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preface

These lecture notes are based on a translation into English of the Dutch lecture
notes Algebra II (Algebraic Structures) as they were used in the mathematics cur-
riculum of Groningen University during the period 1993–2013. The original Dutch
text may be found at http://www.math.rug.nl/~top/dic.pdf.

Both the present text and the original build upon an earlier Dutch text on Rings
and Fields, called Algebra II, written in the late 1970’s at the university of Amster-
dam by Prof.dr. F. Oort and Prof.dr. H.W. Lenstra. In the 80’s L.N.M. van Geemen
at Utrecht university added some chapters to their text, and in the 90’s in Gronin-
gen I included various changes.

The translation project consists of two parts. The first one (Algebraic Struc-
tures) deals with the chapters 1−5, 7−9, and 12 of the Dutch notes. Many cor-
rections and suggestions for improvement were offered by Dr. Max Kronberg who
taught a course following these notes in the spring of 2017, and by Petra Hogeboom
and Manoy Trip who at that time were students in this course. In the spring of
2019 student Wout Moltmaker mentioned a number of further small issues in the
text, which have now been corrected. I am very grateful to all of them; needless to
say that any mistakes and unclear parts in the exposition are only my fault. The
second part of the translation project (which provides the material for the course
Advanced Algebraic Structures and is not included here) discusses the chapters 8
(in slightly more detail than originally, to facilitate treating Galois theory), and
chapters 6,13 on (projective) modules, then a discussion of basic Galois theory not
present in the original notes, and finally the chapters 11 and 10 as well as an ex-
tended version of chapter 14 and a brief discussion of tensor products.

Groningen, January 2017 – April 2019
Jaap Top
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I RINGS

I.1 Definition, examples, elementary properties

I.1.1 Definition. A ring (with 1) (also called unitary ring) is a five tuple (R,+, ·,0,1)
with R a set, + and · maps written as:

+ : R×R → R, (a,b) 7→ a+b · : R×R → R, (a,b) 7→ ab,

and 0 and 1 elements of R, such that the following properties (R1) to (R4) hold:

(R1) (R,+,0) is an abelian group; this means:

(G1) a+ (b+ c)= (a+b)+ c for all a,b, c ∈ R;

(G2) 0+a = a+0= a for all a ∈ R;

(G3) every a ∈ R has an ‘opposite’ −a ∈ R satisfying
a+ (−a)= (−a)+a = 0;

(G4) a+b = b+a for all a,b ∈ R.

(R2) a(bc)= (ab)c for all a,b, c ∈ R (associativity of · );
(R3) a(b+ c)= (ab)+(ac) and (b+ c)a = (ba)+(ca) for all a,b, c ∈ R (the distributive

laws).
(R4) 1a = a1= a for all a ∈ R.

A ring R is called commutative if moreover (R5) holds:

(R5) ab = ba for all a,b ∈ R.

If a,b ∈ R then a+ b and ab are called the sum and the product of a and b; the
product ab is also denoted as a · b. The maps + and · are called the addition and
the multiplication in R. If (R,+, ·,0,1) is a ring then one says that R is a ring with
addition +, multiplication ·, zero element 0, and unit element 1.

A trivial example of a ring is the zero ring ({0},+, ·,0,0), with 0+0 = 0 ·0 = 0.
This is the only ring having 1= 0.

Some textbooks define ‘rings’ (R,+, ·,0) only satisfying (R1), (R2), and (R3); such
‘rings’ are called non-unitary rings.

A division ring (or skew field) is a ring R such that in addition to (R1) to (R4),
also (R6) holds:

(R6) 1 6= 0, and for all a ∈ R,a 6= 0 there exists an inverse a−1 ∈ R satisfying
a ·a−1 = a−1 ·a = 1.
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A field (French: corps; German: Körper, Dutch: lichaam, Flemish: veld) is a
commutative division ring (so (R1) to (R6) hold). A simple example of a field is the
set {0,1} with addition as in the abelian group Z/2Z and product 0·0= 0·1= 1·0= 0
and 1 ·1= 1. The unit element is 1 (6= 0), this field we denote by F2.

I.1.2 Example. The sets Z, Q, R, C of integers and rational, real, complex numbers
(respectively) are with the familiar addition and multiplication rings. Moreover
Z,Q,R, and C are commutative. The rings Q,R, and C are fields, and Z is not a
field (condition (R6) is not satisfied in Z).

I.1.3 Example. Fix n ∈ Z>0. The set Z/nZ = {0,1, . . . ,n−1} with i = i+ nZ ⊂ Z, is
equipped with an addition, since the elements i are the residue classes with respect
to the normal subgroup nZ⊂Z. The rule

a ·b := a ·b,

with a ·b the familiar multiplication in Z defines a product (verify for yourself that
this is well-defined: if a = a1 and b = b1, then indeed a ·b = a1 ·b1).

With respect to this addition and multiplication Z/nZ is a commutative ring
with unit element 1. In I.2.11 we will see that Z/nZ is a field if and only if n is a
prime number. For n = 1 we have Z/1Z which is the zero ring (hence, it is not a
field).

I.1.4 Example. Let n ∈Z≥0. The set M(n,R) of all real n×n-matrices is a unitary
ring with the familiar matrix addition and matrix multiplication. For n ≥ 2 this
ring is not commutative.
In an analogous way one defines the ring M(n,R) for an arbitrary ring R and
n ∈Z≥1.

I.1.5 Example. There are non-commutative division rings. Let K be a field (for
example R or Q) and take α, β ∈ K − {0}. The quaternion algebra (α, β)K consists of
expressions (quaternions)

a+bi+ c j+dk, with a, b, c, d ∈ K .

We say two quaternions are equal only when their components are:

a+bi+ c j+dk = a′+b′ i+ c′ j+d′k ⇐⇒ a = a′, b = b′, c = c′, d = d′.

The quaternion algebra is a ring, as follows. Quaternion are added componentwise:

(a+bi+ c j+dk)+ (a′+b′ i+ c′ j+d′k)= (a+a′)+ (b+b′)i+ (c+ c′) j+ (d+d′)k.

The multiplication of quaternions is based on the rules

i j =− ji = k, i2 =α, j2 =β, and

x(a+bi+ c j+dk)= (a+bi+ c j+dk)x = ax+bxi+ cx j+dxk

for x = x+0 · i+0 · j+0 ·k ∈ K . To obtain a ring one certainly needs

k2 = (i j)(i j)= ((i j)i) j = (i( ji)) j =−i2 j2 =−αβ,
ik = i(i j)=α j,

ki = (− ji)i =−α j,
jk = j(− ji)=−βi,

k j = (i j) j =βi.
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These equalities lead to

(a+bi+ c j+dk) · (a′+b′ i+ c′ j+d′k) =
= (aa′+bb′α+ cc′β−dd′αβ)
+(ab′+ba′− cd′β+dc′β)i
+(ac′+bd′α+ ca′−db′α) j
+(ad′+bc′− cb′+da′)k.

A straightforward verification shows that in this way indeed a ring is defined.
Given q = a+bi+ c j+dk ∈ (α,β)K , put

q := a−bi− c j−dk.

We define

N(q) := qq = (a+bi+ c j+dk)(a−bi− c j−dk)= a2 −αb2 −βc2 +αβd2.

In particular we have N(q) ∈ K for all quaternions q. Observe that

N(q) 6= 0⇒ (a+bi+ c j+dk)−1 = 1
N(q)

q̄ = a
N(q)

− b
N(q)

i− c
N(q)

j− d
N(q)

k.

As a consequence

(α,β)K is a division ring if and only if

for all a,b, c,d ∈ K it holds that

N(a+bi+ c j+dk)= 0 =⇒ a = b = c = d = 0.

Namely, if N(q) = 0 ⇒ q = 0, then q 6= 0 has as inverse q−1 := 1
N(q) q and therefore

(α,β)K is a division ring. Vice versa, if q 6= 0 exists with N(q) = 0, then qq = 0.
Should an inverse q−1 of q exist, then 0 = q−1qq = 1 · q = q which implies q = 0,
a contradiction. Hence our q has no inverse which shows (α,β)K is not a division
ring.

In the special case K =R quaternions were introduced in 1843 by Hamilton (Sir
William Rowan Hamilton, English-Irish mathematician, 1805-1865) as the quater-
nion algebra (−1,−1)R; one writes

H :== (−1,−1)R, so in H : i2 = j2 = k2 =−1.

In particular H is a (non-commutative) division ring, since q = a+ bi+ c j+dk
satisfies N(q)= a2+b2+ c2+d2 = 0 for a,b, c,d ∈R precisely when a = b = c = d = 0.

We now present a quaternion algebra which is not a division ring. In M(2,R)
take the matrices

i :=
(

1 0
0 −1

)
, j :=

(
0 1
1 0

)
, k := i j =− ji :=

(
0 1

−1 0

)
.

Note that in M(2,R) we have(
p q
r s

)
= p+ s

2

(
1 0
0 1

)
+ p− s

2

(
1 0
0 −1

)
+ q+ r

2

(
0 1
1 0

)
+ q− r

2

(
0 1

−1 0

)
.

In this way M(2,R) is identified with the quaternion algebra (1,1)R. This is not a
division ring: for instance j+k 6= 0 but N( j+k)= 0, so ( j+k) has no inverse in the
quaternion algebra (1, 1)R.

We refer to Section I.3 for more examples of rings and for other methods to
construct rings.

I.1.6 Definition. A subset R′ of a ring R is called a (unitary) subring of R if (D1),
(D2), and (D3) hold:

(D1) 1 ∈ R′;
(D2) R′ is a subgroup of the additive group of R, i.e., a+ (−b) ∈ R′ for all a,b ∈ R′;
(D3) ab ∈ R′ for all a,b ∈ R′.
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A subring R′ of a ring R is itself a ring, with the addition and multiplication of R.
If R is commutative, then so is R′.

A trivial example of a subring of R is R itself.

I.1.7 Example. Let i ∈C satisfy i2 =−1. The set Z[i]= {a+bi : a,b ∈Z}⊂C is with
the usual addition and multiplication of complex numbers a ring, hence a subring
of C. We call Z[i] the ring of Gaussian integers. It is a commutative ring with 1,
but not a field. The set Q[i]= {a+bi : a,b ∈Q} is also a subring of C and it is even a
field: the inverse of a+bi (6= 0) is given by a

a2+b2 + −b
a2+b2 i ∈Q[i]. Analogous remarks

apply to
Z[

p
m]= {a+b

p
m : a,b ∈Z},

Q[
p

m]= {a+b
p

m : a,b ∈Q},

with m an integer that is not the square of some integer (in the special case m =−1
one recovers Z[i] and Q[i]).

I.1.8 Notation. If R is a ring and a,b ∈ R, then one abbreviates the sum a+ (−b)
as a−b. So this is the sum of a and the opposite (additive inverse) of b.

I.1.9 Theorem. Let R be a ring. For a,b,b1, . . . ,bn, c ∈ R we have

a(b1 +b2 + . . .+bn) = ab1 +ab2 + . . .+abn,

(b1 +b2 + . . .+bn)a = b1a+b2a+ . . .+bna,

a(b− c) = ab−ac
a ·0 = 0 ·a = 0.

Proof. The first two equalities follow from the distributive law (R3) using mathe-
matical induction w.r.t. n. Since

a(b− c)+ac = a( (b− c)+ c)= a(b+ (−c)+ c)= ab

one concludes a(b− c)= ab−ac. Finally

a ·0= a · (0−0)= a ·0−a ·0= 0

and analogously 0 ·a = 0. This proves the theorem.

I.2 Units and zero divisors

By (R1) every ring R is an abelian group w.r.t. addition. This group is sometimes
denoted by R+; so R+ is the same set R, with the same addition as in R, however
one ‘forgets’ the multiplication.
With respect to the multiplication the unitary ring R only yields a group (R, ·,1)
in case R = {0}. In spite of this, the next definition allows one to talk about a
multiplicative group of a ring.

I.2.1 Definition. Let R be a ring with 1. An element a ∈ R is called a unit (or,
invertible) if some b ∈ R exists such that

ab = ba = 1.

(Observe the somewhat peculiar terminology: the unit element is indeed a unit,
but vice versa a unit need not be equal to the unit element.) The set of units in R is
denoted R× and is called the unit group of R (it is indeed a group as will be shown
in Theorem I.2.3). Some texts also use the notation U(R).

An element a ∈ R is called a left unit if ∃b ∈ R : ab = 1,
and it is called a right unit if ∃c ∈ R : ca = 1.
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If a ∈ R is both a left and a right unit, then a is a unit: namely,

ab = 1, ca = 1 =⇒ cab = c =⇒ b = c.

In a commutative ring the notion left unit (or right unit) of course coincides
with ‘unit’, but in a non-commutative ring a left unit is not necessarily also a right
unit: see I.3.

I.2.2 Example. Z× = {1,−1}, Q× =Q− {0}, R× =R− {0}, C× =C− {0}, H× = H− {0}.

In general, see (R6): R is a division ring ⇐⇒ R× = R− {0}.

I.2.3 Theorem. The unit group R× of a ring R with 1 is a group with respect to
multiplication.

Proof. First we show that ab ∈ R× in case a, b ∈ R×. Namely, if a,b ∈ R× then
c,d ∈ R exist with ac = ca = 1 and bd = db = 1, hence (ab) ·(dc)= (dc) ·(ab)= 1 with
dc ∈ R; so ab ∈ R×.

The associativity of the product follows immediately from (R2).
The set R× has a neutral element, namely 1 ∈ R× satisfies 1 ·1 = 1, and (R4)

shows that 1 also satisfies a ·1= 1 ·a = a.
Finally, if a ∈ R× then b ∈ R exists with ab = ba = 1; this b satisfies b ∈ R× hence

every element in R× has an inverse in R×.
We have now verified the 4 axioms of a group, hence the theorem is proven.

In case R is commutative, obviously R× is abelian. The converse is not true in
general: one can construct non-commutative (unitary) rings R with R× abelian,
see for example exercise 18.

I.2.4 Example. If A ∈M(n,R) is invertible with inverse B then AB = BA = I, where
I denotes the identity matrix. Furthermore

A is a left unit ⇐⇒ A is a right unit ⇐⇒ det(A) 6= 0.
So M(n,R)× = GL(n,R) (in fact this is the definition of the group GL(n,R)). Here
we may replace R by an arbitrary (unitary) commutative ring.

I.2.5 Example. Take R =Z[
p

m] as in I.1.7, with m an integer that is not a square.
We define the norm

N : R −→Z, N(a+b
p

m)= (a+b
p

m) · (a−b
p

m)= a2 −mb2.

One easily verifies that N(αβ)= N(α) ·N(β) for all α,β ∈ R, and N(0)= 0, N(1)= 1.
We claim:

α ∈ R× ⇐⇒ N(α)=±1;

⇐: for α = a+ b
p

m with N(α) = ±1 we have (a+ b
p

m) · (a− b
p

m) = ±1, hence
±(a−b

p
m) is an inverse of α.

⇒: is αβ = 1 then N(α) · N(β) = N(αβ) = N(1) = 1, and N(α), N(β) ∈ Z, hence
N(α)= N(β)=±1.

This shows that the search for units in Z[
p

m] is equivalent to finding solutions
of the equation

a2 −m ·b2 =±1

in integers a,b.
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For m < 0 solving this equation is not hard: it holds that a2−m·b2 = a2+|m|·b2,
and because squares of integers are nonnegative, the latter expression is only equal
to ±1 in the cases

a =±1, b = 0, and

a = 0, b =±1, m =−1.

Therefore
Z[i]× = {1, i,−1,−i} (the case m =−1),

Z[
p

m]× = {1,−1} if m <−1.

In case m > 0 (and not a square) the equation x2−my2 =±1 is much more inter-
esting. One can show that for every such m > 0 the “Pell equation” x2−my2 = 1 has
a solution x, y ∈Z>0. This yields a unit ε= x+ y

p
m > 1 of R =Z[

p
m], and infinitely

many units in R are than obtained as . . . ,±ε−2,±ε−1,±1,±ε,±ε2, . . .. Apparently
Pell’s equation has infinitely many solutions.
Example: If m = 2 then x1 = y1 = 1 is a solution of x2 −2y2 =±1, hence ε= 1+p

2 is
an element of Z[

p
2]×. Considering εn,n ≥ 0, yields the solutions

x0 = 1 y0 = 0 x5 = 41 y5 = 29
x1 = 1 y1 = 1 x6 = 99 y6 = 70
x2 = 3 y2 = 2 x7 = 239 y7 = 169
x3 = 7 y3 = 5
x4 = 17 y4 = 12

(And more generally: xn+1 = 2xn + xn−1, yn+1 = 2yn + yn−1.)
For m = 67 the ‘simplest nontrivial unit’ is the one with x = 48842, y = 5967.

More information may be found in H. Davenport, The higher arithmetic, Ch.IV,
section 11. This includes an explanation why the name of John Pell (1611-1685) is
erroneously attached to the equation.

In an arbitrary ring it could happen that a · b = 0 while a 6= 0, b 6= 0. For example
2 ·3= 0 in Z/6Z. In Z/8Z one even has 2

3 = 0.

I.2.6 Definition. An element a in a ring R is called a left zero divisor if:
a 6= 0 and ∃b ∈ R : b 6= 0∧ab = 0;
the element a is called a right zero divisor if a 6= 0 and ∃c ∈ R : c 6= 0∧ ca = 0;
it is called a zero divisor if it is either a left- or a right zero divisor (or both).

A nilpotent element is an a ∈ R, a 6= 0, such that an = 0 for some n ∈ N. In
particular a nilpotent element is a zero divisor, both left and right.

An element a ∈ R is called an idempotent element if a2 = a and 0 6= a 6= 1. An
idempotent element is in particular a zero divisor (both left and right), because
a2 = a implies a(a−1)= (a−1)a = 0 and 0 6= a 6= 1 implies a, a−1 6= 0.

I.2.7 Example. In M(2,R) consider

a :=
(

0 1
0 0

)
, b :=

(
1 0
0 0

)
, c :=

(
0 0
0 1

)
, .

Check for yourself that ab = 0, hence a is a left zero divisor and b is a right zero
divisor. Note that ba 6= 0, however ca = 0, so a is (anyway) a right zero divisor.
Moreover a2 = 0, hence a is a nilpotent element (this shows again that a is both a
left- and a right zero divisor).

Note also that b2 = b and c2 = c, so b and c are idempotent elements.

I.2.8 Theorem. An element a in a commutative ring R with 1 can not be both a
zero divisor and a unit.
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Proof. Note that since R is assumed to be commutative, the notions of left- and
right zero divisor coincide. Suppose a is a zero divisor: a 6= 0, and ab = 0 for some
b ∈ R,b 6= 0; and moreover a is a unit: ac = ca = 1 (c ∈ R). Then c ·a ·b = 1 ·b = b and
also c ·a ·b = c ·0= 0, hence b = 0, a contradiction. This proves I.2.8.

I.2.9 Remark. The proof of I.2.8 in fact shows that in an arbitrary (not necessarily
commutative) ring a left zero divisor is not a right unit (see Definition I.2.1). In the
same way a right zero divisor is not a left unit. In I.3 we will discuss an example
of a left unit which is also a left zero divisor.

I.2.10 Corollary. A division ring contains no zero divisors.

Proof. This is a consequence of I.2.8, since all elements 6= 0 in a division ring are
units.

I.2.11 Theorem. For n ∈Z>0 one has: Z/nZ is a field ⇐⇒ n is a prime number.

Proof. For a commutative ring R with 1 it holds that R is a field ⇔ R× = R− {0}.
If n is not prime, then either n = 1 and in that case 0= 1 in Z/1Z which shows Z/nZ
is not a field, or n = ab with 1< a,b < n. In the latter case

ā, b̄ 6= 0̄ ∈Z/nZ and āb̄ = n̄ = 0̄.

Hence by Theorem I.2.8 the element ā ∈ Z/nZ− {0̄} is not a unit, so Z/nZ is not a
field.

In case n is prime, suppose ā 6= 0̄ in Z/nZ. We have to show that ā admits
an inverse. Note that the additive group (Z/nZ)+ consists of n elements, a prime
number. Hence the subgroup generated by ā is all of (Z/nZ)+. Since 1̄ ∈ (Z/nZ)+,
an m ∈Z>0 exists with mā := ā+ . . .+ ā (m times) equal to 1̄. So m̄ā = ām̄ = 1̄, and
m̄ is the requested inverse of ā. This proves Theorem I.2.11.

I.2.12 Notation. Given a prime number p, the field Z/pZ is denoted by

Fp :=Z/pZ.

The field Fp consists of p (a prime number) elements. In Chapter IX we will con-
struct for various other positive integers q a field Fq containing precisely q ele-
ments. If q is not prime, this field Fq is of course not equal to Z/qZ because by
Theorem I.2.11 the latter ring is not a field in case q is not a prime.

I.2.13 Definition. An integral domain (or domain or integral ring) is a commuta-
tive ring with 1 6= 0 having no zero divisors.

I.2.14 Example. Examples of domains are fields (by I.2.10), for instance

Q, R, C, F59.

Moreover (unitary) subrings of fields are domains, for instance Z, Z[i]. In I.3 we
will see that every domain is a subring of a field.

Some rings that are not domains are H (not commutative), Z/1Z (1 = 0), and
Z/57Z (3 ·19= 0̄, so this ring contains zero divisors).

I.2.15 Theorem. Suppose R is a ring without zero divisors (for example, R could
be a domain), and let a,b, c ∈ R. Then:

(a) ab = 0 ⇐⇒ a = 0 or b = 0,
(b) ab = ac ⇐⇒ a = 0 or b = c.
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Proof. (a) ⇐ is a consequence of I.1.9; ⇒: if ab = 0 and a 6= 0 6= b, then a and b
are zero divisors, a contradiction.

(b) We have ab = ac ⇔ ab−ac = 0 ⇔ a(b− c) = 0 (by I.1.9) ⇔ a = 0 or b− c = 0 (by
(a) above) ⇔ a = 0 or b = c. This proves I.2.15.

I.3 Constructions of rings

We now present various important ways to construct rings.

If R1 and R2 are rings, then one defines a coordinatewise addition and multiplica-Product of rings
tion on R = R1 ×R2 by

(r1, r2)+ (s1, s2)= (r1 + s1, r2 + s2), (r1, r2) · (s1, s2)= (r1s1, r2s2)

Here r1, s1 ∈ R1, r2, s2 ∈ R2 . It is not hard to verify that this makes R a ring.
Denoting the zero element and the unit element of R by 0R and 1R respectively,
one concludes 0R = (0,0) and 1R = (1,1). The ring R is commutative if and only if
both R1 and R2 are commutative. Moreover R× = R×

1 ×R×
2 . The proofs of these

assertions are left as an exercise to the reader.
A ring R1 ×R2 with R1 6= {0} and R2 6= {0} necessarily contains zero divisors,

since
(a,0) · (0,b)= (a ·0, 0 ·b)= (0,0),

for all a ∈ R1, b ∈ R2.
As a final remark, note that the elements (1,0) and (0,1) are idempotents in

R1 ×R2.

Let R be a domain. We will construct a field called the field of fractions (or quotientFields of fractions
field) of R, notation: Q(R), with the following properties: first, R is contained in
Q(R). So in particular every s ∈ R with s 6= 0 has an inverse s−1 ∈Q(R) (regardless
of s being in R× or not). Secondly, every element of Q(R) can be written as r · s−1

for some r, s ∈ R, s 6= 0. The construction generalises the construction of Q = Q(Z)
starting from Z.

Let S = R−{0}. On the set R×S = {(a, s) : a, s ∈ R, s 6= 0} we define an equivalence
relation ∼ by

(a, s)∼ (b, t) ⇐⇒ at = bs.

It is not hard to verify that indeed ∼ defines an equivalence relation: reflexivity
((a, s) ∼ (a, s)) and symmetry ((a, s) ∼ (b, t) ⇒ (b, t) ∼ (a, s)) are trivial; transitivity
((a, s)∼ (b, t)∧ (b, t)∼ (c,u)⇒ (a, s)∼ (c,u)) is shown as follows.

From (a, s) ∼ (b, t) we deduce at = bs, hence atu = bsu. Now (b, t) ∼ (c,u) shows
bu = ct, so bus = cts. Since R is commutative, aut = atu = bsu = bus = cts = cst.
As

aut = cst =⇒ (au− cs)t = 0,

and t 6= 0, it follows from I.2.13 (b) that au = cs. As a consequence (a, s) ∼ (c,u),
which is what we wanted to show.

Now let Q(R) denote the set of equivalence classes of ∼:

Q(R)= (R×S)/∼ .

For the equivalence class containing (a, s) we introduce the suggestive notation a
s .

So
Q(R)=

{a
s

: a, s ∈ R, s 6= 0
}
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and a
s
= {(b, t) ∈ R×S : (a, s)∼ (b, t)}

and
a
s
= b

t
⇐⇒ at = bs.

We define an addition and a multiplication on Q(R) by

a
s
+ b

t
= at+bs

st
(note : st 6= 0 because R is a domain),

a
s
· b

t
= ab

st
.

Of course one needs to verify that these operations are well defined, in other words,
they do not depend on the choice of a pair in the given equivalence class. In formu-
las: if a′

s′ = a
s and b′

t′ = b
t then we have to verify that a′ t′+b′s′

s′ t′ = at+bs
st and a′b′

s′ t′ = ab
st .

This is indeed the case:

a′

s′
= a

s
∧ b′

t′
= b

t
=⇒ a′s = as′ ∧ b′t = bt′ =⇒

(a′t′+b′s′)st = a′st′t+b′ts′s = as′t′t+bt′s′s
= (at+bs)s′t′ =⇒ a′ t′+b′s′

s′ t′ = at+bs
st

and for the product the verification is even less involved.
The verification that Q(R) equipped with this addition and multiplication, and

using the zero element 0
1 and the unit element 1

1 satisfies (R1) up to (R6) is some-
what time consuming but it yields no difficulties. We conclude that Q(R) is a field.

We consider R as a subring of Q(R) by identifying the element a ∈ R with
a
1 ∈Q(R):

R ⊂Q(R), r = r
1

.

Note that in this way distinct elements of R remain distinct in Q(R) since by defi-
nition a

1 = b
1 ⇔ a ·1 = b ·1 ⇔ a = b. Moreover a

1 + b
1 = a·1+b·1

1·1 = a+b
1 and a

1 · b
1 = ab

1 , so
indeed the elements { a

1 : a ∈ R} identified with R form a subring of the field Q(R).
For s ∈ S = R−{0} the inverse in Q(R) is 1

s : namely, in Q(R) one has 1
s · s

1 = s
s = 1

1 .
So using slightly sloppy notation, one concludes s−1 = 1

s . As a consequence, any
a
s ∈ Q(R) satisfies a

s = a
1 · 1

s = a · s−1. This completes the construction of the field
of fractions of R, satisfying the properties mentioned earlier. The assertion from
Example I.2.14 stating that every domain is a subring of some field also follows
from this construction, since R ⊂Q(R).

I.3.1 Example. Any field K gives rise to a ring of polynomials with coefficients in K
in the variable X , called K[X ]. The precise definition will be given in Chapter III.1.
The ring K[X ] is a domain, and we define the field of rational functions in one
variable over K by

K(X ) :=Q(K[X ]).

Some elements of K(X ) are 1
1+X = X

X+X2 and 1−X2

1−X+X3 .

For an important generalisation in the theory of commutative rings of the con-
struction of fields of fractions we refer to Exercise 28.
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Suppose (A,+,0) is an abelian group, and let End(A) denote the set of endomor-Endomorphism
rings. phisms of A:

End(A) := { f : A → A : f (a+b)= f (a)+ f (b) ∀a,b ∈ A } .

For f , g ∈End(A) we define f + g : A → A and f g : A → A by

( f + g)(a)= f (a)+ g(a), f g(a)= f (g(a)).

The assumption that A is abelian assures that f +g ∈End(A). We have f g ∈End(A)
as well. It is a straightforward verification that End(A) equipped with this addition
and multiplication is a ring, called the endomorphism ring of A. It is a ring with
unit element idA , the identity map. The unit element is not equal to the zero
element, except in the case A = 0.

I.3.2 Example. Let A =Rn, with n ∈Z>0. Considering any n×n-matrix over R as
an R-linear endomorphism of the vector space A, the addition and multiplication
of matrices correspond to the addition and multiplication of endomorphisms as
defined above. In this way M(n,R) may be regarded as a subring of End(A).

As M(n,R) is non-commutative for n ≥ 2, we conclude that End(A) is not com-
mutative. So apparently abelian groups A exist for which End(A) is not a commu-
tative ring.

I.3.3 Example. Put A =R[X ]+ (the additive group of the ring of polynomials over
R). Define f, g, x ∈End(A) by

f : a0 +a1X + . . .+an X n 7→ a1 +a2X + . . .+an X n−1,
g : a0 +a1X + . . .+an X n 7→ a0,
x : a0 +a1X + . . .+an X n 7→ a0X +a1X2 . . .+an X n+1.

Moreover write 1 = idA , the unit element of End(A). One computes without diffi-
culty that in End(A) it holds that:

f x = 1, f g = 0, gx = 0.

So f is a left unit as well as a left zero divisor in End(A). By Remark I.2.9 it follows
that f is neither a right unit nor a right zero divisor. Similarly x is a right unit and
a right zero divisor, but not a left unit and not a left zero divisor.

Differentiation defines d ∈End(A):

d : a0 +a1X + . . .+an X n 7→ a1 +2a2X + . . .+nan X n−1.

Note that we have:

dx(a0 +a1X + . . .+an X n) = d(a0X +a1X2 + . . .+an X n+1)
= a0 +2a1X + . . .+ (n+1)an X n,

and
xd(a0 +a1X + . . .+an X n) = x(a1 +2a2X + . . .+nan X n−1)

= a1X +2a2X2 + . . .+nan X n.

Apparently any f ∈ A satisfies (dx− xd) f = f , hence in the ring End(A) one finds:

dx− xd = idA = 1.

We consider R as a subring of End(A) via

a : a0 +a1X + . . .+an X n 7→ aa0 +aa1X + . . .+aan X n.
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Since End(A) is a ring, every finite linear combination

<∞∑
i, j

ai j xid j, ai j ∈R

is in End(A). Repeatedly applying the rule dx− xd = 1 one concludes that

W :=
{<∞∑

i, j
ai j xid j ∈End(A)

}

is a subring of End(A). One calls W the Weyl algebra; it consists of linear differen-
tial operators with real polynomials in x as coefficients.

Let V be a set and R a ring and T = RV the set of all maps from V to R. One makesRings of functions
T into a ring by using the pointwise sum and product of functions f , g : V → R:

( f + g)(v)= f (v)+ g(v) ∈ R,

( f g)(v)= f (v) · g(v) ∈ R,

for any v ∈ V . In case V = {v1,v2, . . . ,vn} consisting of n ∈ Z>0 distinct elements,
then RV is ‘the same’ ring as R×R× . . .×R (product of rings: see the beginning of
I.3). Note that RV contains zero divisors whenever #V ≥ 2,R 6= {0}: take v ∈ V and
r ∈ R−{0} and define f ∈ RV by f (v)= r, f (w)= 0 for all w 6= v. Similarly take g ∈ RV

defined by g(v)= 0 and g(w)= r for all w 6= v. Then g 6= 0 6= f and gf = f g = 0.

Other interesting rings are obtained by putting additional conditions on the
functions in T. As an example, take V = [0,1] the closed interval between 0 and 1,
and R =R, and consider

C([0,1])= { f : [0,1]→R : f is continuous}.

This is a subring of the ring R[0,1] defined above, and this subring also contains
zero divisors: define f , g ∈ C([0,1]) by

f (x)=


x− 1
2 , x ≥ 1

2

0 x < 1
2

g(x)=


1
2 − x, x ≤ 1

2

0 x > 1
2

then f 6= 0 6= g and f g = 0= gf .

Let R be a ring and G a group (written multiplicatively). The group ring R[G] of GGroup rings
over R consists by definition of all formal expressions∑

g∈G
ag · g

with ag ∈ R for all g ∈ G and ag = 0 for all except at most finitely many g ∈ G.
Two such formal expressions

∑
g∈G

ag · g and
∑

g∈G
bg · g are considered equal only if

∀g ∈G : ag = bg. Addition is done component wise:( ∑
g∈G

ag · g

)
+

( ∑
g∈G

bg · g

)
= ∑

g∈G
(ag +bg) · g,
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and the multiplication one finds by combining the multiplication in R with the one
in G:

(ag · g) · (bh ·h)= (agbh) · gh (ag,bh ∈ R, g,h ∈G).

In the general case (anticipating distributivity) this leads to

(
∑
g∈G

ag g) · ( ∑
h∈G

bhh)= ∑
k∈G

(
∑

g,h,gh=k
agbh)k.

We leave the somewhat elaborate verification that in this way R[G] indeed is a ring
as an exercise to the reader.

In case R and G are both commutative, so is R[G]. If R contains a unit ele-
ment 1, then R[G] also contains a unit element, namely 1 · e where e is the neutral
element of G. In what follows we simply denote this unit element of R[G] by 1.

If R is a ring with 1, then G can be considered as a subgroup of R[G]× via

g = ∑
h∈G

ahh, with ah =
{

0 if h 6= g
1 if h = g.

In case g ∈G has order n, with 1< n <∞ then

1+ g+ g2 + . . .+ gn−1

is a zero divisor of R[G] because

(1− g)(1+ g+ . . .+ gn−1)= 1− gn = 0, and 1− g 6= 0.

It is an unsolved problem if R[G] can have zero divisors in the special case that R
is a field and G a group with as only element of finite order the neutral element e.

I.3.4 Example. Take R =Z and G = (Z/5Z)× = {1,2,3,4}. In R[G] we have

(a ·1+b ·2+ c ·3+d ·4) · (k ·1+` ·2+m ·3+n ·4)
=

(ak+bm+ c`+dn) ·1+ (a`+bk+ cn+dm) ·2
+

(am+bn+ ck+d`) ·3+ (an+b`+ cm+dk) ·4.
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I.4 Exercises

1. Suppose that an element 1′ in a ring R has the property 1′a = a1′ = a for all
a ∈ R. Prove that 1′ = 1.

2. Let R be a ring. Prove that every a ∈ R× has exactly one inverse.
3. Prove that the set of all even integers 2Z equipped with the familiar addition

and multiplication is a commutative ring without unit element.
4. Let M(2,2Z) be the subset of M(2,R) (see I.1.4) consisting of all 2×2-matrices

having coefficients in 2Z. Show that M(2,2Z) equipped with the usual matrix
addition and matrix multiplication is a non-commutative ring without unit ele-
ment.

5. Let (A,+,0) be an abelian group and define a multiplication on A by a ·b = 0 for
all a,b ∈ A. Prove that A in this way becomes a commutative ring. Does this
ring have a unit element?

6. Let R be a non-unitary ring with the property R+ ∼=Q/Z. Prove that ab = 0 for
all a,b ∈ R.

7. Let m be an integer that is not a square and put α := 1+pm
2 ∈C.

(a) For which m is Z[α] := {a+bα : a,b ∈Z} a subring of C?

(b) Sketch Z[α] as a subset of the complex plane in case m =−3.

8. Let R be a (not necessarily unitary) ring and define an addition and a multipli-
cation on Z×R by

(n, r)+ (m, s)= (n+m, r+ s),

(n, r) · (m, s)= (nm,ns+mr+ rs)

for n,m ∈Z, r, s,∈ R (here

ns = s+ s+ . . .+ s (n times)

in case n > 0, etc.).

(a) Show that Z×R is in this way a ring with 1.

(b) Prove that every ring can be embedded as a subring in a ring with 1.

9. Let R be a ring with 1 and H an additive subgroup of R. Define R0 ⊂ R by
R0 = {x ∈ R : ∀h ∈ H : xh ∈ H}. Prove that R0 is a subring of R and R0 6= {0} in
case R 6= {0}.

10. Suppose R is a ring and a ∈ R. Define λa,ρa : R → R by λa(x) = ax,ρa(x) = xa.
Show that λa and ρa are endomorphisms of the additive group R+ of R.

11. Let R be a ring. On R we define a new multiplication ∗ by a ∗ b = ba, for
a,b ∈ R. Show that R with its original addition and this new multiplication is
a ring. This ring is called the opposite ring of R, notation: R0.

12. Suppose R is a ring. The center of R is

Z (R)= {a ∈ R :∀x ∈ R : ax = xa}.

Prove that Z (R) is a subring of R.
13. Suppose that the ring R has the property x3 = x for all x ∈ R. Show that every

x ∈ R satisfies x+ x+ x+ x+ x+ x = 0.
14. Suppose R is a ring consisting of 10 elements. Prove that R is commutative.
15. (Newton’s Binomium). Let R be a ring. For n ∈ Z, r ∈ R we define nr ∈ R as in

Exercise 8.
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(a) Suppose R is commutative. Prove that

(∗) (a+b)n =
n∑

k=0

(
n
k

)
·akbn−k

for all a,b ∈ R and n ∈Z>0.

(b) Vice versa, prove that if (∗) holds for all a,b ∈ R and n ∈Z>0, then the ring
R is commutative.

16. Let α = 1.3247 · · · be the real number satisfying α3 = α+ 1. Show that Z[α]
defined as Z[α] := {a+ bα+ cα2 : a,b, c ∈ Z} is a subring of R. Moreover, show
that α,α−1,α2 −1,α3 −1 ∈Z[α]×.

17. Let R be a commutative ring with 1 and n ∈ Z>0. For A ∈ M(n,R) one defines
det(A) using the well known formula from linear algebra:

det(A)= ∑
σ∈Sn

ε(σ)
n∏

i=1
aiσ(i) with A = (ai j)1≤,i, j≤n,

where Sn denotes the group of permutations of the set {1, . . . ,n} and ε(σ) is the
sign of σ ∈ Sn. Prove A ∈M(n,R)× ⇐⇒ det(A) ∈ R×.

18. Let R be a ring with 1 6= 0 and put T =
{(

a b
c d

)
∈ M(2,R) : c = 0

}
.

(a) Show that T is a subring of M(2,R) and T is not commutative.

(b) Prove: [
a b
0 d ] ∈ T× ⇔ a ∈ R× and d ∈ R×.

(c) Prove: T× is commutative ⇐⇒ R× = {1}.

(d) In the special case that R =Z/2Z, show that T is a non-commutative ring
with a commutative group of units.

19. Suppose m ∈Z>0 satisfies
p

m ∉Z.

(a) Let ε= a+ b
p

m ∈Z[
p

m]×. Prove: {ε,ε−1,−ε,−ε−1} = {±a± b
p

m}, and con-
clude from this: ε> 1⇔ a > 0∧b > 0.

(b) Assume that Z[
p

m]× 6= {±1}. Show that Z[
p

m] contains a smallest unit ε1
with ε1 > 1, and prove that Z[

p
m]× = {±εm

1 : m ∈Z}∼= (Z/2Z)×Z.

(c) Find the smallest unit > 1 in the ring Z[
p

5].

20. Let R be a ring and a ∈ R. Define

S = {x ∈ R : ax = xa}.

(a) Show that S is a subring of R.

(b) Prove that S× = R×∩S.

21. Let A ∈ M(n,R). Prove: A is a left zero divisor ⇔ A is a right zero divisor
⇔ A 6= 0 and det(A)= 0.

22. Find an example of a commutative ring R with 1 containing an element a with
the properties: a 6= 0, a is not a unit in R, and a is not a zero divisor of R.

23. Find an example of an infinite commutative ring containing zero divisors.
24. Let K be a field, and define on R = K ×K an addition and a multiplication by

(x, y)+ (u,v)= (x+u, y+v),

(x, y) · (u,v)= (xu, xv).

(a) Prove that R is a non-commutative ring without a unit element.

(b) Determine the left zero divisors of R and also the right zero divisors of R.
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25. Let R be a commutative ring with 1, and R′ a subring of R such that 1 ∈ R′. For
each of the following assertions, provide a proof or a counter example:

(a) if R is a field, then R′ is also a field;

(b) if R is a domain, then R′ is also a domain;

(c) if R′ is a domain, then R is also a domain.

26. Let R1 and R2 be rings. Show: R1×R2 is a domain ⇔ one of the rings R1,R2 is
a domain and the other is the zero ring {0}. Do the same exercise with the term
‘domain’ replaced by ‘division ring’, and also by ‘field ’.

27. An arithmetical function is a function f : Z>0 → C. The sum f1 + f2 of two
arithmetical functions f1 and f2 is defined by

( f1 + f2)(n)= f1(n)+ f2(n), for n ∈Z>0.

The convolution product f1∗ f2 of two arithmetical functions f1 and f2 is defined
by

( f1 ∗ f2)(n)= ∑
d|n

f1(d) f2(
n
d

) for n ∈Z>0;

here the sum is taken over the positive divisors d of n.

(a) Show that the set R of all arithmetical functions is a domain with respect
to these two operations.

(b) Let f ∈ R. Prove: f ∈ R× ⇔ f (1) 6= 0.

28. Let R be a commutative ring, and S ⊂ R a nonempty subset with the property

s, t ∈ S =⇒ st ∈ S.

(a) Show that the relation ∼ defined by

(a, s)∼ (b, t) ⇐⇒ ∃u ∈ S : atu = bsu

is an equivalence relation on R×S.

