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I THE INTEGERS

In this chapter we consider the set of integers Z= {. . . ,−2,−1,0,1,2,3, . . .}. We learn
many elementary properties of these in elementary and secondary education. How-
ever, in most cases formal proofs of these properties are not discussed there. Such
proofs form the main part of the present chapter, and may be viewed as a repeti-
tion and extension of the same subject as it was treated during part of the first year
bachelor’s course ‘Kaleidoscope Mathematics’. In the second chapter of the present
notes we will see how the developed theory about integers is used, for example,
in order to obtain a better understanding of computations involving remainders
upon division by a fixed integer. In turn, calculations using such remainders will
be used to obtain criteria determining whether a given large integer is or is not a
prime number.

Here as well as in subsequent chapters, many examples will be found illustrat-
ing how rather abstract definitions and proofs turn out to be quite applicable in
concrete situations.

I.1 Division (with remainder)

In elementary school one encounters exercises like 100 : 7 = 14 R 2, meaning that
7 goes into 100 in total 14 times, leaving a remainder of 2. The following general
fact is behind problems of this sort.

I.1.1 Theorem. (Division with remainder.) Let a,b ∈ Z with b 6= 0. Then there
exist q, r ∈Z such that

a = qb+ r and 0≤ r < |b|.
Moreover, these q, r are unique.

Proof. We first show existence of the required q, r ∈ Z Let us assume a ≥ 0. We
prove existence using mathematical induction with respect to a: in case a = 0 one
may take q = r = 0. Now let a > 0 and use as induction hypothesis that a−1 ≥ 0
can be written as a−1= q̃b+ r̃ with 0≤ r̃ < |b|. Then a = q̃b+ r̃+1. Here evidently
0 ≤ r̃+1 ≤ |b|. In case r̃+1 < |b| we may take q = q̃ and r = r̃+1. In the remaining
case r̃+1= |b| we have

a = q̃b+ r̃+1= q̃b+|b| = (q̃+ |b|
b

)b+0.

Hence one can take q = q̃ + |b|
b and r = 0. Using the principle of mathematical

induction this proves existence of q, r in the case a ≥ 0.
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If a < 0, then −a > 0, hence the argument above shows that there exist q′, r′
with −a = q′b+ r′ and 0 ≤ r′ < |b|. Then a = (−q′)b− r′ = (−q′− |b|

b )b+ (|b| − r′), so
we conclude that q =−q′ and r = 0 work in case r′ = 0, while for r′ 6= 0 one can take
q =−q′− |b|

b and r = |b|− r′.
It remains to prove uniqueness. Suppose that a = q1b + r1 = q2b + r2 with

0 ≤ r1 ≤ r2 < |b|. Then 0 ≤ r2 − r1 ≤ r2 < |b|, and also r2 − r1 = b(q1 − q2). Hence
r1 = r2, since otherwise r2 − r1 would be a positive multiple of |b|, contradicting
r2 − r1 < |b|. As a consequence b(q1 − q2) = 0, and since b 6= 0 this implies q1 = q2.
This proves the theorem.

I.1.2 Remark. With a little knowledge about real numbers, a different argument
may be given: partition the real line in intervals of length |b|, so

R= . . .∪ [−2|b|,−|b|)∪ [−|b|,0)∪ [0, |b|)∪ . . . . . .

Then a ∈R is in exactly one such interval, hence can be written as a = qb+ r with
0≤ r < |b|.

A reason to prefer the proof using induction over the argument involving real
numbers, is that conceptually R is much more difficult than Z. In fact, one can
construct R by first constructing the rational numbers Q starting from Z, and then
building R from Q via a technique called ‘completion’.

I.1.3 Definition. Let a,b ∈ Z. We say that a divides the integer b, if q ∈ Z exists
such that b = qa. This is denoted by a|b. In case no such q exists, we write a - b,
and we say that a does not divide b.

Instead of a divides b one also says that a is a divisor of b, or that a is a factor
of b, or that b is a multiple of a, or that b is divisible by a. For example 17|−153
and 0|0 and −2 - 101 and 0 - 3.

We present some elementary properties of divisibility.

I.1.4 Proposition. For a,b, c ∈Z one has:

1. If a|b and b|c, then also a|c.
2. If a|b and a|c, then also a|b± c.
3. a|0 and 1|a.
4. 0|a if and only if a = 0.
5. If b 6= 0 and a|b, then |a| ≤ |b|.

Proof. These properties are immediate consequences of the definition. As an ex-
ample, a|b and a|c implies that p, q ∈Z exist with b = pa and c = qa, and hence it
follows that b±c = pa±qa = (p±q)a, so a|b±c. You should try to find formal proofs
of the other properties.

A consequence of the last of the properties mentioned in Proposition I.1.4, is
that an integer a 6= 0 has only finitely many divisors; the largest of these is evi-
dently |a|. In particular, if b is another integer, then a and b have only finitely
many divisors in common (two of the common divisors are of course 1 and −1). If
one considers common multiples of two integers a,b, then in case a or b equals 0,
the fourth property mentioned in Proposition I.1.4 implies that 0 is the only com-
mon multiple. However, in case ab 6= 0 the integers a and b have positive common
multiples, for example |ab|. Hence the following definition makes sense:

I.1.5 Definition. Let a,b ∈Z. In case a and b are not both equal to 0, the greatest
common divisor of a and b is defined as the largest integer that is a divisor of both
a and b. This integer is denoted as gcd(a,b). Furthermore, we define gcd(0,0) := 0.
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We define the least common multiple of a and b, denoted by lcm(a,b), to be
0 if ab = 0, and to be the smallest positive integer k satisfying both a|k and b|k
otherwise.

Two integers a,b are call coprime or relative prime if gcd(a,b)= 1.

I.1.6 Example. We have gcd(a,b) = gcd(b,a) and gcd(a,0) = |a|. Since a and |a|
have the same divisors, it follows that gcd(a,b)= gcd(|a|,b)= gcd(a, |b|)= gcd(|a|, |b|).
It is a difficult task in general to compute a greatest common divisor directly from
the definition. Try, for example, to check that gcd(35581,46189)= 221.

One easily constructs similar examples with the lcm; for instance, one encoun-
ters them in school when one tries to find a common denominator for two fractions.
In the remainder of this section we will only discuss the gcd; in Section I.2 we will
return to the notion lcm.

It turns out that a surprisingly simple and efficient algorithm exists for com-
puting gcd(a,b). This dates back from the Greek mathematician Euclid who lived
around 300 B.C. The algorithm runs as follows.

I.1.7 Theorem. (The Euclidean algorithm.) The following algorithm computes the
greatest common divisor of two integers a,b in finitely many steps:

gcd:=proc(a::integer,b::integer)::integer;
local rn,ro,help;
ro:=max(abs(a),abs(b)); rn:=min(abs(a),abs(b));
while rn<>0 do

do help:=ro; ro:=rn; rn:=help mod rn end do;
return ro

end proc;

Proof. To understand this program, we check what happens during the ‘while-loop’.
Each time this loop is executed, the pair of integers (ro, rn) is replaced by (rn, ro
mod rn). Here ro mod rn is the remainder upon dividing ro by rn. In particular, at
the start of the ‘loop’ it holds that ro, rn≥ 0, and each time the loop is executed, rn
becomes strictly smaller. Hence the program terminates.

To show that it indeed computes the greatest common divisor of a and b, we
show that, moreover, when entering the ‘loop’, we always have gcd(ro,rn)= gcd(a,b).
This will be done in Lemma I.1.9 below. Accepting the lemma, it follows that after
the last execution of the ‘loop’ rn = 0 and gcd(a,b) = gcd(ro,rn) = gcd(ro,0) = ro. In
other words, indeed the algorithm outputs the greatest common divisor of a and
b.

I.1.8 Remark. In many programming languages, for negative a the result of a mod
b is not the remainder r as given in Theorem I.1.1, but it is r−|b|. The code above
is written in Maple; here this problem does not occur.

I.1.9 Lemma. For a,b, q, r ∈Z with a = qb+ r we have gcd(a,b)= gcd(b, r).

Proof. We will show that the set of common divisors of a and b equals the set of
common divisors of b and r. The definition of greatest common divisor then implies
the lemma.

If d|a and d|b, then also d|a− qb = r. Hence common divisors of a and b are
also common divisors of b and r.

Vice versa, if d|b and d|r, then also d|qb+ r = a. Hence the common divisors of
b and r are also common divisors of a and b. This proves the lemma.
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I.1.10 Example.

gcd(1057,315) = gcd(3 ·315+112,315)
= gcd(315,112) = gcd(2 ·112+91,112)
= gcd(112,91) = gcd(91+21,91)
= gcd(91,21) = gcd(4 ·21+7,21)
= gcd(21,7) = gcd(7,0)= 7.

We now discuss the efficiency of the Euclidean algorithm.

I.1.11 Theorem. (G. Lamé, 1844, French mathematician.) If a > b > 0, then the
number of divisions with remainder performed by the Euclidean algorithm when
determining gcd(a,b) is at most 5 times the number of decimal digits of b.

Proof. Write r0 = a and r1 = b. The algorithm computes one by one

r0 = q0r1 + r2 (0< r2 < r1)
r1 = q1r2 + r3 (0< r3 < r2)
r2 = q2r3 + r4 (0< r4 < r3)

...
rn−2 = qn−2rn−1 + rn (0< rn < rn−1)
rn−1 = qn−1rn +0.

The number of divisions with remainder is therefore exactly n.
To estimate n we use the so-called Fibonacci sequence ( f i)i≥0, defined induc-

tively by f0 = f1 = 1 and f i+2 = f i+1+ f i for i ≥ 0. So this is the sequence 1,1,2,3,5,8,
13,21,34, . . . . . ..

Using mathematical induction, we now show rn−i ≥ f i+1 for i = 0, . . . ,n−1. The
case i = 0 is trivial. The case i = 1: since 0 < rn < rn−1, it follows that qn−1 > 1
hence rn−1 ≥ 2rn ≥ 2 = f2. Now assume i > 1 and use the induction hypothesis for
i−1 and i−2. Then we find

rn−i = qn−irn−(i−1) + rn−(i−2) ≥ rn−(i−1) + rn−(i−2) ≥ f i + f i−1 = f i+1.

This completes the induction.
In particular, this shows that b = r1 ≥ fn.
To complete the proof of the theorem, we again use induction to show f5i+1 > 10i

for i ≥ 1. For i = 1 this is correct, since f6 = 13 > 10. Assuming the inequality for
i ≥ 1, we obtain

f5(i+1)+1 = f5i+6 = f5i+5 + f5i+4 = f5i+4 +2 f5i+3 + f5i+2 = f5i+3 +3 f5i+2 +3 f5i+1 + f5i
= f5i+2 +7 f5i+1 +4 f5i = 8 f5i+1 +5 f5i > 8 f5i+1 +2 f5i +2 f5i−1 = 10 f5i+1
> 10 ·10i = 10i+1.

Now write n = 5m+ k with 1 ≤ k ≤ 5. Then b ≥ fn ≥ f5m+1 > 10m. This shows
that the number of decimal digits of b is at least m+1≥ n/5, so n is at most 5 times
the number of decimal digits of b, which is what we wanted to prove.

One can use the Euclidean algorithm to construct solutions in integers of cer-
tain linear equations. This application will also be quite useful in Chapter II.

I.1.12 Theorem. (Bachet-Bézout; named after the French mathematicians Claude
Gaspard Bachet 1581–1638 and Étienne Bézout 1730–1783.) For a,b ∈Z there exist
integers x, y ∈Z such that ax+by= gcd(a,b).
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Proof. In case ab = 0 this is immediate from the definition of the gcd. Now assume
a 6= 0 6= b. Write r0 = |a| and r1 = |b| and let n be the number of divisions with
remainder computed during the execution of the Euclidean algorithm. Then we
have a sequence

r0 = q0r1 + r2 (0< r2 < r1)
r1 = q1r2 + r3 (0< r3 < r2)
r2 = q2r3 + r4 (0< r4 < r3)

...
rn−2 = qn−2rn−1 + rn (0< rn < rn−1)
rn−1 = qn−1rn +0

as in the previous proof. The n− 1st equality here presents rn = gcd(a,b) as a
linear combination of rn−1 and rn−2 with integer coefficients. Using the n−2nd
equality one can write rn−1 as a combination of rn−2 and rn−3, so this results in a
presentation of gcd(a,b) as an integer linear combination of rn−2 and rn−3. Work-
ing upward, one consecutively eliminates rn−2, rn−3, . . . , r3, r2. What remains is a
relation gcd(a,b) = xr1 + yr0. By changing the sign of x and/or y if necessary, this
yields an equality ax+by= gcd(a,b) as desired.

The argument presented above is completely constructive. The next algorithm
finds the greatest common divisor of a,b ∈Z, and integers x, y such that ax+by= gcd(a,b),
all at the same time. In fact the algorithm does not consider the sequence rn, rn−1, . . . , r0
as discussed in the proof, but rather the sequence in reversed order r0, r1, r2, . . . , rn.
Namely, everytime a new r i is computed, we also find xi, yi ∈Z such that xia+yib = r i.
In the nth step, these xn, yn are the required x, y. Check for yourself that the algo-
rithm indeed works.

# Here we find gcd(a,b), and write it as xa+yb.
if a=0
then x:=0; y:=1; gcd:=abs(b)
else if b=0

then x:=1; y:=0; gcd:=abs(a)
else # a and b are both nonzero in this case

ro:=abs(a); xo:=sign(a); yo:=0;
rn:=abs(b); x:=0; y:=sign(b);
while rn<>0

do
q:=floor(ro/rn); help:=rn; rn:=ro-q*rn; ro:=help;
help:=x; x:=xo-q*x; xo:=help;
help:=y; y:=yo-q*y; yo:=help

end do;
gcd:=ro; x:=xo; y:=yo

end if
end if; print(gcd,x,y);

I.1.13 Example. In Example I.1.10 we saw that gcd(1057,315) = 7. We now con-
struct integers x, y such that 1057x+315y = 7 using the algorithm above. To this
end, consider the following equalities:

1 ·1057 + 0 ·315 = 1057
0 ·1057 + 1 ·315 = 315 (subtract this 3 times from the previous:)
1 ·1057 + −3 ·315 = 112 (this one 2 times from the previous:)

−2 ·1057 + 7 ·315 = 91 (this once from the previous:)
3 ·1057 + −10 ·315 = 21 (this 4 times from the previous:)

−14 ·1057 + 47 ·315 = 7.
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The solution found here is by no means the only one. If, for example, (x′, y′) is
another solution, then one has〈(

1057
315

)
,

(
x
y

)〉
= 7=

〈(
1057
315

)
,

(
x′

y′

)〉

with respect to the standard inner product on R2, so the vector
(x−x′

y−y′
)

is perpen-

dicular to
(1057

315
)
. Using this it is not hard to find all solutions of the equation

1057x+315y= 7 in integers.

It is easy to derive some further results from Theorem I.1.12:

I.1.14 Corollary. Let a,b ∈Z and put d = gcd(a,b). Every integer that is a divisor
of a as well as of b is also a divisor of d. Vice versa, any divisor of d is a common
divisor of a and b.

Proof. Since d divides both a and b, the first property in Proposition I.1.4 shows
that any divisor of d divides a and b as well.

For the other assertion, write d = ax+by for certain x, y ∈Z. If c|a and c|b then
also c|ax+by= d. This proves the corollary.

I.1.15 Corollary. Let a,b ∈ Z. Then a,b are coprime if and only if there exist
x, y ∈Z such that ax+by= 1.

Proof. If a,b are coprime, then by definition gcd(a,b) = 1. So Theorem I.1.12 im-
plies the existence of x, y ∈Z with ax+by= 1.

Vice versa, if ax+by= 1 for some x, y ∈Z, put d = gcd(a,b). Then d ≥ 0 and d|a
and d|b, hence d|ax+by= 1, so d = 1.

I.1.16 Corollary. For a,b, c ∈Z with gcd(a,b)= 1 the following holds: if a|bc, then
a|c.

Proof. Take x, y ∈Z with ax+by= 1. If a|bc, then also a|axc+byc = (ax+by)c = c.

I.2 Prime factorization

I.2.1 Definition. A prime number (prime) is an integer p > 1 whose only positive
divisors are 1 and p.

I.2.2 Example. Small prime numbers such as 2,3,5, . . . are well known. For much
larger integers it is in general not easy to check whether they are prime. We know,
for example, that 2524288 +1 is not prime, but 2859433 −1 is, and 21048576 +1 is not.
These numbers consist of 157827, 258716, and 315653 decimal digits, respectively.
The exponents here are 219, the prime 859433, and 220. In 1962 the Swedish math-
ematician Hans Riesel found a divisor of the first number, namely 33629 ·221 +1.
In January 1994 the second number was proven to be prime by the Americans
David Slowinski and Paul Gage. At the moment of writing (October 2016) the
largest known prime is 277232917 −1, consisting of 23,249,425 decimal digits. This
immense example was discovered in 2017 as part of the Great Internet Mersenne
Prime Search. Regarding the number 2220 + 1 given above, the American math-
ematicians Jeff Young and Duncan Buell showed that it is not a prime in 1987.
However, at the time of writing (October 2018) nobody has been able to find a non-
trivial factor. The smallest integer of the form 1+2m for which it is unknown at
present whether it is prime, is the one having m = 233.
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I.2.3 Theorem. If p is prime, and a,b ∈Z such that p|ab, then p|a or p|b.

Proof. Put d = gcd(a, p). Then d is positive since p 6= 0. Moreover d divides p.
The definition of a prime therefore implies d = 1 or d = p. In the first case Corol-
lary I.1.16 shows p|b. In the second case one has p = d|a.

I.2.4 Corollary. If p is prime, and a1, . . . ,an are integers such that p|a1a2 · . . . ·an,
then there exists an index 1≤ k ≤ n such that p|ak.

Proof. This can be shown by induction with respect to n. For n = 1 the statement is
obvious, and the case n = 2 is shown in Theorem I.2.3. Now take n ≥ 3 and assume
the statement for products of < n factors. If p|a1a2 · . . . · an = (a1) · (a2 · . . . · an),
Theorem I.2.3 implies that p|a1 or p|a2 · . . . ·an. In the first case we are done, and
in the second case we use the induction hypothesis.

Aided by the above properties of primes, we now show a result called the ‘main
theorem of arithmetic’:

I.2.5 Theorem. (unique prime factorisation) Every integer greater than 1 can be
written as a product of primes. This product is unique up to the order of the factors.

Proof. We first show that any n ∈ Z with n > 1 can be written as a product of
primes. We use induction w.r.t. n: the case n = 2 is clear. Let n > 2 and suppose
every integer greater than 1 and smaller than n can be written as a product of
primes. If n is a prime number, we are done. If n is not prime, then we have
n = n1n2 for some 1 < n1,n2 < n. The induction hypothesis implies that both n1
and n2 are products of primes, so n is as well.

Next we show uniqueness. Suppose uniqueness does not hold, and take n to be
the smallest integer > 1 allowing more than one factorisation into primes, say

n = p1 p2 · . . . · pt = q1q2 · . . . · qs,

with primes pi, q j. Then p1|n = q1q2 · . . . · qs. Since n allows more than one fac-
torisation, n is not prime, hence s, t > 1 so in particular n/p1 > 1. Corollary I.2.4
implies p1|qk for some k. Since qk is prime, we conclude that p1 = qk. Dividing the
given factorisations by their common factor p1 = qk, it follows that n/p1 allows two
factorisations as well. This contradicts the minimality of n. Hence the theorem is
proven.

I.2.6 Remark. Computing the prime factorisation of a large integer N is an ex-
tremely difficult problem. This plays an important role in cryptography. Namely,
one could break the widely used public key cryptosystem RSA, invented in 1978 by
Ron Rivest, Adi Shamir and Leonard Adleman, by finding an efficient algorithm
to solve the following problem: Given an integer N which factors as the product
of two large prime numbers p and q, find p and q. RSA and related systems are
discussed in the third year course ‘Security and Coding’.

Although finding large primes is not easy, as we saw in Example I.2.2, the
following result is very old.

I.2.7 Theorem. (Euclid) There exist infinitely many primes.

Proof. Suppose we have n ≥ 1 pairwise different primes p1, . . . , pn. Consider the
integer N = (p1 ·p2 ·. . .·pn)+1. Take a prime q in the prime factorisation of N. Then
q differs from each pi, since otherwise q divides both N and N−1= p1 ·. . .·pn hence
also their difference N−(N−1)= 1 which is impossible. We therefore conclude from
the existence of n primes that also n+1 primes exist. The result follows.
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There are many different proofs of Theorem I.2.7.

I.2.8 Remark. It is not true that N as constructed in the proof of Theorem I.2.7
is necessarily itself a prime. For example, given a finite set of odd primes, the
product plus 1 is even (and > 2). Also, starting from the set of primes {2}, re-
peatedly taking 1 plus the product of the set of primes already considered yields
2,3,7,43,1807= 13 ·139.

I.2.9 Definition. If p is prime and a ∈Z is not equal to 0 or ±1, then we write vp(a)
for the number of times p appears in the prime factorisation of |a|. Moreover, we
put vp(1)= vp(−1)= 0 and vp(0)=∞.

The number vp(a) is usually called the valuation of a at p. Since a prime fac-
torisation is unique up to the order of the primes, vp(a) is well defined. If a ∈ Z
is not zero, then the definition implies |a| = ∏

pvp(a). Here the product is taken
over all primes p. Although there are infinitely many primes by Theorem I.2.7, the
product is still well defined. Namely, only finitely many primes occur in the prime
factorisation of |a|, and for all other primes p one has vp(a)= 0 hence pvp(a) = 1.

I.2.10 Corollary. Let a,b be integers.

1. For every prime p we have vp(ab)= vp(a)+vp(b).
2. We have a|b if and only if every prime p satisfies vp(a)≤ vp(b).
3. If a and b are not both zero, then

gcd(a,b)= ∏
p prime

pmin{vp(a),vp(b)}.

4. If a 6= 0 and also b 6= 0, then

lcm(a,b)= ∏
p prime

pmax{vp(a),vp(b)}.

5. If a|c and b|c, then lcm(a,b)|c.
6. gcd(a,b) · lcm(a,b)= |ab|.

Proof. 1: The statement is true if a and/or b equals zero, since infinity plus infinity
and also infinity plus any finite number equal infinity. The remaining case follows
from the equality

|ab| = |a| · |b| =∏
p

pvp(a) ·∏
p

pvp(b) =∏
p

pvp(a)+vp(b).

2: If a|b, then b = qa for some q ∈ Z, and the first part of the corollary implies
vp(a)≤ vp(a)+vp(q)= vp(qa)= vp(b), for all primes p.

Vice versa, assume that vp(a)≤ vp(b) for all primes p. Certainly a|b if b = 0. In
case a = 0 the assumption implies vp(b) =∞, hence b = 0, so again a|b. If a and b
are both nonzero, then q =∏

p pvp(b)−vp(a) is a well defined integer. By definition |b|
and |qa| have the same prime factorisation, hence b =±qa, which implies a|b.
3: By assertion 2., the integers d which divide both a and b are precisely those
integers with the properties vp(d)≤ vp(a) and vp(d)≤ vp(b) for all primes p. Since
a 6= 0 or b 6= 0, we get that min{vp(a),vp(b)} is finite for all primes p, and nonzero for
only finitely many primes p. So

∏
p pmin{vp(a),vp(b)} is a well defined integer, dividing

both a and b and moreover at least as large as any other common divisor. Hence it
equals gcd(a,b).
4: Suppose that a and b are both nonzero, then vp(a) and vp(b) are both finite for all
primes p and nonzero for only finitely many primes p. Thus k =∏

p pmax{vp(a),vp(b)}

is well defined and positive. By assertion 2., k is a multiple of both a and b. Every
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common multiple c satisfiesvp(c) ≥ vp(a) and vp(c) ≥ vp(b) for all primes p by 2.,
hence k is the smallest positive common multiple, i.e. k = lcm(a,b).
5: If ab = 0 and a|c and b|c, then c = 0, so in this case the assertion holds. If ab 6= 0,
then the assertion follows by combining properties 2. and 4..
6: This holds whenever ab = 0, since then lcm(a,b) = 0 by definition. For ab 6= 0,
one has

|ab| =∏
p pvp(a) ·∏p pvp(b) =∏

p pvp(a)+vp(b)

=∏
p pmin{vp(a),vp(b)}+max{vp(a),vp(b)}

which equals gcd(a,b) · lcm(a,b) by 3. and 4..

I.2.11 Remark. The formulas given in Corollary I.2.10 provide a method to com-
pute gcd(a,b) and lcm(a,b) if the prime factorisation of a and b is known. In general
this might not be the case, and factoring an integer is typically much more difficult
than directly computing gcd(a,b) with the Euclidean algorithm. The knowledge of
gcd(a,b) allows us to find lcm(a,b) by the formula lcm(a,b) = |ab|/gcd(a,b). Note
that we used unique prime factorisation to prove this formula. However, this fac-
torisation is no longer needed to compute lcm(a,b) by means of the formula.
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I.3 Exercises

1. (‘The b-ary system’). Let a,b ∈Z with a ≥ 1 and b ≥ 2. Show that there exist a
positive integer t and integers c0, c1, . . . , ct ∈ {0,1, . . . ,b−1} such that ct 6= 0 and

a = ctbt + . . .+ c2b2 + c1b+ c0.

Show that these t, c0, . . . , ct are unique.
2. Prove that if a,b ∈Z are not both equal to zero, then a/gcd(a,b) and b/gcd(a,b)

are coprime.
3. Determine d = gcd(3354,3081) and find x, y ∈ Z with 3354x+3081y = d. Next,

find all solutions of this equation in integers.
4. Let ( fn)n≥0 be the Fibonacci sequence defined by f0 = f1 = 1 and fn+2 = fn+1+ fn

for n ≥ 0. How many divisions with remainder are performed by the Euclidean
algorithm when computing gcd( fn, fn+1)? Show that gcd( fn, fn+1) = 1 for all
n ≥ 0.

5. Let n ∈Z, n ≥ 2. Show that n is prime if and only if n has no divisor d such that
1< d ≤p

n.
6. Prove that infinitely many primes exist which leave a remainder 3 upon division

by 4.
7. Prove that infinitely many primes p exist with the property that p−2 is not

prime.
8. Prove that for a,b, c ∈Z one has:

(a) If gcd(a,b)= gcd(a, c)= 1, then gcd(a,bc)= 1.

(b) If a and b are coprime and both divide c, then their product divides c.

(c) If c ≥ 0, then gcd(ac,bc)= c ·gcd(a,b).

9. Let a,b ∈Z both be positive.

(a) Let r be the remainder upon dividing a by b. Show that 2r − 1 is the
remainder upon dividing 2a −1 by 2b −1.

(b) Show that 2b −1|2a −1 if and only if b|a.

(c) Prove that gcd(2a −1,2b −1)= 2ggd(a,b) −1.

(d) Are the above assertions still true if we replace ‘2’ by some integer c > 2?

10. Let a,b,n ∈Z such that n ≥ 0.

(a) Show that a−b|an −bn.

(b) Show that if n is odd, then a+b|an +bn.

(c) Now take b = 1 and suppose a > 1 and n > 1. Prove that if an −1 is prime,
then a = 2 and n is prime.

(d) Take a = 2 and n = 11 and verify that an −1 is not prime. So apparently
the converse of the property above does not necessarily hold.

11. Show (using part (b) of the previous exercise) that if 2n+1 is prime, then n is of
the form n = 2k for some integer k ≥ 0.

12. Prove that if n4 +4n is prime for some positive integer n, then n = 1.
13. (a) Show that any prime p > 3 satisfies 24|p2 −1.

(b) Show that if p1, p2, p3, p4, p5 are (not necessarily distinct) primes, and
p1 p2 p3 p4 p5 +1= p2 for some prime p, then p = 7 or p = 11 or p = 13.

14. Suppose that p1, . . . , pn are pairwise distinct primes. Show that the real num-
bers log(p1), . . . , log(pn) are linearly independent over the rationals. In other
words, show that if a1, . . . ,an ∈ Q satisfy a1 log(p1)+ . . .+ an log(pn) = 0, then
a1 = . . .= an = 0.
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II MODULAR ARITHMETIC

In this chapter we develop the basic properties of calculations with remainders
upon division.

II.1 Residue classes modulo N

Let N be an arbitrary positive integer.

II.1.1 Definition. Two integers a,b are called congruent modulo N if N | a−b. This
is denoted by a ≡ b mod N. We call N the modulus.

Integers a,b are congruent modulo N precisely when they have the same re-
mainder upon division by N. Indeed, if a = q1N + r1 and b = q2N + r2 for certain
0≤ r1, r2 < N, then the statement N | a−b is equivalent to N | r1− r2. Since r1− r2
is strictly between −N and +N, we have N | r1 − r2 if and only if r1 − r2 = 0, i.e.,
r1 = r2.

We now discuss some properties of the relation ‘being congruent modulo N.

II.1.2 Lemma. Let a,b, c be integers. Then the following assertions hold.

1. (Reflexivity) We have a ≡ a mod N.
2. (Symmetry) We have a ≡ b mod N if and only if b ≡ a mod N.
3. (Transitivity) If a ≡ b mod N and b ≡ c mod N, then a ≡ c mod N.

Proof. The proof follows directly from the definition of congruence.

A relation satisfying the assertions of Lemma II.1.2 is called an equivalence
relation. We will see further examples of this later on in the course.

An equivalence relation partitions a set into a union of pairwise disjoint sub-
sets. In our case these subsets are called residue classes modulo N. Explicitly:

II.1.3 Definition. For a ∈Z the residue class of a modulo N is defined as

{b ∈Z | b ≡ a mod N} .

We denote this residue class by a mod N. If the modulus N is clear from the con-
text, we also write a for a mod N. If b ∈ A mod N, then we call b a representative
for a mod N.
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By definition a mod N is a subset of Z. If a = qN + r, then a ≡ r mod N, and the
residue class r mod N equals a mod N. Hence there are as many distinct residue
classes modulo N as there are possible remainders upon division by N, namely N
such classes. The residue class of a modulo N consists of all integers of the form
a+Nk for some k ∈Z, hence we can also write

a mod N = a+NZ.

II.1.4 Example. As explained above, there are 4 distinct residue classes for N = 4,
namely 0 mod 4 and 1 mod 4 and 2 mod 4 and 3 mod 4. These are pairwise disjoint
subsets of Z whose union is all of Z. They are:

{ . . . . . . ,−284, . . . ,−8,−4,0,4, . . . ,1016, . . . . . . }= 0 mod 4,
{ . . . . . . ,−283, . . . ,−7,−3,1, . . . ,1017, . . . . . . }= 1 mod 4,
{ . . . . . . ,−282, . . . ,−6,−2,2, . . . ,1018, . . . . . . }= 2 mod 4,
{ . . . . . . ,−281, . . . ,−5,−1,3, . . . ,1019, . . . . . . }= 3 mod 4.

The residue class 17 mod 4 equals 1 mod 4. Using the notation a = a mod 4 this is
expressed as 17= 1. Similarly one has −1001= 3.

The following elementary property is an immediate consequence of generalities
concerning equivalence relations. Nevertheless we present a proof, illustrating how
the given definitions are used.

II.1.5 Lemma. For a,b ∈Z one has a mod N = b mod N if and only if a ≡ b mod N.

Proof. Assume a mod N = b mod N. Since a is an element of the residue class
a mod N = b mod N, we must have a ≡ b mod N.

Vice versa, suppose a ≡ b mod N. As we saw, this means that a and b yield
the same remainder upon division by N. Hence an integer c is in the residue class
a mod N if and only if c and a yield the same remainder upon division by N, which
is equivalent to c leaving the same remainder as b, therefore to c being in b mod N.
This shows a mod N = b mod N.

II.1.6 Theorem. Let a1,a2,b1,b2 be residue classes modulo N, where a1,a2,b1,b2
are integers. Suppose a1 = a2 and b1 = b2. Then

a1 +b1 = a2 +b2 and a1b1 = a2b2.

Proof. From a1 = a2 and b1 = b2 it follows by Lemma II.1.5 that q, q′ ∈ Z exist
with a2 = a1 +Nq and b2 = b1 +Nq′. Hence a2 + b2 = a1 + b1 +N(q+ q′), which by
Lemma II.1.5 implies a1 +b1 = a2 +b2. Furthermore,

a2b2 = (a1 +Nq)(a2 +Nq′)= a1a2 +N(a1q′+ qa2 +Nqq′),

and the same reasoning implies a1b1 = a2b2.

II.1.7 Definition. (Adding and multiplying residue classes.) We denote the set of
residue classes modulo N by Z/NZ (or Z/(N)). For a mod N,b mod N ∈ Z/NZ we
define

(a mod N)+ (b mod N) := (r1 + r2) mod N

and
(a mod N) · (b mod N) := r1r2 mod N,

with r1 an arbitrary element of a mod N and r2 an arbitrary element of b mod N.
Theorem II.1.6 shows that the resulting residue classes are independent of the
choice of r1, r2, which implies that (a mod N)+(b mod N) and (a mod N)·(b mod N)
are well-defined.
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II.1.8 Remark. If one chooses r1 = a and r2 = b in the above definition (which
is allowed, since a,b are elements of a mod N,b mod N, respectively), then the
definition reads a+b := a+b and a ·b := ab.

II.1.9 Example. Take N = 17. Then−1 = 67, since the difference of −1 and 67
is divisible by 17. Hence we get 1 = (−1)(−1) = −1 · −1 = 67 · 67 = 672. Appar-
ently, 672 and 1 yield the same remainder upon division by 17, or in other words,
672 − 1 is divisible by 17. (Of course this could be seen without residue classes:
672 −1= (67+1)(67−1).)

Since we can add and multiply residue classes modulo N, we can also raise
them to a positive power n.

II.1.10 Definition. For a natural number n the nth power of a residue class a,
denoted by an, is inductively defined as follows. We define a1 := a, and if we have
defined an for n ≥ 1, then we set an+1 := an ·a.

It holds that am = am and an+m = an ·am, as is easily verified using mathemati-
cal induction with respect to m. Moreover ab

m = (ab)m = ambm = am ·bm = am ·bm
.

II.1.11 Example. To illustrate the use of these definitions, we will show that the
integer 21000 +1 is divisible by 257. Write a for the residue class of a modulo 257.
Then

21000 = (28)125 = 256
125 =−1

125 =−1.

Since 21000 and −1 yield the same residue class modulo 257, their difference is
divisible by 257 which is what we wanted to show. Note that 21000 + 1 has 302
decimal digits, so to check the asserted divisibility using a simple division by 257
is quite elaborate.

