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Chapter 1

Introduction

This thesis investigates the problem of constructing tensegrity frameworks and
the related applications in formation control in the context of multi-agent

systems. We will concentrate on growing tensegrity frameworks in several scenarios,
including merging rigid/infinitesimally rigid/super stable tensegrity frameworks,
and Henneberg constructions on super stable tensegrity frameworks. In order
to make good use of the desirable features of tensegrity frameworks, such as
flexible scalability and robustness, a control scheme based on virtual tensegrity
frameworks is proposed to manipulate formations for carrying out different tasks.
Before proceeding to the specific problems, I will briefly introduce the background,
motivations, and structure of this thesis.

1.1 Background

In this chapter, the basic knowledge of tensegrity frameworks and formation control
is provided. The detailed literature review will be provided at the beginning of
each main chapter for specific problems.

1.1.1 Tensegrity frameworks

The English word “Tensegrity” was coined by Buckminster Fuller in the late 1950s
by combining the words “tension” and “integrity” [46, 106]. This conjunction also
literally implies that this class of structures is integrated by the inner tension in
various geometric forms. In fact, one decade before the word tensegrity structures
were named, a contemporary sculptor, Kenneth Snelson, had constructed the “X-
Piece”, shown in Fig. 1.1, which has been regarded as the first widely known piece
of the tensegrity structure. It is made of two plywood X’s placed in an interlaced
manner and one stands over the other linked by nylon lines in tension. Apart from
X-Piece, Snelson has also made a series of sculptures in the following decades,
like “Needle Tower”, created in 1968, now exhibiting in Hirshhorn Museum and
Sculpture Garden, Washington and “Sleeping Dragon” created in 2002-03, now
“sleeping” in Kirkpatrick Oil Company Building, Oklahoma City.
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Figure 1.1: The “X-Piece” made by Kenneth Snelson in 1948.

Even though a variety of tensegrity structures has been built by researchers,
engineers, artists, and sculptors, there exists no general form of the definition of
tensegrity due to practitioners’ different perspectives (see, for example, [38, 46,
97, 114]). A detailed introduction to the historical development and fundamental
concepts of tensegrity frameworks can be found in [85]. In spite of the diverse
definitions, one commonly-accepted statement is that a tensegrity structure consists
of compression elements (i.e., struts) and tension elements (i.e., cables), with which
the resulted pushing and pulling forces are balanced such that the whole structure
is stable [64]. Because of the elements in compression or tension together with
their carefully designed connections, tensegrity structures enjoy several remarkable
features [113]: Efficiency in supporting loads; deployability to a large volume;
easy adjustment; reliable modeling and control; and clear connections to many
biological structures.

With these features, tensegrity structures have received extensive attention from
different disciplines. Starting from explaining the molecular structure of the spider
fiber [111, 121], researchers have applied tensegrity structures to model biologic
organisms from cell cytoskeletons [60], cats’ hind legs [37] to the spines of humans
[74], and in fact, one can recognize a new research community “biotensegrity”. The
beauty of the tensegrity structures is admired not only by the biologists but also by
the artists. As mentioned above, Snelson has created many sculptures, which are
exhibited in museums and art galleries worldwide. At the same time, systematic
analyses on the equilibrium conditions were initially reported in [67, 97], all of
which laid theoretical foundations for the achievements afterwards. In architecture,
the tensegrity concepts have also been adopted to construct shelters, bridges, roofs
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and even whole buildings. These constructions embrace the advantages that, on
one hand, they can deform their shapes to survive drastic movements caused by
an earthquake or whatever disturbances without breakdown and on the other
hand, they are much lighter yet bear higher stiffness in comparison with traditional
structures [112]. Besides the extensive applications of tensegrity structures in
civil engineering, people also seek to explore a new paradigm in the design and
control of locomotor robots using tensegrity concepts [69, 94]. Recently, a project
aiming for exploring the deeper space was launched by NASA (National Aeronautics
and Space Administration), in which the core platform “Super Ball Bot” based on
tensegrity structure can flexibly adjust its configuration to suit the complicated
environment.

