal metaplasia is associated with increased
apoptosis compared to normal gastric mucosa.72 In-
creased apoptosis, determined using the TUNEL as-
say, was demonstrated in intestinal type gastric carci-
nomas but other studies failed to confirm this finding.
Since the TUNEL assay is prone to artefacts, other ways
of determining apoptosis should clarify this apparent
discrepancy.73–75 In one study activated caspase-3 was not
detected in gastric cancer cells nor in the gastric mucosa
surrounding the gastric cancer whereas in normal gas-
tric mucosa activated caspase 3 expression was detected.
This suggests that inhibition of apoptosis, as indicated by
the lack of caspase-3 activation, is involved in the trans-
formation to gastric carcinoma.76 In normal gastric mu-
cosa Fas expression is hardly detectable in epithelial cells.
Fas expression increases in gastric atrophy and intestinal
metaplasia and is detectable in all cases with dysplasia.77

Vollmers et al. reported Fas expression in the diffuse type
carcinoma but not in the intestinal type carcinoma,78

whereas we observed exactly the opposite result.79 An-
other group reported high expression of Fas in gastric
cancer cells and reduced Fas expression with the advance-
ment of the carcinoma.80 The increased Fas expression on
malignant cells compared to normal gastric epithelium is
difficult to explain. It remains to be determined whether
the increased Fas expression really results in increased sen-
sitivity to apoptosis. Possibly, increased Bcl-2 expression
may counteract the increased Fas expression in terms of
sensitivity to apoptosis: in normal gastric mucosa Bcl-2
expression is confined to only a few regenerating epithe-
lial cells of the mucous neck region. Bcl-2 expression is
increased in chronic gastritis, intestinal metaplasia and
dysplasia.81–85 Kyokane et al. demonstrated Bcl-2 expres-
sion in early gastric cancer of the elevated type. This ele-
vated type probably resembles adenomatous polyps in the
colon.86 Others demonstrated Bcl-2 expression in tumour
cells of both intestinal type carcinoma as well as diffuse
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type gastric carcinoma, but mostly in a small percentage
of the tumour cells.87,88 However, the expression of Bcl-2
seems to be higher in intestinal type gastric cancer com-
pared to diffuse type cancer.75,76,89,90 Bax expression is re-
ported in both intestinal and diffuse type carcinomas but
seems to be decreased in comparison to the surrounding
non-tumorous tissue, favouring an anti-apoptotic pheno-
type in gastric cancers.83,91

In summary. Apoptosis as determined by the expression
of activated caspase-3 is reduced in gastric cancer com-
pared to normal gastric mucosa. Reports on apoptosis us-
ing the TUNEL assay are conflicting. Expression of Fas
and Bcl-2 proteins are increased in intestinal metaplasia,
dysplasia and adenocarcinoma compared to the normal
gastric mucosa, whereas Bax expression is reduced in gas-
tric cancer cells.

NF-κB, iNOS and COX-2 expression
in inflammatory bowel diseases

NF-κB activity varies in inflammatory bowel diseases.
NF-κB activation has been observed in macrophages in
the lamina propria and in epithelial cells.92,93 IL-10, sul-
phasalazine and immunosuppressive drugs have been re-
ported to inhibit NF-κB activity in the mucosa of pa-
tients with Crohn’s disease and ulcerative colitis.94–97

iNOS is clearly expressed in epithelial cells of the inflamed
gut.98–100 The expression of COX-2 in surface epithelial
cells and in lamina propria immune cells in areas of inflam-
mation in Crohn’s colitis and ulcerative colitis is strongly
induced.101,102 COX-2 overexpression has been described
in sporadic colonic neoplasia and in colitis-associated neo-
plasia but its exact role in neoplastic transformation is not
yet clear. One group reported COX-2 overexpression in
ulcerative colitis associated neoplasia and in this study
the increase in COX-2 expression could not be explained
by inflammatory activity alone.103 However, in this report
the expression of COX-2 in adenocarcinoma in longstand-
ing colitis was not as uniform as in the dysplastic regions.

In summary. Only a limited amount of data concerning
NF-κB activation and COX-2 and iNOS expression in
IBD-related carcinogenesis has been published. Although
these proteins are induced in IBD, their role in oncogen-
esis is not known.

Apoptosis and apoptosis-related
proteins in inflammatory bowel
diseases

In normal intestinal epithelium apoptosis is observed in
the crypt and at the luminal surface.104 Bcl-2 is expressed
in the bases of crypts, whereas epithelial cells on the lu-
minal surface express less Bcl-2.105,106 Bax, Bcl-xl and
Bak expression are confined to areas of colonic epithelial

cells of the luminal surface.106,107 There is a higher ex-
pression of Bak in the left colon compared to the right
colon.108 Fas is strongly expressed in all epithelial cells
of the normal colon throughout the crypt.109 In ulcera-
tive colitis, apoptotic colonocytes are increased in number
throughout the crypt.110 In the same report Fas expression
in the intestinal epithelium of ulcerative colitis patients
was comparable to that of normal epithelial cells. Another
report confirmed this.111 In both reports Fas ligand was
highly expressed compared to normal colonic epithelium.
The reports on expression of apoptosis-related proteins
in the epithelium of patients with ulcerative colitis and
Crohn’s colitis are limited. In active colitis, no change
in Bcl-2 expression compared to normal colonic epithe-
lium was observed.105 Bcl-2 overexpression was observed
in ulcerative colitis-associated neoplasia.112 Compared to
adenomas in areas involved in ulcerative colitis, Bcl-2 ex-
pression in ulcerative colitis-associated dysplastic lesions
is less frequent.113 The expression of Bcl-2 in ulcerative-
colitis-associated colorectal cancer is significantly lower
compared to that in sporadic colorectal cancer.114 Another
report failed to demonstrate a significant difference in Bcl-
2 expression between ulcerative colitis associated neopla-
sia and sporadic adenocarcinomas, although this study
revealed less apoptosis in the ulcerative colitis associated
neoplasia compared to sporadic adenocarcinomas.115 Bax
expression is reduced in ulcerative colitis compared to
normal colonic mucosa.105 Other reports on expression of
apoptosis-related proteins in inflammatory bowel disease
are mainly focussed on lamina propria T cells.

In summary. Reports on apoptosis in inflammatory
bowel diseases and associated neoplasia are limited. Con-
flicting data exist on the expression of Bcl-2 in colitis-
associated neoplasia compared to sporadic carcinoma. Lit-
tle is known about the expression in epithelium of other
apoptosis-related proteins in the sequence from colitis to
carcinoma.

Perspectives

Despite the fact that advances have been made in ex-
ploring the field of pro- and anti-apoptotic proteins,
little is known about the balance of these proteins in
Barrett’s esophagus, gastric carcinoma and in neoplas-
tic changes of longstanding colitis. Published reports are
conflicting. Thus it is difficult to draw any general con-
clusions. New data on the regulation of these proteins
are important if one is to design new cancer therapies.
There are already strong indications that inhibitors of
the NF-κB-regulated gene COX-2, e.g. celecoxib and as-
pirin prevent colon cancer. Whether these findings can
be extended to inhibitors of other NF-κB-regulated anti-
apoptotic genes, e.g. iNOS, or to inhibitors of NF-κB
activation itself, e.g. the currently used sulfasalazine116 or
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mesalamine,117 remains to be investigated. Development
of stronger chemopreventive agents and the development
of novel early markers for oncogenesis in chronically in-
flamed mucosa may eventually lead to new chemothera-
peutic strategies.
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