II.1.12 Example. We calculate the last two decimal digits of 21000. This is the
same as finding the remainder of 21000 upon division by 100. In Z/100Z we have

16
6 = 4

6 ·46 = 4096 ·4096=−4 ·−4= 16,

since 46 = 212 = 4096. Furthermore 1000= 4·250 and 250= 6·41+4 and 41= 6·6+5,
so

21000 = 24
250 = 16

4 · (16
6
)41

= 16
4 ·16

41 = 16
4 · (16

6
)6 ·16

5

= 16
4 ·16 ·16

5

= 16
4 ·16

6 = 16
4 ·16

= 16
5 = (210)2 = 24

2 = 76.

Hence the desired two decimals are 76.

II.2 Units modulo N

II.2.1 Definition. A residue class a mod N is called a unit modulo N (or invertible
modulo N) if there exists a residue class b mod N such that (a mod N) · (b mod
N)= 1 mod N.

The subset of Z/NZ consisting of all units modulo N is denoted as (Z/NZ)×.
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II.2.2 Example. Take N = 12. Then Z/12Z = {
0,1, . . . ,10,11

}
. For each of these

classes we check whether it is in (Z/12Z)×. If a,b ∈Z and a · b = 1, this means that
ab = 1+12k for certain k ∈Z. In particular, if a is a unit modulo 12, then a is not
divisible by 2, nor by 3. Hence

(Z/12Z)× ⊂ {
1,5,7,11

}
.

Since 1
2 = 5

2 = 7
2 = 11

2 = 1, the four given classes are indeed units modulo 12. So

(Z/12Z)× = {
1,5,7,11

}
.

We present a simple criterion for finding the units modulo N.

II.2.3 Theorem. Let a ∈Z. Then a mod N ∈ (Z/NZ)× if and only if gcd(a, N)= 1.

Proof. Let a ∈Z. By definition the assertion ‘a mod N ∈ (Z/NZ)×’ means that there
exists a b ∈Z such that

(ab) mod N = (a mod N) · (b mod N)= 1 mod N.

This is equivalent to the existence of q,b ∈ Z such that ab−1 = Nq, which is the
same as ab− Nq = 1. In Corollary I.1.15 it was shown that such integers exist if
and only if gcd(a, N)= 1.

II.2.4 Definition. (Euler’s totient function (or Euler’s phi function); Leonhard Eu-
ler, Swiss mathematician, 1707–1783) The number of elements of (Z/NZ)× is de-
noted by ϕ(N).

II.2.5 Corollary. The number ϕ(N) equals the number of integers a ∈ Z with
1 ≤ a ≤ N and gcd(a, N) = 1. In particular, a positive integer p is prime if and
only if ϕ(p)= p−1.

Proof. This is immediate from the definitions and from Theorem II.2.3.

We list some properties of (Z/NZ)×.

II.2.6 Theorem. 1. If a mod N and b mod N are units modulo N, then so is their
product.

2. If a mod N ∈ (Z/NZ)×, then a residue class b mod N such that (a mod N)·(b mod
N)= 1 mod N is also a unit modulo N.

3. For each a mod N ∈ (Z/NZ)× there is a unique class b mod N ∈ (Z/NZ)× with
(a mod N) · (b mod N)= 1 mod N.

Proof. 1: By Theorem II.2.3 the assertion is equivalent to the following: if both
gcd(a, N) = 1 and gcd(b, N) = 1, then also gcd(ab, N) = 1. To see why the latter im-
plication holds, assume gcd(ab, N) 6= 1. Then a prime p dividing gcd(ab, N) exists.
This prime divides N and ab, hence by Theorem I.2.3 we have p | a or p | b. This
contradicts gcd(a, N)= gcd(b, N)= 1.

Alternative proof: The classes a,b are units modulo N, so there exist c,d such
that c ·a = db = 1. Put e = d · c, then

e ·ab = dcab = d · ca ·b = db = 1,

hence ab ∈ (Z/NZ)×.
2: This is immediate from the fact that a ·b = ab = ba = b ·a.
3: If a ·b1 = 1= a ·b2, then also

b1 = b1 ·1= b1 ·ab2 = b1ab2 = ab1 ·b2 = b2.

This proves Theorem II.2.6.
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II.2.7 Definition. For a ∈ (Z/NZ)× the unique class b ∈ (Z/NZ)× with the property
a ·b = 1 is called the inverse of a. We denote it by a−1.

II.2.8 Remark. For a ∈ Z with a mod N ∈ (Z/NZ)×, the inverse of a mod N may
be found using the Euclidean algorithm. Namely a mod N ∈ (Z/NZ)× being a unit
implies gcd(a, N) = 1. So there exist x, y ∈ Z with xa+ yN = 1, and any such x
satisfies x ·a = 1, in other words, x mod N is the inverse of a mod N.

Besides addition, subtraction and multiplication, the most important opera-
tions on residue classes modulo N that we have encountered so far are the oper-
ations exponentiation (i.e. raising to a positive power) and, in the special case of
units modulo N, taking the inverse.

In computer algebra systems such as MAGMA, Maple, Mathematica, and PARI,
and even in WolframAlpha, standard routines are implemented for the mentioned
operations. For example this may look as follows in Maple:

100^(-1) mod 420001;
7 &^ (420!) mod 100;

The symbol & in the second line makes sure that Maple does not first raise 7 to
the power 420!, and subsequently find the remainder of the result upon division by
100. Instead, a far more efficient way to obtain the answer is used.

II.2.9 Example. We have (13 mod 37)−1 = 20 mod 37 (check this!).

II.2.10 Theorem. (Euler) For all a mod N ∈ (Z/NZ)× one has

(a mod N)ϕ(N) = 1 mod N.

An alternative way to formulate the theorem is the following: if a, N ∈Z satisfy
N > 0 and gcd(a, N) = 1, then N | aϕ(N) −1. The theorem and some of its conse-
quences are crucial for setting up the crypto system RSA, see Remark I.2.6. It is
also useful for testing whether a (very large) integer is prime. We return to this
below.

Proof. Write (Z/NZ)× = {
a1, . . . ,aϕ(N)

}
. In Theorem II.2.6 we saw that a product of

units modulo N is a unit as well, hence

ε := a1 ·a2 · . . . ·aϕ(N)

is a unit modulo N.
Consider the map ‘multiplication by a’. This map sends (Z/NZ)× to itself, since

a is a unit. We denote this map by ψ, i.e.

ψ : (Z/NZ)× → (Z/NZ)× ; b 7→ ab.

We will now show that ψ is a bijection. First we show injectivity. Indeed, let
b, c ∈ (Z/NZ)× such that a·b = a·c. Now multiplying both products with the inverse
of a yields b = c. Hence the map is injective. This means that distinct elements are
mapped to distinct elements, and therefore the image has the same number ele-
ments as the source, namely exactly ϕ(N). As a consequence the map is surjective
as well. This means

(Z/NZ)× = {
a ·a1,a ·a2, . . . ,a·aϕ(N)

}
.

As we saw, multiplying all of these elements yields ε. On the other hand this
product equals

(a ·a1) · (a ·a2) · . . . · (a·aϕ(N))= aϕ(N) ·a1 ·a2 · . . . ·aϕ(N) = aϕ(N) ·ε.

This shows ε = aϕ(N) · ε, and multiplying by the inverse of ε now gives aϕ(N) = 1,
which is what we wanted to prove.
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II.2.11 Corollary. (Fermat’s little theorem; Pierre de Fermat, French amateur math-
ematician, 1601–1665) If p is prime, then (a mod p)p = a mod p for every a ∈Z.

Proof. If a mod p is not a unit modulo p, then a mod p = 0 mod p because p is
prime. In this case the corollary is clear. Now note that since p is prime, ϕ(p)= p−1
by Corollary II.2.5. Hence for a mod p ∈ (Z/pZ)× one finds using Theorem II.2.10
that

(a mod p)p = (a mod p) · (a mod p)p−1 = (a mod p) ·1= a mod p.

Fermat’s little theorem yields an efficient and simple criterion which can of-
ten be used to check that certain large integers are not prime. Namely, to test
whether N is prime, take (for example) a = 2, and calculate (2 mod N)N . If the
result is not 2 mod N, then Fermat’s little theorem shows that N is not prime.
Here the exponentiation can be done by computing in the order of log(N) multipli-
cations/divisions with remainder. Moreover, this involves only integers between 0
and N. Hence this ‘compositeness test’ is much faster than simply testing whether
N has some divisor between 1 and

p
N. However, our algorithm yields not as much

information. For instance, if one concludes from the algorithm that N is not prime,
this does not provide any relevant information concerning possible divisors of N.

A more serious problem arises because there exist composite integers N such
that (2 mod N)N = 2 mod N. For instance, 341 = 11 ·31 has this property. Hence
we have to modify the test, by computing 3 mod 341 instead of 2 mod 341; in-
deed (3 mod 341)341 = 168 mod 341. Unfortunately, there are composite integers for
which the test will never prove that they are not prime; the so-called Carmichael
numbers. These are composite positive integers N with the property that ev-
ery a ∈ Z satisfies (a mod N)N = a mod N. The smallest Carmichael number is
N = 561= 3 ·11 ·17. In 1992 Alford, Granville and Pomerance proved that infinitely
many such Carmichael numbers exist. A version of the above test which also works
for Carmichael numbers, and hence can be used to show that a number is prime, is
due to Lucas.

II.3 The Chinese remainder theorem

To check that N = 561 = 3 · 11 · 17 is indeed a Carmichael number, namely that
every integer a satisfies 561 | a561−a, one has to test divisibility by 561= 3 ·11 ·17.
To simplify this, it is natural to test divisibility by 3, 11, and 17 instead. In this
way the property can be checked rather simply, as follows. If a is coprime to 3,
Theorem II.2.10 shows that (a mod 3)2 = 1 mod 3, hence any even exponent m = 2k
satisfies (a mod 3)m = (1 mod 3)k = 1 mod 3, i.e., 3 | a2k −1. Multiplying by a then
shows 3 | a2k+1 − a. Clearly this also holds for any a which is divisible by 3, and
hence for all a ∈Z.

In the same way one shows that any exponent m = 10` which is a multiple of
10 satisfies 11 | a10`−1, provided a is coprime to 11. As a consequence, every a ∈Z
has the property 11 | a10`+1 −a. Finally, a similar reasoning shows 17 | a16n+1 −a
for all a ∈Z. Combining the three divisibility properties above, one concludes that
any exponent m equal to 1 plus a multiple of each of 16, 10, and 2, in other words
any exponent of the form

m = 1+k lcm(16,10,2)= 1+80k , k ∈Z,

satisfies 3·11·17= 561 | am−a for all a ∈Z. In particular the exponent 561= 1+80·7
has the required form, so we conclude 561 | a561 −a.
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The above result was obtained by combining two ingredients: arithmetic mod-
ulo a prime p (implying the required special case of Theorem II.2.10) on the one
hand, and deducing divisibility by a product of primes from from divisibility by the
primes. We now consider the second ingredient in greater generality; in particu-
lar, not only for primes. For this we need to check when it is possible to deduce
information modulo one integer from information modulo another. We phrase it in
terms of a map.

II.3.1 Lemma. Suppose N, M ∈ Z are positive. The rule ‘send the residue class
of a modulo N to the residue class of a modulo M’ yields a well defined map:
Z/NZ−→Z/MZ if and only if M | N.

Proof. We have to examine under which condition(s) the rule described in the
lemma defines a map. Consider a residue class a mod Z in Z/NZ, of a ∈ Z. It is
also the residue class of a+N,a+2N,a−N, and, more generally, of any represen-
tative of a mod Z, i.e. of any b ∈ Z with N | a− b. The desired map would send
this class to a mod M, but also, for any representative b to b mod M. So in order
to have a well-defined map, we need that the assignment is independent of the
choice of representative of the residue class. If this is satisfied, then we also get a
well-defined map. Concretely, the assignment is well-defined if and only if we have
a mod M = b mod M for all a,b ∈ Z such that N | a− b. In other words: N | a− b
should imply M | a−b. We need this condition to be satisfied for all a,b ∈Z. Taking
a = N and b = 0 shows that the condition M | N is necessary. Vice versa, if M | N,
then one obtains M | N | a− b for all a,b ∈ Z with N | a− b, hence in particular
M | a−b. This proves the lemma.

II.3.2 Remark. Make sure that you understand the statement and proof of Lemma
II.3.1, because quite a few results and proofs in this course will follow a similar pat-
tern. It may appear somewhat strange at first sight, but it reveals a very essential
property of modular arithmetic. Namely, residue classes are sets, and if one picks
an element from such a set and performs certain operations on it, the final result
may very well change if a different element from the same residue class was cho-
sen. In this proof (as well as in several others to come) the main task is to show
that the operations under consideration are independent of the chosen represen-
tative. We have already seen another example of this principle – to show that
Definition II.1.7 makes sense, we first needed Theorem II.1.6, which proved that
the operations addition and multiplication on Z descend to well-defined operations
on Z/NZ.

II.3.3 Example. We consider N = 4. Then a mod 4 7→ a mod 2 defines a map from
Z/4Z to Z/2Z. The image of each of 1 mod 4 and 3 mod 4 is 1 mod 2, and both
0 mod 4 and 2 mod 4 have image 0 mod 2. On the other hand a mod 2 7→ a mod 4 is
not well defined. For example, 1 mod 2 and 3 mod 2 are the same residue class, but
1 mod 4 and 3 mod 4 differ.

Put differently, this example shows: if we know the remainder upon division
by 4 of some integer, then we also know its remainder upon division by 2. On the
other hand, given the remainder upon division by 2 one cannot deduce remainder
upon division by 4.

In order to formulate the main result of this section, we briefly recall a notation
from basic set theory. Given sets V and W , one denotes the Cartesian product of
V and W bt V ×W . By definition this consists of all ordered pairs consisting of an
element from V followed by an element from W :

V ×W := {(v,w) | v ∈V and w ∈W} .

If V and W are finite, we get |V ×W | = |V | · |W |.
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II.3.4 Theorem. (The Chinese remainder theorem)
Let N, M be positive integers with gcd(N, M)= 1. The assignment

a mod NM 7→ (a mod N,a mod M) : Z/NMZ−→Z/NZ×Z/MZ

defines a well-defined map. This map is bijective.
Moreover it maps (Z/NMZ)× to (Z/NZ)×× (Z/MZ)×, and this is a bijection as

well.

Proof. Since both N and M divide NM, the assignments a mod NM 7→ a mod N is
well-defined by Lemma II.3.1, and the same holds for N replaced by M. Hence we
get a well-defined map ψ : Z/NMZ−→Z/NZ×Z/MZ.

Next we show that ψ is injective. If a,b ∈Z such (a mod N,a mod M) = (b mod
N,b mod M), this means N | a−b and M | a−b by definition. Now Corollary I.2.10
implies that lcm(N, M) | a − b. Furthermore, since gcd(N, M) = 1, one obtains
NM = gcd(N, M)·lcm(N, M)= lcm(N, M) from the same corollary. We conclude that
NM | a− b, i.e., a mod NM = b mod NM. The map ψ is therefore injective, and
since both Z/NMZ and Z/NZ×Z/MZ consist of NM elements, ψ must be surjec-
tive as well. Hence it is bijective.

If a ∈ Z satisfies a mod NM ∈ (Z/NMZ)×, then gcd(a, NM) = 1, hence in par-
ticular a gcd(a, N) = 1 = gcd(a, M). This means precisely that (a mod N,a mod
M) ∈ (Z/NZ)×× (Z/MZ)×. So ψ sends (Z/NMZ)× to (Z/NZ)×× (Z/MZ)×.

Vice versa, let (a mod N,b mod M) ∈ (Z/NZ)×× (Z/MZ)×, where a,b ∈Z. It fol-
lows that gcd(a, N) = 1 = gcd(b, N). Since ψ is surjective, there exists c ∈ Z with
(c mod N, c mod M)= (a mod N,b mod M). This means c = q1N+a and c = q2M+b,
so according to Lemma I.1.9 one concludes gcd(c, N) = gcd(a, N) = 1 and gcd(c, M)
= gcd(b, M) = 1. As a consequence gcd(c, NM) = 1, i.e., c mod NM ∈ (Z/NMZ)×. So
the image of the restriction of ψ to (Z/NMZ)× is (Z/NZ)×× (Z/MZ)×, and clearly
this restriction is injective as well. This proves the Chinese remainder theorem.

II.3.5 Remark. The Chinese remainder theorem can be viewed as a solvability
criterion for systems of simultaneous congruences: given a,b, N, M one asks for
x ∈ Z satisfying both x ≡ a mod N and x ≡ b mod M. The theorem states that a
solution x always exists whenever gcd(N, M) = 1, and, moreover, that the set of all
solutions is a residue class modulo NM.

For instance, let us find all x ∈Z with x ≡ 4 mod 9 and x ≡ 5 mod 11. Such x nec-
essarily have the form x = 4+9y, with y ∈Z. Moreover we demand x = 4+9y≡ 5 mod
11, i.e., 9y ≡ 1 mod 11. This means precisely that y mod 11 is the inverse of 9 mod
11 in (Z/11Z)×, so y mod 11 = 5 mod 11. So y = 5+ 11z, hence we conclude that
x = 4+9(5+11z)= 49+99z with z ∈Z arbitrary. Put differently: the set of solutions
equals the residue class of 49 modulo 99. The only integer between 1 and 99 with
remainder 4 upon division by 9 and remainder 5 upon division by 11, is therefore
49.

II.3.6 Remark. Using mathematical induction with respect to n one may gener-
alize the Chinese remainder theorem as follows. Suppose N1, . . . , Nn are positive
integers and gcd(Ni, N j)= 1 for all pairs i, j with 1≤ i < j ≤ n. Then

Z/N1 . . . NnZ−→Z/N1Z×Z/N2Z× . . .×Z/NnZ

given by a mod N1 . . . Nn 7→ (a mod N1, . . . ,a mod Nn) defines a well-defined map
which is bijective. The same holds if one restricts the map to units.

II.3.7 Example. The integers 7,11, and 13 are pairwise coprime, with product
7 ·11 ·13 = 1001. For every triple of integers a,b, c ∈ Z there exists a unique x ∈ Z
with 0 ≤ x ≤ 1000 and x ≡ a mod 7 and x ≡ b mod 11 and x ≡ c mod 13. Try for
yourself to find this x for certain triples a,b, c.
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II.3.8 Corollary. Euler’s totient function has the property ϕ(NM)=ϕ(N)·ϕ(M) for
all positive coprime integers N, M.

Proof. By definition ϕ(n) equals the number of elements of (Z/nZ)×. Hence the
assertion is a direct consequence of Theorem II.3.4, using the fact that for finite
sets V ,W the number of elements of V ×W equals the product of the numbers of
elements of V and of W .

Corollary II.3.8 states that Euler’s totient function is a multiplicative function.
Using this corollary we will derive a formula for ϕ(n) in terms of the prime factor-
ization of n. This uses the next result.

II.3.9 Lemma. For p prime and k an integer ≥ 1 we have

ϕ(pk)= (p−1)pk−1 = pk − pk−1.

Proof. We know that ϕ(pk) equals the number of integers a with 0 ≤ a ≤ pk − 1
and gcd(a, pk) = 1. An integer is not coprime to pk, precisely when it is divisible
by p. The integers in the interval 0 ≤ a ≤ pk −1 interval which are divisible by p
are 0 · p,1 · p, . . . ,m · p, with m the largest integer smaller than pk−1. The interval
therefore contains pk−1 integers divisible by p, but since it contains precisely pk

integers in total, we obtain ϕ(pk)= pk − pk−1.

Incidentally, Lemma II.3.9 also shows that the coprimality condition in Corol-
lary II.3.8 is necessary.

II.3.10 Theorem. For n ≥ 2, Euler’s totient function can be computed using the
formula

ϕ(n)= ∏
p|n

(p−1)pvp(n)−1 = n
∏
p|n

(1− 1
p

)

where the product is taken over the prime divisors of n.

Proof. The second equality follows using n = ∏
p|n

pvp(n).

For the first equality we will use mathematical induction with respect to N,
showing that the formula holds for every n with 2 ≤ n ≤ N. For N = 2 this is
clear. Assume that the formula holds for N ≥ 2. Then we only need to show the
formula for n = N +1 to finish the case N +1. If this n is a power of a prime, then
we are done by Lemma II.3.9. If not, write n = pvp(n) · n′, with 2 ≤ n′ ≤ N. Then
gcd(pvp(n),n′)= 1, so by Corollary II.3.8 we have ϕ(n)=ϕ(pvp(n))ϕ(n′). Applying the
induction hypothesis to n′ then implies the formula for n (using that vq(n)= vq(n′)
for every prime q 6= p).

II.3.11 Example. ϕ(1000000)= 25 ·4 ·55 = 400000. So 400000 positive odd integers
below one million exist with last decimal digit different from 5.
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II.4 Exercises

1. Prove that for every odd n ∈Z the congruence n2 ≡ 1 mod 8 holds, and for every
odd prime p 6= 3 we even have p2 ≡ 1 mod 24.

2. Let n =∑
ai10i be an integer (with all ai ∈Z).

(a) Show: for p = 2 and for p = 5 we have p | n if and only if p | a0.

(b) Show: for m = 3 and for m = 9 one has m | n if and only if m |∑ai.

(c) Prove that 11 | n if and only if 11 |∑(−1)iai.

3. Determine the inverse of 100 in (Z/257Z)×.
4. Show that 2341 ≡ 2 mod 341. Is 341 prime? Find an integer between 0 and 341

that is congruent to 3341 mod 341.
5. Show that every n ∈Z satisfies n13 ≡ n mod 2730.
6. Find the remainder upon dividing (177+1015)116 by 1003= 17×59.
7. Find all integers which leave a remainder 3 upon division by 7, remainder 6

upon division by 11, and remainder 1 upon division by 13.
8. (a) Determine for n = 4 the residue class (n−1)! mod 4.

(b) Show that if n > 4 is not prime, then (n−1)!≡ 0 mod n.

(c) Now suppose n = p is prime. Find all residue classes a mod p ∈ (Z/pZ)×
satisfying (a mod p)−1 = a mod p.

(d) Show for n = p prime that (n−1)!≡−1 mod n.

(e) Show that n ≥ 2 is prime if and only if (n−1)!≡−1 mod n. Is this a practi-
cal way to test primality?

9. (a) Prove that a Carmichael number is not divisible by any square > 1.

(b) Prove that if n = p1 · . . . · pt is a product of t > 1 distinct primes, and
pi −1 | n−1 for every i, then n is a Carmichael number.

10. Find all positive integers n satisfying ϕ(n)= 24. Answer the analogous question
for ϕ(n)= 14.

11. Let N,a ∈Z with N > 0.

(a) Prove that a ∈ (Z/NZ)× if and only if −a ∈ (Z/NZ)×.

(b) Which residue classes a mod N satisfy a mod N = −a mod N? (Distin-
guish the cases N even and N odd.)

(c) Show that ϕ(N) is even for all N ≥ 3.

12. Show that if p1, . . . , pt are the smallest t primes, and n j = p1 · · · pt − p1 · · · pt/p j,
then ϕ(n j) = ϕ(nk) for 1 ≤ j,k ≤ t. Conclude from this that for fixed m, the
equation ϕ(x)= m may have arbitrary many solutions.

13. Find all n such that ϕ(n) | n.
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III GROUPS AND HOMOMORPHISMS

If we examine the properties of the integers Z, equipped with the operation ‘addi-
tion’, we find that a number of them also hold for Z/NZ with respect to addition, as
well as for (Z/NZ)× with respect to multiplication. Below we will see many more
sets equipped with an operation, all sharing the same properties. It is typical for
(abstract) algebra to capture such a phenomenon in a definition. Instead of dealing
with all separate cases one by one, this makes it possible to prove results at once
for all examples satisfying the definition. We saw a similar situation in linear al-
gebra: after abstractly introducing the notion ‘vector space over R’, one deduces a
range of properties not only for well known spaces such as R2 and R3, but also for
planes and hyperplanes containing the origin in Rn, for function spaces, spaces of
polynomials, spaces of sequences, matrices, et cetera.

In this chapter we introduce the notion of a group. As the name of the course
suggest, this is the central notion of this course. The first abstract definition of this
concept was formulated by the German mathematician W.F.A. von Dyck (1856–
1934). Algebra courses starting from abstract definitions of this kind were started
in Göttingen around 1920, notably by the famous female mathematician Emmy
Noether (1882–1935). A young student from Amsterdam, B.L. van der Waerden,
attended her courses. He extended his algebra knowledge with the help of Emil
Artin (1898–1962) in Hamburg. In 1928, only 25 years old, Van der Waerden was
appointed mathematics professor in Groningen where he wrote what is probably
the most influential textbook on abstract algebra to date. It appeared in 1930
and completely adopts the abstract definition/theorem/proof style. The book made
Van der Waerden, who died in 1996, world famous. Due to Noether’s and Artin’s
lectures and Van der Waerden’s recording of this, abstract algebra is still taught
all over the world essentially exclusively in this style.

III.1 Groups

III.1.1 Definition. A group is a triple (G, ·, e) where G is a set, e ∈G, and · is a map
from G×G to G, which we write as (x, y) 7→ x · y, satisfying

G1 (associativity) For all x, y, z ∈G we have (x · y) · z = x · (y · z).
G2 (unit element) For all x ∈G we have e · x = x = x · e.
G3 (inverses) For all x ∈G a y ∈G exists such that x · y= e = y · x.

A group (G, ·, e) is called commutative or (in honour of the Norwegian mathemati-
cian Niels Henrik Abel, 1802–1829) abelian, if moreover, the following holds:

G4 For all x, y ∈G we have x · y= y · x.
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The order of the group (G, ·, e) is the number #G of elements of G. We call a group
finite if it has finite order.

III.1.2 Remark. Instead of (G, ·, e) we often simply write G, if the map G×G →G
and the element e ∈ G are clear from the context. We abbreviate x · y as xy. The
map · is called the group law on G. Alternatively, it is often called multiplication
of G, although it does not have to be an actual ‘multiplication’ in the usual sense,
see Example III.1.3. Accordingly, depending on the context, other notations are
used for the group law, such as x◦ y or x∗ y or x× y or x+ y. The latter notation is
reserved for abelian groups.

III.1.3 Example. (Z,+,0) is a group, as well as (Z/NZ,+,0) and ((Z/NZ)×, ·,1).
These are examples of commutative groups. Another example is (R×, ·,1), where
R× =R\{0}.

III.1.4 Example. We already know many more commutative groups: if G = V is a
vector space (over R) with vector addition ‘+’ and zero vector 0 ∈V , then (V ,+,0) is
an abelian group. In other words, a vector space can be viewed as an abelian group
by forgetting the scalar multiplication.

As a side note, we remark here that one can also consider vector spaces over
the complex numbers, or the rational numbers or, more generally, any field, an
important algebraic structure which will be introduced in the course ‘Algebraic
Structures’. The only difference is that one has to consider scalar multiplication by
elements of such a field rather than R; but otherwise, these vector spaces all share
the same defining properties. In particular, they form an abelian group under
addition.

III.1.5 Example. The set of invertible n× n matrices with coefficients in F = R
or F =C (or more generally: in a field F) becomes a group whose group law is the
multiplication of matrices, and whose unit is the unit matrix. This group is denoted
by GLn(F). For n ≥ 2 this group is not commutative, because (for example)

1 0 · · · · · · 0
1 1 0 · · · 0

0 0 · · · · · · ...
...

...
0 · · · 1





1 1 0 · · · 0
0 1 0 · · · 0

0 0 · · · · · · ...
...

...
0 · · · 1


6=

1 1 0 · · · 0
0 1 0 · · · 0

0 0 · · · · · · ...
...

...
0 · · · 1





1 0 · · · · · · 0
1 1 0 · · · 0

0 0 · · · · · · ...
...

...
0 · · · 1

 .

Given elements a1,a2, . . . ,an in a group G, their product a1a2 . . .an is defined
inductively with respect to n. For n = 2 it is just the product with respect to the
group law. If the product has already been defined for n−1≥ 2, then

a1a2 . . .an := (a1 . . .an−1) ·an.

Using associativity and induction with respect to n, it turns out that

(a1a2 . . .ak) · (ak+1 . . .an)= (a1a2 . . .an).
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This product of n factors is usually abbreviated as
∏n

i=1 ai. If G is an abelian group
whose group law is denoted ‘+′, then this is abbreviated as

∑n
i=1 ai instead. If all

ai are equal, say ai = a, then we write an =∏n
i=1 ai (or na =∑n

i=1 ai if G is abelian
with group law ‘+′). The property mentioned above, writing ` = n− k, translates
into ak ·a` = ak+`. Note that in general exponentiation in a group might not quite
as nicely as exponentiation with e.g. integers, unless the group is abelian. For
example the property (AB)2 = A2B2 does not hold in general for invertible matrices
A,B ∈GLn(R) (find an explicit example yourself).

We now present some elementary properties of groups.

III.1.6 Theorem. Let (G, ·, e) be a group.

1. If e′ ∈G satisfies e′x = x or xe′ = x for some x ∈G, then e′ = e.
2. For every x ∈G there is precisely one y ∈G with xy= e = yx.
3. For any fixed a ∈ G, the map λa : G → G ; x 7→ ax is a bijection from G to itself.

Similarly, ρa : G →G ; x 7→ xa is a bijection.

Proof. 1: If x ∈G satisfies e′x = x, then multiplying on the right by some y ∈G with
xy = e (such a y exists because of group property G3) shows e′ = e′e = e; here the
first equality follows from group property G2. The case xe′ = x is dealt with in a
similar way, by multiplying on the left with y ∈G such that yx = e.
2: If xy= e = yx and xz = e = zx for some y, z ∈G, then z = ze = z(xy)= (zx)y= ey= y,
so y= z.
3: Let a ∈ G and let b ∈ G with ba = e. We first show that λa is injective. Suppose
that ax = ay, then we find

x = ex = (ba)x = b(ax)= b(ay)= (ba)y= ey= y,

so x = y.
To see that λa surjective as well, let z ∈G and define x := bz. Then x is mapped

to
ax = a(bz)= (ab)z = ez = z,

so z is in the image. The map λa is therefore both injective and surjective, hence
bijective. The case of ρa is completely analogous.

III.1.7 Definition. Let (G, ·, e) be a group and x ∈ G. The element y ∈ G such that
xy = e = yx is called the inverse of x in G. It is denoted by x−1, by Theorem III.1.6
x−1 is unique and hence well-defined.

In case of an abelian group G with group law denoted as +, this inverse element
is called the opposite of x in G, and it is denoted as −x.

III.1.8 Remark. To check that some element y in a group is the inverse of an
element x, it suffices to verify that xy = e (i.e. the other condition yx = e then
follows automatically). Namely, Theorem III.1.6(3.) implies that only one element
in the group has this property, and by definition x−1 has this property. Similarly, it
is enough to check that yx = e.

III.1.9 Corollary. Let G be a group and let a,a1,a2, . . . ,an ∈G. Then we have

1. (a−1)−1 = a.
2. (a1 · · ·an)−1 = a−1

n ·a−1
n−1 · · ·a−1

1 . (When taking an inverse, the order reverses!)
3. (an)−1 = (a−1)n.

Proof. 1: Note that aa−1 = e = a−1a, which says that a is the inverse of a−1, i.e.,
(a−1)−1 = a.
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2: We show this by induction with respect to n. For n = 1 the statement holds. If
n ≥ 2 and we assume (a1 · · ·an−1)−1 = a−1

n−1 · · ·a−1
1 , then

(a−1
n ·a−1

n−1 · · ·a−1
1 ) · (a1 · · ·an)= a−1

n ((a−1
n−1 · · ·a−1

1 ) · (a1 · · ·an−1))an = a−1
n ean = e

and similarly (a1 · · ·an) · (a−1
n ·a−1

n−1 · · ·a−1
1 )= e. This finishes the proof.

3: This is statement 2. with all ai equal to a.

If x is an element of a group G and n ∈Z, then we already defined xn for positive
n. For n = 0 we define x0 = e, and for negative n we define xn = (x−1)−n. Using
Corollary III.1.9 we see that xn ·x−n = e, so x−n is the inverse of xn. Moreover, using
mathematical induction with respect to |n| it is not hard to verify that xn+m = xn·xm

for n,m ∈Z.

III.1.10 Definition. The multiplication table
One can describe a group G consisting of only finitely many elements by means
of a table which contains all results of multiplying pairs of elements of G. We
represent this in a matrix (ai, j). Position a1,1 remains empty, or we could write the
name of the group here. In the remainder of the first row we write the elements
of G, and the same in the first column. In position ai, j (with i, j ≥ 2) we put the
product ai,1 ·a1, j. (The product with an element from column 1 on the left, and an
element from row 1 on the right! the order obviously makes a difference in the case
of non-abelian groups.)

III.1.11 Example. Here is the multiplication table of Z/3Z:

Z/3Z 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

The fact that left multiplication by a fixed element is bijective, precisely means
that in every row, all elements of the group appear exactly once (after the first
position). In the same way right multiplication by a fixed element is bijective, and
this says that in every column, from the second position onward, all elements occur
exactly once.

The multiplication table can be used to check whether a finite group is abelian.
This is the case if and only if ai, j = a j,i for all i, j. In other words, the group is
abelian if and only if the matrix is symmetric.

III.1.12 Example. Here is the multiplication table of a non-abelian group consist-
ing of 6 elements. It turns out that all groups of order less than 6 are abelian, so in
a sense this is the simplest non-abelian group.

G e a b c d f
e e a b c d f
a a e f d c b
b b d e f a c
c c f d e b a
d d b c a f e
f f c a b e d
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III.2 Subgroups

We now define the notion of a subgroup of a group, which is completely analogous
to the notion of a linear subspace of a vector space.

III.2.1 Definition. Let G = (G, ·, e) be a group. A group H is called a subgroup of G
if H is a subset of G, and the unit element and the group law of H and G are the
same. In this case we write H 6 G. We call H a proper subgroup if H is a proper
subset of G.

In other words, a subset H of G forms a subgroup of G if it is itself a group
under the same group law and with the same unit element as G.

III.2.2 Example. Every group G = (G, ·, e) has the trivial subgroup {e}.
In (Z,+,0) the set of all even integers is a subgroup.
The set Z>0 consisting of all non-negative integers is not a subgroup of Z.

Namely, not every element x in the subset satisfies property G3 with respect to
the group law on Z (addition).

