
Advanced Algebraic Structures

Groningen, 3rd year bachelor mathematics, 2017
(partly a translation of parts of older lecture notes in Dutch by

L.N.M. van Geemen, H.W. Lenstra, F. Oort, and J. Top. )

J. Top



i



Contents

I Automorphisms of fields and splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.2 Homomorphisms of fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.3 Solving polynomial equations; splitting fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
I.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.1 Galois extensions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
II.2 Galois correspondence and primitive elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
II.3 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

III Roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

III.1 Cyclotomic fields over the rationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
III.2 An application to tangent values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
III.3 Quadratic reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
III.4 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

IV Symmetric polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IV.1 Definition and results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
IV.2 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

V Algebraically closed fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
V.2 The algebraic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
V.3 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

VI Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

VI.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
VI.2 R-module homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
VI.3 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
VI.4 Cyclic modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
VI.5 An upper triangular form for matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
VI.6 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

VII Quotients, exactness, tensor products, and projective modules . . . . . . . . . . 59

VII.1 Quotients of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
VII.2 Hom and exactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
VII.3 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
VII.4 Projective modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
VII.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

ii CONTENTS



preface

These lecture notes contain a translation into English of a number of chapters from
the Dutch lecture notes Algebra II (Algebraic Structures) as they were used in the
mathematics curriculum of Groningen University during the period 1993–2013.
The original Dutch text may be found at http://www.math.rug.nl/~top/dic.
pdf.

Both the present text and the original are loosely based on another Dutch text
on Rings and Fields, called Algebra II, written in the late 1970’s at the university
of Amsterdam by Prof.dr. F. Oort and Prof.dr. H.W. Lenstra. In the 80’s L.N.M. van
Geemen at Utrecht university added some chapters to the text, and in the 90’s in
Groningen I included a number of changes.

The present translation consists of two parts. The first one (Algebraic Struc-
tures) deals with basic concepts and properties of rings and fields as presented in
the chapters 1−5, 7−9, and 12 of the Dutch notes. The second one (Advanced Al-
gebraic Structures) discusses the chapters 8 (automorphisms and splitting fields,
in slightly more detail than originally in order to facilitate treating Galois theory),
a discussion of basic Galois theory based on previous lecture notes by Prof. M. van
der Put and me, the chapters 11 (symmetric polynomials) and 10 (algebraically
closed fields) as well as an extended version of chapter 14 (cyclotomic fields), and
finally the chapters 6,13 on (projective) modules. A short introduction to tensor
products is added.

Groningen, January 2017
Jaap Top
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I AUTOMORPHISMS OF FIELDS AND SPLITTING FIELDS

I.1 Basic definitions

We repeat some basic definitions and properties of fields. In fact some of this was
already used in the previous chapter.

A field K has a smallest subfield, called the prime field of K . This prime field
is either Q, in which case the characteristic of K is 0, or Fp =Z/pZ for some prime
number p, in which case the characteristic of K is p.

Let K ⊂ L be an extension of fields. Then L can be seen as a vector space over
K . The dimension of this vector space is denoted by [L : K]. In general [L : K] is
infinite. If [L : K] is finite then L is called a finite extension of K of degree [L : K].

Let A be a subset of L, then K(A) denotes the smallest subfield of L containing
both A and K . Similarly, K[A] denotes the smallest subring of L containing A and
K . For A = {a1, . . . ,as} one writes K(A) = K(a1, . . . ,as) and K[A] = K[a1, . . . ,as]. An
element a ∈ L is called algebraic over K if there is a non-zero polynomial f ∈ K[x]
with f (a) = 0. For algebraic a there is a polynomial F 6= 0 of minimal degree such
that F(a) = 0. If F is normalized to be monic, then F is unique and is called the
minimal polynomial of a over K . Let F have degree n, then K(a)= K[a]∼= K[x]/(F)
is a vector space over K with dimension n and with basis 1,a, . . . ,an−1.

An element a ∈ L which is not algebraic over K is called transcendental over K .
The obvious ring homomorphism K[x] → K[a] (i.e.,

∑
cixi 7→ ∑

ciai) is an isomor-
phism. Thus K[a] is not a field. The field of fractions K(a) of K[a] is in this case
isomorphic to K(x), i.e., to the field of rational functions over K .

The field extension K ⊂ L is called finitely generated if there are elements
a1, . . . ,as ∈ L such that L = K(a1, . . . ,as). The elements a1, . . . ,as are called alge-
braically dependent over K if there is a non-zero polynomial f ∈ K[x1, . . . , xs] with
f (a1, . . . ,as) = 0. If such a polynomial f does not exists, then a1, . . . ,as are called
algebraically independent over K . In the latter case, the obvious homomorphism
K[x1, . . . , xs] → K[a1, . . . ,as] is an isomorphism.Then K ⊂ L is called a purely tran-
scendental extension of K of transcendence degree s and L is isomorphic to the field
of fractions of the polynomial ring K[x1, . . . , xs]. This field of fractions is denoted
by K(x1, . . . , xs). It is an exercise (see Exercise 3 below) to show that a finitely
generated extension L of K has an intermediate field M (i.e., K ⊂ M ⊂ L) such
that K ⊂ M is purely transcendental and M ⊂ L is a finite extension. The tran-
scendence degree of L over K is defined as the transcendence degree of M over K .
It is not at all clear that this definition is a valid one. One has to show that it
does not depend on the choice of the intermediate purely transcendental extension.
This is, for instance, Theorem 25 in Chapter II of the book Commutative Algebra
(Vol. 1) by O. Zariski and P. Samuel. A different proof which uses theory of “deriva-
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tions” and which is valid only in characteristic zero, is to compute the dimension
of the M-vector space consisting of all K-linear maps D : M → M which satisfy
D(m1m2)= m1D(m2)+m2D(m1).

I.2 Homomorphisms of fields

This section reviews some basic results on automorphisms of fields. If K and L are
fields then φ : K → L is called a homomorphism of fields (also called ‘field homomor-
phism’) if φ is a unitary ring homomorphism. In particular it satisfies φ(1)= 1.

A homomorphism of fields has the property

φ(
1
a

)=φ(a)−1, φ(
a
b

)= φ(a)
φ(b)

,

since φ(a) ·φ(a−1)=φ(a ·a−1)=φ(1)= 1 implies φ(a−1)= (φ(a))−1.
Using φ(1+1+ . . .+1)= 1+1+ . . .+1 it follows that the image of the prime field

K0 of K is the prime field L0 of L. Hence φ yields an isomorphism from K0 to L0.
In case K ⊂ L then K0 = L0 and the restriction of φ to K0 is the identity map.

The image φ(K) of a field homomorphism φ : K → L is also a field. Every field
homomorphism is injective, since the only ideals in K are (0) and K and 1 6∈Ker(φ).
A field homomorphism need not be surjective. For example the inclusion R ,→C is
not. Even if K = L a field homomorphism needs not be surjective, as illustrated by
Example I.2.2.

The composition of field homomorphisms

K
φ−→ L

ψ−→ M

is also a field homomorphism, as one easily verifies.
An interesting and important field homomorphism exists in case char(K)= p:

I.2.1 Theorem. Let K be a field such that char(K)= p > 0. Put

F : K −→ K , F : x 7→ xp.

Then F is a field homomorphism called the Frobenius homomorphism.
In case K is finite, F is even a field automorphism.

Proof. Note that F(1) = 1 and F(ab) = (ab)p = apbp = F(a)F(b) (since K is commu-
tative). It remains to show that F(a+b)= (a+b)p equals F(a)+F(b)= ap +bp.

Newton’s binomium formula, which holds in any commutative ring, implies:

(a+b)p =
p∑

k=0

(p
k

)
akbp−k, with

(p
k

)= p!
k!(p−k)!

∈Z.

The numerator of
(p
k

)
is divisible by p, and because 0 < k < p and p is prime, the

denominator is not divisible by p. Hence

(a+b)p = ap +bp + p · c
for some c ∈ K . As p = 1+1+ . . .+1 (p×) and char(K) = p it follows that p = 0 ∈ K .
We conclude (a+b)p = ap +bp.

In case K is finite every injective map from K to itself (so for example F) is
surjective as well. Hence F is bijective. The fact that F−1 is a field homomorphism
as well, is easily verified. This shows Theorem I.2.1.
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I.2.2 Example. Let K = Fp(T) be the field of rational functions (= quotients of
polynomials) with coefficients in Fp. Put f (T)= a0+a1T+...+anTn

b0+b1T+...+bmTm ∈Fp(T), then

F( f (T)) = F
(

a0 +a1T + . . .+anTn

b0 +b1T + . . .+bmTm

)
= F(a0 +a1T + . . .+anTn)

F(b0 +b1T + . . .+bmTm)

= F(a0)+F(a1)F(T)+ . . .+F(an)F(Tn)
F(b0)+F(b1)F(T)+ . . .+F(bm)F(Tm)

= a0 +a1T p + . . .+anT pn

b0 +b1T p + . . .+bmT pm = f (T p).

Here we used F(a) = a for all a ∈ Fp, the prime field of Fp(T). The image of the
Frobenius homomorphism F therefore consists of all rational functions in the vari-
able T p with coefficiënts in Fp. In particular F is not surjective on Fp(T), for
example T ∉ image(F) (verify for yourself!).

I.2.3 Definition. If L and L′ are extensions of a field K then a K-homomorphism
L → L′ is a field homomorphism

φ : L → L′ such that φ|K = idK .

A K-isomorphism is a bijective K-homomorphism.
The fields L and L′ are called K-isomorphic (notation: L ∼=K L′) if a K-isomorphism
L → L′ exists.
A K-automorphism is a K-isomorphism with L = L′.

If the fields K and L have the same prime field K0, then every field homomorphism
K → L is a K0-homomorphism.

I.2.4 Definition. Given an extension L of a field K we write AutK (L) for the group
of all K-automorphisms of L. Here the group law is the composition of maps, and
the unit element is idL.

I.2.5 Theorem. Let L be a finite extension of the field K and α ∈ L with minimal
polynomial f αK ∈ K[X ].

(i) For every φ ∈AutK (L) we have that φ(α) is a zero of f αK .
(ii) If m is the number of zeros of f αK in the field K[α] ⊂ L, then #AutK (K[α]) = m.

Here #S the number of elements of a set S.
(iii) The number of K-automorphisms of K[α] is ≤ deg( f αK ).

Proof. (i): Write f αK = X n+an−1X n−1 . . .+a1X+a0 with ai ∈ K . Applying φ ∈ AutK (L)
to the equality 0= f αK (α) yields:

0 = φ(αn +an−1α
n−1 + . . .a1α+a0)

= φ(α)n +φ(an−1)φ(α)n−1 . . .φ(a1)φ(α)+φ(a0)
= φ(α)n +an−1φ(α)n−1 + . . .+a1φ(α)+a0
= f αK (φ(α)),

where we used φ(ai)= ai (note ai ∈ K and φ|K = idK ). So φ(α) is a zero of f αK .
(ii): Let {α1, . . . ,αm} ⊂ K[α] be the zeros of f αK in K[α], with α1 = α. We claim that
the map

∆ : AutK (K[α])−→ {α1,α2, . . . ,αm}, ∆(φ) :=φ(α)

is a bijection.
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From (i) we know that ∆ is well defined. We now show that ∆ is injective. Every
x ∈ K[α] can be given in a unique way as x = x0 + x1α+ . . .+ xn−1α

n−1 with xi ∈ K .
Then

φ(x) = φ(x0)+φ(x1)φ(α)+ . . .+φ(xn−1)φ(α)n−1

= x0 + x1φ(α)+ . . .+ xn−1φ(α)n−1,

so φ(x) is completely determined by φ(α) = ∆(φ). Therefore, if ∆(φ) = ∆(ψ), then
φ(x)=ψ(x) for all x ∈ K[α], so φ=ψ.

In order to prove surjectivity, given any zero β ∈ K[α] of f αK we have to construct
a K-automorphism φ with φ(α)=β. This is done as follows. Take

evβ : K[X ]−→ K[α]

the evaluation homomorphism in β. Since β is a zero of f αK ∈ K[X ] it follows
that f αK ∈ Ker(Φβ). However f αK is irreducible in K[X ], hence Ker(evβ) = ( f αK ). So
evβ induces an injective K-homomorphism evβ : K[X ]/( f αK ) → K[α] with image
K[β]⊂ K[α]. The first isomorphism theorem for rings now implies K[β]∼= K[X ]/( f αK );
the given isomorphism is K-linear, hence K[β] is a linear subspace of K[α] with di-
mension dimK (K[X ]/( f αK )) = dimK (K[α]). This dimension is finite and therefore
K[β] = K[α]; in other words evβ is an isomorphism. Analogous to the above, write

evα for the isomorphism K[X ]/( f αK )
∼=→ K[α] induced by the evaluation homomor-

phism evα. We have isomorphisms:

K[α]
evα↗

K[X ]/( f αK )
evβ
↘

K[β]= K[α]

and hence a K-automorphism φ := evβ ◦ evα−1: K[α]
∼=−→ K[α]. The definition of

evaluation homomorphisms shows

evα−1(α)= X + ( f αK ) and evβ(X + ( f αK ))=β,

hence φ(α)=β.
(iii) is immediate from (ii). This finishes the proof.

I.2.6 Example. Let f ∈ K[X ] be a monic irreducible polynomial of degree 2 and put
L = K[X ]/( f ). We write α := X + ( f ) ∈ L which is a zero of f in L = K[α]. Writing
f = X2 +aX +b one calculates (using long division if necessary) that in L[X ]:

X2 +aX +b = (X −α)(X − (−a−α)).

We now distinguish two cases:

(i) α=−a−α, (ii) α 6= −a−α.

In the first case 2α = −a follows. If 2 6= 0 in K then α = −a/2 ∈ K contradicting
the irreducibility of f . Hence, the first case is only possible for char(K) = 2 and
a = 0. An example of such an irreducible f is X2 +T ∈F2(T)[X ], a polynomial over
the field of rational functions in the variable T with coefficients in F2. (Were f
reducible then (g/h)2 = T so g2 = Th2 for certain g, h ∈ F2[T]; comparing degrees
shows this is impossible.)

In the remaining case (ii) f has two distinct zeros in L, hence #AutK (L) = 2 by
Theorem I.2.5. All groups consisting of two elements are isomorphic, so

AutK (L)= {idL, φ}∼=Z/2Z.
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Here φ(α)=−a−α and φ(x+ yα)=φ(x)+φ(y)φ(α)= x+ y(−a−α) for x, y ∈ K).
A well known example is K =R and f = X2 +1, here φ is complex conjugation.

Another example is given by the finite fields L = Fp[X ]/(X2 −d) with d a non-
square in Fp, in particular we must have p > 2 here since every d ∈ F2 is (its own)
square. Then

φ : L → L, φ : x+ yα 7→ x− yα, x, y ∈Fp

is the nontrivial field automorphism.
On the other hand Theorem I.2.1 yields an automorphism as well, namely the

Frobenius automorphism F. We have

F(x+ yα)= F(x)+F(y)F(α)= x+ yαp

since x, y ∈Fp, the prime field of L. Claim:

F =φ.

As #AutFp (L)= 2 it suffices to show F 6= idL. In case F = idL the polynomial X p−X
would have #L = p2 zeros in L, a contradiction. Conclusion: F 6= idL and therefore
F =φ.

From F =φ one deduces αp = F(α)=φ(α)=−α. As p > 2 is prime and therefore
odd, we write p = 2( p−1

2 )+1 with p−1
2 ∈Z. Then

−α=αp = (α2)
p−1

2 α= d
p−1

2 α.

This shows d
p−1

2 =−1 in Fp ⊂ L.

I.3 Solving polynomial equations; splitting fields

Let f ∈ K[x] be a non-constant polynomial. In general, f does not split as a product
of linear factors in K[x] because K does not always contain all the solutions of
f (a) = 0. We would like to “find” or to “construct” a larger field which contains all
the roots of f . This is formalized in the next definition.

I.3.1 Definition. A splitting field L of f over K is a field extension such that:
(a) f splits in L[x] as a product of linear factors.
(b) Let a1, . . . ,as denote the zeros of f in L, then L = K(a1, . . . ,as).

I.3.2 Proposition.
(1) A splitting field exists.
(2) Let L1,L2 be two splitting fields for f over K . Then there exists a K-linear
isomorphism of the fields L1,L2.

Proof. (1) One uses induction with respect to the degree of f . Take a (monic) ir-
reducible factor g (in K[x]) of f . Then K1 := K[y]/(g(y)) contains a zero, say α of
g. Thus f factors in K1[x] as (x−α)h. By induction, a splitting field L for h over
K1 exists. It is easily seen that L is also a splitting field for f over K . We note, in
passing, that [L : K]<∞.
(2) We will make a proof of a somewhat more general statement:
Two fields K1 and K2 and an isomorphism φ0 : K1 → K2 are given. Extend φ0 to a
ring isomorphism K1[x]→ K2[x] by φ0(

∑
aixi)=∑

φ0(ai)xi. Suppose f1 ∈ K1[x] and
f2 ∈ K2[x] satisfy φ0( f1)= f2. Let L1,L2 denote two splitting fields for f1 and f2 over
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K1 and K2, respectively. Then φ0 extends to an isomorphism between the field L1
and L2.

We will construct the desired isomorphism φ : L1 → L2 step by step. The lowest
level, φ0 : K1 → K2 is given. Consider an irreducible factor g of f1 and a zero α ∈ L1
of g. Then φ0(g) is an irreducible factor of φ0( f1) = f2. Hence φ0(g) splits com-
pletely over L2. Choose a β in L2 with φ0(g)(β) = 0. Define φ1 : K1(α) → K2(β) by
the formula

∑n−1
i=0 aiα

i 7→∑n−1
i=0 φ0(ai)βi, where all ai ∈ K1 and where n is the degree

of g. It is easily verified that φ1 is indeed an isomorphism of fields. Now replace
K1,K2, f1, f2 by K1(α),K2(β), f1/(X −α), f2/(X −β). The fields L1,L2 are splitting
fields over K1(α) and K2(β) for the polynomials f1/(X −α) and f2/(X −β). Induction
finishes the proof.

I.3.3 Notation. For a field K and a nonzero f ∈ K[x] the splitting field of f over K
(which by Proposition I.3.2 is unique up to K-isomorphisms) is denoted Ω f

K .

A polynomial f ∈ K[x]\ K is called separable if the roots of f in any field exten-
sion L of K are distinct. It follows from Proposition I.3.2 that it suffices to verify
this for a splitting field L of f over K .

I.3.4 Corollary. Let L ⊃ K be the splitting field of a separable nonconstant polyno-
mial f ∈ K[x]. The number of K-linear automorphisms of L equals [L : K].

Proof. In the situation given in the proof of part (2) of Proposition I.3.2, we compute
the dimensions and count the number of choices for extensions. We work again in
the more general situation. Suppose φ0 : K1 → K2 is given. The polynomials f1 and
f2 are by assumption separable. Thus g and φ0(g) are separable. It is obvious that
φ1 : K1(α)→ L2 should map α to a root β of φ0(g). The number of possibilities for β
is the degree of φ0(g) (which equals the degree of g). Thus for φ1 there are deg(g)
possibilities. One has [L1 : K1] = [L1 : K1(α)][K1(α) : K1]. By induction the number
of extensions L1 → L2 of a given φ1 is equal to [L1 : K1(α)]. This completes the
proof.

I.3 SOLVING POLYNOMIAL EQUATIONS; SPLITTING FIELDS 7



I.4 Exercises

1. Let K be a field. Show that the map

φ : K(X )−→ K(X ), f 7→ f (X +1)

is a field automorphism. Find the order of φ in the group Aut(K(X )). (The
answer depends on the characteristic char(K) . . .)

2. Describe a splitting field of X2 −101 over Q.
3. Let L be a splitting field of f over K and f = ∏n

i=1(X −αi) in L[X ]. Prove that
L = K(α1,α2, ...,αn−1) (so αn is omitted!).

4. Suppose f ∈ K[X ] is monic of degree n. Prove: [Ω f
K : K] divides n! (Hint: use

the construction in the proof of I.3.2.)
5. Prove that L =Q( 4p2, i) is a splitting field of X4 −2 over Q. Determine [L : Q]

and ]Aut(L).
Prove that AutQ(i)(L)∼=Z/4Z.

6. Let ζ ∈C be a zero of f = X4+X3+X2+X+1. Show that ζ5 = 1 and that ζ2,ζ3,ζ4

are zeros of f as well. Prove that Q(ζ) is a splitting field of f over Q. Determine
Aut(Q(ζ)).

7. Prove that ΩX2−2
Q 6∼=ΩX2−3

Q and that ΩX2−2̄
K 'ΩX2−3̄

K for K =F5.

8. Prove that Q(i,
p

2) is a splitting field of f i+p2
Q over Q.

Show that Aut(Q(i,
p

2))'Z/2Z×Z/2Z.
9. Let L be a splitting field of f over K and put n = deg( f ).

(a) Prove: any K-automorphism of L permutes the zeros of f in L,

(b) Prove: the group AutK (L) is isomorphic to a subgroup of Sn;

(c) Show that #AutK (L) is a divisor of n! .

10. Prove: Aut(Q( 3p2, i
p

3))' S3.
11. Take f = X3 + X2 −2X −1 ∈Q[X ] and let α ∈Ω f

Q be a zero of f .

Compute f α
2−2

Q and show that Q(α)=Ω f
Q. Deduce that Aut(Ω f

Q)∼=Z/3Z.
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II GALOIS THEORY

II.1 Galois extensions and examples

For our purposes a pleasant definition of a Galois extension K ⊂ L is:

II.1.1 Definition. L ⊃ K is called a Galois extension of K if L is a splitting field of
a separable polynomial f over K .

II.1.2 Definition. The Galois group Gal(L/K) of the extension K ⊂ L is the group
of all K-linear automorphisms of L.

Observe that indeed Gal(L/K) is a group, with composition of automorphisms
as group law and the identity automorphism as the unit element .

II.1.3 Lemma. Let K ⊂ L be a Galois extension and suppose that a ∈ L is invariant
under the action of Gal(L/K). Then a ∈ K .

Proof. From Corollary I.3.4 we know that [L : K] = #Gal(L/K). Let f be a polyno-
mial in K[x] such that L is its splitting field over K . Observe that L is also the
splitting field of f over the field K(a). The assumption that a ∈ L is invariant im-
plies Gal(L/K) = Gal(L/K(a)). Thus [L : K] = [L : K(a)] and hence [K(a) : K] = 1,
which means that a ∈ K .

II.1.4 Corollary. Let K ⊂ L be a Galois extension and a ∈ L. The minimal polyno-
mial F of a over K is separable and all its roots are in L.

Proof. Let the orbit Gal(L/K)a = {ga| for all g ∈ Gal(L/K)} be {a1, . . . ,as}. Consider
the polynomial G := (x−a1) · · · (x−as)= xs+bs−1xs−1+·· ·+b1x+b0 in L[x]. This poly-
nomial is invariant under the action of Gal(L/K) and hence Lemma II.1.3 implies
that G ∈ K[x]. Clearly F divides G and therefore it has the required properties.

II.1.5 Proposition. Let K ⊂ L be a finite extension. The following are equivalent:
(1) K ⊂ L is a Galois extension.
(2) For every element a ∈ L, the minimal polynomial F ∈ K[x] of a has the property
that all its roots lie in L and are simple.