(b) Let S−1R = (R×S)/ ∼, and let a
s ∈ S−1R denote the equivalence class con-

taining (a, s). Show that S−1R equipped with the following addition and
multiplication is a commutative ring with 1:

a
s
+ b

t
= at+bs

st
,

a
s
· b

t
= ab

st
.

(c) Prove: S−1R is the zero ring ⇐⇒ 0 ∈ S.

29. Let A be an abelian group. Prove: End(A)× =Aut(A).
30. Show that { f ∈ C[0,1]): f is three times continuously differentiable} is a subring

of C([0,1]).
31. Let R be a ring with 1 and suppose a,b ∈ R satisfy ab = 0. Show that (ba)2 = 0

and 1+ba ∈ R×.
32. (G. Higman, Proc. London Math. Soc. 46 (1940), 231-248).

(a) Let a = (13)·{1−(12)},b = 1+(12) ∈Z[S3]. Show ab = 0, and use Exercise 31
to find a unit of Z[S3] not of the form ±σ with σ ∈ S3.

(b) Suppose G is a group and g ∈G has finite order and < g > is not a normal
subgroup of G. Prove that Z[G] contains a unit not of the form ±h with
h ∈G.

(c) Let G be a group and suppose g ∈G has order 5. Show 1− g− g−1 ∈Z[G]×.

33. A Boolean ring (named after the English mathematician George Boole, (1815-
1864)) is a ring R such that x2 = x for all x ∈ R.
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(a) Show that x+ x = 0 for all x in a Boolean ring R.

(b) Prove that every Boolean ring is commutative.

(c) Suppose that the Boolean ring R is a field. Prove that R contains only two
elements.

34. Let X be a set and R = P (X ) the set of all subsets of X . For A,B ∈ R (so
A,B ⊂ X ) define

A+B = (A∪B)− (A∩B), AB = A∩B.

Show that in this way R defines a commutative ring with 1, and R is a field if
and only if #X = 1. Moreover, show that R is a Boolean ring (Exercise 33).

35. Suppose R is a unitary ring. Let v ∈ R be a right inverse of u ∈ R: uv = 1. Show
that the following 3 assertions are equivalent:

(a) u has more than one right inverse;

(b) u is not a unit;

(c) u is a left zero divisor.

36. (Due to Irving Kaplansky, Canadian/American mathematician, 1917–2006.)
Let R be a unitary ring and u ∈ R such that u has more than one right inverse.
Prove that u has ∞ many right inverses.
(Hint: if uv = 1 and vu 6= 1, consider the right inverses v+ (1−vu)un.)

37. Let R be a finite unitary ring and take u ∈ R − {0}. Show that the following
assertions are equivalent:

(a) u has a right inverse;

(b) u has a left inverse;

(c) u is not a left zero divisor;

(d) u is not a right zero divisor;

(e) u is a unit.

38. Let R be a unitary ring. Show for a, b ∈ R that

1−ab ∈ R× ⇐⇒ 1−ba ∈ R× ⇐⇒
(

1 a
b 1

)
∈M(2,R)×.
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II RING HOMOMORPHISMS AND IDEALS

II.1 Ring homomorphisms

In Linear Algebra one especially studies the maps between vector spaces over a
given field which preserve the vector space structure; the so-called linear maps.
In Group Theory one similarly studies group homomorphisms: the maps between
groups preserving the group structure. We will now do the analogous concept for
rings.

II.1.1 Definition. A map f : R1 → R2 from a (unitary) ring R1 to a (unitary) ring
R2 is called a (unitary) ring homomorphism if

(i) f (1) = 1,
(ii) f (a+b) = f (a)+ f (b),
(iii) f (ab) = f (a) · f (b)

for all a,b ∈ R1. (The ‘(unitary)’ in the definition of ring homomorphism corresponds
to the first condition (i).)

A bijective ring homomorphism is called a ring isomorphism, the inverse of such
a bijection is ring homomorphism as well. Two rings R1 and R2 are called isomor-
phic if a ring isomorphism R1 → R2 exists; notation: R1 ∼= R2. An isomorphism
from a ring R to itself is called a (ring)-automorphism of R.

A unitary ring homomorphism from a field to a field is called a field homomor-
phism, and similarly we have a field isomorphism and a field automorphism.

II.1.2 Examples. 1. If R′ is a subring of a ring R then the inclusion map R′ → R
is an injective ring homomorphism.

2. Let n ∈Z>0. The canonical map

f :Z−→Z/nZ, f (a)= a,

is a ring homomorphism, because a+b = a+b and a ·b = ab.
3. For every s ∈ R× the map (conjugation by s):

γs : R −→ R, r 7→ srs−1

is a (bijective) ring homomorphism. If R is commutative, then evidently γs = idR
for all s ∈ R×. In case R = M(n,R) a change of basis in Rn induces a conjugation
γs on M(n,R).

4. If R1, R2 are rings then the projection f : R1 ×R2 → R1, f ((a,b)) = a is a ring
homomorphism.
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II.1.3 Definition. If f : R1 → R2 is a ring homomorphism, then the image of f is
defined as

f (R1) := {y ∈ R2 : ∃x ∈ R1 with y= f (x)}.

The kernel of f is (as in the case of additive groups) defined as:

Ker( f ) := {x ∈ R1 : f (x)= 0}.

Ring homomorphisms have properties that in many ways are analogous to those
of group homomorphisms. For example: is f : R1 → R2 a ring homomorphism then
the image f (R1) of f is a subring of R2. The easy proof of this is left as an exercise.

Since a ring homomorphism is in particular a homomorphism of additive groups,
one finds:

Ker( f )= {0} ⇐⇒ f is injective.

The kernel of a (unitary) ring homomorphism f is a possibly non-unitary subring,
namely f (1) is not necessarily equal to 0.

II.2 Ideals

In Group Theory it turned out that not all subgroups occur as kernels of group
homomorphisms: only the normal subgroups do. Similarly we will now see that
not all non-unitary subrings occur as kernel of some ring homomorphism: only
so-called ideals do, which we will now define.

II.2.1 Definition. Let R be a ring. An ideal of R is a subset I ⊂ R satisfying:

(I1) I is a subgroup of the additive group of R, in other words:

(H0) 0 ∈ I;
(H1) a−b ∈ I for all a,b ∈ I;

(I2) for all r ∈ R and a ∈ I we have ra ∈ I and ar ∈ I.

II.2.2 Remark. Instead of ‘ideal’ one also says ‘two sided ideal’. Replacing (I2) by
the weaker assumption

(I2’) ∀r ∈ R : ∀a ∈ I : ra ∈ I

the definition of a left ideal of R is obtained. Taking ar instead of ra one has the
definition of a right ideal.

An example of a left ideal which is not a right ideal - hence not an ideal - is
given in Exercise II.5.23. We will mostly be interested in commutative rings, and
here the three notions evidently coincide.

II.2.3 Example. Trivial examples of ideals are {0} and R itself. For every n ∈Z the
subset

nZ := {nk ∈Z : k ∈Z} (⊆Z)

of Z is an ideal of Z (verify!).

II.2.4 Remark. An ideal is a subring, in general non-unitary, however the converse
(is every subring an ideal?) is far from true in general: Z is a subring of Q but not
an ideal of Q since, e.g.,

r = 1
2
∈Q, a = 1 ∈Z, but ra = 1

2
∉Z

so (I2) does not hold. In general: is R a ring with 1 and I an ideal of R with 1 ∈ I,
then I = R (namely, apply (I2) to a = 1); see II.4.4 for a generalisation of this.
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II.2.5 Theorem. If f : R1 → R2 is a ring homomorphism, Ker( f ) is an ideal of R1.

Proof. We verify (I1) and (I2) for I =Ker( f ).
(I1) This follows from the fact that f is a group homomorphism R+

1 −→ R+
2 .

(I2) For r ∈ R1, a ∈Ker( f ) one has f (a)= 0, hence

f (ra)= f (r) f (a)= f (r) ·0= 0, f (ar)= f (a) f (r)= 0 · f (r)= 0,

which shows ra,ar ∈Ker( f ), as desired. This shows II.2.5.

Later (see II.3.5) we will see that the converse of II.2.5 holds as well: every ideal
I ⊂ R is the kernel of a suitably chosen ring homomorphism.

II.2.6 Example. For n > 1 the kernel of the canonical ring homomorphism

f :Z−→Z/nZ, a 7→ ā

equals the ideal nZ discussed in Example II.2.3.

II.2.7 Example. A straightforward verification shows that

f :Z[i]−→F2 (=Z/2Z), a+bi 7→ ā+ b̄ (a,b ∈Z)

is a (surjective, unitary) ring homomorphism. We claim:

Ker( f )= {2r+ (1+ i)s ∈Z[i] : r, s ∈Z[i]}= { (1+ i)t ∈Z[i] : t ∈Z[i]}.

(If everywhere in this example i =p−1 is replaced by
p−5, then the first ‘=’ still

holds, but the second one does not: see Exercise II.5.17.) We start by proving the
first equality:
‘⊃’ since f is a ring homomorphism, all r, s ∈Z[i] satisfy

f (2r+ (1+ i)s)= f (2) f (r)+ f (1+ i) f (s)= 0 · f (r)+0 · f (s)= 0.

‘⊂’ If a+bi ∈Ker( f ) for some a, b ∈Z, then a+b ≡ 0 mod2 hence a = b+2k for some
k ∈Z. Then a+bi = b+2k+bi = 2k+ (1+ i)b with k, b ∈Z⊂Z[i].

For the second ‘=’ sign one observes:

2r+ (1+ i)s = (1+ i)(1− i)r+ (1+ i)s = (1+ i) · ((1− i)r+ s)= (1+ i)t,

for t = (1− i)r+s, showing ‘⊂’. Moreover ‘⊃’ is evident since one can take r = 0, s = t.
By Theorem II.2.5 both sets are ideals. Check that this can also be seen directly

from the definition of an ideal.

As we saw in the example above, the subsets

2Z[i]+ (1+ i)Z[i], (1+ i)Z[i]

are ideals in Z[i], in fact the same ideals. More generally:

II.2.8 Definition. Let R be a commutative, unitary ring and take a1, a2 . . . ,an ∈ R.
The ideal generated by a1, a2, . . . ,an is defined as:

Ra1 +Ra2 + . . .+Ran = {r1a1 + r2a2 + . . .+ rnan : r1, r2, . . . , rn ∈ R}.

If it is clear from the context which ring R is considered, then one writes

(a1, a2, . . . ,an) := Ra1 +Ra2 + . . .+Ran.

An ideal I ⊂ R is called a principal ideal if I = (a)= Ra for some a ∈ R.
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Verify using Definition II.2.1 that indeed this defines an ideal (in case R is not
commutative, one in general only obtains a left ideal in this way).

II.2.9 Examples. The ideal (2, 1+ i) ⊂Z[i] is principal, namely we showed earlier
that (2, 1+ i)= (1+ i).

Also the ideal I = (4, 6) ⊂ Z turns out to be a principal ideal: 2 = (−1)4+6 ∈ I
hence 2Z⊂ I (use (I2)) and on the other hand 4, 6 ∈ 2Z which implies I = 4Z+6Z⊂ 2Z.
This shows (4, 6)= (2).

Note that in the above definition, since R is unitary, a1,a2, . . . ,at are contained
in the ideal Ra1 +Ra2 + . . .+Rat. Any ideal I containing all ai also contains by
(I2) all elements in Ra1, Ra2, . . . ,Rat and therefore using (I1) all elements from
Ra1+Ra2+. . .+Rat. Hence Ra1+. . .+Rat is the smallest ideal containing a1,a2, . . . ,at.

In Section II.4 we will study generators of ideals in more detail.

Given any ring R one can define (see Chapter III.1 below) the ring of polynomials in
the variable X with coefficients in R, denoted R[X ]. This is analogous to probably
familiar polynomial rings such as Z[X ] and R[X ]. For this reason the next result
is given in a rather general setting.

II.2.10 Theorem. Let R be a commutative ring with 1 and α ∈ R.
The map ‘evaluation in α’ defined as

evα : R[X ]−→ R, evα

(
n∑

i=0
ai X i

)
=

n∑
i=0

ai ·αi

is a (surjective, unitary) ring homomorphism (note that evα( f )= f (α)).
Moreover

Ker(evα)= (X −α)= {(X −α)g : g ∈ R[X ]}.

Proof. The fact that evα defines a ring homomorphism we will show in much
more generality in Theorem III.2.1). It is surjective since any r ∈ R satisfies r = evα(r).
We now show the second assertion.
‘⊃’: Note that evα(X −α) = α−α= 0, hence X −α ∈ Ker(evα), and because Ker(Φα)
is an ideal then also R[X ](X −α)⊂Ker(evα).

‘⊂’: Suppose that
n∑

i=0
ai X i ∈Ker(evα), then

n∑
i=0

aiα
i = 0, hence

∑n
i=0 ai X i =∑n

i=0 ai X i −∑n
i=0 aiα

i

= ∑n
i=0 ai(X i −αi)

= ∑n
i=0 ai(X i−1 +αX i−2 + ...+αi−3X2 +αi−2X +αi−1)(X −α)

∈ R[X ](X −α).

This proves Theorem II.2.10.

II.2.11 Examples. A simple special case is the ring homomorphism

ev0 :R[X ]−→R, f 7→ f (0).

Writing f =∑
ai X i we find f (0)= a0 hence

Ker(ev0)= { f ∈R[X ] : f =∑
ai X i and a0 = 0}.

Since a0 = 0 precisely when f = X g with g = ∑n
i=1 ai X i−1 ∈ R[X ], one concludes

that indeed Ker(ev0)= XR[X ].
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For the next example, note that in R[X , Y ] every polynomial can be written as

∑
i, j

ai j X iY j =
m∑

j=0

(
n∑

i=0
ai j X i

)
Y j =

m∑
j=0

f j(X )Y j

where f j(X ) = ∑n
i=0 ai j X i. Hence a polynomial in two variables X , Y can be re-

garded as a polynomial in one variable Y with coefficients from the ring R[X ]:

R[X , Y ]= (R[X ])[Y ].

Any f ∈R[X ] therefore defines a ring homomorphism

ev f :R[X , Y ]= (R[X ])[Y ]−→R[X ], F(X ,Y ) 7→ F(X , f (X )).

The kernel of this ring homomorphism is by Theorem II.2.10 the ideal

Ker(ev f )= { (Y − f (X ))G(X ,Y ) : G(X ,Y ) ∈R[X , Y ] } .

A special case is obtained when f = 0. Verify (without using the theorem) that in
this case indeed (Y )⊂R[X ,Y ] is the kernel of ev0.

II.3 The factor ring R/I.

Let R be a ring and I ⊂ R an ideal. Then I is a normal subgroup of the additive
group of R (by (I1) and the fact that R+ is abelian). The set of residue classes

R/I := { a := a+ I ⊂ R : a ∈ R }

of I in R is therefore an additive group, with addition a+ b = a+b. Two elements
ā, b̄ ∈ R/I, so two subsets of R as above are equal precisely when a−b ∈ I:

ā = b̄ ⇐⇒ a+ I = b+ I ⇐⇒ a−b ∈ I,

namely ⇒: a+I = b+I and 0 ∈ I implies a+0= b+i for some i ∈ I, hence a−b = i ∈ I;
⇐: If a = b+ i with i ∈ I then it follows, since I is a subgroup of R+, that i+ I = I
and therefore a+ I = b+ i+ I = b+ I.

We now define a multiplication on R/I by

(a+ I) · (b+ I) := ab+ I, i.e., a ·b = ab.

To verify that this is well one needs to show: if

a = a1, b = b1 then ab = a1b1.

The condition a = a1 implies a1 = a+ i with i ∈ I, and analogously b1 = b+ j with
j ∈ I. Hence:

a1b1 = (a+ i)(b+ j)= ab+ ib+a j+ i j = ab+k where k ∈ I,

because I is an ideal which implies ai, b j, i j ∈ I by (I2), and then by (I1) the sum
k is in I as well. Now a1b1 = ab+ k, k ∈ I, is equivalent to a1b1 = ab. As a result,
the multiplication on R/I is well defined.

II.3.1 Remark. The rule ab = ab is not well defined in the group Q/Z (try for
example a = 1

2 , b = 3, a1 = 1
2 , b1 = 2). The subgroup Z of Q is therefore not an ideal

in Q, as we already noticed in II.2.4.
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It turns out that (R/I,+, ·,0,1) is a ring, called the factor ring (or quotient ring) of
R modulo I.

By way of example we verify one of the distributive laws (R3):

a(b+ c) = a(b+ c) (by definition of+)
= a(b+ c) (by definition of ·)
= ab+ac (since (R3) holds in R)
= ab+ac (by definition of+)
= a ·b+a · c (by definition of ·).

In a similar way one verifies the remaining ring-axioms.
If R is commutative, so is R/I. If R contains a 1 then 1̄ is a unit element of R/I.

II.3.2 Example. The rings Z/nZ are special cases of this construction. Taking for
example n = 6 we see that R/I may have zero divisors even if R does not.

II.3.3 Definition. Given a ring R and an ideal I ⊂ R, the map

φ : R −→ R/I, φ(a) := a = a+ I,

is called the natural or canonical map.

II.3.4 Theorem. For any ring R and ideal I ⊂ R the natural map φ : R → R/I is a
surjective ring homomorphism with kernel Ker(φ)= I.

Proof. Surjectivity of φ is clear. From

φ(a+b)= a+b = a+b =φ(a)+φ(b),

φ(ab)= ab = a ·b =φ(a) ·φ(b)

it follows that φ is a ring homomorphism. Finally

φ(a)= 0 ⇐⇒ a = 0 ⇐⇒ a ∈ I

hence I =Ker(φ). This proves Theorem II.3.4.

II.3.5 Corollary. Let R be a ring and I ⊂ R. Then:

I is an ideal in R ⇔ a ring homomorphism f : R → R′ exists with Ker( f )= I.

Proof. ⇐: This is II.2.5. ⇒: take R′ = R/I, f =φ as in II.3.4. This shows II.3.5.

The preceding results are analogs of results in Group Theory. We will now formu-
late the results corresponding to the homomorphism- and isomorphism theorems.
Because of the far reaching analogy the proofs will be quite brief.

II.3.6 Theorem. (The homomorphism theorem for rings). Let f : R1 → R2 be a
ring homomorphism and I ⊂ R1 an ideal with I ⊂ Ker( f ). Take φ : R1 → R1/I the
canonical ring homomorphism.

Then a unique ring homomorphism g : R1/I → R2 exists with f = g◦φ. Moreover,

Ker(g)=φ(Ker( f )), R1

φ

��

f // R2

R1/I
∃! g

<<
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Proof. If g exists, then f (a)= g(φ(a))= g(a+ I) for all a ∈ R1. We would therefore
like to define: g(a+ I) := f (a). The (possible) problem with this is that possibly
a+ I = b+ I whereas f (a) 6= f (b). In this case the proposed assignment does not de-
fine the image of a residue class, since the choice of a representing element affects
the outcome.

However, the condition I ⊂Ker( f ) implies that the problem described here does
not occur:

a+ I = b+ I ⇒ a−b ∈ I ⊂Ker( f ) ⇒ f (a−b)= 0 ⇒ f (a)= f (b).

We can therefore assign a uniquely determined element f (a) in R2 to every residue
class a+ I in R1/I. This defines

g : R1/I −→ R2, a+ I 7→ f (a).

It is not hard to verify that g is a ring homomorphism with kernel φ(Ker( f )).

II.3.7 Theorem. (The first isomorphism theorem for rings). Let f : R1 → R2 be a
ring homomorphism.

Then there exists an isomorphism of rings:

R1/Ker( f )
∼=−→ f (R1), ā = a+Ker( f ) 7→ f (a) (a ∈ R1).

In particular, in case f is surjective one finds R1/Ker( f )∼= R2.

Proof. Applying the previous result with I =Ker( f ) yields a ring homomorphism
g : R1/Ker( f ) → R2 with Ker(g) = φ(Ker( f )) = 0̄, hence g is injective. As a conse-
quence, g : R1/Ker( f )→ f (R1)⊂ R2 is a bijective ring homomorphism, so an isomor-
phism of rings. This proves II.3.7.

II.3.8 Example. Combining Example II.2.7 and Theorem II.2.10 and the second
example from Examples II.2.11 with the first isomorphism theorem shows:

Z[i]/(1+ i)∼=F2, R[X ]/(X −α)∼= R, R[X ,Y ]/(Y − f (X ))∼=R[X ].

II.3.9 Example. Let N ∈Z and (Z/NZ)[X ] the ring of polynomials with coefficients
in Z/NZ. We will use the first isomorphism theorem to prove:

Z[X ]/NZ[X ]∼= (Z/NZ)[X ].

Define the map

ψ :Z[X ]−→ (Z/NZ)[X ],
n∑

i=0
ai X i 7→

n∑
i=0

ai X i,

with ai = ai mod N ∈ Z/NZ. Verify for yourself that ψ is a surjective ring homo-
morphism. If

∑n
i=0 ai X i = 0 then ai = 0 ∀i (since the definition of polynomials

includes the property
∑

ci X i =∑
di X i precisely when ai = bi for all i). Now ai = 0

means ai = Nbi for some bi ∈Z. Taking out the factor N one concludes

ψ(
n∑

i=0
ai X i)= 0⇐⇒

n∑
i=0

ai X i = N(
n∑

i=0
bi X i),

hence
Ker(ψ)= NZ[X ] ⊂Z[X ].

The first isomorphism theorem therefore yields the desired isomorphism.
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For the ring theoretic equivalent of the second isomorphism theorem we refer to
Exercise II.5.28. The third isomorphism theorem corresponds to the next result.

II.3.10 Theorem. Let R be a ring and I an ideal of R and φ : R → R/I the natural
map. There exists a bijection between the ideals J′ of R/I and the ideals J of R
containing I. This bijection assigns to the ideal J′ of R/I the ideal J of R given by

J := {x ∈ R : φ(x) ∈ J′} (note that φ(J)= J′).

Moreover, for any ideal J of R containing I we have

R/J ∼= (R/I)
/
φ(J).

Proof. This is completely analogous to the proof of the corresponding theorem in
Group Theory, see Exercise 25 on page 33.

II.3.11 Example. Let (a, b) ∈R and put

I := (Y −b)= (Y −b)R[X ,Y ]

and
J := (X −a, Y −b)= (X −a)R[X ,Y ]+ (Y −b)R[X ,Y ].

Then I and J are ideals in R[X ,Y ] with I ⊂ J. We will show that

R[X ,Y ]/J ∼=R.

The ring R[X ,Y ]/I has a simple description, see II.3.8:

Φb :R[X ,Y ]/I
∼=−→R[X ], F + I 7→ F(X ,b).

Using the ring isomorphism Φb it follows that

(R[X ,Y ]/I)
/
φ(J) ∼= R[X ]/Φb(φ(J)), with φ :R[X ,Y ]→R[X ,Y ]/I

the natural map.
In order to apply Theorem II.3.10 we determine the ideal Φb(φ(J)) of R[X ].

Define Ψb :=Φb ◦φ :R[X ,Y ]→R[X ]. Since Φb(φ(F))=Φb(F + I)= F(X ,b), we find:

Φb ◦φ=Ψb :R[X ,Y ]−→R[X ], F(X ,Y ) 7→ F(X ,b).

The ideal Ψb(J)=Φb(φ(J)) of R[X ] therefore equals

Φb(φ(J))=Ψb(J) = Ψb(Y −b)Ψb(R[X ,Y ])+Ψb(X −a)Ψb(R[X ,Y ])
= 0+ (X −a)R[X ]
= (X −a)R[X ].

We conclude

R[X ,Y ]/J ∼=R[X ]/(X −a)∼=R, F + J 7→ F(X ,b)+ (X −a) 7→ F(a,b),

again using Theorem II.2.10.
The canonical map ψ : R[X ,Y ] →R[X ,Y ]/J being a surjective homomorphism

with Ker(ψ)= J therefore implies that

ψ :R[X ,Y ]−→R, F 7→ F(a,b)

is a (surjective) ring homomorphism with kernel J, showing R[X .Y ]/J ∼=R. In the
special case a = b = 0 you may try to find a more direct proof of this.
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II.4 Calculating with ideals

In II.2 we defined

(a1, . . . ,an)= {r1a1 + . . .+ rnan : r i ∈ R},

the ideal generated by a1, . . . ,an in a commutative ring R with 1. Moreover (Defi-
nition II.2.8) an ideal in such a ring R is called principal if it can be generated by a
single element.

II.4.1 Definition. We say that a ring R is a principal ideal ring if every ideal in R
is a principal ideal.

II.4.2 Theorem. The ring Z is a principal ideal ring.

Proof. Let I be an ideal in Z. If I = {0} then certainly I is principal. If I 6= {0} then
an n ∈ I with n 6= 0 exists. Put

N :=min{n ∈ I : n > 0 }.

We claim that I = (N)= NZ, a principal ideal.
Since N ∈ I it follows by (I2) that NZ ⊂ I. Vice versa let n ∈ I. Division with

remainder in Z yields q ∈Z and r ∈Z≥0 satisfying

n = qN + r 0≤ r < N.

Since I is an additive group and n, qN ∈ I, it follows that r = n− qN ∈ I. Given
that N is the smallest positive element in I and 0 ≤ r < N, we conclude r = 0. As a
result,

n = qN ∈ NZ= (N),

so I ⊂ NZ and therefore I = NZ is a principal ideal, proving Theorem II.4.2.

II.4.3 Example. We show that the ideal

(X , Y )= XR[X ,Y ]+YR[X ,Y ] ⊂ R[X ,Y ]

is not a principal ideal.
Suppose that (X , Y ) were a principal ideal. Then f ∈R[X ,Y ] exists,

f = a00 +a10X +a01Y + . . . , with fR[X ,Y ] = (X , Y ).

From fR[X ,Y ] ⊂ XR[X ,Y ]+YR[X ,Y ] one knows f = f ·1 = X h+Y k for certain
h, k ∈R[X ,Y ]. This implies a00 = 0. Note

( f )⊃ (X , Y )=⇒
{

X = f h
Y = f k

with h, k ∈ R[X ,Y ]. From X = f h one concludes a10 6= 0 and h(0,0) = a−1
10 6= 0.

Similarly Y = f k implies a01 6= 0 (here one uses a00 = 0). This yields a contradiction,
since:

f h = (a10X +a01Y + . . .)(a−1
10 + . . .)= X +a01a−1

10 Y + . . . 6= X ,

using a01a−1
10 6= 0. Conclusion: (X , Y ) is not principal.

We will see later that R[X ] and Z[i] are principal ideal rings (the proof is analogous
to that of Theorem II.4.2), and that Z[X ] and Z[

p−5] are not principal ideal rings.
We now show (Corollary II.4.5) that every division ring is a principal ideal ring.
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II.4.4 Theorem. If R is a unitary ring and I an ideal of R with I ∩R× 6=∅, then
I = R.

Proof. Let a ∈ I ∩R×. From a ∈ R× it follows that ∃b ∈ R : ab = 1. Then (I2) (with
r = b) implies 1 ∈ I. Again using (I2) (with a = 1) shows that every r ∈ R is in I,
hence R = I. This proves Theorem II.4.4.

II.4.5 Corollary. The only ideals in a division ring R are {0} and R = R · 1. In
particular division rings are principal ideal rings.

Proof. Let I ⊂ R be an ideal. If I contains an element a 6= 0 then a ∈ R× so I = R by
II.4.4. If I does not contain an element 6= 0 then I = {0}. This shows Corollary II.4.5.

II.4.6 Corollary. Every unitary ring homomorphism f : D → R from a division ring
D to a ring R 6= {0} is injective. In particular every field homomorphism is injective.

Proof. The kernel Ker( f ) of f is an ideal of D, so Ker( f ) = {0} or D (by II.4.5).
However f (1) = 1 6= 0 since R 6= {0}, hence 1 ∉ Ker( f ) which implies Ker( f ) 6= D.
Therefore Ker( f ) = {0} and as a consequence f is injective. The second assertion
follows immediately from the first.

II.4.7 Definition. For a ring R and ideals I, J of R one defines the sum of I and J
by

I + J = {x+ y : x ∈ I, y ∈ J}.

Using Definition II.2.1 it is immediate that I + J is an ideal of R. Moreover
I+ J contains the two ideals I and J, and every ideal containing both I and J also
contains I+J. Hence I+J is the smallest ideal containing I and J. This naturally
raises the question to describe the largest ideal of R contained in the ideals I and
J. It turns out that this is the intersection I∩J: verify for yourself that indeed this
is an ideal of R and that any ideal of R contained in both I and J, is contained in
I ∩ J.

II.4.8 Definition. Ideals I and J in a unitary ring R are called coprime or relative
prime if

I + J = R.

In Example II.4.10 this terminology will be explained using the special case
R =Z. In general, given that R is unitary

I + J = R ⇐⇒ 1 ∈ I + J (by II.4.4)
⇐⇒ ∃x ∈ I, y ∈ J : x+ y= 1.

II.4.9 Definition. The product of ideals I and J in a ring R is defined by

I · J =
{

n∑
i=1

xi yi : n ∈Z≥0, xi ∈ I, yi ∈ J

}
.

Again it is not hard to verify that the product of ideals I, J in a ring R is also
an ideal of R; note that Exercise 31 on page 33 shows that {xy : x ∈ I, y ∈ J} is
not necessarily an ideal of R. Since xi yi ∈ I for all xi ∈ I and yi ∈ J (by (I2)), every
element

∑n
i=1 xi ·yi of I ·J is also in I. Similarly I ·J ⊂ J which shows that I ·J ⊂ I∩J.

I · J ⊂ I ∩ J
⊂ I

⊂ J
⊂ I + J ⊂ R.

Sums, intersections, and products can be defined in general for more than two (but
in case of products, finitely many) ideals. The result is again an ideal.
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II.4.10 Example. We now consider the concepts introduced above in the special
case R =Z. Every ideal of Z is a principal ideal Za (see II.4.2).

The sum of two ideals (not both {0}) corresponds in this case to the greatest
common divisor of the generators:

Za+Zb =Zd with d = gcd(a,b).

Proof: By Theorem II.4.2 one has Za+Zb =ZN, i.e., (a, b)= (N) for some N ∈Z>0.
Hence we wish to show that d = N. Since a and b are divisible by d and k, l ∈ Z
exist with ak+ bl = N, one concludes d|N. On the other hand (a, b) = (N) implies
that a = a ·1+ b ·0 = r1N and similarly b = r2N for certain r1, r2 ∈ Z. Therefore
N|a and N|b which shows that N is a common divisor of a and b. Now all common
divisors divide the largest common divisor, so N|d. From d, N ∈Z>0, d|N, N|d one
concludes d = N which finishes the proof.

In particular the argument above shows

gcd(a,b)= d =⇒ ka+ lb = d for certain k, l ∈Z,

a statement called ‘Bézout’s identity’ (after the French mathematician Étienne Bé-
zout, 1730–1783) although it was in fact proven much earlier by the French math-
ematician Claude Gaspard Bachet de Méziriac (1581–1638).

As a consequence, the ideals Za and Zb are relative prime if and only if a,b
are coprime, i.e., gcd(a,b) = 1. This explains the terminology introduced in Defini-
tion II.4.8.

The intersection of two ideals Za,Zb corresponds to taking the least common
multiple of the generators:

Za∩Zb =Zc with c = lcm(a,b).

Proof: x ∈Za∩Zb ⇔ x is a multiple of both a and b ⇔ x is a multiple of c ⇔ x ∈Zc.
Finally, the product of two ideals corresponds to the product of the generators:

Za ·Zb =Zab.

The easy proof of this is left as an exercise.

If R is a commutative ring with 1 then:

(a1, . . . ,an) · (b1, . . .bm)= (a1b1, . . . ,aib j, . . . ,anbm)

as is easily verified using the definitions. Moreover

(a, b)= (a+ rb, b)

for all a, b, r ∈ R (verify!), in this way one can ‘eliminate’ generators.

II.4.11 Example. In the ring Z[
p−5] one finds:

(2, 1+p−5) · (3, 1−p−5)=
= (6, 2−2

p−5, 3+3
p−5, 6)

= (6, 2−2
p−5, 1+5

p−5)
= (6, 6

p−5, 2−2
p−5, 1+5

p−5)
= (6, 2−2

p−5, 1−p−5)
= ((1+p−5) · (1−p−5), 2(1−p−5), 1−p−5)
= (1−p−5).

Neither of the ideals (2, 1+p−5) and (3, 1−p−5) is principal (see Exercise 17 on
page 32), however the calculation above shows that their product is a principal
ideal. Multiplying ideals plays an important role in (algebraic) number theory.
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II.4.12 Theorem. (Chinese remainder theorem for rings). Let R be a commutative
ring with 1 and suppose I, J are coprime ideals of R, so I + J = R.
Then I ∩ J = I · J and there is an isomorphism of rings

R/(I · J)∼= (R/I)× (R/J), a+ (I · J) 7→ (a+ I, a+ J).

Proof. We first show that I + J = R implies I ∩ J = I · J.
The inclusion I∩J ⊃ I ·J is true in general. For the other inclusion, by I+J = R

there exist x ∈ I, y ∈ J with x+ y= 1. Hence every z ∈ I ∩ J satisfies

z = z ·1= z · (x+ y)= x · z+ z · y

where x · z ∈ I · J (since x ∈ I, z ∈ J) and z · y ∈ I · J (since z ∈ I, y ∈ J). Therefore
z ∈ I · J. This proves I ∩ J = I · J.

Take φ1 : R → R/I and φ2 : R → R/J the canonical ring homomorphisms with
kernel I and J, respectively. Define

φ : R → (R/I)× (R/J) φ(a) := (φ1(a), φ2(a)).

We claim that φ is a surjective ring homomorphism with kernel I ·J is. Using this,
the desired isomorphism R/I · J ∼= (R/I)× (R/J) follows immediately from the first
isomorphism theorem II.3.7.

(i) φ is a ring homomorphism:

φ(ab)= (φ1(ab), φ2(ab))= (φ1(a)φ1(b), φ2(a)φ2(b))

(since φ1,φ2 are ring homomorphisms). Here the right hand side equals

= (φ1(a),φ2(a)) · (φ1(b),φ2(b))
=φ(a)φ(b)

by definition of the multiplication on a product of two rings. So φ(ab)=φ(a)φ(b).
In a similar way one verifies φ(a+b)= φ(a)+φ(b).

(ii) Ker(φ) = I · J: we have a ∈ ker(φ) precisely when (φ1(a),φ2(a)) = (0,0), which is
equivalent to a ∈Ker(φ1)= I ∧a ∈Ker(φ2)= J, hence to a ∈ I ∩ J = I · J.

(iii) φ is surjective: take x+ y= 1 as above with x ∈ I, y ∈ J. Then

φ1(x)= 0, φ2(y)= 0

and (using x = 1− y)

φ2(x)=φ2(1)−φ2(y)= 1−0= 1 ∈ R/J,
φ1(y)=φ1(1− x)= 1 ∈ R/I.

This shows φ(x)= (0,1), φ(y)= (1,0). Now let (a mod I,b mod J (with a,b ∈ R)
be an arbitrary element of (R/I)× (R/J) and put c = bx+ay. Then

φ1(c) = φ1(b)φ1(x)+φ1(a)φ1(y)
= φ1(b) ·0+φ1(a) ·1
= φ1(a)

and similarly φ2(c) = φ2(b). Therefore φ(c) = (a mod I,b mod J) which shows
that φ is surjective.

This proves the Chinese remainder theorem.

II.4.13 Corollary. Let n,m ∈Z be relative prime. There is a ring isomorphism

Z/nmZ∼= (Z/nZ)× (Z/mZ), a+nmZ 7→ (a+nZ, a+mZ).
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Proof. This follows from II.4.12 using Zn+Zm =Zgcd(n,m)=Z (Example II.4.10).

Note that the condition that n, m are coprime is necessary. For example we have
Z/4Z 6∼=Z/2Z×Z/2Z since the additive groups of these rings are not isomorphic.

II.4.14 Example. Let R =Q[X ] and take

I =Q[X ] · (X −1) en J =Q[X ] · (X +1).

Then

−1
2

(X −1) ∈ I,
1
2

(X +1) ∈ J, and − 1
2

(X −1)+ 1
2

(X +1)= 1,

so the ideals I and J are coprime. We have

I · J =Q[X ] · (X +1)(X −1)=Q[X ] · (X2 −1),

and II.4.12 implies

Q[X ]/Q[X ](X2 −1)∼= (Q[X ]/I)× (Q[X ]/J).

Furthermore II.2.10 shows Q[X ]/I ∼=Q, f 7→ f (1) and Q[X ]/J ∼=Q, f 7→ f (−1), hence

Q[X ]/Q[X ](X2 −1)∼=Q×Q, f + (X2 −1) 7→ ( f (1), f (−1)).

II.4.15 Example. If R = R1 × R2 where R1,R2 are rings with 1, then (1,0) and
(0,1) are idempotents of R. We will now show that in case R is commutative, all
idempotents are obtained from writing R as a product of two rings.

So let R be a commutative ring with 1 and e ∈ R an idempotent. We apply
II.4.12 to

I = R · e, J = R · (1− e).

From e+(1−e)= 1 it follows that I and J are coprime. We have I ·J = R(e−e2)= {0},
since e is idempotent. Hence R/I · J ∼= R/{0}∼= R and II.4.12 yields

R ∼= (R/Re)× (R/R(1− e)),

with an isomorphism sending e to (0,1) and 1− e to (1,0). Apparently 1− e is an
idempotent as well, as one may also verify directly.

We conclude that for any commutative ring R with 1 we have a 1−1 correspon-
dence between pairs of idempotents {e,1− e} of R and ways to write R as a product
of two rings R1 and R2.

An explicit example: using R =Z/6Z, e = 4̄, one obtains Z/6Z ∼= (Z/2Z)× (Z/3Z)
(compare II.4.13).
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II.5 Exercises

1. Let R be a unitary ring. Show that a unique unitary ring homomorphism
f :Z→ R exists.
The non-negative generator of Ker( f ) is called the characteristic of R, notation:
char(R).

2. Prove that the characteristic of a domain is either 0 or a prime number.
3. Show that the following rings have no ring automorphism except the identity:

Z, Z/nZ (for n ∈Z>0), Q.

4. Let σ be a ring automorphism of R.

(a) Prove: x > 0⇒σ(x)> 0.

(b) Prove: σ= idR.

5. Show that C admits a ring automorphism different from the identity map.
6. Let K be a field and R ⊂ K a subring with 1 ∈ R. Assume that every element of

K can be written as as−1 with a, s ∈ R, s 6= 0. Show: K is isomorphic to the field
of fractions Q(R) of R.

7. Is det : M(n,R)→R a ring homomorphism?
8. Let f : R1 → R2 be a unitary ring homomorphism. Show that g = f |R×

1 is a
group homomorphism R×

1 → R×
2 , and show by means of an example that g need

not be surjective in case f is.
9. Let G = {1,σ} be a multiplicatively written group with two elements. Define

f : R[G] →R×R by f (a+ bσ) = (a+ b,a− b), for a,b ∈R. Show that f is a ring
isomorphism.

10. (a) Let R be a domain and R′ ⊂ R a subring with 1 ∈ R′. Show that Q(R′) can
be regarded as a subring of Q(R) (hint: verify that a

b 7→ a
b , with the first

“fraction" in Q(R′) and the second one in Q(R), is a well defined injective
ring homomorphism).

(b) Prove for any domain R that

R →Q(R) : r 7→ r
1

is surjective ⇐⇒ R is a field.

(c) Suppose m ∈ Z satisfies
p

m ∉ Z. Show that Q(Z[
p

m]) can be identified
with Q[

p
m].

11. Prove: End(Z+)∼=Z, End(Q+)∼=Q, End((Z/nZ)+)∼=Z/nZ as rings.
12. Let (A,+,0) be an abelian group and B = {a ∈ A : a has finite order}. Define I ⊂

End(A) by
I = {σ ∈ End(A) :σ(x)= 0 for all x ∈ B}.

Prove that I is an ideal of End(A) and End(A)/I is isomorphic to a subring of
End(B).

13. Let R be a ring. For a ∈ R we define λa,ρa : R → R by λa(x)= ax,ρa(x)= xa.

(a) Show that λa,ρa ∈ End(R+) for all a ∈ R.

(b) Show that the map f : R → End(R+), f (a) = λa is a ring homomorphism.
Moreover prove that in case R is a ring with 1, then f is unitary and
injective.

(c) Show that the map g : R0 → End(R+), g(a) = ρa is a ring homomorphism,
where R0 denotes the ‘opposite ring’ defined in Exercise 11 on page 14.
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14. A Cauchy sequence over Q is a sequence (an)∞n=1, with an ∈Q satisfying:

∀ε ∈Q>0 : ∃n0 : ∀n,m > n0 : |an −am| < ε.

The set of Cauchy sequences over Q forms a ring R, with component wise oper-
ations. A zero sequence is a sequence (an)∞n=1 with an ∈Q satisfying lim

n→∞an = 0.
Show that I ⊂ R and that in fact I is an ideal of R. Moreover, show that R/I ∼=R.

15. Let R be a ring with 1 and G a group. Define f : R[G]→ R by f (
∑

g∈G
ag g)= ∑

g∈G
ag.

Show that f is a surjective ring homomorphism, and that the kernel Ker( f ) is
generated by {g−1 : g ∈G}.

16. Let R =Z[X ] and put

φ :Z[X ]→Z/2Z, f 7→ f (0)+2Z.

(a) Show that φ is a surjective ring homomorphism and that Ker(φ)= (2, X ).