In the group GLn(R) the matrices with determinant 1 form a subgroup. This
follows from the formula det(AB)= det(A)det(B) for n×n-matrices A,B. This sub-
group is denoted by SLn(R). The same conclusion holds if we replace R by Q or by
C or more generally, by an arbitrary field F. In this case, the subgroup of matrices
with determinant 1 is denoted SLn(F).

To test whether a given subset of a group is a subgroup, one can use the follow-
ing criterion.

III.2.3 Theorem. (Subgroup criterion) Let (G, ·, e) be a group and H ⊂ G. Then H
forms a subgroup of G if and only if

H1 e ∈ H.
H2 For all x, y ∈ H also x · y ∈ H.
H3 For all x ∈ H also x−1 ∈ H.

Proof. If H forms a subgroup of (G, ·, e), then by definition (H, ·, e) is a group. This
implies the properties H1, H2, and H3.

Vice versa, suppose that a subset H has properties H1, H2, and H3. We have
to show that (H, ·, e) is a group. H1 says that indeed e ∈ H, and H2 says that the
restriction to H of the group law on G gives a map H ×H → H. The triple (H, ·, e)
satisfies G1 and G2, since these properties hold for all of G hence also for the subset
H. Finally, the triple (H, ·, e) satisfies G3 because of H3.

III.2.4 Remark. If H and H′ are subgroups of a group G, then H∩H′ is a subgroup
of both H and H′. In particular, if in addition H′ ⊂ H, then H′ is automatically a
subgroup of H.

III.2.5 Example. If G is a group and x ∈ G, then one easily checks that the set
of all powers of x (positive as well as negative powers, and also x0 = e) satisfies
H1, H2, and H3. Hence forms a subgroup, the subgroup generated by x, which we
denote by 〈x〉; some texts also use the notation xZ.

III.2.6 Example. In (Z/24Z)× we find various subgroups 〈x mod 24〉 = 〈x〉, namely
〈1〉 consisting of only one element, and 〈5〉,〈7〉,〈11〉,〈13〉,〈17〉,〈19〉,〈23〉 each having
precisely two elements.

In fact, (Z/24Z)× contains even more subgroups; for example also {±1,±x} for
x = 5,7,11, each consisting of 4 elements.
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III.2.7 Example. We will now describe all subgroups of (Z,+,0). To start with, the
trivial subgroup {0} = 0Z is a subgroup. If H is a subgroup and H 6= 0Z, then H
contains an element x 6= 0. Since H is a group with respect to the usual addition,
we also have −x ∈ H. So we may conclude that H contains at least one positive
integer, and we denote the smallest positive integer contained in H by a.

Now we claim that H = 〈a〉 = aZ. Indeed, the second equality is simply the
definition of 〈a〉 as given in Example III.2.5. To show that H ⊃ 〈a〉, one needs to
verify that we have an ∈ H for every n ∈ Z. This can be done using mathematical
induction with respect to |n|, using the properties H2 and H3 of H (work out the
details yourself!). Vice versa, one has to show H ⊂ aZ. Take an arbitrary b ∈ H
and set d := gcd(a,b). Then there exist x, y ∈Z with d = ax+ by. Now ax ∈ H (this
argument is explained above) and since b ∈ H, we also get by ∈ H. Property H2
therefore implies d = ax+ by ∈ H. We have 1 ≤ d ≤ a, so because a is by definition
the smallest positive integer in H, it follows that d = a. This implies a = d|b, i.e.,
b ∈ aZ. Having verified both inclusions we conclude H = 〈a〉.

An arbitrary subgroup of Z is therefore of the form aZ for some a ∈ Z>0. Vice
versa, any subset of Z with the indicated form is a subgroup. So we have described
all subgroups of Z.

In the next theorem we present an important property of subgroups of finite
groups. The counting argument used in the proof deserves special attention: we
will encounter this technique more often later on.

III.2.8 Theorem. (Theorem of Lagrange; Joseph Louis Lagrange, French mathe-
matician, 1736–1813) If H is a subgroup of a finite group G, then the order of H is
a divisor of the order of G.

Proof. For x ∈G consider the subset xH = {xy | y ∈ H} of G. The union of all subsets
of this form is all of G, since an arbitrary element x ∈ G is an element of xH,
because e ∈ H and x = xe.

We now claim that all of these subsets have the same number of elements, i.e.,
#xH = #yH for all x, y ∈ G. This follows from the fact that the map f : xH → yH
given by f (z)= yx−1z is a bijection between xH and yH.

If z ∈ xH, then z = xh for some h ∈ H, so f (z) = yx−1z = yx−1xh = yh ∈ yH.
Therefore this map sends xH to yH. The map is bijective, since a short calculation
shows that g : yH → xH given by g(z) = xy−1z is its inverse. The existence of a
bijection between two finite sets means that these sets have the same number of
elements.

We will now show that if xH ∩ yH 6=∅, then the two sets are equal: xH = yH.
Namely, suppose z ∈ xH ∩ yH. Then z ∈ xH, so we may write z = xh1 for some
h1 ∈ H. Similarly z = yh2 for an h2 ∈ H. Now xh1 = yh2, and multiplying both sides
on the right by h−1

1 or by h−1
2 shows x = yh2h−1

1 and y= xh1h−1
2 . Therefore, we have

written an arbitrary xh ∈ xH as xh = yh2h−1
1 h = y(h2h−1

1 h) ∈ yH and similarly an
arbitrary yh ∈ yH as yh = xh1h−1

2 h ∈ xH. This shows xH = yH.
We have written G as a union of pairwise disjoint subsets, all having the same

number of elements. As a consequence #G equals the product of the number of such
subsets and the cardinality #xH = #eH = #H of the subsets. This implies #H | #G,
which we wanted to prove.

In order to use this result in the case of subgroups of the form 〈x〉 we first give
the following definition.

III.2.9 Definition. Let x be an element of a group G. Then we define the order of
x, notation ord(x), as follows. If an integer m > 0 exists with xm = e, then ord(x) is
defined to be the smallest such m. Otherwise, we set ord(x) :=∞.
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III.2.10 Example. For every group (G, ·, e) we have ord(e) = 1. Moreover, if some
x ∈G satisfies ord(x)= 1, then x = e, because ord(x)= 1 implies x = x1 = e.

In (Z/5Z)× we have ord(1)= 1, ord(4)= 2 and ord(2)= ord(3)= 4.

III.2.11 Theorem. Let G be a group and an element x ∈ G. Then the following
statements hold true:

1. ord(x)= ord(x−1).
2. If ord(x)<∞, then 〈x〉 = {x, x2, . . . , xord(x) = e}.
3. ord(x)= #〈x〉, i.e. the order of the subgroup generated by x is the order of x.
4. If #G <∞, then also ord(x)<∞ and moreover ord(x) | #G.
5. If xn = e, then ord(x) | n.

Proof. 1: If xm = e, then (x−1)m = x−m = (xm)−1 = e. Applying the above for both
x and its inverse, we see that the set of integers m with xm = e equals the set of
integers n such that (x−1)n = e. (Note that this set may be empty!) In particular it
follows that ord(x)= ord(x−1).
2: Put d = ord(x). For m ∈Z write m = qd+r with 0≤ r < d. Then xm = (xd)q·xr = xr.
So 〈x〉 ⊂ {e, x, . . . , xd−1}, which implies the equality.
3: The assertion obviously holds in case ord(x)=∞ so we will from now on assume
that the order of x is finite. In this case 2. implies the result, provided we show
that the elements of {e, x, . . . , xord(x)−1} are pairwise distinct. Suppose that xm = xn

with 0 ≤ m ≤ n < ord(x). Multiplying by the inverse of xm yields e = xn−m, where
0 ≤ n− m < ord(x). Since ord(x) is defined to be the least positive d with xd = e,
we have n−m = 0. So xm = xn for nonnegative n,m < ord(x) is only possible when
n = m. This shows 3).
4: 〈x〉 is a subgroup of G, and since G is finite, so is 〈x〉. Now 3. and Theorem III.2.8
imply ord(x)= #〈x〉 is finite and ord(x)= #〈x〉 | #G.
5: xn = e implies ord(x) <∞. Put d = gcd(n,ord(x)). Then integers k,` exist with
nk+ord(x)`= d. We have xd = (xn)k(xord(x))` = e. Since 1≤ d ≤ ord(x), the definition
of ord(x) implies d = ord(x). In particular, ord(x)= d = gcd(n,ord(x)) | n.

III.2.12 Example. By Theorem III.2.8 and Theorem III.2.11. In a finite group both
the number of elements of any subgroup and the order of any element is a divisor
of the number of elements of the group.

However, not every divisor of the number of elements of the group necessarily
appears as the order of some element. For example, we already saw in Exam-
ple III.2.6 that all elements of (Z/24Z)× except the unit element, have order 2. We
will return to this issue later on.

III.2.13 Definition. The product of groups
Given two groups (G1, ·, e1) and (G2,∗, e2), the product set G1 ×G2 can be given
the structure of a group as follows. By definition, the elements of G1 ×G2 are all
ordered pairs (x1, x2) with xi ∈G i. The unit element is the pair (e1, e2). The group
law is given by (x1, x2) ◦ (y1, y2) := (x1 · y1, x2 ∗ y2). Check for yourself that indeed
with these definitions (G1 ×G2,◦, (e1, e2)) is a group. We call it the (direct) product
of the groups G1 and G2.

We define the product of more than two groups analogously.

III.2.14 Example. The groups Z/8Z and Z/4Z×Z/2Z and Z/2Z×Z/2Z×Z/2Z each
have 8 elements, and three groups are commutative. Nevertheless in some sense
they are very different: the first one contains 4 elements of order 8 while the other
two have no such elements. The second group has 4 elements of order 4, whereas
the last one only contains elements of order 1 and 2. Incidentally, there are also
two “quite different” non-commutative groups with exactly 8 elements (see Exer-
cise 17).
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III.3 Homomorphisms

After groups and subgroups we now discuss maps between groups. In courses on
linear algebra the maps considered between vector spaces are the linear maps (or
linear transformations), i.e. maps preserving the operations (scalar multiplication
and addition) defined on vectors. We will follow a similar approach for groups.

This is a situation encountered frequently in mathematics. One studies not only
mathematical objects having some structure (such as vector spaces or groups), but
also those maps between them which preserve their structure.

III.3.1 Definition. Let (G1, ·, e1) and (G2,∗, e2) be groups. A homomorphism from
G1 to G2 is a map f : G1 → G2 satisfying f (x · y) = f (x)∗ f (y) for all x, y ∈ G1. An
isomorphism from G1 to G2 is a bijective homomorphism.

We call G1 and G2 isomorphic, and write G1 ∼=G2 if an isomorphism from G1 to
G2 exists.

III.3.2 Example. 1. Let R>0 denote the positive real numbers. This is a group
under the usual multiplication. The map exp : R→R>0 given by x 7→ ex is an
isomorphism from (R,+,0) to (R>0, ·,1). Namely, the map exp is bijective, and
exp(x+ y)= ex+y = exey = exp(x)exp(y). Hence the two groups are isomorphic.

2. det : GLn(R) → R× is a homomorphism, since det(AB) = det(A)det(B). For
n 6= 1 this is not an isomorphism, because for n > 1 one easily finds two distinct
invertible matrices with equal determinant. However, det is clearly surjective.

3. If G is an arbitrary group and x ∈ G, then fx : Z→ G given by f (n) = xn is a
homomorphism, since fx(n+m)= xn+m = xnxm = fx(n) fx(m).
In the special case G =Z/NZ and x = 1 this map f1 is the “reduction modulo N”:
n 7→ n mod N.

4. The map a mod NM 7→ a mod N used in the Chinese Remainder Theorem II.3.4
is a homomorphism from (Z/NMZ,+,0 mod NM) to (Z/NZ,+,0 mod N) and also
from ((Z/NMZ)×, ·,1 mod NM) to ((Z/NZ)×, ·,1 mod N). In particular it follows
that if gcd(N, M)= 1, then

(Z/NMZ,+,0 mod NM)∼= (Z/NZ,+,0 mod N)× (Z/MZ,+,0 mod M)

and

((Z/NMZ)×, ·,1 mod NM)∼= ((Z/NZ)×, ·,1 mod N)× ((Z/MZ)×, ·,1 mod M).

We present some basic properties of homomorphisms.

III.3.3 Theorem. Given a homomorphism f : (G1, ·, e1)→ (G2,∗, e2), the following
holds true:

1. f (e1)= e2.
2. If x ∈G1, then we have f (x−1)= ( f (x))−1.
3. If f is an isomorphism, then so is the inverse of f .
4. If g : (G2,∗, e2) → (G3,?, e3) is a homomorphism as well, then so is the compo-

sition g ◦ f .

Proof. 1: Write a = f (e1). In G2 we have a∗a = f (e1)∗ f (e1)= f (e1 · e1)= f (e1)= a.
Multiplying both sides by the inverse of a yields a = e2.
2: Put y = f (x−1). Then y∗ f (x) = f (x−1)∗ f (x) = f (x−1 · x) = f (e1) = e2. So y is the
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inverse of f (x), which is what we wanted to prove.
3: Denote the inverse of the map f by h and let x, y ∈G2. Then

f (h(x∗ y))= x∗ y= f (h(x))∗ f (h(y))= f (h(x) ·h(y)).

Since f is bijective this implies h(x∗ y) = h(x) ·h(y). So h is a homomorphism. Bi-
jectivity of f implies that its inverse h is bijective as well. So h is an isomorphism.
4: g ◦ f (x · y) = g( f (x · y)) = g( f (x)∗ f (y) = g( f (x))? g( f (y)) = g ◦ f (x)? g ◦ f (y) holds
for x, y ∈G1.

An isomorphism of groups may be considered as a kind of name changer: the
elements x ∈ G1 obtain a new name f (x) ∈ G2, and the group law is renamed as
well. Yet, in a sense nothing has changed. For instance, two finite groups G1 and
G2 are isomorphic if and only if we can get a multiplication table for G2 from a
multiplication table for G1 by relabeling the elements. In particular the order of
an element remains the same (in spite of the element obtaining a new name). In
various cases this observation may be used to show that certain groups are not
isomorphic (compare Example III.2.14).

Recall some notations concerning a function ϕ from a set S1 to a set S2: if
T1 ⊂ S1, then the image of T1, denoted by ϕ(T1), is defined as

ϕ(T1)= {
y ∈ S2 | x ∈ S1 exists with y=ϕ(x)

}
.

Similarly for T2 ⊂ S2 the preimage of T2, denoted by ϕ−1(T2), is defined as

ϕ−1(T2)= {
x ∈ S1 |ϕ(x) ∈ T2

}
.

In group theory, the special case where ϕ = f is a homomorphism and the Ti are
subgroups is of great importance.

III.3.4 Theorem. Let f : (G1,◦, e1)→ (G2,∗, e2) a homomorphism and let Hi 6G i
be subgroups for i = 1,2. Then f (H1) is a subgroup of G2, and f −1(H2) is a subgroup
of G1.

Proof. For both assertions it suffices to check the conditions H1, H2, and H3.
H1: e2 ∈ f (H1), since e1 ∈ H1 and f (e1) = e2. Moreover e1 ∈ f −1(H2), because
f (e1)= e2 ∈ H2.

Now condition H2: let x, y ∈ f −1(H2). Then f (x), f (y) ∈ H2, so because H2 is a
group, f (x · y) = f (x)∗ f (y) ∈ H2 as well. This means x · y ∈ f −1(H2). If w, z ∈ f (H1),
then by definition u,v ∈ H1 exist with f (u)= w and f (v)= z. Now H1 is a group, so
u ·v ∈ H1, and therefore w∗ z = f (u)∗ f (v)= f (u ·v) ∈ f (H1).

Finally H3: for x ∈ f −1(H2) we know f (x−1) = ( f (x))−1 ∈ H2, since f (x) ∈ H2
and H2 is a group. This implies x−1 ∈ f −1(H2). If z ∈ f (H1), then write z = f (v)
with v ∈ H1. Then z−1 = ( f (v))−1 = f (v−1) ∈ f (H1), since v−1 ∈ H1. This proves the
theorem.

III.3.5 Definition. If f : (G1, ·, e1)→ (G2,∗, e2) is a homomorphism, then the kernel
of f , denoted by ker( f ), is defined as

ker( f )= {x ∈G1 | f (x)= e2} .

III.3.6 Theorem. Let f : (G1, ·, e1)→ (G2,∗, e2) be a homomorphism. Then

1. ker( f ) is a subgroup of G1;
2. f is injective if and only if ker( f )= {e1}.
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Proof. 1: This is a consequence of Theorem III.3.4, since {e2} is a subgroup of G2,
and ker( f )= f −1({e2}).
2: We know that f (e1) = e2 by part 1. of Theorem III.3.3. Now let x ∈G1 such that
f (x) = e2 = f (e1). If f is injective, this implies x = e1, so ker( f ) = {e1}. Vice versa,
let ker( f )= {e1}. If f (x)= f (y) for some x, y ∈G1, then

e2 = f (x)∗ ( f (x))−1 = f (y)∗ f (x−1)= f (y · x−1).

So, y · x−1 ∈ ker( f )= {e1}, i.e., y · x−1 = e1. This implies x = y, so f is injective.

III.3.7 Remark. To test whether a homomorphism is injective, it is typically much
easier to use Theorem III.3.6 than to use the definition of injectivity directly.

III.3.8 Remark. Every subgroup H of a group G can be written as f (G′) for some
homomorphism f from some group G′ to G. For this we simply take G′ = H and let
f be the inclusion map x 7→ x from G′ to G.

However it is not possible to realize every subgroup of any group G as the kernel
of a homomorphism from G to another group G′′. The problem is that a subgroup
H which is of the form H = ker( f ) for a homomorphism f , has the following special
property: If h ∈ H, and if x ∈ G is arbitrary, then also x ·h · x−1 ∈ H. Kernels have
this property since f (x ·h · x−1) = f (x)∗ f (h)∗ ( f (x))−1 = f (x)∗ e2 ∗ (( f (x))−1 = e2 for
h ∈ ker( f ), but not all subgroups have it.

You should check for yourself that, for example, the subgroup consisting of all
upper triangular matrices in GL2(R) does not satisfy this condition. We will see
later (Chapter VII) that all subgroups which do have the given property, can in
fact be realised as kernel of some homomorphism.
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III.4 Exercises

1. Examine which of the following triples define a group:

(a) (N,+,0);

(b) (Q>0, ·,1);

(c) (R,?,1) with x? y= x+ y−1;

(d) ({x ∈R | −π/2< x <π/2},◦,0) with x◦ y= arctan(tan(x)+ tan(y));

(e) (Z>0,•,1) with n•m = nm.

2. Let V be a vector space over the real numbers. Show that the set GL(V ) of all
bijective linear maps from V to itself carries a group structure.

3. Prove that the subgroups of Z/NZ are exactly given by 〈a mod N〉, for a | N.
4. Find all subgroups of (Z/24Z)×.
5. Consider the 2×2 matrices that (with respect to the standard basis of R2) rep-

resent rotation around the origin over 120 degrees and reflection in the x-axis.
Construct the smallest possible subgroup of GL2(R) containing these two ma-
trices. Is the resulting group abelian? Find the order of each element of this
group.

6. Determine all subgroups of the group considered in Exercise 5. Check for each
of them whether it can be written as the kernel of a homomorphism.

7. The center Z (G) of a group G is defined as Z (G)= {x ∈G | xy= yx for all y ∈G}.

(a) Show that Z (G) is an abelian subgroup of G.

(b) Determine Z (GL2(R)).

8. Find and prove a version of the subgroup criterion which combines H2 and H3
into one single condition.

9. Let G1 and G2 be finite groups. Show that ord(x, y) = lcm(ord(x),ord(y)) for all
(x, y) ∈G1 ×G2.

10. In C we define the subset T= {a+bi ∈C | a2 +b2 = 1}. Denote C× =C\{0}.

(a) Show that (T, ·,1) is a subgroup of (C×, ·,1).

(b) Prove that (C×, ·,1)∼= (T, ·,1)× (R>0, ·,1).

The group T is often called the circle group for obvious reasons.
11. Suppose that G is a group and f : G →G is the map x 7→ x · x. Prove that f is a

homomorphism if and only if G is abelian.
12. Suppose that f : G1 →G2 is a surjective homomorphism of groups. Show that

if G1 is abelian, then so is G2. Give an example where G2 is abelian but G1 is
not.

13. (a) Show that an element x of a group G satisfies x = x−1 if and only if ord(x)= 2
or ord(x)= 1.

(b) Conclude that a finite group has an even number of elements if and only
if it contains an element of order 2.

14. Show that the property ‘being isomorphic’ defines an equivalence relation.
15. Show that up to isomorphism exactly two groups consisting of 4 elements exist.

In other words, find two non-isomorphic group of order 4 such that every group
of order 4 is isomorphic to exactly one of them (this requires some puzzling;
consider the possible orders of elements in such a group, and try to construct
the possible multiplication tables).

16. Given a prime p and a group G with exactly p elements, take x ∈G with x 6= e.
What is the order of x? Prove that G ∼= Z/pZ. So, up to isomorphism only one
group consisting of p elements exists, and every group of prime order is abelian.
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17. In the group GL2(C) consisting of all invertible 2×2 matrices with complex co-
efficients we consider two subgroups: H1 is the minimal one containing both( i 0
0 −i

)
and

( 0 1
−1 0

)
; moreover H2 is the minimal one containing both

( 0 1
−1 0

)
and( 1 0

0 −1
)
. Verify that both subgroups are non-abelian, that each consists of 8 ele-

ments, and that H1 and H2 are not isomorphic (for example, count the elements
of order 2 in both groups).

18. Let x be an element of a group G, and consider the homomorphism fx : Z→G
given by f (n)= xn. Find a relation between the order of x and the kernel of fx.

19. Given a prime p 6= 3 and an n ∈Z with p | n2 +n+1.

(a) Verify that n mod p 6= 1 mod p and that n mod p ∈ (Z/pZ)×.

(b) Show that ord(n mod p)= 3 in the group (Z/pZ)×.

(c) Conclude that p ≡ 1 mod 3.

(d) Prove that infinitely many primes ≡ 1 mod 3 exist. (Hint: if p1, . . . , pt are
such primes, put n = 3 · p1 · · · pt and consider prime divisors of n2 +n+1.)

(e) (Compare Exercise 7 in Chapter I): Show that infinitely many primes p
exist such that p+2 is not prime.

20. Let p 6= 2 be prime and let n ∈Z with p | n2 +1.

(a) Verify (using an approach analogous to the one applied in Exercise 19)
that p ≡ 1 mod 4.

(b) Prove that infinitely many primes ≡ 1 mod 4 exist.
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IV GROUPS OF PERMUTATIONS

The previous chapter contains an introduction to several abstract notions, such
as groups, subgroups and homomorphims, but only few examples. The next two
chapters are concerned with some important classes of groups, which will serve as
examples throughout the course. We start groups consisting of all bijective maps
from a set to itself. These are particularly useful in combinatorics.

IV.1 Bijections of a set

Let Σ be a non-empty set. Recall that a bijection from Σ to itself is a map σ : Σ→Σ

which is injective as well as surjective. Such a σ has a unique inverse, say τ : Σ→Σ,
satisfying σ◦τ= τ◦σ= idΣ. Here, ◦ is the composition of maps, and idΣ : Σ→Σ is
the identity map given by idΣ(x)= x for all x ∈Σ. The composition of bijections is a
bijection as well.

IV.1.1 Definition. For a non-empty set Σ one denotes by SΣ the set of all bijections
from Σ to itself. The symmetric group on the set Σ is defined as the group (SΣ,◦, idΣ).

It is easily verified that the symmetric group is indeed a group.

IV.1.2 Example. In case Σ consists of only one element, the only bijection on Σ is
the identity. In this case one obtains a group SΣ consisting of only one element (the
“trivial” group).

If Σ consists of two elements, precisely two bijections are possible: the one fixing
both elements (this is idΣ), and the one interchanging the two elements (let’s call it
τ). Then τ2 = τ◦τ= idΣ. The group SΣ is in this case isomorphic to Z/2Z.

For Σ with #Σ> 2 the group SΣ is not commutative. Namely, take three distinct
elements x, y, z ∈ Σ. Define two bijections σ,τ ∈ SΣ as follows: σ interchanges x
and y and it fixes all other elements of Σ. Similarly τ interchanges y and z and it
fixes the remaining elements. This indeed defines two bijections, and σ ◦τ(x) = y
whereas τ◦σ(x)= z. So σ◦τ 6= τ◦σ. In particular, SΣ is not commutative.

Given two “equally big” sets Σ and Σ′ (more precisely: two sets with a bijection
f : Σ ∼→ Σ′), then intuitively it should be clear that the groups SΣ and SΣ′ are iso-
morphic. Indeed, the bijection f provides a way to give all elements of Σ a new
name, and describing bijections in terms of either the old or the new names is es-
sentially the same. Turning this argument into a formal proof yields the following:
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IV.1.3 Theorem. Suppose that f : Σ → Σ′ is a bijection and g : Σ′ → Σ is its
inverse (so f ◦ g = idΣ′ and g◦ f = idΣ). Then SΣ and SΣ′ are isomorphic; an explicit
isomorphism ϕ : SΣ→ SΣ′ is given by ϕ(σ)= f ◦σ◦ g, with as inverse ψ : SΣ′ → SΣ
given by ψ(τ)= g ◦τ◦ f .

Proof. This is a useful exercise in formal calculations with compositions of maps,
and it tests understanding of a number of definitions. We leave it as an exercise.

Symmetric groups may look like rather special examples, but the following re-
sult shows that they are in fact very general.

IV.1.4 Theorem. (Cayley’s theorem; Arthur Cayley, English mathematician, 1821–
1895) Every group G is isomorphic to a subgroup of SG .

Proof. For fixed a ∈ G the map λa : G → G given by λa(x) = ax is a bijection, see
Theorem III.1.6. So λa ∈ SG . We use this to define a map

ϕ : G −→ SG

by ϕ(a) = λa. One easily verifies that ϕ is a homomorphism, i.e., for a,b ∈ G one
has ϕ(ab)=λab =λa ◦λb =ϕ(a)◦ϕ(b).

The homomorphism ϕ is injective because any a ∈ ker(ϕ) satisfies by definition
λa = idG , so a = ae = λa(e)= idG(e)= e. It follows that G is isomorphic to ϕ(G), and
the latter is indeed a subgroup of SG .

IV.1.5 Remark. Historically, the concept of a symmetric group precedes the notion
of an abstract group. Such groups were first studied in the work of the French
mathematician Évariste Galois (1811 – 1832)1 who studied polynomial equations
in one variable by exploiting symmetries between their solutions or, in more mod-
ern terminology, by looking at the symmetric groups of the set of solutions. This has
lead to a beautiful branch of mathematics called Galois theory, which in Groningen
is taught in the course Advanced Algebraic Structures.

IV.2 Permutations on n integers

We now consider the special case of finite sets Σ. A bijection between two such
sets exists precisely when they have the same number of elements. Hence Theo-
rem IV.1.3 shows that when studying symmetry groups of finite sets, it suffices to
consider the sets S{1,2,...,n}. Throughout this section, let n ∈Z≥1.

IV.2.1 Definition. The symmetric group on n integers, denoted by Sn, is defined as
the group S{1,2,...,n}. Elements of this group are called permutations. The group Sn
is also called the permutation group on n elements.

We first record the following consequence of Cayley’s Theorem IV.1.4 and of
Theorem IV.1.3

IV.2.2 Corollary. A finite group G is isomorphic to a subgroup of S{1,...,n}.

A simple combinatorial argument yields the order of Sn.

IV.2.3 Theorem. The group Sn consists of n!= n · (n−1) · . . . ·2 ·1 elements.
1this is not a typo
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Proof. An element of Sn is by definition a bijection of the set {1, . . . ,n}. Such a
bijection can be described as a sequence of length n, in which each integer 1, . . . ,n
appears exactly once. One readily verifies that precisely n! such sequences exist.

We now introduce some special permutations, which in a certain sense form
building blocks for all permutations. These maps permute a subset of {1, . . . ,n}
cyclically, and leave all other integers in {1, . . . ,n} fixed.

IV.2.4 Definition. A permutation σ ∈ Sn is called a cycle of length k (or a k-cycle),
if there exist k distinct integers a1, . . . ,ak ∈ {1, . . . ,n} such that σ(ai) = ai+1 for
1 ≤ i < k and σ(ak) = a1 and σ(x) = x for x 6∈ {a1, . . . ,ak}. Such a permutation is
denoted by σ= (a1 a2 . . . ak). A 2-cycle is also called a transposition.

If two cycles (a1 a2 . . . ak) and (b1 b2 . . . b`) satisfy {a1, . . . ,ak}∩ {b1, . . . ,b`}=∅,
they are called disjoint.

IV.2.5 Example. In Sn, where n> 5, we have (1 2 3 4 5)= (2 3 4 5 1)= . . .= (5 1 2 3 4),
since these 5-cycles send 5 to 1, and i to i+1 for 1≤ i < 5, and they fix the integers
≥ 6 if n> 6. In general, the same reasoning shows for k-cycles that

(a1 a2 . . . ak)= (a2 . . . ak a1)= . . .= (ak a1 . . . ak−1).

Two disjoint cycles commute, because if (a1 a2 . . . ak) and (b1 b2 . . . b`) are
disjoint, then the first one only affects the integers a1, . . . ,ak and the second one
only b1, . . . ,b`. Hence it is irrelevant in which order these cycles are applied.

This is different for non-disjoint cycles: e.g., (1 2 3)◦(2 3 4) 6= (2 3 4)◦(1 2 3), since
the first composition maps 2 to 1 and the second one maps 2 to 4. (Note that we are
composing functions, so the rightmost function is applied first!)

IV.2.6 Theorem. Every σ ∈ Sn can be written as a product σ=σ1 . . .σr, where the
σi are pairwise disjoint cycles. Apart from the order of the σi, this presentation is
unique.

Proof. Existence can be shown using induction with respect to n, as follows. For
n = 1 the assertion is clear, since in this case the only permutation is σ = (1).
Let n > 1 and assume the existence for all Sm with m < n. Let σ ∈ Sn, then
{1,σ(1),σ2(1), . . .} is a subset of {1, . . . ,n}, so k,` exist with k < ` and σk(1) = σ`(1).
One concludes σ`−k(1) = 1, so there is a positive integer s satisfying σs(1) = 1. De-
note the least such positive integer by q. The integers 1,σ(1), . . . ,σq−1(1) are pair-
wise distinct by construction, and the effect of σ on these integers is given by the
k-cycle σ1 = (1σ(1) . . . σq−1(1)).

Now consider T := {1, . . . ,n} \ {1,σ(1), . . . ,σq−1(1)}. If T is the empty set, then
σ=σ1 and we are done. If T is nonempty, then σ acts as a permutation on it. The
induction hypothesis implies that the restriction σ|T of σ to T can be written as
a product of disjoint cycles σ2 . . .σr. Considering these cycles as permutations on
{1, . . . ,n} (which means that we extend them to elements of Sn by setting σi( j) := j
for j ∈ {1,σ(1), . . . ,σq−1(1)}, we have σ=σ1 . . .σr.

To show uniqueness, assume that some permutation allows two different pre-
sentations as product of disjoint cycles. Suppose i 7→ j, then in both of the presen-
tations exactly one cycle occurs containing (. . . i j . . .). Now considering the image of
j etc., shows that the presentations contain the same cycles, so they are equal.

IV.2.7 Example. The argument above is in fact an algorithm. To illustrate this,
suppose we want to write (1 2 3 4)(2 3 4 5)(4 5 1) as a product of disjoint cycles. We
see here a composition of maps. First, we determine its effect on 1. The rightmost
permutation sends 1 to 4, and 4 is mapped by the middle permutation to 5. The
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leftmost permutation fixes 5, so in total the image of 1 is 5. Next we find out what
happens to 5. The rightmost sends 5 to 1; this 1 is fixed by the middle one and
then sent to 2 by the remaining cycle. Continuing in this way we find that 4 is the
image of 2, and 4 is mapped to 3, and 3 to 1. In this way we have found a 5-cycle,
and since the initial permutations only involve the integers 1 to 5, we are done:
(1 2 3 4)(2 3 4 5)(4 5 1)= (1 5 2 4 3).

Writing a permutation as a product of disjoint cycles helps us to determine the
order of a permutation:

IV.2.8 Theorem. Let σ := (i1 i2 . . . ik) ∈ Sn be a k-cycle. Then we have

1. σ−1 = (ik ik−1 . . . i1).
2. ord(σ)= k.
3. If σ1, . . . ,σr are pairwise disjoint cycles, then (σ1 . . .σr)n =σn

1 . . .σn
r for all n ∈Z.

4. If, moreover, σi has length `i (i = 1, . . . , r), then ord(σ1 . . .σr)= lcm(`1, . . . ,`r).

Proof. 1. This is immediate from the definition of a cycle.
2. For 0 < n < k the image of i1 under (i1 i2 . . . ik)n equals in+1. Since in+1 6= i1,
this means the cycle has order ≥ k. Now (i1 i2 . . . ik)k = (1), so the order equals k.
3. This is a consequence of the fact that disjoint cycles commute.
4. Using 3. and the uniqueness in Theorem IV.2.6 it follows that (σ1 . . .σr)n = (1)
precisely when σn

1 = . . . =σn
r = (1). By Theorem III.2.11 the latter holds if and only

if n is a multiple of each of ord(σ1), . . . ,ord(σr).

IV.2.9 Example. The n-th power of a k-cycle, with 1 < n < k, is not necessarily
itself a k-cycle. As an example, (1 2 3 4)2 = (1 3)(2 4).

IV.2.10 Example. We determine which integers occur as order of some element in
S5. Note that we have

5= 4+1= 3+2= 3+1+1= 2+2+1= 2+1+1+1= 1+1+1+1+1.

These are all presentations of 5 as a sum of positive integers. We find that a prod-
uct of disjoint cycles in S5 can be obtained in seven ways: a 5-cycle, or a 4-cycle
(multiplied by a 1-cycle, which we leave out since it represents the identity map),
etc. Theorem IV.2.8 implies that the orders of these products are 5,4,6,3,2, and
1, respectively. For each of these numbers it is a relatively simple combinatorial
problem, which we leave to the reader, to determine how many elements in S5 have
the given number as its order.

IV.2.11 Theorem. Every permutation σ ∈ Sn can be written as a product of trans-
positions.

Proof. We know that σ is a product of cycles. So it suffices to write any cycle as a
product of 2-cycles:

(a1 a2 . . . ak)= (a1 a2)(a2 a3) . . . (ak−1 ak)

as is readily checked.