Proof. (1)⇒(2) is the statement of Corollary II.1.4.
(2)⇒(1). Take elements a1, . . . ,as ∈ L such that L = K(a1, . . . ,as). Let Fi be the
minimal polynomial of ai over K . We may suppose that F1, . . . ,Ft are the distinct
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elements in {F1, . . . ,Fs}. Put F = F1 · · ·Ft. Then each Fi is separable and has all its
roots in L. Then also F is separable and all its roots are in L. Moreover the set of
the roots of F contains {a1, . . . ,as}. Thus L is the splitting field of F over K .

In several textbooks on Galois theory, part (2) of the above proposition is used as
the definition of a Galois extension. To be more precise: a finite extension L/K is
called normal if for every a ∈ L the minimal polynomial F of a over K splits in L[x]
as a product of linear factors. The extension is called separable if for every a ∈ L,
the minimal polynomial F of a over K is separable. The extension is called Galois
if it is both normal and separable.

II.1.6 Remark. Let f ∈ K[x] be a separable polynomial and let L ⊃ K be a split-
ting field. The roots of f in L are say {a1, . . . ,an}; note that n = deg( f ). Every
σ ∈ Gal(L/k) permutes this set. Thus we find a homomorphism Gal(L/K) → Sn.
This homomorphism is injective. Indeed, if σ(ai) = ai for all i, then σ is the iden-
tity since L = K(a1, . . . ,an).

II.1.7 Example. The Galois group of the splitting field of x4 −2 over Q is in this
way isomorphic with the subgroup

{(1), (24), (1234), (12)(34), (13)(24), (13), (1432), (14)(23)}

of S4. Here we identify k ∈ {1,2,3,4} with the zero ak = ik−1 4p2 of x4 −2. A permu-
tation sending k to ` corresponds to an automorphism sending ak to a`.

We now give some more examples and elementary properties.

II.1.8 Example. Q( 3p2)/Q is not normal.
This follows using Proposition II.1.5. Indeed, the minimal polynomial of 3p2 over Q
is x3−2. One can consider Q( 3p2) as a subfield of R. The other two zeros of x3−2 in
C are ω 3p2 and ω2 3p2, where ω= e2πi/3. They do not lie in R and hence also not in
Q( 3p2).

II.1.9 Example. If [L : K]= 2 and the characteristic of K is 6= 2, then L/K is Galois.
Indeed, choose α ∈ L \ K . Its minimal polynomial F has the form F = x2 + ax+ b.
The polynomial F splits in L[x] as (x−α)(x−β) with β+α=−a. If α would equal β,
then one finds the contradiction α=− a

2 ∈ K . It follows that L is the splitting field
of the separable polynomial F over K .

II.1.10 Example. If the characteristic of K is 0, then every finite L/K is separable.
To see this, choose a ∈ L. Its minimal polynomial F ∈ K[x] is irreducible. The
derivative F ′ = dF

dx of F is not 0 and thus the g.c.d. of F and F ′ is 1. By Exercise 4
of Section I.3, one has that F is separable.

II.1.11 Example. A field K of characteristic p > 0 is called perfect if every element
of K is a pth power. Every finite extension L/K of a perfect field is separable.
Proof: choose a ∈ L with minimal polynomial F ∈ K[x]. If F is not separable then
the g.c.d. of F and F ′ is not 1. Since F is irreducible this implies that F ′ = 0.
Thus F contains only pthe powers of x, i.e., F = ∑

anxpn with an ∈ K . Each an is
written as bp

n with bn ∈ K . Then F = (
∑

bnxn)p, which contradicts the fact that F
is irreducible.

II.1.12 Example. Every finite field is perfect. The field Fp(t) is not perfect.
Indeed, the finite fields of characteristic p are the Fq with q a power of p. The
“Frobenius map” Fr : z 7→ zp on any field of characteristic p > 0 is a homomorphism
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of the additive group. The kernel is 0 since zp = 0 implies z = 0. By counting, one
sees that Fr : Fq → Fq is bijective. And Fr : Fp(t) → Fp(t) is not surjective since t is
not in the image.

II.1.13 Example. Put K = Fp(t) and let F = xp − t. The splitting field of F is not
separable over K .
Indeed, the derivative of F is 0. We note that the splitting field in question can be
identified with Fp(x).

II.2 Galois correspondence and primitive elements

Let a Galois extension L/K with Galois group G be given. One considers two sets,
M , the set of the intermediate fields, i.e., the fields M with K ⊂ M ⊂ L and the set
G of the subgroups of G.

There are two maps between those sets, α : M →G , defined by α(M)=Gal(L/M)
and β : G → M , defined by β(H) = LH , i.e., the subfield of L consisting of the ele-
ments which are invariant under the action of H. It is obvious that the two maps
reverse inclusions. What is often called the “main theorem of Galois theory” is

II.2.1 Theorem (The Galois correspondence).
(1) α and β are each others inverse.
(2) The subgroup H ∈G is normal if and only if β(H) is a normal (or Galois) exten-
sion of K .
(3) Suppose that H is a normal subgroup of G. Then M/K is a Galois extension with
Galois group G/H.

We will first prove a lemma.

II.2.2 Lemma. Suppose that the finite extension L/K has the property that there are
only finitely many intermediate fields. Then there is an α ∈ L with L = K(α).

Proof. For a finite field K the proof is quite easy. L is also a finite field and it is
known that the multiplicative group L∗ of L is cyclic, i.e., there is an element ξ with
L∗ = {ξn|n ∈ Z}. Clearly L = K(ξ). Suppose now that K is infinite and that L 6= K .
Let n ≥ 1 be minimal such that L = K(a1, . . . ,an) for certain elements a1, . . . ,an. We
have to show that n = 1. Suppose n ≥ 2 and consider for every λ ∈ K the element
bλ := a1 +λa2. The fields K(bλ) are intermediate fields for L/K and thus there are
λ1 6= λ2 with M := K(bλ1 ) = K(bλ2 ). The field M contains a1 +λ1a2 and a1 +λ2a2.
It follows that M = K(a1,a2) and that L = K(bλ1 ,a3, . . . ,an). This contradicts the
minimality of n.

Proof. of Theorem II.2.1
(1) βα(M) is the field LGal(L/M). Applying Lemma II.1.3 to the Galois extension L/M
implies that LGal(L/M) = M. This implies that α is injective. Since G is finite, also
M is finite. Take H ∈ G and put M = β(H) = LH . Clearly H ⊂ αβ(H). We have to
prove equality. According to Lemma II.2.2 one can write L = M(a) for some a ∈ L.
Consider the polynomial G = ∏

σ∈H(x−σ(a)) ∈ L[x]. This polynomial is invariant
under the action of H. Therefore its coefficients are also invariant under H and
belong to M. Then G ∈ M[x] and the minimal polynomial of a over M divides G.
Thus [L : M] ≤ #H and #Gal(L/M) ≤ #H. Since H is a subgroup of Gal(L/M) one
finds the required equality H =Gal(L/M).
(2) The subgroup H corresponds to M =β(H)= LH . For any σ ∈G one has

β(σHσ−1)=σ(M).
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Thus H is normal if and only if σ(M) = M for all σ ∈ G. Using that L/K is normal
and separable, one finds that the latter property of M is equivalent with M/K
normal (or also Galois).
(3) H is supposed to be normal and thus M := β(H)= LH satisfies σ(M)= M for all
σ ∈G. Thus one can define a restriction map Gal(L/K)→Gal(M/K). The kernel of
this homomorphism is H. The map is surjective since #(G/H) is equal to [M : K].

II.2.3 Remark. The proof of II.2.1(2) shows a small fact that deserves to be noted.
Namely, if L/K is a finite Galois extension and σ ∈ G := Gal(L/K), then for every
intermediate field M, so K ⊂ M ⊂ L, also σ(M) is an intermediate field. Moreover
since σ is a K-linear automorphism, dimK (M)= dimK (σ(M)).

If this field M equals LH for some subgroup H ⊂ G, then L/M is Galois and
H =Gal(L/M), and in particular #H = [L : M]= [L : K]/dimK (M).

The equality β(σHσ−1) = σ(M) states that the subgroup σHσ−1 via the Galois
correspondence is associated to the subfield σ(M). In other words, the action of σ
on the set M of intermediate fields yields via the Galois correspondence the action
‘conjugate by σ’ on the set G of subgroups.

II.2.4 Corollary (The theorem of the primitive element). For every finite separable
extension L/K there is a cyclic element, i.e., an element a ∈ L with L = K(a).

Proof. According to Lemma II.2.2, it suffices to show that there are finitely many
intermediate fields for L/K . If we can show that L lies in the splitting field L̃ of a
separable polynomial, then there are only finitely many intermediate fields for L̃/K
and then also for L/K . Let L/K be generated by elements a1, . . . ,as. The minimal
polynomial of ai over K is denoted by Fi. We may suppose that F1, . . . ,Ft are the
distinct minimal polynomials, then F := F1 · · ·Ft is separable and every ai is a zero
of F. The splitting field L̃ of F contains L and we are done.

II.3 Exercises

1. Let K ⊂ L be fields and a ∈ L. Show that K[a] is a field if and only if a is alge-
braic over K .

2. Let K ⊂ L be fields and S ⊂ L a non-empty finite subset. Show that K[S] is a
field if and only if every element of S is algebraic over K .
Find a counterexample with S = L to show that the condition that S is finite
cannot be missed.

3. Let K ⊂ L be a finitely generated field extension. Prove the existence of an
intermediate field M such that K ⊂ M is purely transcendental (or K = M) and
[L : M]<∞.

4. Prove that f ∈ K[x] \ K is separable if and only if f and its derivative f ′ = d
dx f

are relatively prime.

5. Let L be a splitting field of f over K . Let n be the degree of f . Prove that
[L : K]≤ n!. Try to make examples with K =Q and f of degree 3 with [L :Q]= 6.

6. Let L be the splitting field over Q of the polynomial x3 −3. Produce an explicit
splitting field L ⊂C and find the (Q-linear) field automorphisms of L.

7. The same question for the polynomial x8 −1 over Q.
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8. Show that a finite extension of a finite field is Galois.

9. Show that Fpn is the splitting field of the polynomial xpn −x over Fp. Prove that
Fpn /Fp is Galois and that its Galois group is {1,Fr, . . . ,Frn−1}, where Fr is the
Frobenius map on Fpn defined by Fr(z)= zp.

10. Show that Q( 4p3, i) is a Galois extension of Q(i) and compute the corresponding
Galois group.

11. Determine the Galois group of x12 −2 over Q.

12. Take q = pn for some prime p, and let K ⊃ Fq and a ∈ K , with the property that
the polynomial X q − X +a does not split completely in K[X ]. Let α be a zero of
this polynomial in some splitting field.

(a) Show that K(α) 6= K .

(b) Show that the extension K(α)⊃ K is Galois.

(c) Show that every σ ∈Gal(K(α)/K) satisfies σ(α)=α+ t for some t ∈ Fq.

(d) Show that σ 7→ σ(α)−α defines an injective homomorphism of groups:
Gal(K(α)/K)→ (Fq,+,0).

(e) In the special case that K is itself a finite field, observe that the Ga-
lois group of a finite extension of finite fields is cyclic, and deduce that
X q − X + a factors as a product of q/p distinct irreducible polynomials of
degree p in K[X ].

(f) Take K = Fq(t) and X q − X + t. Explain why this polynomial is irreducible
in K[X ], and determine the Galois group of its splitting field over K .

13. Prove that Q(
p

3,
p

5) is a Galois extension of Q. Determine the Galois group,
all intermediate subfields and a primitive element.

14. The same questions for Q(e2πi/3, 3p3)/Q.

15. Find all subfields of Q( 4p2, i) and a primitive element for each of them. Which
of these fields are normal over Q?

16. One of the theorems in the Ph.D. thesis of Amol Sasane (Groningen, 2001, ad-
visor Prof. dr. R. Curtain) states that tan(π/2001) 6∈Q. Prove this theorem.

17. (a) Prove that for an odd prime number p, the fieldQ(ζp) has a unique subfield
K with [K :Q]= 2.

(b) Find a condition on p such that K ⊂R.
Hint: complex conjugation is an element of Gal(Q(ζp)/Q). The question
whether or not K is a real field is the same as the question whether com-
plex conjugation is an element of the subgroup Gal(Q(ζp)/K).

(c) Write ε(n) := 1 if n mod p is a square in F∗p and ε(n) :=−1 otherwise. Show
that K /Q is generated by the element

∑p−1
n=1 ε(n)ζn

p.

18. Prove that the regular 7-gon cannot be constructed by ruler and compass. Ex-
planation: The admissible operations with ruler and compass are: drawing
a line through two points, drawing a circle with given center and radius, in-
tersecting two lines, interseting a line with a circle and intersecting two cir-
cles. Hint: Identify the plane with C. The points Q ⊂ C are given. Prove
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that every “constructable” point a ∈C gives rise to a “tower of field extensions”
Kn :=Q(a)⊃ Kn−1 ⊃ ·· · ⊃ K0 =Q with [K i+1 : K i]= 2 for every i.

19. Cyclic extensions.
Let K be a field and n > 1 an integer. Suppose that the characteristic of K is 0
or p with p 6 |n and that K contains all the nth roots of unity. In this exercise we
want to prove the following statement:
E ⊃ K is a Galois extension with a cyclic Galois group of order n if and only if
E = K(α) where α is a root of an irreducible polynomial xn −a ∈ K[x].
(a) Let f (x) = xn −a ∈ K[x] be an irreducible polynomial. Show that f is sepa-
rable. Show that the splitting field E of f (x) over K is of the form K(α) with
α a root of f (x) = 0. Furthermore, show that the Galois group of E over K is
generated by the map defined by α 7→ ζα where ζ is a primitive nth root of unity.
(b) Let E be a Galois extension of K with a cyclic Galois group of order n. Let σ
generate the Galois group.
(i) One considers σ as a K-linear map on E as vector space over K . Prove that
every eigenvalue λ of σ satisfies λn = 1 and thus belongs to K .
(ii) Prove that there is a basis of eigenvectors for σ. (Hint: Jordan normal form).
(iii) Prove that every eigenvalue has multiplicity 1. (Hint: if σe i =λe i for i = 1,2
and e1 6= 0 6= e2, then σ( e1

e2
)= e1

e2
).

(iv) Prove that there is an α ∈ E with α 6= 0, σ(α)= ζα and ζ a primitive nth root
of unity.
(v) Show that the σi(α), i = 0, . . . ,n−1, are all distinct and that therefore the
minimal polynomial of α over K is xn −a with a =αn ∈ K .
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III ROOTS OF UNITY

III.1 Cyclotomic fields over the rationals

Let n ≥ 1 be an integer and write ζ = ζn = e2πi/n ∈ C. The subfield Q(ζ) ⊂ C is the
splitting field of xn −1 over Q, since all the roots of xn −1 are ζk, k = 0,1, . . . ,n−1.
For n ≥ 3, one calls Q(ζ) the nth cyclotomic field. Since xn −1 ∈ Q[x] is separable,
Q(ζ) ⊃Q is a Galois extension. We will determine the degree and the Galois group
of this extension.

The minimal polynomial Φn of ζ over Q is called the nth cyclotomic polynomial.
An explicit general formula forΦn is not available. Still we will need some informa-
tion on Φnin order to calculate the Galois group of Q(ζ)/Q. Two tools from standard
courses in algebra that we will use are:
(1) Lemma of Gauss: Let f ∈Z[x] be monic and let g,h ∈Q[x] be monic, too. Then
f = gh implies that g,h ∈Z[x].
(2) Eisenstein’s criterion: Let f = anxn +·· ·+a0 ∈Z[x] be such that all its coeff-
cients, with the exception of an, are divisible by a prime number p and p2 does not
divide a0. Then f is irreducible in Z[x] and in Q[x].
The proof of both statements uses “reduction modulo p", i.e., the ring homomor-
phism Z[x] → Fp[x], given by f = ∑

anxn 7→ f := ∑
anxn, where for a ∈ Z one has

written a for its image in Fp = Z/pZ. Reduction modulo p will also be used in the
proof of the next proposition, as well as the identity f (xp)= f

p
for f ∈ Fp[x].

III.1.1 Proposition.
(1) Φn ∈Z[x].
(2) For a prime number p one has

Φp = xp −1
x−1

= xp−1 + xp−2 +·· ·+ x+1.

(3) For any integer n ≥ 1 one has

Φn = ∏
1≤ j<n, gcd( j,n)=1

(x−ζ j
n).

This means that the zeros ofΦn are precisely all elements of order n in C×. Moreover,
the degree of Φn is φ(n), where φ is Euler’s phi-function defined by φ(n)= #(Z/nZ)×.

Proof. (1) follows from the Lemma of Gauss applied to f = X n −1 and g =Φn.
(2) follows from (3), however, we now give a direct proof. Write f (x)= xp−1+. . .+x+1
and make the substitution x = 1+ t. Then

f (1+ t)= (1+ t)p −1
(1+ t)−1

=
p∑

i=1

(
p
i

)
ti−1
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satisfies Eisenstein’s criterion and is therefore irreducible. It follows that f itself is
irreducible, and since f = (xp−1)/(x−1), the number ζp is a zero of f . Hence f =Φp
which is what we wanted to prove.
(3) xn−1=∏

1≤ j≤n(x−ζ j) andΦn can only contain the factors (x−ζ j) with gcd( j,n)= 1.
Indeed, gcd( j,n)= d > 1 implies that ζ j is a root of xn/d−1. FromΦn(ζ j)= 0 it would
follow that Φn divides xn/d −1 which leads to the contradiction ζn/d = 1.

In order to see that every x− ζ j with gcd( j,n) = 1 is a factor of Φn, we use a
trick. Decompose j as a product p1 · · · pt of (not necessarily distinct) prime factors.
The pi do not divide n since gcd( j,n) = 1. Write ζ j = (· · · ((ζp1 )p2 ) · · · )pt . We claim
that the following statement holds:

(*) if p does not divide n and if Φ(α)= 0, then Φ(αp)= 0.

Using this assertion one finds

Φn(ζ)= 0⇒Φn(ζp1 )= 0⇒Φn(ζp1 p2 )= 0⇒···⇒Φn(ζ j)= 0.

We will prove (*) by deriving a contradiction from the assumptions: p 6 |n and
Φn(α)= 0 and Φn(αp) 6= 0.

The equality xn −1=Φn · f with f (αp)= 0 is clear. Now f (αp)= 0 means that α
is a zero of f (xp). Therefore Φn divides f (xp). According to the Lemma of Gauss,
this division takes place in the ring Z[x]. Hence Φn(xp)Φn(x) divides xpn −1 in the
ring Z[x]. After reduction modulo p, one finds that Φ

p+1
n divides xpn −1= (xn −1)p

in Fp[x]. However p 6 |n and xn −1 has only simple roots. The multiplicity of any
root of (xn −1)p is p and this is the contradiction that we wanted to find.

The proof of the following corollary is left to the reader.

III.1.2 Corollary. The Galois group Gal(Q(ζn)/Q) is isomorphic to the group (Z/nZ)×.
This isomorphism identifies the unit a mod n with the field automorphism sending
ζn to ζa

n.

III.1.3 Proposition (Formulas for Φn).
1. xn −1=∏

d|nΦd (i.e., the product over all divisors d of n).
2. Φn =∏

d|n(xd −1)µ(n/d), where µ is the Möbius function given by µ(1)= 1, µ(n)= 0
if n contains a square 6= 1and µ(p1 · · · pt)= (−1)t if p1, . . . , pt are distinct primes.
3. Φnp(x)=Φn(xp) if the prime p divides n.
4. Φnp(x)=Φn(xp)Φn(x)−1 if the prime p does not divide n.

Proof. (1) follows since both polynomials are monic and by Proposition III.1.1(3)
have the same zeros.

(2) is a special case of the “Möbius inversion”. This is the statement

If for all n ≥ 1 the formula fn = ∏
d|n

gd holds, then

gn = ∏
d|n

f µ(n/d)
d holds for all n ≥ 1.

In the proof of this inversion formula one uses the easily deduced formulas
∑

d|nµ(d)= 0
for n > 1 and

∑
d|nµ(d)= 1 for n = 1.

The proofs of 3. and 4. are left as an exercise.
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III.2 An application to tangent values

Take n ∈Z≥3 and consider tn := tan(π/n). With ζ := ζ4n = e2πi/4n we have i = ζn and

tn = sin(π/n)
cos(π/n)

= ζ2 −ζ−2

ζn(ζ2 +ζ−2)
∈Q(ζ).

We will compute the degree [Q(tn) : Q] by determining the subgroup of the Galois
group Gal(Q(ζ)/Q)∼= (Z/4nZ)× corresponding to the intermediate field Q(tn)⊂Q(ζ).

To do so, first note that a ∈ (Z/4nZ)× yields the automorphism σa of Q(ζ) defined
by ζ 7→ ζa. Its effect on tn is given as

tn 7→σa(tn)= ζ2a −ζ−2a

ζan(ζ2a +ζ−2a)
=

{
tan(πa/n) if a ≡ 1 mod 4;

−tan(πa/n) if a ≡ 3 mod 4.

So σa is the identity when restricted to Q(tn) precisely when

either a ∈ (Z/4nZ)× satisfies a ≡ 1 mod 4 and tan(π/n)= tan(πa/n),

or a ∈ (Z/4nZ)× satisfies a ≡ 3 mod 4 and tan(π/n)= tan(−πa/n).

Solving these tangent equalities results in{
a ≡ 1 mod n
a ≡ 1 mod 4 or

{
a ≡−1 mod n
a ≡−1 mod 4

The number of solutions a ∈ (Z/4nZ)× now depends on the parity of n:
(i). If n ≡ 0 mod 4 then one finds the condition a ≡±1 mod n. This gives precisely 8
pairwise distinct values a, namely

a ∈ {
1,−1,n+1,n−1,2n+1,2n−1,3n+1,3n−1

}
.

They form a subgroup of order 8 in (Z/4nZ)× ∼= Gal(Q(ζ)/Q) which in fact by the
Galois correspondence equals Gal(Q(ζ)/Q(tn)). So in this case by Corollary I.3.4 we
have [Q(ζ) :Q(tn)]= 8 and therefore using Proposition III.1.1(c) we have

[Q(tn) :Q]= [Q(ζ) :Q]/8=φ(4n)/8=φ(n/2).

(ii). If n ≡ 2 mod 4 then we obtain the condition a ≡ ±1 mod 2n, and this yields
exactly 4 distinct values a, namely

a ∈ {
1,−1,2n+1,2n−1

}
.

Reasoning as in the previous case (note that now n/2 is odd) one concludes

[Q(tn) :Q]=φ(4n)/4=φ(n)=φ(n/2).

(iii). Finally, if 2 - n then only a ≡ ±1 mod 4n solve the desired equations. So one
obtains the subgroup {1,−1}⊂ (Z/4nZ)×. As a consequence one concludes for n odd

[Q(tn) :Q]=φ(4n)/2=φ(n).

Now consider the special case where n = p is an odd prime number. The cal-
culation presented above shows that the minimal polynomial of tp = tan(π/p) over
Q has degree [Q(tp) : Q] = φ(p) = p−1. To construct this minimal polynomial, put
α :=π/p. One has (eαi)p =−1, hence (cos(α)+ isin(α))p+1= 0. Dividing by (cos(α))p

and taking the imaginary part of the resulting expression yields

(p−1)/2∑
j=0

(
p

2 j+1

)
(−1) j t2 j+1

p = 0.
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So tp is a zero of
(p−1)/2∑

j=0

(
p

2 j+1

)
(−1) j x2 j ∈Z[x].