Due to the increasing applications of tensegrity structures in different fields,
researchers conducted more rigorous mathematical analysis much beyond the
geometrical interpretations in the early stage. One of the most important problems
is to identify an equilibrium configuration, known as form-finding [64, 80, 122],
which falls out of the scope of this thesis, and thus we skip the discussion on this
problem. Instead, we will focus on the theoretical study of tensegrity structures
in the context of rigidity graph theory. To keep consistent with the conventions in
graph theory, we will refer to tensegrity structures as “tensegrity frameworks” in
the rest of this thesis. The concepts related to rigidity in terms of bar frameworks
were extended to tensegrity frameworks in [104]. Then Connelly investigated the
local rigidity conditions in terms of the stress-based energy function [19]. Later, the
concepts of second-order rigidity and pre-stress stability for tensegrity frameworks
were established in [26], where the physical parameters and the stress were linked
via the Hessian matrix. In addition to these, global rigidity [23], super stability [21],
and iterative universal rigidity [24] of tensegrity frameworks were also studied
based on the stress matrix.

1.1.2 Distributed formation control

The last two decades witnessed sustained considerable efforts on distributed forma-
tion control, which is one of the central topics in the context of cooperative control
of multi-agent systems. Initially inspired by the collective behavior of groups of
animals, such as birds and fish, people gain new insight into the control of complex
systems. Then distributed control schemes were proposed based on only local
interactions with neighbors in contrast to the all-to-all or all-to-one communica-
tions in centralized control. Consequently, the distributed control systems can
obtain more benefits because of the facts that they have low operational cost, high
robustness to disturbances and system failure, and flexible scalability [17]. Due to
these advantages, formations of robots have been employed to carry out various
tasks, such as satellites flying in a certain shape to explore the deep space, drones
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flying in formation to transport goods, and wheeled robots moving in an organized
pattern to map an area [10].

The objective of formation control is to achieve some prescribed formations
normally specified by relative positions or pairwise distances among agents. Ac-
cording to the collective behavior of the whole group, formation control can be
roughly categorized into two scenarios [102]: formation producing (stabilization)
refers to the convergence of team agents to some pre-defined feasible geometric
shapes by running control laws; formation tracking refers to formation stabilization,
in the meantime, following a given leader or a given reference signal. This implies
that formation tracking control can be regarded as the integration of formation
stabilization and trajectory tracking control. It is worth noting that the realization
of formation tracking is more than just simple addition between formation stabiliza-
tion and trajectory tracking due to the coupling effect caused by the sub-controllers
to the other.

As summarized in the recent survey paper [91], the approaches to solving forma-
tion control problems can be generally classified into position-based, displacement-
based, and distance-based control according to the sensing and communication
variables. By invoking the position-based control, agents can move towards their
desired positions individually, which means that a global coordinate system is com-
pulsory. To remove such a restrictive requirement, the displacement-based control
measures the relative positions, and thus relies on local coordinate systems but with
consistent orientations. Among these three strategies, the distance-based control
is the most efficient approach in practice, since the inter-agent distances can be
obtained in a fully local manner in the sense that neither a global coordinate system
or the same orientation is required. However, in general, only local convergence
can be expected from the gradient system using distance-based control. Many
results have been reported on this issue, such as [13, 29, 30, 70].

Apart from these basic tasks discussed above, formations are also required
to vary in size or even in shape to adapt to the changing environment in some
situations. For example, a team of flying drones needs to shrink its formation size
to pass through some restricted areas. We call this type of transformation, i.e.,
altering only the formation size without changing the geometric shape, formatioin
scaling. This issue will be addressed in this thesis by investigating how to control a
small number of agents to recast the size of the formation. In addition, it is also
a common phenomenon that as a formation of robots moves, it might split into
sub-formations and then merge the small portions to form a bigger whole after a
certain period of time, for the purpose of obstacle avoidance, predator avoidance,
or target enclosing [5]. The merging problem will also be discussed in the context
of tensegrity frameworks in this thesis.
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1.2 Outline and main contributions of this thesis

Chapter 2 first provides some notations employed in this thesis, followed by the
basic concepts of graphs and bar frameworks together with rigidity theory. Parallel
to the bar frameworks, Section 2.3 presents the definitions and preliminaries of
rigidity theory associated with tensegrity frameworks.

Chapter 3 deals with the problem of how to preserve infinitesimal rigidity and
rigidity of the tensegrity frameworks after the merging operation in R2. We show
that in the case of merging separate infinitesimal rigid tensegrity frameworks, there
exists a set of proper self-stresses for the post-merged tensegrity framework, where
the type of a pre-existing member can be maintained by checking the sign of the
new stress. Then based on this self-stress, it can be shown mathematically that
the combined tensegrity framework is infinitesimally rigid. Furthermore, we also
show that rigidity can be expected when merging two rigid tensegrity frameworks
via analyzing the distance perturbation on the linking members. For appropriate
assignment of the new members, a novel method is proposed by morphing the
rigidity matrix. To the best of our knowledge, no results on analyzing infinitesimal
rigidity or rigidity of the merged tensegrity framework have been reported in the
existing literature. The results of this chapter can serve as the theoretical foundation
for formation control strategies design in practical applications.