IV.2.12 Remark. Theorem IV.2.11 is equivalent to the following statement, which
should be intuitively clear: A row of n objects can be placed in an arbitrary order
by repeatedly interchanging pairs (i.e., performing transpositions). The proof even
provides an upper bound for the minimal number of required transpositions: Sup-
posed that a permutation σ can be written as a product of r disjoint `i-cycles, with
`i ≥ 1 and

∑
`i = n. For an `i-cycle the proof of Theorem IV.2.11 shows that `i −1

interchanges suffice. In total we therefore obtain the upper bound
∑

(`i −1)= n− r.
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IV.2.13 Remark. It is even possible to show that any permutation can be written
as a product of transpositions of a special kind. For example, we can achieve this
using only 2-cycles of the form (i i+1): If i < j, then

(i j)= (i i+1)(i+1 i+2) . . . ( j−1 j)( j−2 j−1) . . . (i i+1).

Alternatively, one can write any permutation as a product of 2-cycles (1 i). This
follows from the observation that for 1 6= i 6= j 6= 1 one has (i j) = (1 i)(1 j)(1 i). In
other words, a row of objects can be put in arbitrary order by merely interchanging
one given element consecutively with suitable other elements.

IV.3 Even and odd permutations

The presentation of a permutation as a product of 2-cycles is far from unique. For
instance, if σ= τ1 · · ·τr ∈ Sn, where the τi are transpositions, then we can also write
σ = τ1 · · ·τr(1 2)(1 2). Nevertheless, we will show that the parity of the number of
2-cycles needed to represent a given permutation σ is completely determined by
σ. It turns out that this parity, which we will call the sign of σ, is an important
invariant of σ, which can be used to partition Sn into even and odd permutations.

We start by introducing some notation. This will be used to give a definition of
the sign which is suitable for analyzing its properties.

IV.3.1 Notation. 1. For n ≥ 2 write X := {(i, j) ∈Z×Z | 1≤ i < j ≤ n}.
2. For σ ∈ Sn define fσ : X → X by fσ(i, j)= (min{(σ(i),σ( j)},max{(σ(i),σ( j)}).

3. Finally, define hσ : X →Q by hσ(i, j)= σ( j)−σ(i)
j− i .

Some useful properties of these functions are as follows.

IV.3.2 Lemma. Let n ≥ 2. Then the following hold.

1. For σ,τ ∈ Sn one has fστ = fσ ◦ fτ.
2. The map fσ is a bijection on X .
3. We have

∏
(i, j)∈X

hσ(i, j)=±1.

Proof. 1. Both functions map an arbitrary pair (i, j) ∈ X either to (στ(i),στ( j)) or to
(στ( j),στ(i)) (depending on which of the two is in X ). So the functions coincide.
2. This follows from fσ ◦ fσ−1 = fσ−1 ◦ fσ = fid = id.
3. It suffices to show that the absolute value of the given product equals 1. This
absolute value is equal to( ∏

(i, j)∈X
|σ( j)−σ(i)|

)
/

( ∏
(i, j)∈X

( j− i)

)
.

Here the numerator is the product of all (`− k), for (k,`) = fσ(i, j) ∈ fσ(X ) = X . So
numerator and denominator are equal.

IV.3.3 Definition. We define the sign of a permutation σ ∈ Sn by

ε(σ) := ∏
(i, j)∈X

hσ(i, j)= ∏
1≤i< j≤n

σ( j)−σ(i)
j− i

=±1

in case n ≥ 2, and by ε(σ) := 1 for n = 1. We call σ even if ε(σ) = 1 and odd if
ε(σ)=−1.
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IV.3.4 Remark. We will soon describe an efficient way to calculate the sign of a
permutation. Only using the definition, this can be quite elaborate; as an example,
try to determine the sign of the 3-cycles (1 3 5) and (1 6 12).

The sign of a permutation may be interpreted as follows: the denominator of
the expression defining the sign is a product of positive integers j− i. The factors of
the numerator have the form σ( j)−σ(i), and this factor is negative precisely when
σ swaps the order of i and j, i.e. when σ( j)<σ(i). If this occurs for an even number
of pairs (i, j) ∈ X , then the sign ε(σ) = 1; if it happens for an odd number of pairs,
then σ has sign −1.

The set {+1,−1} is a group with respect to the usual multiplication. So ε is a
map from the group Sn to the group {±1}.

IV.3.5 Theorem. The sign ε : Sn −→ {±1} is a homomorphism.

Proof. Let σ,τ ∈ Sn. Then∏
1≤i< j≤n

σ(τ( j))−σ(τ(i))
τ( j)−τ(i)

= ∏
(i, j)∈X

hσ( fτ(i, j))= ∏
(i, j)∈X

hσ(i, j)= ε(σ),

since fσ is bijective on X by Lemma IV.3.2. Hence

ε(στ) =∏
(i, j)∈X

(στ)( j)− (στ)(i)
j− i

=
(∏

1≤i< j≤n
σ(τ( j))−σ(τ(i))

τ( j)−τ(i)

)(∏
(i, j)∈X

τ( j)−τ(i)
j− i

)
= ε(σ)ε(τ).

In order to be able to use this result for computing the sign of permutations, we
first prove a lemma, which will be used quite a few times throughout the course.

IV.3.6 Lemma.

1. We have ρ(a1 a2 . . . a`)ρ−1 = (ρ(a1) ρ(a2) . . . ρ(a`)) for any ρ ∈ Sn and any `-cycle
(a1 a2 . . . a`) ∈ Sn.

2. Every transposition is odd.

Proof. 1. We have

(ρ(a1 . . . a`)ρ−1)(ρ(a`))= (ρ(a1 . . . a`))(a`)= ρ(a1).

Similarly one finds (ρ(a1 a2 . . . a`)ρ−1)(ρ(ak)) = ρ(ak+1) for 1 ≤ k < `. For all re-
maining i ∈ {1, . . . ,n} one has (ρ(a1 a2 . . . a`)ρ−1)(i)= i. This shows the equality.
2. Let (a1 a2) be a transposition. Take any permutation ρ with ρ(a1) = 1 and
ρ(a2) = 2. Then ε((1 2)) = ε(ρ(a1 a2)ρ−1). Since ε is a homomorphism, we have
ε(ρ(a1 a2)ρ−1)= ε(ρ)ε((a1 a2))ε(ρ)−1 = ε((a1 a2)). So all 2-cycles have the same sign.
For (1 2) we determine the sign from the definition: ε((1 2)) =−1, because the only
pair (i, j) ∈ X changing order when (1 2) is applied, is (1,2).

IV.3.7 Corollary. 1. An `-cycle σ has sign ε(σ)= (−1)`−1.
2. If σ is a product of cycles of lengths `1, . . . ,`r, then ε(σ)= (−1)

∑r
i=1(`i−1).

3. A permutation σ is even if and only if σ can be written as a product of an even
number of 2-cycles.

Proof. 1. We have (a1 a2 . . . a`)= (a1 a2)(a2 a3) . . . (a`−1 a`). The number of 2-cycles
in this product is `−1, so because all of them have sign −1 and ε is a homomor-
phism, the result follows.
2. This is immediate from 1. since ε is a homomorphism.
3. Let σ ∈ Sn. By Theorem IV.2.11, σ can be written as a product of 2-cycles. The
assertion now follows from 2.
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IV.4 The alternating group

In this section we discuss even permutations in more detail. By definition, a per-
mutations in Sn is even if and only if it lies in the kernel of the homomorphism
ε : Sn → {±1}, so it follows from Theorem IV.3.5 that the even permutations form a
subgroup of Sn.

IV.4.1 Definition. For n ≥ 1 the alternating group is the subgroup of Sn consisting
of all even permutations. We denote it by An.

IV.4.2 Example. The group S2 consists of the permutations (1) and (1 2), so we get
A2 = {(1)}.

The group S3 consists of the identity, 2-cycles, and 3-cycles. The 2-cycles are
not in A3, and A3 = {(1), (1 2 3), (1 3 2)}, which is isomorphic to Z/3Z.

In the group A4 we find the identity, the 3-cycles (there are 8 of them) and the
products of two disjoint 2-cycles (numbering 3). The group obtained in this way is
not abelian (why?), and consists of 12 elements.

IV.4.3 Theorem. For n ≥ 2 the group An consists of n!/2 elements.

Proof. The sets An and (Sn \ An) are by definition disjoint, and their union is all
of Sn. They have the same number of elements, because the map τ 7→ (1 2)τ is a
bijection between them.

IV.4.4 Theorem. For n ≥ 3 the elements of An can be written as products of 3-cycles.

Proof. Let σ ∈ An. By Corollary IV.3.7 σ is a product of an even number of 2-
cycles. In particular σ is a product of permutations (a b)(c d). If {a,b} = {c,d} the
latter equals (1). If {a,b} and {c,d} have one element, say a = c in common, then
(a b)(a d)= (a d b) is a 3-cycle. In the remaining case (a b)(c d)= (a c b)(c d a). This
shows the theorem.

IV.4.5 Example. We finish this chapter by illustrating Cayley’s Theorem IV.1.4
for the example G = (Z/8Z)∗. Since #G = ϕ(8) = 4, the group G is isomorphic to a
subgroup of S4. We determine which subgroup the proof of Theorem IV.1.4 yields,
and we even show that this subgroup is contained in A4. The given proof identifies
a ∈G with λa, the left-multiplication by a map. Moreover SG is identified with S4,
simply by choosing a bijection between G and {1,2,3,4}. We choose the bijection
1 7→ 1,3 7→ 2,5 7→ 3 en 7 7→ 4.

The element 1 ∈ G gives rise to λ1 = idG , which is the permutation (1). The
element 3 yields the bijection λ1 on G sending 1 to 3, 3 to 3 ·3= 1, 5 to 3 ·5= 7, and
7 to 5. Using our bijection between G and {1,2,3,4} this becomes the permutation
(1 2)(3 4).

A similar calculation sends 5 to the permutation (1 3)(2 4) and 7 to (1 4)(2 3). So
apparently (Z/8Z)∗ is isomorphic to the subgroup {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
of S4. This subgroup is contained in A4 by Example IV.4.2.
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IV.5 Exercises

1. Write each of the following permutations as a product of disjoint cycles:

(a) (3 1 4)(1 5 9 2 6)(5 3)

(b) σ−1, for σ= (5 6 2)(1 3)(1 4).

2. (a) Find all σ ∈ S4 satisfying σ2 = (1 2)(3 4).

(b) Let n > 1. Does there exist σ ∈ Sn such that σ2 = (1 2)?

(c) Let n ≥ 6. Does there exist σ ∈ Sn such that σ2 = (1 2)(3 4 5 6)?
3. Suppose σ is a k-cycle. Show that σn is a k-cycle if and only if gcd(k,n)= 1.
4. (a) Determine which integers occur as the order of an element of S6.

(b) For each of the integers above, how many elements in S6 have this order?
5. What is the least n such that 30|#Sn? What is the least n such that Sn contains

an element of order 30?
6. Determine the order and the sign of (5 6 7 8 9)(3 4 5 6)(2 3 4)(1 2) in S9.
7. (a) With σ= (1 2)(3 4 5)(6 7 8 9 10), write σ2016 as a product of disjoint cycles.

(b) Do the same with τ2017, given τ= (1 2 3)(3 4)(4 5 6 7).
8. Let σ ∈ Sn. Show that if σ(1 2 . . . n)= (1 2 . . . n)σ, then σ= (1 2 . . . n)i some i.
9. For n ≥ 1, determine the center Z (Sn) of Sn (see Exercise III.7).

10. (a) Let σ,τ ∈ Sn. Show that if σ is a product of disjoint cycles of lengths
`1, . . . ,`r, then so is τστ−1.

(b) Vice versa, if σ1,σ2 ∈ Sn are both products of disjoint cycles of lengths
`1, . . . ,`r, show that τ ∈ Sn exists with σ2 = τσ1τ

−1.
11. (a) Suppose a 6= 1 6= b. Compute (1 a)(1 b)(1 a)(1 b).

(b) Show that every element of An can be written as a product of elements of
the form στσ−1τ−1, for σ,τ ∈ Sn.

(c) Show that if G is an abelian group and f : Sn →G a homomorphism, then
An ⊂ ker( f ).

(d) Show that if g : Sn → Sm is a homomorphism, then g(An)⊂ Am.
12. A subgroup H ⊂ Sn is called transitive if for every {i, j}⊂ {1,2, . . . ,n} some τ ∈ H

exists with τ(i)= j.

(a) Show that for n ≥ 3 the group An is a transitive subgroup of Sn.

(b) Show that if G is a group and #G = n, then the subgroup of Sn constructed
in the proof of Cayley’s theorem is a transitive subgroup of Sn.

(c) Using Cayley’s theorem, construct a transitive subgroup of S6 which is
isomorphic to S3.
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V GROUPS OF SYMMETRIES

In this chapter we consider groups consisting of special bijections on some space or
set. This leads to the kind of groups which are of special interest in physics, or in
some cases also in discrete mathematics. We are particularly interested in symme-
tries of geometric objects, such as polygons in the plane. The concepts from linear
algebra which are used in this chapter may be found in essentially any textbook on
the subject.

V.1 Some groups of matrices

The vector space R2 over R can be visualized as a plane. Using the theorem of
Pythagoras, the standard interpretation of R2 as a plane allows us to introduce a
distance function d on R2:

d( (a,b) , (c,d) ) :=
√

(a− c)2 + (b−d)2.

One can define an analogous distance for R3, and in linear algebra this was gen-
eralized to the situation of an arbitrary (real or complex hermitian) inner product
space (V ,〈 · , · 〉). In the latter case the distance d(v,w) between two vectors v,w ∈V
is defined as

d(v,w)= ||v−w|| =
√
〈v−w,v−w〉.

We can attach a group to such an inner product space.

V.1.1 Definition. Let (V ,〈 · , · 〉) be a real or complex hermitian inner product space.
The set of all linear maps ϕ : V →V satisfying 〈v,w〉 = 〈ϕ(v),ϕ(w)〉 for all v,w ∈V ,
is denoted by O(V ,〈 · , · 〉).

V.1.2 Theorem. Let (V ,〈 · , · 〉) be as above and suppose that V is finite dimen-
sional. Then the (O(V ,〈 · , · 〉),◦, idV ) a group, where ◦ is composition of linear maps
and idV is the identity map on V .

Proof. We first show that O(V ,〈 · , · 〉) is a subset of the group GL(V ) consisting
of all invertible linear maps from V to itself. In other words, we show that the
elements of O(V ,〈 · , · 〉) are invertible. Let ϕ ∈ O(V ,〈 · , · 〉). If ϕ(v) = 0, then
〈v,v〉 = 〈ϕ(v),ϕ(v)〉 = 0, hence v = 0. This implies that ϕ is injective. Since injec-
tive linear maps from a finite dimensional vector space to itself are automatically
surjective, ϕ is invertible.

Hence, to show that O(V ,〈 · , · 〉) is a group, it suffices to verify that it is a
subgroup of GL(V ). We leave this as an exercise to the reader.
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V.1.3 Remark. Note that the condition “V is finite dimensional” was used in the
argument above to show that elements of O(V ,〈 · , · 〉) are indeed invertible. In
fact, for inner product spaces of infinite dimension over R or C this may not hold,
as the following example shows. Take V to be the vector space over R consisting
of all sequences (an)n≥1 of real numbers, with the property that an = 0 for all but
finitely many positive integers n. On V we define the ‘standard’ inner product
〈(an)n≥1, (bn)n≥1〉 = ∑∞

n=1 anbn. (The sum is well defined since only finitely many
terms are nonzero.) The shift operator σ : V →V given by

σ(a1,a2,a3, . . .)= (0,a1,a2,a3, . . .)

is an element of O(V ,〈 · , · 〉), but it is clearly not invertible. So in this example
O(V ,〈 · , · 〉) is not a group.

If A = (ai, j) is a (square) matrix with real or complex coefficients, then linear
algebra defines the adjoint of A, notation A∗, as A∗ = (bi, j) with bi, j = a j,i. So to
obtain A∗ one reflects all entries of the matrix with respect to the main diagonal,
and then one takes the complex conjugate of the entries. A more intrinsic defi-
nition of A∗ is that it is the unique matrix such that for all vectors v,w one has
〈Av,w〉 = 〈v, A∗w〉 with respect to the standard inner product. More generally, if
ϕ ∈ GL(V ) is given by a matrix A with respect to an orthonormal basis of V , then
ϕ ∈O(V ,〈 · , · 〉) if and only if A∗A = In, where In is the unit matrix. This translates
the group O(V ,〈 · , · 〉) into a group of matrices, namely into a subgroup of GLn(R)
of GLn(C) with n = dim(V ). We now duscuss some groups of matrices and some
relevant subgroups obtained in this way.

V.1.4 Definition. Let n ∈Z,n > 0. We define

1. the orthogonal group O(n)= {A ∈GLn(R) | A∗A = I};
2. the unitary group U(n)= {A ∈GLn(C) | A∗A = I};
3. the special orthogonal group SO(n)= {A ∈GLn(R) | A∗A = I and det(A)= 1};
4. the special unitary group SU(n)= {A ∈GLn(C) | A∗A = I and det(A)= 1}.

V.1.5 Example. For n = 1 we obtain O(1) = {
a ∈R\{0} | a2 = 1

}= {±1}. As maps on
R these are the identity and ‘taking the opposite’. The groups SO(1) and SU(1)
both equal the trivial group consisting of only one element. The group U(1) is more
interesting: it is the group of all points on the unit circle in C, with multiplication
as group law, see Exercise III.10.

The group SO(2) consists of all matrices
(

a b
c d

)
with a,b, c,d ∈R satisfying

a2 + c2 = b2 + d2 = ad − bc = 1 and ab+ cd = 0. Writing a = cosα and c = sinα,
it follows that d = cosα and b = −sinα. So as a map from R2 to itself this matrix
represents the counterclockwise rotation with center (0,0) by an angle α. The group
SO(2) is exactly the group consisting of all such rotations.

In the group O(2) we also find the matrices of the form
(

cosα −sinα
−sinα −cosα

)
.

Geometrically this represents a reflection in the line passing through the origin,
which intersects the positive x-axis with an angle −α/2. So O(2) consists of ge-
ometrically defined maps, namely all rotations with the origin as center, and all
refections in lines passing through the origin. Note that O(2) is not commutative:
if we first reflect in the x-axis and then rotate (counter-clockwise) by 90 degrees,
(0,1) is the image of (1,0). However applying the maps in the reverse order maps
(1,0) to (0,−1).

All groups given in Definition V.1.4 may be regarded as groups of invertible
linear maps from Rn or Cn to itself, with the property that they preserve the stan-
dard inner product and therefore also the distance between points. From now on
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we will restrict ourselves to the real case, with a focus on R2 and R3. Geometri-
cally, the fact that a map is distance preserving means, that for example a triangle
is mapped to a congruent triangle, because the three vertices are mapped to three
new points which pairwise have the same distance as the original ones. A point
on one of the sides is mapped to a point which has the same distances to the new
vertices as the original point had to the old ones. This implies that the sides of the
original triangle are mapped to sides of the new one. This argument shows that all
distance preserving maps (we do not need to assume linearity) map lines to lines
and angles to equally large angles.

V.2 Groups of isometries

We work with the space Rn, equipped with the norm ||(a1, . . . ,an)|| :=
√

a2
1 + . . .+a2

n
and the distance d(v,w) := ||v−w|| for v,w ∈Rn.

V.2.1 Definition. An isometry on Rn is a map ϕ : Rn → Rn with the property
d(v,w)= d(ϕ(v),ϕ(w)) for all v,w ∈Rn.

V.2.2 Example. Translations, rotations, and reflections in a point or in a line or in
a plane are examples of isometries.

V.2.3 Theorem.

1. An isometry on Rn mapping 0 ∈Rn to 0 is linear.
2. The linear isometries on Rn are exactly the elements of O(n).
3. Every isometry can be written as a composition of a translation and a linear

isometry.
4. Isometries are invertible.

Proof. 1. We have ||u−v||2 = 〈u−v,u−v〉 = ||u||2+||v||2−2〈u,v〉 for u,v ∈Rn. If ϕ is
an isometry and ϕ(0)= 0, then

2〈u,v〉 = ||u−0||2 +||v−0||2 −||u−v||2
= ||ϕ(u)−ϕ(0)||2 +||ϕ(v)−ϕ(0)||2 −||ϕ(u)−ϕ(v)||2
= 2〈ϕ(u),ϕ(v)〉.

A calculation now shows ||ϕ(u+av)−ϕ(u)−aϕ(v)||2 = 0 for a ∈R, so ϕ is linear.
2. The proof of 1. shows that a linear isometry preserves the inner product, so is in
O(n). Vice versa, an element A ∈O(n) is clearly linear. It is an isometry since

||v−w||2 = 〈v−w,v−w〉 = 〈A(v−w), A(v−w)〉 = ||A(v−w)||2 = ||A(v)− A(w)||2

3. Let ϕ be an isometry. Write v =ϕ(0). Define τv : Rn →Rn to be translation by v,
so τv(w)= v+w for w ∈Rn. Moreover define ψ : Rn →Rn by ψ(w)=ϕ(w)−v. Then
τv and ψ are isometries, and ψ(0)= 0, so from 1. we see that ψ is linear. One has

ϕ(w)=ϕ(w)−v+v =ψ(w)+v = τv(ψ(w))

for all w ∈Rn, so ϕ= τv ◦ψ.
4. By 3. and the fact that composing bijections yields a bijection, it suffices to show
that translations and linear isometries are invertible. This is clear for translations,
and the proof of Theorem V.1.2 shows it for linear isometries.

44 V GROUPS OF SYMMETRIES



Because of this theorem linear isometries are the same as the orthogonal (lin-
ear) maps studied in linear algebra. For R2 we determined these maps in Exam-
ple V.1.5: all reflections in a line through the origin, and the rotations with center
the origin.

We now consider isometries which, when restricted to a subset Rn, map this
subset to itself. It is not hard to show that, for a given subset of Rn, the set of such
isometries forms a subgroup of the group of all isometries.

V.2.4 Definition. The symmetry group of a subset F ⊂Rn is defined as the group
of all all isometries on Rn with the property that F is mapped to F.

It turns out that up to isomorphism the symmetry group of a set F is not af-
fected by the position of F in Rn, only by ‘the shape of F ’:

V.2.5 Theorem. If F ⊂Rn, a ∈R>0, and ϕ is an isometry on Rn, then the symmetry
group of aϕ(F) and of F are isomorphic.

Proof. The map σ 7→ aϕσϕ−1 1
a sends the symmetry group of F to that of aϕ(F)

(compare Exercise 3), and this map is a homomorphism. It is bijective with inverse
given by τ 7→ϕ−1 1

aτaϕ.

We now describe the symmetry groups of certain subsets of R2. A major role
will be played by the following result.

V.2.6 Lemma. If G is a subgroup of SO(2) consisting of exactly N elements, then
G consists of all rotations by multiples of 2π/N. In particular G ∼=Z/NZ.

Proof. Every element of SO(2), so in particular every element of G, is a rotation.
Let σ ∈SO(2) be the rotation by the smallest possible positive angle 2πα such that
σ is in G. Since G is finite, σn = id for some n > 0, so n ·2πα is an integral mul-
tiple of 2π. This implies α ∈ Q, so we may write α = a/b for positive integers
a,b with gcd(a,b) = 1. Take c,d ∈ Z with ac+ bd = 1, then σc is the rotation by
2πac/b = 2π(1−bd)/b, i.e., by an angle 2π/b. Since 2πa/b is the least positive angle
of rotation in G, we have a = 1. We now show b = N. Take an arbitrary rotation
τ′ ∈ G by an angle 2π`/m. By the same reasoning used above, we find a power τ
of τ′ representing rotation by 2π/m. Note that τ′ is a power of σ if and only if τ is
some power of σ. By taking a suitable combination σpτq we find an element of G
representing rotation by 2π/ lcm(b,`). The minimality of 2π/b shows lcm(b,`) ≤ b,
so `|b. This implies that every element of G is a power of σ. So N = #G = ord(σ)= b,
proving the lemma.

An alternative, more geometric proof runs as follows. Take a circle around the
origin and a point on it. The images of this point under the elements of G yield N
points on the circle. Using that G consists of isometries, one can show that these N
points are the vertices of a regular N-gon. The rotations permuting these vertices
now form the group G.

V.3 The dihedral groups.

Let Cr ⊂ R2 be the circle with radius r around the origin. An isometry mapping
Cr to itself necessarily fixes the center: namely, any point of Cr has a unique point
of Cr at distance 2r (the antipodal point). As a result, symmetries of Cr will map
lines through the origin to lines through the origin, and therefore the intersection
point of these lines will be fixed. We conclude that the symmetry group of the circle
is isomorphic to the group O(2).
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V.3.1 Definition. The symmetry group of the circle Cr is called the infinite dihe-
dral group. This group is denoted by D∞.

V.3.2 Theorem. The group D∞ is isomorphic to O(2), and consists of reflections σ
across arbitrary lines through the center of the circle, and of all rotations ρ around
the center of the circle. The subset R ⊂ D∞ of all rotations is a commutative sub-
group of D∞.

If σ ∈ D∞ is any reflection, then

D∞ = R∪R ·σ.

Taking σ the reflection across the x-axis, we have σρσ= ρ−1 for any ρ ∈ R.

Proof. We already saw that D∞ ∼= O(2) and that O(2) consists of reflections and
rotations. The rotations are the matrices in O(2) of determinant 1, so R is the
kernel of the homomorphism “determinant”: O(2)→ {±1}.

The elements in O(2) having determinant −1 are reflections (their characteris-
tic polynomial has the form X2− tX−1 for some t ∈R, so we have two real eigenval-
ues. They have absolute value 1 (since the matrix is orthogonal) and product −1.
Hence the matrix represents the reflection across the line spanned by the eigen-
vector with eigenvalue +1.

The partition D∞ = R∪R·σ is the partition of D∞ into rotations (determinant 1)
and reflections (determinant −1).

The reflection σ in the x-axis is given by the matrix
( 1 0
0 −1

)
. For an arbitrary

rotation ρ = (cos α −sin α
sin α cos α

)
one computes

σρσ=
(

1 0
0 −1

)(
cos α −sin α
sin α cos α

)(
1 0

0 −1

)
=

(
cos α sin α
−sin α cos α

)
= ρ−1

since cos(−α)= cos(α) and sin(−α)=−sin(α). This proves the theorem.

When computing in D∞ it is often convenient to regard rotations and reflections
as maps on the complex plane C. “Reflection in the x-axis” then becomes complex
conjugation

c : z 7→ z

and “rotation by α” becomes multiplication by eαi, i.e.

m : z 7→ eαi · z.

As an example, cmc is the map sending z to cmc(z)= cm(z)= c(eαi z)= eαi z = e−αi z,
so cmc = m−1 as we saw earlier.

Subdividing the circle into n ≥ 2 equal segments yields n vertices which define
a regular n-gon Fn.

V.3.3 Definition. The symmetry group of Fn is called the n-th dihedral group Dn.

The nth dihedral groups will serve as standard examples of finite groups in the
rest of this course, alongside the groups Z/NZ and (Z/NZ)×, and the permutation
groups and their subgroups. Their geometric interpretation often makes it possible
to visualize abstract results in a concrete way.

The center of Fn is fixed under all symmetries, so Dn is a subgroup of D∞ =O(2).
The group Dn consists of rotations and reflections; the rotations in Dn are those
by an angle k ·2π/n, for 0 ≤ k < n. There are n of these. The rotation by the least
positive angle 2π/n we denote by ρ. The reflections in Dn are precisely the reflec-
tions in either lines containing the origin and a vertex of Fn, or lines containing the
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origin and the midpoint of an edge of Fn. One of these reflections is the reflection
in the x-axis, which from now on we denote by σ. There are precisely n reflections
in Dn, namely all σρk for 0≤ k < n. So Dn is a finite group consisting of n+n = 2n
elements.

We summarize this discussion as follows.

V.3.4 Theorem. The group Dn consists of 2n elements. It is abelian if and only if
n = 2.

The group Dn contains the rotation ρ by an angle 2π/n and the reflection σ in
the x-axis. Every element of Dn can be written in a unique way as ρk or σρk, for
some 0≤ k < n.

One has ord(ρ) = n and ord(σρk) = 2, so in particular ρn = σ2 = id. Moreover,
σρσ= ρ−1.

The subgroup Rn of Dn consisting of all rotations is isomorphic to Z/nZ.

Proof. The inverse ρ−1 is a rotation by an angle (n−1)2π/n. For n > 2 this differs
from a rotation by 2π/n, so then σρσ= ρ−1 6= ρ by Theorem V.3.2. This implies that
Dn is not commutative if n > 2.

The remaining assertions in the theorem follow immediately from the defini-
tions, the above discussion and Theorem V.3.2.

V.3.5 Example. For n = 2 the group D2 consists of 4 elements. In this case ρ is
the map “rotate by 180 degrees”, so ρ(x, y) = (−x,−y). In particular ρ−1 = ρ, hence
σρ = ρσ. Therefore, D2 is commutative. We already knew this, because all groups
consisting of exactly 4 elements are commutative by Exercise III.15. In the present
case σρ is the reflection across the y-axis. All nontrivial elements of D2 have order
2 which implies D2 ∼=Z/2Z×Z/2Z.

Note that this example is somewhat odd: a regular 2-gon is just a line segment.
The reflection across the line containing this segment is an element of order 2 in
D2. However, this reflection fixes every point in the segment F2.

V.3.6 Example. Let us determine the integers n > 0 for which the rotation r by 180
degrees given by r(x, y)= (−x,−y), is an element of Dn.

We know that ord(r) = 2. If r ∈ Dn is a rotation, then r = ρk for some k. There-
fore, rn = ρnk = id, so 2 = ord(r) is a divisor of n and thus n is even. Vice versa, let
n = 2m for some integer m > 0. Then ρm is a rotation with ord(ρm)= 2.Thus, ρm is
a rotation by 180 degrees: ρm = r. We conclude that

r ∈ Dn ⇔ n is even.

Note that r is in the center of D2m, i.e. we have rτ= τr for all τ ∈ D2m.
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V.4 Symmetries of a strip: frieze groups

This section discusses the symmetries of a strip in the plane, i.e., of the set of points
in R2 located between two parallel lines. In particular so-called discrete subgroups
of this symmetry group will be presented. It turns out that this topic is related to
art and to architecture.

Using Theorem V.2.5 the width of the strip can be scaled without changing
the symmetry group in an essential way. Moreover we may change the strip by
applying an isometry. This observation shows that the following choice of strip and
group describes in some sense all cases.

V.4.1 Definition. By GS we denote the group of symmetries of the set S ⊂R2 de-
fined by

S := {
(x, y) ∈R2 | −1≤ y≤ 1

}
.

We start by presenting a more explicit description of the group GS .

V.4.2 Theorem. The group GS of all symmetries of the strip S consists of all isome-
tries ϕ : R2 →R2 given by ϕ(x, y) = (±x+u,±y), for all four possibilities of the signs
(±,±) and all u ∈R.

Proof. Using Theorem V.2.3 and Example V.1.5 we find that the isometries ϕ of
R2 are given by ϕ(x, y) = (ax+ by+ u, cx+ d y+ v) with a,b, c,d,u,v ∈ R satisfying
a2 + c2 = 1 = b2 +d2 and ab+ cd = 0. If ϕ sends S to S, then in particular it sends
the x-axis to itself. This means that the second coordinate of ϕ(x,0)= (ax+u, cx+v)
equals 0 for every x ∈R. From this one concludes c = v = 0. Hence a2 = 1 = b2 +d2

and ab = 0, which implies b = 0 and a2 = 1= d2. So indeed ϕ has the required form,
and it is easy to verify that all isometries of this form send S to S, so they are in
GS .

Here are the 4 types of elements in the symmetry group of the strip S:

• τu : (x, y) 7→ (x+ u, y) is the translation by (u,0). We have ord(τu) = ∞ except
when u = 0; obviously τ0 is the identity map, which has order 1.

• ρu : (x, y) 7→ (−x+u, y) is the reflection across the vertical line given by x = 1
2 u.

Since ρ2
u is the identity map and ρu is not, one finds ord(ρu) = 2. Put ρ := ρ0,

then τuρ = ρu = ρτ−u. In particular, all of these reflections can be expressed as
a product of ρ and a translation.

• γu : (x, y) 7→ (x+u,−y) is called a glide reflection; in the case u = 0 it is the reflec-
tion γ = γ0 across the x-axis. In general it is the composition of this reflection
and a translation by (u,0): we have γτu = γu = τuγ. Since γ2

u = τ2u one finds
ord(γ0)= 2 and ord(γu)=∞ whenever u 6= 0.

• πu : (x, y) 7→ (−x + u,−y) is the point reflection with center ( 1
2 u,0). Clearly

ord(πu) = 2. In terms of the point reflection π = π0 in the origin, we have
πτ−u =πu = τuπ.

In particular, the description above shows that every element of GS can be written
as a product of a translation and an element in {id,ρ,γ,π}. Note that {id,ρ,γ,π}
is in fact a commutative subgroup of GS : each of these four elements is its own
inverse, and ργ= π= γρ and ρπ= γ= πρ and γπ= ρ = πγ. So in fact this subgroup
is isomorphic to Z/2Z×Z/2Z. We summarize and extend this discussion in the
following result.

V.4.3 Lemma. The sets T = {τu|u ∈ R} and H = {id,ρ,γ,π} are subgroups of GS .
Every element g ∈ GS can be expressed in a unique way as g = th for some t ∈ T
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and some h ∈ H. Similarly, every g ∈ GS can be expressed in a unique way as
g = h′t′ for some t′ ∈ T and some h′ ∈ H. In other words, GS = TH = HT. The map
ϕ : GS −→ H defined by g = th 7→ ϕ(g) := h is a surjective group homomorphism
with kernel T.

Proof. We already observed that H ⊂GS is a subgroup. The fact that also T ⊂GS is
a subgroup is easy to verify. The discussion preceding this lemma shows that every
element of GS can be written as th and as h′t′ for some t, t′ ∈ T and some h,h′ ∈ H.
Since g(0,0) = th(0,0) = t(0,0) it follows that t is the translation by g(0,0), hence
indeed g uniquely determines t and therefore also h = t−1 g. Similarly, if g = h′t′
then g−1 = t′−1h′ which determines t′−1 and hence t′, as well as h′.

To see that ϕ is a homomorphism, first observe, as shown before, that for every
h ∈ H and every translation t ∈ T there is another translation t̃ ∈ T (which is either
t itself or its inverse) such that ht = t̃h. Hence, with g = th and g′ = t′h′ one finds
g′g = t′(h′t)h = t′ t̃h′h. As a consequence, ϕ(g′g) = h′h = ϕ(g′)ϕ(g), which shows
that ϕ is a homomorphism. It is clearly surjective, and has kernel T.