As this has degree p−1 and leading coefficient (−1)(p−1)/2, it is up to at most a sign
the minimal polynomial of tp over Q.

Example: t3 is a zero of x2 −3 and t5 is a zero of x4 −10x2 +5 and t7 is a zero of
x6 −21x4 +35x2 −7.

III.3 Quadratic reciprocity

In this section p, q ∈Z>0 are prime numbers.
Quadratic reciprocity relates the problem whether X2−q has a zero in Fp to the

‘reciprocal’ problem whether X2 − p has a zero in Fq. In the proof presented here,
no Galois theory will be used, but we do use roots of unity and certain so-called
Gauss sums. We will briefly mention a property of such Gauss sums in terms of
Galois theory.

III.3.1 Definition. Let p be an odd prime and let a ∈Z.
The Legendre-symbol

(a
p
) ∈ {−1, 0, 1} is defined by:(a

p
)= 0 ⇔ a is divisible by p,

(a
p
)= 1 ⇔ ∃x ∈Z : x 6≡ 0 mod p and x2 ≡ a mod p,

(a
p
)= −1 ⇔ 6 ∃x ∈Z : x2 ≡ a mod p.

So in particular: the polynomial X2 −a has a zero in Fp ⇐⇒ (a
p
) ∈ {+1, 0}.

III.3.2 Example. In F11 it holds that:

(±1)2 = 1, (±2)2 = 4, (±3)3 = 9, (±4)2 = 5, (±5)2 = 3,

so by the definition of the Legendre-symbol one finds:(
a
11

)
= 1 if a ≡ 1, 3, 4, 5, 9 mod 11.

The remaining 10/2= 5 elements of F×
11 are not squares:(

a
11

)
=−1 for a ≡ 2, 6, 7, 8, 10 mod 11.

III.3.3 Theorem. Let a ∈Z. Identifying −1, 0, 1 ∈Z with −1, 0, 1 ∈Fp it holds that(
a
p

)
= a

p−1
2 (∈Fp).

Moreover for all n, m ∈Z one has (
nm
p

)
=

(
n
p

)(
m
p

)
.
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Proof. If a = 0 ∈Fp then
(a

p
)= 0 and a

p−1
2 = 0, showing the first claim in this case.

If a 6= 0 then ap−1 = 1 since F×
p is a group consisting of p−1 elements. Hence

a
p−1

2 is a zero of X2 −1 = 0 and therefore a
p−1

2 ∈ {1, −1}, as these are the only zeros
of X2 −1 in the field Fp. We can therefore define

ε :F×
p −→ {1, −1} x 7→ x

p−1
2 .

Note that ε is a homomorphism of (multiplicative) groups. Since F×
p is a cyclic group

is, y ∈F×
p exists with y

p−1
2 6= 1. So ε is surjective and #Ker(ε)= p−1

2 .

In case a = x2 for some x ∈ Fp, x 6= 0, then a
p−1

2 = xp−1 = 1, so a ∈ Ker(ε). As

a2 = b
2 ⇔ a =±b, one obtains in this way p−1

2 elements of Ker(ε). Now #Ker(ε)= p−1
2

and therefore
Ker(ε)= {a ∈F×

p : a = x2 for some x ∈F×
p }.

As a consequence ε(b)=−1 in case b is not a square modulo p, so:(
a
p

)
= ε(a)

for all a ∈Z such that a 6= 0 ∈Fp. This proves the first assertion.
The second assertion is evident in case n = 0 or m = 0. In all other cases one

uses that the Legendre-symbol agrees with the homomorphism ε, as was observed
before. This finishes the proof.

III.3.4 Example. In F11 it holds that

25 = 32=−1, 35 = 27 ·9= 5 ·9= 1, 55 = 125 ·25= 4 ·3= 1,

hence 2 is not a square modulo 11, while both 3 and 5 are squares modulo 11 (see
also the previous Example III.3.2).

III.3.5 Remark. Given an odd prime p, it is not difficult to compute (−1)
p−1

2 .
Namely, write p as p = 4k+1 or as p = 4k+3 for an integer k. Then

(−1)
p−1

2 = 1 if p = 4k+1, (−1)
p−1

2 =−1 if p = 4k+3.

Hence the polynomial X2 +1 has a zero in Fp, (here p is an odd prime) if and only
if p ≡ 1mod 4. (Note that for p = 2 one has X2 +1= (X +1)2 in F2.)

Of course the same conclusions can be obtained by using the well-known fact
that F×

p is a cyclic group consisting of p−1 elements, so an element of order 4 (i.e.,
an element whose square is −1 6= 1) exists, if and only if 4|(p−1).

III.3.6 Definition. Given a field K and a positive integer n, an element ζ ∈ K is
called a primitive n-th root of unity if ζ has order n in the multiplicative group K×.
(In other words, ζn = 1 and ζm 6= 1 for 1≤ m < n).

Note that using Proposition III.1.1(1), the n-th cyclotomic polynomial Φn intro-
duced in Section III.1 can be regarded as a polynomial in K[x] for any field K . From
Proposition III.1.3(1) it then follows that any primitive n-th root of unity in K is in
fact a zero of the polynomial Φn ∈ K[x].

However, a zero in K of Φn is not necessarily a primitive n-th root of unity. For
example if char(K)= p > 0 then xp −1= (x−1)p in K[x], hence primitive p-th roots
of unity do not exist in K .
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III.3.7 Example. If char(K) 6= 2 then −1 is the only primitive 2-nd root of unity in
K .

For K = C the primitive p-th roots of unity (p a prime number) are precisely
the p−1 (pairwise distinct) complex numbers

ζk
p (1≤ k ≤ p−1), with ζp := cos

2π
p

+ isin
2π
p

.

In particular −1±i
p

3
2 are the two primitive 3-rd roots of unity.

III.3.8 Example. The primitive 3-rd roots of unity in F7 are 2 and 4, as follows
from 23 = 8= 1 and 43 = 64= 1 in F7.

Note that F25 ∼=F5[X ]/(X2 −2), since X2 −2 has no zeros in F5. Therefore every
element of F25 can be expressed uniquely as a+ bα with a, b ∈ F5 and α2 = 2. The
primitive 3-rd roots of unity in F25 are therefore 3(−1±α), namely

(3(−1+α))3 = 2(−1+3α−3α2 +α3)= 2(−1+3α−1+2α)= 1,

and similarly for 3(−1−α).

We will now study primitive p-th roots of unity, for p an odd prime number,
somewhat more extensively. In particular we introduce Gauss-sums and use them
to obtain information concerning quadratic equations (over finite fields).

III.3.9 Definition. Let p be an odd prime number and let K be a field of charac-
teristic char(K) 6= p. Suppose ζ ∈ K is a primitive p-th root of unity.

The map Z → K× given by n 7→ ζn is a homomorphism of groups with kernel
pZ ⊂ Z. Therefore one obtains a well-defined homomorphism Z/pZ = Fp → K×
given by

x 7→ ζx := ζn, for x = n = n+ pZ ∈Fp.

Similarly the Legendre symbol
(n

p
) ∈ {0,+1,−1} can, as before, be regarded as an

element of K . Since it depends only on p and on n mod p, we obtain a map Fp → K
given by

x 7→
(

x
p

)
:=

(
n
p

)
∈ K , for x = n = n+ pZ ∈Fp.

The Gauss-sum τ ∈ K is defined as

τ := ∑
x∈Fp

(
x
p

)
·ζx.

III.3.10 Example. Take p = 3. Considering K =C and ζ= −1+i
p

3
2 , one finds

τ=
(
0
3

)
·ζ0 +

(
1
3

)
·ζ1 +

(
2
3

)
·ζ2 = 0+ζ−ζ2 = i

p
3.

Note that with the choice ζ = −1−i
p

3
2 one obtains τ =−i

p
3, the complex conjugate

of the Gauss-sum above. So the Gauss-sum depends on the choice of the primitive
p-th root of unity ζ, however for our application this is not important.

For K =F7 and 3-rd root of unity ζ= 2 ∈F7 we have

τ=
(
0
3

)
·20 +

(
1
3

)
·21 +

(
2
3

)
·22 = 2−4 = 5.

Note that τ2 = 52 =−3 in F7, analogous to the case K =C.
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III.3.11 Theorem. Suppose p is an odd prime number and K is a field with char(K) 6= p
and ζ ∈ K is a primitive p-th root of unity. The associated Gauss-sum τ satisfies

τ2 =
(
−1
p

)
· p.

Proof. One computes

τ2 =
( ∑

x∈Fp

(
x
p

)
·ζx

)
·
( ∑

y∈Fp

(
y
p

)
·ζy

)

= ∑
x,y∈Fp

(
xy
p

)
·ζx+y

= ∑
z∈Fp

( ∑
x∈Fp

(
x(z− x)

p

))
·ζz (met z = x+ y).

For x = 0 one finds
(x(z−x)

p
)= 0, and for x 6= 0 the following holds:(x(z−x)

p
) = (−x2

p
) · (1−zx−1

p
)

= (−1
p

)(x2

p
) · (1−zx−1

p
)

= (−1
p

) · (1−zx−1

p
)
.

Hence

τ2 =
(
−1
p

)
· ∑

z∈Fp

czζ
z with cz =

∑
x∈F×

p

(
1− zx−1

p

)
.

The case z = 0 leads to

c0 =
∑

x∈F×
p

(
1
p

)
= ∑

x∈F×
p

1= p−1.

In case z 6= 0, and x running over the elements of F×
p , one has that zx−1 runs over

F×
p as well, and w := 1− zx−1 runs over Fp − {1}. This implies

cz =
( ∑

w∈Fp

(
w
p

))
−

(
1
p

)
= 0−1=−1 (with z ∈F×

p),

where it is used that Fp contains as many elements w such that
(w

p
) = 1 as it con-

tains elements with
(w

p
) = −1. Substituting the values of cz in the formula for τ2

now yields

τ2 =
(
−1
p

)
·
p−1+ ∑

z∈F×
p

(−1)ζz


=

(
−1
p

)
·
p−1− ∑

z∈F×
p

ζz


=

(
−1
p

)
·
(

p−
p−1∑
z=0

ζz

)

=
(
−1
p

)
· p,

where we also used that
p−1∑
z=0

ζz = ζp −1
ζ−1

= 0.

This proves Theorem III.3.11.
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III.3.12 Remark. We “explain” in terms of Galois theory why in some sense the
formula defining a Gauss-sum is very natural. So let p be an odd prime, and
ζ= ζp = e2πi/p ∈C. The field K :=Q(ζ) is a Galois extension of Q with Galois group
G ∼= (Z/pZ)× (see Corollary III.1.2). The element a mod n ∈ (Z/pZ)× corresponds to
the automorphism of K given by ζ 7→ ζa.

The subgroup H ⊂G consisting of all squares has index 2 in G. Hence the field
M := KH which by the Galois correspondence is associated to the subgroup H, is
a quadratic extension of Q. We describe a generator of M. This means: we want
an element α ∈ K with the properties σ(α) = α for all σ ∈ H (this guarantees that
α ∈ M) and moreover τ(α) 6=α for some τ ∈G \ H (this guarantees α 6∈Q).

An obvious first choice is

α := ∑
x∈F×

p a square
ζx.

Namely, if σ ∈ H, then σ(ζ)= ζy for some square y ∈F×
p , hence

σ(α)= ∑
x∈F×

p a square
ζxy =α

(since when x runs over the squares in F×
p , so does xy). Moreover when ν ∈ G \ H

then ν(ζ)= ζz for some z ∈F×
p which is not a square. Then

ν(α)= ∑
x∈F×

p a square
ζxz = ∑

w∈F×
p not a square

ζw.

Now observe that ∑
x∈F×

p a square
ζx + ∑

w∈F×
p not a square

ζw =
p−1∑
j=1

ζ j =−1.

As a consequence ν(α) =−1−α. To show that α 6∈Q we therefore need to establish
that α 6= −1−α, in other words, that 2α 6= −1.

A short argument for this (different and slightly more elementary reasonings
are given later as well as in the exercises) is the following. Evaluating at ζ yields
a surjective ring homomorphism Z[x] →Z[ζ] with kernel Z[x] ·Φp. Hence we have
Z[ζ] ∼= Z[x]/(Φp). Now let Fq be the splitting field of X p −1 over F2, and take a
primitive p-th root of unity ζ ∈ Fq. Then via Z[x] → Fq, f (x) 7→ f (ζ) one obtains a
ring homomorphism Z[ζ] → Fq. It sends α ∈Z[ζ] to some element α ∈ Fq and then
2α to 2α= 0, since char(Fq)= 2. So 2α 6= −1 because the image of −1 is not 0 ∈Fq.

We now have that M = KH = Q[α], a quadratic extension of Q with basis (as
Q-vectorspace) 1,α and with Galois group over Q generated by the restriction to M
of any ν ∈ G as above. On the basis 1,α such ν is given by the matrix

(1 −1
0 −1

)
. So a

basis for M over Q consisting of eigenvectors of ν is 1,2α+1. We have

2α+1= 2

 ∑
x∈F×

p a square
ζx

−
(

p−1∑
j=1

ζ j

)
= τ,

precisely our Gauss-sum! It is an eigenvector of ν with eigenvalue −1, and hence
ν(τ2) = (ν(τ))2 = (−τ)2 = τ2, showing that τ2 ∈ Q. Theorem III.3.11 shows a little
more, namely it determines τ2 as an element of Q, namely (2α+ 1)2 = τ2 = ±p,
providing another argument why 2α 6= −1.

Theorem III.3.11 describes a zero τ ∈ K , in case char(K) 6= p and K contains a
primitive p-th root of unity, of the polynomial X2−(−1

p
)
p. For example, we can take

as K the field ΩX p−1
Fq

, for p 6= q two distinct primes (and p 6= 2). In the latter case a
natural question is, whether τ is contained in the field Fq. In other words, whether
or not τq = τ.
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III.3.13 Lemma. Suppose p and q are distinct odd primes. Let K be a field with
char(K)= q, containing a primitive p-th root of unity. Then

τq =
(

q
p

)
·τ, and in particular τ ∈Fq ⇐⇒

(
q
p

)
= 1.

Proof. By the definition of Gauss-sum and the fact that x 7→ xq is a field homomor-
phism of K , it follows that

τq =
( ∑

x∈Fp

(
x
p

)
·ζx

)q

= ∑
x∈Fp

(
x
p

)
·ζqx

= ∑
y∈Fp

(
yq−1

p

)
·ζy (with y= xq ∈Fp)

=
(
q−1

p

)
· ∑

y∈Fp

(
y
p

)
·ζy

=
(

q
p

)
·τ,

here we used q = q2 · q−1, hence q−1 is a square in F×
p precisely when q is.

For the last assertion, note that τ 6= 0 by Theorem III.3.11. This proves the
lemma.

III.3.14 Theorem. (quadratic reciprocity) (Gauss, 1801).
Suppose p and q are distinct odd primes. Then(

q
p

)
=

(
p
q

)
if p ≡ 1 mod 4 or q ≡ 1 mod 4,(

q
p

)
= −

(
p
q

)
if p ≡ q ≡ 3 mod 4.

Formulated somewhat shorter:(
p
q

)(
q
p

)
= (−1)

p−1
2 · q−1

2 .

Moreover (
−1
p

)
= (−1)

p−1
2 , and

(
2
p

)
= (−1)

p2−1
8 .

Proof. First, note that
(−1

p
)= (−1)

p−1
2 is immediate from Theorem III.3.3.

We now show quadratic reciprocity. Take K =ΩX p−1
Fq

and let τ be the Gauss-sum
as before. By Lemma III.3.13 we have

τq−1 =
(

q
p

)
.

On the other hand from Theorem III.3.11 we obtain

τq−1 = (τ2)
q−1

2 =
(
−1
p

) q−1
2

p
q−1

2 .
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Now Theorem III.3.3 implies(
−1
p

)
= (−1)

p−1
2 , p

q−1
2 =

(
p
q

)
(∈Fq).

Combining the above equalities one concludes(
q
p

)
= (−1)

p−1
2 · q−1

2

(
p
q

)
,

which is evidently equivalent to quadratic reciprocity.
Finally we will show for any odd prime p that

(∃x ∈Fp : x2 = 2) ⇐⇒ p ≡±1 mod8.

Given an odd prime p, the polynomial X4 +1 has a zero ζ in some finite exten-
sion K of Fp. So ζ4 =−1 and ζ8 = 1. Put x := ζ+ζ7 ∈ K , then

x2 = (ζ+ζ7)2 = ζ2 +ζ6 +2= 2,

where we used ζ6 = ζ4ζ2 =−ζ2.
In case p = 8k+1 or p = 8k+7 then

ζp = ζ, ζ7p = ζ7 if p ≡ 1mod8
ζp = ζ7, ζ7p = ζ if p ≡ 7mod8

}
=⇒ xp = (ζ+ζ7)p = ζ+ζ7 = x,

where we used that x 7→ xp is a field homomorphism. From xp = x it follows that
x ∈ Fp. This shows that in case p ≡ ±1mod8 an x ∈ Fp exists with x2 = 2, which
means

(2
p
)= 1.

In case p = 8k+3 or p = 8k+5 then (using ζ4 =−1) one finds

ζp = ζ3 =−ζ7 if p ≡ 3mod8
ζp = ζ5 =−ζ if p ≡ 5mod8

}
=⇒ xp = (ζ+ζ7)p =−(ζ+ζ7)=−x.

Hence the zero x of X2 −2 is not in Fp. The other zero (which is −x) is then not in
Fp either. Hence

(2
p
)=−1.

This completes the proof of Theorem III.3.14.

III.3.15 Example. We present a few simple applications of Theorem III.3.14.(
7

11

)
=−

(
11
7

)
=−

(
4
7

)
=−1,

since 4= 22. So 7 is not a square modulo 11. Next,(
5

11

)
=

(
11
5

)
=

(
1
5

)
= 1,

so 5 is a square modulo 11. Indeed, 42 = 16 = 5 in F11. Using that the Legendre-
symbol is multiplicative (see III.3.3), we find:(

6
11

)
=

(
2

11

)(
3

11

)
= (−1) ·−

(
11
3

)
= (−1) ·−

(
2
3

)
=−1.
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III.4 Exercises

1. Give a proof of Corollary III.1.2.

2. Prove parts (3) and (4) of Proposition III.1.3.

3. Let λ ∈Q. Prove that cos(2πλ) is algebraic over Q. Prove that Q(cos(2πλ)) is a
Galois extension. Determine its Galois group.

4. Determine Φ72 in a handy way.

5. Show for any odd prime p that the minimal polynomial of tan(π/p) over Q is an
Eisenstein polynomial.

6. Find all integers n ≥ 3 such that tan(π/n) ∈Q.

7. For each of the integers n ≥ 3 such that tan(π/n) has degree 2 over Q, find the
corresponding minimal polynomial.

8. Consider f := x6 −21x4 +35x2 −7 ∈Z[x]. As we saw in Section III.2, this is the
minimal polynomial of t7 = tan(π/7) over Q, and Q(t7)/Q is a Galois extension.

(a) Describe all zeros of f as values of the tangent function.

(b) Writing f as a product of factors of degree 1 and comparing coefficients,
what identities between tangent values do you obtain?

(c) Show using Galois theory that Q(t7) contains a unique quadratic field
Q(

p
d). (in fact, it holds that

p
7 ∈Q(t7). Factor f over Q(

p
7) and deduce

more tangent indentities from this!)

9. Show for primes p > 3 that: 3 is a square modulo p ⇔ p ≡ 1, −1 mod 12.

10. Show for p > 3 prime that −3 is a square in Fp if and only if p ≡ 1 mod 3.

11. Let p > 2 be prime and n ∈Z. Prove that if p|(n2 −2), then p ≡±1 mod 8.

12. Compute the Legendre-symbols
( 5
101

)
,

( 6
101

)
,

( 7
101

)
,

( 11
101

)
.

13. In Remark III.3.12, two arguments are provided showing that (with p an odd
prime and ζ a primitive p-th root of unity in C) one has α :=∑

a ∈ F×p2ζa 6= −1/2.
In this exercise we give two more proofs of this fact.

(a) Use that [Q(ζ) :Q]= p−1 and show that every subset of {1, ζ, ζ2, ζ3, . . . ,ζp−1}
consisting of p−1 elements, is a basis of Q(ζ) as a vectorspace over Q. Con-
clude from this that α 6∈Q.

(b) Another proof: forgetting the multiplication in the ring Z[ζ] ∼= Z[X ]/(Φp),
one obtains the finitely generated abelian group (Z[ζ],+,0). Use this to
show that (Z[α],+,0) is finitely generated as well, and conclude from this
that α 6∈Q\Z.

14. Let p be a prime number and let ζ ∈C× be a primitive p-th root of unity. Put
K =Q(ζ). Show that a unique field M exists with Q⊂ M ⊂ K and [M :Q]= 2.
Present an example of a cyclotomic field Q(ζn) containing more than one field
M with [M :Q]= 2.
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IV SYMMETRIC POLYNOMIALS

IV.1 Definition and results

Let R be a commutative ring with 1, and n an integer ≥ 1.

IV.1.1 Definition. A polynomial f ∈ R[X1, X2, ..., Xn] is called symmetric if f is
fixed under all permutations of X1, X2, ..., Xn.

IV.1.2 Examples. The polynomials

n∑
i=1

X i,
n∏

i=1
X i,

n∑
i=1

X k
i (with k ∈Z≥0)

are symmetric in R[X1, . . . , Xn].
The polynomial X1X2 + X2X3 + X3X4 + X4X1 is not symmetric: it is not fixed

under interchanging X1 and X2 (here n = 4).

If Z is a new variable, then the polynomial

(Z− X1)(Z− X2) · · · (Z− Xn) ∈ R[X1, X2, ..., Xn][Z]

can be written as

Zn −σ1Zn−1 +σ2Zn−2 − ...+ (−1)n−1σn−1Z+ (−1)nσn

with
σ1 = X1 + X2 + ...+ Xn
σ2 = X1X2 + X1X3 + ...+ X1Xn + X2X3 + ...+ Xn−1Xn,
σ3 = X1X2X3 + ...=∑

1≤i< j<k≤n X i X j Xk,
...
σt =∑

1≤i1<i2<...<i t≤n X i1 X i2 · · ·X i t ,
...
σn = X1X2 · · ·Xn.

The coefficients σ1,σ2, ...,σn here are symmetric polynomials called the elementary
symmetric polynomials. From σ1,σ2, ...,σn one obtains other symmetric polynomi-
als by addition, multiplication, and multiplication by elements of R.
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IV.1.3 Example. Take n = 2, then

σ1 = X1 + X2, σ2 = X1X2.

Other symmetric polynomials are

σ2
1 = X2

1 +2X1X2 + X2
2 , σ2

1 −2σ2 = X2
1 + X2

2 , σ3
1 −3σ1σ2 = X3

1 + X3
2 , etcetera.

One observes that every polynomial in σ1,σ2, ...,σn with coefficients from R, so
every g(σ1,σ2, . . . ,σn) for g ∈ R[X1, . . . , Xn], is a symmetric polynomial. The con-
verse of this holds as well:

IV.1.4 Theorem. (Main theorem of symmetric polynomials) Any symmetric poly-
nomial f ∈ R[X1, X2, ..., Xn] can be written as a polynomial in σ1, σ2, ...,σn with
coefficients in R (so f (X1, . . . , Xn)= g(σ1, . . . ,σn) for some g ∈ R[X1, . . . , Xn]).