In Chapter 4, we focus on the problem of growing super stable tensegrity
frameworks. We first investigate the vertex addition and edge splitting operations on
a super stable tensegrity framework along the line of classic Henneberg construction
for bar frameworks. It is shown that these operations can preserve the super stability
with appropriate selection of struts or cables inserted during the growing process
in R2 (R3). In addition, Chapter 4 studies the merging problem for two super
stable tensegrity frameworks in Rd under the condition that they share at least
d+ 1 vertices. We present one mild sufficient condition to ensure super stability
by looking into the stress matrix. When the dimension of the working space is
constrained to two or three, we give detailed procedures on how they may be
merged to generate a super stable framework. In the last section of Chapter 4,
comparisons are made with bar frameworks in terms of the quantity of the members
to accomplish the growing procedure. The results of this chapter are important not
only in enriching the rigidity graph theory with respect to super stable tensegrity
frameworks, but also in constructing large-scale stable tensegrity frameworks in
civil engineering.

Chapter 5 explores how to construct a universally rigid tensegrity framework
given any configuration in general positions. We present a numerical algorithm
to derive a stress matrix, based on which a universally rigid tensegrity framework
can be built accordingly. We then consider the formation control problem with
constraints on the inter-agent distances, in which the strict upper or lower bounds
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for pairs of agents are imposed. By projecting the multi-agent system into a
virtual tensegrity framework, we propose distributed control laws to stabilize
prescribed formations. One can easily use our control strategies to tackle the
distance constraints within the subject of formation control in applications. For
example, the vehicles cannot diverge from each other too much due to the existence
of cables in tethered robots or pipes in aerial refueling.

We study the formation scaling problem in Chapter 6, aiming at changing
the formation size by controlling only a small portion of the agents. The virtual
tensegrity framework is again employed to model the connecting relationships
among the agents as well as the weight on each edge. We first show that the size of
the formation in Rd can be altered by d pairs of agents whose position vectors span
the whole space Rd. To further reduce the number of informed agents, we design
another class of stress-based formation scaling control laws involving orthogonal
projections used to drive the agents to correct directions. In this circumstance, it is
shown that one pair of informed agents is sufficient to determine the size of the
whole formation. Moreover, we discuss the equilibria when the stress agrees with a
generic universally rigid tensegrity framework. As an extreme case, when only one
agent is informed of the size of the formation, we design a new type of distributed
estimator-based control algorithms, with which the formation scaling problem can
be solved. This greatly improves the feasibility of the control laws in the terms
of communication and sensing requirements. Last but not least, by introducing
the negative weights, more interaction models can be involved to comprehensively
study the mechanism of coordination.

In Chapter 7, we address the formation tracking problem for multi-agent sys-
tems, where the centroid of the formation needs to be controlled to follow a given
reference signal. In light of the fact that the centroid of the formation is a global
variable that cannot be computed easily using only local information, we design a
finite-time centroid estimator for each agent. In comparison with existing results,
our proposed estimator can get rid of the explicit knowledge of the bound of the
agents’ speed. Using the centroid estimation, distance-based formation tracking
control laws are designed and stability is proved by invoking rigidity graph theory.
What also deserves to be highlighted in this chapter is that the proposed con-
trol scheme can be accomplished in local coordinate frames, which can definitely
broaden its applications in practice.

Chapter 8 presents the conclusions of this thesis, and provides some possible
directions of interest, from my point of view, for future research.
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Chapter 2

Theoretical preliminaries

In this chapter, we first introduce some general notation and definitions that
will be used throughout the thesis. To make this thesis self-contained and its

definitions consistent, we then mainly follow [25] to review some basic concepts on
tensegrity frameworks. Among those, the key concepts from graph rigidity theory
associated with tensegrity frameworks and bar frameworks will be highlighted
respectively. This lays theoretical foundations in stability analysis of distributed
formation control, which in turn serves as one application of tensegrity frameworks
in this thesis.