Using the notation for elements of GS as introduced above, the next equalities
in GS are not hard to verify.

(a) τuτv = τu+v and in particular τ−1
u = τ−u.

(b) ρuρv = τu−v and ρ−1
u = ρu and ρuτv = ρu−v = τ−vρu.

(c) γuγv = τu+v and γ−1
u = γ−u.

(d) γuτv = γu+v = τvγu and γuρv =πu+v = ρvγ−u.
(e) πuπv = τu−v and π−1

u =πu.
(f) πuτv =πu−v = τ−vπu and πuρv = γu−v = ρ−vπ−u and πuγv = ρu−v = γ−vπu.

V.4.4 Definition. A frieze group is a subgroup F ⊂GS with the property F∩T ∼=Z.

Note that if F ⊂ GS is a frieze group, then by fixing an isomorphism f : Z→ F ∩T
we have t := f (1) is a translation in F, so t = τu for some u ∈R. Using that f is a
homomorphism we have f (n) = tn = τnu. By assumption every translation in F is
obtained in this way, in other words: F∩T = {τnu | n ∈Z} and |u| > 0 is the minimal
positive number such that the translation τ|u| by (|u|,0) is in the frieze group F.

V.4.5 Example. F := {τn | n ∈ Z} is a frieze group. By definition it consists of the
translations by all points (n,0) for n ∈Z.

Also F ′ := {γn
1 | n ∈ Z} is a frieze group. The glide reflections γ2m+1 = γ2m+1

1 for
m ∈ Z are in F ′, as well as all translations τ2m = γ2m

1 for m ∈ Z. In this case an
isomorphism Z∼= F ′∩T is provided by m 7→ γ2m

1 .

We now present an alternative definition of “frieze groups”. To achieve this, we
first define a particular type of subgroup of the group Isom(Rn) of all isometries of
Rn.

V.4.6 Definition. A subgroup G ⊂ Isom(Rn) is called discrete if for every v ∈Rn the
ball Bv := {w ∈Rn| d(v,w)≤ 1} has the following property:

{g ∈G | g(Bv)∩Bv 6=∅}

is finite.

To understand this definition, observe that Bv is the n-dimensional ball with
radius 1 and center v ∈Rn. Its image g(Bv) under any isometry of Rn equals the
ball Bg(v). These balls have an empty intersection precisely when ||v− g(v)|| > 2. So
G is discrete, precisely when every v ∈Rn has the property that only finitely many
g ∈G send v to a point g(v) at distance less than or equal to 2 from v.
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V.4.7 Example. Clearly every finite subgroup of Isom(Rn) is discrete. The infinite
dihedral group D∞ discussed in Definition V.3.1 and Theorem V.3.2 is not discrete:
the group is infinite, and every element of it fixes the origin.

The translations τn ∈ GS by a point (n,0) with n ∈Z define an infinite discrete
subgroup of Isom(R2): namely, for any v ∈R2 and any n ∈Z we have ||v−τn(v)|| = |n|,
so only τ0,τ±1, and τ±2 send v to a point at distance ≤ 2 from v.

V.4.8 Theorem. A subgroup F ⊂GS is a frieze group if and only if F is infinite and
discrete.

Proof. ⇒: Assume F ⊂ GS is a frieze group. By definition F ∩T ∼= Z, so F ∩T is
infinite and therefore F is infinite, too. To verify that F is discrete we will use
the homomorphism ϕ : GS → H = {id,ρ,γ,π}. Write n := #ϕ(F) and K := F ∩ T.
Let f1 = id, . . . , fn be elements of F such that ϕ(F) = {ϕ( f1) = id, . . . ,ϕ( fn)}. Then
F = K f1 ∪ . . .∪K fn. As we observed earlier, F being a frieze group implies that K
consists of all translations τmc for some fixed c > 0 with m ranging over the inte-
gers. Now let v ∈R2 and take f ∈ F. Write f = τmc f i for some m ∈ Z, i ∈ {1, . . . ,n}.
Then f (Bv)= B f i(v)+m(c,0) so clearly f (Bv)∩Bv 6=∅ is only possible for finitely many
values of m. Therefore F is discrete.
⇐: Now we assume that F ⊂ GS is an infinite discrete subgroup. The argument
above shows that F = K f1 ∪ . . .∪K fn with K = F ∩T and f1, . . . , fn ∈ F. Since F is
infinite, at least one (and therefore, all) of the sets K f i are infinite, so #K =∞. We
have that F is discrete, and therefore its subgroup K is discrete as well. So we have
a discrete group K consisting of translations by points (c,0), and what remains to
be shown is that K ∼=Z. The definition of discreteness applied to K and to the ball
B(a,0) of radius 1 and center (a,0) shows, that K contains only finitely many trans-
lations τc such that |c−a| ≤ 2. In other words, every (closed) interval of length 4 in
R contains only finitely many c ∈R such that τc ∈ K . As K is not empty, this implies
that we can take the smallest possible c > 0 with τc ∈ K . Claim: K = {τmc|m ∈ Z}
and m 7→ τmc is an isomorphism Z ∼= K . Namely, by definition τc ∈ K hence since
K is a group, for all m ∈ Z also τmc = τm

c ∈ K . This shows K ⊃ {τmc|m ∈ Z}. Vice
versa if τd ∈ K for some d ∈ R, then write d

c = `+ ε with ` ∈ Z and 0 ≤ ε < 1. We
have d = `c + εc and therefore τεc = τdτ−`c ∈ K . By definition c is the smallest
positive number with τc ∈ K , so 0 ≤ εc < c implies ε = 0. This shows d = `c and
τd ∈ {τmc|m ∈Z}, completing the proof.

We now present a description of all frieze groups.

V.4.9 Theorem. All frieze groups are of exactly one of the following 7 types:

F1. Groups {τmc|m ∈Z} (for fixed c > 0) consisting of translations;
F2. Groups {γm

c |m ∈Z} (fixed c > 0) consisting of glide reflections and translations;
F3. Groups {τmc| m ∈Z}∪{γmc| m ∈Z} (fixed c > 0) consisting of glide reflections and

translations, including the reflection γ= γ0;
F4. Groups {τmc| m ∈Z}∪{ρu−mc| m ∈Z} (fixed c > 0 and fixed u) consisting of trans-

lations and reflections in vertical lines;
F5. Groups {τmc| m ∈Z}∪{πu−mc| m ∈Z} (fixed c > 0 and fixed u) consisting of trans-

lations and point reflections;
F6. Groups {γn

c/2| n ∈Z}∪ {ρuγ
n
c/2|n ∈Z} (fixed c > 0 and fixed u) consisting of trans-

lations, glide reflections, reflections in vertical lines, and point reflections, not
containing the glide reflection γ= γ0.

F7. Groups {τmc| m ∈ Z}∪ {ρu+mc|m ∈ Z}∪ {γmc| m ∈ Z}∪ {πu+mc| m ∈ Z} (fixed c > 0
and fixed u) consisting of translations, glide reflections, reflections in vertical
lines, and point reflections, including the glide reflection γ= γ0.
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Proof. Let F ⊂ GS be a frieze group. We use the restriction to F of the homomor-
phism ϕ : GS → H = {id,γ,ρ,π} which we will (also) denote ϕ : F → H. Its kernel
equals F ∩T and in the proof of Theorem V.4.8 we saw that this kernel consists of
the translations τm

d for some fixed d > 0 and all m ∈ Z. The image ϕ(F) ⊂ H is by
Theorem III.3.4 a subgroup of H. By discussing the possibilities for ϕ(F) one by
one, all possible F ’s will arise. Lagrange’s theorem III.2.8 asserts that #ϕ(F)|#H,
so #ϕ(F) equals 1,2, or 4. In the latter case ϕ(F) = H, in the first case ϕ(F) = {id}.
In all other cases ϕ(F) contains besides the identity id exactly one other element,
of order 2. So we have the following possibilities.

1. ϕ(F) = {id}. In this case F contains only translations. The proof of Theo-
rem V.4.8 shows that c > 0 exists with F = {τmc|m ∈ Z}, which is a group iso-
morphic to Z.

2. ϕ(F)= {id,γ}; if this happens, then we are in one of the following cases.

(a) Every glide reflection γu = τuγ ∈ F has infinite order, i.e., it satisfies u 6= 0.
Put K = F ∩T which, as above, can also be written as K = {τmc|m ∈ Z}
for some c > 0. Any γu ∈ F yields γ2

u = τ2u ∈ K . Hence u = mc/2 for some
m ∈ Z. Now write m = 2q+ r with q ∈ Z and r ∈ {0,1}. Then τ−qc ∈ F and
therefore also τ−qcγmc/2 = γrc/2 ∈ F. We conclude that r = 1 since otherwise
F would contain γ0, contrary to the assumption. As a consequence γc/2 ∈ F
and moreover the glide reflections in F are precisely all γmc/2 with m an
odd integer. Observe that γn

c/2 equals the translation τmc in case n = 2m is
even, and equals the glide reflection γmc/2 in case n = 2m−1 is odd. This
means F = {γn

c/2|n ∈ Z} = {τmc|m ∈ Z}∪ {γc/2τmc|m ∈ Z}. The map n 7→ γn
c/2

yields Z∼= F.

(b) F contains a glide reflection of finite order, i.e., γ ∈ F. As before, take c > 0
such that F ∩T = {τmc|m ∈Z}. If γu is any glide reflection in F, then also
γγu = τu is in F which means u = mc for some integer m. The converse
holds as well: given m ∈Z we have γmc = γτmc ∈ F. So

F = {τmc| m ∈Z}∪ {γmc| m ∈Z},

and (m,0) 7→ τmc and (m,1) 7→ γmc defines an isomorphism Z× (Z/2Z)∼= F.

3. ϕ(F)= {id,ρ}. Again, there is a c > 0 such that F∩T = {τmc|m ∈Z}. Take any re-
flection ρu ∈ F, then ρuτcρu = τ−c; in particular it follows that F is not abelian.
If also ρv ∈ F then ρuρv = τu−v ∈ F so u − v = mc and ρv = ρuτmc = ρu−mc.
Clearly all products ρuτmc with m ∈Z are in F, so

F = {τmc| m ∈Z}∪ {ρu−mc| m ∈Z}

which indeed defines an infinite discrete group.
4. ϕ(F) = {id,π}. This case is almost identical to the one above: let c > 0 such that

F ∩T = {τmc|m ∈ Z}. Take any point reflection πu ∈ F, then πuτcπu = τ−c; in
particular it follows that F is not abelian. If also πv ∈ F then πuπv = τu−v ∈ F so
u− v = mc and πv = πuτmc = πu−mc. Clearly all products πuτmc with m ∈Z are
in F, so

F = {τmc| m ∈Z}∪ {πu−mc| m ∈Z}

which indeed defines an infinite discrete group.
5. ϕ(F)= H = {id,ρ,γ,π}. In this case the elements of F that are either translations

or reflections in a vertical line form a subgroup F ′ ⊂ F. In part 3. above it such
groups F ′ were described: it is non-abelian and its elements are given in terms
of two elements τc and ρu with ρuτcρu = τ−1

c . The remainder of the argument
is in the spirit of Case 2. above:
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(a) Assume γ = γ0 6∈ F. Let γv ∈ F be a glide reflection. Then γ2
v = τ2v ∈ F.

Exactly as in 2(a) above, the translations and glide reflections in F are
precisely the powers γn

c/2 of γc/2 ∈ F. Moreover ρuγc/2ρu = γ−1
c/2. We claim

that all elements of F can be expressed in terms of ρu and γc/2. This was
shown above for the translations, glide reflections, and the reflections in
vertical lines. If πw ∈ F is a point reflection then πw = ρuρuπw = ρuγu−w,
where γu−w = ρ−1

u πw ∈ F is a power of γc/2, which shows the claim in the
remaining case. In fact, we find

F = {γn
c/2| n ∈Z}∪ {ρuγ

n
c/2|n ∈Z}

which indeed defines an infinite discrete subgroup of GS .

(b) Assume γ = γ0 ∈ F. Note that γg = gγ for every g ∈ GS , hence this holds
in particular for all g ∈ F. Take F ′ ⊂ F the subgroup of F consisting of
all translations and all reflections across vertical lines. We know from the
third part of this proof that F ′ = {τmc| m ∈ Z}∪ {ρu−mc| m ∈ Z} for some
c > 0. As before, one shows that F is the disjoint union F ′∪γF ′: clearly
this union is in F and the sets F ′,γF ′ are disjoint. Moreover if g ∈ F, then
it is in F ′ in case g is either a translation or a reflection in a vertical line.
In the case g that is a point reflection or a glide reflection then γg ∈ F ′ and
hence g = γγg ∈ γF ′. We conclude

F = {τmc| m ∈Z}∪ {ρu+mc|m ∈Z}∪ {γmc| m ∈Z}∪ {πu+mc| m ∈Z}

which indeed is an infinite discrete subgroup of GS .

This completes the description of all frieze groups.

V.4.10 Remark. Observe that the group(s) encountered in the cases 3. and 4. and
5(a) above, are very reminiscent of the dihedral groups whose properties are listed
in Theorem V.3.4. Namely, there is an element σ ∈ {ρu,πv} or order 2, and an
element r ∈ {τc,ρc/2} of infinite order (in the case of the dihedral group Dn instead
a rotation of order n is taken), and σrσ= r−1.

V.4.11 Remark. At first sight the groups appearing in the cases 5(a) and 5(b) of the
preceding argument may look exactly the same. However, the groups are not even
isomorphic. Indeed, starting from a group F4 = {τmc| m ∈Z}∪ {ρu−mc| m ∈Z} (case
3 of the theorem) one obtains a group as in 5(a) as F6 = F4 ∪γvF4 in which v 6∈Z · c.
A group as in 5(b) is given by F7 = F4∪γF4. The center (compare Exercise III.4(7))
Z (F6) equals {id} whereas Z (F7) = {id,γ}, and isomorphic groups have isomorphic
centers as well.

As abstract groups different types of frieze groups can be isomorphic, as we saw
in the proof above and in the Remarks following the proof. Namely, the groups in F1
and F2 are all isomorphic to Z, although in F1 a group contains only translations
whereas in F2 also glide reflections occur. In a similar way the groups in F4, F5,
and F6 are all isomorphic, although the different types contain different kinds of
symmetries of the strip. In total we found 7 types of frieze groups, but only 4
different groups up to isomorphism. Only the groups in F1, F2, and F3 are abelian.
Those in F3 contain an element of order 2, hence they are not isomorphic to a
group in F1 or F2. All groups in F4, F5, F6, F7 are non-abelian. We already saw
that three of these cases yield isomorphic groups, and also that the case F7 leads
to groups not isomorphic to the one in the other cases.

We conclude by presenting examples of drawings on the strip S which have as
symmetry group a given frieze group. Obviously we cannot extend the drawing
unboundedly to the left or to the right, but it should be obvious how this is done.
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Type F1:

· · ·b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b · · ·

Type F2:

· · ·b p b p b p b p b p b p b p b p b p b p b p b p b p b p b p b p · · ·

Type F3:

· · ·C C C C C C C C C C C C C C C C C C C C C C C C C C C C · · ·

Type F4:

· · ·b d b d b d b d b d b d b d b d b d b d b d b d b d b d b d b d · · ·

Type F5:

· · ·b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q · · ·

Type F6:

· · ·b p q d b p q d b p q d b p q d b p q d b p q d b p q d b p q d · · ·

Type F7:

· · ·x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x · · ·

Many examples of patterns with a frieze group as group of symmetries can be
found on the internet, including their appearance in decorative art. The websites
http://www.maa.org/sites/default/files/images/upload_library/4/vol1/
architecture/Math/seven.html
and

https://en.wikipedia.org/wiki/Frieze_group
provide a first impression.

V.5 Automorphisms of a graph

We will consider the simplest and easiest type of graph here. In particular we re-
strict ourselves to finite graphs with at most one edge between its vertices. More-
over, we do not prescribe a direction for the edges of our graphs. In more advanced
graph theory the graphs we use, are called “finite simple undirected graphs”; our
terminology will be shorter:

V.5.1 Definition. A graph Γ is a pair (V ,E), with V a nonempty finite set (the
‘vertices’ of the graph), and E a (possibly empty) set consisting of subsets {a,b}⊂V
(the ‘edges’ of the graph).

V.5.2 Remark. A graph is usually presented as a picture: we draw its vertices as
points, and we connect vertices a,b by a line segment (or by a loop in case a = b)
precisely in the case {a,b} is in the set of edges of the graph. In many examples
such a picture is only possible if we allow some of the line segments to intersect. By
emphasizing the actual vertices of the graph, one can make sure that no confusion
with the intersection points of line segments arises.

To a graph one associates a finite group as follows.
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V.5.3 Definition. An automorphism of a graph Γ= (V ,E) is a permutation σ on its
set of vertices V , with the property that for all {a,b} ∈ E also {σ(a),σ(b)} ∈ E.

The set consisting of all automorphisms of Γ is denoted Aut(Γ).

V.5.4 Theorem. For a graph Γ with n vertices, Aut(Γ) is a subgroup of Sn.

Proof. Enumerate the vertices of the graph Γ as 1,2, . . . ,n. It is clear that any
σ ∈ Aut(Γ) corresponds to a permutation in Sn, so Aut(Γ) ⊂ Sn. We now show that
this subset is a subgroup. The identity is contained in it. If σ ∈Aut(Γ), then σ maps
elements of E to elements of E as σ({i, j}) := {σ(i),σ( j)}. This yields an injective map
from E to E, and since E is finite this map is surjective as well. This means that
in case σ(k) = i and σ(`) = j and {i, j} ∈ E, then also {k,`} ∈ E. The definition of
Aut(Γ) therefore shows that if σ ∈ Aut(Γ), then σ−1 ∈ Aut(Γ) as well. To prove that
a product of elements in Aut(Γ) yields an element of Aut(Γ) is much simpler so we
leave it for the reader. This completes the proof.

V.5.5 Example. The complete graph Γn on n vertices is by definition the graph
consisting of n vertices 1,2, . . . ,n, and edges all {i, j} with 1 ≤ i ≤ j ≤ n. In this
example the requirement that an automorphism sends edges to edges yields no
restriction, hence Aut(Γn)= Sn.

V.5.6 Example. Enumerate the vertices of a regular n-gon as 1,2, . . . ,n (say, counter
clockwise). Regard this n-gon as a graph Fn, so with vertices 1,2, . . .n and edges
{1,2}, {2,3}, . . . , {n−1,n}, {n,1}. Then Aut(Fn) ∼= Dn: namely, every symmetry of the
regular n-gon can be considered as an element of Aut(Fn), so Dn ⊂ Aut(Fn). Vice
versa, if τ ∈ Aut(Fn) sends the vertex 1 to i, then 2 is mapped to one of the two
neighbours of i, and this determines τ uniquely. As a consequence, at most n·2= 2n
possible τ exist. We found this number of elements in the subset Dn, so indeed
Aut(Fn)∼= Dn.
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V.6 Exercises

1. Show that D2 ∼=Z/2Z×Z/2Z and D3 ∼= S3.
2. By considering the elements of Dn as permutations on the vertices of a regular

n-gon one obtains a map from Dn to Sn. Verify that this map is an injective
homomorphism. Which elements of Dn are mapped to even permutations?

3. Take v ∈Rn and denote translation by v as τv. Let a ∈R with a 6= 0.

(a) Verify that aτv
1
a is again a translation.

(b) Show that if ϕ is any isometry on Rn, then so is aϕ 1
a .

4. Let F7 be a frieze group of type F7, and let F4 ⊂ F7 be its subgroup consisting
of all translations and all reflections in vertical lines.

(a) Show that every element g ∈ F7 can be written in a unique way as g = ab
with a ∈ {id,γ} and b ∈ F4.

(b) Prove that (n,b) 7→ γnb defines an isomorphism (Z/2Z)×F4 ∼= F7.

5. Find the type (according to Theorem V.4.9) of the symmetry group of each of the
following infinite patterns:

(a) · · ·s s s s s s s s s s s s s s s s s s s s s s s s · · ·
(b) · · ·v v v v v v v v v v v v v v v v v v v v v v · · ·
(c) · · ·r r r r r r r r r r r r r r r r r r r r r r r r r r · · ·

6. Verify that exactly 20 distinct graphs with exactly 3 vertices exist, and that
none of them has A3 as automorphism group.

7. Determine the number of automorphisms and the group Aut(H), with H the
graph consisting of 6 vertices and 5 edges, drawn as the capital letter ‘H’.

8. A cube can be considered as a graph by taking its 8 vertices as vertices and its
12 sides as edges. Determine the automorphism group of this graph.

9. The groups considered in this chapter all consist of bijections on a certain set,
where the bijections are required to preserve some additional structure on the
set. A natural additional example is to take as the set some group G, and to
consider the bijections τ : G →G which preserve the group structure:

Aut(G) := {τ ∈ SG | τ(gh)= τ(g)τ(h)}.

(a) Determine Aut(Z/4Z).

(b) Show that Aut(G) is a group for any group G.

(c) Show that G →Aut(G) defined by g 7→ γg, with γg defined by γg(h)= ghg−1,
indeed maps G to Aut(G), and that it is a group homomorphism from G to
Aut(G).
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VI CONJUGATION, INDEX, ACTIONS, AND SYLOW THEORY

After two chapters in which we focused on examples of groups, we now continue the
general theory started in Chapter III. In particular we develop additional theory
on subgroups of (mostly finite) groups; this is useful, for instance, when trying to
classify all groups of some given order up to isomorphism. We also discuss multi-
plication on the left or on the right by a fixed element in more detail. It turns out
that this will allow us to partition a given group into certain subsets, its conjugacy
classes. In fact this provides an example of an important general notion, namely
‘group actions’.

VI.1 Conjugation

Consider an arbitrary group G and fix elements a,b ∈G. The maps λa and ρa from
G to G defined as ‘multiplication on the left by a’ (so λa(x)= ax) and ‘multiplication
on the right by b’ (ρa(x) = xb) are bijections. Their composition given by x 7→ axb,
is therefore bijective as well. Since the most important maps between groups are
homomorphism, it natural to ask when this composition is a homomorphism. In
general this may not be the case, because a homomorphism maps the unit element
to the unit element by Theorem III.3.3, and our bijection maps e ∈ G to aeb = ab.
This equals the unit element e if and only if b is the inverse of a, so b = a−1. We
now study this case in more detail.

VI.1.1 Definition. If G is a group and a ∈ G, then the bijection γa : G → G given
by γa(x)= axa−1 is called the conjugation by a.

VI.1.2 Theorem. Let G be a group and let a,b ∈G.

1. The conjugation γa by a is an isomorphism.
2. The conjugations γa,γb satisfy γaγb = γab.
3. The inverse of γa is γa−1 .
4. If H is a subgroup of G, then so is γa(H)= aHa−1, and H ∼= aHa−1.

Proof. 1. For x, y ∈G we have

γa(xy)= axya−1 = axa−1aya−1 = γa(x)γa(y).

So γa is a homomorphism. We already observed that γa is bijective, so it is an
isomorphism.
2. If x ∈G, then

γaγb(x)= γa(bxb−1)= abxb−1a−1 = (ab)x(ab)−1 = γab(x).
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In other words, γaγb = γab.
3. It follows from 2. that γaγa−1 = γe = γa−1γa. Every x ∈G satisfies γe(x)= exe−1 = x,
so γe = id. This shows the assertion.
4. Since γa is a homomorphism and H is a group, γa(H) is a group as well. The
map γa is injective, so this also holds for its restriction to H. This restriction has
image γa(H) by definition, hence H ∼= γa(H).

VI.1.3 Example. If G is a commutative group, then conjugation by an arbitrary
element of G is the identity map. So conjugation can only be of interest for non-
abelian groups.

VI.1.4 Example. In linear algebra conjugating matrices plays a major role when
changing the basis of a vector space.

VI.1.5 Definition. Two elements x, y in a group G are called conjugate if a conju-
gation γa for some a ∈G exists with γa(x)= y.

The conjugacy class of x ∈G defined as the subset of G given by

Cx =
{
y ∈G | there exists a ∈G with γa(x)= y

}
.

VI.1.6 Example. In an abelian group G every x ∈G satisfies Cx = {x}.
In S3 the cycles (1 2) and (1 2 3) are not conjugate. To se this, note that all τ ∈ S3

satisfy τ(1 2)τ−1 = (τ(1) τ(2)) and τ(1 2 3)τ−1 = (τ(1) τ(2) τ(3)) by Lemma IV.3.6. It
follows that (1 2) is conjugate to every 2-cycle, and (1 2 3) to every 3-cycle, but the
two given cycles are not conjugate.

VI.1.7 Example. The theory of Jordan normal forms in linear algebra shows that
two matrices A,B ∈GLn(C) are conjugate if and only if they have the same Jordan
form. For example,

(2 1
0 2

)
en

(2 0
0 2

)
are not conjugate, but

(2 1
0 1

)
and

(2 0
0 1

)
are.

VI.1.8 Theorem. Let G be a group and let x, y, z ∈G.

1. The element x is conjugate to itself, so x ∈ Cx.
2. If x is conjugate to y, then also y is conjugate to x (so x ∈ Cy implies y ∈ Cx).
3. If x ∈ Cy and y ∈ Cz, then x ∈ Cz.

Proof. 1. We have x = γe(x), so x ∈ Cx for all x ∈G.
2. x, y ∈G satisfy x = γa(y) precisely when y= γa−1 (x). This shows the assertion.
3. Suppose that a,b ∈ G exist with γa(y) = x and γb(z) = y. It now follows that
γab(z)= γaγb(z)= γa(y)= x, so x ∈ Cz.

VI.1.9 Corollary. Every group G is the disjoint union of conjugacy classes. In other
words, every element of G lies in some Cx, and if there is an element in both Cx and
Cy, then Cx = Cy.

Proof. Every a ∈G lies in Ca. If a ∈ Cx and a ∈ Cy, then c,d ∈G exist with a = γc(x)
and a = γd(y). Any z ∈ Cx can therefore be written as z = γ f (x) = γ f c−1d(y), so
z ∈ Cy. The same argument with x, y interchanged shows Cy ⊂ Cx. So Cx = Cy.

VI.1.10 Remark. Theorem VI.1.8 says that ‘being conjugate’ is an equivalence re-
lation, compare Lemma II.1.2. Corollary VI.1.9 says that one can partition a group
G with respect to this relation. This is in fact true for any equivalence relation.
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VI.1.11 Example. We write Sn as a disjoint union of conjugacy classes. Take
σ ∈ Sn. Write σ as a product of disjoint cycles:

σ= (a1 . . . a`1 )(a`1+1 . . . a`2 ) . . . (a`s−1+1 . . . a`s ).

A permutation τ sending each of the ai to i (and the remaining integers in {1, . . . ,n}
bijectively to {`s +1, . . . ,n}) yields

τστ−1 = (1 2 . . . `1)(`1 +1 . . . `2) . . . (`s−1 +1 . . .`s).

We conclude that all products of disjoint `1,`2−`1, . . . ,`s−`s−1-cycles are conjugate.
The conjugacy class only depends on the set {`1,`2 − `1, . . . ,`s − `s−1} (the “cycle
type”).. In particular the number of pairwise different conjugacy classes equals the
number of partitions of n; this is the number of presentations n = ∑

ni with ni
positive integers, where the order of ni ’s is not taken into account. The number
of partitions is denoted p(n). So p(2) = 2 since 2 = 2 and 2 = 1+1, and p(4) = 5
(4,3+1,2+2,2+1+1,1+1+1+1).

VI.1.12 Example. Determining the conjugacy classes in the alternating group An
is considerably more involved than the case of Sn. We consider n ≤ 5 here. First
note that An is commutative for n ≤ 3, so in these cases Cσ = {σ} for all σ ∈ An.

The group A4 consists of (1), three products of two disjoint 2-cycles, and eight
3-cycles. Write {3,4}= {a,b}, then τ= (2 a b) ∈ A4 satisfies τ(1 2)(3 4)τ−1 = (1 a)(b 2).
So all products of two disjoint 2-cycles in A4 are conjugate. Conjugating (1 2 3)
by all 12 elements in A4 one finds C(1 2 3) = {(1 2 3), (1 3 4), (1 4 2), (2 4 3)}. The
remaining four 3-cycles form a conjugacy class as well.

The group A5 consists of 3-cycles, 5-cycles, products of 2 disjoint 2-cycles, and
the identity. All 3-cycles form one conjugacy class. To see this, note that if τ ∈ S5
is a permutation sending each ai to i, and if σ = (a1 a2 a3), then τστ−1 = (1 2 3).
However, we need to check whether there is an even τ sending each ai to i. Choose
any τ ∈ S5 with this property. Multiplying τ on the left by the 2-cycle (4 5) does
not change the property; this shows that we may indeed assume τ to be even. The
products of two disjoint 2-cycles are all conjugate as well. Indeed, such a product
σ fixes a unique positive integer i ≤ 5, and any τστ−1 then fixes τ(i) (and no other
positive integer ≤ 5). Using a suitable even τ then shows that σ is conjugate to a
product fixing 5. So we find precisely the products of two disjoint 2-cycles that were
discussed when finding the conjugacy classes in A4. As we saw there, they are all
conjugate.

It remains to look at the 5-cycles. A 5-cycle σ can be written as σ= (1 a b c d),
so there are 24 of them. We have τστ−1 =σ if and only if

(τ(1) τ(a) τ(b) τ(c) τ(d))= (1 a b c d),

which means that τ must be a power of σ. The powers of σ form a subgroup
H := 〈σ〉 of An consisting of 5 elements. Write An as a disjoint union of subsets
Hπ, with π ∈ An. If τ ∈ Hπ, then τστ−1 = πσπ−1. Moreover, for π1,π2 ∈ A5 we have
π1σπ

−1
1 = π2σπ

−1
2 if and only if π−1

2 π1 ∈ H, i.e., π1 ∈ Hπ2. So for a fixed 5-cycle σ

there are as many pairwise distinct elements τστ−1 as there are distinct sets Hπ.
The number of these is #A5/#H = 12. We conclude that the set of 5-cycles consists
of two conjugacy classes, each containing 12 elements. In total we find 5 conjugacy
classes, consisting of 1,20,15,12, and 12 elements, respectively.

The example above proves a result for A5 which is true for general groups.

VI.1.13 Theorem. If G is a group and a ∈ G, then N(a) := {x ∈ G | γx(a) = a} is a
subgroup of G. If G is finite, then

#G = #N(a) ·#Ca.
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Proof. Using γe = id and γx−1 = γ−1
x and γxy = γxγy, we see that N(a) is a subgroup

of G. The proof of Theorem III.2.8 shows that G is a disjoint union of subsets
g iN(a), for pairwise distinct g i ∈ G. Suppose that G is finite. Each of the subsets
g iN(a) has #N(a) elements, so the proof is complete if we can show that the number
of g i ’s equals #Ca, i.e. that a bijection {g1, . . . , g i, . . .}→ Ca exists.

We claim that the map defined by g i 7→ xi := γg i (a) ∈ Ca is bijective. Namely,
if x ∈ Ca, then x = γg(a) for some g ∈ G. Therefore g ∈ g iN(a) for some i, hence
g = g ih with h ∈ N(a), and we deduce x = γg(a)= γg iγh(a)= γg i (a)= xi. So the map
is surjective. If xi = x j, then g−1

j g iag−1
i g j = a hence g−1

j g i ∈ N(a). It follows that
g iN(a) = g j N(a), thus g i = g j. Hence the map is injective as well, completing the
proof.

As an application we determine some conjugacy classes in An for n> 5.

VI.1.14 Theorem. Let n ≥ 5.

1. In An all 3-cycles are conjugate.
2. In An all products of two disjoint 2-cycles are conjugate.

Proof. Let σ = (1 2 3) ∈ An. By definition, the subgroup N(σ) 6 An consists of all
even permutations τ satisfying τστ−1 = σ, which means (τ(1) τ(2) τ(3)) = (1 2 3).
Hence τ is a power of (1 2 3) times an even permutation on {4,5, . . . ,n}, so we find
#N(σ) = 3 · (n−3)!/2. Note that here the condition n ≥ 5 is used. Theorem VI.1.13
implies #Cσ = (n!/2)/(3 · (n−3)!/2) = 2

(n
3
)
. This is equal to the number of 3-cycles

in An, hence we conclude that all 3-cycles are conjugate, because Cσ consists of
3-cycles.

The same idea can be adapted to the case of a product of two disjoint 2-cycles.
We leave it as a useful exercise to the reader.

VI.1.15 Remark. We sketch an alternative proof. Take a 3-cycle (a b c). Choose a
permutation τ with τ(1) = a,τ(2) = b, and τ(3) = c. Conjugation by τ and by τ · (4 5)
both map (1 2 3) to (a b c). Since one of τ and τ · (4 5) is even, (1 2 3) and (a b c) are
conjugate in An.

The case of products of two disjoint 2-cycles can be treated similarly; the reader
should try to verify this.

VI.2 Index

Let G be a group and let H 6 G a subgroup. Recall that all sets of the form gH
and H g are bijective, since multiplication by g on the left (on the right, respec-
tively) induces a bijection between H and gH (H g, respectively). In particular,
we have already used that when H is finite, these sets all have the same number
of elements. Another important property is the fact that for g1, g2 ∈ G we either
have g1H = g2H (and this holds precisely when g1 g−1

2 ∈ H), or g1H∩g2H =∅. The
analogous statement holds for the sets H g1 and H g2. Recall for yourself how these
assertions are proven!

VI.2.1 Definition. For H a subgroup of a group G, a left coset of H in G is any
subset of the form gH, for g ∈ G. The index of H in G is defined as the number of
disjoint left cosets of H in G. The index is denoted by [G : H]. If the index is not
finite then we write [G : H]=∞.

The set consisting of all left cosets of H in G is denoted G/H. In other words,

G/H := {gH : g ∈G} .
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VI.2.2 Remark. Since ‘taking the inverse’ ι : G →G is a bijection and ι(gH)= Hι(g),
one may also define the index as the number of disjoint subsets of the form H g
(these subsets are called ‘right cosets’ of H in G).

Observe that [G : H]= #(G/H).

VI.2.3 Theorem. If G is a finite group, then [G : H] is finite for all subgroups H.
Moreover, we have

#G = [G : H] ·#H.

Proof. This was already shown in the proof of Theorem III.2.8.