(b) Prove that (2, X ) is not a principal ideal.

17. Let R =Z[
p−5] and

φ :Z[
p
−5]→Z/3Z, a+b

p
−5 7→ a+b (a, b ∈Z).

(a) Prove that φ is a surjective ring homomorphism.

(b) Prove that Ker(φ)= (3, 1−p−5).

(c) Prove that Ker(φ) is not a principal ideal, as follows: if Ker(φ) = (x), then
3= xy and 1−p−5= xz. Consider N(xy) and N(xz) with N as in I.2.5.)

(d) Prove similarly that (2, 1+p−5) is not principal.

(e) Is the ideal (3, 1−p−5) · (3, 1−p−5) principal?

18. Define ϕ :Z[i]→F13 by ϕ(a+bi)= a+5b mod 13.
Show that ϕ is a ring homomorphism with Ker(ϕ) generated by 13 and i−5.
Find one generator for Ker(ϕ).

19. Let R be a ring and I ⊂ R a left ideal containing a right unit. Show: I = R.
20. Let R1 and R2 be rings and I = {0}×R2 ⊂ R1 ×R2.

(a) Show that I is an ideal of R1 ×R2.

(b) Prove that (R1 ×R2)/I ∼= R1.

(c) In case R2 is unitary, show that I is a principal ideal.

21. Let R1 and R2 be rings. Show that all ideals of R1 ×R2 are of the form I1 × I2
with I i an ideal of Ri (i = 1,2).

22. Let R be a ring with 1 having the property that f : R → R, f (x) = x2 is a ring
homomorphism. Prove that R is commutative, and char(R) = 1 of 2 (see Exer-
cise II.5.1). Moreover, show that ∀x ∈ Ker( f ) : 1+ x ∈ R×.

23. (a) Show that {(
a b
c d

)
∈M(2,R) : b = d = 0

}
is a left ideal but not a right ideal of M(2,R).

(b) Find a right ideal of M(2,R) that is not a left ideal.
24. Let n ∈ Z>0. In this exercise elements of M(n,R) are considered as R-linear

endomorphisms of Rn. By W we denote an R-linear subspace of Rn.

(a) Show that {A ∈M(n,R) :∀w ∈W : Aw = 0} is a left ideal of M(n,R).

(b) Show that {A ∈M(n,R) :∀v ∈Rn : Av ∈W} is a right ideal of M(n,R).

(c) Prove: every left ideal of M(n,R) is of the form described in (a), and every
right ideal of M(n,R) is of the form described in (b).
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(d) Prove that {0} and M(n,R) are the only two sided ideals of M(n,R).

25. Let I ⊂ R be an ideal in a ring and write φ : R → R/I for the corresponding
natural map.

(a) Suppose J′ ⊂ R/I is an ideal. Show that

φ−1(J′) := {x ∈ R : φ(x) ∈ J′}

is an ideal of R. Note that I ⊂φ−1(J′).
(b) Show that J′ 7→ φ−1(J′) defines a bijection between the ideals J′ of R/I

and the ideals J of R with I ⊂ J.

(c) Prove that any ideal J of R with I ⊂ J satisfies (R/I)/φ(J)∼= R/J.

26. Let K be a field. The ring of dual numbers over K , notation: K[ε], consists of
the expressions a+bε for a,b ∈ K , and addition and multiplication as follows:

(a+bε)+ (c+dε)= (a+ c)+ (b+d)ε,

(a+bε) · (c+dε)= (ac)+ (ad+bc)ε

(in particular ε2 = 0), with a,b, c,d ∈ K .

(a) Prove: K[ε]∼= K[X ]/(X2).

(b) Prove that K[ε] contains precisely three ideals.

(c) Prove: K[ε]× ∼= K××K+ (as groups).

27. Let R be a ring with 1 6= 0 and I = R−R×. Suppose that ∀x ∈ I : ∃n ∈Z>0 : xn = 0.
Show that I is an ideal of R, and that R/I is a division ring.

28. Let R be a ring and I an ideal of R. Suppose R′ ⊂ R is a subring. Prove:

(a) R′∩ I is an ideal of R′;
(b) R′+ I = {r+ s : r ∈ R′, s ∈ I} is a subring of R;

(c) I is an ideal of R′+ I;

(d) R′/(R′∩ I)∼= (R′+ I)/I.

29. Let R be a ring with 1. Define

[R,R]=
{

n∑
i=1

r i(xi yi − yixi) : n ∈Z>0, r i, xi, yi ∈ R

}
.

Prove that [R,R] is an ideal of R and R/[R,R] is a commutative ring.
30. Let

R =
{(

a b
c d

)
∈M(2,R) : c = 0

}
en

I =
{(

0 b
0 0

)
∈M(2,R) : b ∈R

}
.

Prove the following assertions:

(a) R is a subring of M(2,R);

(b) I is an ideal of R, and R/I ∼=R×R;

(c) R is not commutative but R/I is.

31. In R =Z[X ] take I = (2, X ). Show that X2+4 ∈ I ·I, and X2+4 can not be written
as xy with x, y ∈ I. Conclude that {xy : x, y ∈ I} is not an ideal of R.

32. Let R be a ring and I, J ideals of R. Prove (I + J) · (I ∩ J)⊂ (I · J)+ (J · I). Show
that equality holds in case R =Z.

33. Prove that II.4.12 also holds for non-commutative rings, provided one replaces
in two spots I · J by I · J+ J · I.
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34. Let R be a ring with 1 and I1, I2, I3 ideals of R.
Show: I1 + I3 = R∧ I2 + I3 = R ⇒ (I1 · I2)+ I3 = R.

35. (Chinese remainder theorem for more ideals). Suppose R is a commutative
ring with 1, and I1, I2, ..., I t are ideals of R which are pairwise coprime, i.e.,
I i + I j = R for 1 ≤ i < j ≤ t. Prove: R/(

∏t
i=1 I i) ∼= ∏t

i=1(R/I i). (Hint: show
(I1 ·I2 ·...·I t−1)+I t = R as in Exercise 34 above, and use mathematical induction
with respect to t.)

36. Let R be a ring with 1 such that 1+1 ∈ R×. Prove: R[X ]/R[X ](X2 −1)∼= R×R.
37. Put R = {(a,b) ∈Z×Z : a ≡ b mod 2}.

(a) Verify that R is a subring of Z×Z.

(b) Show that Z[X ]/Z[X ] · (X2 −1)∼= R.

(c) Prove that Z[X ]/Z[X ] ·(X2−1) is not isomorphic to Z×Z (for example: find
the idempotents in both rings).

(d) Show that no f ∈ Z[X ] exists with f (1) = 1, f (−1) = 0. (Do you see the
relation between this and the other parts of this exercise?)

38. Let R be a commutative ring with 1, and w1,w2, ...,wm elements of R such that
wi −w j ∈ R× for all i, j with 1≤ i < j ≤ m. Take f =∏m

i=1(X −wi) ∈ R[X ]. Prove:
R[X ]/R[X ] f ∼= R×R× ...×R (product of m copies of R).

39. Prove Q[X ]/Q[X ](X3+X )∼=Q×Q[X ]/(X2+1) and R[X ]/R[X ](X4−1)∼=R×R×C.
40. Suppose R is a commutative ring with 1. By Id(R) we will denote the set of

all idempotents of R (including the trivial idempotents 0 and 1). Show that if
e1, e2 ∈ Id(R) then also e1 + e2 −2e1e2 ∈ Id(R) and e1e2 ∈ Id(R).
Show that Id(R) becomes a commutative ring with addition ⊕ and multiplica-
tion ◦ defined by e1 ⊕ e2 = e1 + e2 −2e1e2 and e1 ◦ e2 = e1e2.
Under which conditions is Id(R) a subring of R?
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III RINGS OF POLYNOMIALS

III.1 Polynomials

Let R be a ring. We will define a ring R[X ] called the polynomial ring over R in the
variable X . A polynomial with coefficients in R is a formal expression

<∞∑
i=0

ai X i = a0 +a1X +a2X2 + . . . , ai ∈ R.

Here the ai are called the coefficients of the polynomial
∑<∞

i=0 ai X i . Two polynomi-
als

∑N
i=0 ai X i and

∑N
i=0 bi X i are by definition equal if and only if ∀i ≥ 0 : ai = bi.

Moreover with 0 ≤ N < M we say that
∑N

i=0 ai X i = ∑M
i=0 ai X j in case a j = 0 for all

j with N < j ≤ M. Instead of the symbol/variable X one also uses other symbols
such as Y , Z,U ,T, X0, X1, . . .. Terms ai X i with ai = 0 are usually deleted. Instead
of 1 · X i one writes X i, and (−a) · X i is written −aX i. For example:

1−2X + X3 = 1+ (−2) · X +0 · X2 +1 · X3.

One often denotes a polynomial
∑

ai X i by a letter such as f , or by f (X ) if it should
be made clear which variable is used.

III.1.1 Remark. The description of polynomials as formal finite expressions is by
far the most intuitive one. However, alternatively polynomials may also be intro-
duced as follows.

Let N=Z≥0 and let R be a ring. A ‘polynomial’ is a function

a : N−→ R

such that some N exists with a(n) = 0 for all n > N. Identifying a polynomial∑N
i=0 ai X i with the function (‘polynomial’) a : N→ R given by a(n) = an for n ≤ N

and a(n)= 0 when n > N, it is easy to change the one definition into the other.

The degree deg( f ) of a polynomial f =∑N
i=0 ai X i is the maximal n with an 6= 0; so

deg(1−2X+X3)= 3. For the zero polynomial 0=∑N
i=0 0·X i one defines deg(0)=−∞

(some texts use alternative definitions for deg(0), however).
The j-th coefficient of a polynomial f =∑N

i=0 ai X i is a j. The constant coefficient
is the coefficient a0. A constant polynomial f is a polynomial with deg( f ) ≤ 0, i.e.,
an = 0 for n ≥ 1. If f 6= 0 and n = deg( f ), then an is called the leading coefficient of
f . A polynomial with leading coefficient 1 is called a monic polynomial.
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We now define operations addition and multiplication on the set of polynomials
with coefficients in a ring R. The sum of two polynomials of degree ≤ N is defined
as (

N∑
i=0

ai · X i

)
+

(
N∑

i=0
bi · X i

)
=

∞∑
i=0

(ai +bi) · X i.

Note that considered as functions N → R this is simply the pointwise addition:
a+b = c with c(n)= a(n)+b(n) for all n ∈N.

The multiplication of polynomials is determined by the rule

(ai X i) · (b j X j)= (ai ·b j)X i+ j

and the fact that one wants the distributive law to hold; this leads to the definition(
N∑

i=0
ai · X i

)
·
(

M∑
j=0

b j · X j

)
=

N+M∑
k=0

( ∑
i+ j=k

aib j

)
· X k,

using the convention that ai = 0 if i > N and similarly b j = 0 if j > M.

III.1.2 Example.

(7+3X )(5− X +2X2)=
= 7 ·5+ (7 ·−1+3 ·5)X + (7 ·2+3 ·−1)X2 +3 ·2X3

= 35+8X +11X2 +6X3.

III.1.3 Remark. Considered as functions a,b : N→ R the multiplication of ‘poly-
nomials’ as defined here, is usually called the convolution of the functions a and b,
denoted as a∗b. So by definition a∗b : N→ R is the function defined by

(a∗b)(n)=
n∑

i=0
a(i)b(n− i)= a(0)b(n)+a(1)b(n−1)+ . . .+a(n)b(0).

The set of all polynomials with coefficients in R is denoted by R[X ]. Note that
if f , g ∈ R[X ] then

deg( f · g)≤ deg( f )+deg(g).

Equality does not hold in general: for example take f = 2 ·X2+1 ∈ (Z/4Z)[X ]. Then
deg( f )= 2 and f 2 = (2·X2+1)·(2·X2+1)= 1. Hence deg( f 2)= 0< 4= deg( f )+deg( f )
in this example.

III.1.4 Theorem. The set R[X ] with addition and multiplication defined above de-
fines a ring called the polynomial ring in one variable over R.

Using the injective ring homomorphism

R ,→ R[X ], r 7→ r+0 · X + . . .+0 · X i + . . . ,

one considers R as a subring of R[X ].

Proof. The proof is a straightforward verification of the axioms. As an illustration
of this we check (R3), the associativity of the multiplication:(

(
∑N

i=0 ai · X i)(
∑M

j=0 b j · X j)
)(∑L

k=0 ck · X k) =(∑N+M
l=0

(∑
i+ j=l aib j

) · X l)(∑L
k=0 ck · X k) =∑N+M+L

m=0
(∑

k+l=m(
∑

i+ j=l aib j)ck
) · X m =∑N+M+L

m=0
(∑

i+ j+k=m aib j ck
) · X m,
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and analogously one shows(
N∑

i=0
ai · X i

)(( M∑
j=0

b j · X j)( L∑
k=0

ck · X k))= N+M+L∑
m=0

( ∑
i+ j+k=m

aib j ck

)
· X m.

This proves (R3). We leave (R1), (R2), and (R4) to the reader.
The remaining assertion in the theorem is also easy to check.

In case R is commutative, so is R[X ]. If R is a ring with 1 then this 1 is the unit
element of R[X ] as well. If R has no zero divisors, then the same holds for R[X ]
(see Exercise 1 on page 49) and

deg( f · g)= deg( f )+deg(g) for f , g ∈ R[X ],

where we use the convention −∞+n = n+ (−∞)=−∞+ (−∞)=−∞ . In particular
if R is a domain (Definition I.2.13) then R[X ] is a domain as well.

III.1.5 Notation. Inductively one defines the polynomial ring in n ≥ 1 variables
over R as

R[X1, X2, . . . , Xn] := (R[X1, . . . , Xn−1])[Xn].

Elements of R[X1, X2, . . . , Xn] are therefore expressions

f = g0 + g1Xn + g2X2
n + . . .= gN X N , g i ∈ R[X1 . . . , Xn−1].

One can also write f as a finite sum

f = ∑
i1≥0,i2≥0,...,in≥0

ai1 i2...in X i1
1 X i2

2 . . . X in
n

with coefficients ai1 i2...in ∈ R. Sometimes the "multi-index"-notation

f =∑
I

aI X I

where the ‘multi-index’ I = (i1, i2, . . . , in) runs over a finite subset of (Z≥0)n and X I

is an abbreviation of X i1
1 X i2

2 . . . X in
n .

For polynomials in n variables one defines various notions of ‘degree’. Given any j
with 1≤ j ≤ n the degree in X j of

f = ∑
i1≥0,i2≥0,...,in≥0

ai1 i2...in X i1
1 X i2

2 . . . X in
n 6= 0

is defined by

deg j( f ) :=max
{
m ∈Z≥0 : ∃i1, . . . , in : ai1...in 6= 0 and i j = m

}
(so deg j is the ‘highest power’ of X j ‘really appearing’ in f ). The total degree of
f 6= 0 is defined by

tdeg( f )=max

{
m ∈Z≥0 : ∃i1, . . . in : ai1...in 6= 0 and

n∑
j=1

i j = m

}
.

Finally, in the special case f = 0 we put deg j(0)= tdeg(0)=−∞.

III.1.6 Example. f = X1X4
2 − X2

1 X2
2 ∈ Z[X1, X2] satisfies deg1( f ) = 2,deg2( f ) = 4,

and tdeg( f )= 5.
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III.2 Evaluation homomorphisms

It is well known that a polynomial f ∈R[X ] can be evaluated in any real and even
in any complex number z. For fixed z ∈C one obtains in this way a map R[X ] →C
given by f 7→ f (z). Similarly given f ∈Z[X ] one may take a ∈Z, evaluate f in a and
subsequently consider f (a) ∈ Z/nZ. In this way one obtains a map Z[X ] → Z/nZ
given by f 7→ f (a). As is not hard to verify, the same map is obtained by first
reducing the coefficients of f modulo n and subsequently evaluating the resulting
polynomials in (Z/nZ)[X ] at a. The next result generalises these examples.

III.2.1 Theorem. (The evaluation homomorphism) Let R and S be rings.

(a) Any ring homomorphism φ : R −→ S induces a ring homomorphism

Φ : R[X ]→ S[X ], Φ : a0 + . . .+an X n 7→φ(a0)+ . . .+φ(an)X n.

(b) If s ∈ S satisfies st = ts for all t ∈ S,
then the map

S[X ]→ S, a0 +a1X + . . .+an X n 7→ a0 +a1s+ . . .+ansn

is a ring homomorphism. We usually write this as f 7→ f (s).
(c) If s ∈ S satisfies sφ(r)=φ(r)s for all r ∈ R then the composition

evs : R[X ] Φ−→ S[X ]
f 7→ f (s)−→ S

is a ring homomorphism.

III.2.2 Notation. The ring homomorphism evs in Theorem III.2.1 is called the eval-
uation homomorphism in s. Note that it depends on the choice of the ring homo-
morphism R → S although this is not reflected in the notation.

Proof. (a): given f = a0 +a1X + . . . , g = b0 +b1X + . . . ∈ R[X ] we have to show

Φ( f + g)=Φ( f )+Φ(g) and Φ( f g)=Φ( f )Φ(g).

As f + g = (a0 +b0)+ (a1 +b1)X + (a2 +b2)X2 + . . . we have

Φ( f + g) = φ(a0 +b0)+φ(a1 +b1)X +φ(a2 +b2)X2 + . . .
= φ(a0)+φ(a1)X +φ(a2)X2 + . . .+φ(b0)+φ(b1)X + . . .
= Φ( f )+Φ(g).

For the second property of ring homomorphisms we write f g = c0+c1X+c2X2+. . .,
with ck = a0bk+a1bk−1+. . .+akb0. Then φ(ck)=φ(a0)φ(bk)+. . .+φ(ak)φ(b0), which

implies Φ( f g) def= φ(c0)+φ(c1)X +φ(c2)X + . . .=Φ( f )Φ(g). This shows (a).
To prove (b) we need to verify (using st = ts for all t ∈ S) that

( f + g)(s)= f (s)+ g(s), ( f g)(s)= f (s) · g(s) ∀ f , g ∈ S[X ].

The proof of the first condition is straightforward and hence we omit it. For the
second condition note that st = ts for all t ∈ S implies in particular

(aisi)(b js j)= aib jsi+ j ∀ai, b j ∈ S.

Writing f = a0 +a1X + . . . and g = b0 +b1X + . . . then yields

f (s) · g(s) = (a0 +a1s+ . . .) · (b0 +b1s+ . . .)
= a0b0 + (a0b1 +b0a1)s+ . . .+ (

∑
i+ j=k aib j)sk + . . .

= ( f g)(s).
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Part (c) of the proof follows from the general fact that the composition of two
ring homomorphisms is again a ring homomorphism. Here one should observe
that evs : S[X ]→ S is not necessarily a ring homomorphism (namely, s a priori only
commutes with the elements in φ(R)). However evs restricted to Φ(R[X ]) is a ring
homomorphism.

III.2.3 Remark. For r := (r1, . . . , rn) ∈ Rn we obtain an analogous evaluation homo-
morphism

evr : R[X1, . . . , Xn]−→ R, evr( f ) := f (r1, . . . , rn)

provided r is = sr i holds for all s ∈ R.

III.2.4 Example. Suppose K is a field, so in particular K is commutative. Let V
be a vector space over K and write EndK (V ) for the ring of K-linear maps from
V to V . Fixing any A ∈ EndK (V ) we will define an evaluation homomorphism
evA : K[X ]→EndK (V ), which means we substitute A for the variable X in all poly-
nomials f ∈ K[X ]; the ring homomorphism property then says f (A) · g(A)= ( f g)(A)
and f (A)+ g(A)= ( f + g)(A). We will also discuss the kernel of evA .

To define evA using Theorem III.2.1 we first need to define a ring homomor-
phism φ : K →EndK (V ) such that φ(λ)A = Aφ(λ) for all λ ∈ K , A ∈EndK (V ). Put

φ : K −→EndK (V ), φ :λ 7→λI

with I the identity on V (so (λI)v := λ · v for all v ∈ V ). Then for all A ∈ EndK (V )
and all v ∈V one finds(

φ(λ)A
)
v =φ(λ)(Av)=λ(Av)= A(λv)= (

Aφ(λ)
)
v,

showing that indeed φ(λ)A = Aφ(λ) for all λ ∈ K , A ∈EndK (V ).
We write λA instead of (λI) · A. (In case V = Kn, note that EndK (V ) = M(n,K),

the ring of n×n matrices with coefficients in K , and then λA is the matrix obtained
by multiplying all coefficients of A by λ.)

Fix A ∈ EndK (V ). Using Theorem III.2.1 one obtains the evaluation homomor-
phism in A:

evA : K[X ]−→EndK (V ), evA( f ) := f (A),

and instead of evA( f )=φ(a0)+φ(a1)A+φ(a2)A2 + . . . we simply write

f (A) := a0I +a1 A+a2 A2 + . . . .

The image evA(K[X ]) we denote by K[A]. This is a subring of EndK (V ). Since K[X ]
is commutative, so is K[A]. In case the dimension of the vector space V is at least
2, the ring EndK (V ) is not commutative. As a consequence, for dimK (V ) ≥ 2 the
map evA is not surjective.

We now consider the special case dimK (V ) <∞. We will show that in this case
evA is not injective. Write dimK V = n, then dimK EndK (V )= n2 (choose a basis for
V over K , then EndK (V )∼=M(n,K)). The n2+1 elements I, A, A2, . . . , An2 ∈EndK (V )
are therefore linearly dependent. Hence ci ∈ K exist, not all zero, such that

c0 + c1 A+ c2 A2 + . . .+ cn2 An2 = 0.

This shows g(A) = 0 with g = c0 + c1X + . . .+ cn2 X n2 ∈ K[X ], so g ∈ Ker(evA) and
g 6= 0. As a consequence, evA is not injective.

You probably recall from a course in Linear Algebra that the eigenvalue poly-
nomial (characteristic polynomial) PA of A is in the kernel of evA ,

PA(X ) := det(A− X · I) ∈ K[X ].
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This result is called the Cayley-Hamilton theorem, named after the British mathe-
matician Arthur Cayley (1821–1895) and the Irish mathematician William Rowan
Hamilton (1805–1865). The degree of PA is n. We will study the kernel of evA more
extensively in Example III.4.4.

III.2.5 Remark. Given a ring R, every polynomial f = a0+a1X +a2X2+ . . . ∈ R[X ]
gives rise to a function, namely ρ f : R → R given by

ρ f : R −→ R, r 7→ ρ f (r) := a0 +a1r+a2r2 + . . . .

It may happen that f 6= g while ρ f (r)= ρg(r) for all r ∈ R. Hence the map

ρ : R[X ]−→Maps(R,R), f 7→ ρ f ,

is not necessarily injective.
As an example, consider R =Z/2Z. In this case the polynomials X and X2 yield

the same function on Z/2Z (since 0̄ = 0̄2, 1̄ = 1̄2), however the polynomials X and
X2 are different (they even have different degree).

One should realise, as this example shows, that there is a difference between
polynomials f and the functions ρ f defined by them.

III.3 Division with remainder for polynomials

We now present a technique which, among various other applications, will greatly
simplify the determination of the kernel of an evaluation homomorphism. This
technique called division with remainder for polynomials is analogous to the divi-
sion with remainder for integers.

III.3.1 Theorem. Let R be a ring with 1 and f , g ∈ R[X ]. Assume that g 6= 0 and
that the leading coefficient of g is a unit of R.

Then unique q, r ∈ R[X ] exist such that

f = qg+ r, and deg(r) < deg(g).

One calls q the quotient and r the remainder when dividing by g.

III.3.2 Notation. The polynomials q and r in Theorem III.3.1 are called the quo-
tient and the remainder of f upon division by g.

Proof. First we show the existence of q and r. Let n = deg( f ) and m = deg(g). By
assumption we have m ≥ 0. We show existence, for fixed g, by induction w.r.t. n.

If n < m one takes q = 0, r = f ; this is the first step of the induction argument.
Now take n ≥ m and assume (induction hypothesis) that existence holds for

all f ∈ R[X ] of degree < n. Take f ∈ R[X ] of degree n and let a be the leading
coefficient of f , and b the leading coefficient of g. By assumption b is a unit, hence
c ∈ R exists with cb = 1. The polynomial acX n−m · g than has degree n and leading
coefficient a · cb = a, equal to the leading coefficient of f . Hence

f1 := f −acX n−m · g

has degree strictly smaller than n: the n-th degree terms in f −acX n−m · g cancel.
Applying the induction hypothesis to f1 yields q1, r1 ∈ R[X ] such that

f1 = q1 g+ r1, deg(r1) < deg(g).
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As a consequence

f = f1 +acX n−m g = (
acX n−m + q1

) · g+ r1.

Hence q := acX n−m + q1 and r := r1 satisfy

f = qg+ r and deg(r) < deg(g),

as desired.
It remains to show the unicity of q and r. Suppose that also f = q′g+ r′ and

deg(r′)< deg(g). Then
(q− q′)g = r′− r.

Here the degree of the right hand side is less than deg(g). If q 6= q′, then the degree
of the left hand side would be at least deg(g), since the leading coefficient of g is a
unit. Hence

deg(g)≤ deg((q− q′)g)= deg(r′− r)< deg(g).

This is a contradiction, and therefore q = q′ which implies r′− r = 0 so r = r′.
This proves Theorem III.3.1. Note that the the argument does not require the

ring R to be commutative.

III.3.3 Example. In practice dividing polynomials is done using ‘long division’.
Take for instance R =Z and

f = X4 − X3 −2X2 +3X −4, g = X2 −1 ∈Z[X ].

The quotient q and the remainder r are determined below:

X2 −1
/

X4 −X3 −2X2 +3X −4
∖

X2 − X −1
X4 −X2

−X3 −X2

−X3 +X
−X2 +2X
−X2 +1

2X −5

In this example therefore q = X2 − X −1, r = 2X −5.

The theorem on division with remainder allows one to find simple representants
in R[X ] or residue classes modulo a principal ideal (g) ⊂ R[X ], provided that the
leading coefficient of g is a unit. This is analogous to the representants 0, 1, . . . , n−1
modulo the ideal nZ⊂Z.

III.3.4 Theorem. Suppose R is a ring with 1 and g ∈ R[X ] satisfies deg(g)> 0 and
the leading coefficient of g is a unit in R.

The following is a bijection between sets:{
h ∈ R[X ] : deg(h)< deg(g)

}
−→ R[X ]/(g) h 7→ h+ (g).

In other words, every residue class modulo the ideal (g) has a unique representant
h ∈ R[X ] with deg(h)< n.

Proof. We first show that the given map is surjective. Let f + (g) with f ∈ R[X ] be
any residue class modulo the ideal (g). We apply Theorem III.3.1 to these f and g,
obtaining q, r ∈ R[X ] with deg(r)< deg(g). Observe that

f = qg+ r =⇒ f + (g)= r+ qg+ (g)= r+ (g),
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since qg ∈ (g). So indeed the map is surjective. To verify injectivity we use

h1 + (g)= h2 + (g) ⇐⇒ h1 −h2 ∈ (g) ⇐⇒ h1 −h2 = f g for some f ∈ R[X ].

The leading coefficient of g being a unit, one has deg( f g) = deg( f )+deg(g). So if
h1 + (g) = h2 + (g) and deg(h1),deg(h2) < deg(g) then h1 − h2 = f g is only possible
when f = 0, so in case h1 = h2.

From surjectivity and injectivity it follows that the map is bijective, finishing
the proof.

III.3.5 Remark. The set on the left and the set on the right in Theorem III.3.4 are
additive groups. For the set on the left this follows using

deg(h1 +h2)≤max(deg(h1),deg(h2))< deg(g)

in case deg(h1),deg(h2) < deg(g). The set on the right is even a ring. The bijection
given between these groups is in fact an isomorphism of additive groups, since
h1 + (g) +h2 + (g) = h1 +h2 + (g). In particular this shows that the additive group
of R[X ]/(g) only depends on the degree of g. In fact this additive group R[X ]/(g) is
isomorphic to Rm, with m = deg(g), via

a0 +a1X + . . .+am−1X m−1 mod (g) 7−→ (a0,a1, . . . ,am−1).

However, the product in the ring R[X ]/(g) does depend on the polynomial g, as
is illustrated in the example below.

III.3.6 Example. Take g = X2 + X +1 ∈ F2[X ] and write 0 := 0̄, 1 := 1̄ for the el-
ements of F2 = Z/2Z. Since any polynomial in F2[X ] has coefficients {0,1}, Theo-
rem III.3.4 yields exactly 4 representants of the residue classes modulo (g):

0, 1, X , X +1.

Writing
x := X + (g) one obtains F2[X ]/(g)= {0, 1, x, x+1}.

The additive group of F2[X ]/(g) is isomorphic to Z/2Z×Z/2Z via ax+ b 7→ (a,b).
The product is slightly more complicated. In F2[X ]/(g) we have x2 + x+1 = 0 since
X2 + X +1= g ∈ 0+ (g). As a consequence,

x(x+1)= x2 + x = 1 · (x2 + x+1)+1= 1.

(for the second equality one uses division with remainder (!)). Therefore, in the
ring F2[X ]/(g) x+1 and x are each other’s inverse. Moreover 1 ·1 = 1, hence every
nonzero element has an inverse. We conclude that F2[X ]/(X2 + X + 1) is a field
consisting of 4 elements!

In contrast, the ring F2[X ]/(X2 + X ) is not a field. The representants of the
residue classes are the same as before, however here X (X +1) ∈ 0+ (X2+X ), hence
the residue classes X+(X2+X ) and X+1+(X2+X ) are zero divisors in F2[X ]/(X2+X ).

In the ring F2[X ]/(X2) the element X + (X2) is even nilpotent, as follows from
(X +(X2))2 = X2+(X2)= 0+(X2). This ring is therefore not isomorphic to F2[X ]/(g)
nor to F2[X ]/(X2 + X ) (the latter ring has no nilpotent elements, in fact r2 = r for
all r ∈F2[X ]/(X2 + X ) as one easily verifies).

III.3.7 Example. Let
S1 := {(a,b) ∈R2 : a2 +b2 = 1},

denote the circle in R2 with radius 1 and center (0,0). The ring consisting of all
continuous functions from S1 to R we denote by C(S1,R).
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A polynomial f ∈R[X ,Y ] yields a function ρ f :R2 →R (compare Remark III.2.5)
given by ρ f (x, y) = f (x, y) for (x, y) ∈R2. Restricting to S1 ⊂R2 one obtains a ring
homomorphism

Φ :R[X ,Y ]−→ C(S1,R), f 7→ ρ f |S1 .

The homomorphism Φ is not injective, for example X2 + Y 2 − 1 ∈ Ker(Φ) since
a2 +b2 −1= 0 for all (a,b) ∈ S1.

We will show:

Ker(Φ) = (X2 +Y 2 −1) = (X2 +Y 2 −1)R[X ,Y ].

Proof. ‘⊃:’ Every element in (X2 +Y 2 −1) can be written as (X2 +Y 2 −1) f , and
Φ((X2 +Y 2 −1) f )=Φ(X2 +Y 2 −1)Φ( f )= 0 ·Φ( f )= 0.
‘⊂:’ Take f ∈ Ker(Φ), so f (a, b) = 0 for all (a, b) ∈ S1. We divide f by X2 +Y 2 −1 in
the ring (R[X ])[Y ] =R[X ,Y ]. Since degY (X2 +Y 2 −1) = 2 this yields q, r ∈R[X ,Y ]
such that

f = q(X2 +Y 2 −1)+ r, r = r0 + r1Y ,

and r0, r1 ∈R[X ]. The assumption f ∈Ker(Φ) implies

r(a,b)= r0(a)+ r1(a)b = 0, ∀ (a,b) ∈ S1.

Note that if (a,b) ∈ S1 then (a,−b) ∈ S1 as well, hence we also have

r(a,−b)= r0(a)− r1(a)b = 0 ∀ (a,b) ∈ S1.

Adding and subtracting these equalities for fixed a ∈R with −1< a < 1 one finds

r0(a)= r1(a)= 0 ∀a ∈R such that −1< a < 1.

The polynomials r0, r1 ∈R[X ] therefore have infinitely many zeros, which implies
r0 = r1 = 0 (see also Theorem III.5.2). It follows that f = q(X2+Y 2−1) ∈ (X2+Y 2−1).
This proves Ker(Φ)= (X2 +Y 2 −1).

The first isomorphism theorem II.3.7 now shows

R[X ,Y ]/(X2 +Y 2 −1)∼=Φ(R[X ,Y ]) (⊂ C(S1,R)),

the image Φ(R[X ,Y ]) is sometimes called the ring of polynomial functions on the
circle.

Theorem III.3.4 (applied to R[Y ] with R = R[X ] and g = Y 2 + X2 − 1 ∈ R[Y ])
allows an explicit description of this ring of polynomial functions on the circle. The
representants in R[X ,Y ] of the residue classes modulo I := (X2 +Y 2 −1) are

f + gY f , g ∈R[X ].

In R[X ,Y ]/I define the elements

x := X = X + I, y :=Y =Y + I.

Since X2 +Y 2 −1 ∈ I, it follows that x2 + y2 −1= 0, i.e., y2 = 1− x2. Summarizing:

R[X ,Y ]/I = { f + gy : f , g ∈R[x]}

and such functions on the circle are multiplied using the rule

( f + gy)(h+ky)= ( f h+ gk · (1− x2))+ ( f k+ gh)y.
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III.4 Rings of polynomials over a field

In this section we show that a polynomial ring K[X ] in one variable X over a
field K is a principal ideal ring. As a consequence, the kernel of an evaluation
homomorphism evs : K[X ]→ S has the form (g) for some g ∈ K[X ].

III.4.1 Theorem. Let K be a field. Every ideal in the ring K[X ] is a principal ideal.
In case the ideal I ⊂ K[X ] is not the zero ideal, every polynomial g ∈ I, g 6= 0 of

minimal degree is a generator of I, i.e., I = (g).

Proof. Let I ⊂ K[X ] be an ideal. We must find g ∈ I such that I = K[X ] · g. If I = {0}
then g = 0 works. Suppose I 6= {0} and choose any g ∈ I, g 6= 0 such that deg(g) is as
small as possible. We claim

I = K[X ] · g.

The inclusion ⊇ is clear since g ∈ I and I is an ideal, which implies f g ∈ I for
all f ∈ K[X ]. To show the inclusion ⊆, let f ∈ I. Since K is a field, the leading
coefficient of g is a unit in K . Hence Theorem III.3.1 yields q, r ∈ K[X ] with

f = qg+ r, deg(r)< deg(g).

Now f , qg ∈ I and I is an additive group, so also r = f − qg ∈ I. Were r 6= 0 then
r is a nonzero element in I of degree less than the degree of g, contradicting the
minimal choice of g. This shows r = 0 and f = qg ∈ K[X ]g. Hence every f ∈ I is in
K[X ] · g, showing ⊆. This finishes the proof of Theorem III.4.1.

III.4.2 Remark. The condition in Theorem III.4.1 that K should be a field is es-
sential. For example the ideal (2, X ) ⊂ Z[X ] is not principal, see Exercise 16 on
page 32.

Also a polynomial ring such as R[X ,Y ] contains ideals that are not principal,
for example (X ,Y ) as shown in Example II.4.3.

III.4.3 Example. Using R⊂C one obtains the evaluation homomorphism

evi :R[X ]−→C, f 7→ f (i).

Note that evi is surjective. As i 6∈R no polynomials 6= 0 of degree ≤ 1 are in Ker(evi).
And i2 = −1 shows that g := X2 +1 ∈ Ker(Φi), with deg(g) = 2. So g is a nonzero
polynomial of minimal degree in Ker(Φi) and therefore Theorem III.4.1 implies
Ker(evi) = (g). Furthermore it follows from the first isomorphism theorem II.3.7
that

R[X ]/(X2 +1)∼=C.

For generalisations of this we refer to Exercise 12 on page 49.

III.4.4 Example. Let V be a vector space over a field K and let A ∈EndK (V ). Then
the kernel of the evaluation homomorphism

evA : K[X ]−→EndK (V ), f 7→ f (A)

(see Example III.2.4) is a principal ideal (g) in K[X ]. Write an ∈ K − {0} for the
leading coefficient of g, then (a−1

n g)= (g) and a−1
n g is a monic polynomial. Moreover

by the minimality of the degree, Ker(evA) contains only one monic polynomial of
this minimal degree (otherwise the difference of two such monic polynomials would
be an element of the kernel of still smaller degree). The minimal polynomial of A
is by definition the monic polynomial mA ∈ K[X ] such that

Ker(evA)= (mA)= K[X ] ·mA .
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In case A =λI with λ ∈ K − {0} one finds mA = X −λ. Take λ, µ ∈ K and put

A =
(
λ 0
0 µ

)
, f := (X −λ)(X −µ).

If λ= µ then A = λI hence mA = X −λ. If λ 6= µ then A−τI 6= 0 for every τ ∈ K , so
the minimal polynomial has degree ≥ 2. We compute f (A)= (A−λ)(A−µ)=((

λ 0
0 µ

)
−

(
λ 0
0 λ

))
·
((

λ 0
0 µ

)
−

(
µ 0
0 µ

))
=(

0 0
0 µ−λ

)(
λ−µ 0

0 0

)
= 0.

Since f (A) = 0 and deg( f ) = 2 the conclusion is that f is the monic polynomial of
minimal degree in Ker(evA), so Ker(evA)= ( f ) and mA = f .

More generally let

A = diag(λ1, λ2, . . . ,λn), with λi 6=λ j for i 6= j,

i.e., A is a diagonal matrix with coefficients A ii =λi, A i j = 0 if i 6= j. Take

f = (X −λ1)(X −λ2) . . . (X −λn).

Since evA( f ) = f (A) = 0 (verify!) we have f ∈ (mA). Hence f = gmA for some
g ∈ K[X ]. If f 6= mA then at least one of the factors (X −λi) of f does not appear
in mA . This would contradict mA(A) = 0 as one easily calculates. The conclusion
is that f = mA . Try to determine mA for yourself in the case that some of the
λicoincide.

III.5 Rings of polynomials over a domain

III.5.1 Theorem. Let R be a domain and f ∈ R[X ]. Suppose α1,α2, . . . ,αn ∈ R are
pairwise distinct zeros of f . Then q ∈ R[X ] exists such that

f = q · (X −α1) · (X −α2) . . . (X −αn).

Proof. We use induction w.r.t. n. For n = 1 apply Theorem III.3.1:

f = q · (X −α1)+ r with deg(r)≤ 0,

so r is a constant. Now apply the evaluation homomorphism evα1 ; this is possible
since the domain R is by definition commutative. One obtains 0= f (α1)= q(α1)·0+r
hence r = 0, proving the result in case n = 1.

Now let n > 1 and assume (induction hypothesis) the result for polynomials of
degree < n. From f (αn) = 0 and division with remainder (as in the case n = 1) one
finds

f = f1 · (X −αn).

For 1≤ i ≤ n−1 we have

f1(αi) · (αi −αn)= f (αi)= 0,

hence since αi 6=αn for i < n and R is a domain it follows that

f1(αi)= 0 (1≤ i ≤ n−1).

III.5 RINGS OF POLYNOMIALS OVER A DOMAIN 45



The induction hypothesis applied to f1 shows

f1 = q · (X −α1)(X −α2) . . . (X −αn−1)

for some q ∈ R[X ], and therefore

f = f1 · (X −αn)= q · (X −α1)(X −α2) . . . (X −αn),

finishing the proof of Theorem III.5.1.

III.5.2 Theorem. If R is a domain and f ∈ R[X ] a nonzero polynomial, then the
number of pairwise distinct zeros of f in R is at most deg( f ).

Proof. This follows from Theorem III.5.1: if α1, . . . ,αn ∈ R are pairwise distinct ze-
ros of f then f = q·(X−α1) . . . (X−αn). Comparing degrees shows deg( f )= deg(q)+n,
hence deg( f )≥ n since q 6= 0.

III.5.3 Remark. The condition that R is a domain is essential. The polynomial
X2 − 1̄ in (Z/8Z)[X ] has degree 2 while it has 4 zeros in Z/8Z, namely 1̄, 3̄, 5̄, 7̄.

In the non-commutative division algebra of the quaternions H, see I.1.5, the
polynomial X2+1 ∈H[X ] has degree 2 and for example the zeros ±i, ± j,±k (in fact
this polynomial has infinitely many zeros in H, see Exercise 4 on page 49).

Using a result on finite abelian groups, a consequence of Theorem III.5.2 is the
following.

III.5.4 Corollary. If R is a domain and G ⊂ R× a finite subgroup of R×, then G is
cyclic, i.e., g ∈G exists with ord(g)= #G.

Proof. By assumption G is a finite abelian group. If #G = 1 the result is trivial. If
#G > 1, a result from Group Theory is that

G ∼= (Z/d1Z)× (Z/d2Z)× . . .× (Z/dtZ)

for integers 2 ≤ d1 ≤ d2 ≤ . . . ≤ dt with (in case t > 1) d1|d2, d2|d3, . . ., dt−1|dt. In
particular #G = ∏

d j and every element of G has order dividing dt. This means
that all elements of G are zeros of the polynomial X dt −1 ∈ R[X ]. Therefore The-
orem III.5.2 implies #G ≤ dt. As a consequence t = 1 and G is cyclic, proving the
result.

III.6 Differentiation

In Exercise 26 on page 33 the ring of dual numbers over a field was introduced. We
now generalise this to other rings, and use it to introduce and study the ‘derivative’
of a polynomial over a ring.