2.1 Notations

In this section, we introduce some standard notations. Let Rn be the n-dimensional
Euclidean space. Rm×n is used to represent the set of real matrices with dimension
m× n. Denote by In the identity matrix with dimension n. We use 1n and 0n to
denote the n-dimensional column vector with all ones and zeros, respectively. The
subscripts will be omitted when there is no confusion in the context.

For a given matrix X ∈ Rm×n, X> denotes its transpose. The rank, column
space (i.e., image) and null space of a matrix X are represented by rank(X), col(X)

and null(X), respectively. Let det(X) denote the determinant of a real square
matrix X. For x ∈ R, sign(x) is the signum function. For a vector x, sign(x) is
defined in a component-wise manner. For a vector x = [x1, · · · , xn]T ∈ Rn, ‖x‖
represents the Euclidean norm of x, and diag(x) = diag(x1, · · · , xn) is a diagonal
matrix with the vector x on its diagonal. For a matrix V = [v1, · · · , vn] ∈ Rm×n, we
use span(V) to denote the linear span of the elements {v1, · · · , vn}. For a set S, |S|
denotes the cardinality of S.

Given two matrices A = [aij ]m×n and B = [bij ]p×q, the Kronecker product
A⊗B is defined by

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


mp×nq

.
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2.2 Preliminary on frameworks and rigidity theory

2.2.1 Graph theory

A graph comprises a set of vertices and edges, in which the edges specify how
the vertices are connected. We assume that the graph studied in this thesis is
finite and simple, i.e., without loops or multiple edges. Let V = {1, 2, · · · , n} and
E ⊆ V ×V be, respectively, the vertex set and the edge set of a graph G representing
the neighboring relationships between n vertices. The graph G is defined as the
pair G = (V, E). A graph is said to be directed if the pairs of nodes are ordered,
namely, a directed edge (i, j) means that the information flows along the direction
from i to j, but not necessarily vice versa. In contrast, a graph is undirected if
(i, j) ∈ E implies (j, i) ∈ E [101]. In this thesis, we mainly focus on undirected
graphs, where vertices i and j are neighbors if and only if there exists an edge (i, j).
The set of vertices that are adjacent to i is denoted by Ni = {j|(i, j) ∈ E}. The
adjacency matrix A = [aij ] ∈ Rn×n associated with the graph G is defined in such
a way that aij = 1 if (i, j) ∈ E and aij = 0 otherwise. For an undirected graph, A
is a symmetric matrix.

Define the Laplacian matrix L = [lij ] ∈ Rn×n by

lii =

n∑
j=1,j 6=i

aij , lij = −aij , i 6= j. (2.1)

It can be checked that the row sums of the Laplacian matrix equal zero, which
implies that 1n is always an eigenvector associated with the zero eigenvalue. This
property plays a key role in controller design for achieving consensus of multi-agent
systems.

Under the assumption that we have assigned an arbitrary orientation to G, the
incidence matrix H = [hij ] ∈ Rn×|E| encoding the relationships between edges and
nodes is defined by

hij =


1, if node i is the head of edge j,

− 1, if node i is the tail of edge j,

0, otherwise,

where i and j are the indices running over the node and edge sets, respectively.
With incidence matrix, the Laplacian matrix can be shown to be equal to

L = HH>.

From this property, we can observe that Laplacian matrix is always symmetric and
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positive semidefinite [83].

Lemma 2.1. [101, Lemma 2.10] Suppose that z = [z>1 , · · · , z>n ]> with zi ∈ Rd and
L defined in (2.1). Then the following statements are equivalent.

(a) L has a simple zero eigenvalue with an associated eigenvector 1n and all other
eigenvalues are positive,

(b) The undirected graph of L is connected,

(c) (L⊗ Id)z = 0 implies that z1 = · · · = zn,

(d) Consensus is reached asymptotically for the system ż = −(L⊗ Id)z,

(e) The rank of L is n− 1.

Remark 2.2. The graph in Lemma 2.1 is assumed to be undirected, which is a
special case of the directed graph discussed in [101, Lemma 2.10].

2.2.2 Frameworks and rigidity

A configuration is a finite collection of n labeled points in the d-dimensional Eu-
clidean space Rd, denoted by q = [q1, · · · , qn]. We say a configuration q is generic if
the elements of q are algebraically independent over the rational numbers, namely,
there is no non-zero polynomial with rational coefficients that vanishes at the
elements of q [23].