Moreover this way of writing f is unique (so g is uniquely determined by f ).

Proof. Let f 6= 0 be symmetric. Order the nonzero terms rX a1
1 X a2

2 · · ·X an
n appearing

in f in such a way that a term r · X a1
1 X a2

2 · · ·X an
n appears ‘before’ r′ · X b1

1 X b2
2 · · ·X bn

n
if ai > bi for the least i with ai 6= bi (‘lexicographical ordering’).

The ‘leading term’

rX c1
1 X c2

2 · · ·X cn
n (r ∈ R, r 6= 0)

of f then has

c1 = (largest a1 appearing in f as exponent of X1 ),
c2 = (largest a2 apprearing with a given a1 = c1 ),

et cetera. We call r the leading coefficient of f .
As f is symmetric, c1 ≥ c2 ≥ ... ≥ cn since otherwise interchanging two X i ’s can

provide an ‘earlier’ term of f .
We claim that the symmetrical polynomial

rσc1−c2
1 σ

c2−c3
2 · · ·σcn−1−cn

n−1 σ
cn
n

also has leading term rX c1
1 X c2

2 · · ·X cn
n . Indeed,

σ1 has leading term X1,
σ2 has leading term X1X2
...
σn has leading term X1X2 · · ·Xn.

Now the rule

leading term (g) · leading term (h)= leading term (g ·h)

(which holds for polynomials g,h with leading coefficient 1), shows

leading term (σc1−c2
1 σ

c2−c3
2 . . .σcn

n ) = X c1−c2
1 · (X1X2)c2−c3 · · · (X1X2 · · ·Xn)cn

= X c1
1 X c2

2 · · ·X cn
n ,

as claimed.
So one concludes that

f1 := f − rσc1−c2
1 · · ·σcn

n
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only contains terms which lexicographically come later than the leading term of f .
If f1 = 0 then we found an expression for f as desired:

f = rσc1−c2
1 · · ·σcn

n .

If f1 6= 0, note that f1 is symmetric as well, so we can apply the same reasoning to
f1 as was done for f . This gives

f2 = f1 − r′σc
′
1−c

′
2

1 · · ·σc
′
n

n

and all terms appearing in f2 come lexicographically later than the leading term

r′X c
′
1

1 · · ·X c
′
n

n of f1. In case f2 = 0 we are done:

f = rσc1−c2
1 · · ·σcn

n + r′σc
′
1−c

′
2

1 · · ·σc
′
n

n ,

otherwise we continue with f2.
It remains to show that this process terminates, so in the sequence f1, f2, f3, . . .

one has fk = 0 for some k.
To this end one introduces the total degree tdeg( f ) of f , which is the maximal

a1 + a2 + ·· · + an one obtains from the terms r · X a1
1 · · ·X an

n ( 6= 0) of f . Note that
tdeg(σi)= i, and therefore

tdeg(σc1−c2
1 · · ·σcn

n ) = 1 · (c1 − c2)+2 · (c2 − c3)+ . . .+n · cn
= c1 + c2 + ...+ cn
≤ tdeg( f ).

It follows that
tdeg( f1)≤ tdeg( f )

and more generally

. . .≤ tdeg( fm)≤ tdeg( fm−1)≤ . . .≤ tdeg( f )

However, for a given total degree only finitely many products X a1
1 · · ·X an

n are possi-
ble. In every step of the process at least one such product is erased and all remain-
ing ones come lexicographically later. This shows that after finitely many steps we
have fk = 0, completing the proof of the first assertion in Theorem IV.1.4.

It remains to show: if g1 6= g2 are polynomals in n variables over R, then
g1(σ1,σ2, ...,σn) 6= g2(σ1,σ2, ...,σn). Writing g = g1 − g2 one concludes that it suf-
fices to show:

if g ∈ R[Y1, ...,Yn], g 6= 0, then g(σ1,σ2, ...,σn) 6= 0.

Every term appearing in g can be written as

rY a1−a2
1 ·Y a2−a3

2 · · ·Y an
n ,

with r ∈ R, r 6= 0, ai ∈ Z≥0. Consider the term in g such that the corresponding
a1,a2, ...,an (i.e., the product X a1

1 X a2
2 · · ·X an

n ) comes first in the lexicographical or-
dering. Substituting σi for Yi one obtains a polynomial in X1, ..., Xn with leading
term

(∗) rX a1
1 X a2

2 · · ·X an
n ,

since the other terms r′σa
′
1−a

′
2 ...σa

′
n

n give rise to polynomials in X1, ..., Xn with a
later leading term. Hence (∗) does not cancel against other terms, and therefore
g(σ1,σ2, ...,σn) 6= 0. This proves the theorem.
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IV.1.5 Remark. In the case R = K is a field, we discuss some relation between The-
orem IV.1.4 and Galois theory. Namely, put L := K(X1, . . . , Xn), the field of rational
functions over K in the variables X1, . . . Xn. Then the elementary symmetric poly-
nomials σ j are elements of L, so we obtain a subfield M := K(σ1, . . . ,σn) of L. Any
permutation of the variables X1, . . . , Xn extends to a K-linear automorphism of L
and these permutations in fact restrict to the identity map on the subfield M. More-
over L is the splitting field over M of the separable polynomial

∏n
j=1(X−X j) ∈ M[X ].

As this polynomial has degree n, we have [L : M]≤ n!.
The Galois group Gal(L/M) contains the subgroup corresponding to all permu-

tations of X1, . . . , Xn, so in particular [L : M]= #Gal(L/M)≥ n!.
The conclusion is that [L : M] = n! and G := Gal(L/M) ∼= Sn. In particular every

permutation of the variables X j extends to an element of G, and all elements of
G are obtained in this way. Galois theory then tells us that LG = M, so the ra-
tional functions in the X j ’s that are symmetric, which means invariant under any
permutation of the variables, are precisely the rational functions in the σ j ’s.

Theorem IV.1.4, which we proved without any reference to Galois theory, states
that this even holds when we replace ‘rational functions’ by ‘polynomials’, and even
stronger, even when we replace the field K by an arbitrary ring R.

IV.1.6 Example. Take n = 3, and

f = X3
1 X2 + X3

1 X3 + X1X3
2 + X1X3

3 + X3
2 X3 + X2X3

3 .

The terms here are already lexicographically ordered, and the leading term X3
1 X2

has c1 = 3,, c2 = 1, and c3 = 0. Following the proof of Theorem IV.1.4 we must
subtract from f the symmetric expression

σ
c1−c2
1 σ

c2−c3
2 σ

c3
3 =σ2

1σ2 = (X1 + X2 + X3)2 · (X1X2 + X1X3 + X2X3)

= X3
1 X2 + X3

1 X3 +2X2
1 X2

2 +5X2
1 X2X3 +2X2

1 X2
3 + X1X3

2

+5X1X2
2 X3 +5X1X2X2

3 + X1X3
3 + X3

2 X3 +2X2
2 X2

3 + X2X3
3 .

The result is

f1 =−2X2
1 X2

2 −5X2
1 X2X3 −2X2

1 X2
3 −5X1X2

2 X3 −5X1X2X2
3 −2X2

2 X2
3 .

From this one subtracts

−2σ2
2 =−2X2

1 X2
2 −4X2

1 X2X3 −2X2
1 X2

3 −4X1X2
2 X3 −4X1X2X2

3 −2X2
2 X2

3 ,

which leads to

f2 = f1 − (−2σ2
2)=−X2

1 X2X3 − X1X2
2 X3 − X1X2X2

3 .

Subtracting from this −σ1σ3 one obtains 0, so

f =σ2
1σ2 −2σ2

2 −σ1σ3.

Hence the g as mentioned in Theorem IV.1.4 is X2
1 X2 −2X2

2 − X1X3.

Usually Theorem IV.1.4 is applied to the following situation. Let f ∈ R[X1, . . . , Xn]
be symmetric, and take α1, α2, . . . ,αn ∈ R. By Theorem IV.1.4 f can be expressed
in σ1,σ2, . . . ,σn, hence f (α1,α2, . . . ,αn) can be expressed in

σ1(α1, . . . ,αn)=α1 + . . .+αn,
σ2(α1, . . . ,αn)=α1α2 +α1α3 + . . .+αn−1αn,
...
σn(α1, . . . ,αn)=α1α2 . . .αn,
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which are precisely ± the coefficients of

(X −α1)(X −α2) . . . (X −αn).

Roughly speaking this means that every symmetric expression in ‘the n zeros’ of
a monic polynomial of degree n in one variable, can be expressed in the coefficients
of this polynomial.

This assertion becomes particularly relevant of these n zeros are not contained
in the ring R itself, but only in some extension R′ ⊃ R. We now first present an
example and then continue with a general result.

IV.1.7 Example. Consider h = X3 − X −1 ∈ Z[X ]. In Z, and even in Q, no zero of
h exists (as follows using the lemma of Gauss). However, α1,α2,α3 ∈C exist such
that

X3 − X −1= (X −α1)(X −α2)(X −α3).

Comparing coefficients yields

σ1(α1,α2,α3) =α1 +α2 +α3 = 0
σ2(α1,α2,α3) =α1α2 +α1α3 +α2α3 = −1
σ3(α1,α2,α3) =α1α2α3 = 1.

Hence Theorem IV.1.4 implies:
is f ∈ Z[X1, X2, X3] an arbitrary symmetric polynomial, then f (α1,α2,α3) ∈ Z (al-
though α1,α2,α3 ∉Z).

Taking as f the polynomial from Example IV.1.6, so

f = X3
1 X2 + X3

1 X3 + . . .+ X2X3
3 =σ2

1σ2 −2σ2
2 −σ1σ3

one finds by substiting X i :=αi:

α3
1α2 +α3

1α3 + . . .+α2α
3
3 = 02 · (−1)−2 · (−1)2 −0.1=−2.

IV.1.8 Theorem. Let R′ be a commutative ring (with 1) and R ⊂ R a subring. Sup-
pose h ∈ R[X ] has degree n and suppose α1,α2, . . . ,αn ∈ R′ exist such that

h = (X −α1)(X −α2) . . . (X −αn).

Then for every symmetric f ∈ R[X1, X2, . . . , Xn] it holds that

f (α1,α2, . . . ,αn) ∈ R.

Proof. For all i we have
σi(α1, . . . ,αn) ∈ R

since this is up to sign the coefficient of X i in h ∈ R[X ]. As the symmetric f can be
written as f = g(σ1, . . . ,σn) for some g ∈ R[X1, . . . , Xn] (see Theorem IV.1.4), substi-
tuting the αi in g(σ1, . . . ,σn) yields an element in R, as desired.

IV.1.9 Example. An important symmetric polynomial is

D = ∏
1≤i< j≤n

(X i − X j)2.

The discriminant of a polynomial

h = X n +a1X n−1 + ...+an = (X −α1)(X −α2)...(X −αn)
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is defined as
∆(h)= ∏

1≤i< j≤n
(αi −α j)2 = D(α1,α2, ...,αn).

This discriminant can be expressed in a1,a2, ...,an. For n = 2,3,4 one obtains the
following formulas:

∆(X2 +aX +b)= a2 −4b,

∆(X3 +aX2 +bX + c)= a2b2 −4b3 −4a3c−27c2 +18abc,

∆(X4 +aX3 +bX2 + cX +d)=
1
27

{4(b2 −3ac+12d)3 − (2b3 −72bd+27a2d−9abc+27c2)2}

(when expanding the latter expression, it turns out that the 27 in the denominator
cancels).

Given a (unitary) ring R, the discriminant of h = X n +a1X n−1 + ...+an ∈ R[X ]
is defined as an expression in the a j ’s, regardless whether or not h can be factored
in R[X ] as a product of n factors (X −αi).

The use of the discriminant relies on the observarion that in the case where the
ring R is an integral domain, we have

∆(h)= 0 ⇐⇒ ∃ i, j i 6= j : αi =α j,

in other words, the discriminant is zero if and only if the polynomial has a multiple
zero. The case n = 2 is already discussed in high school. An other application of the
discriminant is discussed in Exercise 5 on page 34.

Is K a field of characteristic char(K) 6= 3 (so that 1
3 ∈ K), then the substitution

X := X − 1
3 a brings a polynomial f = X3 +aX2 +bX + c =∏

(X −αi) of degree 3 into
the form g = X3+pX+q. Note that 4( f )=4(g), since the zeros of g are βi :=αi+ 1

3 a
and αi −α j =βi −β j. The discriminant of g is simply 4(g)=−(4p3 +27q2).

IV.1.10 Example. We will use symmetric polynomials to obtain expressions for the
zeros of a polynomial of degree 3.

Let K be a field of characteristic char(K) 6= 2, 3, and let f ∈ K[X ] be a monic
polynomial of degree 3:

f = X3 +aX2 +bX + c.

Let α1, α2, α3 be the zeros of f (in a splitting field of f over K , see Section I.3).
Then

−a = α1 +α2 +α3,
b = α1α2 +α1α3 +α2α3,

−c = α1α2α3.

Let ω be a primitive third root of unity (in an extension of the chosen splitting field
of f over K), so ω 6= 1, ω3 = 1). Put

A1 := α1 +ωα2 +ω2α3,
A2 := α1 +ω2α2 +ωα3

We consider what happens to A i when permuting the αi ’s. For ρ := (123) ∈ S3 we
find

ρ = (123) : A1 7→ α2 +ωα3 +ω2α1 = ω2 A1,
A2 7→ α2 +ω2α3 +ωα1 = ωA2.

Moreover,
τ= (23) : A1 7→ A2, (23) : A2 7→ A1.

Since the group S3 is generated by ρ and τ it follows that

A3
1 + A3

2, A1 A2
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are symmetric polynomials in α1, α2, α3.
Therefore by Theorem IV.1.4 they can be expressed in terms of the elementary

symmetric polynomials σi which are in our case, up to sign, equal to the coefficients
of f . A short calculation reveals

2B := A3
1 + A3

2 =−2a3 +9ab−27c,
A := A1 A2 = a2 −3b.

Since
(T − A3

1)(T − A3
2)= T2 −2BT + A3,

we conclude that A3
1, A3

2 are given by

A3
i = B±

√
B2 − A3.

Hence

A i =
3
√

B±
√

B2 − A3

(here one has three choices for the cube root ‘ 3
p’). Finally one determines α1 by

noting that

3α1 = (α1 +α2 +α3)+ (α1 +ωα2 +ω2α3)+ (α1 +ω2α2 +ωα3)
= −a+ A1 + A2,

where it is used that ω2 +ω+1= 0.

As an explicit example, take

f = X3 +2X2 − X −2 ∈Q[X ].

Here
B = 10, A = 7,

A1 =
3
√

10+
√

102 −73 = 3
√

10+9i
p

3

(we chose a + sign, this turns out to be irrelevant). There are three solutions in C
to A3

1 = 10+9i
p

3, namely

A1 =−2+ i
p

3 and A1 = 1
2

(−1+3i
p

3) and A1 = 1
2

(5+ i
p

3).

Since A1 A2 = A = 7 the corresponding A2’s are

A2 =−2− i
p

3, A2 = 1
2

(−1+3i
p

3), A2 = 1
2

(5− i
p

3).

We now obtain the three zeros α of f using α= 1
3 (−a+ A1 + A2), they are

−2, −1, 1.

The formulas for the roots of cubic equations which are obtained in this way,
were in a different way found by Cardano en Tartaglia around 1540. They are
called the Cardano formulas.

IV.1.11 Remark. We briefly return to the described solution method for solving cu-
bic equations. We interpret the method in terms of Galois theory. Namely, let K be
a field (of characteristic 6= 3, 6= 2) and let σ1,σ2,σ3 be variables. To be in exactly the
situation discussed before, we will assume that K contains a primitive third root of
unity ω. Over K(σ1,σ2,σ3) we consider the polynomial f = X3 −σ1X2 +σ2X −σ3.
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Let L be a splitting field of f over K(σ1,σ2,σ3) and let X1, X2, X3 be the three ze-
ros of f in L. As we saw in Remark IV.1.5 L = K(X1, X2, X3) and the extension
K(X1, X2, X3) ⊃ K(σ1,σ2,σ3) is Galois, with Galois group S3 acting by permuta-
tions on X1, X2, X3.

The elements A3
1, A3

2 ∈ K(X1, X2, X3) used in deriving the Cardano formulas are
invariant under the subgroup A3 ⊂ S3, while the 2-cycles in S3 interchange A3

1 and
A3

2. So A3
1, A3

2 6∈ K(σ1,σ2,σ3) but they are in the field LA3 of invariants under A3.
This is a quadratic extension of K(σ1,σ2,σ3), and indeed we found a quadratic poly-
nomial over K(σ1,σ2,σ3) with the A3

j ’s as zeros: T2−2BT+A3. The element A1 ∈ L
is not in this subfield since it is not fixed under the automorphisms in A3. However
A1 satisfies the cubic equation A3

i =W for some given W ∈ K(σ1,σ2,σ3)(A3
1).

So we found the zeros of f by constructing a quadratic extension of K(σ1,σ2,σ3)
and then taking the cube root of a suitable element in that extension.

In Exercise 4 a similar idea is used to obtain the zeros of a polynomial f of
degree 4, which we now briefly sketch. In this case, the ‘general’ Galois group is
S4. We first describe 3 combinations Ci of the zeros of f which are invariant under
the normal subgroup

H := {e, (12)(34), (13)(24), (14)(23)} ⊂ S4.

Since S4/H ∼= S3 the Ci generate a Galois extension with Galois group S3. The
polynomial (X−C1)(X−C2)(X−C3) then has coefficients which are invariant under
all of S4, so they can be expressed in the coefficients of f . Since it turns out to be
relatively easy to obtain the zeros of f in terms of square roots of the Ci, this
reduces the problem of finding expressions for the zeros of f to the problem of
finding such expressions for a cubic polynomial, and that was done before.

Unfortunately, for n > 4 the group An is the only nontrivial normal subgroup of
Sn. For this reason, solving an equation of degree n > 4 is in an essential way more
difficult than the cases n ≤ 4.
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IV.2 Exercises

1. Express the symmetric polynomial X3
1+X3

2+X3
3 (here n = 3) in terms of σ1,σ2,σ3.

2. In the proof of IV.1.4 we used the rule

leadingterm (g) · leadingterm (h)= leadingterm (g ·h)

for polynomials g,h with leading coefficient 1. Show that this rule is false in
general if we allow g,h to have zero divisors as leading coefficents.

3. Let (X−α1)(X−α2)(X−α3)= X3−X−1, with α1,α2,α3 ∈C. Put sk =αk
1+αk

2+αk
3

for k ∈Z. Show:

s−1 =−1, s0 = 3, s1 = 0
sk = sk−2 + sk−3 for all k ∈Z,
sk ∈Z for all k ∈Z (also negative ones!).

4. Take f = X4 + aX3 + bX2 + cX + d ∈ K[X ] where K is a field of characteristic
char(K) 6= 2, 3. Write α1, . . . ,α4 for the zeros of f in some extension of K , so
f =∏

(X −α j).

(a) Define
C1 = (α1 +α2 −α3 −α4)2

C2 = (α1 −α2 +α3 −α4)2

C3 = (α1 −α2 −α3 +α4)2.

Express α1 in terms of
√

Ci and the coefficient a of f .

(b) Verify that the S4 action (permuting the αi ’s) also permutes the Ci ’s.
Check that the subgroup H in Remark IV.1.11 leaves all Ci invariant.

(c) Show that

C1 +C2 +C3 = 3a2 −8b
C1C2 +C1C3 +C2C3 = 3a4 −16a2b+16b2 +16ac−64d

C1C2C3 = (a3 −4ab+8c)2.

(d) Explain how the information above can be used to find an expression for
the solutions of a general equation of degree 4.

5. Suppose f = X3 +aX2 + bX + c ∈Q[X ] is an irreducible polynomial with zeros
α1, α2, α3 ∈C. The splitting field Ω f

Q
∼=Q(α1,α2,α3), hence

p
4 := (α1 −α2)(α1 −α3)(α2 −α3) ∈Ω f

Q, and 4∈Q,

where 4 is the discriminant of f introduced in Example IV.1.9.

(a) Prove that [Ω f
Q :Q]= 3 or 6.

(b) Prove that
p4 6∈Q ⇒ [Ω f

Q :Q]= 6.

(c) Now assume
p4 ∈ Q. Put f = (X −α1)(X2 + rX + s) ∈ Q(α1)[X ]. Show

that α2 ∈ Q(α1) by expressing α2 in terms of
p4,a,b, c, r, s,α1 ∈ Q(α1).

Conclude that [Ω f
Q :Q]= 3⇔p4∈Q.

(d) Describe Gal(Ω f
Q/Q) (the answer depends on ∆ being a square or not).
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V ALGEBRAICALLY CLOSED FIELDS

V.1 Definition and examples

V.1.1 Definition. A field K is called algebraically closed if for every f ∈ K[X ] such
that f ∉ K , an α ∈ K exists such that f (α)= 0.

One of the statements in the next result is that if K is algebraically closed, then
every f ∈ K[X ], f 6= 0, splits in K[X ] as a product of factors of degree 1.

V.1.2 Theorem. Let K be a field. The following statements are equivalent:

(a) K is algebraically closed;
(b) every irreducible polynomial in K[X ] has degree 1;
(c) the only algebraic extension L of K is L = K ;
(d) for every monic f ∈ K[X ] elements α1,α2, ...,αn ∈ K exist with f =∏n

i=1(X −αi).

Proof. (a) ⇒ (b). If (a) holds, then a polynomial of degree > 1 has a zero, hence is
not irreducible.
(b) ⇒ (c). Suppose L ⊃ K is algebraic. Then any α ∈ L has a minimal polynomial f αK
which is irreducible in K[X ], so deg( f αK ) = 1 using (b). Hence α ∈ K , which implies
L = K .
(c) ⇒ (d). The splitting field Ω f

K of f over K is algebraic over K , hence (c) implies
Ω

f
K = K , which is what we wanted to show.

(d) ⇒ (a). This is evident, since every αi is a zero of f .
This completes the proof of Theorem V.1.2.

V.1.3 Theorem. Every algebraically closed field K is infinite.

Proof. If K is finite, say K = {α1,α2, ...,αn}, then

f = 1+
n∏

i=1
(X −αi)

is not constant and has no zero in K . This proves V.1.3.

The next result, originally proven in the doctoral dissertation (1799) of Carl
Friedrich Gauss, is sometimes called the ‘Fundamental Theorem of Algebra’.

V.1.4 Theorem. The field C of complex numbers is algebraically closed.
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A simple analytic proof of this result, which relies on Liouville’s theorem, is of-
ten discussed in introductory courses on complex function theory. Below we present
a proof in which all ingredients except the following lemma are purely algebraic.

V.1.5 Lemma. Let f ∈ R[X ], and assume that β, γ ∈ R exist with f (β) > 0 and
f (γ)< 0.

Then α ∈R exists with f (α)= 0.

Proof. (of Lemma V.1.5). This is a special case of the intermediate value theorem
from Real Analysis, since polynomials define continous functions.

In the proof of Theorem V.1.4 we will make use of the following lemmas.

V.1.6 Lemma. Any f ∈C[X ] of degree 2 has a zero in C.