VI.2.4 Example. It is certainly possible that a subgroup of an infinite group G
has finite index. For example taking G = Z, the subgroups are the groups nZ
by Example III.2.7. For n 6= 0 we have Z = nZ∪ (1+ nZ)∪ . . .∪ ((n− 1)+ nZ), so
[Z : nZ]= n. Moreover, [Z : 0Z]=∞.

VI.3 Action, Orbit, Stabilizer

The elements of the permutation group Sn are by definition maps from the set
{1,2, . . . ,n} to itself: given τ ∈ Sn and m ∈ {1,2, . . . ,n} then also τ(m) ∈ {1,2, . . . ,n}. In
other words, this defines a map

Sn × {1,2, . . . ,n}−→ {1,2, . . . ,n} : (τ,m) 7→ τ(m).

Similarly, the group GL2(R) consists of maps R2 → R2. So given ϕ ∈ GL2(R) and
v ∈R2, also ϕ(v) ∈R2 and one obtains

GL2(R)×R2 −→R2 : (ϕ,v) 7→ϕ(v).

These two examples and some properties they share, are formalized in the concept
of a ‘group action’. This chapter discusses the definition and some basic properties.

The main subject of this section is the following notion.

VI.3.1 Definition. Let G be a group and X a nonempty set. A group action of G on
X is a map G× X → X which we write as (g, x) 7→ gx, satisfying

A1. ex = x for every x ∈ X (here e ∈G is the unit element);
A2. (gh)x = g(hx) for all g,h ∈G and all x ∈ X .

Instead of ‘group action of G on X ’ one also writes ‘X is a G-set’, or ‘G acts on X ’.

VI.3.2 Example. The permutation group Sn acts on X = {1,2, . . . ,n} via the rule
(τ,m) 7→ τm := τ(m), as is readily verified.

Similarly, for n ∈Z≥1 and G any subgroup of the group GLn(R), an action of G
on Rn is defined by ϕv :=ϕ(v) (for all ϕ ∈G and all v ∈Rn).

The group Z acts on any group G by ng := gn (for n ∈Z, g ∈G).

Recall (Section IV.1) that if X is a nonempty set, then SX denotes the group
consisting of all bijections X → X (with composition of maps as group operation,
and the identity map as unit element). One can describe a group action of a group
G on a set X in terms of G and SX , as follows.

VI.3.3 Theorem. i. Given an action of the group G on a set X , the map f : G → SX
given by f (g)(x)= gx is well-defined, and it is a homomorphism.
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ii. Vice versa, if f : G → SX is any homomorphism, then gx := f (g)(x) (for g ∈G and
x ∈ X ) defines an action of G on X .

Proof. i.: we first show that for g ∈ G, indeed f (g) is an element of SX . In other
words, f (g) is invertible, namely with inverse f (g−1). To see this, take any x ∈ X .
Then (

f (g)◦ f (g−1)
)
(x)= f (g)(g−1x)= g(g−1x)= (gg−1)x = ex = x,

so f (g)◦ f (g−1) is the identity map. Similarly(
f (g−1)◦ f (g)

)
(x)= f (g−1)(gx)= g−1(gx)= (g−1 g)x = ex = x

hence f (g−1)◦ f (g) is the identity map as well. This shows that f (g) ∈ SX .
Next, we will show that f is a homomorphism of groups, in other words, for

g,h ∈G we have f (gh)= f (g)◦ f (h). To verify the latter condition, again take x ∈ X .
Then

( f (g)◦ f (h)) (x)= f (g)(hx)= g(hx)= (gh)x = f (gh)(x).

This proves i.
ii.: given is any group homomorphism f : G → SX . We verify that gx := f (g)(x)

satisfies the properties A1 and A2.
A1: ex = f (e)(x) = x (since f (e) is the unit element of SX , which is the identity
map).
A2: (gh)x = f (gh)(x) = ( f (g)◦ f (h)) (x) = f (g)( f (h)(x)) = g(hx), finishing the proof.

VI.3.4 Example. The dihedral group D4 acts on the set X consisting of the 4 ver-
tices of the regular 4-gon (the square). By Theorem IV.1.3 and Theorem VI.3.3 i,
this defines a homomorphism f : D4 → SX ∼= S4. For a suitable numbering of
the vertices, the image of f consists of the permutations (1), (13), (24), (14)(23),
(12)(34), (13)(24), (1234), (1432).

The group D4 also acts on the set Y consisting of the two diagonals of the
square. This defines a homomorphism D4 → S2.

One can a a straightforward way generalize this example (replace ‘square’ by
2n-gon and ‘diagonals’ by the set of lines passing through the center of the 2n-gon
and containing 2 of its vertices). This results in a homomorphism D2n → Sn.

VI.3.5 Definition. Let the group G act on the set X . and take x ∈ X .

• The stabilizer of x in G, denoted by Gx or by StabG(x), is

Gx := {g ∈G : gx = x}⊆G.

• The orbit of x under G, denoted by Gx, is

Gx := {gx : g ∈G}⊆ X .

• The action of G on X is called faithful if for every pair g,h ∈G with g 6= h there
exist y ∈ X with gy 6= hy.

• The action of G on X is called transitive if for every pair x1, x2 ∈ X there exists
g ∈G with gx1 = x2.

• The element x ∈ X is called a fixpoint of G if Gx = {x}, in other words, if gx = x
for every g ∈G. The set of all fixpoints in X is denoted XG , so

XG := {y ∈ X : gy= y for all g ∈G}.

• The action of G on X is called fixpoint free, if there are no fixpoints.
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VI.3.6 Example. Let G = Isom(R2) be the group consisting of all distance pre-
serving maps from R2 to itself (see Section V.2). Then G acts on X = R2. The
stabilizer G(0,0) of the origin is, as we showed in Theorem V.2.3, the subgroup
O(2) ⊂ Isom(R2). The orbit of (0,0) is G(0,0) = R2: indeed, is v ∈ R2, then the
translation over v is an element of G which we will denote by g. Then g(0,0) = v,
so v ∈G(0,0) which shows that R2 =G(0,0).

The action of G on X is clearly faithful: if two maps g1, g2 ∈ Isom(R2) are dif-
ferent, this means by definition that g1(x) 6= g2(x) for some x ∈ R2. The action is
transitive as well: given x1, x2 ∈ R2, the translation over x2 − x1 maps x1 to x2.
Moreover, the action of Isom(R2) on R2 has no fixpoints, since, for example, the
group contains the translation τ over a point x 6= (0,0) in R2 and τ(y)= y+ x 6= y for
every y ∈R2. In other words, the action is fixpoint free, XG =∅.

We now list some basic properties of the notions Definition VI.3.5 introduces.

VI.3.7 Theorem. Let G be a group and let X be a G-set. Denote by f : G → SX the
homomorphism described in Theorem VI.3.3. Then:

i. For any x ∈ X , the stabilizer Gx is a subgroup of G.
ii. The action of G on X is faithful ⇐⇒ The map f is injective.

iii. G acts transitively on X ⇐⇒ Gx = X for some x ∈ X ⇐⇒ Gx = X for all x ∈ X .
iv. For x, y ∈ X one has Gx =G y ⇐⇒ y ∈Gx, and Gx∩G y=∅ ⇐⇒ y 6∈Gx.
v. For x ∈ X and g ∈ G, one has Ggx = gGx g−1. In other words, the conjugation
γg : G →G (see §VI.1) restricts to an isomorphism γg : Gx ∼=Ggx.

Proof. i.: e ∈ Gx, because ex = x by definition of a group action. If g,h ∈ Gx, this
means gx = x = hx, and therefore (gh)x = g(hx)= gx = x, showing that also gh ∈Gx.
Finally, if g ∈ Gx, then g−1x = g−1(gx) = (g−1 g)x = ex = x, so g−1 ∈ Gx. Hence Gx
satisfies the conditions for being a subgroup of G (see Theorem III.2.3).
ii.: ⇒: we will show that ker( f ) = {e}, which means by Theorem III.3.6 that f is
injective. Take g ∈G with g 6= e. Since G acts faithfully on X , some x ∈ X exists with
gx 6= ex, so gx 6= x. So f (g) ∈ SX is not the identity map, because f (g)(x) = gx 6= x.
This shows f is injective.
⇐: given g 6= h in G, injectivity of f means that f (g) 6= f (h). In other words, x ∈ X
exists with gx = f (g)(x) 6= f (h)(x)= hx, so G acts faithfully on X .
iii.: suppose G acts transitively on X , and take any x ∈ X . Given y ∈ X , the action
being transitive means that y= gx for some g ∈G. Hence y ∈Gx, so Gx = X . Hence
the first condition in iii. implies the third one and therefore also the second one.
Vice versa, assume the second condition, and take x ∈ X with Gx = X . Given any
y, z ∈ X , this means g,h ∈G exist with y= gx and z = hx. Then x = (h−1h)x = h−1z,
and therefore y= g(h−1z)= (gh−1)z, which shows that the action is transitive.

So indeed the three conditions are equivalent.
iv.: We show the implication ⇒ in the first equivalence: since y ∈G y, the condition
Gx =G y implies y ∈Gx.
Next we prove ⇐ in the first equivalence. The condition y ∈ Gx means that one
can take g ∈G with y = gx, so also g−1 y = g−1(gx) = (g−1 g)x = x. This will be used
to show Gx = G y. Indeed, let z ∈ Gx. Then we have h ∈ G such that z = hx, and
hence z = h(g−1 y)= (hg−1)y ∈G y. This shows Gx ⊆G y. Similarly, let w ∈G y. Then
w = h1 y for some h1 ∈ G, and w = h1(gx) = (h1 g)x ∈ Gx. So G y ⊆ Gx and hence
Gx =G y.
It remains to show the second equivalence in iv.
⇒: since y ∈G y, if Gx and G y have no intersection then certainly y 6∈Gx.
⇐: suppose z ∈ Gx ∩G y. This means g,h ∈ G exist with gx = z = hy. Then
y= (h−1 g)x ∈Gx, contradicting the assumption.
v.: h ∈Ggx ⇔ h(gx)= gx ⇔ (g−1hg)x = x ⇔ g−1hg ∈Gx ⇔ h ∈ gGx g−1.
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VI.3.8 Corollary. Any G-set X is a disjoint union of orbits: X =∪Gx.

Proof. Any x ∈ X is in an orbit, namely x ∈Gx. If two orbits Gx,G y are not disjoint,
the proof of Theorem VI.3.7 iv shows y ∈ Gx and therefore by the same theorem
Gx =G y.

Recall (Definition VI.2.1) that the set of left cosets of a subgroup H in a group
G is denoted G/H. We will use this in the case of a G-set X and, for x ∈ X , the
subgroup Gx ⊆G.

VI.3.9 Theorem. Suppose G is a group and X is a G-set. Let x ∈ X . Then

gGx 7→ gx G/Gx −→Gx

is a well-defined bijective map.

Proof. If g,h ∈G then gx = hx ⇔ (h−1 g)x = x ⇔ h−1 g ∈Gx ⇔ g ∈ hGx ⇔ gGx = hGx.
This implies that the given map is well-defined. It remains to show that it is both
surjective and injective.
Surjective: if y ∈ Gx, then y = gx for some g ∈ G hence y is the image of the left
coset gGx.
Injective: If gGx and hGx have the same image (which then by definition equals
gx = hx, then the equivalences above show gGx = hGx. So the map is injective.

In case the orbit Gx of an element x in the G-set X is finite, Theorem VI.3.9
implies in particular that the index [G : Gx] of the stabilizer subgroup Gx in G is
finite as well. More precisely:

VI.3.10 Corollary. For any G-set X and any x ∈ X one has #Gx = [G : Gx].

Proof. VI.3.9 shows #Gx = #(G/Gx) and by definition #(G/Gx)= [G : Gx].

VI.3.11 Example. We will now show that many of the notions and results from
Section VI.1 (on conjugation) can be interpreted as a special case of a group action.

Let G be a group. Then conjugation defines an action of G on itself. In other
words, for g,h, x ∈ G we have exe−1 = x and (gh)x(gh)−1 = g(hxh−1)g−1. The orbit
of x ∈ G consists of all elements gxg−1, so it equals the conjugacy class Cx. Hence
Corollary VI.3.8 implies Corollary VI.1.9.

The homomorphism f : G → SX that comes with any group action, is in the
present case given by g 7→ γg, and Theorem VI.1.2 implies that indeed this is a
homomorphism.

Is x ∈G, then its stabilizer consists of all g ∈G satisfying gxg−1 = x. Hence the
stabilizer equals the subgroup N(x) described in Theorem VI.1.13. Moreover, the
formula in VI.1.13 states that in case G is finite, its order is given in terms of the
size of an orbit and a stabilizer. Hence this is a special case of Corollary VI.3.10
(using Theorem VI.2.3).

The fixpoints of the conjugation action of G on itself are by definition the x ∈G
satisfying gxg−1 = x for all g ∈ G. Multiplying on the right by g, this condition
reads gx = xg for all g ∈ G. In other words, the set of fixpoints equals the center
Z (G) of G (see Exercise 7 on page 32). Note that the kernel of the homomorphism
f : G → SG also equals the center:

γg = f (g)= idG ⇐⇒ gxg−1 = x for all x ∈G ⇐⇒ g ∈Z (G).
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If both the group G and the G-set X are finite, there is a nice and useful for-
mula for the number of orbits in X . Usually this is called Burnside’s formula or
Burnside’s lemma. The English mathematician William Burnside (1852–1927) in
1897 published a textbook Theory of Groups of Finite Order in which he stated
the result and attributes it to Frobenius. Indeed, the German mathematician Fer-
dinand Georg Frobenius (1849–1917) proved the formula 10 years earlier. In his
paper however, many footnotes show that he is perfectly aware that the French
mathematician Augustin-Louis Cauchy (1789–1857) already in 1845 mentions the
result in the Comptes Rendus of the French Academy of Sciences.

To state the formula, one more concept is needed.

VI.3.12 Definition. Given a group G and a finite G-set X , the permutation char-
acter of the action is the function χ : G →Z given by

χ(g) := #{x ∈ X : gx = x}

In other words, the function χ assigns to any g ∈ G the number of fixpoints in
X of g. Exercise 7 on page 70 hints at some background of this function.

VI.3.13 Theorem (The orbit-counting formula). Let G be a finite group acting on a
finite G-set X . The number of orbits in X under G is given by

#orbits= 1
#G

∑
g∈G

χ(g).

Proof. First we write the number of orbits as a sum over the elements of X . Let
x ∈ X . Then for each y ∈Gx we have Gx =G y, hence we obtain

∑
y∈Gx

1
#G y

= 1.

Since X is a disjoint union of orbits (Corollary VI.3.8), it follows that

#orbits= ∑
x∈X

1
#Gx

= ∑
x∈X

1
[G : Gx]

= 1
#G

∑
x∈X

#Gx,

where also Corollary VI.3.10 was used. The proof will now be finished by writing
#Gx as a sum over the elements of G and interchanging the summation over X and
over G in the resulting formula for #orbits. To this end, for g ∈G and x ∈ X put

δg,x :=
{

1 if gx = x;
0 otherwise.

Observe for x fixed that
∑

g∈G δg,x = #Gx and for g fixed
∑

x∈X δg,x = χ(g) (the num-
ber of fixpoints of g). As a consequence

#orbits= 1
#G

∑
x∈X

#Gx = 1
#G

∑
x∈X

∑
g∈G

δg,x = 1
#G

∑
g∈G

∑
x∈X

δg,x = 1
#G

∑
g∈G

χ(g),

finishing the proof.

The orbit-counting formula tells us that to find the number of orbits, one deter-
mined for each element of the group its number of fixpoints and then one takes the
average of the #G numbers written down.

VI.3.14 Example. Suppose we have beads of three different colors and we wish
to make a necklace consisting of six beads. How many ‘different’ configurations of
beads are possible?
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To make the formulation of this problem more precise, one takes a regular hexagon
and demands that the beads/colors should be placed on the vertices of it. Two
configurations will be called ‘the same’ if one can be obtained from the other by
simply rotating or reflecting the hexagon. In other words, if the symmetry group of
the hexagon (which is the group D6) maps the one configuration to the other.

The notion ‘group action’ allows one to state the problem as follows. Let X be
the set of all possible configurations. Then #X = 36 = 729, because each of the 6 ver-
tices can be given three possible colors. The group D6 acts on X : any configuration,
under a rotation or reflection in D6, results in another (possibly the same) one, and
indeed this satisfies the requirement of being a group action. ‘The same’ configura-
tions are precisely the ones in the same orbit under this action, so our problem is to
determine the number of orbits. We do this by using Theorem VI.3.13, so by com-
puting the average number of fixpoints. In our case this means: average number
of fixed configurations.

Clearly id ∈ D6 fixes all of the 729 configurations. Next, consider a reflection in a
line through the midpoints of two opposite edges. To be fixed by this reflection, the
three vertices on one side of this line should have the same color as their reflections.
Since one can color the first three vertices arbitrarily, this leads to 33 = 27 fixed
configurations. Note that there are 3 reflections of this type.

Now take a reflection in a line passing through two opposite vertices. To have
a configuration fixed by this, the two vertices on the line can be colored arbitrarily,
and the two on one side of the line again need to have the same color as their re-
flections. So this results in 34 = 81 fixed configurations (and there are 3 reflections
of this kind).

It remains to consider the rotations. The ones over ±60 degrees send any vertex
to a neighbour, hence for a configuration to be fixed, all vertices must have the same
color. There are 3 such configurations. Similarly, to be fixed under a rotation over
±120 degrees, the first, third, and fifth vertex need to have the same color, and so
do the second, fourth, and sixth. Hence this yields 32 = 9 configurations. Finally
there is the rotation over 180 degrees. In this case opposite vertices need to have
the same color, and 33 = 27 configurations have this property.

In total, this gives

#different configurations= 729+3 ·27+3 ·81+2 ·3+2 ·9+27
12

= 92.

VI.4 Sylow theory

Recall that by Lagrange’s theorem, the order of a subgroup of a finite group G is
a divisor of the order of G. However, the converse does not hold. For instance, the
group A4 has 12 elements, but no subgroup of order 6, as is readily verified. We
will see that, nevertheless, there is a partial converse to Lagrange’s theorem if we
restrict to prime power divisors of the order of G.

VI.4.1 Definition. (After P.L.M. Sylow, Norwegian mathematician, 1832–1918.)
Let G be a finite group and let p be a prime dividing the order of G. Write
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#G = pn ·m, where n ≥ 1 and gcd(p,m) = 1. A Sylow p-group in G is a subgroup
H ⊂G with #H = pn. We define np(G) to be the number of pairwise distinct Sylow
p-groups in G.

VI.4.2 Example. Take a prime p and n,m ≥ 1 with gcd(p,m) = 1. Then the group
G = Z/pnZ×Z/mZ consists of pnm elements. There exists exactly one Sylow p-
group in G, namely H := Z/pnZ× {0}. Indeed, H is clearly a Sylow p-group in G.
Suppose that H′ 6 G is also such a group, and let h ∈ H′. Then h is of the form
h = (a mod pn,b mod m) ∈ H′, and its order ord(h) divides #H′ = pn. Moreover
ord(b mod m) | ord(h) | pn, and also ord(b mod m) divides #Z/mZ= m. So ord(b mod
m) | gcd(pn,m)= 1, implying b mod m = 0. This shows H′ ⊂ H. Since #H′ = pn = #H
we conclude H′ = H.

The following powerful theorem has several important applications. For in-
stance, one can deduce statements about possible groups of a given order. However,
the proof is rather involved.

VI.4.3 Theorem. Let G be a finite group and let p be a prime dividing the order of
G. Write #G = pn ·m, where n ≥ 1 and gcd(p,m)= 1.

1. The group G contains a Sylow p-group.
2. We have np(G)≡ 1 mod p.
3. If H and H′ are Sylow p-groups in G then H′ = γa(H) for some a ∈G.
4. We have np(G) | m.

Proof. Clearly 1. claims that np(G) 6= 0; hence 1. follows if we show the claim in 2.
To this end, we study the collection of all subsets of G consisting of pn elements.

If H 6 G is a Sylow p-group and g ∈ G then H g is one of the sets under con-
sideration. Theorem VI.2.3 shows that for given H there are #G/#H = m such sets
H g. If x ∈G, then we have xH g = H g precisely when xH = H; and this holds if and
only if x ∈ H. So if we set V := H g, then we retrieve H as the set of all x ∈ G with
xV =V .

Now suppose V ⊂ G is a subset with pn elements, and moreover suppose that
the subgroup GV := {x ∈ G | xV = V } 6 G also contains pn elements. If v ∈ V and
x ∈ H := GV , then xV = V , hence xv ∈ V . So Hv ⊂ V , and because #Hv = pn = #V
we have V = Hv. We conclude that every set V with the given properties has the
form H g, with g ∈G and H a Sylow p-group. In total there are np(G) ·m such sets.

Now consider a subset V ⊂ G such that #V = pn, but #GV 6= pn. Just as in the
proof of Theorem III.2.8, V ⊂ G is a disjoint union of subsets GV · v, each having
#GV 6= pn elements, and #GV | #V = pn. So #GV = pk for some k < n. Writing P for
the collection of all such sets V , we have(

pnm
pn

)
= np(G)m+#P .

We claim that #P ≡ 0 mod p. Indeed, let V ∈P . Then, if x ∈G, we have xV ∈P

as well, since #xV = #V = pn, and g · (xV ) = xV precisely when x−1 gxV = V . So
G(xV ) = γx−1 (GV ), which implies that #GV = #G(xV ). Now x, y ∈G satisfy

xV = yV ⇔ y−1xV =V ⇔ y−1x ∈GV ⇔ xGV = yGV .

Therefore precisely [G : GV ] pairwise different sets xV ∈P exist for a given V ∈P .
But V ∈ P implies that [G : GV ] = pnm/pk ≡ 0 mod p. In this way P is parti-
tioned into sub-collections, each containing `p sets V , where ` ∈ Z. This shows
that #P ≡ 0 mod p.
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We conclude (
pnm
pn

)
= np(G)m+#P ≡ np(G)m mod p.

Since gcd(m, p)= 1, we know that m = m mod p is a unit in Z/pZ, and therefore

np(G) mod p = m−1 ·
(

pnm
pn

)
mod p.

This shows that np(G) mod p depends only on p,n, and m, and not on the actual
group G. In particular, choosing G =Z/pnZ×Z/mZ one finds using Example VI.4.2
that np(G) mod p = 1 mod p. This proves 2. and hence also 1.

We now show 3. Let H,H′ be Sylow p-groups in G. By definition, there are
[G : H] = m distinct subsets gH in G, and G is their union. We partition this
collection of sets gH into two classes H1,H2 as follows: gH ∈ H1 if hgH = gH
for all h ∈ H′, and gH ∈H2 otherwise. By construction m = #H1 +#H2. We show,
in fact in a way quite similar to what was done for the collection P above, that
#H2 ≡ 0 mod p. Let gH ∈H2. Then H′′ := {h ∈ H′ | hgH = gH} is a subgroup of H′.
The definition of H2 implies H′′ 6= H′, so p | [H′ : H′′]. Given gH ∈ H2 and h ∈ H′,
consider hgH. This is clearly an element of H2. Moreover, for h1,h2 ∈ H′ one finds

h1 gH = h2 gH ⇔ h−1
2 h1 gH = gH ⇔ h−1

2 h1 ∈ H′′ ⇔ h1H′′ = h2H′′.

So there are [H′ : H′′] distinct sets hgH if we let h run through H′. This partitions
H2 into disjoint subsets, each having `p elements, where ` ∈Z. So #H2 ≡ 0 mod p.
This implies

#H1 ≡ m mod p 6= 0 mod p,

hence in particular H1 is nonempty. So there exists a set gH such that hgH = gH
for all h ∈ H′. In other words: g−1hg ∈ H for all h ∈ H′, which means H′ ⊂ γg(H).
This proves 3.

Finally we prove 4. Take H a Sylow p-group in G. There are N such groups,
and we have already shown that each of them can be written as γg(H) for some
g ∈G. Define

N(H) := {
g ∈G | γg(H)= H

}
.

This is a subgroup of G, and writing G = ∪g iN(H) one finds that the Sylow p-
groups in G are exactly the groups γg i (H), and these are pairwise distinct. You
should check the details of this argument yourself. So np(G) = [G : N(H)]. Since
H 6 N(H) we have #N(H)= [N(H) : H] ·#H and

np(G)= [G : N(H)]= #G/#N(H)= #G/([N(H) : H] ·#H) | #G/#H = m.

This finishes the proof.

VI.4.4 Remark. In fact, this proof may be phrased more conveniently using the
terminology of ‘group actions’ (Section VI.3): the group G acts on the set X consist-
ing of all subsets V ⊂ G with #V = pn, by multiplication: (g,V ) 7→ gV . The proof
shows that V ∈ X exist with stabilizer GV of order pn, hence it exhibits p-Sylow
groups as stabilizers for this action.

VI.4.5 Corollary. For p prime and n,m > 0 with gcd(p,m)= 1 we have(
pnm
pn

)
≡ m mod p.

Proof. During the proof of Theorem VI.4.3 we showed that
(pnm

pn
) ≡ np(G)m mod p

and np(G)≡ 1 mod p. This implies the corollary.
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VI.4.6 Example. S4 has 24 = 3 · 8 elements. By Theorem VI.4.3 the number of
Sylow 3-groups in S4 divides 8, and has the form 3k+1. So their number is either
1 or 4. Each subset {(1), (a b c), (a c b)} with a 6= b,b 6= c, c 6= a is such a subgroup,
and this yields 4 of them.

The number of Sylow 2-groups in S4 is odd and it divides 3. So we have 1 or
3 of them. If H is such a group then #H = 8, so every element in H has an order
dividing 8. Therefore only 4-cycles, 2-cycles, products of two disjoint 2-cycles, and
the identity can possibly belong to H. There can be at most two 2-cycles in H,
and if there are then they are disjoint, since otherwise H would contain a product
(a b)(b c) = (a b c), which is impossible. It is also not possible that H contain only
one 2-cycle. Indeed, in that case every subgroup σHσ−1 also contains only one 2-
cycle, and since all 2-cycles are conjugate this means there are at least as many
Sylow 2-groups in S4 as there are 2-cycles. Since there are six 2-cycles and at most
three Sylow 2-groups, this is impossible. So H contains either no, or exactly two
(disjoint) 2-cycles.

The number of 4-cycles in H is even, because a 4-cycle differs from its inverse
and either both or none of the pair is in H. The square of a 4-cycle is a product
of two disjoint 2-cycles, and a 4-cycle and its inverse have the same square and all
other 4-cycles do not have this same square. As a consequence H contains exactly
one 4-cycle and its inverse. Hence H contains at least one 4-cycle and its inverse,
because otherwise H would contain at most 6 elements. It cannot contain more
than one 4-cycle and its inverse because otherwise one can show by conjugating
one of them by powers of the other one that all 4-cycles are in H, and then all
products of two disjoint 2-cycles as well. In that case #H ≥ 1+6+3= 10.

We conclude that H consists of the identity, a 4-cycle and its inverse, all three
products of two disjoint 2-cycles, and two 2-cycles. A small computation yields three
such (conjugate) groups. One of them is given by

{(1), (1 2 3 4), (1 4 3 2), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3), (2 4)} .

Here is a much less elaborate way to construct this example: the symmetry
group D4 of the square has 8 elements. These elements permute the vertices of the
square. So D4 can be considered as a subgroup of S4. Explicitly: in the x, y-plane
take the square with vertices (±1,±1). The vertex in the i-th quadrant is denoted
i. Rotating counter clockwise by 90 degrees yields the permutation (1 2 3 4) on the
vertices. Reflection in the x-axis corresponds to (1 4)(2 3). Reflection in the diagonal
x+ y= 0 yields (1 3), et cetera.

The next two results illustrate the possible use of Theorem VI.4.3.

VI.4.7 Theorem. Suppose p 6= q are primes with p 6≡ 1 mod q and q 6≡ 1 mod p, and
G is a group with #G = pq. Then G ∼=Z/pqZ.

Proof. By Theorem III.2.11 any g ∈ G satisfies ord(g) ∈ {1, p, q, pq}. The only ele-
ment of order 1 is e ∈G. If ord(g)= p, then 〈g〉 is a Sylow p-group in G. The number
of such groups divides q, so it is 1 or q. Moreover, the number is ≡ 1 mod p. Since
q 6≡ 1 mod p, the number of Sylow p-groups in G equals 1. Every element of G of
order p is in this Sylow p-group, so there are at most p−1 such elements. (In fact
there are precisely p−1 of them, but we will not need this.)

The same reasoning shows that at most q−1 elements in G have order q. Since
1+ p − 1+ q − 1 < pq = #G, the group G must contain elements of order pq. If
g ∈G is any such element, then 〈g〉 =G, and g 7→ 1 mod pq yields an isomorphism
G ∼=Z/pqZ (check the details yourself).

VI.4.8 Example. Applying Theorem VI.4.7 with p = 3 and q = 5, it follows that up
to isomorphism only one group exists with 15 elements, namely Z/15Z.
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VI.4.9 Theorem. (Augustin-Louis Cauchy, French mathematician, 1789–1857)
If G is a finite group and if p is a prime dividing the order of G, then there exists
g ∈G with ord(g)= p.

Proof. Take a Sylow p-group H 6G. Such a group exists because of Theorem VI.4.3,
and #H = pn with n ≥ 1. Take x ∈ H such that x 6= e. Then ord(x) 6= 1, and ord(x) | pn.
Hence ord(x)= p` with 1≤ `≤ n. Then g := xp`−1

has ord(g)= p, as required.

VI.4.10 Remark. A proof of Theorem VI.4.9 which does not use Sylow theory is
sketched in Exercise 12 below.

VI.4.11 Example. The requirement in Theorem VI.4.9 that p divides the number
of elements in the group G is necessary because of Theorem III.2.11. The require-
ment that p is prime is necessary as well. For example, the group D4 has order 8,
yet no element of order 8 exists in this group. More generally, if a group G consists
of n elements, then an element of order n exists if and only if G ∼=Z/nZ. In partic-
ular, this implies that G is abelian. So in a non-abelian group with n elements, no
element of order n exists.

As another example, S4 consists of 24 elements. The positive divisors of 24 are
{1,2,3,4,6,8,12,24}. The divisors that occur as the order of some element in S4, are
{1,2,3,4}.
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VI.5 Exercises

1. Determine the number of elements of all conjugacy classes in S6.
2. Find the conjugacy classes in A6, and determine for each of them the number

of elements.
3. Prove the second assertion in Theorem VI.1.14.
4. In the group Dn we have ρ = ‘rotate counter clockwise by 2π/n’, and σ= ‘reflect

in the x-axis’.

(a) Show that σρσ= ρ−1.

(b) Show that every τ ∈ Dn can be written as ρaσb, with 0≤ a < n and 0≤ b ≤ 1.

(c) Take n odd. Find a conjugacy class in Dn consisting of n elements, another
one containing 1 element, and show there are (n−1)/2 remaining classes
Cτ containing 2 elements each.

(d) Now take n even. Show that Dn has two conjugacy classes containing 1
element, (n−2)/2 conjugacy classes containing 2 elements, and two con-
taining n/2 elements.

5. Suppose that G is a finite group with #G = n, and G contains precisely 3 conju-
gacy classes.

(a) Show that n = 1+a+b, with 1≤ a ≤ b and a|n and b|n.

(b) Find all solutions to the equation in (a). (E.g., divide by n, and verify that
b ≤ 3 holds.)

(c) Use Exercise 13 that any non-commutative group with 6 elements is iso-
morphic to S3, and show that G ∼=Z/3Z or G ∼= S3. Check that these groups
indeed have precisely 3 conjugacy classes.

6. Given a group G, a subgroup H ⊂G and any g ∈G, show [G : H]= [G : γg(H)].
7. Let X = {x1, x2, . . . , xn} be a finite set consisting of n elements. Using X one

defines a complex vector space VX as follows. The elements of VX are the func-
tions α : X → C. Addition and scalar multiplication are done pointwise, so if
α,β ∈ VX , then α+β is the function that maps x j to α(x j)+β(x j), and for λ ∈ C
the function λα maps x j to λα(x j).
Suppose now X is a G-set, for some group G. For g ∈G define ρ(g) : VX →VX as
follows. Given α ∈VX , let ρ(g)(α) ∈VX be the map that sends x j ∈ X to α(gx j).

(a) Show that ρ(g) is a linear map.

(b) Show that ρ(g) is invertible.

(c) Show that ρ : G →GL(VX ) is a homomorphism.

(d) Show that the trace of the linear map ρ(g) equals the integer χ(g) given in
Definition VI.3.12.

(e) Conclude from the above that χ is a ‘class function’, which means that
χ(g)= χ(hgh−1) (so χ is constant on conjugacy classes).

8. In how many ‘different’ ways can the vertices of a regular 10-gon be colored,
using the four colors RGYB (red, green, yellow, blue) if we demand that some
color is used 4 times, another one 3 times, a third one twice, and then clearly
the remaining one only once? Here ‘different’ means that it is not possible to
change one configuration into the other using an element of D10.

9. Show that a finite abelian group G contains a unique Sylow p-group for every
prime p with p|#G.

10. For every prime p, find the number of Sylow p-groups in S5.
11. This exercise describes the Sylow p-groups in S6.

(a) Show that Sylow p-groups in S6 do not exist for p > 5.
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(b) Show that the Sylow 2-groups in S6 are isomorphic to D4 ×Z/2Z. Show
there are

(6
2
) ·3 = 45 such groups. (Consider a Sylow 2-group in S4, and

(5 6) ∈ S6.)

(c) Show that the Sylow 3-groups are isomorphic to Z/3Z×Z/3Z, and that
there are

(6
3
)
/2= 10 of them. (Use disjoint 3-cycles.)

(d) Show that there are 36 Sylow 5-groups, isomorphic to Z/5Z.

12. This exercise provides an alternative proof of Theorem VI.4.9. The argument is
due to the British/Canadian mathematician John McKay.
Let G be a finite group and let p be a prime with p|n = #G. Consider

D = {(a1, . . . ,ap) ∈G×G× . . .×G | a1a2 . . .ap = e}

and its subsets D1 = {(a1, . . . ,ap) ∈D | a1 = a2 = . . .= ap} and D2 =D \D1.

(a) Show that #D = np−1 ≡ 0 mod p.

(b) Show that if (a1,a2, . . . ,ap) ∈D, then also (a2, . . . ,ap,a1) and (ap,a1,a2, . . .)
are in D and, more generally, so are all elements obtained by cyclically
permuting the entries in (a1,a2, . . . ,ap).

(c) Show that if (a1,a2, . . . ,ap) ∈ D2, then the p elements of D2 obtained by
cyclically permuting the entries, are pairwise distinct.