Also, to avoid certain special cases, for a framework in a Euclidean d-dimensional
space, an assumption is often made that the framework is at a general position, i.e.,
no k points of q1, · · · , qn lie in a (k− 1)-dimensional affine space for 1 6 k 6 d. We
introduce here a class of transformation of q, called affine transformation, which is
determined by a matrix M ∈ Rd×d and a vector b ∈ Rd. Then given a configuration
q, an affine image is given by

A(q)
∆
= {p = [p1, · · · , pn]|pi = Mqi + b,

M ∈ Rd×d and b ∈ Rd, i = 1, · · · , n},

or equivalently

A(q)
∆
= {p = (In ⊗M)q + 1n ⊗ b|M ∈ Rd×d and b ∈ Rd}.

A graph G together with its configuration q in Rd is called a framework, denoted
by (G, q). The edges of the underlying graph G in (G, q) are called members. If a
member has fixed length constraint, we call this a bar. A framework is said to be a
bar framework if all its members are bars. In the rest of this section, we will use
‘framework’ for ‘bar framework’ unless otherwise stated.
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Graph rigidity theory is for identifying whether partial edge lengths can deter-
mine the graph shape uniquely up to translations, rotations, and reflections. Some
basic concepts are given as follows.

Given a framework (G, q) in Rd, if there exists another framework (G, p) in Rd

such that ‖pi − pj‖ = ‖qi − qj‖,∀(i, j) ∈ E , then we say that (G, p) is equivalent to
(G, q). Furthermore, they are congruent if ‖pi − pj‖ = ‖qi − qj‖,∀i, j ∈ V. With
these concepts, we say that a framework (G, q) in Rd is

• (locally) rigid, if all frameworks (G, p) in Rd equivalent to (G, q) and suffi-
ciently close to (G, q) are congruent to (G, q);

• globally rigid, if all frameworks (G, p) in Rd equivalent to (G, q) are congruent
to (G, q);

• universally rigid, if all frameworks (G, p) in any RD ⊃ Rd equivalent to (G, q)
are congruent to (G, q).

In addition to the intuitive geometric definitions of rigidity, we also use rigidity
matrix to justify the rigidity property of a framework by checking its rank. Before
introducing the definition, we need the distance function given by

fG(q1, · · · , qn) =
1

2
[· · · , ‖qi − qj‖2, · · · ]>,

where (i, j) ∈ E .

Definition 2.3. [9] A framework (G, q) is rigid in Rd if there exist a neighborhood
P of q such that f−1

G (fG(q)) ∩ P = f−1
K (fK(q)) ∩ P, where K is the complete graph

with the same vertex set V of G.

For a rigid framework, it means if one node moves, the rest also moves as a
whole in order to satisfy the distance constraints. One illustrative example is shown
in Fig. 2.1. The rectangle framework presented in Fig. 2.1(a) is not rigid since
the top two nodes can smoothly move in the horizontal direction without breaking
other distance constraints. This framework becomes rigid if we insert a crossing
bar between nodes 1 and 3 (or 2 and 4) shown in Fig. 2.1(b).

To characterize the rigidity of a framework, another useful tool is the rigidity
matrix R(q) ∈ R|E|×nd, which is defined by

R(q) =
∂fG(q)

∂q
. (2.2)

As an example, if we assign the orders of members in Fig. 2.1(b) shown as the
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circled numbers, the rigidity matrix of the framework can be written as

R(q) =


(q1 − q2)> (q2 − q1)> 0 0

0 (q2 − q3)> (q3 − q2)> 0

0 0 (q3 − q4)> (q4 − q3)>

(q1 − q4)> 0 0 (q4 − q1)>

(q1 − q3)> 0 (q3 − q1)> 0

 .

Before moving forward, we introduce some concepts related to infinitesimal
rigidity. Given a framework (G, q), q̇ = [q̇1, · · · , q̇n] is called an infinitesimal motion
if for each edge (i, j), there holds

(qi − qj)T (q̇i − q̇j) = 0.

It is easy to check that rotations, translations, and their combinations always satisfy
the above equation. These motions are said to be trivial. Then we say that a
framework is infinitesimally rigid if the infinitesimal motions are trivial. This can
also be validated through the following lemma.

Lemma 2.4. [55] A framework (G, q) is infinitesimally rigid in a d-dimensional space
if

rank(R(q)) = nd− d(d+ 1)/2.