Proof. We may assume that f is monic: f = X2 +βX +γ, with β,γ ∈C. Writing

f = (X + 1
2
β)2 − (

1
4
β2 −γ)

it suffices to show that the complex number 1
4β

2 −γ has a square root in C.
Write 1

4β
2 −γ = a+ bi, for a,b ∈ R. First consider the case b = 0. If a > 0 one

obtains the root
p

a in R by applying Lemma V.1.5 to g = X2 − a, observing that
g(0) < 0, g(a+ 1) > 0. Is a ≤ 0 then we have the square root i

p|a| in C. This
finishes the case b = 0.

From now on we assume b 6= 0 and we want c, d ∈R such that

(c+di)2 = (c2 −d2)+2cdi = a+bi.

This means
c2 −d2 = a, 2cd = b.

As b 6= 0 the desired c, d should both be 6= 0 as well, and then

c = b
2d

, so
b2

4d2 −d2 = a.

Therefore the real number d must be a zero of

g = 4X4 +4aX2 −b2 ∈R[X ].

Since g(0) < 0 and g(x) > 0 for x ∈ R sufficiently large, Lemma V.1.5 implies that
d ∈R with g(d)= 0 exists. Then taking c = b

2d shows that a+bi has the square root
c+di in C. This proves Lemma V.1.6.

V.1.7 Lemma. Any f ∈R[X ] of odd degree has a zero in R.

Proof. We may assume that the leading coefficient of f is positive. Then f (x) > 0
for x ∈R sufficiently large, and since deg( f ) is odd we also have f (x) < 0 for x ∈R
sufficiently negative. Hence Lemma V.1.5 implies that f has a zero in R.

V.1.8 Lemma. Suppose that every nonconstant f ∈R[X ] (so with real coefficients)
has a zero in C. Then C is algebraically closed.

Proof. Take g =
n∑

i=0
ai X i ∈ C[X ], g ∉ C. We have to show that g has a zero in C.

Define

ḡ :=
n∑

i=0
āi X i (∈C[X ])
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where āi denotes the complex conjugate of ai ∈C. Put

f := g · ḡ (∈C[X ]).

Clearly all coefficients of f are real, so f ∈R[X ]. Moreover deg( f )= 2 ·deg(g) hence
f is nonconstant. By the assumption of our lemma applied to f some α ∈C exists
with f (α)= 0. This means

g(α) · ḡ(α)= 0.

Is g(α)= 0 then we are done. In case g(α) 6= 0 one concludes ḡ(α)= 0, so

n∑
i=0

āiα
i = 0.

Taking the complex conjugate yields

n∑
i=0

aiᾱ
i = 0,

so g(ᾱ)= 0 and again we found a zero in C of g. This proves Lemma V.1.8.

We are now ready to prove the main result of this section.

Proof. (of Theorem V.1.4). By Lemma V.1.8 it suffices to show that any nonconstant
f ∈R[X ] has a zero in C. So take any such f . We may assume that f is monic. Put
n = deg( f ). We write n = 2ku with k ∈Z≥0 and u an odd positive integer. The proof
will be done by mathematical induction w.r.t. k.

If k = 0 then deg( f ) is odd and Lemma V.1.7 shows that f has a zero in C (even
in R).

Now assume k ≥ 1, so n is even. We use the field L =Ω f
C ⊃C. In L[X ] we have

f =
n∏

i=1
(X −αi), αi ∈ L (1≤ i ≤ n).

For any c ∈R consider

gc =
∏

1≤i< j≤n
(X − (αi +α j + cαiα j)) (∈ L[X ]).

The coefficients of gc are symmetric polynomials in α1,α2, . . . ,αn, hence by Theo-
rem IV.1.8 (applied to R =R, R′ = L) we have gc ∈R[X ].

The degree of gc equals the number of pairs (i, j) with 1 ≤ i < j ≤ n, which is
1
2 n(n−1)= 2k−1 ·u ·(n−1). Here n−1 is odd, so the number of factors 2 in deg(gc) is
k−1. Hence applying the induction hypothesis to gc we conclude that gc has a zero
in C. Now the zeros of gc are the 1

2 n(n−1) expressions αi+α j+cαiα j. We conclude:
for every c ∈R there exist i and j with 1≤ i < j ≤ n and αi +α j + cαiα j ∈C.

Here i and j depend on c. However there are only finitely many possibilities for
i and j while we have infinitely many c ∈R. So a pair of real numbers c 6= c′ which
give the same i, j. This means

αi +α j + cαiα j ∈C, αi +α j + c′αiα j ∈C.

Taking suitable linear combinations one finds that

β=αi +α j, γ=αiα j ∈C andhence (X −αi)(X −α j)= X2 −βX +γ ∈C[X ].

Then Lemma V.1.6 tells us that this polynomial has a zero in C, so αi ∈C or α j ∈C.
Hence f has a zero in C, as desired.

This proves the induction step and therefore Theorem V.1.4.
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V.1.9 Corollary. Every irreducible f ∈R[X ] has degree 1 or 2.
A polynomial X2 +bX + c ∈R[X ] is irreducible in R[X ] if and only if b2 −4c < 0.

Proof. Let f ∈ R[X ] be monic and irreducible, and let α ∈ C be a zero of f . Then
f = f αR , and

deg( f )= [R(α) :R]≤ [C :R]= 2.

This proves the first assertion in V.1.9. The second one follows from

X2 +bX + c = (X + 1
2

b)2 − 1
4

(b2 −4c)

and the fact that X2 − a is irreducible in R[X ] if and only if a < 0. This shows
V.1.9.

V.2 The algebraic closure

V.2.1 Definition. An algebraic closure of a field K is a field extension K ⊃ K with
the properties

i. K is algebraic over K ;
ii. K is algebraically closed.

V.2.2 Example. From V.1.4 we know that C is an algebraic closure of of R.

V.2.3 Theorem. The field Q of rational numbers has an algebraic closure.

Proof. Put
Q= {α ∈C : α is algebraic over Q}.

From basic properties of the notion ‘algebraic’ we have that indeed Q is a field. We
verify condition (ii), which then implies that Q̄ is an algebraic closure of Q.

Laat f ∈Q[X ] be nonconstant. We need to show that f has a zero in Q. Using
Theorem V.1.4 one obtains a zero α of f in C. As f ∈Q[X ], this α is algebraic over
Q. Moreover the field Q is algebraic over Q, and therefore Q(α) is an algebraic
extension of Q. In particular α is algebraic over Q, so α ∈Q. This proves V.2.3.

V.2.4 Remark. The algebraic closure of Q certainly does not equal C, since (un-
countably many) transcendental complex numbers exist.

More generally we have:

V.2.5 Theorem. Every field K has an algebraic closure K .
Moreover K is unique up to K-isomorphism, meaning: if K1 and K2 are algebraic
closures of K , then K1 ∼=K K2.

Proofs of this for the general case necessarily depend on “Zorn’s Lemma", the
same axiom in the foundations of set theory that was also needed to prove the ex-
istence of a maximal ideal in an arbitrary ring. For completeness, we copy here
three proofs taken from J.S. Milne’s online lecture notes Fields and Galois The-
ory, see www.jmilne.org/math/CourseNotes/FTc.pdf (Version 4.52, March 17, 2017,
pages 86–88).
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V.3 Exercises

1. Suppose K = Fq is a finite field of charakteristic p. Let f = 1+∏
α∈K (X −α) be

the polynomial used in the proof of V.1.3. Put L =Ω f
K . Show that:

(a) f = X q − X +1;

(b) for every α ∈ L such that f (α)= 0 it holds that

αqi =α− ī for all i ∈Z>0;

here ī = (i mod p) ∈Fp ⊂ K . In particular, show that

αqp =α;

(c) L =Fqp ;

(d) every irreducible factor of f in K[X ] has degree p.

2. Suppose K is an algebraic extension of the field K such that for every monic
f ∈ K[X ] the field K contains a splitting field of f over K . Show that K is an
algebraic closure of K .

3. Let Q be the algebraic closure of Q in C. Show that [Q :Q∩R]= 2.
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VI MODULES

VI.1 Definitions

The analogue of a vectorspace over a field is a module over a ring.

VI.1.1 Definition. Let R be a (unitary) ring. A left-R-module M is an abelian
group (M,+,0) with an action of the ring R, which means a map:

R×M −→ M, (a,m) 7→ am,

such that for all a, b ∈ R and all m, n ∈ M it holds that:

(RM1) a(m+n)= am+an,
(RM2) (a+b)m = am+bm,
(RM3) a(bm)= (ab)m,
(RM4) 1m = m.

A right-R-module is defined analogously, but in that case with an action M×R → M
et cetera.

VI.1.2 Remark. Unless explicitly stated otherwise, all modules considered here
are left-R-modules and we simply write R-modules.

VI.1.3 Example. Let R = K be a field. In this case the axioms for a left-R-module
are exactly the axioms for a vectorspace over K .

VI.1.4 Example. Let K be a field. The ring R consisting of all n×n matrices with
coefficients in K acts on the additive group (Kn)+ of the vectorspace Kn:

R = M(n,K), M = (Kn)+ with action (A, v) 7→ Av,

the usual product of a matrix and a vector. This turns Kn into a left-M(n,K)-
module.

VI.1.5 Example. Take R =Z and let M =G be an abelian group. Define an action
of Z on G using 0g := e, (−1)g :=−g with e ∈G the unit element and −g the inverse
of g in G. Next, define ng := g+g+. . .+g (n times) and (−n)g = (−g)+(−g)+. . .+(−g)
(n times) whenever n ≥ 1. Verify that in this way G is a Z-module.

VI.1.6 Example. Suppose R is a ring and I ⊂ R is an ideal. Then I is an R-module.
Moreover R/I is an R-module as well, with action:

R×R/I −→ R/I (r, a+ I) 7→ ra+ I.

Note that in this way ra := ra+ I = ra.
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VI.1.7 Remark. The axioms of a left-R-module imply:

0m = (0+0)m = 0m+0m hence 0m = 0.

Moreover:
0= (a+ (−a))m = am+ (−a)m so (−a)m =−(am),

in particular (−1)m = −(1m) = −m, hence a(−m) = a ((−1)m) = (a(−1))m = (−a)m,
which justifies the notation −am for (−a)m =−(am)= a(−m).

VI.1.8 Definition. A submodule N of a left-R-module M is a subgroup of M which
is closed under the action of R. This means that N ⊂ M has the property that for
all a, b ∈ N and all r ∈ R one has:

(SM1) 0 ∈ N, a−b ∈ N,
(SM2) ra ∈ N, (one also writes rN ⊆ N).

A submodule N of the R-module M is itself also an R-module.

VI.1.9 Examples. 1. Take a field R = K , and let M be a vectorspace over K . The
submodules of M are precisely the linear subspaces of M.

2. The only submodules of the M(n,K)-module Kn are {0} and Kn. Namely, if
x, y ∈ Kn− {0} then A ∈ M(n,K) exists with Ax = y (verify this, and check how it
implies the claim!).

3. The submodules of the Z-module G, with G any abelian group, are precisely the
subgroups of G (check for yourself!).

4. The ring R is itself an R-module, and the R-submodules of R are precisely the
ideals of R (as one easily verifies!).

5. Take A ∈ M(n,K) where K is a field, and let R = K[A] = {
∑

i<∞ ai A i : ai ∈ K}.
Suppose v ∈ Kn is an eigenvector of A with eigenvalue λ ∈ K . Then the (one-
dimensional) subspace Kv is a submodule of the R-module Kn. Namely, Kv is
an additive group and since Av =λv ∈ Kv, also (

∑
i<∞ ai A i)(v) ∈ Kv.

VI.2 R-module homomorphisms

The R-module homomorphisms generalise the linear maps:

VI.2.1 Definition. Let R be a ring and let M, N be (left)-R-modules. An R-module
homomorphism is a map

f : M −→ N,

which is a homomorphism of abelian groups and which is moreover R-linear. In
other words, for all x, y ∈ M and for all r ∈ R the map f satisfies:

(H1) f (x+ y)= f (x)+ f (y),
(H2) f (rx)= r f (x).

In particular it follows that f (0)= 0.
An R-module isomorphism is a bijective R-module homomorphism. (Note that
the inverse of an R-module isomorphism is again a (bijective) R-module homo-
morphism and therefore it is again an R-module isomorphism.)
The kernel of an R-module homomorphism f : M → N is defined as

Ker( f ) := {m ∈ M : f (m)= 0 (∈ N) } .

The image of an R-module homomorphism is defined as

Im( f )= f [M]= { f (m) ∈ N : m ∈ M} .
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VI.2.2 Examples. 1. Since 0 = {0} ⊂ R is an R-module (it is an ideal in R), it fol-
lows that the obvious maps

0−→ M, M −→ 0

are R-module homomorphisms (the first one sends 0 ∈ R to 0 ∈ M, the second
one sends every m ∈ M to 0 ∈ R).

2. If R is a commutative ring and M is an R-module and a ∈ R, then

φa : M −→ M, m 7→ am

is an R-module homomorphism.
3. A homomorphism f : G → H of abelian groups is a Z-module homomorphism,

namely f (2g)= f (g+ g)= f (g)+ f (g)= 2 f (g) et cetera.
4. Let R be a ring and I ⊂ R an ideal. Then R and R/I are R-modules. The

canonical map (a ring homomorphism):

φ : R −→ R/I, m 7→ m = m+ I,

is an R-module homomorphism. Namely, condition (H1) is satisfied since φ

is a ring homomorphism and therefore a homomorphism of additive groups.
Moreover (see Example VI.1.6):

φ(rm) := rm+ I = rφ(m), (r, m ∈ R)

so also (H2) is satisfied.

VI.2.3 Theorem. Let f : M → N be an R-module homomorphism. Then:

1. Ker( f ) is a submodule of M.
2. Im( f ) is a submodule of N.

Proof. These assertions are immediate consequences of the definitions (check for
yourself!).

VI.2.4 Theorem. If f : M → N and g : N → P are R-module homomorphisms, then
the composition g ◦ f : M → P, so

g ◦ f : M
f−→ N

g−→ P

is an R-module homomorphism as well.

Proof. This is immediate from the definition.

VI.2.5 Remark. One usually writes gf for the composition g ◦ f of the R-module
homomorphisms f and g.

VI.3 Direct sums

All modules considered in this section are left-modules.

VI.3.1 Definition. Let R be a ring and let I be a nonempty set. For every i ∈ I let
Mi be an R-module. The direct sum M of the Mi ’s is defined as

M =⊕
i∈I

Mi :=
{
(xi)i∈I : xi ∈ Mi for all i ∈ I and xi 6= 0 for only finitely many i

}
.
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This set is given the structure of an R-module by defining

(xi)i∈I + (yi)i∈I = (zi)i∈I , with zi = xi + yi ∀i ∈ I
0 = (0)i∈I , (so the i−th coordinate is 0 ∈ Mi, ∀i ∈ I

r · (xi)i∈I = (zi)i∈I with zi = rxi ∀i ∈ I.

It is not hard to check that in this way indeed an R-module is defined.

VI.3.2 Definition. An R-module F is called free (or, free R-module) if a nonempty
set I exists, and an isomorphism of R-modules

F
∼=−→ ⊕i∈I R.

(So here we take all modules Mi in VI.3.1 equal to R.)

Given a nonempty set I, the R-module F := ⊕i∈I R is by definition free. For
every i ∈ I, define

e i = (. . . , x j, . . .) j∈I ∈ F by xi = 1, and x j = 0 for all j 6= i.

Then every x ∈ F can be written in a unique way as

x = ∑
i∈I

xi e i, (x, e i ∈ F, xi ∈ R)

(which is a finite sum since only finitely many i ∈ I exist with xi 6= 0).
As a special case, for n ∈Z≥1 one defines the free R-module

Rn := ⊕
i∈{1,2,...n}

R.

VI.3.3 Examples. If K is a field, Kn is the familiar vector space over K .
The polynomial ring R[X ] is an R-module (for the usual addition and scalar

multiplication). The map

φ : R[X ]−→ F := ⊕
i∈Z≥0

R,
n∑

i=0
ai X i 7→ (a0,a1, . . . ,an,0,0, . . .),

is an isomorphism of R-modules; φ is surjective since only finitely many xi differ
from 0 in an element (. . . , xi, . . .) ∈ F.

For R non-commutative rings R it turns out to be possible (see Exercise 7 on
page 57) that R ∼= R2 (!). This is not possible in case R is commutative:

VI.3.4 Theorem. If R 6= (0) is a commutative (unitary) ring, then

Rm ∼= Rn =⇒ m = n.

The number m (= n) here is called the rank of the R-module Rm. More generally

Rm ∼=⊕i∈I R =⇒ m = #I.

Proof. A proof based on the well known property det(AB) = det(A)det(B) of deter-
minants of n× n matrices, is given in Section 3.4 of the book N. Jacobson, Basic
Algebra I (San Fransisco: W.H. Freeman and Company, 1974). The advantage of
that proof is that no use is made of Zorn’s Lemma. The next argument uses the
existence of a maximal ideal in a ring, which in general does require Zorn’s Lemma.
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Suppose φ : Rm → Rn is an R-module isomorphism. Take M a maximal ideal
in R. Then Mm = ⊕m

i=1M is a submodule of Rm. The factor group Rm/Mm is in a
natural way a K = R/M-module, hence since K is a field, Rm/Mm is a vectorspace
over K . One easily verifies that the map

(r1, . . . , rm)+Mm 7→ (r1 +M, . . . , rm +M)

yields a well-defined isomorphism between vectorspaces Rm/Mm and Km over K .
Hence dimK (Rm/Mm)= m.

The set φ(Mm) is a submodule of Rn. The factor group Rn/φ(Mm) therefore
is an R-module, and even a K-module: namely, for m ∈ M and v ∈ Rn one has
mv = φφ−1(mv) = φ(mφ−1(v)) ∈ φ(Mm). Hence multiplying an element r ∈ R by
a class v+φ(Mm) ∈ Rn/φ(Mm) only depends on the class of r in R/M = K , which
exactly means that Rn/φ(Mm) is a K-module. The isomorphism φ therefore induces
an isomorphism Rm/Mm ∼= Rn/φ(Mn) between vectorspaces over K , so in particular
dimK (Rn/φ(Mm))= m.

Every x ∈ Rn can be written in a unique way as

x = (x1, x2, . . . , xn)
= x1 · (1,0 . . . ,0)+ x2 · (0,1,0, . . . ,0)+ . . .+ xn · (0,0, . . . ,1)
= x1e1 + x2e2 + . . .+ xnen.

Hence the vectorspace Rn/φ(Mm) over K is spanned by e1+φ(Mm), . . . , en+φ(Mm).
We conclude that n ≥ dimK (Rn/φ(Mm))= m.

Interchanging the roles of Rn and Rm in the argument above, and replacing φ
by φ−1, it follows analogously that also m ≥ n. Hence n = m.

The more general assertion in the theorem follows completely analogously. This
shows Theorem VI.3.4.

We saw that modules over a field K are in fact vectorspaces over K . In particular:
if Kn is the direct sum of two K-modules:

Kn ∼=V ⊕W , then V ∼= Ka and W ∼= Kn−a

for some a, since V and W are (finite dimensional) vectorspaces over K as well.
The case of modules over a ring that is not a field is much more interesting. For a
simple example, take the ring R =Z/6Z and the R-modules Z/2Z and Z/3Z, then

Z/6Z
∼=−→Z/2Z⊕Z/3Z, n+6Z 7→ (n+2Z, n+3Z).

Using the Chinese Remainder Theorem many more examples of this kind can be
constructed. The next two examples reveal a slightly more surprising submodules
of a free module over a ring.

VI.3.5 Example. Take R =Z[
p−5]. The map ϕ : R →F2 defined by ϕ(a+b

p
5)= a+b,

with a,b ∈Z and for any n ∈Z using the notation n := n mod 2, is the surjective ring
homomorphism. Hence M := Ker(ϕ) is a maximal ideal in R, so in particular M is
an R-module. Note that

M = {
a+b

p−5 : ∃k ∈Z such that a+b = 2k
}

= {
2k−b+b

p−5 : b,k ∈Z}
= Z ·2+Z · (−1+p−5)

and every element in M can be written in a unique way as n ·2+m ·(−1+p−5) with
n,m ∈Z.

We claim that
M⊕M ∼= R2
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as R-modules. Indeed, the map (α,β) 7→ (
2α+ (−1+p−5)β, (1+p−5)α−2β

)
for

α,β ∈ R2 defines an R-module homomorphism from R2 to M ⊕ M. The “inverse"
R-module homomorphism M⊕M → R2 is given by(

a ·2+b · (−1+p−5), c ·2+d · (−1+p−5)
)

7→(−2a+b+ c+2d+ (d−b− c)
p−5,−a+3b+2c−d+ (d−a)

p−5
)

for a,b, c,d ∈Z.
Next, we claim that M itself is not free as an R-module. Indeed, if M ∼= Rn for

some n, then R2 ∼= M⊕M ∼= Rn ⊕Rn ∼= R2n. So we necessarily have n = 1. However,
if M ∼= R as R-modules, then an isomorphism f : R → M would send 1 ∈ R to some
element e = f (1) ∈ M, and then any r ∈ R to f (r) = f (r ·1) = r · f (1) = re ∈ M. As f
is supposed to be an isomorphism, this would imply M = Re, so M is a principal
ideal. In particular, the norm of any element of M would be a multiple of the
norm of e. Now 2 ∈ M has norm 4 and −1+p−5 has norm 6, so the norm of e
divides gcd(4,6)= 2. Since R =Z[

p−5] does not contain any element of norm 2, we
conclude that e must have norm 1, so e ∈ R× and therefore M = Re = R, which is
absurd since, e.g., 1 6∈ M.

So in this example the module M is not free, while M⊕M is free!

VI.3.6 Example. Consider the subring R of periodic functions with period 2π of
the ring of all real C∞-functions on R:

R := {
f ∈ C∞(R) : f (x+2π)= f (x) ∀x ∈R}

.

Let M be the R-module defined as

M := {
m ∈ C∞(R) : m(x+2π)=−m(x) ∀x ∈R}

.

Here addition and scalar multiplication on M are given by

(m+n)(x) := m(x)+n(x), m, n ∈ M, x ∈R,
( f m)(x) := f (x)m(x), f ∈ R, m ∈ M, x ∈R;

note that indeed f m ∈ M (!) and check for yourself that in this way M is an R-
module. We claim that like in Example VI.3.5 we have that

M 6∼= R, whereas M⊕M ∼= R2,

and M is not free.
Well known properties of the sine and cosine functions imply

∀a ∈R : Ca, Sa ∈ M, where


Ca :R→R, x 7→ cos x−a

2 ,

Sa :R→R, x 7→ sin x−a
2 .

Suppose an R-module isomorphism between R and M exists:

φ : R −→ M, then φ( f )= f ·φ(1)

with 1 ∈ R the constant function 1. Write g :=φ(1) ∈ M. Since g is continuous and
g(2π)=−g(0) one concludes that g has a zero a ∈ [0,2π].

As φ is supposed to be surjective, every m ∈ M can be written as m = φ( f ) for
some f ∈ R, hence

m = f g, implying m(a)= f (a)g(a)= 0.

However, taking m = Ca ∈ M one obtains Ca(a) = cos a−a
2 = 1 6= 0, a contradiction.