(d) Prove that #D2 ≡ 0 mod p.

(e) Prove that #D1 ≥ p, and conclude that the number of elements in G of
order p is congruent to p−1 modulo p. In particular, such elements exist.

(f) For which of the steps in the proof is it crucial that p is prime?

13. Let G be a group with #G = 6.

(a) Explain that a,b ∈G exist with ord(a)= 2 and ord(b)= 3.

(b) Show that if a,b as in (a) satisfy γb(a)= a, then ord(ab)= 6 and G ∼=Z/6Z.

(c) Show that if a,b as in (a) satisfy γb(a) 6= a, then Ca consists of 3 elements
all having order 2, and G ∼= S3.
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VII NORMAL SUBGROUPS AND FACTOR GROUPS

Reviewing Chapter II from a group theoretic perspective, we constructed a group
Z/NZ starting from Z and its subgroup NZ. The elements of this new group are the
residue classes a+NZ. Theorem II.1.6 and the succeeding definition and remark
show that the group law on Z (addition) gives rise to a group law (addition as well)
on these residue classes. This chapter discusses an extension of this construction
for arbitrary groups G, using a subgroup H 6G. So in particular we study how one
may set up calculations with the classes gH for g ∈G. As it turns out, we obtain a
group structure on the collection of sets {gH | g ∈G}, similar to the case G =Z and
H = nZ, if and only if H satisfies a certain condition. In particular, we will see that
this always works if G is abelian.

We encourage the reader to review the material from Section II.1 before study-
ing the present chapter, as several constructions and results discussed below were
already treated there in a concrete example.

VII.1 Normal subgroups

Given a group G and a subgroup H, Theorem VI.1.2 says that for a ∈G the conju-
gate γa(H)= aHa−1 is also a subgroup of G. Moreover H and γa(H) are isomorphic,
but in general H 6= γa(H). For example H := {(1), (1 2)} is a subgroup of S3. For
a = (1 3) we find γa(H)= {(1), (2 3)} 6= H.

VII.1.1 Definition. A subgroup H of a group G is called normal if H = aHa−1 for
all a ∈G.

VII.1.2 Example. In a commutative group G every subgroup H is normal, since in
this case aha−1 = aa−1h = h for all a ∈G and h ∈ H, so aHa−1 = H.

VII.1.3 Example. In the dihedral group Dn the rotations form a subgroup. Re-
garded as linear maps on R2 the rotations in Dn are exactly the elements of Dn
with determinant 1. If ρ is a rotation and a ∈ Dn, then

det(aρa−1)= det(a)det(ρ)det(a−1)= det(a)det(a)−1 = 1,

so aρa−1 is also a rotation. Hence the rotations form a normal subgroup.

VII.1.4 Example. We determine all normal subgroups in S4. Take a normal H 6 S4
and let σ ∈ H. Since H = τHτ−1 for every τ ∈ Sn, H contains the conjugacy class
Cσ of σ. Using that S4 is a disjoint union of conjugacy classes (Theorem VI.1.8),
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also H is a disjoint union of conjugacy classes in S4. The conjugacy classes in S4
have 1,6,8, and 3 elements, respectively. Obviously (1) ∈ H, so #H is a sum of some
of the integers in {1,3,6,8} having 1 as a summand. Moreover #H|#S4 = 24 by
Theorem III.2.8. This leaves us with only a few possibilities:

1. #H = 1, so H = {(1)}. Indeed this is a normal subgroup.
2. #H = 1+3= 4, so H = {(1), (12)(34), (13)(24), (14)(23)}. This is indeed a normal

subgroup in S4 (check this yourself).
3. #H = 1+3+8 = 12. In this case H consists of the identity, the products of two

disjoint 2-cycles, and all 3-cycles. So H = A4 which is a normal subgroup in S4,
as is readily verified.

4. #H = 1+3+8+12= 24, so H = S4.

We see that, although S4 has many subgroups, it only has two proper normal sub-
groups.

VII.1.5 Example. We have already mentioned that A4 is normal in S4. More gen-
erally An is normal in Sn for all n. This follows from the fact that for permutations
σ,τ one has ε(σ)= ε(τστ−1). (Alternatively, conjugating a product of disjoint cycles
yields a product of disjoint cycles of the same type. In particular this does not affect
the sign, hence τAnτ

−1 = An.)

VII.1.6 Example. Let G be a finite group and #G = pnm with p prime, n ≥ 1, and
gcd(p,m) = 1. Consider a Sylow p-group H 6 G. By Theorem VI.4.3 all conjugate
groups aHa−1 for a ∈G are Sylow p-groups as well, and we obtain Sylow p-groups
in G in this way. We conclude that H is normal in G if and only if there is only
one Sylow p-group in G. In many instances this condition may be verified using
the two divisibility properties for the number of Sylow p-groups, as given in Theo-
rem VI.4.3.

The following useful lemma has in fact already been used and derived in a
number of earlier situations.

VII.1.7 Lemma. If H is a subgroup of a group G and if a,b ∈ G, then aH = bH if
and only if b−1a ∈ H.

Proof. In the proof of Theorem III.2.8 it was shown that two sets aH,bH are either
equal or disjoint. Now e ∈ H, hence a = ae ∈ aH, so aH = bH is equivalent to
a ∈ bH. In other words: aH = bH if and only if a = bh for some h ∈ H, which in
turn is equivalent to b−1a = h ∈ H.

VII.1.8 Theorem. Let G be a group and let H 6 G be a subgroup. The following
statements are equivalent:

1. H is normal in G.
2. Every a ∈G satisfies aH = Ha.
3. For all a ∈G we have aHa−1 ⊂ H.
4. For all a,b, c,d ∈G with aH = cH and bH = dH we also have abH = cdH.

Proof. 1. implies 2.: If a ∈ G, then aHa−1 = H. Multiplying this equality on the
right by a yields aH = Ha.
2. implies 3.: Take a ∈G and h ∈ H. The assumption aH = Ha implies ah = h1a for
some h1 ∈ H, so aha−1 = h1 ∈ H which is what we need.
3. implies 4.: By Lemma VII.1.7 it suffices to show that if c−1a,d−1b ∈ H, then
also (cd)−1(ab) = d−1c−1ab ∈ H. Write c−1a = h1 ∈ H. Assuming 3. yields that
h2 := d−1h1d ∈ H. Then also d−1c−1ab = d−1h1dd−1b = h2d−1b ∈ H, finishing the
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argument.
4. implies 1.: Let h ∈ H and a ∈G. One has hH = eH, hence using the assumption
4. also ha−1H = ea−1H = a−1H. Lemma VII.1.7 therefore implies aha−1 ∈ H. This
shows aHa−1 ⊂ H. Applying the argument to a−1 ∈ G we also have a−1Ha ⊂ H,
and therefore h = a(a−1ha)a−1 ∈ aHa−1, so H ⊂ aHa−1. This shows H = aHa−1, so
H is normal in G.
Hence the four assertions are equivalent.

The fact that the rotations in Dn and the even permutations in Sn are normal
subgroups, is a special case of the following.

VII.1.9 Theorem. If G is a group and if H is a subgroup of G with [G : H]= 2, then
H 6G is normal.

Proof. The condition [G : H] = 2 implies that there exists a ∈ G such that G is the
disjoint union of H and Ha, hence Ha = G \ H. Since a 6∈ H, also H and aH are
disjoint subsets of G. Again using [G : H] = 2 it follows from Remark VI.2.2 that
aH =G \ H, so aH = Ha. Every subset bH,Hb ⊂G either equals H (in case b ∈ H)
or equals aH (in case b 6∈ H). So bH = Hb for all b ∈G, and Theorem VII.1.8 shows
that H is normal in G.

VII.2 Factor groups

Theorem VII.1.8 implies that if a subgroup H 6G is normal and if a,b ∈G, then the
product abH is independent of the representative a for aH and b for bH; i.e. if we
have aH = cH or bH = dH for some elements c,d ∈G, then we get abH = cdH. In
other words, the rule (aH)·(bH) := abH is a well-defined operation on the collection
of sets aH, a ∈ G. (And vice versa, if H is not normal, then in general the result
will depend on the element in G used for describing the set aH, so the product is
not well-defined.)

VII.2.1 Example. Take G = S3 and H = {(1), (1 2)} ⊂ S3. Then H is a subgroup of
G, but H is not normal in G. Put a = (1 3) and b = (1 2 3). Then

aH = {(1 3)(1), (1 3)(1 2)}= {(1 3), (1 2 3)}

and
bH = {(1 2 3)(1), (1 2 3)(1 2)}= {(1 2 3), (1 3)}.

So aH = bH (as is also clear from b−1a = (1 2) ∈ H using Lemma VII.1.7). However
a2H = H and b2H = (1 3 2)H = {(1 3 2), (2 3)} 6= a2H, which shows that in this case a
multiplication on the sets {gH} as above is not possible.

VII.2.2 Definition. Given a group G and a normal subgroup H 6 G, the factor
group G modulo H, which we denote by G/H, is the group whose elements are the
sets aH for a ∈ G. The unit element is H = eH, and the group law is defined by
(aH) · (bH) := abH.

VII.2.3 Remark. The given multiplication on G/H is well-defined because of The-
orem VII.1.8, and this uses the fact that H is normal in G. Since G is a group, it
follows easily that G/H forms a group as well. For example, the inverse (aH)−1 of
an element aH ∈ G/H equals a−1H. Indeed, (aH) ·a−1H = eH, which by definition
is the unit element in G/H.
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VII.2.4 Remark. The definition of the index shows that the total number of pair-
wise distinct sets aH equals [G : H]. So #(G/H)= [G : H]. If G is a finite group, then
Theorem VI.2.3 shows #(G/H)= [G : H]= #G/#H.

VII.2.5 Example. The subgroup H := NZ is normal in G =Z. The factor group is
the group Z/NZ. This example shows in particular that a factor group of an infinite
group may be finite.

VII.2.6 Example. Let n ≥ 2 and consider the normal subgroup H := An in G = Sn.
Since An has index 2 in Sn, the factor group Sn/An consists of two elements. In
particular, Sn/An ∼= Z/2Z because up to isomorphism there is only one group con-
sisting of two elements. We conclude that a factor group of a non-abelian group
may be commutative.

The two elements of Sn/An are by definition two subsets of Sn. One consists
of all even permutations and the other of all odd permutations. The group law in
Sn/An is described by the rule ‘even times even is even’ and ‘odd times even is odd’
and ‘even times odd is odd’ and ‘odd times odd is even’.

If G is an abelian group, and if H 6 G, then G/H is abelian as well. But the
converse does not hold (see Example VII.2.1). We now present a criterion to check
when the factor group is abelian.

VII.2.7 Theorem. If H is a normal subgroup of a group G, then the factor group
G/H is abelian if and only if the element a−1b−1ab is in H for all a,b ∈G.

Proof. By definition G/H is abelian if and only if (aH) · (bH) = (bH) · (aH) for all
a,b ∈G. The latter holds if and only if abH = baH or all a,b ∈G. By Lemma VII.1.7
this last condition is equivalent to a−1b−1ab = (ba)−1ab ∈ H for all a,b ∈G.

VII.2.8 Example. Let n ≥ 3. As we noted, Sn/An is an abelian group. Hence by
Theorem VII.2.7, we get for all permutations σ,τ that the product σ−1τ−1στ is
even. This, of course, is also clear from the fact that the sign ε is a homomorphism
from Sn to a commutative group ({±1}). Since (a b)−1(a c)−1(a b)(a c) = (a b c) for
pairwise distinct a,b, c and since every element of An can be written as a product
of 3-cycles, it follows that if H 6 Sn is normal and moreover Sn/H is abelian, then
An ⊂ H, so H = An or H = Sn.

VII.2.9 Theorem. Let H be normal in a group G. The assignment

π : G −→G/H : g 7→ gH

defines a surjective homomorphism from G to G/H with ker(π)= H.

Proof. For a,b ∈G one has π(ab)= abH = (aH)·(bH)=π(a)π(b). So π is a homomor-
phism. Any element in G/H has the form aH for some a ∈ G. Since π(a) = aH, we
deduce that π is surjective. Finally, a ∈G satisfies a ∈ ker(π) if and only if aH = eH,
so by Lemma VII.1.7 this happens if and only if a ∈ H. Hence ker(π) = H, which
completes the proof.

VII.2.10 Remark. The homomorphism π given in Theorem VII.2.9 is usually called
the canonical homomorphism to a factor group.

If H 6 G is a normal subgroup,then Theorem VII.2.9 shows that H is the ker-
nel of the canonical homomorphism from G to G/H. In fact this statement has a
converse.
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VII.2.11 Theorem. A subgroup H of a group G is normal if and only if H is the
kernel of some homomorphism from G to another group.

Proof. One direction follows from Theorem VII.2.9; we leave the other direction as
a good and not too difficult exercise for the reader.

VII.3 Simple groups

VII.3.1 Definition. A group G = (G, ·, e) is called simple if {e} and G are the only
normal subgroups in G.

VII.3.2 Remark. If G is a simple group, if G′ is any group, and if f : G → G′ a
homomorphism, then either f is injective or f is the constant map sending every
element of G to the unit element of G′. Indeed, the kernel of f is normal in G, hence
ker( f )= {e} (implying that f is injective) or ker( f )=G (meaning that everything is
mapped to the unit element). This property of simple groups indicates that ‘being
simple’ is a strong property.

VII.3.3 Remark. If H 6 G is a proper normal subgroup, then, in a certain sense,
G ‘decomposes’ into H and G/H. This uses the theory of group extensions, which
we will not cover in this introductory course. Since the simple groups are precisely
the ones for which no nontrivial decomposition of this kind exists, they form the
‘building blocks’ for all groups in this sense.

VII.3.4 Example. We determine all nontrivial finite abelian simple groups G. If
G is such a group, and if p is a prime dividing #G, then Theorem VI.4.9 shows the
existence of an element a ∈ G with ord(a) = p. The subgroup 〈a〉 is normal in G
(any subgroup of an abelian group is normal) and 6= {e}. Since G is simple, we must
therefore have G = 〈a〉 ∼=Z/pZ. On the other hand, Z/pZ is indeed simple, because
the order of any subgroup has is a divisor of p and p is prime. We conclude that,
up to isomorphism, the groups Z/pZ are the only nontrivial simple finite abelian
groups.

VII.3.5 Remark. One of the main results in the modern theory of finite groups is
a complete list of all finite simple groups (up to isomorphims, as usual). The list
consists of some infinite ‘families of simple groups’ (such as the Z/pZ’s for p prime),
and 26 more groups not appearing in any of the families. These additional ones are
called the ‘sporadic groups’. This list together with various properties of the groups
is described in the book by J. Conway et al., Atlas of finite simple groups. Oxford:
Clarendon Press, 1985. A digital version containing similar information can be
found at http://brauer.maths.qmul.ac.uk/Atlas/v3/. The proof that the list
is complete involved an enormous amount of collaboration to which over a hundred
mathematicians contributed. In particular the American mathematician Daniel
Gorenstein (1923–1992) deserves credit for this.

The largest sporadic group goes by the intriguing name ‘the Monster’. This
group consists of

246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71

elements.
Other finite simple groups include for example the groups PSLn(Z/pZ), where

n ≥ 2 and p is prime such that (n, p) 6= (2,2) and (n, p) 6= (2,3). These are the factor
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groups G/H, with G the group SLn(Z/pZ) of all n×n matrices with coefficients in
Z/pZ and determinant 1, and H the subgroup consisting of all matrices aI with
an = 1. Proving that these groups are indeed simple is not part if the present
course. We will however show that the groups An for n ≥ 5 are simple.

VII.3.6 Example. We show that A5 is simple. Let H 6 A5 be normal. If σ ∈ H,
then also τστ−1 ∈ H for all τ ∈ A5. Hence H contains the conjugacy class Cσ of
σ in A5. It follows that H is a union of such conjugacy classes. These classes
are pairwise disjoint and they contain 1,12,12,15, and 20 elements, respectively
(compare Example VI.1.12). So

#H = 1+12a+15b+20c

with a ∈ {0,1,2} and b, c ∈ {0,1}. Moreover #H|#A5 = 60. It is not hard to show that
these conditions imply #H = 1 or #H = 60. Hence indeed A5 is simple.

VII.3.7 Theorem. An is a simple group for every n ≥ 5.

Proof. The idea of the proof below is to show that a normal subgroup H 6= {(1)} in
An contains a 3-cycle. Then we deduce that H contains the conjugacy class of this
3-cycle in An. By Theorem VI.1.14 this conjugacy class contains all 3-cycles. And
therefore Theorem IV.4.4 implies that H = An, so An is simple.

Let n ≥ 5 and let H 6= {(1)} be a normal subgroup of A5. Take σ 6= (1) in H. Put
σ=σ1σ2 . . .σr, where the σi are disjoint `i-cycles and `1 ≥ `2 ≥ . . .≥ `r ≥ 2.

If `1 ≥ 4, then let σ1 = (a1 a2 . . . a`1 ) and set τ := (a1 a2 a3) ∈ An. Since
H 6 An is normal, also σ′ = τστ−1 ∈ H. We take a closer look at σ′. The num-
bers a1,a2,a3 occur in σ1 and not in σ2, . . . ,σr. Hence τσiτ

−1 = σi for i ≥ 2 and
τσ1τ

−1 = (τ(a1) τ(a2) . . . τ(a`1 ))= (a2 a3 a1 a4 . . . a`1 ). Therefore

σ′ = τστ−1 = (τσ1τ
−1)(τσ2τ

−1) . . . (τσrτ
−1)= (a2 a3 a1 a4 . . . a`1 )σ2 . . .σr.

Now σ−1σ′ = (a`1 . . . a1)(a2 a3 a1 a4 . . . a`1 )= (a1 a3 a`1 ) ∈ H. So in this case (`1 ≥ 4)
the group H contains a 3-cycle, and we are done.

If `1 = `2 = 3 then write σ1 = (a1 a2 a3) and σ2 = (b1 b2 b3). Conjugation
by τ = (a1 a2 b1) ∈ An yields σ′ = (a2 b1 a3)(a1 b2 b3)σ3 . . .σr ∈ H. Hence also
σ−1σ′ = (a1 b1 a2 b3 a3) ∈ H. Applying the argument presented for `1 ≥ 4 to this
5-cycle one concludes that H also contains a 3-cycle, finishing this case.

If `1 = 3 and `i < 3 for i 6= 1 then σ2 ∈ H is a 3-cycle and again we are done.
The final case is that σ is a product of disjoint 2-cycles. Since σ ∈ H 6 An, the

number of 2 cycles here is even. Write σ= (a b)(c d)σ3 . . .σr. Conjugation by (a b c)
yields σ′ = (b c)(a d)σ3 . . .σr ∈ H, hence σσ′ = (a c)(b d) ∈ H. So H contains the con-
jugacy class in An of (a c)(b d), which by Theorem VI.1.14 means that all products
of two disjoint 2-cycles are in H. In particular (1 2)(4 5) · (4 5)(2 3) = (1 2 3) ∈ H. As
before, this finishes the proof.

VII.3.8 Remark. The group A3 ≡Z/3Z simple. But the group A4 is not simple, see
Exercise 3
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VII.4 Exercises

1. Let G1 and G2 be groups let ϕ : G1 → G2 be a homomorphism. Show that
ker(ϕ) is normal in G1.

2. Show that if G is a group and H 6G a subgroup and N 6G normal, then N∩H
is a normal subgroup in H.

3. Let H 6 A4 be the subgroup consisting of (1) and all products of two disjoint 2-
cycles. Show that H is normal in A4. Give all elements of A4/H, and construct
a multiplication table for the group A4/H.

4. Find a normal subgroup in Z/2Z× An containing exactly two elements. Prove
that Z/2Z× An 6∼= Sn for n 6= 2. This shows that if H 6G is a normal subgroup,
then it is not always true that G ≡G/H×H.

5. Prove that up to isomorphism only one group consisting of 1001 elements exists,
as follows: Let G be such a group.

(a) Show that G contains normal subgroups N7, N11, and N13 with 7,11, and
13 elements, respectively.

(b) Find an injective homomorphism G →G/N7 ×G/N11.

(c) Conclude from Theorem VI.4.7 that G is commutative.

(d) Prove that G contains an element of order 1001, and conclude G ∼=Z/1001Z.

6. Find the subgroups of D4 and for the normal ones N also D4/N.
7. Given groups G1,G2 with unit elements e1, e2, show that H =G1×{e2} is normal

in G1 ×G2, and (G1 ×G2)/H ∼=G2.
8. Consider G = {

(1 a
0 b

) | b 6= 0}⊂GL2(R).

(a) Show that G is a subgroup of GL2(R), but not a normal one.

(b) Show that H1 = {
(1 0
0 b

) | b 6= 0} is a subgroup of G, but not a normal one.

(c) Show that H2 = {
(1 a
0 1

) | a ∈R} is a normal subgroup in G.

(d) Verify that b 7→ (1 0
0 b

)
H2 defines an isomorphism between the multiplicative

group R\{0} and G/H2.

9. Let G be a group and N 6 G a normal subgroup. Suppose that H is any sub-
group of G containing N.

(a) Show that N is also normal in H.

(b) Show that H/N is a subgroup of G/N.

(c) Show that if X 6 G/N is a subgroup, then Y = {a ∈ G | aN ∈ X } is a sub-
group of G containing N, and X =Y /N.

(d) Prove that if Y 6 G is a subgroup containing N, then Y /N is normal in
G/N if and only if Y is normal in G.

10. Fix k ≥ 2. In a group G consider the subset H ⊂ G consisting of all products
ak

1ak
2 . . .ak

n, for a1, . . . ,an ∈G. Show that H is a normal subgroup in G, and that
every element of G/H has order dividing k.

11. In an abelian group G put G = {a ∈ G | ord(a) <∞}. Show that H is a normal
subgroup in G. Prove that the unit element eH is the only element of G/H
whose order is finite. The group H is called the torsion subgroup of G, we will
encounter it again in Chapter IX.

12. Find an example of a non-abelian group G such that H = {a ∈G | ord(a) <∞} is
not a subgroup of G (e.g., think of real invertible 2×2 matrices).

13. Let n ≥ 5 and let k be odd with 3≤ k ≤ n.
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(a) Let G be a group and let X ⊂ G be a nonempty subset with the property
that also axa−1 ∈ X for all x ∈ X and all a ∈G. Prove that

H = {x±1
1 · . . . · x±1

r | xi ∈ X }

is a normal subgroup in G.

(b) Show that An contains an element of order k.

(c) Show that A5 contains no elements of order 4 or 6.

(d) Use a) to show that every element of An can be written as a product of
elements of order k.

14. Show that a group of order 48 is not simple. Do the same for groups of order
351.
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VIII HOMOMORPHISM AND ISOMORPHISM THEOREMS

Having introduced factor groups in the previous chapter, we now present several
tools for determining their structure. The idea is to construct an isomorphism to
another related group, whose structure might already be known. To this end, we
will first discuss how to construct and describe homomorphisms from a factor group
G/H to another group.

VIII.1 Homomorphisms starting from a factor group

We begin with a property of any homomorphism starting from a factor group. Af-
terwards this property will be used to construct such homomorphisms.

VIII.1.1 Theorem. Let G and G′ be groups, let H 6G be a normal subgroup, and

ϕ : G/H −→G′

a homomorphism. Consider the canonical homomorphism π : G → G/H given by
π(g)= gH. Then the composition ψ=ϕ◦π is a homomorphism G →G′.

This homomorphism ψ satisfies H ⊂ ker(ψ).

Proof. Check for yourself that any composition of homomorphisms is again a ho-
momorphism. So, in particular, ψ is a homomorphism G →G′.

The second assertion in the theorem follows at once from the definition of ψ and
the fact that ker(π)= H.

The problem with constructing a homomorphism ϕ starting from a factor group
G/H is that ϕ(gH) has to be independent of the representative g of gH ∈G/H. An
important example of this phenomenon already appeared in Lemma II.3.1. Anyone
thoroughly understanding this lemma, will not find the more general situation
described below in Criterion VIII.1.2 very challenging, so the reader is advised to
recall the lemma and its proof before continuing.

VIII.1.2 Criterion. Let H be a normal subgroup of a group G, and consider an
arbitrary group G′. Constructing a homomorphism ϕ : G/H →G′ is done using the
following recipe:

1. First find a homomorphism ψ : G →G′ satisfying H ⊂ ker(ψ).
2. For ψ as in 1. one has ψ(g1) =ψ(g2) for all g1, g2 ∈G such that g1H = g2H. In

other words: the rule ϕ(gH)=ψ(g) yields a well defined map from G/H to G′.
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3. The map ϕ : G/H →G′ as in 2. is a homomorphism and we have ψ=ϕ◦π, where
π is the canonical homomorphism G →G/H.

Proof. We first show that any ψ as in 1. satisfies ψ(g1)=ψ(g2) in case g1H = g2H.
This follows from the fact that g1H = g2H implies g−1

2 g1 ∈ H by Lemma VII.1.7.
Now H ⊂ ker(ψ) shows that g−1

2 g1 ∈ ker(ψ), so ψ(g−1
2 g1) = e′, the unit element of

G′. As a consequence ψ(g2)−1ψ(g1) = e′ and thus ψ(g1) =ψ(g2) which is what we
wanted to show.

Next we show that the given ϕ indeed is a homomorphism. Let g1H, g2H be
elements of G/H. Then ϕ(g1H · g2H) = ϕ(g1 g2H) (by definition of the group law
in G/H), and moreover ϕ(g1 g2H) = ψ(g1 g2) (this is the definition of ϕ). Now ψ

is a homomorphism, so ψ(g1 g2) = ψ(g1)ψ(g2) which by the definition of ϕ equals
ϕ(g1H)ϕ(g2H). We conclude ϕ(g1H · g2H) = ϕ(g1H)ϕ(g2H), so ϕ is a homomor-
phism.

Finally, for arbitrary g ∈G we have (ϕ◦π)(g)=ϕ(gH)=ψ(g), so indeed ψ=ϕ◦π.

VIII.1.3 Example. We will determine all homomorphisms from Z/12Z to Z/4Z.
Using Theorem VIII.1.1 and Criterion VIII.1.2 this boils down to finding all ho-
momorphisms from Z to Z/4Z having 12Z in the kernel. This condition does not
provide any restriction. Indeed, if f : Z→Z/4Z is an arbitrary homomorphism and
if n ∈ 12Z, then n = 12m with m ∈Z, so in particular n = 3m+3m+3m+3m implying
f (n)= f (3m)+ f (3m)+ f (3m)+ f (3m)= 0.

So we simply look for all homomorphisms from Z to Z/4Z. Any such homomor-
phism sends the unit element to the unit element, so 0 to 0. Suppose a ∈ {0,1,2,3}
is the image of 1. This determines the map, because 1+ . . .+1 must be mapped to
a+ . . .+a, and the opposite of 1+ . . .+1 to the opposite of a+ . . .+a. Verify yourself
that in this way indeed a homomorphism is obtained.

In total we therefore find 4 pairwise different homomorphisms from Z/12Z to
Z/4Z. Each of them is completely determined by the image of 1 mod 12.

VIII.1.4 Example. We know that the group D4 consisting of all symmetries of the
square contains precisely 8 elements. We place the square in the plane in such
a way that its center is the origin. In this case the 8 symmetries are linear maps
R2 →R2. Together with the identity map, the symmetry ‘reflect in the origin’ forms
a subgroup H 6 D4, and we have H ∼= {±1}. It is not hard to verify that H is a
normal subgroup of D4. We now construct an isomorphism D4/H ∼=Z/2Z×Z/2Z.

According to Criterion VIII.1.2 we need to start by constructing a homomor-
phism from D4 to Z/2Z×Z/2Z. A homomorphism D4 → {±1} ∼= Z/2Z is induced by
the determinant. Furthermore, the square has two diagonals, and every element of
D4 permutes these two. This defines a second homomorphism f : D4 → S2 ∼=Z/2Z.
The pair ψ= (det, f ) is the requested homomorphism

ψ : D4 −→Z/2Z×Z/2Z : σ 7→ (det(σ), f (σ)) ∈±1×S2 ∼=Z/2Z×Z/2Z.

Note that ψ is surjective (find explicit elements in D4 that are mapped to each
of the elements of Z/2Z×Z/2Z by yourself). The kernel of ψ consists by definition of
all symmetries fixing the two diagonals and having determinant 1. So the kernel
consists of the rotations ±1, in other words it is precisely our subgroup H. So
the condition H ⊂ ker(ψ) in Criterion VIII.1.2 is satisfied. One concludes that a
homomorphism ϕ : D4/H → Z/2Z×Z/2Z exists, defined by ϕ(σH) = ψ(σ). Since
ψ(σ) ranges over all elements of Z/2Z×Z/2Z, it follows that ϕ is surjective. The
number of elements in D4/H equals [D4 : H] = #D4/#H = 8/2 = 4 which is also the
number of elements of Z/2Z×Z/2Z. Since ϕ is surjective this implies that ϕ is a
bijection, and therefore it is an isomorphism. So D4/H ∼=Z/2Z×Z/2Z, as asserted.
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VIII.2 Isomorphism theorems for factor groups

The most important frequently used rule for dealing with factor groups reads as
follows.

VIII.2.1 Theorem. (Homomorphism theorem) If ψ : G →G′ is a homomorphism of
groups, then H := ker(ψ) is a normal subgroup of G and we have

G/H ∼=ψ(G)6G′.

In particular, if ψ is surjective, then one has G/H ∼=G′.

Proof. The fact that H is a normal subgroup is already part of Theorem VII.2.11.
Moreover, by Criterion VIII.1.2, setting ϕ(gH) := ψ(g) results in a well defined
homomorphism ϕ : G/H →G′.

We determine the kernel of ϕ. Note that gH ∈ ker(ϕ) precisely when ϕ(gH) is
the unit element e′ ∈G′. Now ϕ(gH) =ψ(g) equals e′ if and only if g ∈ ker(ψ) = H.
Moreover g ∈ H is equivalent to gH = eH, i.e., gH is the unit element in G/H. The
conclusion is that ker(ϕ) consists of only the unit element in G/H. Theorem III.3.6
therefore implies that ϕ is injective.

Injectivity of ϕ yields that G/H is isomorphic to the image of ϕ, and by definition
this equals the image of ψ. So G/ker(ψ)∼=ψ(G), as required. In case ψ is surjective
we have ψ(G)=G′ and hence G/ker(ψ)∼=G′.

VIII.2.2 Example. The determinant is a surjective homomorphism from GLn(R)
to the multiplicative group (R\{0}, ·,1) by Example III.3.2. The kernel of the deter-
minant is SLn(R), so we get

GLn(R) /SLn(R)∼=R\{0}

by Theorem VIII.2.1

VIII.2.3 Example. The complex numbers a+ bi satisfying a2 + b2 = 1 form a sub-
group T of the multiplicative group (C\{0}, ·,1), see Exercise III.10. This subgroup
is isomorphic to the factor group R/Z. Indeed, x 7→ e2πix defines a surjective homo-
morphism R→T with kernel Z.

The next two isomorphism theorems for factor groups are in fact consequences
of Theorem VIII.2.1.

VIII.2.4 Theorem. (First isomorphism theorem) Consider a group G, an arbitrary
subgroup H 6G, and a normal subgroup N 6G. Then

1. HN = {hn | h ∈ H and n ∈ N} is a subgroup of G.
2. N is a normal subgroup of HN.
3. H∩N is a normal subgroup of H.
4. H/(H∩N)∼= HN/N.

Proof. 1: By Theorem III.2.3 we have to check the three conditions (H1, H2, H3).
H1: from e = e · e and e ∈ H, e ∈ N we see e ∈ HN. H3: for arbitrary h ∈ H and n ∈ N
we know hn−1h−1 ∈ N since N is normal in G. So (hn)−1 = n−1h−1 = h−1 ·(hn−1h−1)
is in HN. Finally H2: for h1,h2 ∈ H and n1,n2 ∈ N we see h−1

2 n1h2 ∈ N since N 6G
is normal. Therefore (h1n1) · (h2n2) = h1h2(h−1

2 n1h2)n2 ∈ HN. So indeed HN ⊂ G
is a subgroup.
2: Since e ∈ H, it follows that N = eN ⊂ HN. Since N is a group, it is therefore a
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subgroup of HN. We have gN g−1 = N for all g ∈ G, so certainly for those g ∈ G
which are in HN. Hence N is normal in HN.
3 and 4: define ψ : H → G/N by ψ(h) := hN ∈ G/N. This is the restriction to H of
the canonical homomorphism G →G/N, so ψ is a homomorphism. Note h ∈ ker(ψ)
if and only if hN = N, i.e. if and only if h ∈ N. So ker(ψ) = H ∩ N, which implies
that H ∩ N is normal in H by Theorem VII.2.11. Theorem VIII.2.1 tells us that
H/(H∩N) is isomorphic to the image of ψ. So our argument is complete if we have
shown ψ(H) = HN/N. This is straightforward: an element of ψ(H) can be written
as hN ∈ G/N, and here h ∈ H ⊂ HN, so this element is in HN/N. Vice versa, an
element in HN/N can be written as hnN with h ∈ H and n ∈ N. Now nN = N hence
hnN = hN, which is the image of h ∈ H under ψ.

VIII.2.5 Example. Take G =Z, n,h ∈Z and H = hZ and N = nZ. The group law in
Z is ‘addition’; therefore Theorem VIII.2.4 implies that hZ/(hZ∩nZ)∼= (hZ+nZ)/nZ.
We analyse this a bit further. Note that hZ∩nZ consists of all integers which are
both divisible by h and by n. Corollary I.2.10 5. asserts that these are precisely the
multiples of lcm(h,n). So hZ∩nZ = lcm(h,n)Z. Moreover Theorem I.1.12 implies
hZ+nZ= gcd(h,n)Z. We conclude

hZ/ lcm(h,n)Z∼= gcd(h,n)Z/nZ.

In the special case gcd(h,n) = 1 this says hZ/hnZ ∼= Z/nZ. Incidentally, this also
holds for gcd(h,n) 6= 1, as can (for example) be shown using Theorem VIII.2.1.

VIII.2.6 Example. Consider N := {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} which is a
subgroup of G = S4, and H = all permutations in S4 fixing the integer 4 (thus
S3 ∼= H 6 S4). Note that N is normal in G. We have HN = S4, since both H and
N are subgroups of HN, so #HN is divisible by both #H = 4 and #N = 6. Hence
12 | #HN. This implies that [S4 : HN] = 1 or = 2. In particular, HN is normal in
S4. Now S4/HN has at most two elements, so this factor group is abelian, imply-
ing A4 ⊂ HN. Noting that HN contains odd permutations as well, it follows that
HN = S4. (This may be verified in numerous other ways, but the argument above
illustrates a number of techniques we now have at our disposal.) Observing that
H∩N = {(1)}, Theorem VIII.2.4 implies

S4/H = HN/H ∼= H/(H∩N)= S3/{(1)}= S3.