III.6.1 Definition. Given a ring R, the ring of dual numbers over R consists of all
formal expressions

r+ s ·ε, r, s ∈ R

with addition (r+ s · ε)+ (r′+ s′ · ε) = (r+ r′)+ (s+ s′) · ε and multiplication law given
by (r+ s ·ε) · (r′+ s′ ·ε)= rr′+ (rs′+ sr′) ·ε. This ring is denoted by R[ε].
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One verifies without difficulty (regardless of R being commutative or not) that
indeed R[ε] is a ring. We consider R as a subring of R[ε] by identifying r ∈ R with
r+0 · ε ∈ R[ε]. By definition, r+ s · ε= r′+ s′ · ε if and only if r = r′ and s = s′, for all
r, r′, s, s′ ∈ R. An element of R[ε] of the form 0+ s · ε will simply be written as s · ε.
Note that (s ·ε)2 = 0 whenever s ∈ R.

Let R be a ring with 1. The dual numbers over the polynomial ring R[X ] are
denoted, as a special case of the above, by R[X ][ε]. Note that X +ε := X +1 · ε com-
mutes with all f + g · ε ∈ R[X ][ε], by definition of the multiplication of polynomials
and by definition of the multiplication of dual numbers.

III.6.2 Lemma. If R is a ring with 1 which we consider as a subring of R[X ][ε],
then the evaluation map

evX+ε : R[X ]−→ R[X ][ε]

is a ring homomorphism. Writing the image of f ∈ R[X ] as f (X +ε)= f0 + f1 ·ε with
f0, f1 ∈ R[X ], one has f0 = f .

Proof. Observing that X + ε commutes with the elements of R, Theorem III.2.1
implies that evX+ε is a ring homomorphism.

As is easily verified, for any ring S the map S[ε]→ S given by s0+s1 ·ε 7→ s0 (this
is the same as: substitute 0 for ε) is a ring homomorphism. In the case S = R[X ],
clearly it sends f (X +ε)= f0 + f1 ·ε to f and also to f0, showing that f = f0.

III.6.3 Definition. Let R be a ring with 1 and f ∈ R[X ]. Writing

f (X +ε)= f + f1 ·ε ∈ R[X ][ε],

the derivative of f is the polynomial f1. This is denoted f ′ or d f
dX or d

dX f or, in case
f may also be considered as a polynomial in a variable different from X , by ∂ f

∂X .

III.6.4 Remark. Note that this definition of ‘derivative’ does not involve limits. We
have the formula

f (X +ε)= f + f ′ ·ε,
which holds in R[X ][ε] for an arbitrary ring R with 1. Note the analogy with a ‘first
order Taylor expansion’ as discussed in Calculus or Analysis courses.

III.6.5 Theorem. Let R be a ring with 1.

(a) For all f , g ∈ R[X ] we have

( f + g)′ = f ′+ g′ and ( f g)′ = f ′g+ f g′.

(b) If f =
n∑

k=0
ak X k ∈ R[X ] then

f ′ =
n∑

k=1
kak X k−1.

(Here kak = ak +ak + . . .+ak (k terms).)

Proof. (a) follows using that evX+ε is a ring homomorphism: by definition we have
f (X +ε)= f + f ′ ·ε and g(X +ε)= g+ g′ ·ε. Hence

( f + g)+ ( f + g)′ ·ε= evX+ε( f + g)= ( f + f ′ ·ε)+ (g+ g′ ·ε)= ( f + g)+ ( f ′+ g′) ·ε,
showing that ( f + g)′ = f ′+ g′. Similarly

( f g)+ ( f g)′ ·ε= evX+ε( f g)= ( f + f ′ ·ε)(g+ g′ ·ε)= ( f g)+ ( f g′+ g′ f ) ·ε,
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which shows ( f g)′ = f g′+ f ′g.
To prove (b), one first observes that

(a · X k)′ = kaX k−1 for a ∈ R,k ∈Z>0.

This is immediate from a · (X + ε)k = aX k + kaX k−1 · ε, using either Newton’s Bi-
nomium (compare Exercise 15 on page 14; this is valid here because X and ε com-
mute), or by using a straightforward induction with respect to k. We also have
(a)′ = 0 for a ∈ R (verify!). Hence using (a) one obtains

(
n∑

k=0
ak X k)′ =

n∑
k=0

(ak X k)′ =
n∑

k=1
kak X k−1,

finishing the proof of Theorem III.6.5.

III.6.6 Remark. Alternatively, we could have used the formula in III.6.5(b) to de-
fine the derivative f ′. In that case the properties stated in Theorem III.6.5(a) would
require a different proof.

For us, the most important application of the derivative will be the study of mul-
tiple zeros of polynomials. Suppose R is a commutative ring. If α ∈ R is a zero of
f ∈ R[X ], then using the proof of Theorem III.5.1 f = (X −α) · q, with q ∈ R[X ]. If
we can even write f = (X −α)2 · q1 with q1 ∈ R[X ] (so in case R is a domain this
means α is a zero of q as well), then α is called a double or multiple zero of f .

III.6.7 Theorem. Let R be a commutative ring with 1 and let f ∈ R[X ]. Suppose
α ∈ R is a zero of f . Then: α is a double zero of f ⇐⇒α is a zero of f ′.

Proof. Write f = (X −α) · q, with q ∈ R[X ]. Then

α is a double zero of f ⇐⇒ q(α)= 0.

Using f = (X −α) · q and III.6.5(a) it follows that

f ′ = (X −α)′ · q+ (X −α) · q′ = q+ (X −α)q′.

As a consequence
f ′(α)= q(α).

This shows q(α)= 0⇔ f ′(α)= 0, proving Theorem III.6.7.
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III.7 Exercises

1. Let R be a ring without zero divisors, and take f , g ∈ R[X ].
Show that deg( f · g)= deg( f )+deg(g). Conclude that R[X ] has no zero divisors.

2. Show using the example f = X2 and g = 2X in the ring Z[X ] that in Theo-
rem III.3.1 the condition that the leading coefficient of g should be a unit, can
not be missed.

3. Let K be a field, f ∈ K[X ], and α0,α1, . . .αn an n+1-tuple of pairwise different
elements of K , with n ≥ deg( f ). Prove that

f =
n∑

i=0
f (αi)

∏n
j=0, j 6=i(X −α j)∏n
j=0, j 6=i(αi −α j)

,

the interpolation formula of Lagrange.
4. Let x = a+bi+ c j+dk ∈H, with a,b, c,d ∈R. Prove:

x is a zero of X2 +1⇔ (xx = 1 and x =−x)⇔ (a = 0 and b2 + c2 +d2 = 1).

Conclude that X2 +1 has infinitely many zeros in H.
5. Suppose R is a commutative ring with 1 and let f , g ∈ R[X ] and k ∈Z>0.

(a) Show that f ∈ R[X ] · gk =⇒ f ′ ∈ R[X ] · gk−1.

(b) Give an example showing that conversely f ′ ∈ R[X ] · gk−1 does not neces-
sarily imply that f ∈ R[X ] · gk.

6. Let R =F2 and f ∈ R[X ].

(a) Show that the next three conditions are equivalent:

(i) f ′ = 0;

(ii) f can be written as f =
n∑

k=0
ak X2k with all ak ∈F2;

(iii) g ∈F2[X ] exists with f = g2.

(b) Show that ( f ′)′ = 0.

7. Let R be a ring with 1. For f ∈ R[X ] and k ∈Z≥0 one defines f (k) inductively by
f (0) = f , f (k) = ( f (k−1))′. Show that for all f , g ∈ R[X ] and n ∈Z≥0 one has:

( f · g)(n) =
n∑

k=0

(
n
k

)
f (k) g(n−k)

(this is called the formula of Leibniz).
8. Let R be a finite ring. Show that n,m ∈Z exist with n > m > 0 such that xn = xm

for all x ∈ R.
9. Let R be a domain and f , g ∈ R[X ] such that max{deg( f ),deg(g)} < #R (for ex-

ample, this holds whenever R is infinite). Prove: (∀x ∈ R : f (x)= g(x))⇔ f = g.
10. Let p be prime and f , g ∈Fp[X ]. Prove:

(∀x ∈Fp : f (x)= g(x))⇔ f − g ∈Fp[X ] · (X p − X ).

11. Define the evaluation homomorphism

ev :R[X ,Y ]−→R[T], f (X ,Y ) 7→ f (T2,T3).

Show that Ker(ev)= (X3 −Y 2) and that ev(R[X ,Y ])= {
∑

aiT i : a1 = 0}.
12. (a) Take z = a+bi ∈C with z 6∈R. Prove that the evaluation homomorphism

evz :R[X ]−→C, f 7→ f (z),

(here we use the inclusion R⊂C) is surjective.
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(b) Put g = X2 −2aX +a2 +b2. Show that

Ker(evz)= (g) and R[X ]/(g)∼=C.

(c) Let f = aX2 +bX + c ∈R[X ] with a 6= 0. Show:

R[X ]/( f ) ∼= C if b2 −4ac < 0,
∼= R[ε] if b2 −4ac = 0,
∼= R×R if b2 −4ac > 0.

Here R[ε] is the ring of dual numbers over R, see Definition III.6.1. Try to
construct explicit isomorphisms in all three cases.

13. Take z,w ∈C−R and let

evz,w :R[X ,Y ]−→C, f 7→ f (z,w),

be the evaluation homomorphism. Show that Ker(evz,w) is generated by one
linear polynomial and one polynomial of degree 2. Determine such polynomials
explicitly in case z = 1+ i, w = 3−2i.

14. (a) Verify that the tangent line to the circle

S1 := {(a,b) ∈R2 : a2 +b2 = 1}

in the point (a,b) ∈ S1 is given by

`(a,b)(X ,Y )= 0,

where
`(a,b) = a(X −a)+b(Y −b) ∈R[X ,Y ].

(b) Let R[ε] be the ring of dual numbers over R (see Definition III.6.1). Define

S1(R[ε]) := {
(a+ sε, b+ tε) ∈R[ε]2 : (a+ sε)2 + (b+ tε)2 = 1

}
,

‘the points of S1 with coordinates in R[ε]’. Show that:

(a+ sε, b+ tε) ∈ S1(R[ε]) ⇐⇒ (a,b) ∈ S1 and `(a,b)(a+ s,b+ t)= 0.

15. Let K be a field and consider R = K[X ]/(X n) for n ∈Z≥1. Writing x := X+(X n) ∈ R,
every element r in R is of the form

r = a0 +a1x+ . . .an−1xn−1, ai ∈ K .

(a) Show that r ∈ R is a unit if and only if a0 6= 0. Find the inverse of such a
unit.

(b) Show that every zero divisor in R is nilpotent. What is the smallest k such
that rk = 0 for all zero divisors r in R?

(c) Given any a ∈ K , find a ring isomorphism

K[X ]/
(
(X −a)n)∼= K[X ]/(X n).

(d) Given any n > 1, find f ∈ K[X ] such that f + (X n) is a unit in R whereas
f + (X −1)n ∈ K[X ]/((X −1)n) is nilpotent.

16. Let V be a finite dimensional vector space over a field K and let A ∈ EndK (V ).
Suppose λ ∈ K is an eigenvalue of A, i.e., v ∈V exists with v 6= 0 and Av =λv (or
equivalently, A−λ is not invertible in the ring EndK (V )).

(a) Show that λ is a zero of mA . (Hint: consider mA(A)v).
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(b) Prove that every zero µ of mA is an eigenvalue of A. (Hint: write mA = (X−µ)·g
and consider 0= (A−µ) · g(A).)

(c) Prove that in case A has n = dimK (V ) pairwise distinct eigenvalues in K ,
then mA is, possibly up to a sign ±1, equal to the characteristic polynomial
det(A− X I) of A.

17. Determine the minimal polynomials of the following matrices in M3(K), where
K is a field. Distinguish the cases λ=µ and λ 6=µ.

A :=
 λ 0 1

0 µ 1
0 0 µ

 , B :=
 λ 1 0

0 µ 1
0 0 µ

 .

18. Let R be the ring of polynomial functions on the circle (compare Example III.3.7):

R =R[X ,Y ]/I, where I = (X2 +Y 2 −1).

Define x, y ∈ R by x := X + I, y :=Y + I and consider the ideal M := (x−1, y)⊂ R.
Recall that every r ∈ R can be given uniquely as r = f + gy with f , g ∈R[x].

(a) Prove that
ev(1,0) : R −→R, f + gy 7→ f (1)

is a surjective ring homomorphism, and Ker(ev(1,0))= M.

(b) Define
N : R −→R[x]

by
N( f + gy) := ( f + gy)( f − gy)= f 2 − g2(1− x2).

Show that if N(r) ∈R[x] is a constant, then r = f + gy with f constant and
g = 0.

(c) Prove that M is not a principal ideal. (Hint: suppose 1− x =α · r, y=α · s,
and consider N(1− x), N(y).)

19. We define the n-sphere by

Sn := {(x0, x1, . . . , xn) ∈Rn+1 : x2
0 + x2

1 + . . . x2
n = 1}.

Let C(Sn,R) denote the ring of continuous functions from Sn to R. Let Φn be
the restriction map

Φn : R[X0, X1, . . . , Xn]−→ C(S1,R), f 7→ f|Sn .

Show that
Ker(Φn)= (X2

0 + X2
1 + . . .+ X2

n −1).
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IV PRIME IDEALS AND MAXIMAL IDEALS

IV.1 Prime ideals

Throughout this chapter R is a commutative (unitary) ring.
An important property of prime numbers p is that

p|ab =⇒ p|a of p|b
whenever a,b ∈Z. In other words:

ab ∈ pZ =⇒ a ∈ pZ or b ∈ pZ.

Ideals with this property will be called prime ideals:

IV.1.1 Definition. Let R be a commutative ring with 1. A prime ideal of R is an
ideal I ⊂ R satisfying:

(P1) I 6= R;
(P2) For all a, b ∈ R such that ab ∈ I it holds that either a ∈ I or b ∈ I (or both).

IV.1.2 Example. As we saw, pZ is a prime ideal of Z for every prime number p.
If n ∈ Z>0 is not prime then nZ is not a prime ideal of Z: namely, in case n = 1
condition (P1) is not satisfied, and if n > 1 then with n = ab and 1 < a,b < n one
obtains ab = n ∈ nZ although a ∉ nZ and b ∉ nZ. Hence for n > 1 not prime nZ does
not satisfy (P2).

The ideal {0}⊂Z is a prime ideal.

IV.1.3 Theorem. The ideal {0}⊂ R is a prime ideal if and only if R is a domain.

Proof. If R is a domain then 1 6= 0 hence {0} 6= R. Moreover in a domain ab = 0⇒ a = 0
or b = 0 so condition (P2) is satisfied.

Vice versa, is {0} a prime ideal then (P2) implies that R has no zero divisors.
Moreover 1 ∈ R is not an element of the prime ideal {0} since otherwise {0} = R,
contradicting {0} being a prime ideal. So 1 6= 0 in R, which finishes the proof that R
is a domain. This shows IV.1.3.

IV.1.4 Example. The ideal R[X ] · (X2 −1) ⊂ R[X ] is not a prime ideal, because it
contains (X +1)(X −1), but not X +1 or X −1.

However, the ideal R[X ] ·(X2+1)⊂R[X ] is a prime ideal. To verify this, we will
use the evaluation homomorphism (see III.4.3):

evi :R[X ]−→C, f 7→ f (i).
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As we observed in Example III.4.3,

Ker(evi)=R[X ] · (X2 +1).

As a consequence, given f , g ∈R[X ] we have

f g ∈R[X ] · (X2 +1) ⇒ ( f g)(i)= f (i)g(i)= 0 ⇒ f (i)= 0 or g(i)= 0

⇒ f ∈R[X ] · (X2 +1) or g ∈R[X ] · (X2 +1).

This verifies (P2); we leave (P1) as an exercise to reader.

The next result generalises IV.1.3, and asserts that one can verify whether an ideal
I is prime by considering the residue class ring R/I.

IV.1.5 Theorem. Let R be a commutative ring with 1, and I ⊂ R an ideal. Then

I is a prime ideal of R ⇐⇒ R/I is a domain.

Proof. For a ∈ R put a = (a+ I) ∈ R/I. The ring R/I is by Definition I.2.13 a domain
if and only if 1 6= 0 and R/I has no zero divisors. Now

1 6= 0 ⇐⇒ 1 ∉ I ⇐⇒ I 6= R ⇐⇒ (P1) holds,

and
R/I has no zero divisors

⇐⇒ (∀a,b ∈ R/I : ab = 0 ⇒ a = 0 or b = 0)
⇐⇒ (∀a,b ∈ R : ab ∈ I ⇒ a ∈ I or b ∈ I)
⇐⇒ (P2) holds.

Here we repeatedly used that c = 0 is equivalent to c ∈ I. So we conclude R/I is a
domain ⇔ (P1) and (P2) hold ⇔ I is a prime ideal of R. This proves IV.1.5.

IV.1.6 Example. We know R[X ]/(X2 + 1) ∼= C, which is a domain. Using Theo-
rem IV.1.5 this implies that (X2 +1) is a prime ideal of R[X ].

In many cases a fast way to verify whether some ideal I ⊂ R is prime consists of
calculating the ring R/I and applying IV.1.5. For special rings, other methods exist:
see for example Theorem V.2.4 below.

IV.1.7 Example. Take the ideals J = (X+Y , X2+X+Y+1) and I = (X+Y )= (Y−(−X ))
in the ring R =R[X ,Y ]. Then (see II.3.8)

R/I ∼=R[X ], F(X ,Y ) 7→ F(X ,−X ).

If φ : R → R/I denotes the canonical map, then φ(J)= (0, X2+X+(−X )+1)= (X2+1)⊂R[X ]
hence by II.3.10 one finds

R/J ∼=R[X ]/(X2 +1)∼=C.

Therefore J is a prime ideal of R.

IV.1.8 Example. Consider the ideals J = (5, X2 +Y +1) and I = (Y − (−X2 −1))⊂ J
in the ring R =Z[X ,Y ]. Then

R/I ∼=Z[X ], F(X ,Y ) 7→ F(X ,−X2 −1),

and J/I = (5,0)= (5). As is not hard to verify,

φ :Z[X ]−→F5[X ],
∑

i
ai X i 7→ ∑

i
ai X i,
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(here ai ∈ F5) is a surjective ring homomorphism with Ker(φ) = (5) = 5Z[X ] (see
also II.3.9). Using II.3.7 and II.3.10 it follows that

R/J ∼=F5[X ].

The latter ring is a domain since F5 is a domain (even a field). As a consequence J
is a prime ideal.

IV.1.9 Example. Take I = (Y Z−X2, X2−Z)⊂C[X ,Y , Z]= R. Similar to the exam-
ples above, R/I ∼=C[X ,Y ]/(Y X2 − X2). From

X2 · (Y −1) ∈ (Y X2 − X2)

and
X2 ∉ (Y X2 − X2), Y −1 ∉ (Y X2 − X2),

it follows that (Y X2−X2) is not a prime ideal of C[X ,Y ]. Hence R/I is not a domain,
and therefore I is not a prime ideal of R.

IV.2 Maximal ideals

IV.2.1 Definition. Let R be a commutative ring with 1. An ideal M of R is called
maximal if

(M1) M 6= R;
(M2) for every ideal J of R with M ⊂ J ⊂ R either J = M or J = R.

So a maximal ideal ‘cannot be made bigger’ without obtaining the full ring.
Examples of ideals that are not maximal: 9Z ⊂ Z, because ideal 3Z is ‘strictly

between’; also (2)⊂Z[X ], since (2, X ) is strictly between (2) and Z[X ].
Examples of ideals that are maximal are readily found once we have shown the

analog of IV.1.5 for maximal ideals. We start by showing the analog of IV.1.3:

IV.2.2 Theorem. The ideal {0}⊂ R is maximal if and only if R is a field.

Proof. ⇐. In a field one has 1 6= 0, hence {0} 6= R, hence {0} satisfies (M1). Moreover
by II.4.5 a field contains no ideals except {0} and R, hence (M2) is satisfied as well.
This shows ⇐.
⇒. We claim that every a ∈ R,a 6= 0 has an inverse. To obtain this we apply (M2)
to the ideal J = Ra. This ideal is different from {0}, so by (M2) (with M = {0}) it
follows that Ra = R. Hence 1 ∈ Ra, so 1= ba for some b ∈ R, which means a has an
inverse. As R is unitary this means that R is a field. This shows ⇒, and finishes
the proof of IV.2.2.

IV.2.3 Theorem. If R is a commutative ring with 1 and M ⊂ R an ideal, then:

M is a maximal ideal of R ⇐⇒ R/M is a field.

Proof. The idea of the proof is to reduce the assertion to the special case IV.2.2, by
means of II.3.10.

Write R = R/M. By II.3.10 the ideals J in R such that M ⊂ J ⊂ R are in 1−1
correspondence with the ideals J = J/M of R. Therefore an R-ideal J strictly be-
tween M and R gives rise to an R-ideal strictly between {0} and R, and vice versa.
As a result,

M is a maximal ideal of R ⇐⇒ {0} is a maximal ideal of R = R/M.

By IV.2.2 this last condition is equivalent to: R = R/M is a field. This proves IV.2.3.
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Theorem IV.2.3 is used in a similar way to determine whether an ideal is maximal,
as Theorem IV.1.5 is used to see whether an ideal is prime.

IV.2.4 Example. Take n ∈ Z>0. Then Z/nZ is a field if and only if n is prime (see
I.2.11), hence

pZ⊂Z is maximal, for all p prime

and the ideals (n) with n not a prime number are not maximal. Indeed we have for
n = ab and 1< a, b < n that (n)⊂ (a) and (a) 6=Z (since a 6= ±1).

IV.2.5 Example. We saw in Example IV.1.8 that

Z[X ,Y ]/(5, X2 +Y +1)∼=F5[X ].

This is a domain but not a field (X−1 6∈F5[X ]), so (5, X2+Y +1)⊂Z[X ,Y ] is a prime
ideal but it is not maximal.

IV.2.6 Example. For every (a, b) ∈R×R it holds that (X −a, Y − b) is a maximal
ideal in R[X , Y ] because (see II.3.11)

R[X , Y ]/(X −a, Y −b)∼=R[X ]/(X −a)∼=R,

and R is a field.

IV.2.7 Corollary. Every maximal ideal is prime.

Proof. This is immediate from IV.2.3 and IV.1.5, using that any field is a domain.

IV.2.8 Remark. As Example IV.2.5 shows, the converse of IV.2.7 is false. An even
simpler example showing this is {0} ⊂Z: the ring Z is a domain but not a field, so
{0}⊂Z is prime but not maximal.

IV.3 Zorn’s lemma

IV.3.1 Theorem. Every commutative ring R with 1 6= 0 contains a maximal ideal.

The idea of the proof of this is quite simple: start with the zero-ideal {0}, and keep
enlarging this until no further enlargement is possible without obtaining the full
ring. We will first treat a case where the proof along these lines can indeed be
completed by ordinary means. It turns out that for the general case, a tool from set
theory is necessary: Zorn’s lemma (named after the German mathematician Max
August Zorn, 1906–1993, although already before Zorn it was also treated by the
Polish mathematician Kazimierz Kuratowski, 1896–1980).

Proof. (in the special case that R is countable.) Enumerate the elements of R as
r1, r2, . . .. Inductively define the sequence of ideals I0 ⊆ I1 ⊆ . . . by I0 = (0) and

In =
{

In−1 + (rn) if In−1 + (rn) 6= R;
In−1 otherwise.

Put
M = ⋃

n∈N
In.
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We claim that M is a maximal ideal. To verify this, we first need to check that
M is an ideal. Let a,b ∈ M, then n, m ∈ N exist with a ∈ In and b ∈ Im. Taking
` := max{n,m} we find In, Im ⊆ I`, hence a,b ∈ I` which is an ideal. Therefore
a−b ∈ I` ⊆ M. Moreover given any r ∈ R then also ra ∈ In ⊆ M and this shows that
M is an ideal of R.

If M is not a maximal ideal then one of the following two situations happens.
Either the unit element of R is in M or some ideal N of R exists with M ( N ( R.
If 1 ∈ M then 1 ∈ In for some n, hence this In equals R, contradicting the defi-
nition of the ideals In. In the remaining case M ( N ( R, there exists rn ∈ N
with rn ∉ M. This implies M + (rn) ⊆ N hence M + (rn) 6= R. Therefore certainly
In−1 + (rn) 6= R, since In−1 ⊂ M. The definition of In now shows that rn ∈ In ⊂ M, a
contradiction. This completes the proof that M is maximal, and thereby the proof
of Theorem IV.3.1 in the special case that R is countable.

It is a fact that in order to extend the argument presented above to more general
rings, one needs an axiom from set theory called the ‘Axiom of Choice’, which is a
surprisingly simple sounding statement:

Axiom of Choice. If S,T are sets and f : S → T a surjective map, then g : T → S
exists with f ◦ g = idT .

It is a standard but nontrivial result from set theory that Zorn’s lemma, which will
be stated below, is equivalent to the Axiom of Choice. In order to formulate Zorn’s
Lemma, two additional definitions are needed.

IV.3.2 Definition. A partially ordered set is a pair (P,≤) in which P is a set and ≤
is a binary relation on P with the properties

∀x, y, z ∈ P : (x ≤ y∧ y≤ z)⇒ x ≤ z,
∀x, y ∈ P : (x ≤ y∧ y≤ x)⇔ x = y.

IV.3.3 Definition. A chain in a partially ordered set (P,≤) is a subset K ⊂ P with
the property

∀x, y ∈ K : x ≤ y ∨ y≤ x.

The chain K is called maximal if K ⊆ L ⊆ P and L is a chain=⇒ L = K .

In other words, a chain K in a partially ordered set (P,≤) is maximal if for every
y in the complement of K in P, some x ∈ K exists such that neither x ≤ y nor y≤ x.
We are now ready to state Zorn’s Lemma.

Zorn’s Lemma. Every partially ordered set (P,≤) contains at least one maximal
chain.

We refer to textbooks on set theory for more details and consequences of the
above statement. Here we explain how it implies the general case of Theorem IV.3.1.

Proof. (of Theorem IV.3.1) Take the partially ordered set (P,≤) with

P = {I : I is an ideal of R, and 1 ∉ I}.

As ordering on P we use the inclusion relation, so

I ≤ J in P
def⇐⇒ I ⊆ J.

Observe that in the proof of the special case of IV.3.1 presented above, the set
{In}n∈N is actually a chain in P.
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In the general case we use a similar idea: By Zorn’s Lemma we even have a
maximal chain K in P, say

K = {In}n∈X ,

where the index set X could in principle be arbitrarily large. The chain K is a
collection of ideals such that ∀I, J ∈ K : I ⊂ J ∨ J ⊂ I. Incidentally, the partially
ordered set P is not empty, since {0}⊂ R is an ideal. Hence the maximal chain K is
nonempty as well. We now consider M =⋃

n∈X In.
We claim that M is the desired maximal ideal. To this end one first verifies that

indeed M is an ideal, and this is done (check the details if necessary!) exactly as in
the special case above. If the ideal M is not maximal then either M = R or an ideal
N exists with M ( N ( R. Again, checking that neither of these situations occurs
is done quite analogous to the argument of the special case above: if M = R then
1 ∈ M and therefore 1 ∈ In for some n ∈ X , contradicting the definition of P. The
existence of an ideal N strictly between M and R would contradict the maximality
of the chain K . We conclude that indeed M is maximal.

IV.3.4 Corollary. If R is a commutative ring (with 1) and I ⊂ R is an ideal such
that I 6= R, then R has a maximal ideal M with I ⊂ M.

Proof. Applying IV.3.1, the ring R/I has a maximal ideal, which by II.3.10 has the
form M/I with M some ideal of R such that M ⊃ I. Using II.3.10 we have that
R/M ∼= (R/I)/(M/I) which is a field. Therefore M is maximal in R (Theorem IV.2.3).
This proves IV.3.4.
(Different proof: apply Zorn’s Lemma to the set of ideals 6= R of R containing I.)

IV.3.5 Corollary. If R is a commutative ring with 1, then⋃
M

M = R−R×,

where the union is taken over all maximal ideals M of R.

Proof. ⊂: If M is maximal, then M ⊂ R−R× by II.4.4 and IV.2.1(M1). So ∪M M ⊂ R−R×.
⊃: If a ∈ R−R× then Ra( R is an ideal of R.
Hence by IV.3.4 a maximal ideal M of R exists with Ra ⊆ M. Therefore a ∈∪M M.

This finishes the proof of IV.3.5.

IV.3.6 Example. Let R = C([0,1]) be the ring of continuous functions f : [0,1]→R.
For x ∈ [0,1] put

Mx = { f ∈ R : f (x)= 0}.

This is the kernel of the surjective ring homomorphism

R →R, f 7→ f (x), so R/Mx ∼=R

and therefore Mx ⊂ R is maximal. By Exercise 18 on page 60 it turns out that every
maximal ideal of R is of this form. We have

R− ⋃
x∈[0,1]

Mx = { f ∈ R : ∀x ∈ [0,1] : f (x) 6= 0} .

This is evidently the group of units R× of R, in accordance with IV.3.5.

The next result dealing with the solvability of a system of polynomial equations
over a field, shows a typical applications of Theorem refexmi.

IV.3.7 Corollary. Let K be a field, n, t ∈ Z>0, and f1, f2, ..., f t ∈ K[X1, X2, ..., Xn].
The following two statements are equivalent.
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(i) No g1, g2, ..., gt ∈ K[X1, X2, ..., Xn] exist with g1 f1 + g2 f2 + . . .+ gt f t = 1.
(ii) There exists a field L with K ,→ L and x1, x2, . . . , xn ∈ L such that

f1(x1, x2, . . . , xn)= f2(x1, x2, . . . , xn)= . . .= f t(x1, x2, . . . , xn)= 0.

Proof. (ii) ⇒ (i). Given L, x1, ..., xn as in (ii), suppose g j ∈ K[X1, . . . , Xn] exist with

g1 f1 + ...+ gt f t = 1.

Substituting x1, x2, ..., xn for X1, X2, ..., Xn one obtains 0= 1, a contradiction.
(i) ⇒ (ii). Let I ⊂ K[X1, ..., Xn] be the ideal generated by f1, f2, ..., f t. Then (i) states
that 1 ∉ I, so I 6= K[X1, ..., Xn]. Applying IV.3.1 a maximal ideal M of K[X1, ..., Xn]
exists with I ⊆ M. Put L = K[X1, ..., Xn]/M. By IV.2.3 this is a field. Composing the
ring homomorphisms

K ,→ K[X1, ..., Xn]−→ L = K[X1, ..., Xn]/M

one obtains a ring homomorphism K → L, and this is injective by II.4.6.
We therefore may regard K as a subfield of L. Take xi = X i+M ∈ L, for 1≤ i ≤ n.

Then
f j(x1, ..., xn) = f j(X1, ..., Xn)+M = 0+M

because f j(X1, ..., Xn)= f j ∈ I ⊆ M for 1≤ j ≤ t. This shows IV.3.7.

IV.3.8 Example. Take

K =R, n = t = 1, f1 = X2 +1 ∈R[X ].

Considering the degree one concludes that no g1 ∈R[X ] exists with g1 f1 = 1. Hence
condition (i) in Theorem IV.3.7 is satisfied. By the theorem an ‘extension field’ L
of R exists containing an element x ∈ L with x2 + 1 = 0. Indeed one may take
L =C, x = i. This example shows that it is not possible in all cases to take L = K .

IV.3.9 Remark. One can show that every maximal ideal of C[X1, . . . , Xn] has the
form

M = (X1 −a1, X2 −a2, . . . , Xn −an) (ai ∈C).

Hence in this case the maximal ideals correspond to the points of Cn (evidently the
ideal M corresponds to the point (a1, a2, . . . , an) ∈Cn).

A consequence of Theorem IV.3.7 in the present case is therefore: the polynomi-
als f1, . . . fk ∈C[X1, . . . , Xn] have no common zero in Cn, if and only if a polynomial
relation g1 f1 + g2 f2 + . . .+ gt f t = 1 exists between the f i.
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IV.4 Exercises

1. Let R be a domain. Prove: the ideal of R[X ,Y ] generated by X and Y equals

{ f ∈ R[X ,Y ] : f (0,0)= 0}

and this is a prime ideal of R[X ,Y ].
2. Let K be a field, n ∈Z>0, and α1,α2, ...,αn ∈ K . Prove: the ideal of K[X1, X2, ..., Xn]

generated by X1 −α1, X2 −α2, ..., Xn −αn is maximal.
3. Show: 5Z[i]⊂Z[i] is not a prime ideal.
4. Let K be a field. Prove that the ideal of K[X ,Y , Z] generated by Y and Z is

prime but not maximal.
5. Verify for each of the following ideals of Z[X ] whether it is a prime ideal, and

whether it is a maximal ideal:

(X ,3); (X2 −3); (5, X2 +3).

6. Let a,b ∈R and M = (X −a,Y −b)⊂R[X ,Y ]. Show that f ∈ M ⇔ f (a,b)= 0 and
prove that M is maximal.

7. Check for each of the following ideals of Q[X ,Y ] whether it is a prime ideal,
and whether it is a maximal ideal:

(X2 +1); (X −Y ,Y 2 +1); (X2 +1,Y 2 +1); (X2 +1,Y 2 −2).

8. Let R be a commutative ring with 1 and I ⊂ R an ideal. Prove: I is a prime
ideal of R ⇔ a field K and a ring homomorphism f : R → K exist with f (1) = 1
and I =Ker( f ).

9. Suppose R is a commutative ring with 1 and I ⊂ R an ideal and φ : R → R/I the
natural map. Let J ⊂ R be a prime ideal such that I ⊂ J.
Show that φ(J) is a prime ideal of R/I and vice versa every prime ideal of R/I
is of this form. (Hint: combine IV.1.5 and II.3.10).

10. Now do Exercise 9 with everywhere ‘prime ideal’ replaced by ‘maximal ideal’.
11. Let f : R1 → R2 be a (unitary) ring homomorphism between commutative rings,

let I2 ⊂ R2 be an ideal, and I1 = f −1(I2)⊂ R1.

(a) Show: I1 is an ideal in R1, and R1/I1 is isomorphic to a subring of R2/I2.

(b) Show: if I2 is prime in R2 then I1 is prime in R1.

(c) Show by means of an example that (b) can be false if in both occurrences
‘prime’ is replaced by ‘maximal’.

12. Suppose R is a Boolean ring (see Exercise 33 on page 16) with 1.

(a) Prove: R is a domain ⇔ R is a field ⇔ R ∼=F2.

(b) Let I ⊂ R be an ideal. Show: I is a prime ideal ⇔ I is a maximal ideal
⇔ R/I ∼=F2.

13. Let R be a commutative ring with 1 and let I ⊂ R be an ideal with I 6= R. We
will assume that every x ∈ R with x ∉ I satisfies x2 −1 ∈ I.

(a) Prove: R/I ∼=F2 or R/I ∼=F3.

(b) Is I a prime ideal of R?

14. Let R be a commutative ring with 1 and suppose I ⊂ R is an ideal of finite index
in R.
Show: I is a prime ideal ⇔ I is a maximal ideal.

15. Suppose R is a commutative ring with 1 6= 0 and every ideal I 6= R is a prime
ideal. Prove that R is a field.
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16. Let R be a commutative ring with 1 and assume at I ∩ J 6= {0} for all pairs of
ideals I 6= {0}, J 6= {0} of R.
Show that {a ∈ R : a is a zero divisor }∪ {0} is a prime ideal of R.

17. Let R be the ring with additive group (Q,+,0) and multiplication xy = 0 for all
x, y ∈ R. Show: R contains no ideal M satisfying both (M1) and (M2) in IV.2.1.
Why is this not in contradiction with Theorem IV.3.1 ?

18. Put R = C([0,1]) and let Mx ⊂ R for x ∈ [0,1] be as in Example IV.3.6.

(a) Suppose I ⊂ R is an ideal satisfying: ∀x ∈ [0,1] : I 6⊂Mx.
Prove: ∀x ∈ [0,1] : ∃ fx ∈ I : fx(x) 6= 0.
Choose functions fx ∈ I as above. Show that x1, x2, ..., xn ∈ [0,1] exist with

∀x ∈ [0,1] :
n∑

i=1
fxi (x)2 > 0. (Hint: use compactness of [0,1], which means

that if [0,1] = ∪i∈IUi with Ui open, then a finite subset J ⊂ I exists with
[0,1]=∪ j∈JU j.)
Conclude: I = R.

(b) Suppose M ⊂ R is a maximal ideal. Prove: ∃x ∈ [0,1] : M = Mx. Moreover,
show that x is uniquely determined by M.

19. Let R be the ring of polynomial functions on the circle: R = R[X ,Y ]/I with
I = (X2 +Y 2 −1). Put x := X + I, y=Y + I ∈ R.

(a) For a,b ∈R, show that (x−a, y− b) is a maximal ideal of R if and only if
a2 +b2 = 1.

(b) For which b ∈R is (y−b) a maximal ideal of R ?

20. Let R be a commutative ring with 1 Suppose a ∈ R satisfies ∀n ∈ Z>0 : an 6= 0.
Prove that R contains a prime ideal I such that a ∉ I. (Hint: apply Zorn’s
Lemma to the set of ideals of R not containing any power of a.)

21. The radical denoted
p

0 of a commutative ring R with 1 is defined by
p

0= {
a ∈ R : ∃n ∈Z>0 : an = 0

}
.

Show that
p

0 is an ideal of R. Show that
p

0=∩I I, where I runs over all prime
ideals of R (Hint: use Exercise 20).

22. The Jacobson-radical J(R) of a commutative ring R with 1 is defined by

J(R)= {x ∈ R :∀r ∈ R : 1+ rx ∈ R×}.

(a) Let x ∈ J(R) and let M ⊂ R be a maximal ideal. Define the ideal I of R by
I := M+ xR. Show that I 6= R and conclude that x ∈ M.

(b) Let M be a maximal ideal of R and let x ∈ M. Show that 1+ x 6∈ M.

(c) Prove that J(R)=∩M M, the intersection over all maximal ideals M of R.

(d) Show that J(R) is an ideal of R.

23. Let R be a commutative ring with 1 and let S ⊂ R be a nonempty subset satis-
fying 0 ∉ S and ∀s, t ∈ S: st ∈ S.
Show that a prime ideal I of R exists with I ∩ S = ∅. (Hint: use the ring
S−1R introduced in Exercise 28 on page 16, and apply Theorem IV.3.1 and
Exercise 11(b) above). How is this related to Exercise 20 above?

24. A commutative ring R with 1 is called local if R−R× is an ideal of R.

(a) Prove: R is local ⇔ R has exactly one maximal ideal.

(b) Let R be local and suppose x ∈ R satisfies x2 = x. Show: x = 0 or x = 1.

25. Let R be a commutative ring with 1 and let I ⊂ R be a prime ideal. Put S = R−I.

(a) Show that for all s, t ∈ S also st ∈ S.

(b) Show that the ring S−1R as defined in Exercise 28 on page 16 is a local
ring (see Exercise 24 above).
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26. Put R = {a/b ∈Q : a,b ∈Z,b 6≡ 0 mod 5}. Show that R is a local ring. What is the
maximal ideal M of R? Prove that R/M ∼=F5.

27. Let X be a set. A filter on X is a collection F of subsets of X satisfying:

(i) X ∈F and ∅ ∉F ;
(ii) A,B ∈F ⇒ A∩B ∈F ;
(iii) if A ⊂ B ⊂ X and A ∈F , then B ∈F .

An ultrafilter is a filter F with the additional property:

∀A,B ⊂ X : (A∪B ∈F ⇒ A ∈F ∨ B ∈F ).

Let R be the ring P(X ) considered in Exercise 34 on page 17.

(a) Let F be a collection of subsets of X . Prove:

F is a filter on X ⇐⇒ {A ⊂ X : X − A ∈F } is an ideal 6= R of R.

Moreover, prove that

F is an ultrafilter on X ⇐⇒ {A ⊂ X : X − A ∈F } is a maximal ideal of R.

(Hint: use Exercise 12(b) on page 59.)

(b) An ultrafilter F on X is called free if ∀x ∈ X : {x} ∉F .
Prove: free ultrafilters on X exist if and only if X is infinite.
(Hint: apply Theorem IV.3.4).

28. Let Kx (for x ∈ X ) be a collection of fields indexed by a set X . Let R = ∏
x∈X

Kx

which is, with componentwise addition and multiplication, a commutative ring
with 1. For an ultrafilter (see Exercise 27 above) F on X we define IF ⊂ R by

(αx)x∈X ∈ IF ⇐⇒ {x ∈ X :αx = 0} ∈F .

Show that IF is a maximal ideal of R. Moreover, prove that all maximal ideals
of R are of the form IF for some ultrafilter F on X .
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V DIVISION IN RINGS

In the ring of integers Z the theorem of unique prime factorisation holds: every
positive integer has a unique factorisation into prime factors. In this chapter we
examine to what extend this result can be generalised to other rings R.

Throughout this chapter we restrict ourselves to domains R (see I.2.13).

V.1 Irreducible elements

It is natural to start by considering which elements of the domain R can play the
role of ‘prime numbers’. If p ∈Z is a prime number, then:

(i) if p = ab for a, b ∈Z then a =±1 or b =±1.
(ii) Zp := {np : n ∈Z}⊂Z is a prime ideal.