We conclude that no isomorphism φ : R → M exists, which shows the first assertion.
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Next we show R2 ∼= M⊕M. Define

ψ : R2 −→ M⊕M, ( f , g) 7→ ( f C0 + gS0, − f S0 + gC0 )

(this clearly is an R-module homomorphism). In terms of matrices (with coeffi-
cients in M ⊂ C∞(R)) this ψ is given by

A :=
(

C0 S0
−S0 C0

)
, so in particular A−1 =

(
C0 −S0
S0 C0

)
,

where we used that C2
0 +S2

0 = 1.
We claim that indeed the inverse of ψ is given by

ψ−1 : M⊕M −→ R2, (m, n) 7→ (C0m−S0n, S0m+C0n ).

To verify this, first note that the product of any two functions in M is an element
of R, hence ψ−1 indeed maps M⊕M to R2). Clearly ψ−1 is an R-module homomor-
phism, and ψ−1ψ= idR2 and ψψ−1 = idM⊕M . So ψ−1 is the inverse of ψ.

Finally, we show that M is not free. Exactly as in Example VI.3.5 above, if
M ∼= ⊕i∈I R for some set I, then #I = 1 and R ∼= M. Since we already showed that
R 6∼= M it follows that M is not free.

VI.3.7 Remark. The module M in Example VI.3.6 turns out to be isomorphic (as
an R-module) to some (non-principal) ideal in R (see Exercise 3 on page 56):

M ∼= I :=Ker(ev0 : R −→R), with ev0 : f 7→ f (0).

The next result describes a “universal property” of direct sums: this means a
property determining it up to isomorphisms of modules.

VI.3.8 Theorem. Let R be a ring and let I be a (nonempty) set. Suppose that for
every i ∈ I an R-module Mi is given. Then ⊕i∈I Mi together with the R-module homo-
morphisms ιi : Mi →⊕i∈I Mi defined for m ∈ Mi by ιi(m)= (x j) j∈I (where x j = 0 ∈ M j
if j 6= i and xi = m), have the following property.

For every R-module M, given R-module homomorphisms f i : Mi → M for all
i ∈ I, there exists a unique(!) R-module homomorphism f : ⊕i∈I Mi → M such
that f i = f ◦ ιi for every i ∈ I.

Is D any R-module equipped with homomorphisms j i : Mi → D such that the same
property holds:

For every R-module M, given R-module homomorphisms f i : Mi → M for all
i ∈ I, there exists a unique(!) R-module homomorphism f : D → M such that
f i = f ◦ j i for every i ∈ I,

then D ∼=⊕i∈I Mi.

Proof. Given maps f i : Mi → M, define f : ⊕i∈I Mi → M by f ((xi)i∈I ) =∑
i f i(xi). By

the definition of ‘direct sum’ and the fact that any R-module homomorphism sends
0 to 0, this is a finite sum. Evidently f is an R-module homomorphism, and it has
the property f i = f ◦ ιi for all i ∈ I. Since any (mi)i∈I ∈ ⊕i∈I Mi can be written as a
finite sum

∑
i∈I ιi(mi), it follows that any R-module homomorphism ⊕i∈I Mi → M is

completely determined by its restrictions to the ιi(Mi), i ∈ I. So f is unique.
If D, with the maps j i, has the same property, then we apply this property to the

R-module ⊕i∈I Mi and the homomorphisms ιi. This gives us a unique f : D →⊕i∈I Mi
such that ιi = f ◦ j i for all i.
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Reversing the roles of D and ⊕i∈I Mi one obtains a unique g : ⊕i∈I Mi → D with
j i = g ◦ ιi. Combining the two conclusions yields ιi = ( f ◦ g) ◦ ιi which, by applying
the ‘universal property’ of ⊕iMi and the maps ιi, shows that f ◦ g is the identity
map on ⊕iMi.

Finally, we also have j i = (g ◦ f ) ◦ j i, which by the uniqueness in the property
we assume for D implies that g ◦ f is the identity on D. So indeed D and ⊕iMi are
isomorphic, finishing the proof.

VI.4 Cyclic modules

In this section we discuss modules M over a ring R, such that we have M = Re for
some e ∈ M. It turns out that this simple concept has some surprising applications.

VI.4.1 Definition. For a ring R, a (left) R-module M is called cyclic if e ∈ M exists
with M = Re.

VI.4.2 Example. An abelian group, regarded as a module over Z, is cyclic as a
group if and only if it is cyclic as a Z-module. Since any cyclic group is isomorphic
to Z/nZ for some n ≥ 0 (the case n = 0 is exactly the case of an infinite cyclic group!),
we have that the cyclic Z-modules are, up to isomorphisms, the modules Z/nZ with
n ≥ 0. We will generalize this example in Theorem VI.4.4 below.

VI.4.3 Example. Suppose the ring R is commutative and let I ⊂ R be an ideal.
Then I is an R-module, and it is a cyclic R-module if and only if the ideal I is a
principal ideal.

VI.4.4 Theorem. If R is a commutative ring (with 1) and M is a cyclic R-module,
then I := {r ∈ R : rm = 0 ∀m ∈ M} is an ideal in R and M ∼= R/I as R-modules.

We have that M is free (and in that case of rank 1) precisely when I = (0).

Proof. Write M = Re for some e ∈ M. The map R → M given by r 7→ re is an R-
module homomorphism, with kernel exactly I. Hence I is an R-module, and since
I ⊂ R this means it is an ideal in R. As the given map is surjective, one concludes
R/I ∼= M as desired.

If I = (0) then R ∼= M as R-modules, so indeed M is free (of rank 1). And if M is
free, say M ∼=⊕i∈SR for some nonempty set S, then

I = {r ∈ R : rM = (0)}= {r ∈ R : · (r⊕i∈S R)= (0)}= (0).

This finishes the proof.

VI.4.5 Example. Let K be a field and take V a finite dimensional vectorspace
over K . Suppose ϕ : V → V is a K-linear map. Evaluating at ϕ defines a ring
homomorphism from the polynomial ring K[X ] to the ring End(V ) of all K-linear
maps V → V . The image of this map is denoted R := K[ϕ]; it is a commutative
subring of End(V ) and it consists of all linear maps

∑n
j=0 a jϕ

j, for n ∈ Z≥0 and all
a j ∈ K , here ϕ0 denotes the identity map on V .

The vectorspace V obtains the structure of a K[X ]-module by defining

(
n∑

j=0
a j X j)(v)=

n∑
j=0

a jϕ
j(v).

Given any v ∈V we have the cyclic submodule K[X ]v ⊂V . By construction, it is the
K-linear subspace of V spanned by v,ϕ(v),ϕ2(v), . . . ,ϕn(v), . . ..
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The vectorspace (cyclic K[X ]-module) K[X ]v is called the Krylov subspace (cor-
responding to ϕ and v), named after the Russian naval engineer and mathemati-
cian Aleksey Nikolaevich Krylov (1863–1945).

Using Theorem VI.4.4 we see that K[X ]v ∼= K[X ]/I with I ∈ K[X ] the ideal con-
sisting of all

∑n
j=0 a j X j such that

∑n
j=0 a jϕ

j(v)= 0. As K[X ] is a principal ideal do-
main, I = (g) for some polynomial g. Clearly g 6= 0 (the vectorspace V was assumed
to be finite dimensional, so there exist certainly linear dependencies between the
vectors ϕ j(v)!). Hence we may and will assume that g is monic. Certainly the ker-
nel of the evaluation map K[X ] → K[ϕ] is contained in I = (g). The latter kernel
is the principal ideal generated by the minimal polynomial mϕ of ϕ. So (mϕ)⊂ (g),
which means that g is a divisor of mϕ.

In particular
K[x]v ∼= K[x]/(g)

and dimK (K[x]v) = deg(g) ≤ deg(mϕ). So for V to be cyclic as a K[X ]-module, a
necessary condition is that deg(mϕ)= dimK (V ). Theorem VI.5.7 will show that this
condition also suffices.

VI.4.6 Example. (here I intend to discuss the proof of N. Katz for the fact that a
K(t)〈 d

dt 〉-module that is finite dimensional as K(t)-module, is cyclic. As a conse-
quence, given an n×n system of first order linear differential equations we can find
a corresponding scalar linear differential equation of order n ...)

VI.5 An upper triangular form for matrices

Let K be a field and let V be a finite dimensional vectorspace over K , and let
α : V → V be a K-linear map. Under the condition that all eigenvalues of α are in
K , we will construct a basis of V such that the matrix A = (ai j) of α with respect to
this basis is upper triangular (this means ai j = 0 for i > j).

With α as above, as in Example VI.4.5 let

K[α] := evα(K[X ])= {
∑

i<∞
aiα

i : ai ∈ K }

be the image of the evaluation homomorphism

evα : K[X ]−→EndK (V ), f 7→ f (α).

We have that K[α]∼= K[X ]/(mα) with mα ∈ K[X ] the minimal polynomial of α. Note
that mα is a divisor of the characteristic polynomial Pα = det(α− X I), and every
irreducible factor of Pα is also an irreducible factor of mα. Nevertheless, there are
many examples with deg(mα)< deg(Pα).

The vectorspace V is a K[α]-module with

K[α]×V −→V , (
n∑

i=0
aiα

i, v) 7→
n∑

i=0
aiα

i(v).

Since K ⊂ K[α], any K[α]-submodule of V is also a K-vectorspace. We will write
V as a direct sum of K[α]-submodules of V . In each of these submodules the action
of α will have a simple description.

The principal ideal domain K[X ] is a unique factorization domain, hence we
can write

mα = hn1
1 hn2

2 . . .hnk
k ,

with all hi monic and irreducible in K[X ] and hi 6= h j for i 6= j. This factorization
is unique up to permuting the indices 1,2, . . .k.
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We will use this factorization to construct a direct sum decomposition of the
K[α]-module V .

VI.5.1 Theorem. Let K be a field and let V 6= (0) be a finite dimensional vectorspace
over K en let

α : V −→V

be a linear map, with minimal polynomial

mα = hn1
1 hn2

2 . . .hnk
k

for irreducible monic hi ∈ K[X ] and hi 6= h j for i 6= j.
Put

Vi := {
v ∈V : hni

i (α)v = 0
}
.

Then each Vi is a K[α]-module. Moreover Vi 6= 0 for i = 1,2, . . . ,k and

V ∼=
⊕

i∈{1,2,...,k}
Vi.

Proof. The fact that each Vi is a K[α]-module is immediate from the definitions.
For the remaining assertions we use mathematical induction with respect to k. If
k = 1 then hn1

1 (α)= mα(α)= 0 hence V =V1, from which the result follows for k = 1.
Now let k > 1. Define

h := hnk
k , f := hn1

1 hn2
2 . . .hnk−1

k−1 , and N := Ker( f (α) : V →V ).

Since h and f are coprime, there exist g1, g2 ∈ K[X ] with

g1 f + g2h = 1, so in particular g1(α) f (α)+ g2(α)h(α)= 1.

We claim that the K[α]-module homomorphism

ψ : N ⊕Vk −→V (n,vk) 7→ n+vk

is a K[α]-module isomorphism.
Indeed, every v ∈V can be written as

v = 1v = f (α)g1(α)v+h(α)g2(α)v.

Now put vk = f (α)g1(α)v and n = h(α)g2(α)v, so v = n+vk. As mα(α)= f (α)h(α)= 0
one finds

h(α)vk = mα(α)g1(α)v = 0 so vk ∈Vk, and
f (α)n = mα(α)g2(α)v = 0 so n ∈ N.

This shows that ψ is surjective. Moreover for n ∈ N en vk ∈Vk we have

n+vk = 0 =⇒ x := n =−vk ∈ N ∩Vk.

Therefore f (α)x = 0 as well as h(α)x = 0. From x = 1x and 1= f (α)g1(α)+h(α)g2(α)
now follows that x = 0. So Ker(ψ)= (0) which shows ψ is injective, and we conclude
that V ∼= N ⊕Vk.

Let β be the restriction of α to N. Then it is easy to verify that β : N → N.
We have (compare Exercise 9 on page 58) that mβ = f . The induction hypothesis
therefore implies

N ∼=⊕k−1
i=1 Vi, hence we conclude V ∼= N ⊕Vk ∼=V1 ⊕V2 ⊕ . . .Vk.

Finally Vi 6= {0} since otherwise hi(α)ni : V →V would be injective, and therefore
(since dimK (V ) <∞) invertible. Then mα(α) = 0 implies mα(α)hi(α)−ni = 0, hence
mαh−ni

i is a polynomial in the kernel of the evaluation homomorphism evα, and it
has lower degree than mα. This contradiction finishes the proof.
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VI.5.2 Remark. The Vi in Theorem VI.5.1 are called the generalized eigenspaces
of the linear map α.

VI.5.3 Example. Suppose α : Kn → Kn is a linear map having n pairwise distinct
eigenvalues λ1, . . . ,λn ∈ K . In this case

mα = (X −λ1) . . . (X −λn)

and
Vi =Ker(α−λi), so Vi := {v ∈V : αv =λiv },

which means Vi is the eigenspace of α at the eigenvalue λi.
As each Vi 6= {0} and

∑
i dimK Vi = n, every Vi has dimension one. Choose for

i = 1,2, . . . ,n an f i ∈ Vi − {0}, so f i is an eigenvector of α with eigenvalue λi. Then
Vi = K · f i and

V =⊕n
i=1Vi = K · f1 ⊕ . . .⊕K · fn

implies that the f i are independent over K . Hence the f i form a basis of Kn. Since
α f i = λi f i for every i, the matrix of α with respect to this basis is the diagonal
matrix diag(λ1,λ2, . . . ,λn).

In the remainder of this section the special case where

mα = (X −λ1)n1 (X −λ2)n2 . . . (X −λk)nk ,

with the λi ∈ K pairwise distinct, is considered.
In particular the λi are exactly the eigenvalues of α. By Theorem VI.5.1 we

have V =⊕k
i=1Vλi as K[α]-modules, with

Vλi :=Ker((α−λi)ni ) 6= {0}.

The fact that Vλi is a K[λ]-module implies in particular that if vi ∈ Vλi then also
α(vi) ∈ Vλi . This means that a matrix of α with respect to a suitable basis will
consist of blocks:

V =⊕k
i=1 Vλi

α−→⊕k
i=1 Vλi , α(Vλi )⊂Vλi .

We consider each of these blocks separately, in other words we restrict α to Vλi .
Note that the restriction of α to Vλi has minimal polynomial (X −λi)ni .

VI.5.4 Example. Take V =R3 and

A :=
 4 −4 4

1 −1 4
0 −1 4

 .

We determine the minimal polynomial of A and we find a basis of V on which A is
given by blocks. First compute the characteristic polynomial of A, so

det(A− X I)=−(X3 −7X2 +16X −12)=−(X −2)2(X −3).

The minimal polynomial of A is therefore either (X −2)(X −3) or (X −2)2(X −3).
One checks that (A−2)(A−3) 6= 0, and hence

mA = (X −2)2(X −3).

The generalized eigenspaces are the kernels of

(A−2)2 =
 0 0 0

−1 1 0
−1 1 0

 and of A−3=
 1 −4 4

1 −4 4
0 −1 1

 .
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Hence (writing Vλ for the generalized eigenspace at the eigenvalue λ) one computes

V2 = K · (1,1,0)+K · (1,1,1) , and V3 = K · (0,1,1).

Since
A(1,1,0)= (0,0,−1)= 1 · (1,1,0)+ (−1) · (1,1,1)
A(1,1,1)= (4,4,3)= 1 · (1,1,0)+3 · (1,1,1)

}
,

we find that
( 1 1
−1 3

)
is the matrix of the restriction of A to V2 (with respect to the

basis (1,1,0), (1,1,1) of V2). Restricting A to V3 yields the 1×1 matrix (3). The
matrix of A in terms of the basis of V given by {(1,1,0), (1,1,1), (0,1,1)} is therefore 1 1 0

−1 3 0
0 0 3

 .

VI.5.5 Theorem. Let W be a finite dimensional vectorspace over a field K and let
B : W −→W be a linear map with minimal polynomial mB = (X −λ)m.

Then
B =λI +N, with Nm = 0

(here I denotes the identity map).
There exists a basis of W such that the matrix of B with respect to that basis has the
form 

λ ∗ . . . . . . ∗
0 λ ∗ . . . ∗
0 0 ∗
0 0 0 0 λ

 .

Proof. The first statement follows by writing N := B−λI and noting that mB(B)= 0.
Next, for i = 1,2, . . .m define the linear subspace Wi ⊂W by

W1 =Ker(N), . . . ,Wi =Ker(N i), . . . ,Wm =Ker(Nm)=Ker(0)=W .

Note that Wi ⊂ Wi+1, since if N iv = 0 then also N i+1v = 0. Now take a basis of W
starting from a basis of W1, extending this to a basis of W2, and continue in this
way by extending a basis of Wi to a basis of Wi+1. At last this yields a basis { f i} of
W =Wm.

Note that

NWi ⊂Wi−1, because if N iv = 0 then N i−1(Nv)= 0, so Nv ∈Wi−1.

Now let f j be any of the chosen basis vectors. If f j ∈W1 then N( f j) = 0. If f j 6∈W1,
then i exists such that

f j ∈Wi \Wi−1.

Since NWi ⊂Wi−1 we have by the construction of the basis that

N( f j)=
∑
k

xk j fk with xk j = 0 for k ≥ j.

Hence the matrix of N with respect to the basis { fk} is an upper triangular matrix
with zeros on the diagonal. Hence B = λI + N is on the same basis given by the
asserted form. This completes the proof.
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VI.5.6 Example. Consider the R-linear map

B : R2 −→R2 with matrix
(

1 1
−1 3

)
.

The minimal polynomial mB is a divisor of the characteristic polynomial

det(B− X I)= X2 −4X +4= (X −2)2

of B. Since B−2I 6= 0, it follows that

mB = (X −2)2, and N := B−2I =
( −1 1
−1 1

)
.

Check, as predicted by Theorem VI.5.5, that indeed N2 = 0. We determine the Wi ’s:

W1 =Ker(N)=R · (1,1), W2 =R2.

As basis of R2 we take f1 := (1,1) ∈W1, supplemented with f2 := (0,1) ∈W2. Then

N f1 = 0, N f2 =
(1
1
)= f1.

Therefore
(0 1
0 0

)
is the matrix of N with respect to the basis f1, f2. On the same basis

the matrix van B has the upper triangular form(
2 1
0 2

)
.

The arguments used in this section also make it possible to give a criterion for a
K-vectorspace to be cyclic as a K[ϕ]-module, where ϕ : V →V is a linear map. This
extends the discussion we started in Example VI.4.5. The result is the following.

VI.5.7 Theorem. Let V 6= (0) be a finite dimensional vectorspace over a field K and
let ϕ : V →V be a linear map with minimal polynomial mϕ.

Then V is cyclic as a K[ϕ]-module if and only if deg(mϕ)= dimK (V ).

Proof. If V = K[ϕ] · v for some v ∈ V , then (as also discussed in Example VI.4.5)
by Theorem VI.4.4 we have V ∼= K[ϕ]/I as K[ϕ]-modules, for some ideal I ⊂ K[ϕ].
Since as rings K[ϕ]∼= K[X ]/(mϕ), the ideal I corresponds to an ideal J ⊂ K[X ] with
(mϕ)⊂ J and K[X ]/J ∼= K[ϕ]/I ∼=V . As K[X ] is a principal ideal domain, J = (g) for
some g ∈ K[X ] and the property (mϕ)⊂ J means that g|mϕ. Now

dimK (V )= dimK (K[X ]/(g))= deg(g)

implies that deg(mϕ) ≥ dimK (V ). Since mϕ divides the characteristic polynomial
of ϕ which is of degree dimK (V ), we also have deg(mϕ)≤ dimK (V ), hence it follows
that deg(mϕ)= dimK (V ).

For the converse, assume that deg(mϕ)= dimK (V ). Factor

mϕ = hn1
1 hn2

2 · . . . ·hnk
k

for irreductible monic and pairwise distinct hi ∈ K[X ], and all ni > 0. Then by
Theorem VI.5.1 V ∼=⊕

i Vi as K[ϕ]-modules, with Vi =Ker(hni
i (ϕ)).

From the proof of VI.5.1 we know that the restriction of ϕ to Vi has minimal
polynomial hni

i . Hence vi ∈Vi exists with hni−1
i (vi) 6= 0. We claim that

v := v1 +v2 + . . .+vk ∈V
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has the property K[ϕ] · v =V . Indeed, suppose f (ϕ)(v)= 0 for some f ∈ K[X ]. Then
f (ϕ)(v1) = − f (ϕ)(v2 + . . .+ vk). As the left-hand side is in V1 and the right-hand
side in V2 ⊕ . . .⊕Vk, the fact that V is the direct sum of the subspaces Vi implies
f (ϕ)(v1) = 0 and f (ϕ)(v2 + . . .+ vk) = 0. Continuing inductively we find f (ϕ)(vi) = 0
for all i. This implies that hni

i | f , and therefore mϕ| f .
As mϕ(ϕ) = 0 one concludes that the ideal I ⊂ K[ϕ] corresponding via Theo-

rem VI.4.4 to the cyclic module K[ϕ] ·v, is the ideal (0). Hence K[ϕ] ·v ∼= K[ϕ]. The
latter K-vectorspace has dimension dimK (V ) by assumption, so we conclude that
K[ϕ] · v ⊂ V has dimension dimK (V ) as well. This implies K[ϕ] · v = V hence V is
cyclic as a K[ϕ]-module, finishing the proof.
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VI.6 Exercises

1. Take R =R[X ]. For a ∈R define

Ia := (X −a)=R[X ] · (X −a)

which is an ideal of R (and therefore an R-module).

(a) Another R-module is the field of rational functions in the variable X over
R. For a, b ∈R define

φ : Ia −→R(X ) by f 7→ f · X −b
X −a

.

Verify that φ is an injective R-module homomorphism and that Im(φ)= Ib.
Conclude that Ia and Ib are isomorphic as R-modules.

(b) Show that the R-modules Ra := R/Ia and Rb := R/Ib are not isomorphic in
case a 6= b.

2. Find using the methods of this chapter an upper triangular form for the follow-
ing matrices:

A =
 3 −1 0

4 −2 1
4 −4 3

 , B =
 1 0 0

−1 −2 3
−1 −3 4

 .

3. Let R be the ring of C∞ functions R→R with period 2π, and

M := { g ∈ C∞(R) : g(x+2π)=−g(x) }, and I := { f ∈ R : f (0)= 0 }.

Then both M and I are R-modules (for M see Example VI.3.6, and I ⊂ R is an
ideal).

(a) Show that
φ : M −→ I, g 7→ gS0,

with S0(x) := sin x
2 , is an injective R-module homomorphism.

(b) Take f ∈ I. Show that the function g defined by

g(x) :=
{

f (x)/S0(x), if x 6≡ 0 mod2π,
2 f ′(x) if x ≡ 0 mod2π

is a C∞ function. Hint: check that g ∈ M using

f (x)=
∫ 1

0

∂ f
∂t

(tx)dt = x
∫ 1

0
f ′(tx)dt).

(c) Prove that the R-modules M and I are isomorphic.

4. Let R be a commutative ring and let I, J ⊂ R be ideals such that

I + J = R and let i1 ∈ I, j1 ∈ J satisfy i1 + j1 = 1.

(a) Show that
φ : I ⊕ J −→ R, (i, j) 7→ i+ j

is a surjective R-module homomorphism with kernel Ker(φ) as an R-module
isomorphic to I ∩ J = IJ.

(b) Show that

ψ : I ⊕ J −→ R⊕ IJ, (i, j) 7→ (i+ j, i j1 − ji1)

is an R-module isomorphism.