Part of the next result we encountered in Exercise 9 of Chapter VII.

VIII.2.7 Theorem. (Second isomorphism theorem) Consider a group G and a nor-
mal subgroup N 6G.

1. Every normal subgroup in G/N has the form H/N, with H a normal subgroup
in G containing N.

2. If N ⊂ H for some normal subgroup H in G, then (G/N)/(H/N)∼=G/H.

Proof. For (1) we refer to Exercise 9 in Chapter VII.
(2): Consider the canonical homomorphism π : G → G/H. We have N ⊂ H and
by Theorem VII.2.9 H = ker(π), so N ⊂ ker(π). Hence applying Criterion VIII.1.2
one concludes that ψ(gN) = π(g) = gH defines a homomorphism ψ : G/N → G/H.
This homomorphism ψ is surjective because π is surjective. Moreover gN ∈ ker(ψ)
precisely when ψ(gN) = gH = eH, so ker(ψ) consists of all classes gN with g ∈ H.
We conclude that ker(ψ)= H/N. From Theorem VIII.2.1 we now deduce

(G/N)/(H/N)= (G/N)/ker(ψ)∼=ψ(G/N)=G/H,

which is what we wanted to prove.

VIII.2 ISOMORPHISM THEOREMS FOR FACTOR GROUPS 83



VIII.2.8 Example. The residue classes 2a mod 6 for a ∈Z form a normal subgroup
of Z/6Z. This is precisely 2Z/6Z, and Theorem VIII.2.7 applied to G =Z and N = 6Z
and H = 2Z says that (Z/6Z)/(2Z/6Z)∼=Z/2Z.

VIII.2.9 Remark. The homomorphism theorem (Theorem VIII.2.1) is sometimes
called the first isomorphism theorem in the literature, whereas the results which
we refer to as the first and second isomorphism theorem, respectively, are called
the second and third isomorphism theorem, respectively. There is no consensus on
the terminology.
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VIII.3 Exercises

1. Determine all homomorphisms from Z/4Z to Z/6Z.
2. Prove that C/Z is isomorphic to the multiplicative group (C\{0}, ·,1).
3. Show that for n,h ∈Z with h 6= 0 we have hZ/hnZ∼=Z/nZ.
4. For N := {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}6 S4, show that (S4/N)/(A4/N)∼=Z/2Z.
5. Show that if k|N then (Z/NZ)/(kZ/NZ)∼=Z/kZ. Is the condition k|N necessary?
6. Let n,m ∈Z be both positive. In the group Dnm let ρ denote the counter clock-

wise rotation by 2π/nm and let σ = denote ‘reflection in the x-axis’. Then we
know that σρσ= ρ−1. Consider H := {id,σ} and N := {id,ρm,ρ2m, . . . ,ρ(n−1)m}.

(a) Show that H, N are subgroups of Dnm and tjat N is normal in Dnm.

(b) Prove that HN ∼= Dn.

(c) Prove that Dm ∼= Dnm/N.

7. Let G be a group and H1,H2 6G normal subgroups. Defineψ : G →G/H1×G/H2
by ψ(g)= (gH1, gH2).

(a) Show that ψ is a homomorphism and H1 ∩H2 is a normal subgroup in G.

(b) Prove that G/(H1 ∩H2) is isomorphic to a subgroup of G/H1 ×G/H2.

(c) Use (b) to obtain a new proof of the Chinese Remainder Theorem.

8. We will show that for n ≥ 5 the only normal subgroup in Sn different from {(1)}
or all of Sn, is An. Let N be such a nontrivial normal subgroup in Sn.

(a) Use that An is simple and show that An ⊂ N or N ∩ An = {(1)}.

(b) Show that in case An ⊂ N it follows that N = An.

(c) Show that if N 6= {(1)} and N ∩ An = {(1)}, then N An = Sn and Sn/N ∼= An.

(d) Conclude in the situation of (c) that #N = 2, and prove this contradicts the
assumption that N 6 Sn is normal.
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IX FINITELY GENERATED ABELIAN GROUPS

In this chapter we mainly consider abelian groups. Our main goal will be to present
a complete description of all so-called finitely generated abelian groups. Some of
the techniques used in this chapter are similar to techniques familiar from linear
algebra.

IX.1 Finitely generated groups

IX.1.1 Definition. A group G is called finitely generated if there exist elements
g1, . . . , gn ∈G with the following property: Every g ∈G can be written as

g = g±1
i1

· . . . · g±1
i t

with indices 1≤ i j ≤ n (note that it is allowed here that ik = i`, in other words any
g i can be used multiple times).

So a group G is finitely generated if it has a finite set of generators g1, . . . , gn,
which means that every element of G can be written as a product of the generators
and their inverses.

IX.1.2 Example.

1. Every finite group G is finitely generated, since in this case the set of all ele-
ments in G as generators.

2. The group Zr = Z× . . .×Z (the product of r copies of Z) is finitely generated.
Namely, take e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . . . . , er = (0, . . . ,0,1) ∈ Zr. An
arbitrary (m1, . . . ,mr) ∈ Zr can be written as m1e1 + . . .+mr er. Moreover the
integers m j here are uniquely determined; the group Zr is therefore an example
of a so-called free abelian group, with basis e1, . . . , er. The statement, as well as
the terminology are reminiscent of the theory of vector spaces in linear algebra.
Such groups will be treated in more detail below.

3. The additive group (Q,+,0) is not finitely generated. Namely, given arbitrary
g1, . . . , gn ∈Q, the finite sum ±g i1 ± . . .± g i t can be written as a/b with a ∈Z and
b equal to the least common multiple of the denominators of g1, . . . , gn. Hence
a number c/d ∈ Q with c,d ∈ Z and gcd(c,d) = 1 and d larger than this least
common multiple can not be expressed as a sum of ±g i ’s. Therefore no finite
set {g1, . . . , gn}⊂Q generates all of Q.

4. It is possible that a (non-abelian) group G is finitely generated whereas some
subgroup H 6 G is not. A nice example of this phenomenon is described in
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the paper B.L. van der Waerden, Example d’un groupe avec deux générateurs,
contenant un sous-groupe commutatif sans système fini de générateurs, which
appeared in the journal Nieuw Archief voor Wiskunde, Vol. 23 (1951), p. 190.
In a similar (and in fact much easier) way it is possible that a finitely gener-
ated group is generated by elements of finite order, and yet the group contains
elements of infinite order. For example we let σ1 denote the reflection in the
x-axis and σ2 the reflection in the line with equation y= ax; both are elements
of the infinite dihedral group D∞. Then σ2σ1 is rotation by an angle α with
tan(α/2)= a. For suitable a this rotation has infinite order. Clearly both σ1 and
σ2 have order 2.

In the remainder of this chapter we restrict ourselves to abelian groups. The
group law will be denoted by +.

IX.1.3 Theorem. Any finitely generated abelian group (A,+,0) is isomorphic to a
factor group Zn/H for some subgroup H 6Zn.

Proof. Let the set {a1, . . . ,an} generate the group A. Define

ϕ : Zn −→ A

by ϕ(m1, . . . ,mn)= m1a1+. . .+mnan. It is easy to verify that ϕ is a homomorphism.
Moreover ϕ is surjective because a1, . . . ,an generate A, so every element of A is an
additive combination of the elements ±ai. Since A is abelian, here the order of
the sequence of ±ai ’s is irrelevant in this case. So any a ∈ A can be written as
a = n1a1 + . . .+nnan which is the image of (n1, . . . ,nn) under ϕ.

Put H = ker(ϕ). This is a subgroup of Zn. Theorem VIII.2.1 therefore implies

Zn/H =Zn/ker(ϕ)∼=ϕ(Zn)= A.

IX.2 Subgroups of free abelian groups

Theorem IX.1.3 shows that describing all finitely generated abelian groups boils
down to describing all subgroups H 6 Zn and the corresponding factor groups
Zn/H. The case n = 1 was discussed in Example III.2.7; here H = mZ for some
m ≥ 0. So Z/H ∼=Z in case m = 0 and Z/H = (0) if m = 1, and Z/H =Z/mZ in general.

IX.2.1 Theorem. If H 6Zn is a subgroup then H ∼=Zk for some k with 0≤ k ≤ n.

Proof. We use mathematical induction with respect to n. The case n = 0 is trivial,
and the case n = 1 follows from Example III.2.7; here H = mZ with m ≥ 0. For
m = 0 we get H = (0) ∼=Z0, and for m > 0 we have Z∼= mZ, an explicit isomorphism
is given by multiplication by m.

As induction hypothesis, assume the theorem holds for n ≥ 1. Let H 6Zn+1 be
a subgroup. Define

π : Zn+1 −→Z ; (m1, . . . ,mn+1) 7→ mn+1.

This is a homomorphism with kernel all sequences (m1, . . . ,mn+1) ∈Zn+1 such that
mn+1 = 0. We can therefore identify this kernel with Zn. Since H 6Zn+1 is a sub-
group, so is H∩ker(π)6Zn. Hence the induction hypothesis implies H∩ker(π)∼=Zk

for some k with 0≤ k ≤ n.
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Since H 6Zn+1 is a subgroup, so is π(H)6Z. Hence π(H)= mZ for some m ≥ 0.
If m = 0, then π(H)= (0) so H 6 ker(π) which implies Zk ∼= H∩ker(π)= H. So in this
case the proof is complete. From now on we assume m 6= 0. Since m ∈ mZ = π(H),
we have hk+1 ∈ H with π(hk+1) = m. Choose an isomorphism Zk ∼= H ∩ker(π) and
let h1, . . . ,hk ∈ H ∩ker(π) denote the images of (1,0, . . . ,0), . . . . . . , (0, . . . ,0,1) under
this isomorphism. We will show that

ψ : Zk+1 −→ H defined by ψ(m1, . . . ,mk+1) := m1h1 + . . .+mk+1hk+1

is an isomorphism. Clearly ψ is a homomorphism and Zk+1 is mapped by ψ into H.
We first show that ψ is surjective. Take an arbitrary h ∈ H. Since π(h) ∈π(H)= mZ,
we have π(h)= m` for some ` ∈Z. From this one deduces

π(h−`hk+1)=π(h)−π(`hk+1)= m`−`m = 0,

so h−`hk+1 ∈ ker(π)∩H. Using our isomorphism Zk ∼= ker(π)∩H we find integers
`1, . . . ,`k with h−`hk+1 = `1h1 + . . .+`khk. This shows h =ψ(`1, . . . ,`k,`), so ψ is
surjective.

Next we show that ψ is injective. By Theorem III.3.6 it suffices to verify that
ker(ψ)= {(0, . . . ,0)}6Zk+1. Let (m1, . . . ,mk+1) ∈ ker(ψ). Then m1h1+ . . .+mk+1hk+1
= 0 ∈ H, so m1h1 + . . .+mkhk =−mk+1hk+1. From h1, . . . ,hk ∈ ker(π) it follows that
−mk+1hk+1 ∈ ker(π). Hence 0 = π(−mk+1hk+1) = −mk+1m. Our assumption m 6= 0
yields mk+1 = 0, so m1h1 + . . .+mkhk =−mk+1hk+1 = 0. Using Zk ∼= H ∩ker(π) we
conclude (m1, . . . ,mk) = (0, . . . ,0) ∈ Zk. So m1 = . . . = mk = mk+1 = 0, which shows
that ψ is injective.

So ψ is an isomorphism, which finishes the induction argument.

IX.2.2 Remark. The argument above repeatedly uses the fact that for a abelian
group H one has H ∼=Zk if and only if h1, . . . ,hk ∈ H exist such that every h ∈ H can
be written in a unique way as h = m1h1+. . .+mkhk. A group H having this property
is called a free abelian group (with basis h1, . . . ,hk). According to Theorem IX.2.1,
any subgroup of a finitely generated free abelian group is itself a finitely generated
free abelian group. In fact free abelian groups behave quite similarly to vector
spaces in many ways. Further generalizations of vector spaces are discussed in the
course Advanced Algebraic Structures.

IX.2.3 Example. Consider H 6Z3 given by

H = {
(a,b, c) ∈Z3 | a+2b+3c ≡ 0 mod 6

}
.

It is not hard to verify that H is a subgroup of Z3 (for example: H is the kernel of the
homomorphism Z3 →Z/6Z given by (a,b, c) 7→ a+2b+3c mod 6). By Theorem IX.2.1
and Remark IX.2.2 there exist r ∈ {0,1,2,3} and h1, . . . ,hr ∈ H such that H is the
free abelian group with basis h1, . . . ,hr. We now determine such r,h1, . . . ,hr by the
method used in the proof of Theorem IX.2.1.

Let πi : Z3 → Z be the projection on the ith coordinate. We have π3(H) = Z
since (1,1,1) ∈ H and hence 1 ∈ π3(H); a subgroup of Z containing 1 equals Z. The
proof of Theorem IX.2.1 now shows that (1,1,1) together with a basis for ker(π3)∩H
yields a basis of H. By definition

ker(π3)∩H = {(a,b,0) | a+2b ≡ 0 mod 6} .

We find π2 (ker(π3)∩H) = Z, because (4,1,0) ∈ ker(π3)∩H and π2(4,1,0) = 1. So a
basis for ker(π3)∩H consists of (4,1,0) together with a basis for ker(π2)∩ker(π3)∩H.
We have

ker(π2)∩ker(π3)∩H = {(a,0,0) | a ≡ 0 mod 6}=Z(6,0,0),

hence
H =Z · (6,0,0)+Z · (4,1,0)+Z · (1,1,1).
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We will now show that given any subgroup H 6 Zn, there is only one integer
k with H ∼=Zk, and moreover 0 ≤ k ≤ n. This follows directly from Theorem IX.2.1
and the next result.

IX.2.4 Theorem. If Zk ∼=Z`, then k = `.

Proof. Suppose Zk ∼=Z` and choose an isomorphism Zk →Z`. Consider the compo-
sition Zk ∼=Z` →Z`/2Z`. Here the second map is the canonical homomorphism to
a factor group, and 2Z` = 2Z× . . .×2Z. This composition is a surjective homomor-
phism, and its kernel is 2Zk. Hence Theorem VIII.2.1 implies Zk/2Zk ∼=Z`/2Z`.

For any m ≥ 0 one finds that Zm/2Zm ∼= (Z/2Z)m, since the homomorphism
Zm → (Z/2Z)m given by (n1, . . . ,nm) 7→ (n1 mod 2, . . . ,nm mod 2) is surjective and
has kernel 2Zm; now apply Theorem VIII.2.1.

In our situation, combining the above arguments we find (Z/2Z)k ∼= (Z/2Z)`.
These groups have 2k and 2` elements, respectively and therefore k = `.

IX.2.5 Corollary. If H 6 Zn is a subgroup then a unique integer k exists with
H ∼=Zk (and this k satisfies 0≤ k ≤ n).

Proof. By Theorem IX.2.1 k exists. If both k1 and k2 have the desired property
then Zk1 ∼= H ∼=Zk2 , hence by Theorem IX.2.4 it follows that k1 = k2.

IX.3 The structure of finitely generated abelian groups

We start by stating the main theorem concerning finitely generated abelian groups.

IX.3.1 Theorem. (Structure theorem (or fundamental theorem) for finitely gener-
ated abelian groups) For any finitely generated abelian group there exist a unique
integer r ≥ 0 and a unique (possibly empty) finite sequence (d1, . . . ,dm) of integers
di > 1 satisfying dm|dm−1| . . . |d1, such that

A ∼=Zr ×Z/d1Z× . . .×Z/dmZ.

IX.3.2 Definition. Given a finitely generated abelian group A, the integer r men-
tioned in Theorem IX.3.1 is called the rank of A. The integers d1, . . . ,dm are called
the elementary divisors of A.

The structure theorem is an immensely powerful result, stating that, up to
isomorphism, any finitely generated abelian group is determined uniquely by its
rank and elementary divisors. Its proof will take up most of the rest of this section;
along the way, we will also discuss how to compute r and d1, . . . ,dm.

IX.3.3 Example.

1. Any subgroup H 6Zn is isomorphic to Zk for a unique k by Corollary IX.2.5. In
particular, this implies that H is finitely generated, and Theorem IX.3.1 implies
that rank(H)= k and d1, . . . ,dm =∅.

2. The finite abelian group A = Z/4Z×Z/6Z clearly has rank(A) = 0 and elemen-
tary divisors (d1,d2) = (12,2). Indeed, applying the Chinese Remainder Theo-
rem (see Example III.3.2 4)

Z/4Z×Z/6Z∼=Z/4Z×Z/3Z×Z/2Z∼=Z/12Z×Z/2Z.
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The most important ingredient in the proof of Theorem IX.3.1 reads as follows.

IX.3.4 Theorem. Given a subgroup H 6 Zn with H 6= (0), there exists a basis
f1, . . . , fn for Zn, an integer k with 1 ≤ k ≤ n and a sequence of integers (d1, . . . ,dk)
with di > 0 and dk|dk−1| . . . |d1 such that d1 f1, . . . ,dk fk is a basis of H.

Proof. Take a basis e1, . . . , en for Zn (say, the standard one) and a basis g1, . . . , gk
for H (it exists by Theorem IX.2.1). Then g i = a1i e1 + . . .+ ani en (i = 1, . . . ,k) for
certain ai j ∈Z. The integers ai j form a matrix a11 · · · a1k

...
...

an1 · · · ank

 .

Each pair of bases (β= (e1, . . . , en),γ= (g1, . . . , gk) yields in this way an n×k matrix
with integer coefficients, expressing how the basis γ is given in terms of the basis
β. Replacing the basis β or the basis γ by a different one a different matrix is
obtained. Our aim is to change these bases into a β′ for Zn and a γ′ for H such that
the resulting matrix is 

d1
. . .

dk
0 . . . 0
...

...
0 · · · 0


for integers (d1, . . . ,dk) with di > 0 and dk|dk−1| . . . |d1.

The next algorithm brings our initial matrix into a matrix of the desired form
in finitely many steps. After presenting the algorithm, we will show that indeed it
corresponds to a change of the two bases.

Algorithm.

step 1 If A is the zero matrix, we are done. If not, take (i, j) such that |ai j| > 0 is
minimal. Interchange the first and the i-th row as well as the first and the j-th
column. In the new matrix, |a11| > 0 is the minimal nonzero absolute value of
an entry. We now try to make the remaining entries in the first column zero.

step 2 If an integer ai1 in the first column (for i 6= 1) is nonzero, add a suitable
multiple of the first row to the i-th row such that ai1 is replaced by an integer r
with 0≤ r < |a11|. If r 6= 0, then interchanging the i-th and the first row. Repeat
this step until the first column only has a nonzero entry in place (1,1).

step 3 Analogously, make the remaining entries in the first row equal to zero.
step 4 We now make sure that all entries in the matrix are multiples of a11, as

follows. If a11 - ai j, replace the i-th row by the sum of the i-th and the first
(this only changes one entry in the first column), and add a suitable multiple
of the first column to the j-th. This yields ai j with 0 ≤ ai j < |a11|. It is 6= 0,
since otherwise ai j would have been divisible by a11. Now start all over at
step 1 with the new matrix. The new a11 obtained in step 1 is in absolute value
strictly smaller than the old one, hence after finitely many steps indeed all ai j
are multiples of a11.

step 5 Apply steps 1 to 4 to the matrix obtained from the one found so far by
deleting the first row and the first column. All entries of this smaller matrix are
multiples of the a11 constructed above, and this property remains true during
the steps. So at the end, the smaller matrix has in its top left corner an integer
a22 which is a multiple of a11 and the remaining entries in its first row and
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column are 0. Moreover a22 divides ai j for all i, j ≥ 3. Continuing in this way
results in a matrix with ai j = 0 if i 6= j and a11|a22| . . . |ak k.

step 6 Finally, multiply rows by ±1 and put the first k vectors in the two bases in
the reverse order to obtain a matrix as desired.

We now show that the changes made in the algorithm to the initial matrix
correspond to changes of a basis for either Zn or H. To this end, we describe some
ways of changing a basis, and we explain the effect it has on the matrix.

1. Interchange the j-th and the k-th basis vector in the basis for Zn.
Obviously this results in a new basis for Zn. An element

∑
i ai e i ∈ Zn is given

as a1e1 + . . .+ak ek + . . .+a j e j + . . .+anen in terms of the new basis. Hence this
corresponds to interchanging the j-th and the k-th row in the matrix.

2. Interchange the j-th and the k-th basis vector in the basis for H. The effect on
the matrix is that the j-th and the k-th column are interchanged.

3. Replace the j-th basis vector e j of Zn by its opposite −e j.
This yields of course a new basis of Zn. With respect to the new basis an element
of Zn has as j-th coordinate −1 times the old j-th coordinate. Hence the effect
on our matrix is that all entries in the j-th row are multiplied by −1.

4. Replace the j-th basis vector of the given basis for H by its opposite. The effect
on the matrix is that all integers in the j-th column are multiplied by −1.

5. Let a ∈ Z and i 6= j and replace the basis vector e i by e′i = e i −ae j in the basis
for Zn.
This results in a new basis for Zn. Indeed, the map Zn →Zn given by∑

k
ak ek 7→ a1e1 + . . .+ai e i + . . .+ (aia−a j)e j + . . .+anen

is an isomorphism of groups (check this yourself!), and this map sends the vec-
tor {e1, . . . , e i, . . . , en} to {e1, . . . , e′i, . . . , en}.
Since ∑

k
ak ek = a1e1 + . . .+ai(e i −ae j)+ . . .+ (a j +aia)e j + . . .+anen,

it follows that the effect of this change of basis on the matrix is that the j-th
row is replaced by the sum of the j-th row and a times the i-th row.

6. Finally, in the basis for H one can replace basis vector g i by g i − ag j in an
analogous way. Similar to the above, the effect on the matrix is that the j-th
column is replaced by the j-th column plus a times the i-th column.

The conclusion from the base changes described here is that if the n× k matrix A
expresses how a basis of H is represented with respect to a basis of Zn, and if the
matrix B is obtained from A by repeatedly executing the following steps:

1. interchange two rows or two columns in the given matrix;
2. multiply a row or a column by −1 in the given matrix;
3. add a times a different row/column to a given row/column in the given matrix;

then also B expresses how some basis for H is given in terms of some basis for Zn.
Since the changes made in the algorithm are exactly of this form, his completes the
proof of Theorem IX.3.4.

IX.3.5 Remark. In fact the procedure presented above can be used in a more gen-
eral context. If H 6Zn is given as H =Zg1 + . . .+Zgk for certain g i ∈Zn, without
assuming that the g i are a basis for H, a matrix can be produced from the genera-
tors g i in exactly the same way. Applying the algorithm to this matrix changes it
to a new one whose only nonzero entries lie on the diagonal (unless H = {0}). The
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nonzero columns of the resulting matrix describe a basis for H, expressed in terms
of some basis for Zn. Hence, given a finite set of generators for some subgroup of
Zn, this provides a way to obtain on the one hand a new proof of Theorem IX.2.1
for this subgroup and, on the other hand, to construct a basis for this subgroup.

Using Theorem IX.3.4 we will now show the existence of r,d1, . . . ,dm as given
in Theorem IX.3.1.

Proof. (existence of r,d1, . . . ,dm in Theorem IX.3.1.) Let A be a finitely generated
abelian group. By Theorem IX.1.3 we have A ∼= Zn/H for some subgroup H 6 Zn.
Choose bases f1, . . . , fn of Zn and d1 f1, . . . ,dk fk of H as described in Theorem IX.3.4.
Under the isomorphism Zn ∼= Zn given by

∑
ai f i 7→ (a1, . . . ,an) the subgroup H is

mapped to the subgroup d1Z×d2Z× . . .×dkZ× (0)× . . .× (0). Now consider

ϕ : Zn −→Z/d1Z× . . .×Z/dkZ×Zn−k

given by ϕ(a1, . . . ,an) = (a1 mod d1, . . . ,ak mod dk,ak+1, . . . ,an). This is a surjec-
tive homomorphism with kernel d1Z×d2Z× . . .×dkZ× (0)× . . .× (0). Hence Theo-
rem VIII.2.1 shows that

A ∼=Zn/H ∼=Zn/ (d1Z×d2Z× . . .×dkZ× (0)× . . .× (0))
∼=Z/d1Z× . . .×Z/dkZ×Zn−k.

Removing the factors Z/1Z ∼= (0) from this product shows the existence stated in
Theorem IX.3.1.

It remains to prove that the integers r,d1, . . . ,dm in Theorem IX.3.1 are unique.
To this end, the following notion will be crucial:

IX.3.6 Definition. Let A be an abelian group. The set Ator = {a ∈ A | ord(a)<∞} is
a subgroup of A called the torsion subgroup of A.

Verify yourself that indeed Ator is a subgroup and that the only element of
finite order in the factor group A/Ator is its its unit element Ator If A is finitely
generated, then we know A ∼=Zr×Z/d1Z×. . .×Z/dmZ and here the second group has
as elements of finite order precisely the elements (0, . . . ,0,a1, . . . ,am), for ai ∈Z/diZ.
Therefore we get Ator

∼=Z/d1Z×. . .×Z/dmZ. Moreover, A/Ator
∼=Zr: indeed, consider

the composition
A ∼=Zr ×Z/d1Z× . . .×Z/dmZ−→Zr

where the second map is projection onto the first r coordinates. This is a surjective
homomorphism with kernel Ator. Hence Theorem VIII.2.1 implies A/Ator

∼=Zr.
This discussion implies in particular that for a finitely generated abelian group

A, the integer r in Theorem IX.3.1 equals the rank of the finitely generated free
group A/Ator. Hence by Theorem IX.2.4 it is unique.

We moreover conclude that d1 · . . . · dm = #(Z/d1Z× . . .×Z/dmZ) = #Ator and
therefore the product of the integers d1 up to dm does not depend on the actual
choice of integers as in Theorem IX.3.1.

Arguments like this will imply the uniqueness d1, . . . ,dm. We begin by showing
some more properties of these integers. The number d1 (this is the largest elemen-
tary divisor) is unique. Namely d1 is the largest integer appearing as the order of
an element in Z/d1Z× . . .×Z/dmZ (check this!). This equals the maximal order of
elements in Ator which determines it.

Also the number of elementary divisors is fully determined by A. Namely, take
a prime number p. Multiplying by p defines a homomorphism A → A. Its ker-
nel we write as A[p]. This is a subgroup of A and of Ator. The number of el-
ements in A[p] equals the number of elements (a1, . . . ,am) ∈ Z/d1Z× . . .×Z/dmZ
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with p(a1, . . . ,am)= (0, . . . ,0). A small calculation shows that this equals pk, with k
the number of indices i such that p|di. This k is maximal when p | dm, in which
case k = m. So we conclude that m equals the maximal exponent k such that a
prime p exists with #A[p]= pk. This determines m in terms of A.

Proof. (of the uniqueness of the elementary divisors in Theorem IX.3.1.) We show
the uniqueness of d1, . . . ,dm by mathematical induction with respect to the posi-
tive integer #Ator = d1 · . . . · dm. For #Ator = 1 the sequence of elementary divisors
is empty so in this case uniqueness holds. Suppose #Ator = N > 1 and assume
the uniqueness for all A′ with #A′

tor < N. Let d1, . . . ,dm be a sequence of ele-
mentary divisors for A. We have dm > 1 since N > 1. Take a prime p|dm and
consider the factor group A′ = A/A[p]. Since A is finitely generated, so is A′ and
A′

tor
∼= Z/ d1

p Z× . . .×Z/ dm
p Z. The induction hypothesis implies that the sequence

d1/p, . . . ,dm/p is unique, which implies the same is true for d1 up to dm.

We finally discuss subgroups of Zn generated by n elements. In particular we
will decide when such a subgroup has finite index in Zn.

IX.3.7 Theorem. Suppose that H 6 Zn is a subgroup generated by n elements
g1, . . . , gn and g i = a1i e1 + . . .+ani en for some basis {e1, . . . , en} of Zn. Let A = (ai j)
be the corresponding n× n matrix. Then H has finite index in Zn if and only if
det(A) 6= 0. If det(A) 6= 0 holds, then #Zn/H = [Zn : H]= |det(A)|.

Proof. By the method described in the proof of Theorem IX.3.4 one transforms A
into a diagonal matrix with nonnegative integers d1, . . . ,dn on the diagonal. Note
that the steps in this procedure can only change the sign of the determinant.
In particular |det(A)| = d1 · . . . · dn. The results of the present section show that
Zn/H ∼= Z/d1Z× . . .×Z/dnZ. The latter group is finite precisely when all di ’s are
different from 0. If this is the case then [Zn : H]= #Zn/H = d1 ·. . . ·dn = |det(A)|.

IX.3.8 Example. Take A =
 1 2 0

2 2 2
3 4 2

 and B =
 1 2 2

2 2 2
3 4 2

.

One computes det(A) = 0 and det(B) = 4. For the subgroups H1 = A ·Z3 and
H2 = B ·Z3 of Z3 we therefore conclude that the factor group Z3/H1 is infinite and
Z3/H2 consists of 4 elements. The method described in the proof of Theorem IX.3.4
transforms A into a diagonal matrix with entries 1,2,0 on the diagonal. Hence
Z3/H1 ∼=Z×Z/2Z. Similarly B is transformed into the diagonal matrix with entries
1,2,2. So Z3/H2 ∼=Z/2Z×Z/2Z.

The element of order 2 in Z3/H1 is the class (0,1,1)+ H1. Namely the given
element is not the zero element in Z3/H1 because this would imply (0,1,1) ∈ H1.
Since the second coordinate of any element in H1 is even, this is not the case. The
order of (0,1,1)+H1 is indeed 2 since 2 · ((0,1,1)+H1)= (0,2,2)+H1 = (0,0,0)+H1,
as (0,2,2) ∈ H1.

Analogously, try to find the three distinct elements of order 2 in Z3/H2!
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IX.4 Exercises

1. Show that the multiplicative group (Q\{0}, ·,1) is not finitely generated.
2. Show that if N is a normal subgroup of a finitely generated group G, then the

factor group G/N is finitely generated as well.
3. Consider the group SL2(Z) of all matrices in SL2(Z) with integral entries and

determinant 1. Let S = (0 −1
1 0

)
,T = (1 1

0 1
) ∈ SL2(Z). Compute U = ST and show

that ord(S)= 4 and ord(U)= 6 and S and that U generate the group SL2(Z).
4. Write the matrix

(55 21
34 13

)
as a product of powers of S = (0 −1

1 0
)

and T = (1 1
0 1

)
.

5. Consider the group GL2(Z) of all matrices in GL2(R) with integral entries and
determinant ±1. Show that GL2(Z) is finitely generated and give explicit gener-
ators all having finite order (for instance three generators suffice, of order 2,4,
and 6, respectively).

6. Present an alternative proof for the fact that Zk1 6∼= Zk2 in case k1 6= k2, by
verifying (and using) that a basis for Zk is in fact also a basis for the vector
space Rk over R.

7. Find a basis for the subgroup H = {(a,b, c,d) | a+b+ c+d = 0 and a ≡ c mod 12}
of Z4.

8. Determine the rank and the elementary divisors of each of the following groups.

(a) Z×17Z×Z/18Z×Z/12Z.

(b) (Z/15Z)×

(c) (Z/17Z)×

(d) Z3 modulo the subgroup generated by (1,2,0) and (3,0,0).

(e) A/H with A 6Z5 the group of all 5-tuples with sum 0 and H = A∩B(Z5)

where B =


−13 1 1 0 0

1 −13 1 0 0
1 1 −1 1 1
0 0 1 −2 0
0 0 1 0 −3

.

9. Find the number of pairwise non-isomorphic abelian groups consisting of 72
elements.

10. (a) Use that 52n+1 −1 = (52n −1)(52n +1) to prove that 52n −1 contains exactly
n+2 factors 2.

(b) Conclude from (a) that the order of 5 in (Z/2nZ)× equals 2n−2 (for n ≥ 2).

(c) Show that for n ≥ 2 the map a mod 2n 7→ a mod 4 is a well defined surjec-
tive homomorphism from (Z/2nZ)× to (Z/4Z)×, and its kernel is the sub-
group generated by 5.

(d) Determine the number of elements of order ≤ 2 in (Z/2nZ)×, and use this
to find the rank and the elementary divisors of (Z/2nZ)×.

11. (a) Prove that if A is a finite abelian group and p is a prime with p - #A, then
A/pA ∼= (0).

(b) Show that for A =Z/NZ and p a prime with p|N one has A/pA ∼=Z/pZ.

(c) Prove that if A is a finitely generated abelian group and p is a prime, then
#A/pA = pk where k equals the sum of the rank of A and the number of
indices i such that the elementary divisor di of A is divisible by p.

12. Let d ≥ 3 be an integer. In this problem we study the polynomial X2 + X + d.
Let αd ∈C be a zero of this polynomial and define Ad = {a+bαd | a,b ∈Z}⊂C.

(a) Show that Ad is a subgroup of the additive group (C,+,0) and Ad ∼=Z2.

(b) Take β= a+bαd ∈ Ad . Show that βAd = {β ·γ | γ ∈ Ad} is a subgroup of Ad ,
and if β 6= 0 then #Ad /βAd = a2 −ab+db2.
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(c) Let a be an integer satisfying 0≤ a ≤ d−2 such that a2+a+d is not prime.
Let p be the smalles prime dividing a2 +a+d. Prove that p ≤ d−1.

(d) Given a and p as above, let H = pAd+(a−αd)Ad = {pγ+(a−αd)δ | γ,δ ∈ Ad}.
Show that H ⊂ Ad is a subgroup generated by p and pαd ,a−αd ,d+(a+1)α.
Conclude that #Ad /H = p.

(e) Use (b) and (d) to conclude that H is not of the form βAd , for any β ∈ Ad .
Show that H is closed under multiplication by elements of Ad ; this means
that for every h ∈ H and every γ ∈ Ad the product hγ is an element of H.

(f) Conclude that if an integer a exists with 0 ≤ a ≤ d−2 and a2 +a+d not a
prime number, then Ad contains a subgroup which is closed under multi-
plication by elements of Ad , and this subgroup cannot be written as βAd
for any β ∈ Ad .

(g) It is a fact from “algebraic number theory” that A41 and A17 have the
property that all subgroups closed under multiplication by all elements
of Ad have the form βAd . Draw a conclusion from this concerning the
polynomials X2 + X +17 and X2 + X +41.
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