Moreover, if p ∈ Z>0 satisfies either (i) or (ii), then p is prime (and hence p sat-
isfies both (i) and (ii)). We now generalise the property (i), and we present exam-
ples where (i) holds but (ii) does not, see Example V.1.5 and Exercises 1 and 2 on
page 75.

V.1.1 Definition. An element a of a domain R is called irreducible if a is not a unit,
and for all b, c ∈ R such that bc = a either b ∈ R× or c ∈ R×.

In other words: an element is irreducible if it only allows ‘trivial’ factorisations,
such as 5= (−1)·(−5). The irreducible elements of Z are exactly the prime numbers
p and their opposites −p.

V.1.2 Example. Let R be a domain and f , g ∈ R[X ]. Then deg( f g)= deg( f )+deg(g)
and deg(1)= 0. So units in R[X ] are precisely the polynomials which have degree 0
and moreover have an inverse. In other words, the units in R[X ] are just the units
in R, i.e.,

(R[X ])× = R×.

A polynomial of degree 1 is not necessarily irreducible: 2X−2= 2·(X−1) is reducible
in Z[X ], since the factors 2 and X −1 are not units in this ring. However, 2X −2 is
irreducible in Q[X ] (here 2, and any polynomial of degree 0, is a unit).

More generally for R = K a field, every polynomial of degree 0 is a unit, and as a
consequence every polynomial of degree 1 is irreducible. For polynomials of higher
degree it is in general a delicate matter to determine whether they are irreducible
or not, see Section V.5 below.
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V.1.3 Theorem. Let K be a field and f ∈ K[X ] such that deg( f )= 2 or deg( f )= 3.
Then f is irreducible in K[X ] if and only if f has no zero in K .

Proof. If α ∈ K is a zero of f then f = (X −α)g (see III.5.1) hence f is reducible.
Now assume f has no zero in K . From deg( f ) > 0 one concludes that f is not

a unit. Suppose f = gh, where we will assume without loss of generality that
deg(g)≤ deg(h). If deg(g) 6= 0 then deg(g)= 1 since deg( f )= deg(g)+deg(h). Hence,
g has a zero in K , and therefore so does f , contradicting the assumption. It follows
that deg(g)= 0 so g is a unit in K[X ]. We conclude that f is irreducible.

The next result relates irreducible elements to prime ideals. As the example
following it shows, the reverse statement does not hold in general. In fact the
remainder of this chapter discusses rings in which the converse of the following
theorem indeed holds.

V.1.4 Theorem. Let a ∈ R such that Ra is a prime ideal 6= (0). Then a is irreducible.

Proof. We have a 6= 0. Applying property (P1) of IV.1.1 to the prime ideal Ra shows
Ra 6= R, hence a is not a unit (see II.4.4). Now assume bc = a for certain b, c ∈ R.
Since a ∈ Ra, property (P2) implies b ∈ Ra or c ∈ Ra. Interchanging b and c if nec-
essary, we may assume b ∈ Ra. This means b = ra for some r ∈ R. The conditions
bc = a and b = ra imply (since R is commutative) that (rc−1)a = 0. Hence because
R is a domain and a 6= 0 one concludes rc = 1. This shows that c is a unit.

So, in every factorisation bc = a either b ∈ R× or c ∈ R×, which implies that a is
irreducible. This proves Theorem V.1.4.

V.1.5 Example. Consider the ring

R =
{

n∑
i=0

ai X i ∈Q[X ] : a1 = 0, n ∈Z≥0

}

(incidentally, instead of Q one may take an arbitrary field K here); it is not hard to
verify that indeed this defines a subring of Q[X ]. Observe that X ∉ R.

We claim that X2 is an irreducible element of R, however RX2 is not a prime
ideal in R.

First a proof that X2 is irreducible: check for yourself that X2 is not a unit. It
remains to show: if

X2 = f · g, with f , g ∈ R, then f ∈ R× or g ∈ R×.

From X2 = f · g it follows that deg( f )+deg(g) = 2. However, R contains no polyno-
mials of degree 1, and therefore either f or g has degree 0, let us say this holds
for f . Then f ∈Q and f 6= 0, hence f has an inverse in Q so certainly in R. This
shows f ∈ R× and as a consequence X2 is irreducible in R. (Evidently X2 is not
irreducible in Q[X ], since X2 = X · X .)

Now we show that RX2 is not a prime ideal of R. Note that X3 · X3 ∈ R · X2

(because X4 ∈ R). Were RX2 a prime ideal of R, then property (P2) of IV.1.1 (with
a = b = X3) would imply X3 ∈ RX2, so X ∈ R, a contradiction.

V.2 Principal ideal domains

This section discusses an important class of rings in which every irreducible ele-
ment generates a prime ideal, and in fact even maximal ideal.
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V.2.1 Definition. A principal ideal domain (PID) is a domain R in which every
ideal is principal (see Definition II.2.8).

V.2.2 Remark. In some textbooks the term “principal ideal ring" is used for do-
mains in which every ideal is principal. Other texts allow a principal ideal ring to
have zero divisors.

V.2.3 Example. In Theorem II.4.2 we saw that Z is a principal ideal domain. And
Example II.4.3 shows that R[X ,Y ] is not a principal ideal domain. Every field
is a principal ideal domain, as follows trivially from II.4.5. By III.4.1 K[X ] is a
principal ideal domain for every field K .

The next result shows that in a principal ideal domain several of the notions
introduced here coincide.

V.2.4 Theorem. Let R be a principal ideal domain, and a ∈ R,a 6= 0. The next three
statements are equivalent:

(i) Ra is a maximal ideal of R;
(ii) Ra is a prime ideal of R;

(iii) a is irreducible in R.

Proof. (i)⇒ (ii): this is an immediate consequence of IV.2.7.
(ii)⇒(iii): this is exactly Theorem V.1.4.

So far we did not use the condition that R is a principal ideal domain. This will
be used to prove the remaining implication (iii)⇒(i):
Given is that a ∈ R is irreducible. We must show that the ideal Ra satisfies the
conditions (M1) and (M2) of IV.2.1.
(M1) a is irreducible, hence it is not a unit. As a consequence Ra 6= R.
(M2) Suppose J is an ideal of R with Ra ⊂ J ⊂ R. We claim that J = Ra or J = R.

As R is a principal ideal domain, J = Rb for some b ∈ R. Then a ∈ Ra ⊂ J = Rb
implies a ∈ Rb, hence a = rb for some r ∈ R. The irreducibility of a then shows that
either r ∈ R× or b ∈ R×.

In case r ∈ R× we have b = r−1a ∈ Ra and therefore J = Rb ⊂ Ra, implying
J = Ra. In case b ∈ R× we have J = Rb = R.
This verifies (M2) and completes the proof.

In particular one concludes that in principal ideal domains the converse of
IV.2.7 holds for ideals 6= {0}:

V.2.5 Corollary. In a principal ideal domain every prime ideal 6= {0} is maximal.

Proof. Noting that every ideal in such a ring is principal, this follows from the
implication (ii)⇒(i) in V.2.4.

V.2.6 Example. Theorem V.2.4 shows that the ring R from Example V.1.5 is not a
principal ideal domain (note that R is a domain). In fact, the ideal generated by
X2 and X3 is not principal, see Exercise 4 on page 75.

An important application of Theorem V.2.4 is the construction of a field in which
a given polynomial has a zero.

V.2.7 Theorem. Let K be a field and f ∈ K[X ] an irreducible polynomial. Put

α := X + ( f ) ∈ K[X ]/( f ).

Then L := K[X ]/( f ) is a field and K ⊂ L is a subring and α is a zero of f in L.
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Proof. Since K[X ] is a principal ideal domain and f is irreducible, the ideal ( f )
is maximal and therefore L = K[X ]/( f ) is a field. The inclusion K ⊂ L is given by
a 7→ a+ ( f ) (a ∈ K); one simply writes a instead of a+ ( f ) or ā.

Using K ⊂ L one considers f as an element of L[X ]. In L it holds that

αi = (X + ( f ))i := X i + ( f ) and ai(X i + ( f ))= ai X i + ( f ) (ai ∈ K).

Writing f = a0 +a1X + . . .+an X n it follows that

f (α)= a0 +a1X + . . .+an X n + ( f )= f + ( f )= 0+ ( f ),

which shows that α ∈ L is a zero of f . This finishes the proof.

V.2.8 Example. Put K =R, f = X2+1 ∈R[X ], L =R[X ]/(X2+1), and α := X+(X2+1).
Then R can be considered as a subring of L. Every element of L has a unique rep-
resentation a+bX + (X2 +1)= a+bα. Then

α2 = (X + (X2 +1))2 := X2 + (X2 +1)
=−1+1 · (X2 +1)+ (X2 +1)
=−1+ (X2 +1),

and therefore α2 = −1 ∈ L. This shows that α is indeed a zero of f . Note that we
already showed L ∼=C (see III.4.3); the given isomorphism sends α= X +( f ) to i ∈C
and i is a zero of X2 +1 in C.

More generally, compare Exercise 12 on page 49, if g = X2 + bX + c ∈R[X ] has
no zero in R then R[X ]/(X2+bX+c)∼=C and X+(X2+bX+c) corresponds to a zero
z ∈C of g.

V.2.9 Example. Let Fp be the field Z/pZ, for p a prime number (see I.2.11). If
p > 2, then a ∈Fp exists such that X2 −a ∈Fp[X ] is irreducible (which in this case
means X2 − a has no zero in Fp). Indeed, the set {x2 : x ∈ Fp} contains at most
1+ p−1

2 (pairwise distinct) elements, since x2 = (−x)2 (in fact the set consists of
precisely 1+ (p−1)/2 elements). Hence some a ∈ Fp exists which is not a square,
and for such a the polynomial X2−a has no zero in Fp. For p = 3, 5, 7 one can take
a = 2, 2, 3, respectively.

As a result, for every prime p > 2 a field consisting of exactly p2 elements exists,
namely Fp[X ]/(X2−a) with a as above. Every element r in this field can be written
in a unique way as r = c+bα for some c, b ∈Fp and α := X + (X2 −a). For p = 2 we
already saw a field consisting of p2 elements, see III.3.6. We will see later, IX.1.1,
that up to isomorphism only one field containing exactly p2 elements exists.

V.3 Unique factorization domains

We will present a general method for showing that in certain rings irreducible
elements generate prime ideals.

V.3.1 Definition. A unique factorization domain (or simply: factorization domain)
is a domain R with the property that every a ∈ R,a 6= 0, can be written as a product
of a unit and a finite number of irreducible elements:

a = u · p1 · p2 · . . . · pt, u ∈ R×, t ∈Z≥0, pi ∈ R irreducible

and moreover such a factorization is assumed to be unique up to its order and up
to units, i.e., if

a = v · q1 · q2 · . . . · qs, v ∈ R×, s ∈Z≥0, qi ∈ R irreducible,
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is another factorization, then s = t and a permutation σ of {1,2, . . . , t} exists such
that

pi = vi · qσ(i) for certain units vi ∈ R×, i = 1,2, . . . , t.

(and as a consequence v = uv1v2 · · ·vt.)
The given factorization of a is called the prime factorization of a, in analogy

with the prime factorization in Z. (Indeed the ideals R pi are prime ideals, see
Theorem V.3.2.)

Roughly speaking: a unique factorization domain is a domain in which the unique
factorization into primes holds. Note that the appropriate care with respect to units
used in the definition is not needed in the case R =Z, since there we restricted to
positive integers. However, a similar restriction is not available in more general
domains.

V.3.2 Theorem. Let R be a unique factorization domain, and a ∈ R. Then

a is irreducible ⇐⇒ Ra is a prime ideal 6= (0).

Proof. ⇐: this holds in general, see V.1.4.
⇒: Suppose a ∈ R is irreducible. Then a 6= 0, and it remains to show that Ra is a
prime ideal of R. Evidently (P1): Ra 6= R holds, since a is not a unit.

We verify (P2). Suppose b, c ∈ R satisfy bc ∈ Ra. We must show that b ∈ Ra
or c ∈ Ra. This clearly holds if b = 0 or c = 0, so we may assume b, c 6= 0. Then
also bc 6= 0, hence bc ∈ Ra can be written as bc = da with d ∈ R, d 6= 0. Factoriz-
ing d into irreducible elements (and a unit), it follows that bc has a factorization
into irreducible elements including the element a. Any factorization of bc into ir-
reducible factors (and a unit) is obtained by combining one such factorization for b
and one for c. The unicity of the factorization therefore implies that the element a
(multiplied by a unit if necessary) occurs here, so a appears in the factorization of
either b or c. This shows b ∈ Ra or c ∈ Ra, proving V.3.2.

The conclusion is that in a unique factorization domain the converse of The-
orem V.1.4 holds. To verify that certain domains are indeed unique factorization
domains, the next lemma will be used.

V.3.3 Lemma. Let R be a domain in which every a ∈ R, a 6= 0 can be written as a
product of a unit and a finite number of elements:

a = u · p1 · p2 · . . . · pt, u ∈ R×, t ∈Z≥0, pi ∈ R

where moreover for all i = 1, 2, . . . , t it holds that piR is a prime ideal.
Then R is a unique factorization domain.

Proof. Note that in a factorization as given, a 6= 0 implies that all pi 6= 0. Hence the
prime ideals piR are nonzero, so Theorem V.1.4 shows that the pi are irreducible.
It remains to show that the given factorization is unique. Suppose a = up1 · · · pt
has another factorization:

up1 p2 · · · pt = vq1q2 · · ·qs

with u,v ∈ R×, t, s ∈ Z≥0, pi irreducible and R pi a prime ideal for (1 ≤ i ≤ t), and
irreducible q j (1≤ j ≤ s).

We will show that s = t, and that the q j ’s up to units coincide with the pi ’s. We
use induction w.r.t. t.

If t = 0 then vq1q2...qs = u is a unit. Since irreducible elements are not units,
this is only possible when s = 0 and v = u, as desired.
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Now let t > 0. Then q1q2 · . . . · qs = v−1 · up1 p2 · . . . · pt ∈ R pt which is a prime
ideal. If s = 0 then this implies R pt contains a unit, contradicting (P1) of IV.1.1).
Hence s > 0. By (P2) of IV.1.1 the product q1 · q2 · . . . · qs being in R pt implies that
one of the factors, say qs, is in R pt: qs = r ·pt for some r ∈ R. Since qs is irreducible
and pt is not a unit, r must be a unit. Substituting r · pt for qs and using that R is
a domain, we conclude

up1 p2 · · · pt−1 = (rv)q1q2 · · ·qs−1, rv ∈ R×.

From the induction hypothesis therefore t−1 = s−1 and the p1, p2, ..., pt−1 coin-
cide up to units with the q1, q2, ..., qs−1. As a consequence s = t and p1, p2, ..., pt
coincides up to units with q1, q2, ..., qs. This proves Lemma V.3.3.

The next result uses this lemma:

V.3.4 Theorem. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a principal ideal domain. It suffices to show that every r ∈ R with
r 6= 0 has a factorization r = up1 ·. . .·pt (with R pi prime ideals): unicity then follows
from Lemma V.3.3.

Assume a1 ∈ R, a1 6= 0 does not have a factorization as desired. Then the
ideal Ra1 is not equal to R (otherwise a1 would be a unit and that yields the
desired factorization). Applying Corollary IV.3.4 a maximal ideal M exists with
Ra1 ⊂ M. Since R is a principal ideal domain, M = R p1 for some p1 ∈ R. As
a1 ∈ Ra1 ⊂ M = R p1 we can write a1 = a2 p1 with a2 ∈ R. Now Ra1 ⊂ Ra2 and
using that p1 is not a unit, Ra1 6= Ra2.

We repeat the argument above: a2 6= 0 and a2 is not a unit (recall that by
assumption a1 does not admit a factorization as product of a unit times a finite
set of generators of prime ideals), so a maximal ideal R p2 ⊃ Ra2 exists, et cetera.
Continuing in this way one obtains a chain of ideals (Ran)∞n=1 with Ran ⊂ Ran+1
but Ran 6= Ran+1 (for all n). Put

I := ⋃
n≥1

Ran (⊂ R).

It is easy to verify (check for yourself!) that I is an ideal of R. Again using that R
is a principal ideal domain, d ∈ R exists with

I = Rd.

Now I is the union of all Ran, hence m exists with d ∈ Ram. But then

Ram ⊂ Ram+1 ⊂ I = Rd ⊂ Ram,

contradicting Ram 6= Ram+1.
The assumption that some element a1 6= 0 in R has no factorization as a product

of a unit times a finite number of generators of prime ideals therefore leads to a
contradiction. We conclude that every r ∈ R, r 6= 0, admits such a factorization,
which proves the result.

Let K be a field. Then by III.4.1 K[X ] is a principal ideal domain, hence by
Theorem V.3.4 K[X ] is a unique factorization domain. Any irreducible g ∈ K[X ]
has positive degree. The leading coefficient an of such a g is a unit, so g can
be written in a unique way as g = anh with h monic and irreducible. The prime
factorization of any nonzero f ∈ K[X ] can therefore be given as

f = uhn1
1 hn2

2 . . .hnk
k ,

with u ∈ K× = K[X ]× and the hi pairwise distinct monic irreducible polynomials.
Moreover this factorization is unique (up to permuting the hi ’s). This is similar to
the situation in Z where one takes positive irreducible elements after multiplying
with an appropriate unit ±1.
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V.3.5 Theorem. Let K be a field and f ∈ K[X ] non-constant. Suppose f = uhn1
1 . . .hnk

k
is the prime factorization of f (so u is a unit and the h j are irreducible and pairwise
distinct).

Then k ≥ 1 and

K[X ]/( f )∼= (
K[X ]/(hn1

1
)
)× . . .× (

K[X ]/(hnk
k

)
).

Proof. We use induction w.r.t. the number k of irreducible factors of f . Since f is
non-constant and all constants in K[X ] have degree ≤ 0, we have k ≥ 1. For k = 1
the theorem trivially holds.

Now let k > 1 and write

f = (uhn1
1 . . .hnk−1

k−1 )hnk
k =: fk−1hnk

k .

Define the ideals I, J in K[X ] by

I = ( fk−1) and J = (hnk
k ).

We claim that I + J = K[X ], which will allow us to apply the Chinese remainder
theorem II.4.12 to K[X ]/( f )= K[X ]/IJ.

Since K[X ] is a principal ideal domain,

I + J = (g)

for some g ∈ K[X ]. We have hnk
k ∈ J ⊂ (g), so r ∈ K[X ] exists with hnk

k = rg. Con-
sidering the (unique) prime factorization of r and of g in K[X ] and using that hk is
irreducible, it follows that

g = vhm
k

for some m ≤ nk and some unit v.
On the other hand also fk−1 ∈ I ⊂ (g), so s ∈ K[X ] exists with fk−1 = sg, which

means
uhn1

1 . . .hn−1
k−1 = svhm

k .

Here the hi are monic and irreducible and K[X ] is a unique factorization domain,
hence m = 0. This shows that g is a unit in K[X ], so indeed I + J = (g)= K[X ].

The Chinese remainder theorem II.4.12 now implies

K[X ]/( f )= K[X ]/( fk−1hnk
k )∼= K[X ]/( fk−1)×K[X ]/(hnk

k ).

Using the induction hypothesis for the ring K[X ]/( fk−1) now yields

K[X ]/( f )∼= K[X ]/(hn1
1 )×K[X ]/(hn2

2 ) . . .×K[X ]/(hnk
k ),

as desired. This finishes the proof of Theorem V.3.5.

V.4 Polynomials over unique factorization domains

Given any field K , Theorem III.4.1 states that K[X ] is a principal ideal domain and
therefore by Theorem V.3.4 we have that K[X ] is a unique factorization domain.
The current section intends to prove a more general result.

V.4.1 Theorem. If R is a unique factorization domain, so is R[X ].

V.4.2 Corollary. For every integer n > 0 and every unique factorization domain R
the ring R[X1, X2, ..., Xn] is a unique factorization domain. In particular the rings
Z[X1, X2, ..., Xn] and K[X1, X2, ..., Xn] (K a field) are unique factorization domains.
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Proof. (of Corollary V.4.2.) This is immediate from Theorem V.4.1 using induction
w.r.t. n.

We will prove Theorem V.4.1 using the following strategy. Given the unique
factorization domain R, let K := Q(R) be its field of fractions as introduced in I.3.
Since K is a field we know that K[X ] is a unique factorization domain. Hence
given a nonzero f ∈ R[X ], there exists a factorization of f into irreducible elements
of K[X ]. What remains, is to modify this factorization (by clearing the denomina-
tors of the coefficients of the factors we have in K[X ]), and in this way obtain a
factorization in R[X ].

V.4.3 Definition. Elements a, b in a unique factorization domain R are called as-
sociated if a = ub for some u ∈ R×.

In the remainder of this section we fix a unique factorization domain R. It is
not difficult to see that ‘being associated’ defines an equivalence relation on R. Let
P ⊂ R be a set of irreducible elements of R; moreover we take P in such a way that
every irreducible element of R is associated with precisely one element of P.

V.4.4 Example. In case R = Z one can take P the set of all positive irreducible
elements, in other words the set of all prime numbers.

In case R = K[X ] and K a field, the set of all monic irreducible polynomials is
such a P.

V.4.5 Definition. For R and P as above, all nonzero a, b ∈ R have a unique factor-
ization

a = u · ∏
p∈P

pn(p), b = v · ∏
p∈P

pm(p)

with n(p), m(p) ∈Z≥0, only finitely many n(p), m(p) different from 0, and u,v ∈ R×.
The greatest common divisor (gcd) of a and b is defined as

gcd(a,b) := ∏
p∈P

pmin{n(p),m(p)} (∈ R).

For a different choice P ′ instead of P, the p ∈ P will be changed into elements
p′ ∈ P ′ which are associated with the original ones. Then n(p)= n(p′) if p, p′ are as-
sociated, and the gcd will change by at most a unit. Exercise 7 on page 76 explains
the terminology ‘gcd’.

V.4.6 Definition. With R and P as above, let f =
n∑

i=0
ai X i ∈ R[X ], f 6= 0 and take

d the greatest common divisor of the coefficients a0,a1, ...,an. This d is called the
content of f , notation:

co( f ) := gcd(a0, a1, . . . ,an).

A polynomial with content a unit is called primitive.

Note that the content co( f ) of a nonzero polynomial f depends on the choice of
P ⊂ R, hence it is only defined up to multiplication by a unit in R. Any nonzero
polynomial f can be written as f = rg with r = co( f ) ∈ R and g ∈ R[X ] a primitive
polynomial. The next lemma extends this observation to polynomials with coeffi-
cients in K .

V.4.7 Lemma. Any f 6= 0 in K[X ] can be written as

f = d · f0, with d ∈ K× and f0 ∈ R[X ] primitive.

Up to multiplication by units in R this way of writing f is unique.
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Proof. Let c be the product of the denominators of the coefficients of f . Then

c f ∈ R[X ], and c f = co(c f ) · f0 with f0 ∈ R[X ]

a primitive polynomial. Hence in K[X ] one finds f = c−1 · c f = (c−1 · co(c f )) f0, so
taking d = c−1 ·co(c f ) yields an expression as desired.

Now suppose d · f0 = e · g0, with d, e ∈ K× and f0, g0 ∈ R[X ] primitive. We claim
that d = e ·u, f0 = u−1 · g0 for some u ∈ R×, proving the asserted uniqueness. Mul-
tiplying both d and e by a suitable nonzero element of R we may assume d, e ∈ R.
Then d and e both equal (up to a unit in R) the content of d · f0 = e · g0, hence they
are associated in R. This proves Lemma V.4.7.

The next lemma states how the content of a product of polynomials is related
to the product of the contents.

V.4.8 Lemma. If f , g ∈ R[X ] are nonzero polynomials, then co( f g) and co( f ) · co(g)
are associated in R. In particular, the product of primitive polynomials is primitive
as well.

Proof. Suppose f = ∑
ai X i and g = ∑

b j X j are primitive but f · g = ∑
ck X k is not.

Then an irreducible element p ∈ R exists dividing all coefficients ck of f · g. So
ck ∈ R p for all k. Let f = ∑

ai X i ∈ (R/pR)[X ] and g = ∑
b j X j ∈ (R/pR)[X ] (here

a = (a mod pR) ∈ R/pR, for a ∈ R). In (R/pR)[X ] we now have

f · g = (
∑

ai X i) · (∑b j X j)=∑
ck X k =∑

0 · X k = 0.

By Theorem V.3.2 R p is a prime ideal of R, hence (see Theorem IV.1.5) R/pR is
an integral domain. Therefore (R/pR)[X ] is a domain as well. Hence the product
f · g can only be zero if one of the factors f or g is zero; say f . Then all ai equal
0, which means all ai are divisible by p. This contradicts the assumption that f
is primitive. We conclude that the product of primitive polynomials is primitive as
well.

If f , g are arbitrary nonzero polynomials then

f · g = co( f ) f0 ·co(g)g0 = (co( f ) ·co(g)) f0 · g0.

Here f0 and g0 are primitive, hence so is f0 g0. As a consequence, up to multipli-
cation by a unit the content of f · g equals co( f ) · co(g). This finishes the proof of
Lemma V.4.8.

V.4.9 Lemma. Any nonzero f ∈ R[X ] can be written as

f = u · p1 p2 · · · ps · g1 g2 · · · gt

with u ∈ R×, s, t ∈ Z≥0 and p1, p2, ..., ps irreducible elements of R and g1, g2, ..., gt
primitive polynomials in R[X ] which are irreducible in K[X ].

Moreover, this way of writing f is unique up to ordering and multiplication by
units of R.

Proof. Since K[X ] is a unique factorization domain, f can be written as

f = d · g1 g2 · · · gt,

with d ∈ K[X ]× = K×, t ∈ Z≥0, and g1, g2, ..., gt ∈ K[X ] irreducible. Up to ordering
the g i ’s and multiplying by elements of K× this factorization is unique. Writing ev-
ery g i in the form as given by Lemma V.4.7, one concludes that we can assume the
g i are primitive in R[X ] (changing d if necessary). Moreover with this additional
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constraint the g i are fixed up to units in R. Since f = dg1 g2 · · · gt, the same holds
for d.

As each g i is primitive, so is (by V.4.8) g1 g2 · · · gt. Hence f = d · (g1 g2 · · · gt) is
the unique way of writing f as given in V.4.7. Hence d equals the content of f ; in
particular d ∈ R. Now factor d in R as

d = u · p1 p2 · · · ps (u ∈ R×, s ∈Z≥0, pi ∈ R irreducible)

(this is again unique up to ordering and units, as R is a unique factorization do-
main). Now f = up1 p2 · · · ps g1 g2 · · · gt is the required (unique) factorization. This
shows V.4.9.

Using the lemmas above we now show the main result of this section.

Proof. (of Theorem V.4.1.) Let f ∈ R[X ], f 6= 0. We claim that the factorization of f
as given by Lemma V.4.9 is in fact a factorization into irreducible elements of R[X ].
For this, we only have to show that the irreducible elements of R[X ] are precisely
the irreducible elements p of R and the primitive polynomials g ∈ R[X ] which are
irreducible in K[X ].

Assume f ∈ R[X ] is irreducible, and write f as in V.4.9. Then s+ t 6= 0 (since f
is not a unit), and s+ t < 2 (otherwise we obtain a factorization of f into two non-
units). So s+ t = 1, which shows that f equals (up to a unit) some p or some g as
described above. So indeed the irreducible elements of R[X ] have the desired form.

Vice versa, let p (respectively g) be an irreducible element of R (respectively a
primitive, in K[X ] irreducible polynomial from R[X ]). This is not a unit in R[X ]
since R[X ]× = R×. If it can be written as a product f1 f2 of two non-units in R[X ],
one immediately arrives at a contradiction with the uniqueness given in V.4.9 by
combining the factorizations of f1 and f2 into one for p (or g) = f1 f2. We conclude
that p (respectively g) is irreducible in R[X ]. This shows V.4.1.

We draw some important conclusions from the proof of Theorem V.4.1.

V.4.10 Corollary. Let R be a unique factorization domain with field of fractions K ,
and suppose f ∈ R[X ] is primitive. Then

f is irreducible in K[X ]⇐⇒ f is irreducible in R[X ].

Proof. ⇐: We saw earlier that any irreducible f ∈ R[X ] is either irreducible in
K[X ] or it is an irreducible element of R. In the present case the latter possibility
does not occur since f is primitive.

⇒: Suppose f = g · h with g,h ∈ R[X ]. Since f is irreducible in K[X ] one of
these factors, say g, is a unit in K[X ]. So g ∈ K×∩R[X ]= R−{0}. From f = g ·h one
concludes that g divides the content of f . However co( f )= 1, so g ∈ R×. Hence f is
irreducible in R[X ]. This proves Corollary V.4.10.

V.4.11 Corollary. (Lemma of Gauss) Let R be a unique factorization domain
with field of fractions K , and suppose f ∈ R[X ] is monic.
If g ∈ K[X ] is monic and g divides f , then g ∈ R[X ].

Proof. Since g| f and both polynomials are monic, a monic h ∈ K[X ] exists with
f = gh. By V.4.7 u,v ∈ K× exist with u · g and v ·h primitive in R[X ]. These poly-
nomials have leading coefficients u and v, hence u,v ∈ R. Now on the one hand
f ∈ R[X ] is monic, hence primitive. On the other hand, using Lemma V.4.8 also
uv · f = (ug) · (vh) is primitive. This is only possible if uv ∈ R×, which implies that
u and v are units in R. We conclude: g = u−1 ·ug ∈ R[X ]. This shows V.4.11.
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V.5 Factorizing and irreducibility of polynomials

We discuss some practical methods to factor or show irreducibility of polynomials.

determining a zero of a polynomial.
Let K be a field and f ∈ K[X ]. Any polynomial of degree one in K[X ] is (up to a
unit) of the form X −a for some a ∈ K . By III.5.2 X −a is a factor of f if and only
if a is a zero of f . Searching for degree one factors of f is therefore equivalent to
searching for zeros of f in K . The next three remarks can be useful here.

1. if f = aX2 +bX + c and a 6= 0 then

4a · f = (2aX +b)2 − (b2 −4ac)

(‘completing the square’). If 2 6= 0 in K one concludes that f has a zero in K
if and only if b2 −4ac is a square in K . The condition 2 6= 0 in K is necessary
here since otherwise 4af = 0. Note that for example in the field K =F2 we have
2= 0. The polynomial X2 + X +1 ∈ F2[X ] (so with a = b = c = 1) has b2 −4ac = 1
which is a square in F2; however the polynomial is irreducible.

2. in case the field K is finite one can try the elements of K one by one. As an
example: K =F3, f = X3+X +1; here f (0)= 1, f (1)= 0, f (2)= 11= 2. Hence 1 is
the only zero of f in K . One finds f = (X −1)(X2 + X −1).

3. in case K =Q (the field of fractions of the unique factorization domain Z), we
may assume that f is primitive in Z[X ], so

f = an X n + ...+a1X +a0, ai ∈Z, an 6= 0, gcd(an, . . . ,a1,a0)= 1.

Moreover, factoring out the divisor(s) X if any, we may also assume a0 6= 0.
Claim: every zero of f has the form b

c , with b ∈ Z a divisor of a0 and c ∈ Z a
divisor of an.

Proof. Suppose b
c is a zero of f , with b, c ∈Z and gcd(b, c)= 1. Then f = (cX−b)·g

with g ∈Q[X ], and since cX − b is primitive in Z[X ] even g ∈ Z[X ]. Compar-
ing the leading and the constant coefficients it follows that c|an and b|a0, as
desired.

Example: f = 2X3 + X2 − X + 3. The possibilities for b are ±1,±3 and for c
(which we may assume to be positive) only 1 and 2. Trying these eight possible
fractions b/c one finds that −3/2 is the only zero of f in Q.
An important special case is when f ∈Z[X ] is monic (an = 1). Then necessarily
c = 1, so every rational zero is an integer and in fact a divisor of a0.
In many cases one can reduce the number of possible fractions b/c even further
by considering the sign of f (x) or by considering the polynomial modulo a small
prime number.

Example: f = X3 + X2 + X +6. Possibilities for b/c: ±1,±2,±3,±6. Clearly here
x > 0 ⇒ f (x) > 0, and x odd ⇒ f (x) odd. Hence only −2 and −6 need to be
considered. Of these, only −2 turns out to be a zero of f .

Reducing modulo a prime number.
Claim: Let f ∈Z[X ] be monic and suppose that a prime number p exists such that
( f mod p) ∈Fp[X ] is irreducible. Then f is irreducible in Q[X ] and also in Z[X ].

Proof. A factorization f = g·h in Z[X ] yields f = g·h (with f = ( f mod p) in Fp[X ]), a
contradiction. So f is irreducible in Z[X ]. By the lemma of Gauss (Corollary V.4.11)
then also in Q[X ].
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Example: f = X4 +3X3 − X2 − X +27. Take p = 2, then f = X4 + X3 + X2 + X +1 is
irreducible in F2[X ] since it has no zero in F2 and it is not divisible by the only irre-
ducible polynomial of degree 2 in F2[X ], which is X2+X +1. Hence f is irreducible
in Z[X ] and in Q[X ].

Also in cases where f is not irreducible this method yields information.
Example: f = X4 − X2 + X +2. Using a method explained earlier one verifies that
f has no zero in Q. Hence if f is reducible in Z[X ] then f = g · h with g,h both
of degree 2. So f = g · h in F2[X ]. However f ∈ F2[X ] splits into the irreducible
factors X and X3 + X +1, so f does not have factors of degree 2. Conclusion: f is
irreducible in Z[X ] and in Q[X ].

Eisenstein’s criterion.
The irreducibility criterion we now discuss is named after the German mathemati-
cian Gotthold Eisenstein, 1823-1852.

V.5.1 Definition. Let R be a unique factorization domain and p ∈ R irreducible.

f = an X n + ...+a1X +a0 ∈ R[X ]

is called an Eisenstein polynomial (for p) if:

p - an,

p|ai for i = 0,1, ...,n−1,

p2 - a0.

V.5.2 Theorem. For a unique factorization domain R with field of fractions K , an
Eisenstein polynomial f ∈ R[X ] for an irreducible p ∈ R is irreducible in K[X ] and,
in case f is primitive, also in R[X ].

Proof. Since co( f ) is not divisible by p, the primitive polynomial f /co( f ) is an Eisen-
stein polynomial as well. Without lack of generality we will therefore assume that
f is primitive. Suppose

f = g ·h, g,h ∈ R[X ], deg(g)> 0, deg(h)> 0.

The assumptions imply that in (R/pR)[X ] we have

f = ( f mod p)= an X n and an = (an mod p) 6= 0.

Moreover
f = g ·h, deg(g)> 0, deg(h)> 0.

This is only possible if
g = bX k, h = cX`

for some b, c ∈ R and k,` ∈Z>0. Hence the constant coefficients of g and h are both
divisible by p, which implies that the constant coefficient a0 of f is divisible by p2,
a contradiction. The primitive polynomial f is therefore irreducible in R[X ] hence
by Corollary V.4.10 also in K[X ]. This finishes the proof.

V.5.3 Examples. R =Z, f = X5+2X3−6; this is an Eisenstein polynomial for p = 2,
hence it is irreducible in Q[X ] and in Z[X ].

R = R[Y ], f = X3 + (Y 4 − 1)X − (Y 2 + 1): this is an Eisenstein polynomial for
p = Y 2 +1. It is also primitive, hence irreducible in R[X ,Y ]. The same holds for
X2 +Y 2 −1 ∈ (R[Y ])[X ] using p =Y −1.
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Comparing coefficients.

If, as an example, we want to factor
4∑

i=0
ai X i in Z[X ] (with a0 6= 0, and we know

that no factor of degree ≤ 1 exists, then we try

4∑
i=0

ai X i = (b2X2 +b1X +b0) · (c2X2 + c1X + c0).

Comparing coefficients implies in this case that

i. b2c2 = a4

ii. b2c1 +b1c2 = a3

iii. b2c0 +b1c1 +b0c2 = a2

iv. b1c0 +b0c1 = a1

v. b0c0 = a0.

For b2, c2,b0, c0 using i. and v. there are only finitely many possibilities. For
fixed b2, c2,b0, c0 we know b1c1 using iii., et cetera. This method is usually quite
time consuming, but in the case of degree 4 it will lead in finitely many steps to a
splitting of f in irreducible factors.

V.5.4 Remark. In the textbook B.L. Van der Waerden, Algebra (Volume I Chapter 5
§6 (Springer-Verlag, original German text 1931, this English translation 1991), an
algorithm is presented which factors in finitely many steps any f ∈Z[X ] into irre-
ducible elements. It is mainly of a theoretical value. For further (more practical)
literature we refer to Chapter 2 of the book H.G. Zimmer, Computational Problems,
Methods, and Results in Algebraic Number Theory (Springer-Verlag, 1972) or Chap-
ter 3 §5 of H. Cohen, A Course in Computational Number Theory (Springer-Verlag,
1993)).
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V.6 Exercises

1. We consider the ring

R =Z[
p
−5]=

{
a+b

p
−5 : a,b ∈Z

}
(a) Show that 2, 3 ∈ R are irreducible.

Hint: use, as in I.2.5, the norm map

N : R →Z, N(a+b
p
−5)= a2 +5b2

which has the property

r ∈ R× ⇔ N(r)=±1.

(b) Show that R2 and R3 are not prime ideals in R. Is R a unique factorization
domain?

(c) Why is the above not a contradiction with Theorem V.2.4 ?

(d) Show that 6 = 2 ·3 and 6 = (1+p−5)(1−p−5) are two genuinely distinct
factorizations of 6 as a product of irreducible elements of R.

2. Let R be the ring of polynomial functions on the circle:

R =R[X ,Y ]/I, I = (X2 +Y 2 −1),

and put x := X + I, y :=Y + I ∈ R.

(a) Prove that x−1 and y−1 are irreducible in R. (Hint: use the map N : R →R[X ]
given in Exercise 18 on page 51).

(b) Prove that (x−1) and (y−1) are not prime ideals in R and that R is not a
unique factorization domain.

(c) Show that a = (x+ y−1)2 = 2(x−1)(y−1) are two distinct factorizations of
a as a product of irreducible elements (and a unit 2).

(d) Draw a picture of the circle and the lines X +Y − 1 = 0, X − 1 = 0, and
Y −1 = 0. Find some more elements in R which allow two distinct factor-
izations into irreducible elements.

3. For each of the following elements of Z[
p−3], determine whether it is irre-

ducible and whether it generates a prime ideal:
p
−3, 1, 2, 1+

p
−3, 5.

4. Let R = {
∑

ai X i ∈Q[X ] : a1 = 0} as in Example V.1.5.

(a) Let
ev0 : R −→Q, f 7→ f (0)

be the evaluation homomorphism in 0. Prove that

ker(ev0)= (X2, X3)= { f = X2 g+ X3h ∈ R : g, h ∈ R}.

(b) Prove that ker(ev0) is not a principal ideal, and that it is a maximal ideal.

5. Let R = {a/b ∈Q : a,b ∈Z, b odd }. This is a subring of Q.

(a) Determine R×.

(b) Prove that every x ∈ R, x 6= 0 can be written in a unique way as x = 2k ·u
for some k ∈Z≥0, u ∈ R×.
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(c) Show that 2 is up to multiplication by units the unique irreducible element
of R. Is 2R a prime ideal?

6. Let R =Z[X ]/(5X , X2).

(a) Prove that every element of R can be written in a unique way as

a+b · X with a ∈Z, b ∈Z, 0≤ b < 5.

Here denotes the residue class modulo (5X , X2).

(b) Prove: a+bX ∈ R× ⇐⇒ a ∈ {±1}.

(c) Prove: if α= X , β= 2 · X then

R ·α= R ·β and α ∉ R× ·β.

7. Let R be a unique factorization domain and a,b ∈ R not both zero. Put d = gcd(a,b).
Suppose that c ∈ R is a divisor of both a and b, so a1, b1 ∈ R exist with a = ca1, b = cb1.
Prove that c is a divisor of d.

8. Factor X8 −16 and X6 +27 into irreducible elements of Q[X ].
9. Is 5X4 +10X +10 an Eisenstein polynomial in Z[X ]? Is it irreducible in Z[X ]?

And in Q[X ]?
10. Show that X n +2 is irreducible in Z[X ] for all n ∈Z≥0.

Prove that Y n − X is irreducible in K[X ,Y ] (K a field) for all n ∈Z≥0.
11. (a) Find an example of an irreducible polynomial f ∈ Z[X ] with the property

that f (X2) is not irreducible.

(b) Let f ∈ Z[X ] be a monic Eisenstein polynomial. Show that f (X2) is irre-
ducible in Z[X ].

12. Let R be a unique factorization domain. prove that

∪n≥0R[X1, X2, ..., Xn]

is a unique factorization domain as well.
13. Write the following polynomials as a product of irreducible elements in Z[X ]

and in Q[X ]:
4X2 +4,

2X10 +4X5 +3,
X4 −7X2 +5X −3,

X111 +9X74 +27X37 +27,
X3 + X +3.

14. Write the following polynomials as a product of irreducible elements in Z[X ]
and in Q[X ]:

1
7 ((X +1)7 − X7 −1),
X3 +3X2 +6X +9,

X4 +2X3 +3X2 +9X +6,
X12 −1,

X4 − X3 + X2 − X +1.