56 VI MODULES



5. Let R be the ring of polynomial functions on the circle:

R =R[X ,Y ]/(X2 +Y 2 −1)

and define
x := X + (X2 +Y 2 −1), y :=Y + (X2 +Y 2 −1) ∈ R.

Since X2+Y 2−1 is irreducible (Eisenstein polynomial at p =Y −1 in the unique
factorization domain (R[X ])[Y ]), the ideal (X2 +Y 2 − 1) ⊂ R[X ,Y ] is a prime
ideal and hence R is an integral domain. The field of fractions of R we denote
by Q(R). In R we define the ideals

I := (x−1, y) and J := (x, y−1),

it can be verified that I is not a principal ideal (this is an exercise in the Alge-
braic Structures course).

(a) Prove that in R it holds that

(x+ y−1)2 = 2(x−1)(y−1), (x+ y−1)(x− y+1)=−2y(y−1).

(b) Define

ψ : I −→Q(R), i 7→ i · 2(y−1)
x+ y−1

.

Verify that ψ is an R-module homomorphism, that ψ is injective, and that
Im(ψ)= J ⊂ R ⊂Q(R).

(c) Prove that I + J = R and that IJ = (x + y− 1)R ∼= R (isomorphic as R-
modules).

(d) Conclude (using Exercise 4) that I 6∼= R, but I ⊕ I ∼= R2.

6. Take R = Z[
p−5] and I := (2, 1+p−5) and J := (3, 1−p−5) (so I and J are

ideals in R).

(a) Verify that

ψ : I −→Q[
p
−5], i 7→ i · 3

1+p−5
,

is an injective R-module homomorphism with Im(ψ)= J ⊂ R.
(b) Show that I + J = R and IJ = (1−p−5)R.
(c) Show using Exercise 4 that I 6∼= R but I ⊕ I ∼= R2 (for a different argument

compare Example VI.3.5).

7. This exercise provides an example of a ring R such that R ∼= R2 as R-modules.
Let R be the ring of row-finite matrices with coefficients in the field K . So
any r ∈ R is an infinite matrix r = (r i j)i, j∈Z≥1 , and for every i we have r i j 6= 0
for only finitely many j.
Addition and multiplication are analogous to the usual matrix operations:

r+ s = t with ti j := r i j + si j, and rs = u with ui j :=
∞∑

k=0
r iksk j

(note that the latter sum is a finite sum since for any i only finitely many r ik ’s
are nonzero).

(a) Verify that R is a ring.
(b) Define b, c ∈ R by

b := (bi j) and bi j = 1 for j = 2(i−1)+1 and bi j = 0 otherwise,

c := (ci j), and ci j = 1 for j = 2(i−1)+2 and ci j = 0 otherwise.

Prove that
R ∼= Rb⊕Rc ∼= R⊕R

as R-modules.
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8. An R-module M 6= 0 is called simple if {0} and M are the only R-submodules of
M. Suppose M is a simple R-module.
Prove that for every R-module homomorphism f : M → M either f = 0 or f is
an R-module isomorphism. Conclude that EndR(M) is a division ring (so every
nonzero element is a unit).
Determine EndR(M) in the case R = M(n,K) and M = Kn, where K is a field
(see Example VI.1.3).

9. Given are two finite dimensional vectorspaces V ,W over a field K . Let α : V →V
and β : W → W be linear maps over K , with minimal polynomials mα and mβ.
Define

α⊕β : V ⊕W →V ⊕W by (v,w) 7→ (
α(v),β(w)

)
.

Prove that if gcd(mα,mβ)= 1 then mα⊕β = mαmβ.
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VII QUOTIENTS, EXACTNESS, TENSOR PRODUCTS, AND
PROJECTIVE MODULES

VII.1 Quotients of modules

Recall that any subgroup N of an abelian group M is a normal subgroup, so the
factor group M/N exists. If moreover M is an R-module for some ring R, and N ⊂ M
is an R-submodule, then a natural structure of R-module exists on the factor group
M/N. This is explained below.

VII.1.1 Definition. Let R be a ring and let N be a submodule of an R-module M.
Then

M/N = {m̄ = m+N ⊂ M : m ∈ M}

obtains the structure of an R-module by defining

R×M/N −→ M/N, (r, m+N) 7→ rm+N.

This R-module is simply denoted M/N and it is called the quotient of M by N.

VII.1.2 Remark. Of course one needs to check that the map R×M/N → M/N used
here is well-defined, in other words:

if m1 +N = m2 +N then rm1 +N = rm2 +N.

This property indeed holds, since

m1 +N = m2 +N =⇒ m1 −m2 ∈ N, and rN ⊂ N

(because N is an R-module). Now m1−m2 ∈ N implies r(m1−m2)= rm1−rm2 ∈ N,
which exactly means rm1+N = rm2+N. So m1+N = m2+N⇒ rm1+N = rm2+N.

One easily verifies that in this way the abelian group obtains the structure of
an R-module, as asserted in the definition.

VII.1.3 Examples.

1. Let R = K be a field and let V ⊂ Kn be a linear subspace of Kn. Then the
quotient Kn/V is a vectorspace over K . To make this more explicit, take a basis
f1, . . . , fn of Kn by extending a basis f1, f2, . . . , fk of V . So

V =
{

n∑
i=1

xi f i ∈ Kn : xi = 0 for all i > k

}
.
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Define

W :=
n∑

j=k+1
K · f j.

Then Kn =V ⊕W , which means every x ∈ Kn can be written in a unique way as
x = v+w with v ∈V , w ∈W . In particular x ∈V if and only if w = 0.
So if x1 = v1 +w1 and x2 = v2 +w2 for some vi ∈V and wi ∈W then

x1 +V = x2 +V ⇐⇒ x1 − x2 ∈V ⇐⇒ w1 = w2.

As a consequence
Kn/V = {w+V ⊂ Kn : w ∈W},

and
w1 +V = w2 +V ⇔ w1 = w2.

This means that any residue class x+V , by writing x = v+w with v ∈ V and
w ∈W , can be written in a unique way as x+V = w+V with w ∈W . In this way
the vectorspace Kn/V is identified with the vectorspace W . More precisely, the
map

f : W −→ Kn/V , w 7→ w+V

is an isomorphism of vectorspaces over K . Note that there are many different
choices for W , but all of them are K-vectorspaces isomorphic to Kn−k.

2. If G is an abelian group and H ⊂ G a subgroup, then G/H is an abelian group
as well and therefore it is a Z-module. The action of Z we defined in Exam-
ple VI.1.5 on any abelian group and hence also on G/H, coincides with the ac-
tion of Z defined here on the quotient module G/H.

3. If R is a ring and I ⊂ R is an ideal, then I is a submodule of the R-module R.
The R-module structure on the quotient R/I is the same as the one defined in
Example VI.1.3 (verify this yourself!).

VII.1.4 Theorem. Let f : M → N be an R-module homomorphism. Then:

(a) The R-module homomorphism f induces an R-module isomorphism

M/Ker( f )
∼=−→ Im( f ), m+Ker( f ) 7→ f (m).

(b) If K ⊂ M is a submodule, then the canonical map

φ : M −→ M/K , m 7→ m+K

is a (surjective) R-module homomorphism with kernel Ker(φ)= K .

Proof. This is completely analogous to similar homomorphism theorems in Group
Theory and in the theory of rings. For this reason the details are left as an exercise
for the reader.

VII.2 Hom and exactness

The following terminology for R-module homomorphisms is very common not only
in algebra, but also in, for example, topology (in particular homology and homotopy
theory) and in differential geometry.
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VII.2.1 Definition. A sequence of R-module homomorphisms

. . .−→ M
f−→ N

g−→ P −→ . . .

is called exact in N if
Im( f )=Ker(g).

The sequence is called exact if it is exact in all modules appearing in it.

VII.2.2 Remark. A special case of a sequence of R-module homomorphisms is

0−→ N
g−→ P.

This sequence is exact in N precisely when g is injective: namely, the image of the
map on the left is {0} ⊂ N, so exactness (in N) means that {0} = Ker(g), in other
words, g is injective.

Similarly, the sequence

M
f−→ N −→ 0

is exact in N precisely when f is surjective. Indeed, the kernel of the map on the
right is all of N, so exactness (in N) means Im( f )= N.

Finally, consider the sequence

0−→ M
f−→ N

g−→ P −→ 0.

This sequence being exact means first of all that f is injective, so f : M → f (M) is
an R-module isomorphism. Next, g is surjective and therefore Ker(g)= Im( f )∼= M,
hence g induces an R-module isomorphism N/Ker(g) ∼= P. Up to identifications
(which means R-module isomorphisms), this means that an exact sequence as
above has the form

0−→Ker(g) ,→ N
g
� N/Ker(g)−→ 0.

If a sequence

. . .−→ M
f−→ N

g−→ P −→ . . .

is exact, then the property Ker(g) = Im( f ) implies in particular that g ◦ f = 0. In
other words, the composition of any two consecutive maps in an exact sequence, is

the zero map. On the other hand, if in a sequence M
f−→ N

g−→ P we have g ◦ f = 0
then this implies Im( f )⊂Ker(g), which is evidently weaker than the assertion that
the sequence is exact at N.

VII.2.3 Definition. Given a ring R, a diagram of R-modules is a simple, directed
graph in which the vertices represent R-modules Mi, and the (directed) edges rep-
resent R-module homomorphisms Mi → M j.

A diagram of R-modules is called a commutative diagram if (for all i, j) every
path from Mi to M j, seen as a composition of R-module homomorphisms, is the
same map.

VII.2.4 Examples. A triangle of R-modules and maps

L
↓ f ↘g

M h→ N

being commutative simply means that h◦ f = g.
Similarly, commutativity of a square

K e→ L
↓ f ↓ g

M h→ N

means that h◦ f = g ◦ e.
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A famous result featuring commutative diagrams as well as exact sequences is
the so-called snake lemma. It appeared in the movie It’s my turn (1980) where it
was proven by actress Jill Clayburgh (1944–2010). We present it here, using the
same notations as she did in the movie. To this end we first introduce one more
notation.

VII.2.5 Notation. If R is a ring and f : M → N is an R-module homomorphism,
then we write

Coker( f ) := N/ f (M)

for the R-module obtained by taking the quotient of N by the submodule f (M).

VII.2.6 Theorem. Suppose the diagram of R-modules

0→ A
f→ B

g→ C → 0
↓α ↓β ↓γ

0→ A′ f ′→ B′ g′
→ C′ → 0

is commutative, and its two rows

0→ A
f→ B

g→ C → 0 and 0→ A′ f ′→ B′ g′
→ C′ → 0

are exact.
Then this induces an exact sequence of R-modules

0→Ker(α)
f→Ker(β)

g→Ker(γ) δ→Coker(α)
f ′→Coker(β)

g′
→Coker(γ)→ 0.

Here f and g denote the restrictions to Ker(α) ⊂ A and Ker(β) ⊂ B of f : A → B
resp. g : B → C. Similarly, f ′ and g′ are the maps induced by f ′ : A′ → B′ resp.
g′ : B′ → C′. Finally, δ is defined as follows. Given any c ∈ Ker(γ) ⊂ C, since
g : B → C is surjective, b ∈ B exists with g(b) = c. Then g′(β(b)) = γ(g(b)) = γ(c) = 0
by the commutativity of the diagram, hence β(b) ∈ Ker(g′) = Im( f ′), so a′ ∈ A′ exists
with f ′(a′)=β(b). Now put δ(c) := a′+α(A) ∈Coker(α).

Proof. We first show that the maps in the sequence are well-defined and indeed
map to the indicated R-modules.
For (the restriction of) f , if a ∈ Ker(α) then β( f (a)) = f ′(α(a)) = f ′(0) = 0 where we
used that the diagram is commutative. So indeed f (a) ∈Ker(β).
The same argument works for the restriction of g.
In the construction of δ, there are two places where potentially a choice is made.
One of them is that given β(b) ∈ Im( f ′) we choose a′ ∈ A′ with f ′(a′) = β(b). How-
ever, f ′ is injective (by the exactness of the lower row in the diagram), so in fact we
have a unique a′ here. The other choice is the b ∈ B such that g(b)= c. If a different
choice b1 ∈ B was used, then g(b) = c = g(b1) hence b1 − b ∈ Ker(g) = Im( f ). This
means a ∈ A exists with b1 = b+ f (a). Then β(b1) = β(b)+β( f (a)) = β(b)+ f ′(α(a)).
Hence β(b1) is the image (under f ′) of the unique element a′+α(a) ∈ A′. In partic-
ular the classes of a′ and of a′+α(a) in Coker(α)= A′/ f (A) are equal, showing that
δ is well-defined.
For the map f ′, first consider the composition π◦ f ′ : A′ f ′→ B′ π→ B′/β(B) where π is
the canonical map. If a′ ∈α(A), then write a′ =α(a) with a ∈ A. We have, using the
commutativity of the diagram that π( f ′(α(a))) = π(β( f (a)) = 0, since β( f (a)) ∈ β(B).
Hence α(A) ⊂ Ker(π ◦ f ′), which implies that f ′ : Coker(α) → Coker(β) given by
a′+α(A) 7→ f ′(a)+β(B) is well-defined.
The same argument shows that g′ is well-defined.

62 VII QUOTIENTS, EXACTNESS, TENSOR PRODUCTS, AND PROJECTIVE MODULES



The fact that all maps in the sequence are R-module homomorphisms, is easily
checked from the definitions. So it remains to show that

0→Ker(α)
f→Ker(β)

g→Ker(γ) δ→Coker(α)
f ′→Coker(β)

g′
→Coker(γ)→ 0

is exact. This is checked at each of the modules in the sequence, as follows.

Ker(α): since f : A → B is injective, so is its restriction to Ker(α).

Ker(β): the exactness of A
f→ B

g→ C says f (A) = Ker(g). So restricting g to Ker(β)
one obtains as kernel Ker(β)∩ f (A). Since g◦ f = 0 this certainly contains f (Ker(α)).
On the other hand, if b ∈Ker(β)∩ f (A) then b = f (a) for some a ∈ A and β( f (a))= 0.
As β◦ f = f ′ ◦α and f ′ is injective, this implies α(a)= 0. So a ∈Ker(α) and then one
concludes b = f (a) ∈ f (Ker(α)). This shows exactness at Ker(β).

Ker(γ): take c ∈ Ker(γ) such that c ∈ Im(g). This means we have b ∈ Ker(β) with
g(b) = c. The fact that b ∈ Ker(β), says that β(b) = 0. And 0 ∈ B′ is the image
of 0 ∈ A′ under the map f ′, so by definition δ(c) = 0+α(A) ∈ Coker(α), in other
words c ∈ Ker(δ). This shows Im(g) ⊂ Ker(δ). On the other hand, is δ(c) = 0 for
some c ∈ Ker(γ), then for a b ∈ B with g(b) = c we have that β(b) = f ′(a′) with
a′ ∈α(A). So a′ =α(a) for some a ∈ A, and then β(b)= f ′(α(a))=β( f (a)). As a result
b− f (a) ∈ Ker(β), and we have g(b− f (a)) = g(b)− g( f (a)) = c−0 = c. This shows
Ker(δ)⊂ Im(g) and finishes the proof of exactness at Ker(γ).

Coker(α): first, we show that Im(δ) ⊂ Ker( f ′). So take a′ ∈ Coker(α) with a′ = δ(c)
where c ∈ C satisfies γ(c) = 0. By definition f ′(a′) = f ′(a′)+β(B). We have to show
that this is zero, in other words, that f ′(a′) ∈ β(B). To this end, pick b ∈ B with
g(b) = c and a′′ ∈ A′ with f ′(a′′) = β(b). By the construction of the map δ, then
a′ = δ(c)= a′′. Hence a′ = a′′+α(a) for some a ∈ A. As a result, f ′(a′)= f ′(a′′)+ f ′(α(a)),
and this equals β(b)+β( f (a))=β(b+ f (a)). So indeed f ′(a′) ∈β(B).
Next we show Ker( f ′)⊂ Im(δ). Take a′ ∈Coker(α) with f ′(a′)= 0. By definition this
means that b ∈ B exists with f ′(a′) = β(b). Now put c := g(b) ∈ C. Then c ∈ Ker(γ)
since γ(c) = γ(g(b)) = g′(β(b)) = g′( f ′(a′)) = 0. By the construction of δ we have
δ(c)= a′. This finished proving exactness at Coker(α).

Coker(β): Given b′ ∈Coker(β), if g′(b′) = 0 then c ∈ C exists with g′(b′) = γ(c). Now
write c = g(b) for some b ∈ B, then g′(b′ −β(b)) = γ(c)−γ(g(b)) = 0 hence a′ ∈ A′
exists with f ′(a′)= b′−β(b). This implies that b′ ∈ Im( f ′).
Vice versa, is b′ ∈ Im( f ′) then a′ ∈ A′ and a ∈ A exist such that f ′(a′)− b′ = α(a).
Hence g′(b′)= g′( f ′(a′)− g′(α(a))= 0−β(g(a)) ∈β(B). This means b′ ∈Ker(g′).

Coker(γ): here we have to show that g′ is surjective. So take c′ ∈Coker(γ). Since g′
is surjective, b′ ∈ B′ exists with g′(b′)= c′. Then g′(b′)= c′.
This finishes the proof of the snake lemma.

VII.2.7 Definition. Given a ring R and (left) R-modules M, N, the set of all R-
module homomorphisms M → N is denoted

Hom(M, N)= { f : M → N : f is an R−module homomorphism}.

If one wants to emphasize that the homomorphisms are considered over the ring
R, then the notation HomR(M, N) is used.

In case N = M one writes EndR(M) := HomR(M, M), the R-module endomor-
phisms of M.
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The set Hom(M, N) is in a natural way an abelian group, with

( f + g)(m) := f (m)+ g(m) ( f , g ∈Hom(M, N), m ∈ M).

In the case M = N, i.e., considering End(M), the product given by composing maps:
f g = f ◦ g, provides End(M) with a ring structure. In fact this is a subring of the
ring consisting of all group homomorphisms M → M.

In case R is commutative, the abelian group Hom(M, N) obtains the structure
of an R-module by defining

(r f )(m) := r f (m), ( f ∈Hom(M, N), m ∈ M, r ∈ R).

Commutativity of R is essential, since we want r f ∈ Hom(M, N). This means that
r f should be R-linear. Now

(r f )(sm) := r · ( f (sm))= (rs) · f (m),

and this equals (sr) · f (m) in case R is commutative, but not necessarily otherwise.
One readily checks that indeed in this way Hom(M, N) is an R-module in case R is
commutative.

In de remainder of this section we will assume the ring R to be commutative.
(Most of the results presented here also hold for non-commutative rings, pro-

vided Hom(M, N) is considered as an abelian group only.)

VII.2.8 Examples. 1. Let K be a field and take M = N = Kn. Then

EndK (Kn) :=HomK (Kn,Kn)∼= M(n,K),

with M(n,K) the K-module consisting of n × n matrices with coefficients in
K , and the usual addition and scalar multiplication of matrices. Namely, any
α ∈HomK (Kn,Kn) is by definition a K-linear map.

2. Let R be a ring and M an R-module. Then

ev1 : HomR(R, M)
∼=−→ M, f 7→ f (1),

defines an isomorphism of R-modules. Injectivity of ev1 follows from f (r)= r f (1).
Namely, is ev1( f ) := f (1) = 0 then f (r) = r f (1) = r ·0 = 0 for all r ∈ R, showing
that f = 0. To show that ev1 is surjective, note that for any m ∈ M the map

fm : R −→ M fm(r) := rm

defines an R-module homomorphism. It satisfies ev1( fm) = m. It remains to
show that ev1 is an R-module homomorphism. This is immediate:

ev1( f + g) := ( f + g)(1) := f (1)+ g(1)= ev1( f )+ev1(g),
ev1(r f ) := r f (1) = rev1( f ).

So indeed ev1 defines an isomorphism of modules.
3. For every n ∈Z≥1 it holds that

HomZ(Z/nZ,Z)= 0.

Indeed, if f : Z/nZ→Z is Z-linear, then

0= f (0)= f (n)= f (n ·1)= nf (1),

and since Z is an integral domain and n 6= 0, this implies f (1) = 0. Hence
f (a) = af (1) = a ·0 = 0 for all ā ∈ Z/nZ which shows that f = 0. In words: ev-
ery element in Z/nZ has finite order and its image under f therefore has finite
order as well. As a consequence, this image is 0 since 0 is the only element of
finite order in Z.
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We will now consider HomR(A,−); in other words we fix the R-module A and
consider the recipe that on input any R-module M, outputs the R-module HomR(A, M).
As before, all rings R considered here will be assumed commutative.

VII.2.9 Definition. If A is an R-module, and f ∈ Hom(M, N), then composing any
R-module homomorphism φ : A → M with f : M → N results in an R-module homo-
morphism denoted f∗(φ) := f ◦φ : A → N:

M
f−→ N

φ↖↗ f∗(φ)
A

with f∗ : Hom(A, M)−→Hom(A, N), φ 7→ f ◦φ.

One also uses the somewhat suggestive notation Hom(A, f ) for f∗.
Using the definitions it is not hard to check that indeed f∗ is an R-module

homomorphism, which in this case means that

f∗(φ+ψ)= f∗(φ)+ f∗(ψ), and f∗(rφ)= r f∗(φ)

for all φ, ψ ∈Hom(A, M) and all r ∈ R.

We will now consider the following problem. Suppose f : M → N is surjective. Does
it follow that f∗ : Hom(A, M) → Hom(A, N) is surjective as well? R-modules A for
which the answer is affirmative, so with the property

f : M −→ N surjective =⇒ f∗ : Hom(A, M)−→Hom(A, N) surjective

will be studied in more detail in Section VII.4.
(We will see in Theorem VII.2.12 that if one replaces ‘surjective’ by ‘injective’in

the question above, then for all R-modules A the answer is affirmative. Note also
that if f is not surjective, then Exercise 1 on page 74 shows that already for A = R
the map f∗ is also not surjective.

VII.2.10 Example. This example shows that f∗ is not necessarily surjective even
if f is surjective. Consider n ∈Z≥2 and

Z π→ Z/nZ
h̃ ↖↗idZ/nZ

Z/nZ
with f :Z→Z/nZ given by a 7→ a+nZ.

If π∗ were surjective, then h̃ :Z/nZ→Z exists with π◦ h̃ = idZ/nZ.
By Example VII.2.8(3) we know Hom(Z/nZ, Z) = 0, hence h̃ = 0. But then

idZ/nZ =π◦ h̃ = 0, a contradiction. So π∗ is not surjective.

VII.2.11 Example. We now show: if A = R and f : M → N is a surjective R-module
homomorphism, then f∗ : Hom(R, M)→Hom(R, N) is surjective as well.

M
f−→ N

h̃ ↖↗ h

R

To show this, take any h ∈ Hom(R, N). We want to find h̃ ∈ Hom(R, M) such that
f∗(h)= f ◦ h̃ = h. Since f is surjective, m ∈ M exists with f (m)= h(1). Now define

h̃ : R → M by h̃(r) := rm.