15. Write the following polynomials as a product of irreducible elements in Q[X ,Y ]:

Y 4 + X2 +1,
Y 3 − (X +1)Y 2 +Y + X (X −1),

X n +Y 3 +Y (n ≥ 1),
X4 +4Y 4,

X4 +2X3 + X2 −Y 2 −2Y −1,
Y n −13X4 (n ≥ 1).
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16. Let I ⊂Z[X ] be a prime ideal.

(a) Prove that I ∩Z is a prime ideal in Z.

(b) Prove that either I = {0} or I = ( f ) for some irreducible f ∈Z[X ] or I = (p)
with p ∈ Z a prime number or I = (p, f ) where f ∈ Z[X ] is irreducible
modulo the prime number p.

(c) Describe the maximal ideals of Z[X ].

17. Suppose that n > 0 is an integer such that n4 +4n is a prime number. Prove
that n = 1.

18. Let f ∈ Z[X ] be a monic polynomial such that f (0) is a prime number. Prove
that f has at most three distinct zeros in Q.

19. Find all irreducible f ∈F2[X ] of degree at most 3.
20. Let R =C[U ,V ]/(UV −1).

(a) Prove that

C[T,T−1] :=
{

f (T)
T i ∈C(T) : f (T) ∈C[T], i ∈Z

}
is a subring of the field C(T).

(b) Prove that R ∼=C[T,T−1].

(c) Prove that R is a principal ideal domain.

(d) Prove that R ∼=C[X ,Y ]/(X2 +Y 2 −1) (hint: X2 +Y 2 = (X + iY )(X − iY )).

(e) Find an element r ∈ C[X ,Y ]/(X2 +Y 2 −1) such that (r) = (x−1, y) where
x := X + (X2 +Y 2 −1) and y = Y + (X2 +Y 2 −1). (compare Exercise 18 on
page 51).
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VI EUCLIDEAN RINGS AND THE GAUSSIAN INTEGERS

VI.1 Euclidean rings

We now discuss a special kind of principal ideal domains. Examining how we deter-
mined that the rings Z and K[X ] (K a field) are indeed principal ideal domains, we
see that in both cases an important rôle was played by the possibility to perform di-
vision with remainder: compare Theorem II.4.2 for the ring Z, and Theorem III.4.1
for K[X ]. Integral domains allowing such a division with remainder are called
Euclidean. We start by formally introducing them.
VI.1.1 Definition. A ring R is called a Euclidean ring if it is a domain, and more-
over a function

g : R− {0}−→Z≥0

exists with the property:
(**) for all a,b ∈ R with b 6= 0 there exist q, r ∈ R with a = qb+ r and either r = 0 or
g(r)< g(b).

VI.1.2 Remark. Property (**) expresses the possibility to do ‘division with remain-
der’. The function g is used to say that the ‘remainder’ r is smaller than the element
b one divides by.

VI.1.3 Example. For R = Z one can take g(n) = |n|, in which case the familiar
division with remainder for integers (and the fact that Z is an integral domain)
shows that Z is Euclidean.

Next, take K any field and R = K[X ]. Then g( f )= deg( f ) works, as follows from
Theorem III.3.1. Moreover K[X ] is an integral domain, hence K[X ] is Euclidean.

A field K is trivially Euclidean: we may take g(a)= 0 for all a ∈ K − {0}.

VI.1.4 Theorem. Any Euclidean ring R is a principal ideal domain.

Proof. By definition R is a domain. Take I ⊂ R any ideal. We will show that I is
a principal ideal. If I = {0} this is clear. Now suppose I 6= {0}. Then I − {0} is not
empty, hence g(I−{0}) is a nonempty subset of Z≥0. This subset contains a smallest
element, hence b ∈ I − {0} exists with

g(b)= min {g(x) : x ∈ I − {0}} .

We claim that
I = Rb.
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The inclusion ⊃ is clear since b ∈ I. The inclusion ⊂ is shown as follows. Let a ∈ I.
Since R is Euclidean, q, r ∈ R exist with a = qb+ r and either r = 0 or g(r) < g(b).
If r 6= 0 then g(r) < g(b), and r = a− qb ∈ I. This contradicts the choice of b. As a
consequence, r = 0, which implies a = qb ∈ Rb, as we wished to show.

We conclude that I = Rb is a principal ideal, which proves Theorem VI.1.4.

Note that the above proof is completely analogous to the proofs of II.4.2 (for
R =Z) and III.4.1 (for R = K[X ]).

The converse of VI.1.4 is not true in general: there exist principal ideal domains
which are not Euclidean. An example of this is the ring R = Z[ 1

2 (1+p−19)], see
Exercises 2 and 3 on page 89.

The types of rings discussed so far are displayed as follows.

{Rings}) {Comm. Rings}) {ID’s}) {UFD’s}) {PID’s}) {EuD’s}) {Fields}.

Here the following (mostly quite standard) abbreviations were used

Comm. Rings commutative rings (Definition I.1.1)
ID’s integral domains (Definition I.2.13)
UFD’s unique factorization domains (Definition V.3.1)
PID’s principal ideal domains (Definition V.2.1)
EuD’s Euclidean rings (Definition VI.1.1)

VI.1.5 Theorem. The ring Z[i] is a Euclidean ring, taking g the norm map

g(a+bi) := N(a+bi)= (a+bi)(a+bi)= a2 +b2, for a,b ∈Z.

In particular Z[i] is a principal ideal domain.

Proof. Take α,β ∈Z[i],β 6= 0. We must find γ,ρ ∈Z[i] such that

α= γβ+ρ and N(ρ)< N(β)

(note that N(0) = 0). So in C we must have α/β = γ+ρ/β and N(ρ/β) < 1 (for the
obvious extension of the norm N to all of C). This may be interpreted as stating
that γ ∈Z[i] should be a good approximation of the complex number α/β.

In C write
α

β
= u+vi, with u, v ∈R.

Choose
u′, v′ ∈Z such that |u−u′| ≤ 1

2
and |v−v′| ≤ 1

2
.

Put
γ= u′+v′ i ∈ Z[i]

and define the ‘remainder’ ρ by

ρ :=α−γβ ∈ Z[i], so α= γβ+ρ.

We claim that in this way a (not necessarily unique) division with remainder as
required in the definition of a Euclidean ring is obtained.
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Indeed, since N(α)N(β)= N(αβ), the inequality N(ρ)< N(β) follows from

N(ρ/β) = N(
α

β
−γ)

= N( (u−u′)+ (v−v′)i )

= (u−u′)2 + (v−v′)2

≤ (
1
2

)2 + (
1
2

)2

= 1
2

< 1.

This shows that Z[i] is a Euclidean ring. Theorem VI.1.4 now implies that Z[i] is
a principal ideal domain.

VI.1.6 Example. We do division with remainder for α= 5+6i and β= 2+ i. First,
in C one has

α

β
= (5+6i)(2− i)

(2+ i)(2− i)
= 16+7i

5
= 3

1
5
+ i ·12

5
.

Here a ‘good approximation’ γ for α/β is

γ := 3+ i =⇒ ρ :=α−γβ= 5+6i− (3+ i)(2+ i)= i.

Hence a division with remainder as requested is

5+6i = (3+ i)(2+ i)+ i, note that indeed N(i)= 1< 5= N(2+ i).

The proof of Theorem VI.1.5 presented above can be interpreted geometrically
as follows: we must show that any complex number α/β can be approximated by
an element of Z[i] in such a way that the difference has absolute value < 1. In
other words: the open discs with radius 1 and center the elements of Z[i], should
cover the complex plane. The fact that they indeed do is immediate after drawing
a picture.

There are various rings where an analogous reasoning shows that they are Eu-
clidean. Examples include Z[

p−2] and Z[ 1
2 (1+p−3)] = {a+ 1

2 (1+p−3)b : a,b ∈Z}.
In the complex plane, this latter ring consists of the vertices of a regular pattern
consisting of equilateral triangles. The fact that this ring is Euclidean can be used
to prove ‘Fermat’s Last Theorem in the special case n = 3. The general case of this
theorem states that no x, y, z ∈ Z>0 exist with xn + yn = zn, in case n is an inte-
ger larger than 2. Fermat claimed to have a proof of this, but it is unknown (and
strongly doubted) whether that was indeed the case. For centuries many mathe-
maticians and amateurs attempted to prove Fermat’s Last Theorem. In June 1993
the English mathematician Andrew Wiles (Who worked at Princeton University
in the U.S.A.) announced that he, building upon the work of a long list of number
theorists and algebraic geometers, finally succeeded in this. Unfortunately this
first ‘proof ’ still contained a serious flaw, but little more than a year later Wiles
in collaboration with his former student Richard Taylor succeeded in completing
the argument. The now fully accepted proof appeared in the journal Annals of
Mathematics 142 (1995).

The ring Z[
p−5] is not a principal ideal domain as can be seen using Exercise 17

on page 32. hence this ring is certainly not Euclidean. So the discs of radius 1
centered around the elements of Z[

p−5] do not cover the complex plane. In a
similar way one shows that Z[

p−3] is not a principal ideal domain, hence not a
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Euclidean ring. In this example it turns out that the region of the complex plane
which is not covered by the discs, consists of a set of isolated points.

Also for m > 0 there are Euclidean rings of the form Z[
p

m]. Examples include the
rings Z[

p
2] and Z[

p
3], with

(∗) g(α)= |N(α)|, N as in I.2.5.

For more examples we refer to the Exercises. The proofs are in these cases quite
analogous to the proof presented for Z[i].

An interesting ring is Z[
p

14]: here the function defined by (∗) does not satisfy
the condition needed to show the ring is Euclidean. However, it is believed that
some other function g exists which does fulfill the requirement. However, to date
this remains unproven, so we do not know whether Z[

p
14] is Euclidean. We do

know that Z[
p

14] is a principal ideal domain.

VI.2 The Euclidean algorithm

Throughout this section R is a Euclidean ring.

In a principal ideal domain (such as R, see Theorem VI.1.4) for every pair of ele-
ments a, b the ideal (a, b) generated by them is principal. So d in the ring exists
such that

(a, b)= (d), and in particular ar+bs = d

for certain r, s in the ring.

VI.2.1 Definition. Given elements a, b in a principal ideal domain, a generator d
of the principal ideal (a,b) is called a greatest common divisor of a and b. We write
gcd(a, b) := d.

VI.2.2 Remark. Note that in general a greatest common divisor d of a,b is not
uniquely determined. If u is any unit in the ring, then (d) = (ud); hence ud is also
a greatest common divisor of a and b.

VI.2.3 Remark. From Theorem V.3.4 we have that a principal ideal domain is
in particular a unique factorization domain. In unique factorization domains we
already defined a gcd in Definition V.4.5. Exercise 11 on page 90 shows that the
two definitions agree.

In a Euclidean ring there is a method called the Euclidean algorithm for finding
a greatest common divisor of any pair of elements.

Given a, b in a Euclidean ring R. We assume both a and b are nonzero, other-
wise we already have a gcd. Assume (after interchanging a,b if necessary) that
g(b)≤ g(a). Division with remainder yields q0, r1 ∈ R such that

a = q0b+ r1 and r1 = 0 or g(r1)< g(b).

Since a, b ∈ (a, b) also r1 = a− q0b ∈ (a, b), and

(a, b)= (q0b+ r1, b)= (b, r1).

If r1 = 0 then (a, b) = (q0b, b) = (b) hence gcd(a, b) = b. And if r1 6= 0 we have
g(r1)< g(b)≤ g(a), hence we obtained ‘smaller’ generators b, r1 of the ideal (a, b).
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If r1 6= 0 one continues by dividing b with remainder by r1:

b = q1r1 + r2, and r2 = 0 or g(r2)< g(r1).

Then
(a, b)= (b, r1)= (q1r1 + r2, r1)= (r1, r2).

If r2 6= 0 then divide r2 by r1:

r1 = q2r2 + r3 and r3 = 0 or g(r3)< g(r2),

it follows that (a, b)= (b, r1)= (r1, r2)= (r2, r3).
Note that in each new step either rk = 0 or g(rk) < g(rk−1), and g(rk) ∈Z≥0. So

after finitely many steps one obtains n with

rn−2 = qn−1rn−1 + rn and rn = 0.

Then
(a,b)= (rn−1, rn)= (rn−1), hence gcd(a, b)= rn−1,

which determines a gcd of a and b.

Elements r, s ∈ R with ar+bs = d are now constructed as follows.

a− q0b = r1
b− q1r1 = r2

}
=⇒ b− q1(a− q0b)= r2, i.e., (−q1)a+ (1+ q0q1)b = r2,

where we substituted the first equality into the second. Now if

hi−1a+ ki−1b = r i−1
hia+ kib = r i

}
and r i−1 − qir i = r i+1,

then a substitution shows

(hi−1 − qihi)a + (ki−1 − qiki)b = r i+1,

so
hi+1 = (hi−1 − qihi), ki+1 = (ki−1 − qiki)

satisfy hi+1a+ ki+1b = r i+1. After finitely many steps in this way the desired ex-
pression for a gcd is obtained.

A different way to keep track of this ‘bookkeeping’ is as follows. Put

r−1 := a, r0 := b.

Now observe that the equation r i−1 = qir i + r i+1 is equivalent with(
r i

r i+1

)
=

(
0 1
1 −qi

)(
r i−1
r i

)
.

Considering the second coordinate of the vector(
rn−2
rn−1

)
=

(
0 1
1 −qn−2

)(
0 1
1 −qn−3

)
· . . . ·

(
0 1
1 −q0

)(
a
b

)
one finds r, s such that gcd(a,b)= rn−1 = ra+bs.

VI.2.4 Example. We use the algorithm described above to find gcd(84,30) in the
euclidean ring Z (so g(n) = |n|), and write the result as a combination 84r+30s.
Note

84= 2 ·30+24, 30= 1 ·24+6, 24= 4 ·6+0,

so (84, 30)= (30, 24)= (24, 6)= (6) and gcd(84, 30)= 6. Moreover

24= 84−2 ·30, 30−1 ·24= 6 =⇒ 30−1 · (84−2 ·30)= (−1) ·84+3 ·30= 6,

hence r =−1 and s = 3 work.
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VI.2.5 Example. The Euclidean algorithm can be used to compute the inverse of a
unit in the ring R/(a). We illustrate this in an example, see also VII.2.10.

Let R =Q[X ] (a Euclidean ring), and

f = X3 + X2 −1 ∈ Q[X ].

Then f is irreducible since it has no zero in Z and therefore not in Q (compare
Section V.5). Put

K :=Q[X ]/( f ), α := X + ( f ).

Using Theorem V.2.4 and Theorem IV.2.3 K is a field. Moreover by Theorem III.3.4
every element of K can be written in a unique way as

a0 +a1α+a2α
2, ai ∈Q.

We determine the inverse of

b(α)= 1+α2, for b = X2 +1 (∈Q[X ]).

Since Q[X ] is a principal ideal domain and f is irreducible with deg( f )> deg(b),
we have gcd( f ,b)= 1. Hence r, s ∈Q[X ] exist with

f r+ sb = 1 (∈Q[X ]), so s(α)(α2 +1)= 1 (∈ K =Q[X ]/( f )),

using f (α)= 0. So s(α) is the inverse of b(α)=α2 +1.
As Q[X ] is a Euclidean ring (with g( · ) = deg( · )), we can find s using the Eu-

clidean algorithm, as follows. We have

X3 + X2 −1= (X +1)(X2 +1)+ (−X −2), so q0 = X +1, r1 =−(X +2).

Furthermore

X2 +1= (−X +2)(−X −2)+5, hence q1 =−X +2, r2 = 5.

Since 5 is a unit in Q[X ], indeed gcd( f , b)= 1.
These equalities can be rewritten as

−X −2= f − (X +1)b, 5= b+ (X −2)(−X −2).

Substituting the first into the second yields

5= b+ (X −2)( f − (X +1)b)= (X −2) f + (1− (X −2)(X +1))b.

So one obtains

r f + sb = 1 with r = 1
5

(X −2), s = 1
5

(3+ X − X2).

Substituting α for X we see that

(α2 +1)−1 = 1
5

(3+α−α2).

VI.3 Sums of squares

In this section we answer the question, which integers can be written as a sum
of two squares. For this we use the theory of unique factorization domains and
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a result concerning finite subgroups of the group of units of a domain, see Corol-
lary III.5.4. Moreover for actually computing a representation as a sum of two
squares, the Euclidean algorithm can play a role.

Writing n ∈Z as a sum of two squares, n = a2 + b2 with a, b ∈Z, can be considered
as factoring n in the ring Z[i]:

n = a2 +b2 ⇐⇒ n = (a+bi)(a−bi).

In particular any factorization of n in Z[i] into two complex conjugate factors
n =α ·α yields a a representation of n as a sum of two squares (one of the squares
could be 0).

VI.3.1 Definition. The ring Z[i] is called the ring of Gaussian integers.

We saw in Theorem VI.1.5 that Z[i] is Euclidean, hence in particular it is a prin-
cipal ideal domain and therefore also a unique factorization domain. As a conse-
quence, every n ∈Z>0 has in Z[i] an (essentially unique) factorization as a product
of a unit and a finite number of irreducible elements of Z[i].

VI.3.2 Example. Observe that 5 is irreducible in Z, however in Z[i]

5= 12 +22 = (1+2i)(1−2i)

and neither of 1+2i, 1−2i is a unit. So 5 is not irreducible in Z[i].

All α’s in Z[i] such that αα= n can be found once we know the factorization of
n into irreducible elements of Z[i]: since α divides n, its irreducible factors form a
subset of those of n.

Let
n = pn1

1 . . . pnt
t , n j ∈Z>0

and the p j pairwise distinct prime numbers. If we know how to write each p j as a
product of irreducible elements in Z[i], then the factorization of n into irreducible
elements of Z[i] is obtained.

VI.3.3 Theorem. 1. The units of Z[i] are Z[i]× = {1, i, −1, −i}.
2. One has 2= (−i)(1+ i)2 with −i ∈Z[i]× and (1+ i) irreducible in Z[i].
3. If q ∈Z is prime and q ≡ 3 mod 4 then q is irreducible in Z[i].
4. If p ∈Z is prime and p ≡ 1 mod 4 then

p =π ·π, and π 6= uπ̄

for any u ∈Z[i]×. Both π and its complex conjugate π are irreducible in Z[i].
5. The irreducible elements mentioned in 2. and 3. and 4. above are, up to multi-

plication by units, the only irreducible elements of Z[i].

Proof. 1.) In I.2.5 we saw a+bi ∈Z[i]× ⇐⇒ N(a+bi) := a2 +b2 =±1, implying 1).
2.) Note that

N(1+ i)= 12 +12 = 2 and N(α)N(β)= N(αβ).

Hence if αβ = 1+ i then either N(α) = 1 or N(β) = 1. As shown above, this means
that one of α,β is a unit. Hence 1+ i is irreducible in Z[i].
3.) Suppose q =αβ with neither α nor β a unit. Then

N(α)N(β)= q2, N(α)> 1, N(β)> 1.
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Since q ∈Z is prime, this implies N(α)= N(β)= q. Write

α= a+bi, then N(α)= a2 +b2 = q.

If a and b are both even then a2 +b2 ≡ 0 mod 4 contradicting q ≡ 3 mod 4. If a and
b are both odd, then writing

a = 2k+1 one finds a2 = 4k2 +4k+1≡ 1 mod 4.

Hence in this case a2 + b2 ≡ 2 mod 4, contradicting the assumption on q. In the
remaining case one of a,b is even and the other one is odd. Then a2+b2 ≡ 1 mod 4,
again a contradiction. Hence no α ∈ Z[i] exists with N(α) = q and therefore q is
irreducible.
4.) If p is any prime number, the ring Z/pZ= Fp is a domain (even a field), hence
by Corollary III.5.4 F×

p is a cyclic group of order p−1. Let g be a generator of this
group. If our prime p ≡ 1 mod 4, then (p−1)/4 is a positive integer, hence

x := g(p−1)/4 (∈F×
p)

is well-defined. The order of x equals 4, so x2 =−1. As a consequence the map

φ :Z[i]−→Fp, a+bi 7→ a+bx

is a (surjective) ring homomorphism. By Theorem VI.1.5 Z[i] is a principal ideal
domain, hence π ∈Z[i] exists with

(π) :=πZ[i]= ker(φ), in particular Z[i]/(π)∼=Fp.

Clearly p ∈ ker(φ), so p = πβ for some β ∈ Z[i]. Then N(p) = p2 = N(π)N(β).
Here N(π) 6= 1 since otherwise π would be a unit and (π) = Z[i], contradicting
Z[i]/(π) = Fp. If N(π) = p2 then N(β) = 1 hence β is a unit and (π) = (πβ) = (p).
This is impossible since Z[i]/(p) is a ring consisting of p2 elements (the classes
of a+ bi for a, b ∈ {0, 1, . . . , p−1}) whereas Z[i]/(π) ∼= Fp contains only p elements.
We conclude N(π) = p. Observe that p = N(π) = ππ (hence β = π), which yields a
factorization of p.

The irreducibility of π (and of π) follows from the remark that π = αγ implies
that N(π)= p = N(α)N(γ), so N(α)= 1 or N(γ)= 1 showing that one of α,γ is a unit.

We finish by showing that no unit u exists with π = uπ. Write π = a+ bi and
recall N(π)= p = a2 +b2. Suppose

a+bi = u(a−bi) with u ∈Z[i]∗ = {1, i, −1, −i}.

If u =±1 this yields a = 0 or b = 0, contradicting p = a2 + b2. If u =±i then a =±b,
contradicting the assumption that p = a2 +b2 ≡ 1 mod 4.
5.) If α ∈Z[i] is irreducible then n := α ·α ∈Z>1. Factoring n in Z we see that α is
a divisor in Z[i] of some prime factor p|n. The irreducible factors of this p are as
described in 2., 3., or 4.

This proves Theorem VI.3.3.

VI.3.4 Remark. The hardest part of the reasoning above is probably the factoriza-
tion of a prime p ≡ 1 mod 4 in Z[i]. This can also be shown by more elementary
means. In particular the use of Corollary III.5.4 can be avoided. For a quite short
and elementary argument, see D. Zagier: A one-sentence proof that every prime
≡ 1 mod 4 is a sum of two squares, The American Mathematical Monthly, Vol. 97
(1990), p. 144.
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VI.3.5 Remark. Here is a somewhat more constructive proof for the existence of a
representation p = a2 +b2 whenever p ≡ 1 mod 4 is prime. First, consider

(p−1)! mod p = (1 ·2 ·3 · . . . · (p−1)) mod p.

This is the product of all elements of F×
p . With any factor x in this product, also the

inverse x−1 is a factor. One has

x = x−1 ⇔ x2 = 1 ⇔ x =±1.

Conclusion:
(p−1)!≡−1 mod p,

as is seen by grouping together all pairs x, x−1 with x 6= ±1. This result is named
after the English mathematician John Wilson (1741–1793), although it was also
stated much earlier by the Arab scientist Alhazen (Ibn al-Haytham, ≈965–≈1040 A.D.).
If one subtracts p from each of the last (p−1)/2 factors (p+1)/2, . . . , (p−1), observing
that (p− j)− p =− j and that (p−1)/2 is even in our case, one obtains

( p−1
2 )!2 ≡−1 mod p,

hence x := ( p−1
2 )! mod p ∈F×

p satisfies x2 =−1.
Given x ∈Fp with x2 =−1, take n ∈Z with |n| < p/2 and n mod p =±x. The map

φ : Z[i]→Fp used in the proof of Theorem VI.3.3 may be written as

a+bi 7→φ(a+bi)= a+bn.

The kernel of this map consists, by definition, of all a+bi ∈Z[i] with p|(a+bn). In
other words,

ker(φ)= {a+bi : ∃m ∈Z such that a+bn = mp} .

Writing a = mp−bn this shows that

ker(φ)= {mp−bn+bi : m,b ∈Z}

hence this kernel is generated by the two elements p and n− i. Since it is an ideal
in Z[i], one concludes ker(φ)= (p,n− i).

Now the Euclidean algorithm (Section VI.2) applied to p,n− i ∈ Z[i] (and the
norm N as function g) finds π ∈Z[i] with (π) = (p,n− i). Here p ∈ (π) implies N(π)
divides N(p) = p2 and n− i ∈ (π) implies that N(π) divides N(n− i) = n2 +1 < p2.
As a result, N(π) ∈ {1, p} and since N(π) = 1 would mean ker(φ) =Z[i] which is not
the case, one concludes N(π) = p. This finishes the more constructive approach to
writing such a prime p as a sum of two squares. It should be evident that the most
time consuming step here is finding x ∈ Fp with x2 = −1. An efficient method (in
practice) for this is given by the so-called Tonelli-Shanks algorithm.

VI.3.6 Example. Using the method described in Remark VI.3.5 we write the prime
number p = 7933 as a sum of two squares. It turns out that n = 2950 satisfies
n2 ≡ −1 mod p. Hence it remains to find gcd(7933,2950− i) using the Euclidean
algorithm in Z[i]. Now 7933/(2950− i)≈ 2.69, and

7933= 3 · (2950− i)−917+3i.

Next, (2950− i)/(−917+3i)≈−3.22, and

2950− i =−3 · (−917+3i)+199+8i.

One more division with remainder: (−917+3i)/(199+8i)≈−4.60+0.20i, leading to

−917+3i =−5 · (199+8i)+78+43i.
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Now 199+8i = (2− i) · (78+43i), hence gcd(7933,2950− i)= 78+43i and indeed

7933= 782 +432.

VI.3.7 Corollary. Suppose n ∈Z>0 has prime factorization

n = 2k pn1
1 . . . pnr

r qm1
1 . . . qms

s , n j, m j ∈Z>0

with p j, q j pairwise distinct primes and p j ≡ 1mod4 and q j ≡ 3mod4.
Then n can be written as a sum of two squares precisely when:

m j ≡ 0 mod 2, for all j ∈ {1, . . . s}.

Proof. Observe that n can be written as a sum of two squares:

n = a2 +b2 = (a+bi)(a−bi)=αα

precisely when some α ∈Z[i] exists with αα= n.
Using Theorem VI.3.3 the prime factorization of n in Z[i], where we ignore the

factorization of 2k, is given by

n = 2k(πn1
1 π

n1
1 ) . . . (πnr

r π
nr
r )qm1

1 . . . qms
s .

In case n =αα then the prime factorization of α is of the form

α= u(1+ i)l(πa1
1 π

b1
1 ) . . . (πar

r π
br
r )qc1

1 . . . qcs
s ,

for a unit u. Hence (note that uū = 1):

n =αα= 2l pa1+b1
1 . . . par+br

r q2c1
1 . . . q2cs

s .

Since the prime factorization (here, of n) in Z[i] is unique,

m j = 2c j, so m j ≡ 0 mod2 ∀ j.

Vice versa, suppose all m j are even. We construct α ∈ Z[i] with αα = n as
follows. Put

c j := m j

2
, l := k.

Next, take
a j ∈ {0, 1, . . . ,n j} and b j := n j −a j,

so b j is determined by the choice of a j. For u we take any of the 4 units in Z[i].
This determines an α with the required properties.

We note that in this way one finds 4 ·∏r
i=1(n j +1) possible α’s, which is exactly

the number of elements in the set{
(a,b) ∈Z2 : a2 +b2 = n

}
.

This shows VI.3.7.

VI.3.8 Remark. The result of Corollary VI.3.7 is usually attributed to Fermat,
who stated it in a letter dated December 25th, 1640 he sent to the French priest
Marin Mersenne. However, somewhat earlier the French-born mathematician and
Albert Girard (1595–1632) who worked as an engineer in the army of the Dutch
stadtholder Frederik Hendrik prince of Orange, edited and translated the works
of Simon Stevin. In Chapter 5 of the first Volume (on Arithmetic), page 622 of the
1625 edition and page 156 of the edition published in 1634, one finds:
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So this presents, 15 years before Fermat’s letter, the correct description of all nat-
ural numbers which are sums of two squares:

I The squares;
II The prime numbers p ≡ 1 mod 4;

III The products of numbers from I and II;
IV Twice any number from I, II, or III.

A complete proof of the assertions by Girard and Fermat came much later, pre-
sented by Euler and published in two consecutive issues of the journal Novi com-
mentarii Academiae Scientiarum Imperialis Petropolitanae between 1752 and 1755.

VI.3.9 Example. Take n = 41, which is a prime congruent to 1 modulo 4 hence a
sum of two squares. We have

41= 16+25= (4+5i)(4−5i)=ππ,

with π= 4+5i and π irreducible in Z[i].
For n = 45 one finds

45= 5 ·32 = (1+2i)(1−2i)32

with 1±2i and 3 irreducible in Z[i]. Taking

α= (1+2i)3= 3+6i one obtains 45=αᾱ= 32 +62.

Let n = 65 = 5 · 13. As 5 = (1+ 2i)(1− 2i) and 13 = (2+ 3i)(2− 3i), the prime
factorization of 65 in Z[i] is

65=π1π1π2π2, with π1 = 1+2i, π2 = 2+3i.

Taking
α=π1π2 one finds α=−4+7i and 65= (−4)2 +72.

Taking
α=π1π̄2 one has α= 8+ i and 65= 82 +12.

These are, up to signs and permutations of a, b, the only two representations of 65
as a sum of two squares.
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VI.4 Exercises

1. Let γ= 1
2 (1+p−19) and R =Z[γ]= {a+bγ : a,b ∈Z}⊂C. Define

N : R −→Z≥0, N(a+bγ) := a2 +ab+5b2.

(a) Show that γ2 = γ−5 and that R is a subring of C.

(b) Show that N(αβ)= N(α)N(β) for all α,β ∈ R.

(c) Let α ∈ R. Prove that

α ∈ R× ⇐⇒ N(α)= 1⇐⇒α ∈ {±1},

hence R× = {1,−1}.

(d) Prove that no surjective ring homomorphisms

ϕ : R −→F2 or ϕ : R −→F3

exist (hint: use γ2 = γ−5 and use this to limit the possibilities for ϕ(γ) ).

2. Take R =Z[γ] as in the previous exercise. Suppose that g : R− {0} →Z≥0 satis-
fies the condition stated in Definition VI.1.1, and choose b ∈ R − {0,1,−1} with
g(b) as small as possible.

(a) Show that b is not a unit and that

∀a ∈ R : ∃r ∈ {0,1,−1} : a ≡ r mod Rb.

(b) Prove that R/Rb = {0,1,−1}, with r = (r+Rb). Conclude that R/Rb ∼=F2 or
R/Rb ∼=F3.

(c) Using Exercise 1 (d) above, deduce a contradiction.

The conclusion of this problem: g as above does not exist, hence R is not Eu-
clidean.

3. Let R and N be as in Exercise 1 above. For a,b ∈ R, b 6= 0 we say that division
with remainder is possible for the pair (a,b) if q, r ∈ R exist with

a = qb+ r and N(r)< N(b).

(a) Suppose that (a,b) ∈ R×R with b 6= 0, and that division with remainder is
not possible for this pair. Prove that in this case division with remainder
is possible for (2a,b), as well as for one of the pairs (γa,b), ((1−γ)a,b).
(Hint: draw a picture).

(b) Show that R2+Rγ= R and also R2+R(1−γ)= R.

(c) Prove that R is a principal ideal domain (imitate the proof of Theorem VI.1.4,
but use (a) instead of the condition from Definition VI.1.1).

4. Calculate gcd(4+7i,7−9i) in Z[i] and write 4+7i and 7−9i in Z[i] as a product
of irreducible factors.

5. Let p = 18313, which is a prime number. It turns out that n := 6731 ∈Z satisfies
n2 ≡−1 mod p. Use this to write p as a sum of two squares (you will probably
want to use a calculator for this).

6. Suppose n = a2 + b2. Find p, q in terms of a and b such that 2n = p2 + q2.
Similarly, find r, s with 5n = r2 + s2.

7. Prove that for m ∈ {−2,2,3} the ring Z[
p

m] is Euclidean, using g(α) = |N(α)|
(the norm).
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8. Prove that for m ∈ {−11,−7,−3,5,13} the ring Z[ 1
2 (1+p

m)] is Euclidean, using

g(a+ 1
2

(1+p
m)b)= |a2 +ab− m−1

4
b2|.

(Hint: first check that g(x+ y
p

m)= |(x+ y
p

m)(x− y
p

m)| for x, y ∈Q.)
9. Put R = {a/b ∈Q : a,b ∈Z, b odd }, which is a subring of Q.

(a) Describe R×.

(b) Show that every x ∈ R, x 6= 0 can be written in a unique way as x = 2k ·u
with k ∈Z≥0 and u ∈ R×.

(c) Show that the function

g : R− {0}−→Z≥0, g(x)= k if x = 2k ·u

as in (b), makes R a Euclidean ring.

(d) Show that up to multiplication by units 2 is the only irreducible element
of R. Is 2R a prime ideal of R?

10. The ring R[[X ]] of formal power series over a ring R consists of all expressions
∞∑

i=0
ai X i with ai ∈ R. The addition and multiplication are the familiar ones for

power series.

(a) Suppose R is unitary and let f =
∞∑

i=0
ai X i ∈ R[[X ]]. Prove:

f ∈ R[[X ]]× ⇐⇒ a0 ∈ R×.

(b) Suppose that R is a field. Define

g : R[[X ]]− {0}−→Z≥0

by

g(
∞∑

i=0
ai X i)= min {i : ai 6= 0}.

Prove that this function makes R[[X ]] a Euclidean ring.

11. Let R be a principal ideal domain and consider a, b ∈ R with prime factoriza-
tions

a = upn1
1 . . . pnr

r , b = vpm1
1 . . . pnr

r , ni, mi ∈Z≥0.

Define d ∈ R as in Definition V.4.5:

d := pk1
1 . . . pkr

r , with ki := min {ni, mi}.

Prove that (a, b)= (d) (hint: examine the proof of Theorem V.3.5).

90 VI EUCLIDEAN RINGS AND THE GAUSSIAN INTEGERS



VII FIELDS

VII.1 Prime fields and characteristic

VII.1.1 Definition. Let K be a field. A subset K ′ ⊂ K is called a subfield if the next
three conditions hold:

• 1 ∈ K ′,
• a, b ∈ K ′ =⇒ a−b ∈ K ′,
• a, b ∈ K ′, b 6= 0 =⇒ ab−1 ∈ K ′.

In other words, a subset K ′ ⊆ K of a field K is a subfield if by restricting the
operations defined on K to K ′ it is itself a field. One easily verifies that the inter-
section of any collection of subfields of K is again a subfield.

VII.1.2 Definition. The intersection of all subfields of a field K is called the prime
field K0 of K , so

K0 := ⋂
K ′⊂K

K ′

where the intersection is taken over all subfields K ′ ⊆ K .

By construction the prime field is the smallest (with respect to the inclusion)
subfield of K . Note that 0, 1 ∈ K are in the prime field K0.

VII.1.3 Theorem. Let K be a field. The prime field of K is isomorphic to

either the field Q of rational numbers,
or a field Fp =Z/pZ, with p a prime number.

Proof. Let K0 denote the prime field of K . Define

κ :Z−→ K0

by
κ(n) = 1+1+ . . .+1 ∈ K0 (n terms)
κ(0) = 0 ∈ K0
κ(−n) = −(1+1+ . . .+1) ∈ K0 (n terms)

where n ∈Z>0 and the 1 in the right hand side is 1 ∈ K . Then κ is a ring homomor-
phism. One has κ(Z)⊂ K0 since K0 is a field and 1 ∈ K0.

Since K0 is a field κ(Z)⊆ K0 has no zero divisors. Moreover κ(Z) contains 1 6= 0,
hence κ(Z) is a domain. By Theorem II.3.7 κ(Z) ∼= Z/Ker(κ), so Ker(κ) is a prime
ideal of Z. We conclude Ker(κ)= {0} or Ker(κ)= pZ for some prime number p.
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First, assume Ker(κ) = 0. In this case κ is injective and κ(Z) ∼=Z. We extend κ

to a map

κ1 :Q→ K0, κ1(a/b) := κ(a) · (κ(b))−1, (a, b ∈Z, b 6= 0).

This map is well defined and one easily verifies that κ1 : Q→ K0 is a ring homo-
morphism. Since {0} and Q are the only ideals of Q it follows that κ1 is injective.
Its image κ1(Q) is therefore a subfield of K0. As K0 is the smallest subfield of K ,
one concludes K0 = κ1(Q)∼=Q.

The remaining case is that Ker(κ) = pZ for p prime. Then κ(Z) ∼= Z/pZ, which
by Theorem I.2.11 is a field. So κ(Z) is a subfield of K0, which as above implies
κ(Z)= K0. Hence K0 = κ(Z)∼=Z/pZ.

VII.1.4 Definition. Let K be a field with prime field K0.
If K0 ∼=Q we say that K has characteristic zero, notation: char(K)= 0.
If K0 ∼=Fp we say that K has characteristic p, notation: char(K)= p.

We see that in all cases char(K) is the non-negative generator of the ideal
Ker(κ)⊂Z, with κ :Z→ K the unique ring homomorphism such that κ(1)= 1.

VII.2 Algebraic and transcendental

VII.2.1 Definition. If L is a field and K ⊂ L is a subfield, then L is called an
extension field or field extension of K .

If L ⊇ K is an extension field of a field K and α ∈ L, then we have the evaluation
homomorphism (see Theorem III.2.1)

evα : K[X ]−→ L, f 7→ f (α).

The kernel of evα is an ideal in K[X ], and therefore by Theorem III.4.1 it is a
principal ideal. We have either Ker(evα) = (0) (equivalently, evα is injective) or
Ker(evα)= ( f ) for some unique monic f ∈ K[X ].

VII.2.2 Definition. Given an extension of fields K ⊆ L and α ∈ L, one says that α is
transcendental over K if the evaluation homomorphism evα : K[X ]→ L is injective.

We say that α is algebraic over K if a nonzero f ∈ K[X ] exists with f (α)= 0. In
this case, the unique monic generator of the ideal Ker(evα) is called the minimal
polynomial of α over K . This minimal polynomial is denoted f αK .

If α is in an extension L of the field K , then

K[α] := evα(K[X ])∼= K[X ]/Ker(evα)

is a subring 6= (0) of the field L. Hence K[α] is a domain. In case α is transcendental
over K then evα is injective hence K[X ] ∼= K[α] ⊆ L. In case α is algebraic over K
we have K[X ]/( f αK ) ∼= K[α] ⊆ L. Since K[α] is a domain, Theorems IV.1.5 and V.2.4
and IV.2.3 show in this case that f αK ∈ K[X ] is irreducible and that K[α] is a field.
Note that for g ∈ K[X ] we have

if g(α)= 0 then g ∈Ker(evα)= ( f αK ) =⇒ g = qf αK for some q ∈ K[X ].

Regardless of α being algebraic or transcendental over K , the ring K[α] is a
domain. This leads to the following.
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VII.2.3 Notation. Let α be an element of an extension L of the field K . Then K(α)
denotes the subfield of L given by

K(α) := {
x · y−1 ∈ L : x, y ∈ K[α], y 6= 0

}
.

In fact this is isomorphic to the field of fractions (see I.3) of the domain K[α].

VII.2.4 Definition. A field extension L of K is called simple if an α ∈ L exists with
L = K(α).

We summarize the above in the next result.

VII.2.5 Theorem. Let L be an extension of a field K and α ∈ L algebraic over K .
Then the minimal polynomial f αK of α over K is irreducible in K[X ].

Moreover K[α]∼= K[X ]/( f αK ) and K[α] is a field, indeed

K(α)= K[α].

Proof. By the first isomorphism theorem II.3.7 evα : K[X ] → K[α] ⊂ L yields an
isomorphism K[X ]/Ker(evα) ∼= K[α]. Since L is a field, K[α] is a domain hence
Ker(evα)= ( f αK ) is a prime ideal in K[X ]. Now K[X ] is a principal ideal domain so by
Theorem V.2.4 f αK is irreducible. The same theorem implies that ( f αK ) is a maximal
ideal, hence K[α] is a field. Since K(α) is the smallest subfield of L containing K[α],
one concludes K(α)= K[α].

VII.2.6 Example. Take d ∈ Q such that α := p
d 6∈ Q. Then f αQ = X2 − d. This

polynomial is irreducible since it has degree 2 and (by the choice of d) it has no
zero in Q. Moreover

Q[α]=Q[
p

d ]=
{
a+b

p
d ∈C : a, b ∈Q

}
.

We show that Q[
p

d] is indeed a field by presenting the inverse of x = a+b
p

d 6= 0.
Define

x := a−b
p

d and N(x)= xx = (a+b
p

d)(a−b
p

d)= a2 −b2d (∈Q).

Since d ∈Q is not a square and x 6= 0, it follows that N(x) 6= 0 (check for yourself!).
Hence

x−1 := x
N(x)

= a
a2 −b2d

− b
a2 −b2d

p
d ∈Q[

p
d].

Note that in case α is transcendental over K , then K(α) ∼= K(X ), the field of
rational functions in the variable X and coefficients in K . Moreover K[α] ∼= K[X ].
In particular α−1 6∈ K[α] and K(α)% K[α].

On the other hand, if α is algebraic over K then K[α] = K(α) hence α−1 ∈ K[α]
whenever α 6= 0.

VII.2.7 Remark. We note that the difference transcendental/algebraic in this sec-
tion is analogous to the difference characteristic zero/characteristic p > 0 in VII.1.4.
In this analogy the evaluation homomorphism

evα : K[X ]→ K[α], evα(X ) :=α
corresponds to the ring homomorphism

κ :Z→ K , κ(1) := 1

used in the proof of VII.1.3. Also, f αK corresponds to p.
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VII.2.8 Example. Taking L = K(X ) and α = X ∈ K(X ) we obtain an easy example
of a simple extension L of K with a transcendental α.