Then h̃ ∈Hom(R, M) (see Example VII.2.8(2)) and moreover

( f∗h̃)(r) := f h̃(r)= f (rm)= r f (m)= rh(1)= h(r)

for all r ∈ R. So indeed f∗h̃ = h, showing that f∗ is surjective in this case.
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VII.2.12 Theorem. Let R be a commutative ring and suppose

0−→ M
f−→ N

g−→ P

is an exact sequence of R-modules.
For any R-module A it holds that

0−→Hom(A, M)
f∗−→Hom(A, N)

g∗−→Hom(A,P)

is an exact sequence of R-modules.
In particular: if f : M → N is injective, then so is f∗ : Hom(A, M)→Hom(A, N).

VII.2.13 Remark. One usually expresses Theorem VII.2.12 by asserting that the
map Hom(A,−) is left-exact.

Proof. (of Theorem VII.2.12.) Given are an exact sequence as above and an R-
module A.

Exactness at Hom(A, M): suppose φ ∈Hom(A, M) satisfies φ 6= 0. Then a ∈ A exists
with φ(a) 6= 0. As φ(a) ∈ M and f : M → N is injective, ( f∗φ)(a) := f (φ(a)) 6= 0 so
f∗φ 6= 0. Hence f∗ is injective.

Exactness at Hom(A, N): we must show Im( f∗)=Ker(g∗).
‘⊂’: take an arbitrary ψ ∈ Im( f∗). We may write ψ= f∗(φ) for some φ ∈ Hom(A, M).
For any a ∈ A now ψ(a) = f (φ(a)) ∈ Im( f ). By assumption Im( f ) = Ker(g), hence
gψ(a)= 0 for all a ∈ A. This shows g∗(ψ)= 0, proving that Im( f∗)⊂Ker(g∗).
‘⊃’: let ψ ∈ Hom(A, N) satisfy g∗(ψ) = 0. We will construct φ ∈ Hom(A, M) such
that f∗(φ) = ψ. The condition g∗(ψ) = 0 means that gψ(a) = 0 for all a ∈ A, i.e.,
ψ(a) ∈ Ker(g) for all a ∈ A. Moreover by assumption Ker(g) = Im( f ). We also have
that f is injective, so f : M

∼=→ Im( f ). As a result, an R-module isomorphism

M h←− Im( f ) (⊂ N), with f ◦h = idIm( f )

exists. Since im(ψ) ⊂ im( f ), the composition φ := h ◦ψ : A → M is a well defined
R-module homomorphism. One finds for all a ∈ A that

( f∗φ)(a) := f (φ(a))= f (h(ψ(a)))=ψ(a), hence f∗(φ)=ψ
(here we used that ψ(a) ∈Ker(g)= Im( f ) and f ◦h = idIm(h)). So Ker(g∗)⊂ Im( f∗).

This concludes the proof of the theorem.

VII.3 Tensor products

In linear algebra, and in various applications of linear algebra such as coding the-
ory, inner products and generalizations of inner products are an important notion.
Tensor products, which will be introduced in this section, provide a general frame-
work for this. They are in particular used in representation theory and in differen-
tial geometry, and in applications of these areas in theoretical physics.

VII.3.1 Definition. If R is a ring and M, N,T are R-modules, then a map

b : M×N −→ T

is called bilinear (or R-bilinear) if for every m ∈ M and every n ∈ N the maps M → T
and N → T given by x 7→ b(x,n) resp. y 7→ b(m, y) are R-module homomorphisms.
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VII.3.2 Example. Take n ∈Z≥1. Let R be a commutative ring and let M = N = Rn

be the free R-module of rank n. Then

b : Rn ×Rn → R given by b((x1, . . . , xn) , (y1, . . . , yn))=∑
x j yj

is bilinear.

VII.3.3 Definition. If R is a ring and M, N are R-modules, then a tensor product of
M and N is a pair (T,β) in which T is an R-module and β : M×N → T is a bilinear
map, such that the following holds:
given any R-bilinear map b : M×N → S for some R-module S, there exists a unique
R-module homomorphism f : T → S such that b = f ◦β.

One can visualize this definition by means of diagrams:

M×N b→ S M×N b→ S
↓β ⇒ ↓β ↗∃! f

T T

The first thing we will see concerning a tensor product, is that if it exists then
it is unique (in fact up to a unique(!) isomorphism). This should be compared
with Theorem VI.3.8, where a similar argument for direct sums rather than tensor
products is given.

VII.3.4 Theorem. Suppose M, N are R-modules and (T1,β1) and (T2,β2) are tensor
products of M and N. Then there is a unique R-module isomorphism f : T1 → T2
such that β2 = f ◦β1.

Proof. Using that (T1,β1) is a tensor product of M and N, the diagram

M×N
β2→ T2

↓β1

T1

yields a unique f1 : T1 → T2 with β2 = f1 ◦β1. Interchanging the roles of T1 and T2
one obtains f2 : T2 → T1 with β1 = f2 ◦β2. As a result, β2 = ( f1 ◦ f2)◦β2. However,
starting from

M×N
β2→ T2

↓β2

T2

and the assumption that (T2,β2) is a tensor product, the unique arrow T2 → T2
making the above diagram commutative is the identity map. So f1◦ f2 = idT2 . Again
interchanging the roles of T1 and T2, one finds in the same way that f2 ◦ f1 = idT1 .
So f1 and f2 are isomorphisms as desired.

To see that f1 is unique, suppose that also f ′1 : T1 → T2 is an isomorphism with
β2 = f ′1 ◦β1. Then β1 = f ′1

−1 ◦β2 and hence β2 = ( f1 ◦ f ′1
−1) ◦β2. As above, since

(T2,β2) is a tensor product this implies f1 ◦ f ′1
−1 = idT2 and hence f1 = f ′1.

VII.3.5 Notation. The (if it exists at all) by Theorem VII.3.4 unique pair (T,β)
which is a tensor product of the R-modules M and N, we will from now on denote by
M⊗R N (or simply M⊗N if it is clear from the context which ring R is considered).

The bilinear map β : M×N will be written as (m,n) 7→ m⊗n.

It remains to show existence of a tensor product. The next result claims exactly
that.
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VII.3.6 Theorem. For any R-modules M and N a tensor product (T,β) exists.

Proof. One constructs an abelian group (T,+,0) as follows. Start with the free
abelian group F with (independent) generators denoted m×n for m ∈ M, n ∈ N. So

F ∼=
⊕

(m,n)∈M×N
Z.

Next, take the subgroup S ⊂ F generated by all elements

(m×n)+ (m′×n)− ((m+m′)×n), (m×n)+ (m×n′)− (m× (n+n′)),
((rm)×n)− (m× (rn)), (0×n)

with m,m′,0 ∈ M and n,n′ ∈ N and r ∈ R. Let T be the factor group: T := F/S. The
class (m×n) mod S ∈ T is denoted m⊗n.

One obtains a scalar multiplication by elements of R on F and on S (and there-
fore on T) by defining

r ·
(∑

j
m j ×n j

)
:=∑

j
(r ·m j)×n j.

This makes T into an R-module. The map

β : M×N → T given by β(m,n) := m⊗n = (m×n) mod S

is by the definition of S bilinear. The fact that indeed (T,β) defines a tensor product
is left as an exercise to the reader.

The construction of a tensor product as given in the proof of Theorem VII.3.6 is
rarely needed in showing properties of the tensor product. Instead, one shows that
a given module is the tensor product of M and N by showing that the module sat-
isfies Definition VII.3.3. Then the unicity of the tensor product (Theorem VII.3.4)
shows that indeed the given module is the tensor product. We illustrate this by
some simple results and examples.

VII.3.7 Proposition. Let R be a ring and let M and N be R-modules. Then

M⊗R N ∼= N ⊗R M.

Proof. It suffices to show that M⊗R N has the defining property of a tensor product
of N and M.

Firstly, β : N ×M → M ⊗R N given by β(n,m) = m⊗n is bilinear. Now suppose
b : N×M → T is any bilinear map. Then b̃ : M×N → T defined as b̃(m,n)= b(n,m)
is bilinear as well, so because M ⊗R N is a tensor product of M and N, a unique
R-homomorphism f : M⊗R N → T exists with b̃ = f ◦β. Then also b = f ◦β, and the
uniqueness of an f with the latter property is obvious.

VII.3.8 Proposition. Let R be a ring and let f : M1 → M2 and g : N1 → N2 be two
R-module homomorphisms. Then a unique R-module homomorphism

M1 ⊗R N1 → M2 ⊗R N2

exists with m1 ⊗n1 7→ f (m1)⊗ g(n1) for all m1 ∈ M1 and n1 ∈ N1.

Proof. Define b : M1×N1 → M2⊗R N2 by b(m1,n1)= f (m1)⊗ g(n1). Then b is bilin-
ear, hence by the definition of tensor product a unique R-module homomorphism
as desired exists.
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VII.3.9 Proposition. If R is a unitary ring and M is an R-module, then R⊗R M ∼= M.

Proof. Define β : R ×M → M by β(r,m) = rm. Clearly β is bilinear. We claim that
(M,β) satisfies the definition of a tensor product for R and M. Indeed, take any R-
module N and a bilinear map b : R ×M → N. Define f : M → N by f (m) = b(1,m).
Then for any m ∈ M and any r ∈ R one has f (β(r,m)) = f (rm) = b(1, rm) = b(r,m)
since b is bilinear. So f ◦β = b. If also f ′ ◦β = b, then taking any m ∈ M we
have f (m) = b(1,m) = f ′(β(1,m)) = f ′(m), so f = f ′. Hence f is unique, proving the
claim.

VII.3.10 Remark. The proof of Proposition VII.3.9 in fact shows that r⊗m → rm
defines an isomorphism of R-modules R⊗R M → M. This is used in the proof of the
next result.

VII.3.11 Proposition. Let K be a field and let V ,W be vectorspaces over K with
bases {e i : i ∈ I} and { f j : j ∈ J}, respectively. Then the tensor product V ⊗K W is a
K-vectorspace with basis {e i ⊗ f j : i ∈ I , j ∈ J}.

Proof. By assumption V ∼=⊕i∈I K and W ∼=⊕ j∈JK . Hence

V ⊗K W ∼= (⊕i∈I K
)⊗K

(⊕ j∈J K
)
.

Now define

b :
(⊕i∈I K

)× (⊕ j∈J K
)−→⊕(i, j)∈I×JK ⊗K K ∼=⊕(i, j)∈I×JK

by b((xi)i∈I , (yj) j∈J )= (xi ⊗ yj)(i, j)∈I×J . Since b is bilinear, a (unique)

f :
(⊕i∈I K

)⊗K
(⊕ j∈J K

)→⊕(i, j)∈I×JK ⊗K K

exists with b((xi)i∈I , (yj) j∈J )= f ((xi)i∈I ⊗(yj) j∈J ). In fact f defines an isomorphism.
Since as a special case of Proposition VII.3.9 we have K⊗K K ∼= K , the result follows.

VII.3.12 Remark. In the special case of Proposition VII.3.11 that dimK (V )= n <∞
and dimK (W) = m < ∞, the tensor product V ⊗K W is a vectorspace of dimension
n ·m.

If in this case f : V → V and g : W → W are K-linear maps, then Proposi-
tion VII.3.8 combines these maps into a K-linear map V ⊗K W → V ⊗K W . The
latter map is usually denoted f ⊗ g. If f is given by an n× n matrix and g by
an m×m matrix, then f ⊗ g is given by an nm× nm matrix. With respect to the
bases as described in Proposition VII.3.11 the latter matrix is called the Kronecker
product of the matrices for f and g.

The final result we will present here concerning tensor products, shows a re-
lation between (T ⊗R −), so the map assigning to an R-module N the R-module
T ⊗R N, and HomR(T,−). Recall that for the latter to be a map from R-modules to
R-modules, we require that R is commutative.

The result we are about to describe is usually referred to as the statement that
(T⊗R−) and HomR(T,−) are adjoint. To understand this terminology, suppose that
V is a vector space over R, equipped with an inner product 〈·, ·〉. Then two linear
maps ϕ,ϕ∗ : V → V are called adjoint if 〈ϕ(v),w〉 = 〈v,ϕ∗(w)〉 for all v,w ∈ V . Now
replace “vectors in V ” by “R-modules”, and “taking the inner product” by “taking
HomR(−,−)”, and the maps ϕ,ϕ∗ by (T ⊗R −) respectively HomR(T,−). In this way
the following result obtained the name adjointness of Hom and tensor.
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VII.3.13 Theorem. Let R be a commutative ring and let T be an R-module. Then
for any pair M, N of R-modules one has

HomR(T ⊗R M, N)∼=HomR(M,HomR(T, N))

as R-modules.

Proof. Write BilinR(T×M, N) for the set of all bilinear maps T×M → N. In fact this
is an R-module with respect to pointwise addition and multiplication by elements
of R, so

(b+b′)(t,m) := b(t,m)+b′(t,m) and (rb)(t,m)= r ·b(t,m).

The definition of a tensor product implies that every element of BilinR(T × M, N)
corresponds to an element of HomR(T ⊗R M, N), and in this way

BilinR(T ×M, N)∼=HomR(T ⊗R M, N)

as R-modules. Hence it suffices to show that

BilinR(T ×M, N)∼=HomR(M,HomR(T, N)),

which is done as follows. Given b ∈ BilinR(T × M, N), which means a bilinear
map b : T × M → N, the map b(−,m) : T → N is in HomR(T, N). Vice versa, is
f ∈HomR(M,HomR(T, N)) then (t,m) 7→ f (m)(t) defines a bilinear map T×M → N.

A straightforward verification shows that

b 7→ [m 7→ b(−,m)]

and
f 7→ [(t,m) 7→ f (m)(t)]

are each other’s inverse, and moreover these maps are R-module homomorphisms.
This proves the theorem.

VII.4 Projective modules

In Example VII.2.10 we saw that Hom(A,−) is in general not (right-)exact, in other
words an exact sequence M → N → 0 does not necessarily give rise to an exact
sequence Hom(A, M) → Hom(A, N) → 0. And in Section VI.3 we saw examples of
modules M, N that are not free, but M ⊕N is a free module (the examples VI.3.5
and VI.3.6 even have M = N).

In this section the notion ‘projective module’ (Definition VII.4.1) is introduced,
and it is shown that Hom(P,−) is exact precisely when P is projective (see The-
orem VII.4.5). Moreover it will be shown that P being projective if and only if a
module Q exists such that P ⊕Q is a free module (see Theorem VII.4.6).

VII.4.1 Definition. An R module P is called projective if for every surjective R-

module homomorphism M
f→ N and for every R-module homomorphism h : P → N,

so
M

f→ N → 0,
↗h

P

there exists an R-module homomorphism h̃ : P → M, so

M
f→ N → 0,

h̃ ↑ ↗h
P

such that f h̃ = h.
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The next three lemmas, especially VII.4.2 and VII.4.4, assist in appreciating
this definition.

VII.4.2 Lemma. Any free R-module F is projective.

Proof. By definition F ∼= ⊕i∈I R for some non-empty set I. Now given and exact

sequence M
f→ N → 0 and h : F → N, one constructs h̃ as follows. Put

ni := h(e i), and choose mi ∈ M with f (mi)= ni,

such mi exist since f is surjective. Since h is an R-module homomorphism, we
have h(

∑
xi e i)=∑

xih(e i)=∑
xini. Next, define

h̃ : F −→ M, by
∑
i∈I

xi e i 7→
∑
i∈I

ximi.

Then h̃ is an R-module homomorphism and f h̃ = h. This proves the lemma.

VII.4.3 Lemma. Let R be a ring and let M, N be R-modules. Suppose given two
R-module homomorphisms

M
f−→ N, and M

g←− N such that f ◦ g = idN .

Then f is surjective (one says that g splits the exact sequence M
f→ N → 0). We have

M ∼= Im(g)⊕Ker( f ), and Im(g)∼= N.

Proof. We claim that Im(g)∩Ker( f )= {0} and that Im(g)+Ker( f )= M. If this holds,
then the map

Im(g)⊕Ker( f )−→ M, (a,b) 7→ a+b

is an isomorphism of R-modules (as the reader should verify!).
We first show Im(g)∩Ker( f )= {0}. Take x ∈ Im(g)∩Ker( f ), then

∃n ∈ N : g(n)= x
f (x)= 0

}
=⇒ n = f (g(n))= f (x)= 0,

and therefore x = g(n)= g(0)= 0.
Now take m ∈ M, then

gf (m) ∈ Im(g) and m = gf (m)+ (m− gf (m)),

moreover it holds that

f (m− gf (m))= f (m)− f g f (m)= f (m)− f (m)= 0,

and therefore m− gf (m) ∈ Ker( f ). One concludes that every m ∈ M can be written
as a sum of the element gf (m) ∈ Im(g) and the element m− gf (m) ∈ Ker( f ). This
shows the lemma.

VII.4.4 Lemma. If P is a projective R-module and M
f−→ P −→ 0 is a surjective

R-module homomorphism, then M ∼= P ⊕Ker( f ).

Proof. Use the definition of projective with N = P and h = idP : P → P = N to obtain
h̃ : P → M

M
f→ P → 0

h̃↑ ↗∼=
P

with f h̃ = h = idP .

In particular one concludes that h̃ splits the exact sequence N
f→ P → 0. The lemma

now follows from Lemma VII.4.3.
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VII.4.5 Theorem. If P is a projective R-module, then Hom(P,−) is right exact. This
means the following. If

A
f−→ B

g−→ C −→ 0

is an exact sequence of R-modules, then

Hom(P, A)
f∗−→Hom(P,B)

g∗−→Hom(P,C)−→ 0

is also an exact sequence of R modules.
Moreover, if an R-module A is not projective, then Hom(A,−) is not right exact.
In conclusion, an R-module P is projective precisely when Hom(P,−) is right exact.

Proof. Given are an exact sequence and a projective module P as in the statement
of the theorem.

Exactness at Hom(P,C): this means we have to verify that g∗ is surjective. This
follows immediately from the definition of projective: indeed, take h ∈ Hom(P,C).
Then h̃ ∈Hom(P,C) exists with f h̃ = h. This says f∗(h̃)= h, proving surjectivity.

Exactness at Hom(P,B): we have to show Im( f∗)=Ker(g∗).
‘⊂’: let ψ ∈ Im( f∗), then one may write ψ = f∗(φ) for some φ ∈ Hom(P, A). By defi-
nition, for any x ∈ P one has ψ(x)= f (φ(x)) ∈ Im( f ). By assumption Im( f )=Ker(g),
hence g(ψ(x))= 0. This implies g∗(ψ)= 0, and therefore Im( f∗)⊂Ker(g∗).
‘⊃’: let ψ ∈ Hom(P,B) satisfy g∗(ψ) = 0. We will construct φ ∈ Hom(P, A) with
f∗(φ)=ψ. The condition g∗ψ= 0 means

Im(ψ)⊂Ker(g)= Im( f ).

Furthermore A
f−→ Im( f ) −→ 0 is an exact sequence. Considering ψ as an R-

module homomorphism ψ : P → Im( f ), the definition of projective (with h := ψ,
and M := A, N := Im( f )) implies that φ : P → A exists with fφ = ψ. This means
f∗(φ)=ψ. As a consequence, Ker(g∗)⊂ Im( f∗).

Finally we prove the remaining assertion of the theorem. If A is not projective,

then an exact sequence M
f→ N → 0 and an h ∈ Hom(A, M) exist, for which there

is no h̃ ∈ Hom(A, N) such that f h̃ = h. This means that Hom(A,−), applied to the
exact sequence

Ker( f ) ,→ M
f−→ N −→ 0,

yields a sequence in which f∗ : Hom(A, M) → Hom(A, N) is not surjective. Hence
Hom(A,−) is not right exact. This finishes the proof.

VII.4.6 Theorem. Let R be a ring and let P be an R-module. Then:
P is projective if and only if

an R-module Q exists with P ⊕Q = F for some free R-module F.

Proof. ‘⇐’: Suppose P ⊕Q = F is a free R-module. Given a diagram

M
f→ N → 0,

↗h

P

in which f is surjective, we must construct h̃ such that f h̃ = h. Define

g : F = P ⊕Q −→ N, g(p, q) := h(p) (p ∈ P, q ∈Q).
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Then g � P = h (the restriction of g to P ∼= P ⊕ (0) ⊂ F). By Lemma VII.4.2 F is
projective, hence g̃ exists with

M
f→ N → 0

g̃↑ ↗ g

P ⊕Q = F
such that f g̃ = g.

Now define h̃ := g̃ � P. Then f h̃ = h follows from f g̃ = g by restricting to P.
‘⇒’: Let P be a projective R-module. We construct a free R-module F by using P
as index set:

F := ⊕
p∈P

R.

Now define
f : F → P, (xp)p∈P 7→ ∑

p∈P
xp · p.

Clearly f is an R-module homomorphism. Moreover f is surjective since f ((xq)q∈P )= p
if one takes xq = 0 for all q 6= p and xp = 1. Lemma VII.4.4 then implies F = P⊕Ker( f ),
hence one can take Q =Ker( f ). This proves Theorem VII.4.6.
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VII.5 Exercises

1. Let R be a commutative (unitary) ring and suppose f : M → N is a non-surjective
R-module homomorphism.
Show that f∗ : Hom(R, M)−→Hom(R, N) is not surjective.

2. Let R be a commutative ring and consider R-modules M, N, P, Q. Construct
R-module isomorphisms

Hom(M⊕N,P)∼=Hom(M,P)⊕Hom(N,P),

Hom(M,P ⊕Q)∼=Hom(M,P)⊕Hom(M,Q).

3. Let R be a commutative ring and let I, J be ideals in R such that I + J = R.
Prove that Hom(R/I, R/J)= 0.
Conclude that the R[X ]-modules R[X ]/(X −a) and R[X ]/(X −b) are not isomor-
phic if a 6= b.

4. Prove the “5-lemma”: this is the following assertion. Suppose R is a ring, and
given is a commutative diagram of R-modules

A
f−→ B

g−→ C h−→ D
j−→ E

↓` ↓m ↓n ↓ p ↓ q

A′ r−→ B′ s−→ C′ t−→ D′ u−→ E′

in which the two rows are exact. Show that if ` is surjective and q is injective
and both m and p are isomorphisms, then n is an isomorphism.

5. Given a ring R and R-modules M1, M2, N, show that

(M1 ⊕M2)⊗R N ∼= (M1 ⊗R N)⊕ (M2 ⊗R N).

6. Prove that the tensor product is right exact. This means the following. Let R
be a ring and let T be an R-module. Suppose

M → N → P → 0

is an exact sequence of R-modules. Show that this results in a sequence

T ⊗R M → T ⊗R N → T ⊗R P → 0

which is also exact.
7. Given the linear maps R2 →R2 with matrices

(1 2
3 4

)
and

(5 6
7 8

)
, respectively (with

respect to the standard basis of R2).
Determine the Kronecker product of these linear maps (see Remark VII.3.12).

8. Let R be a commutative ring and let I ⊂ R be an ideal.
Prove: R/I is a projective R-module if and only if
an ideal J ⊂ R exists such that the canonical map R → R/I × R/J given by
r 7→ (r mod I, r mod J) defines an isomorphism of rings.
(Hint: if g splits the canonical map R → R/I, then consider g(R/I)⊂ R.)

9. Show that the ideal I = (X ,Y )⊂R[X ,Y ] is not projective as an R-module. (Hint:
if φ splits the surjection

R⊕R −→ I given by ( f , g) 7→ f X + gY ,

then consider φ(XY ) ∈ R⊕R.)
10. Suppose M is a projective module over the commutative ring R.

Prove that Hom(M,R) is a projective R-module as well. (This R-module is usu-
ally called the dual of the R-module M).
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