Much less evident is the existence of numbers in R or in C which are transcen-
dental over Q. Such numbers are called transcendental numbers (without men-
tioning any fields). So a transcendental number is not a zero of any polynomial
(6= 0) with coefficients in Q. By a counting argument (see Exercise 2 on page 100)
one can show the existence of transcendental numbers. The first person who found
an explicit one was Liouville (Joseph Liouville, French mathematician, 1809-1882):
he showed that

∑∞
k=1 10−k! is transcendental. In 1933 the English statistician and

economist D.G. Champernowne (1912–2000) while he was still an undergraduate
student published a paper showing that 0,12345678910111213 . . . is normal (which
means that each of the digits 0, 1, . . . , 9 occurs “in the limit” equally often, and
similarly for each pair 01, 02, . . . , 98, 99 et cetera). In 1937 Kurt Mahler (Jewish-
German and later Australian mathematician, 1903–1988) who worked in Gronin-
gen between 1934 and 1936 published the result that in fact Champernowne’s
constant is transcendental. In 1873 Hermite (Charles Hermite, French mathe-
matician, 1822–1901) showed that e =∑∞

n=0
1
n! is transcendental, and in 1882 Lin-

demann (Carl Louis Ferdinand von Lindemann, German mathematician) did the
same for π= 3.14159 · · · . For more about this, see for example the textbook I. Stew-
art, Galois Theory, Chapter 6.

VII.2.9 Example. The complex number i ∈C is algebraic over R, with f i
R := X2+1.

It is even algebraic over Q with f i
Q = X2 +1. If a ∈R is transcendental then ia ∈C

is algebraic over R, with f ia
R = X2 +a2. However ia is not algebraic over Q (why?).

For any α ∈ L one has f αL = X −α. The minimal polynomial of α over a subfield
K ofL will in general depend on the choice of K .

For all k,n ∈Z>0 the number α= npk ∈R is algebraic over Q since it is a zero of
X n −k ∈Q[X ]. The complex numbers

e
2πik

n := cos
2πk

n
+ isin

2πk
n

(k ∈Z)

are also algebraic over Q: they are zero’s of X n−1. These latter numbers are called
roots of unity.

The problem of finding the minimal polynomial of an algebraic α over a given
field K will be addressed in Section VII.4.

VII.2.10 Example. Let α ∈C= L be a zero of f = X3 + X2 −1. Then α is algebraic
over Q = K (since f ∈ Ker(evα)). The polynomial f is irreducible in Q[X ] since
deg( f )= 3 and f has no zero in Z and therefore not in Q (see V.4.11). Hence f αQ = f
and Q[α] ∼= Q[X ]/( f ) is a field. We present a method for finding the inverse of
a ∈ Q[α] with a 6= 0. (A different method which uses the Euclidean algorithm is
given in VI.2.5).

From Theorem III.3.4 we know that every a ∈Q[α] an be written in a unique
way as

a = a0 +a1α+a2α
2 with a0, a1 a2 ∈Q.

To determine the inverse we have to solve the equation

ax = 1 i.e., (a0 +a1α+a2α
2)(x0 + x1α+ x2α

2)= 1

for xi ∈ Q. Since 1, α, α2 are linearly independent over Q (as follows from the
unicity of the presentation a = a0 +a1α+a2α

2) and

α3 =−α2 +1, α4 =α ·α3 =−α3 +α=α2 +α−1,

94 VII FIELDS



we need to solve (for given ai) the system
a0x0+ a2x1+ (a1 −a2)x2 = 1
a1x0+ a0x1+ a2x2 = 0
a2x0+ (a1 −a2)x1+ (a0 −a1 +a2)x2 = 0

In matrix notation this can be written as a0 a2 a1 −a2
a1 a0 a2
a2 a1 −a2 a0 −a1 +a2

 x0
x1
x2

=
 1

0
0

 .

The problem is therefore solved if we invert the 3×3 matrix M given here.
In the special case

a = 1+α2, so (a0,a1,a2)= (1,0,1),

the inverse is easily found using Gauss-elimination: in this case

M =
 1 1 −1

0 1 1
1 −1 2

 and M−1 = 1
5

 3 −1 2
1 3 −1

−1 2 1

 .

Now M−1(1,0,0)= 1
5 (3,1,−1) and therefore

a = 1+α2 =⇒ a−1 = 3
5
+ 1

5
α− 1

5
α2.

VII.3 Finite and algebraic extensions

Suppose L is an extension of a field K . Then L can be considered as a vector space
over K . This means that one considers elements of K as scalars (with the usual
properties of a field), and the elements of L are considered as vectors (forming an
additive group). Vectors are multiplied by scalars using that K is a subfield of L.

In this way (for example) the complex numbers are considered as vectors over
R. Using the real and imaginary part of a complex number there is even an iso-
morphism of vector spaces over R : C∼=R2.

VII.3.1 Definition. Let L be an extension of a field K . We say that L is finite over
K if the dimension of L considered as a vector space over K is finite.

The degree of L over K , notation: [L : K], is the dimension of L considered as
K-vector space:

[L : K] := dimK (L).

We call L algebraic over K if every α ∈ L is algebraic over K (see VII.2.2).

VII.3.2 Example. [C : R] = 2 and [Q( 3p2) : Q] = 3. Namely, the minimal polyno-
mial of 3p2 over Q is X3 −2. Therefore Q( 3p2) ∼=Q[X ]/(X3 −2) and Theorem III.3.4
implies that this is a vector space of dimension 3 over Q. See Theorem VII.3.3
below for a generalisation of this argument. Since every finite dimensional vector
space over Q is countable (if S and T are both countable, so is S×T) we conclude
that R is not finite over Q.
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VII.3.3 Theorem. Let L be an extension of a field K and α ∈ L. Then

α is algebraic over K ⇐⇒ K(α) is finite over K .

Moreover if α is algebraic over K then

n := [K(α) : K]= deg( f αK ) and 1, α, α2, . . . ,αn−1

is a K-basis of the vector space K(α) over K .

Proof. ⇐: Suppose [K(α) : K] = n <∞. Since every (n+1)-tuple of vectors in an
n-dimensional vector space is linearly dependent, a linear relation

a0 ·1+a1 ·α+ . . .+an ·αn = 0

with a0,a1, . . . ,an ∈ K not all zero exists between 1,α,α2, . . . ,αn ∈ K(α). Hence α is
a zero of the polynomial a0 +a1X + . . .+an X n ∈ K[X ], so α is algebraic over K .
⇒: Take α algebraic over K . By Theorem VII.2.5 K(α) = K[α] ∼= K[X ]/( f αK ). Next,
using Theorem III.3.4 every element of the latter ring is represented uniquely as
a0 +a1X + . . .+an−1X n−1 + ( f αK ) with ai ∈ K and n := deg( f αK ). Hence the classes of
1, X , . . . , X n−1 are a basis of the linear space K[X ]/( f αK ) over K .

The isomorphism K[X ]/( f αK ) ∼= K[α] induced by evα sends X i + ( f αK ) to αi and it
is K-linear. Hence n = deg( f αK ) = dimK (K[X ]/( f αK )) = dimK (K[α]) and 1,α, . . . ,αn−1

is a K-basis of K[α]= K(α). This shows VII.3.3.

VII.3.4 Theorem. If L ⊃ K is a finite extension of fields then L is algebraic over K .

Proof. Take α ∈ L. Since L is finite over K and K(α) ⊆ L is a K-linear subspace,
K(α) is finite over K as well. Then VII.3.3 implies that α is algebraic over K . As
α ∈ L is taken arbitrarily one concludes that L is algebraic over K . This proves
VII.3.4.

VII.3.3 and VII.3.4 imply immediately: if α is algebraic over K then K(α) is al-
gebraic over K , so every β ∈ K(α) is algebraic over K . At the end of this chapter
we will indicate how one may find the minimal polynomial of such β over K , see
VII.4. As Exercise 9 on page 100 will show, the converse of VII.3.4 does not hold in
general: there exist fields K which admit an algebraic extension that is not finite
over K .

VII.3.5 Theorem. Let K be a field and L an extension of K and M an extension of
L (so K ⊆ L ⊆ M). Then

M is finite over K ⇐⇒ M is finite over L and L is finite over K .

Moreover if M is finite over K then

[M : K]= [M : L] · [L : K].

Proof. ⇒: Suppose that M is finite over K . Since L is a K-linear subspace of the
K-vector space M, one concludes that L is finite over K . Take α1, . . . ,αn ∈ M which
span the vector space M over K . Every x ∈ M can be expressed as

∑n
i=1 aiαi with

ai ∈ K . Then also ai ∈ L hence over L the vector space M is spanned by α1, . . . ,αn,
and therefore [M : L]≤ n which shows that M is finite over L.
⇐: Suppose that [M : L] = n and [L : K] = m. Choose bases α1,α2, . . . ,αm of L over
K and β1,β2, . . . ,βn of M over L. We claim that {αiβ j : 1≤ i ≤ m,1≤ j ≤ n} is a basis
of M over K .
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Indeed, every x ∈ M can be written as

x =
n∑

j=1
yjβ j with y1, . . . , yn ∈ L.

As α1, . . . ,αm is a basis of L over K , every yj can be written as

yj =
m∑

i=1
ai jαi with ai j ∈ K (1≤ i ≤ m,1≤ j ≤ n).

We find
x = ∑

1≤i≤m,1≤ j≤n
ai jαiβ j.

This shows that any x ∈ M is a K-linear combination of the αiβ j ’s, as asserted by
the claim.

It remains to show that {αiβ j : 1 ≤ i ≤ m,1 ≤ j ≤ n} is a basis of M over K . For
this we must verify that they are linearly independent. Suppose∑

1≤i≤m,1≤ j≤n
ci jαiβ j = 0, with ci j ∈ K .

Then
n∑

j=1
(

m∑
i=1

ci jαi)β j = 0 with
m∑

i=1
ci jαi ∈ L.

The β j ’s are linearly independent over L, hence

m∑
i=1

ci jαi = 0

for j = 1,2, . . . ,n. As the αi ’s are linearly independent over K , one concludes

ci j = 0

for all i and j. So indeed the αiβ j ’s are linearly independent over K .
This implies that dimK (M)= mn <∞ and

[M : K]= m ·n = [L : K] · [M : L].

The proof of VII.3.5 is now complete.

VII.3.6 Notation. If L is an extension of a field K and α1,α2, . . . ,αn ∈ L, then one
defines inductively

K(α1,α2, . . . ,αn) := K(α1,α2, . . . ,αn−1)(αn).

VII.3.7 Corollary. Let L be an extension of a field K and suppose α1,α2, . . . ,αn ∈ L
are algebraic over K . Then K(α1,α2, . . . ,αn) is finite over K .

Proof. Use induction with respect to n. For n = 1 one applies Theorem VII.3.3. If
n > 1 then put K ′ = K(α1,α2, . . . ,αn−1). The induction hypothesis implies that K ′
is finite over K . As αn is algebraic over K , it is certainly algebraic over K ′. Hence
K ′(αn) is finite over K ′. Theorem VII.3.5 (with L = K ′, M = K ′(αn)) now implies
that K ′(αn)= K(α1,α2, . . . ,αn) is finite over K , as desired. This shows VII.3.7.

VII.3.8 Theorem. Let L be an extension of a field K , then

(i) if α,β ∈ L are algebraic over K then also

α+β, α−β, αβ, α/β (β 6= 0)

are algebraic over K .
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(ii) the set {α ∈ L :α is algebraic over K} is a subfield of L containing K .

Proof. (i) By VII.3.7 K(α,β) is finite over K , hence algebraic (see VII.3.4). Defi-
nition VII.3.1 now implies that all elements of K(α,β), in particular α±β, αβ,
and α/β (β 6= 0) are algebraic over K .

(ii) From (i) and the definition of a subfield it follows that the given set is a subfield
M of L. Clearly every α ∈ K is algebraic over K , hence K ⊆ M. This finishes the
proof of VII.3.8.

VII.3.9 Definition. If L is an extension of a field K then the field

{α ∈ L : α is algebraic over K}

discussed in Theorem VII.3.8 (ii) is called the algebraic closure of K in L.

The final theorem of this section is the analog of VII.3.5, with ‘finite’ replaced
by ‘algebraic’.

VII.3.10 Theorem. If K ⊆ L ⊆ M are fields then

M is algebraic over K ⇐⇒ M is algebraic over L and L is algebraic over K .

Proof. ⇒: This is immediate from the definitions, as the reader should verify as an
exercise.
⇐: Suppose M is algebraic over L and L is algebraic over K . Let α ∈ M. We must
show that α is algebraic over K . As M is algebraic over L, there are n ∈ Z>0 and
β1,β2, . . . ,βn ∈ L with

αn +β1α
n−1 + . . .+βn−1α+βn = 0.

This shows that α is algebraic over the subfield K ′ = K(β1,β2, . . . ,βn) of L, hence
K ′(α) is finite over K ′. Since L is algebraic over K , all βi are algebraic over K ,
hence by VII.3.7 K ′ = K(β1,β2, . . . ,βn) is finite over K . Now applying VII.3.5 to
K ⊂ K ′ ⊂ K ′(α) shows that K ′(α) is finite over K . Then by VII.3.4 K ′(α) is algebraic
over K , and in particular α is algebraic over K , as desired. This shows VII.3.10.

VII.4 Determining a minimal polynomial

Suppose L is a finite extension of a field K and β ∈ L. How can the minimal poly-
nomial f βK be found? (Theorem VII.3.4 shows it exists.) We will illustrate three
methods for this in the special case K =Q,L =Q(

p
2,
p

3) (compare Exercise 11 on
page 100) and β= 1+p

2+p
3.

1. The first method uses techniques from Linear Algebra. We choose a basis
of Q(

p
2,
p

3) over Q, for example 1,
p

2,
p

3,
p

2 · p3 (see the proof of VII.3.5
and also Exercise 11 on page 100). Using this basis we express elements of
Q(

p
2,
p

3) as vectors: the vector (a,b, c,d) represents the element a+b
p

2+c
p

3+d
p

2·p3.
Now write powers β0,β1,β2, . . . of β as such vectors:

β0 = 1 = (1,0,0,0)
β1 = β = (1,1,1,0)
β2 = = (6,2,2,2)
β3 = = (16,14,12,6)
β4 = = (80,48,40,32).
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Continue until the vectors obtained in this way are linearly dependent. In the
present case this happens for the first time when β4 is considered. Using tech-
niques for solving systems of linear equations one finds the linear relation

β4 −4β3 −4β2 +16β−8= 0.

Hence f βQ = X4 −4X3 −4X2 +16X −8, since a relation of lower degree would
mean that the vectors corresponding to β0,β1,β2,β3 were linearly dependent,
which they are not.
In finding out how many powers β0,β1, . . . are necessary until the corresponding
vectors will be dependent, Exercise 12 on page 12 is useful.

2. The second method we now discuss relies on ideas from the field of ‘Galois the-
ory’. It argues that since f

p
2

Q = X2 −2 has ±p2 as zero’s and similarly f
p

3
Q has

zero’s ±p3, it is natural to assume that f 1+p2+p3
Q will have the four numbers

1±p
2±p

3 as zero’s. Computing the monic degree 4 polynomial

(X − (1+
p

2+
p

3)) · (X − (1+
p

2−
p

3)) · (X − (1−
p

2+
p

3)) · (X − (1−
p

2−
p

3))

one obtains
X4 −4X3 −4X2 +16X −8

which has rational coefficients and by construction 1+p
2+p

3 as zero. To show
that this polynomial is indeed f βQ it suffices to show that it is irreducible in
Q[X ].

3. The third method may be described as ‘skillful computing’: try to get rid of the
square roots appearing in β= 1+p

2+p
3. This may be done as follows:

β−1 = p
2+p

3, so
(β−1)2 = (

p
2+p

3)2 = 2+2
p

2 ·p3+3
= 5+2

p
2 ·p3, so

((β−1)2 −5)2 = (2
p

2 ·p3)2 = 24.

Rewriting this final relation shows again that β is a zero of

((X −1)2 −5)2 −24= X4 −4X3 −4X2 +16X −8.

To show that this polynomial is irreducible over Q it suffices to verify that the
minimal polynomial of β has degree 4 over Q. By VII.3.3 this is the same as
showing [Q(β) : Q] = 4. Indeed: the computation above shows

p
2 ·p3 ∈ Q(β),

hence also (β− 1)
p

2
p

3 = 2
p

3+ 3
p

2 ∈ Q(β). Taking appropriate linear com-
binations of 2

p
3+3

p
2 and β−1 = p

2+p
3 one finds that

p
2,
p

3 ∈Q(β), and
therefore all of Q(

p
2,
p

3) is contained in Q(β). Evidently Q(β) ⊂Q(
p

2,
p

3) as
well, so Q(β) =Q(

p
2,
p

3). By Exercise 11 on page 100 this field has degree 4
over Q, as desired.
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VII.5 Exercises

1. Show that every α ∈Q(
p

2) is algebraic over Q is.
2. Prove that the set {α ∈ C : α is algebraic over Q} is countable (hint: Q[X ] is

countable and every f ∈Q[X ], f 6= 0 has only finitely many zeros in C).
Conclude that complex (and even real) numbers exist that are transcendental
over Q.

3. Does α ∈R exist with Q(α)=R? (hint: consider cardinalities.)
4. Show that f

np2
Q = X n −2 for every n ∈Z>1.

5. Let α be algebraic over a field K and f αK = ∑n
i=0 ai X i of degree n.

Show: if α 6= 0 then a0 6= 0 and α−1 =∑n
i=1 −a−1

0 aiα
i−1.

6. Determine f αQ and dimQQ(α) for each of the following α’s:

2−p
3, 3p2+ 3p4,

√
3+2

p
2; β−1, β+1 with β satisfying β3+3β−3= 0.

7. (a) Show that Q(
p

2)(
p

7)=Q(
p

2+p
7).

(b) Prove: dimQQ(
p

2+p
7)= 4.

(c) Determine f
p

2+p7
Q .

8. Take α ∈R with α3−α−1= 0. Write each of the following elements in the form
a+bα+ cα2 with a,b, c ∈Q:

α10, α−10, (α2 +α+1)2, (α2 +1)−1.

9. Take L =∪∞
n=1Q( np2). Prove that:

(a) L is a field (first show Q( np2)∪Q( mp2)⊂Q( nmp2));

(b) L is algebraic over Q;

(c) for every n ∈Z≥1 the field L contains a subfield of degree n over Q;

(d) L is not finite over Q.

10. Show that if α, β in some extension of a field K are algebraic over K , then

[K(α,β) : K]≤ [K(α) : K] · [K(β) : K].

11. (a) Show that no a,b ∈Q exist with (a+b
p

2)2 = 3, and conclude that X2−3 is
irreducible in Q(

p
2)[X ].

(b) Prove: [Q(
p

2,
p

3) :Q]= 4.
12. Let L be a finite extension of a field K and α ∈ L. Show that deg( f αK ) is a divisor

of [L : K].
13. Let f = X4 − 4X3 − 4X2 + 16X − 8. Show that 1

8 · X4 f (2/X ) is an Eisenstein
polynomial in Z[X ]. Conclude that f is irreducible in Q[X ].

14. Let β = 1+p
2+p

3. Express
p

2,
p

3, and β−1 as Q-linear combinations of the
Q-basis 1,β,β2,β3 of Q(β).

15. (a) Prove: Q(
p

2, 3p5)=Q(
p

2 · 3p5)=Q(
p

2+ 3p5).

(b) Determine f αQ for α=p
2 · 3p5 and for α=p

2+ 3p5.

16. (a) Verify that X5 −1= (X −1)(X4 + X3 + X2 + X +1)=: (X −1)Φ5 and that Φ5
is irreducible in Q[X ] (hint: use evX+1 :Q[X ]→Q[X ]).

(b) Let

M :=Q[X ]/(Φ5), ζ := X + (Φ5), β := X + X4 + (Φ5) ∈ M, L :=Q[β]⊂ M.

Find a,b ∈Q with β2 = aβ+b and determine f βQ.

(c) Find [M : L] and f ζL.
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(d) Find an expression for cos 2π
5 containing only rational numbers and square

roots of rational numbers.
17. Let α ∈ R, α3 −α− 1 = 0. For each of the following elements determine the

minimal polynomial over Q:

α−1, α2 +α+1, (α2 +1)−1.

18. Let α be algebraic over a field K and suppose that [K(α) : K] is odd. Show that
K(α)= K(α2).

19. Let L be an extension of a field K and let α,β ∈ L be algebraic over K . Suppose
that [K(α) : K] and [K(β) : K] are coprime.
Prove: [K(α,β) : K]= [K(α) : K] · [K(β) : K].

20. Let L be an extension of a field K and let K0 be the algebraic closure of K in L
(see VII.3.9).
Prove: every α ∈ L,α ∉ K0 is transcendental over K0.

21. Let α be transcendental over a field K and β ∈ K(α), β ∉ K . Prove:

(a) α is algebraic over K(β) (hint: let β = f (α)/g(α) and consider the polyno-
mial f (X )−βg(X ) ∈ K(β)[X ]).

(b) β is transcendental over K .

22. Let K be a field.

(a) (‘splitting fractions’). Prove that the following collection is a basis of K(X )
over K :

{X n : n ∈Z≥0}∪ {X i · f −m : f ∈ K[X ]},

with in the second set only irreducible monic f ∈ K[X ] and m ∈Z>0,0≤ i < deg( f )}.

(b) Let α be transcendental over K . Prove that [K(α) : K] equals the cardinal-
ity of K in case K is infinite, and [K(α) : K] is countable infinite in case K
is finite.

23. Take K =F2(X , Y )=Q(F2[X ,Y ]), (the field of fractions of F2[X ,Y ]).

(a) Let f = T2 + X ∈ K[T]. Prove that f is irreducible. Then consider

L := K[T]/( f ), t := T + ( f ) ∈ L.

(b) Put g = S2 +Y ∈ L[S]. Prove that g is irreducible. Next, take

M := L[S]/(g), s := S+ (g) ∈ M.

(c) Observe that K ⊂ L ⊂ M and show that 1, t, s, st is a K-basis of M.

(d) Prove that every α ∈ M, α 6∈ K satisfies deg( f αK ) = 2. Conclude that the
extension M ⊃ K is not simple.
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VIII AUTOMORPHISMS OF FIELDS AND SPLITTING FIELDS

VIII.1 Homomorphisms of fields

Recall (see Definition II.1.1) that if K and L are fields then φ : K → L is called a
homomorphism of fields (also called ‘field homomorphism’) if φ is a unitary ring
homomorphism. In particular it satisfies φ(1)= 1.

A homomorphism of fields has the property

φ(
1
a

)=φ(a)−1, φ(
a
b

)= φ(a)
φ(b)

,

since φ(a) ·φ(a−1)=φ(a ·a−1)=φ(1)= 1 implies φ(a−1)= (φ(a))−1.
Using φ(1+1+ . . .+1)= 1+1+ . . .+1 it follows that the image of the prime field

K0 of K (see VII.1.1) is the prime field L0 of L. Hence φ yields an isomorphism
from K0 to L0. In case K ⊂ L then K0 = L0 and the restriction of φ to K0 is the
identity map.

The image φ(K) of a field homomorphism φ : K → L is also a field. Every field
homomorphism is injective, since the only ideal in K are (0) and K and 1 6∈Ker(φ).
A field homomorphism need not be surjective. For example the inclusion R ,→C is
not. Even if K = L a field homomorphism needs not be surjective, as illustrated by
Example VIII.1.2.

The composition of field homomorphisms

K
φ−→ L

ψ−→ M

is also a field homomorphism, as one easily verifies.
An interesting and important field homomorphism exists in case char(K)= p:

VIII.1.1 Theorem. Let K be a field such that char(K)= p > 0. Put

F : K −→ K , F : x 7→ xp.

Then F is a field homomorphism called the Frobenius homomorphism.
In case K is finite F is even a field automorphism.

Proof. Note that F(1) = 1 and F(ab) = (ab)p = apbp = F(a)F(b) (since K is commu-
tative). It remains to show that F(a+b)= (a+b)p equals F(a)+F(b)= ap +bp.
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Using Newton’s binomium (Exercise 15 on page 14), which holds in any com-
mutative ring, we have:

(a+b)p =
p∑

k=0

(p
k

)
akbp−k, with

(p
k

)= p!
k!(p−k)!

∈Z.

The numerator of
(p
k

)
is divisible by p, and because 0 < k < p and p is prime, the

denominator is not divisible by p. Hence

(a+b)p = ap +bp + p · c

for some c ∈ K . As p = 1+1+ . . .+1 (p×) and char(K) = p it follows that p = 0 ∈ K .
We conclude (a+b)p = ap +bp.

In case K is finite every injective map from K to itself (so for example F) is
surjective as well. Hence F is bijective. The fact that F−1 is a field homomorphism
as well, is easily verified. This shows Theorem VIII.1.1.

VIII.1.2 Example. Let K = Fp(T) be the field of rational functions (= quotients of
polynomials) with coefficients in Fp. Put f (T)= a0+a1T+...+anTn

b0+b1T+...+bmTm ∈Fp(T), then

F( f (T)) = F
(

a0 +a1T + . . .+anTn

b0 +b1T + . . .+bmTm

)
= F(a0 +a1T + . . .+anTn)

F(b0 +b1T + . . .+bmTm)

= F(a0)+F(a1)F(T)+ . . .+F(an)F(Tn)
F(b0)+F(b1)F(T)+ . . .+F(bm)F(Tm)

= a0 +a1T p + . . .+anT pn

b0 +b1T p + . . .+bmT pm = f (T p).

Here we used F(a) = a for all a ∈ Fp, the prime field of Fp(T). The image of the
Frobenius homomorphism F therefore consists of all rational functions in the vari-
able T p with coefficients in Fp. In particular F is not surjective on Fp(T), for
example T ∉ image(F) (verify for yourself!).

VIII.1.3 Definition. If L and L′ are extensions of a field K then a K-homomor-
phism L → L′ is a field homomorphism

φ : L → L′ such that φ|K = idK .

A K-isomorphism is a bijective K-homomorphism.
The fields L and L′ are called K-isomorphic (notation: L ∼=K L′) if a K-isomorphism
L → L′ exists.
A K-automorphism is a K-isomorphism with L = L′.

If the fields K and L have the same prime field K0, then every field homomorphism
K → L is a K0-homomorphism.

VIII.1.4 Definition. Given an extension L of a field K we write AutK (L) for the
group of all K-automorphisms of L. Here the group law is the composition of maps,
and the unit element is idL.

VIII.1.5 Theorem. Let L be a finite extension of the field K and α ∈ L with minimal
polynomial f αK ∈ K[X ].

(i) For every φ ∈AutK (L) we have that φ(α) is a zero of f αK .
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(ii) If m is the number of zeros of f αK in the field K[α] ⊂ L, then #AutK (K[α]) = m.
Here #S the number of elements of a set S.

(iii) The number of K-automorphisms of K[α] is ≤ deg( f αK ).

Proof. (i): Write f αK = X n+an−1X n−1 . . .+a1X+a0 with ai ∈ K . Applying φ ∈AutK (L)
to the equality 0= f αK (α) yields:

0 = φ(αn +an−1α
n−1 + . . .a1α+a0)

= φ(α)n +φ(an−1)φ(α)n−1 . . .φ(a1)φ(α)+φ(a0)
= φ(α)n +an−1φ(α)n−1 + . . .+a1φ(α)+a0
= f αK (φ(α)),

where we used φ(ai)= ai (note ai ∈ K and φ|K = idK ). So φ(α) is a zero of f αK .
(ii): Let {α1, . . . ,αm} ⊂ K[α] be the zeros of f αK in K[α], with α1 = α. We claim that
the map

∆ : AutK (K[α])−→ {α1,α2, . . . ,αm}, ∆(φ) :=φ(α)

is a bijection.
From (i) we know that ∆ is well defined. We now show that ∆ is injective. Every

x ∈ K[α] can be given in a unique way as x = x0 + x1α+ . . .+ xn−1α
n−1 with xi ∈ K .

Then
φ(x) = φ(x0)+φ(x1)φ(α)+ . . .+φ(xn−1)φ(α)n−1

= x0 + x1φ(α)+ . . .+ xn−1φ(α)n−1,

so φ(x) is completely determined by φ(α) = ∆(φ). Therefore, if ∆(φ) = ∆(ψ), then
φ(x)=ψ(x) for all x ∈ K[α], so φ=ψ.

In order to prove surjectivity, given any zero β ∈ K[α] of f αK we have to construct
a K-automorphism φ with φ(α)=β. This is done as follows. Take

evβ : K[X ]−→ K[α]

the evaluation homomorphism in β. Since β is a zero of f αK ∈ K[X ] we have f αK ∈Ker(evβ).
However f αK is irreducible in K[X ], hence Ker(evβ) = ( f αK ). So evβ induces an in-
jective K-homomorphism evβ : K[X ]/( f αK ) → K[α] with image K[β] ⊂ K[α]. The
first isomorphism theorem for rings II.3.7 now implies K[β]∼= K[X ]/( f αK ); the given
isomorphism is K-linear, hence K[β] is a linear subspace of K[α] with dimension
dimK (K[X ]/( f αK ))= dimK (K[α]). This dimension is finite and therefore K[β]= K[α];
in other words evβ is an isomorphism. Analogous to the above, write evα for the

isomorphism K[X ]/( f αK )
∼=→ K[α] induced by the evaluation homomorphism evα. We

have isomorphisms:
K[α]

evα↗
K[X ]/( f αK )

evβ
↘

K[β]= K[α]

and hence a K-automorphism φ := evβ ◦ evα−1: K[α]
∼=−→ K[α]. The definition of

evaluation homomorphisms shows

evα−1(α)= X + ( f αK ) and evβ(X + ( f αK ))=β,

hence φ(α)=β.
(iii) is immediate from (ii) and Theorem III.5.2. This finishes the proof.
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VIII.1.6 Example. Let f ∈ K[X ] be a monic irreducible polynomial of degree 2 and
put L = K[X ]/( f ). We write α := X +( f ) ∈ L which is a zero of f in L = K[α]. Writing
f = X2 +aX +b one calculates (using long division if necessary) that in L[X ]:

X2 +aX +b = (X −α)(X − (−a−α)).

We now distinguish two cases:

(i) α=−a−α, (ii) α 6= −a−α.

In the first case 2α = −a follows. If 2 6= 0 in K then α = −a/2 ∈ K contradicting
the irreducibility of f . Hence, the first case is only possible for char(K) = 2 and
a = 0. An example of such an irreducible f is X2 +T ∈F2(T)[X ], a polynomial over
the field of rational functions in the variable T with coefficients in F2. (Were f
reducible then (g/h)2 = T so g2 = Th2 for certain g, h ∈ F2[T]; comparing degrees
shows this is impossible.)

In the remaining case (ii) f has two distinct zeros in L, hence #AutK (L) = 2 by
Theorem VIII.1.5. All groups consisting of two elements are isomorphic, so

AutK (L)= {idL, φ}∼=Z/2Z.

Here φ(α)=−a−α and φ(x+ yα)=φ(x)+φ(y)φ(α)= x+ y(−a−α) for x, y ∈ K).
A well known example is K =R and f = X2 +1, here φ is complex conjugation.

Another example is given by the finite fields L = Fp[X ]/(X2 −d) with d a non-
square in Fp (see V.2.9, in particular we must have p > 2 here). Then

φ : L → L, φ : x+ yα 7→ x− yα, x, y ∈Fp

is the nontrivial field automorphism.
On the other hand Theorem VIII.1.1 yields an automorphism as well, namely

the Frobenius automorphism F. We have

F(x+ yα)= F(x)+F(y)F(α)= x+ yαp

since x, y ∈Fp, the prime field of L. Claim:

F =φ.

As #AutFp (L)= 2 it suffices to show F 6= idL. In case F = idL the polynomial X p−X
would have #L = p2 zeros in L. This contradicts Theorem III.5.2. Conclusion:
F 6= idL and therefore F =φ.

From F =φ one deduces αp = F(α)=φ(α)=−α. As p > 2 is prime and therefore
odd, we write p = 2( p−1

2 )+1 with p−1
2 ∈Z. Then

−α=αp = (α2)
p−1

2 α= d
p−1

2 α.

This shows d
p−1

2 = −1 in Fp ⊂ L. We will say more about this in Corollary IX.4.4
below.

VIII.2 Splitting fields

As we saw, for any irreducible f ∈ K[X ] there exists a finite extension M ⊇ K in
which f has a zero. Namely, M = K[X ]/( f ) works; see Theorem V.2.7. In M[X ] one
can write f = (X−α)g. In order to obtain an extension of K in which f has (counted
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with multiplicity) precisely deg( f ) zeros, factor g into irreducible polynomials in
M[X ]. If an irreducible factor of degree ≥ 2 occurs, use it to construct a further
finite extension (of M and therefore of K) in which this factor has a zero. After
finitely many steps one obtains in this way a finite extension L of K such that f
factors in L[X ] as a product

f = (X −α1)(X −α2) . . . (X −αn), αi ∈ L.

We elaborate on this in (the proof of) Theorem VIII.2.3.

VIII.2.1 Definition. Let K be a field and f ∈ K[X ] a monic polynomial. An exten-
sion L ⊇ K is called a splitting field of f over K if α1, . . . ,αn ∈ L exist with

(i) f =∏n
i=1(X −αi) in L[X ],

(ii) L = K(α1, . . . ,αn).

Roughly speaking: a splitting field of f over K is obtained by adjoining ‘all’ zeros
of f to the field K (however, zeros from where?). Note that a splitting field of f is
finite over K , as follows from (ii) in the definition together with Corollary VII.3.7.

VIII.2.2 Example. Take f = X3−n with n ∈Q and n 6= k3 for all k ∈Q. We describe
a splitting field M of f over Q and we determine Aut(M)=AutQ(M).

The polynomial f is irreducible in Q[X ] since it has degree 3 and it has no zero
in Q by the choice of n. Put

L :=Q[X ]/( f ), α1 := X + ( f ) ∈ L,

then L is a field and α1 ∈ L is a zero of f . In particular α3
1 = n and [L :Q]= 3.

In L[X ] one obtains the factorization

f (X )= X3 −n = (X −α1)(X2 +α1X +α2
1)=: (X −α1)g(X ).

We now show that g(X ) is irreducible in L[X ]. For this, it suffices to verify that g
has no zero in L. Were β ∈ L a zero of g then 0=β2+α1β+α2

1 =α2
1

(
( β
α1

)2 + ( β
α1

)+1
)

hence β
α1

∈ L would be a zero of X2 + X + 1. Since X2 + X + 1 ∈ Q[X ] is monic

and irreducible, one concludes it is the minimal polynomial of β
α1

over Q. This
contradicts [L :Q]= 3; compare Exercise 12 in Chapter VII. We conclude that g(X )
is irreducible in L[X ].

Now we adjoin a zero of g to L. Put

M := L[Y ]/(g) and α2 :=Y + (g) ∈ M.

(We use a variable Y instead of X to avoid confusion(!)) Then M is a degree 2
extension of L and therefore by Theorem VII.3.5 a degree 6 extension of Q. By
construction α2 ∈ M is a zero of g and hence also of f . In M[Z] we have the factor-
ization g(Z)= Z2+α1Z+α2

1 = (Z−α2)(Z−α3) with α3 =−α1−α2. Note that α2 6=α3
since α2 ∈ M is not a zero of the derivative of f (compare Theorem III.6.7). Hence
f has three distinct zeros α1,α2,α3 in M and f = (X −α1)(X −α2)(X −α3) in M[X ].

Since M = L(α2)= L(α2,α3) and L =Q(α1) we obtain:

M =Q(α1, α2, α3),

which shows that M is a splitting field of f over Q.
In fact even M =Q[α1, α2] and any m ∈ M can be written as

m = a0 +a1α1 +a2α
2
1 + (b0 +b1α1 +b2α

2
1)α2,
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with ai, bi ∈Q (check for yourself!).
We will now show that

AutQ(M)∼= S3,

with S3 the group of permutations of {1, 2, 3}. Note that Aut(M) = AutQ(M) since
Q is the prime field. Any φ ∈ AutQ(M) permutes the three zeros of f in M. This
yields a group homomorphism

π : AutQ(M)−→ S3, π :φ 7→σ,

with σ ∈ S3 defined by φ(αi) = ασ(i). We claim that π is injective and surjective,
and this of course determines AutQ(M).

Suppose φ ∈ Ker(π), then φ(αi) = αi for all i. Applying φ to m ∈ M then the
above description of m implies φ(m) = m, hence φ = idM . We conclude that π is
injective.

To show surjectivity of π we construct some field automorphisms of M. Using
Q ⊂ L ⊂ M we have that AutL(M) ⊂ AutQ(M) is a subgroup. Now M = L[α2] and
the minimal polynomial g of α2 over L has two distinct zeros in M, hence Theo-
rem VIII.1.5 shows that AutL(M) contains exactly one element φ1 6= idM . As φ1 is
the identity on L, we have φ1(α1) = α1. Moreover φ1 6= idM implies that φ1 inter-
changes α2 and α3. Conclusion:

φ1(α1)=α1, φ1(α2)=α3, φ1(α3)=α2 =⇒ π(φ1)= (23) ∈ S3.

Now put L2 :=Q(α2) ⊂ M. Since α2 ∈ L2 is a zero of the irreducible f ∈Q[X ] one
concludes L2 ∼=Q[X ]/( f ), and the reasoning above can be repeated with L replaced
by L2. This results in φ2 ∈AutL2 (M)⊂AutQ(M) with

φ2(α1)=α3, φ2(α2)=α2, φ2(α3)=α1 =⇒ π(φ2)= (13) ∈ S3.

Since (13) and (23) generate S3 this shows that π is surjective, completing the
proof of the assertion that Aut(M)∼= S3.

VIII.2.3 Theorem. Let K be a field and f ∈ K[X ] a monic polynomial.
There exists a splitting field of f over K .

Proof. We use induction w.r.t. n = deg( f ). If n = 1 then K itself is a splitting field of
f over K . Now take n > 1. We distinguish two cases: f is irreducible or not.

First suppose f can be factored: f = g · h with g,h ∈ K[X ] monic of degree
< n. The induction hypothesis yields that a splitting field E = K(β1,β2, ...,βm)
of g over K exists, and g = ∏m

i=1(X −βi) in E[X ]. Moreover the induction hy-
pothesis applied to the field E and the polynomial h ∈ E[X ] yields a splitting
field L = E(γ1,γ2, ...γk) of h over E, and h = ∏k

i=1(X − γi) in L[X ]. Then L is
a splitting field of f over K , since f = ∏m

i=1(X − βi) ·∏k
i=1(X − γi) in L[X ] and

L = E(γ1,γ2, ...,γk)= K(β1, ...,βm,γ1, ...,γk).
Next suppose that f is irreducible in K[X ]. Then by V.2.7 an extension K(α)

exists with f (α) = 0. Using III.5.1 h ∈ K(α)[X ] exists with f = (X −α)h. Here h is
monic and of degree n−1. Applying the induction hypothesis to K(α) and h one
obtains a splitting field L = K(α)(α1, ...,αn−1) of h over K(α), and h =∏n−1

i=1 (X −αi)
in L[X ]. With αn = α we now have L = K(α1,α2, ...,αn) and f = ∏n

i=1(X −αi) in
L[X ], so L is a splitting field of f over K . This proves VIII.2.3.

We will now show the unicity of the splitting field. First a quite general result
is discussed.
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VIII.2.4 Theorem. Let φ : K0 → K1 be an isomorphism from a field K0 to a field K1
and

Φ : K0[X ]−→ K1[X ],
∑

i
ai X i 7→∑

i
φ(ai)X i

the isomorphism of polynomial rings induced by φ. Take f0 ∈ K0[X ] monic and let
L0 be a splitting field of f0 over K0 and L1 a splitting field of f1 := Φ( f0) ∈ K1[X ]
over K1.

Then there is an isomorphism ψ : L0 → L1 extending the map φ:

ψ : L0
∼−→ L1, ψ|K0 =φ :

K0 ,→ L0
φ ↓ ↓ ψ
K1 ,→ L1.

Proof. From Definition VIII.2.1(ii) and Corollary VII.3.7 it follows that [L0 : K0] is
finite. We use induction w.r.t. this degree.

If [L0 : K0] = 1 then L0 = K0, hence f0 = ∏n
i=1(X −βi) with β1, ...,βn ∈ K0. Then

f1 = Φ( f0) = ∏n
i=1Φ(X −βi) = ∏n

i=1(X −φ(βi)) ∈ K1[X ]. All zeros of f1 in L1 are
therefore in K1, and since L1 is obtained by adjoining these zeros to K1 we have
L1 = K1. Hence we may take ψ=φ.

Now assume [L0 : K0] > 1. We construct simple extensions K0(α0) and K1(α1)
and an isomorphism χ : K0(α0)→ K1(α1) with χ|K0 =φ.

As [L0 : K0]> 1 we can take α0 ∈ L0 with f0(α0)= 0 and α0 ∉ K0. Let h0 ∈ K0[X ]
be the minimal polynomial of α0 over K0 and h1 := Φ(h0) ∈ K1[X ]. Then h0 is a
divisor of f0 in K0[X ], so

f0 = h0q0 ∈ K0[X ] and therefore f1 = h1Φ(q0) ∈ K1[X ].

However, f1 is in L1[X ] a product of linear factors, hence the same holds for h1 | f1.
We conclude that h1 has a zero α1 ∈ L1. Claim: K0(α0)∼= K1(α1).

Indeed, by VII.2.5 one obtains the isomorphism

K0[X ]/(h0)
∼=−→ K0(α0), X + (h0) 7→α0. (1)

Since h0 ∈ K0[X ] is irreducible and Φ is an isomorphism, h1 =Φ(h0) is irreducible
in K1[X ]. As h1(α1)= 0 one concludes that h1 is the minimal polynomial of α1 over
K1. Again by VII.2.5 one finds the isomorphism

K1[X ]/(h1)
∼=−→ K1(α1), X + (h1) 7→α1. (2)

Finally, the isomorphism Φ : K0[X ] '→ K1[X ] maps the ideal generated by h0 to the
ideal generated by h1 =Φ(h0), hence Φ induces an isomorphism

Φ : K0[X ]/(h0)
∼=−→ K1[X ]/(h1), X + (h0) 7→ X + (h1). (3)

The restriction of Φ to K0 equals φ. Combining the isomorphisms (1), (2), and (3)
one obtains

χ : K0(α0)
∼=−→ K1(α1), α0 7→α1, χ|K0 =φ.

To finish the proof, we will show that we can apply the induction hypothesis to
χ : K0(α0) → K1(α1) and their respective extensions L0,L1. We pick α0 not in K0
hence [K0(α0) : K0]> 1 and therefore

[L0 : K0(α0)]= [L0 : K0]
[K0(α0) : K0]

< [L0 : K0].

Moreover L0 is a splitting field of f0 over K0(α0), and analogously L1 is a splitting
field of f1 over K1(α1): indeed, adjoining all zeros of f0 in L0 to K0 one obtains L0,
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hence this certainly holds if we adjoin them to K0(α0). The same reasoning holds
for K1(α1) and f1 and L1.

The induction hypothesis therefore yields a field isomorphism ψ : L0 → L1 with
ψ|K0(α0) = χ. In other words, we obtain the rightmost part of the diagram

K0 ,→ K0(α0) ,→ L0
φ ↓ χ ↓ ↓ ψ
K1 ,→ K1(α1) ,→ L1.

In particular ψ|K0 =φ, finishing the proof of VIII.2.4.

A consequence of the above is the main result on splitting fields, which we now
state and prove.

VIII.2.5 Theorem. Let K be a field and f ∈ K[X ] monic.
There exists a splitting field of f over K , and this splitting field is unique up to

K-isomorphisms.

Proof. The existence was shown in VIII.2.3. Suppose L and L′ are splitting fields of
f over K ; we must show that a K-isomorphism ψ : L → L′ exists. Applying VIII.2.4
to K0 = K1 = K , f0 = f1 = f , φ = idK , L0 = L, L1 = L′ this is immediate. Hence
VIII.2.5 is proven.

VIII.2.6 Notation. The (unique by Theorem VIII.2.5) splitting field of f over K is
denoted by Ω

f
K .

VIII.2.7 Remark. The K-isomorphism ψ : L → L′ between two splitting fields of f
over K is in general not unique. If σ is a K-automorphism of L thenψ′ =ψ◦σ : L → L′
is also a K-isomorphism as desired. It is not hard to show that starting from a fixed
ψ all possible K-isomorphisms ψ′ : L → L′ are obtained as above by composing with
elements of AutK (L).

VIII.2.8 Example. We return to Example VIII.2.2. Here f = X3 − n and in C[X ]
one has

f (X )= (X −β1)(X −β2)(X −β3) m

β1 = 3pn, β2 = 3pn(−1
2
+ i

p
3

2
), β3 = 3pn(−1

2
− i

p
3

2
).

Hence Q(β1, β2, β3) (⊂C) is another splitting field of f over Q. By Theorem VIII.2.5
it is isomorphic to the one studied in Example VIII.2.2: M = Q(α1, α2, α3). In
particular

[Q(β1, β2, β3) : Q]= 6 and AutQ(Q(β1, β2, β3))∼= S3.
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VIII.3 Exercises

1. Let K be a field. Show that the map

φ : K(X )−→ K(X ), f 7→ f (X +1)

is a field automorphism. Find the order of φ in the group Aut(K(X )). (The
answer depends on the characteristic char(K) . . .)

2. Describe a splitting field of X2 −101 over Q.
3. Let L be a splitting field of f over K and f = ∏n

i=1(X −αi) in L[X ]. Prove that
L = K(α1,α2, ...,αn−1) (so αn is omitted!).

4. Suppose f ∈ K[X ] is monic of degree n. Prove: [Ω f
K : K] divides n! (Hint: use

the construction in the proof of VIII.2.3.)
5. Prove that L =Q( 4p2, i) is a splitting field of X4 −2 over Q. Determine [L : Q]

and ]Aut(L).
Prove that AutQ(i)(L)∼=Z/4Z.

6. Let ζ ∈C be a zero of f = X4+X3+X2+X+1. Show that ζ5 = 1 and that ζ2,ζ3,ζ4

are zeros of f as well. Prove that Q(ζ) is a splitting field of f over Q. Determine
Aut(Q(ζ)).

7. Prove that ΩX2−2
Q 6∼=ΩX2−3

Q and that ΩX2−2̄
K 'ΩX2−3̄

K for K =F5.

8. Prove that Q(i,
p

2) is a splitting field of f i+p2
Q over Q.

Show that Aut(Q(i,
p

2))'Z/2Z×Z/2Z.
9. Let L be a splitting field of f over K and put n = deg( f ).

(a) Prove: any K-automorphism of L permutes the zeros of f in L,

(b) Prove: the group AutK (L) is isomorphic to a subgroup of Sn;

(c) Show that #AutK (L) is a divisor of n! .

10. Prove: Aut(Q( 3p2, i
p

3))' S3.
11. Take f = X3 + X2 −2X −1 ∈Q[X ] and let α ∈Ω f

Q be a zero of f .

Compute f α
2−2

Q and show that Q(α)=Ω f
Q. Deduce that Aut(Ω f

Q)∼=Z/3Z.
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IX FINITE FIELDS

A field K is called finite if the number of elements of K is finite. We already saw
some examples of finite fields: Z/pZ for p prime, see Theorem I.2.11; we saw a field
with 4 elements in Example III.3.6, and fields with p2 elements, for any prime
p > 2, were constructed in Example V.2.9.

IX.1 Classification of finite fields.

The next result classifies the finite fields.

IX.1.1 Theorem.
(i) If K is a finite field then #K = pn for a prime p and an integer n ≥ 1.

(ii) For every prime p and every integer n ≥ 1 there exists a field consisting of pn

elements, namely the splitting field of X pn − X over Fp. This field is unique up
to isomorphisms.

Proof. (i): Let K be a finite field. Using Theorem VII.1.3 one concludes that the
prime field K0 ⊆ K must be Fp for a prime p. As K is finite, K is certainly finite di-
mensional as a vectorspace over Fp. Put n = [K :Fp]. Choosing a basis e1, e2, . . . , en
for K over Fp, every x ∈ K can be written uniquely as

x = a1e1 +a2e2 + . . .+anen with ai ∈Fp, 1≤ i ≤ n.

For each of the ai there are p possibilities, hence in total K contains p ·p ·. . .·p = pn

elements, proving (i).
(ii): Let p be prime and n ∈ Z>0 and q = pn. Let K be the splitting field of

X q − X over Fp. We will show that #K = q, as follows. Since K is the splitting field
of X q − X over Fp, we have α1,α2, . . . ,αq ∈ K with X q − X = ∏q

i=1(X −αi) in K[X ].
We will study the set

A = {α1,α2, . . . ,αq} (⊂ K).

(a.) #A = q. Indeed, were #A < q then αi =α j for some i 6= j. This means that αi is
a multiple zero of f = X q − X . Theorem III.6.7 now implies that αi is also a zero of
the derivative f ′ = q ·X q−1−1=−1 (note that q = 0 in Fp). This is absurd since the
constant polynomial −1 has no zeros. We conclude #A = q.
(b.) A is a subfield of K . Indeed, by definition the set A consists of all zeros of X q−X
in K . Hence α ∈ K satisfies: α ∈ A ⇐⇒αq =α. Hence clearly 1 ∈ A. Furthermore:

α,β ∈ A, β 6= 0=⇒ (αβ−1)q =αq(βq)−1 =αβ−1 =⇒ αβ−1 ∈ A.
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Using Theorem VIII.1.1 one obtains:

α,β ∈ A =⇒ (α+β)q =αq +βq =α+β=⇒ α+β ∈ A.

This shows that A is closed under addition and division. Since also −1 ∈ A it follows
that A is a subfield of K .
(c.) A = K (:=ΩX q−X

Fp
). Indeed, since A is a subfield of K it necessarily contains the

prime field Fp of K (by the definition of prime field). All αi ∈ A hence

Fp(α1,α2, . . . ,αq)⊂ A.

The definition of a splitting field VIII.2.1 then shows K = Fp(α1,α2, . . . ,αq). We
conclude that K ⊂ A and therefore K = A.

This shows that a field consisting of q elements exists, namely the splitting field
of X q − X over Fp. It remains to prove unicity.

Suppose L is another field consisting of q elements. We must show L ∼= K .
Observe that char(L) = p since otherwise by (i) above #L would be a power of a
different prime, contradicting the unique prime factorization of q. Let α ∈ L×.
Since L× is a group consisting of q−1 elements, the order of α in this group divides
q−1. Therefore αq−1 = 1. This implies αq = α hence α is a zero of the polynomial
X q − X . Clearly also α = 0 has this property, so all q elements of L are zeros of
X q − X . This polynomial has degree q and hence X q − X = ∏

α∈L(X −α). Using
Definition VIII.2.1 one concludes that L is a splitting field of X q−X over the prime
field Fp ⊆ L. The unicity of splitting fields (see Theorem VIII.2.5) then implies
L ∼= K . This finishes the proof of Theorem IX.1.1.

IX.1.2 Definition. The (unique by Theorem IX.1.1) field consisting of q = pn ele-
ments is denoted by Fq.

So Theorem IX.1.1 says in particular that Fq is the splitting field of X q−X over
Fp, i.e.,

Fq ∼=ΩX q−X
Fp

.

IX.1.3 Remark. Instead of Fq the literature also uses the notation GF(q), for ‘Ga-
lois field’, named after Evariste Galois (French mathematician, 1811 - 1832) who
was the first to study finite fields in general.

IX.1.4 Remark. If q is prime then Fq ∼=Z/qZ. However if q is not prime then Z/qZ
is not a field (Theorem I.2.11, note: for q = pn and n > 1 one finds p 6= 0 6= pn−1 and
p ·pn−1 = pn = 0 in Z/qZ). So this ring contains zero divisors. Also, given any a ∈Fq
we have a+a+. . .+a (p terms) is equal to 0 ∈Fq, since Fq is a vector space over Fp.
On the other hand in Z/qZ we have that 1+1+. . .+1 (p terms) is not zero whenever
q = pn > p.

So clearly Fq 6∼=Z/qZ whenever q = pn > p.

IX.1.5 Example. The polynomials f := X3 + X2 +1 and g := X3 + X +1 are irre-
ducible in F2[X ] since they have degree 3 and they have no zero in F2. The fields

K :=F2[X ]/( f ) and L :=F2[X ]/(g)

both consist of 8 elements hence by Theorem IX.1.1 K ∼= L. We now construct an
explicit isomorphism.

Note that α := X + ( f ) is a zero of f in K . Since K and L are isomorphic, f must
have a zero in L as well, and this is what we will find first. Put

β := X + (g) ∈ L, then β3 =β+1.
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Then
f (β+1) = (β+1)3 + (β+1)2 +1

= (β3 +β2 +β+1)+ (β2 +1)+1
= β2 + (β2 +1)+1
= 0,

(note that the coefficients are in F2), so we have our zero. Since it turns out to be
rather elaborate to describe a field isomorphism from K to L directly, one uses the
evaluation homomorphism

evβ+1 :F2[X ]−→ L, X 7→β+1.

It is not hard to verify that evβ+1 is surjective. The kernel of evβ+1 is generated
by f (it is in the kernel and it is irreducible). The first isomorphism theorem II.3.7
now yields

K =F2[X ]/( f )∼= evβ+1(F2[X ])= L,

with explicit isomorphism given by

a0 +a1α+a2α
2 7→ a0 +a1(β+1)+a2(β+1)2 = (a0 +a1 +a2)+a1β+a2β

2.

IX.2 The structure of finite fields

Since the finite field Fpn is an n-dimensional vectorspace over Fp it follows that the
additive group (Fpn ,+,0) is isomorphic to (Z/pZ)n (a product of n copies of Z/pZ).
The next result shows that Fpn is a simple extension of Fp (see Definition VII.2.4),
which allows one to treat this field analogously to Example VII.2.10.

IX.2.1 Theorem. Let Fq be a finite field and q = pn with p prime. Then α ∈ Fq
exists with

Fq =Fp[α].

In particular Fq ∼=Fp[X ]/( f αFp
) and deg( f αFp

)= n.

Proof. For every β ∈ Fq the field Fp(β) is finite hence Fp(β) ∼= Fpk for some k ≤ n.

Hence β is a zero of X pk − X , a polynomial having at most (in fact, exactly) pk

pairwise distinct zeros in Fpn . Considering all possible k, we see that the number
of elements β ∈Fpn such that Fp(β) 6=Fpn is at most p+ p2 + . . .+ pn−1 < pn. Hence
α ∈Fpn exists with Fp(α)=Fpn .

The remaining statements are immediate from Theorem VII.2.5.

In Theorem IX.2.7 below we will see a complete description of all subfields of
Fq.

IX.2.2 Corollary. For any p prime and any integer n > 0 an irreducible polynomial
of degree n in Fp[X ] exists.

Proof. By Theorem IX.2.1 α ∈ Fpn exists with Fpn = Fp[α]. The minimal polyno-
mial f αFp

of α over Fp is then irreducible of degree [Fpn : Fp] = n. This proves the
corollary.
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IX.2.3 Example. To be able to compute in F53 we first look for an irreducible poly-
nomial of degree 3 in F5[X ]. The polynomials of the form X3 − a with a ∈ F5 all
have a zero in F5 (verify!) so these are reducible. f = X3 + X −1 ∈F5[X ], turns out
to be irreducible (again, verify!). Hence L = F5[X ]/( f ) is a field and [L : F5] = 3 so
#L = 53: every element of L can be given uniquely as

x = a0 +a1α+a2α
2, with α := X + ( f ) ∈ L

and ai ∈ F5. By Theorem IX.1.1 and Definition IX.1.2 we have L ∼= F53 . As α is a
zero of f one finds α3 =−α+1. Hence for example

(3α+1)(4α2 +2) = 2α3 +4α2 +α+2
= 2(−α+1)+4α2 +α+2
= 4α2 +4α+4,
= −(α2 +α+1).

where we note that the coefficients are taken in F5.

Let f ∈ Fq[X ] be irreducible. Then f has a zero α in the extension L = Fq[X ]/( f )
where #L = qm with m = deg( f ). Hence writing q = pn we have L ∼= Fpnm . In
L[X ] the polynomial f factors as (X −α)g for some g ∈ L[X ]. Contrary to what
we saw in Example VIII.2.2, it turns out that g (and f ) split completely in L[X ]
(Theorem IX.2.4 below), so L is the splitting field of f over Fq. This result will allow
us (Theorem IX.2.6 below) to determine Aut(Fq). To this end, we use the Frobenius
homomorphism (see VIII.1.1)

F : L −→ L x 7→ xp.

Since L is finite, F is a field automorphism, i.e., F ∈Aut(L). For k ∈N composing k
Frobenius homomorphisms yields

Fk : L −→ L, x 7→ xpk
, Fk ∈Aut(L).

IX.2.4 Theorem. Let q = pn be a power of a prime p and f ∈ Fq[X ] monic and
irreducible of degree m. Put L :=Fq[X ]/( f ) and take α ∈ L with f (α)= 0.

Then
f = (X −α)(X −αq) · · · (X −αqm−1

) ∈ L[X ].

Moreover the m zeros of f are pairwise distinct.

Proof. For a ∈ Fq we have Fn(a) = apn = aq and a is a zero of X q − X . Therefore
Fn(a)= a hence Fn ∈AutFq (L) since Fn is the identity map on Fq.

For any k ∈ N then also (Fn)k ∈ AutFq (L). Hence by Theorem VIII.1.5 also

(Fn)k(α) = αqk ∈ L is a zero of f . We claim that in this way m distinct zeros of
f are obtained. Namely, if αqk =αql

with 0≤ k < l ≤ m−1 then (using char(L)= p)
one finds

0=αql −αqk = (αql−k −α)qk
.

This shows αwould be a zero of X qa−X where a = l−k < m. By Theorem IX.1.1 this
means α ∈Fqa , contradicting Fq(α)=Fqm . So indeed the m zeros α, αq, . . . ,αqm−1 ∈ L
of f are pairwise distinct and f factors in L[X ] in the given way. This completes
the proof.

IX.2.5 Example. We saw in Example IX.1.5 that the polynomial f := X3 + X2 +1
has the zero β+1 ∈ L :=F2[β]∼=F8 with β3 =β+1. By Theorem IX.2.4 also

(β+1)2 =β2 +1 and (β+1)4 =β4 +1=β2 +β+1
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are zeros of f and hence

X3 + X2 +1= (X − (β+1))(X − (β2 +1))(X − (β2 +β+1)).

IX.2.6 Theorem. Let q = pn with p prime. Then

Aut(Fq)= 〈F〉 ∼=Z/nZ,

so Aut(Fq) is a cyclic group consisting of n elements, with generator the Frobenius
homomorphism.

Proof. By Theorem IX.2.1 α ∈ Fq exists with Fq = Fp(α) and by Theorem IX.2.4
the minimal polynomial of α has exactly n pairwise distinct zeros in Fq. Hence
Theorem VIII.1.5 implies that #Aut(Fq) = #AutFp (Fq) = n (note Fp is the prime
field of Fq).

Next, observe that the n field automorphisms idFq , F, F2, . . . ,Fn−1 are all dis-

tinct: we saw in the proof of IX.2.4 that Fk(α)=αpk 6=αpl = F l(α) for 0≤ k < l < n−1.
Conclusion: every element of Aut(Fq) is a power of the Frobenius automorphism.
This shows the result.

IX.2.7 Theorem. Let q = pk and r = pm. Then Fq is isomorphic to a subfield of Fr
if and only if r is a power of q (in other words, precisely when k|m).

In case Fq is isomorphic to a subfield of Fr then there is only one such subfield
of Fr, namely the set of zeros in Fr of X q − X .

Proof. If Fq is a subfield of Fr then Fr is a finite dimensional vectorspace over Fq
with dimFq Fr = [Fr : Fq]. Therefore

pm = #Fr = (#Fq)[Fr :Fq] = pk[Fr :Fq], hence k|m.

Now assume m = kn for some n ∈ Z>0, so r = qn. We will show that the poly-
nomial X q − X splits completely in Fr[X ]. Since every element of Fr is a zero of
X r − X , it suffices to show that

X q − X
∣∣∣ X r − X (in Fp[X ]).

Both polynomials have a factor X and because r = qn it suffices to show

X q−1 −1
∣∣∣ X qn−1 −1.

Note that in Z one has

qn −1= (q−1)(qn−1 + qn−2 + . . .+ q+1)= (q−1)b

with b ∈Z. Hence the special case a = q−1, b = qn−1+qn−2+. . .+q+1 of the equality

X ab −1= (X a −1)
(
X a(b−1) + X a(b−2) + . . .+ X a +1

)
shows the divisibility of the polynomials.

This proves the first part of IX.2.7. If K ⊆ Fr is a subfield consisting of q ele-
ments, then xq − x = 0 for all x ∈ K hence K is the set of zeros in Fr of X q − X . In
particular at most one subfield consisting of q elements exists in Fr. This finishes
the proof.

IX.2.8 Remark. We write, following Theorem IX.2.7:

Fpk ⊂Fpm ⇐⇒ k|m.

Note, as an example, that F4 is not a subfield of F8. Both F4 and F8 are subfields
of F64, and this is in fact the smallest field having both F4 and F8 as subfields.
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IX.3 Irreducible polynomials over finite fields

Using the classification of finite fields we deduce some results concerning irre-
ducible polynomials in Fq[X ].

IX.3.1 Example. Suppose K is an extension of Fp with [K :Fp]= 2. Since #K = p2

and #Fp = p there are exactly p2 − p elements in K which are not in Fp. Take
one of them: α ∈ K such that α 6∈ Fp. Then Fp(α) = K hence deg( f αFp

) = 2. From
Theorem IX.2.4 one knows that f αFp

∈Fp[X ] has the two distinct zeros α and αp in

K −Fp. Given K one obtains in this way 1
2 (p2− p) irreducible monic polynomials of

degree 2 in Fp[X ], and
K ∼=Fp[X ]/( f )

for each of these f .
Vice versa, let g ∈ Fp[X ] be a monic and irreducible polynomial of degree 2.

Then by the classification Fp[X ]/(g)∼=Fp2 . Since g is the minimal polynomial over
Fp of α := X + (g) ∈ Fp[X ]/(g) it is necessarily one of the 1

2 (p2 − p) polynomials we
found above. Conclusion: There are exactly 1

2 (p2−p) monic irreducible polynomials
of degree 2 in Fp[X ].

A more direct alternative derivation of the above result runs as follows. A monic
polynomial of degree 2 in Fp[X ] has the form X2 +aX + b with a, b ∈ Fp, so there
are p2 of them. The reducible ones among them are (X −r)2 and (X −r)(X −s) with
r 6= s and r, s ∈Fp. Hence there are p+(p

2
)= p+ 1

2 (p2−p)= 1
2 (p2+p) reducible ones.

We conclude that the number of monic irreducible degree 2 polynomials in Fp[X ]
equals p2 − 1

2 (p2 + p)= 1
2 (p2 − p), confirming what was found earlier.

IX.3.2 Theorem. Let q > 1 be a power of a prime and let n ∈Z≥1. Then

X qn − X = ∏
f in Fq[X ]

where the product is taken over the set of monic irreducible polynomials f ∈ Fq[X ]
such that deg( f ) divides n.

Proof. Since Fq[X ] is a unique factorization domain, X qn − X can be factored in a
unique way as product of monic irreducible polynomials in Fq[X ]. These factors
are pairwise distinct since the derivative (X qn − X )′ = qn X qn−1 −1=−1.

The theorem follows once we have shown that

f
∣∣∣X qn − X ⇐⇒ deg( f )

∣∣∣n,

for monic irreducible f ∈Fq[X ].
Let d = deg( f ). Since f is monic and X qn −X =∏

α∈Fqn (X −α) ∈Fqn [X ], we have

f
∣∣∣X qn − X ⇐⇒ f = (X −α1) · · · (X −αd) for some α j ∈Fqn [X ] ⇐⇒ Ω

f
Fq

⊆Fqn .

Moreover by Theorem IX.2.4 Ω
f
Fq

= Fq[α j] = Fq[X ]/( f ) with α j a zero of f (see
IX.2.4). Therefore the monic irreducible f of degree d over Fq satisfies

f
∣∣∣X qn − X ⇐⇒ Fq[X ]/( f )⊆Fqn

and since [Fq[X ]/( f ) :Fq]= d and therefore Fq[X ]/( f )∼=Fqd , Theorem IX.2.7 shows

f
∣∣∣X qn − X ⇐⇒ Fqd ⊆Fqn ⇐⇒ d|n.

This finishes the proof.
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IX.3.3 Example. Note that

X4 − X = X (X3 −1)= X (X +1)(X2 + X +1) in F2[X ].

Therefore X , X +1, X2+X +1 are the only monic irreducible polynomials of degree
≤ 2 in F2[X ]. Of course this is easy to check directly.

IX.3.4 Corollary. Let xd denote the number of monic irreducible degree d polyno-
mials in Fq[X ]. For every n ∈Z≥1 we have∑

d|n
dxd = qn.

Proof. Observe that qn = deg(X qn − X ). By Theorem IX.3.2 the given polynomial
equals the product of all monic irreducible polynomials with degree d such that d
divides n. The left-hand-side of the formula is precisely the degree of this product.

IX.3.5 Remark. Here is an alternative proof of Corollary IX.3.4, which uses only
the fact that Fq[X ] is a unique factorization domain. The argument is briefly men-
tioned in Section 1.1 of the PhD thesis (2008) of the American mathematician Paul
Pollack, where he attributes it to his supervisor: the British mathematician An-
drew Granville. The details of the argument are as follows.

Denote by M the set of all monic polynomials in Fq[X ], and by P ⊂ M the
subset of irreducible monic elements in Fq[X ]. Take n ∈Z≥1 arbitrary, and consider
the sum ∑

A∈M
deg(A)=n

deg(A).

On the one hand, writing such A as X n+an−1X n−1+ . . .+a1X +a0 with all a j ∈Fq,
one observes there are in total qn such A ∈ M . They all have degree n, hence the
above sum equals nqn.

Next, one deduces an alternative expression for this sum by factoring each A
into monic irreducible elements of Fq[X ], so

A = ∏
P∈P , a≥1

such that Pa|A

P.

Comparing degrees one obtains

nqn = ∑
A∈M

deg(A)=n

∑
P∈P , a≥1

such that Pa|A

deg(P).

Now we interchange the order of summation: considering a fixed P ∈P and a ≥ 1,
we still sum over all M ∈ M of degree n such that Pa|M. Clearly, if the degree of
Pa exceeds n then no such M exist. However for adeg(P) = n− b with 0 ≤ b < n
every M = Pa · (X b +ab−1X b−1 + . . .+a1X +a0) works, and there are qb such extra
factors. As a consequence, the above equality can be rewritten as

nqn = ∑
P∈P , a≥1

such that adeg(P)≤n

deg(P)qn−adeg(P).

Dividing by qn yields

n = ∑
P∈P , a≥1

such that adeg(P)≤n

deg(P)q−adeg(P).
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This formula holds for every n ≥ 1. Subtracting the formula for the case n−1 from
the one for n, one obtains

1= ∑
P∈P , a≥1

such that adeg(P)=n

deg(P)q−adeg(P).

Multiplying both sides by qn = qadeg(P) this shows

qn = ∑
P∈P , a≥1

such that adeg(P)=n

deg(P).

The summation here is only over those P ∈P such that d := deg(P) divides n, and
given such d the only corresponding a in the summation is a = n/d. As before write

xd := # {P ∈P : deg(P)= d} ,

then by grouping in the above sum the terms with a common degree d one con-
cludes

qn = ∑
d|n

dxd ,

which is exactly Corollary IX.3.4.

IX.3.6 Example. By means of IX.3.4 one obtains a method to recursively determine
xn, the number of irreducible polynomials of degree n over Fq. For n = 1, 2, 3, 6 one
finds

1 · x1 = q1 ⇒ x1 = q
1 · x1 +2 · x2 = q2 ⇒ x2 = 1

2 (q2 − q)
1 · x1 +3 · x3 = q3 ⇒ x3 = 1

3 (q3 − q)
1 · x1 +2 · x2 +3 · x3 +6 · x6 = q6 ⇒ x6 = 1

6 (q6 − q3 − q2 + q).

In general one obtains using the Möbius-inversion-formula (see Exercise 11 on
page 121) that

xn = 1
n

∑
d|n

µ(d)qn/d , in which

{
µ(n)= 0 if a prime p exists with p2|n;
µ(p1 p2 . . . pr)= (−1)r,

where the pi are pairwise distinct primes and r ∈ Z≥0, so in particular µ(1) = 1
(corresponding to r = 0). The function µ was introduced in 1831 by the German
mathematician and astronomer August Ferdinand Möbius (1790–1868).

The formula for xn yields in particular

nxn = qn + ∑
d|n, d>1

µ(d)qn/d ≥ qn −
n−1∑
k=1

qk > 0

(the fact that the expression is indeed positive one may show for example by con-
sidering how the subtraction is visualized when written out in base q). So this
provides a way to verify that indeed irreducible polynomials over Fq of any degree
n ≥ 1 exist. Using Remark IX.3.5 one therefore obtains a proof of the existence of a
finite field with pn elements, without using theory of splitting fields.
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IX.4 The multiplicative group of a finite field

Whereas the additive group (Fq,+,0) of a finite field with q = pn and p prime is
isomorphic to a product of n copies of Z/p/Z, the multiplicative group F×

q is much
simpler. For this we recall a result from Chapter III (Corollary III.5.4).

IX.4.1 Theorem. The multiplicative group F×
q of a finite field Fq is a cyclic group.

Proof. Since Fq is a domain and F×
q is finite, this is a special case of Corollary III.5.4.

IX.4.2 Definition. An element α ∈ F×
q generating the multiplicative group F×

q is
called a primitive root of Fq.

So α ∈ F×
q is a primitive root of Fq if and only if the order of α in the group F×

q
equals #F×

q = q−1. If α is a primitive root of Fq then every x ∈F×
q can be written as

x =αk, and Λ :F×
q −→Z/(q−1)Z, x 7→ k mod (q−1)

is an isomorphism of (abelian) groups. In particular k is modulo q− 1 uniquely
determined (by x and α).

IX.4.3 Example. The element 3 ∈F7 is a primitive root of F7 since

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1

and therefore ord(3)= 6= #F×
7 .

We now construct a primitive root of F9, which means an element of order 8 in
the group F×

9 . Since the order of any element in a finite group divides the number
of elements in the group we only need to find α ∈F×

9 such that α4 6= 1.
Note that X2 +1 has no zero in F3 and therefore

F9 ∼=F3[i] :=F3[X ]/(X2 +1), with i := X + (X2 +1).

Every element of F9 therefore has a unique representation as a+ bi with a, b ∈ F3
and moreover i2 =−1. Take α= 1+ i, then

α2 = (1+ i)2 = 2i, α4 = (2i)2 =−1 6= 1,

hence the order of α equals 8 and α is a primitive root of F9. You may compute for
yourself αk for 1 ≤ k ≤ 8 and check that indeed all elements of F×

9 are obtained in
this way.

Here as a small application of the existence of a primitive root of Fq we will
provide a (second) proof of the result below. The same result can also be derived by
adapting the reasoning used in Example VIII.1.6.

IX.4.4 Corollary. Take α ∈F×
q .

(i). If char(Fq)= 2, then α is a square in Fq.
(ii). If char(Fq)> 2, then m := (q−1)/2 ∈Z. Now α is a square in Fq ⇔ αm = 1 and

α ∈F×
q is not a square ⇔ αm =−1.

Proof. The map ‘squaring’:

F×
q

x 7→x2
−→ F×

q
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is a homomorphism with kernel all x ∈F×
q such that x2 = 1. If char(Fq)= 2 then this

equation is equivalent to (x−1)2 = 0, which shows that in this case the ‘squaring’
homomorphism is injective and therefore bijective. This proves (i).

If char(Fq)> 2 then the ‘squaring’ map has kernel {±1} consisting of two distinct
elements. The image of the map is clearly the subgroup of all squares F×

q
2 ⊂ F×

q .
Hence

F×
q /{±1}∼=F×

q
2,

which shows in particular that the number of squares in F×
q equals m := (q−1)/2.

By the proof of Theorem IX.1.1∏
α∈Fq

(X −α)= X q − X = X · (X2m −1)= X · (X m −1) · (X m +1).

If α ∈ F×
q is a square, then α= γ2 for some γ ∈ F×

q hence αm = γ2m = 1. This means
that the nonzero squares are zeros of X m−1. Since their number is m one concludes∏

α∈F×
q

2
(X −α)= X m −1.

The q−m−1= m non-squares in Fq are then necessarily the zeros of X m +1. This
finishes the proof.

Here is a slightly different reasoning, showing the same result.
(i): In this case the squares are precisely the image of the Frobenius homomor-
phism: Fq →Fq. Since Fq is finite, this is an automorphism, from which (i) follows.
(ii): Here p = char(Fq) and hence q (which is a power of p) is odd, and therefore
q−1 is even and hence m := (q−1)/2 ∈ Z. Let β be a primitive root of Fq. Then
ord(β)= 2m and F×

q consists of the 2m pairwise distinct elements

β, β2, β3, . . . , β2m−1, β2m = 1.

Here the m elements β2k with 1 ≤ k ≤ m are clearly squares. Moreover they are
zeros of the polynomial X m−1 since (β2k)m = (β2m)k = 1. So X m−1=∏m

k=1(X−β2k).
Moreover, if some power, say β` of β is a square, then there exists an integer n such
that (βn)2 = β`. Then 2m|(2m−`) which shows that ` is even. This shows that the
nonzero squares are precisely the zeros of X m −1.

The odd powers of β are not zeros of X m−1; indeed, (β2k+1)m =β2mkβm =βm 6= 1.
Also, these elements are not squares. Since

0=β2m −1= (βm −1)(βm +1) and βm 6= 0,

we have βm = −1 hence (β2k+1)m = −1 for all k. One concludes that the zeros of
X m +1 are precisely all non-squares in F×

q , as we saw earlier in a slightly different
way.
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IX.5 Exercises

1. Determine all primitive roots of F7, F8, and F9.
2. Let p ≡ 3 mod 4 be prime. Show that Z[i]/pZ[i]∼=Fp2 .
3. Determine f αF3

for every α ∈ F9, and find the factorization of X8 −1 into irre-
ducible polynomials in F3[X ].

4. Prove that 2+p
2 ∈ F25 is a primitive root of F25 (here

p
2 is an element of F25

satisfying
p

2
2 = 2; is it clear why such an element exists?).

5. Prove that X4 +2 is irreducible in F125[X ].
6. Show using a counting argument that the number of monic irreducible polyno-

mials in Fq[X ] of degree 3 equals 1
3 (q3 − q).

7. Find complete factorizations of the polynomials X2 − X , X4 − X , X8 − X , and
X64 − X in F2[X ].

8. Show using Corollary IX.3.4 that

1
n

qn ≥ xn ≥ 1
n

(qn − q
q−1

q
1
2 n).

9. Suppose Fpn = Fp(α). Show directly that the polynomial
∏n−1

i=0 (X −αpi
) occur-

ring in IX.2.4 has coefficients in Fp by verifying that each of its coefficients c
satisfies cp = c.

10. Let K be a field of characteristic p > 0 and suppose f ∈ K[X ] is a polynomial of
the form X p − X −a. Let α be a zero of f in some extension field of K .

(a) Show that f =∏
i∈Fp (X −α− i) and that K(α)=Ω f

K .

(b) Prove that either f is irreducible in K[X ], or f factors in K[X ] as a product
of polynomials of degree 1. (Hint: in case f = gh, consider the equality
f (X − j)= g(X − j)h(X − j) ( j ∈Fp) and conclude that all irreducible factors
of f have the same degree.)

(c) Show that for every a ∈ F×
p the polynomial X p − X − a is irreducible in

Fp[X ].

11. Let R be the ring of arithmetic functions defined in Exercise 27 on page 16.
Define e,E ∈ R by

e(n)=
{

1 if n = 1;
0 of n > 1,

and
E(n)= 1 for all n ∈Z>0.

By µ we denote the Möbius function introduced in Section IX.3.

(a) Show that e is the unit element of the ring R.

(b) Verify that µ ∈ R.

(c) Show that µ∗E = e (so µ is the inverse of E in R×).

(d) For f ∈ R define g ∈ R by

g = F ∗E, so g(n)= ∑
d|n

f (d) for n ∈Z>0.

Derive from (c) the Möbius inversion formula:

f (n)= ∑
d|n

µ(d)g(n/d) for n ∈Z>0.

(e) Prove the formula for xn presented in Section IX.3.
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12. (Compare Exercise 11 on page 100)

(a) Show that the fields Q[X ]/(X2 −2) and Q[Y ]/(Y 2 −3) are not isomorphic.

(b) Given a prime p we put

R2 :=Fp[X ]/(X2 −2) and R3 :=Fp[Y ]/(Y 2 −3).

Determine for all primes p with 2 ≤ p ≤ 23 the structure of these two
rings (does the ring contain nilpotent elements, zero divisors, is the ring a
field?), and determine for each case whether the two rings are isomorphic.

13. For q ∈ Z prime we put Φq = X q−1 + . . .+ X2 + X +1 = (X q −1)/(X −1) ∈ Z[X ];
given p prime we write fq,p :=Φq mod p ∈Fp[X ].
Take q = 11 and p prime and consider

f11,p = gp := X10 + . . .+ X2 + X +1 ∈Fp[X ].

Prove that all irreducible factors of gp in Fp[X ] have the same degree.
Let G ∈Fp[X ] be an irreducible factor of gp. Prove:

deg(G)= 1 ⇔ (p = 11 of p ≡ 1 (mod 11));
deg(G)= 2 ⇔ p ≡−1 (mod 11);
deg(G)= 5 ⇔ p ≡ 3,4,5, or 9 (mod 11);
deg(G)= 10 ⇔ p ≡ 2,6,7, or 8 (mod 11).

14. Take g = f11,3 (notation as in Exercise 13), so g = X10 + . . .+ X +1 ∈F3[X ]. Find
the irreducible factors of g in F3[X ].
(Hint: let G be an irreducible factor of g and suppose a is a zero of G|g in an
extension of F3. Show that a3 and a9 and a27 = a5 and a15 = a4 are zeros of G as
well. What is the constant term of G?, what are the zeros of H where g =G ·H?.
What are the zeros of X5 ·G(1/X )?, which coefficients of G can be determined
using the above?).

15. Again we use the notation from Exercise 13.

(a) Factor f11,5 ∈F5[X ].

(b) Factor f7,13 ∈F13[X ].

(c) Factor f13,5 ∈F5[X ].

16. (a) Let K be a field and take x ∈ K , x4 6= 1, x8 = 1. Show that x4 =−1 and that
(x+ 1

x )2 = 2.

(b) Determine the order of 3 mod 41 in the group F×
41. Find y ∈ Z such that

y2 ≡ 2 mod 41.

(c) Take a prime number p ≡ 1 mod 8. Show that z ∈Z exists with z2 ≡ 2 mod
p.

17. (in Exercise 16 we solved the equation z2 ≡ 2 mod p in the case of a prime
p ≡ 1 mod 8. Here we consider x2 ≡ 3 mod p where p is a prime such that
p ≡ 1 mod 12).

(a) Show that a ∈F×
p exists such that ord(a)= 12 in the group F×

p .

(b) Take a as in (a) and let b = a2; show that b + b5 = 1 (hint: verify that
b3 =−1 and (b2)2 +b2 +1= 0).

(c) For a as above, show that (a5 +a7)2 = 3 ∈Fp.

(d) Prove that x ∈Z exists with x2 ≡ 3 mod p.

(e) Make a sketch of the complex plane and in it z = e2πi/12 and z2 + z10 and
z5 + z7. Do you see a connection with the other parts of this exercise?

18. Determine the number of irreducible polynomials of degree 4 in Fq[X ].
19. Let a,b ∈Fp (p > 2) such that X2 −a and X2 −b are irreducible in Fp[X ].

122 IX FINITE FIELDS



(a) Prove that r ∈ F×
p exists with a = r2b. (Hint: with F×

p
2 ⊂ F×

p the subgroup
consisting of all squares, consider the group F×

p /F×
p

2.)

(b) Put β := X + (X2 −b) ∈Fp[X ]/(X2 −b). Show that

evrβ :Fp[X ]−→Fp[X ]/(X2 −b), f 7→ f (rβ)

is a surjective ring homomorphism with kernel (X2 −a).

(c) Find an explicit field homomorphism

φ : Fp[X ]/(X2 −a)−→Fp[X ]/(X2 −b).

(d) Let X2 + tX + s ∈ Fp[X ] be an irreducible polynomial. Construct a field
isomorphism

ψ : Fp[X ]/(X2 + tX + s)−→Fp[X ]/(X2 −b).

20. Problem 2 of the 25th International Mathematical Olympiad (1984) reads:

Find one pair of positive integers a,b such that ab(a+b) is not divisi-
ble by 7, but (a+b)7 −a7 −b7 is divisible by 77.

In this exercise some aspects of this problem are discussed.

(a) Let p ≡ 1 mod 3 be a prime number and take k ∈Z>0. Prove that X2+X+1
has exactly 2 zeros in Z/pkZ. Find these zeros in the cases pk = 7k, for all
k ∈ {1, 2, 3, 4, 5, 6, 7}.

(b) Let p ≡ 1 mod 3 be a prime number. Put f := 1
p ((X +1)p − X p −1) ∈Q[X ].

Show that in fact f ∈Z[X ], and find irreducible factors a,b, c of f in Z[X ]
such that abc2| f . Hint: take w = e2πi/3 and compute (w+1)6 (explain the
result using a picture of w and w+1 in the complex plane!). What is f (w)
and what is f ′(w)?

(c) Write f = 1
7 ((X+1)7−X7−1) as a product of monic irreducible polynomials

in Z[X ] (This “explains” the first case of Exercise 14 on page 76).

(d) Now solve the IMO problem: find a,b ∈Z satisfying the two conditions

i. ab(a+b) 6= 0 (mod 7),
ii. (a+b)7 ≡ a7 +b7 (mod 77).

(e) How many pairs (a,b) ∈ (Z/77Z)×× (Z/77Z)× exist satisfying the two condi-
tions a+b is a unit and (a+b)7 −a7 −b7 = 0 ?
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