In general, infinitesimal rigidity implies rigidity, but the converse is not true.
Infinitesimal rigidity only allows the motions as combinations of translation and
rotation. It has been discussed that the framework in Fig. 2.1(a) is not rigid, and
not infinitesimally rigid. One set of non-trivial infinitesimal motions is presented in
Fig. 2.1(c). The framework in Fig. 2.1(b) is not only rigid, but also infinitesimally
rigid, which can be verified by the fact that rank(R) = 5.

Definition 2.5. [5] A framework is minimally rigid if it is rigid and no edge can be
removed without losing rigidity.

To be specific, a rigid framework (G, q) with n vertices in 2D or 3D is minimally
rigid, if it has exactly 2n− 3 or 3n− 6 edges, respectively. It can be checked that
the framework shown in Fig. 2.1(b) is infinitesimally minimally rigid.

2.3 Tensegrity frameworks and rigidity

A tensegrity framework (G, q) is obtained by embedding an undirected graph G in
Rd and replacing the edges of G by three types of members: cables, struts and bars,
where cables and struts can only carry tensions and compressions respectively, while
bars can carry both tensions and compressions. For the physical interpretation,
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Figure 2.1: Examples of 2D frameworks. (a) non-rigid framework; (b) infinitesimally (and
minimally) rigid framework; (c) one set of non-trivial infinitesimal motions.

we know that the member (i, j) carries different internal forces fij depending on
its rest length lij , current length ‖rij‖ and stiffness kij . Their relationship can be
formulated by

fij =


kij(‖rij‖ − lij), if (i, j) is a cable and ‖rij‖ > lij ,

− kij(lij − ‖rij‖), if (i, j) is a strut and ‖rij‖ < lij ,

kij(‖rij‖ − lij), if (i, j) is a bar,

0, otherwise.

(2.3)

As one can see from (2.3), cables and struts sustain positive and negative internal
forces, respectively. However, bars can carry both positive and negative forces,
which implies that bars can act as springs generating both attractive and repulsive
forces. We illustrate these properties graphically in Fig. 2.2.

For a tensegrity framework (G, q) in Rd with the fixed configuration q, we are
interested in its associated configurations p that satisfy the following tensegrity
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O ‖rij‖

fij

lij

(a) cable

O ‖rij‖

fij

lij

(b) strut

O ‖rij‖

fij

lij

(c) bar

Figure 2.2: Relationships between internal forces and lengths with respect to different type
of members.

constraints 
‖pi − pj‖ 6 ‖qi − qj‖, when (i, j) is a cable,

‖pi − pj‖ > ‖qi − qj‖, when (i, j) is a strut, and

‖pi − pj‖ = ‖qi − qj‖, when (i, j) is a bar.

(2.4)
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We say that the tensegrity framework (G, q) whose shape is determined by the
configuration q is rigid if any other configuration p is congruent to q whenever p is
sufficiently close to q and satisfies the tensegrity constraints (2.4); furthermore, if
the congruent relationship between p and q holds for all p in Rd, then we say (G, q)
is globally rigid; and if this congruent relationship still holds for all p living in any
higher-dimensional space than Rd, we say (G, q) is universally rigid [21, 104]. For
the rest of this thesis, we only consider cable-strut tensegrity frameworks unless
otherwise stated.

To distinguish different members in a tensegrity framework (G, q), we employ
the concept of stress. For each member (i, j) of (G, q), we assign a scalar ωij = ωji,
and use ω ∈ R|E| to denote the vector ω = (· · · , ωij , · · · )T . Then ω is called a stress
of (G, q); if further, each ωij satisfies ωij > 0 whenever (i, j) is a cable and ωij 6 0

whenever (i, j) is a strut, then ω is said to be a proper stress. Note that for a stress
to be proper, there is no restriction on a bar. In physics, ωij is interpreted as the
axial force per unit length along the member (i, j). It is called strict if the stress in
each cable and strut is nonzero. We say that ω is a self-stress for the configuration p
in Rd of the framework (G, p) if for each node i, there holds∑

j∈Ni

ωij(qj − qi) = 0. (2.5)

We also call the stress an equilibrium stress if equation (2.5) holds.
Note that for an affine transformation, we have∑

j∈Ni

ωij(Mqi −Mqj) = M
∑
j∈Ni

ωij(qi − qj) = 0, ∀i,

which implies that the affine transformations donot change the equilibrium stress.
The corresponding stress matrix Ω = [Ωij ] ∈ Rn×n is defined by

Ωij =

{
−ωij , i 6= j,∑
j∈Ni ωij , i = j.

(2.6)

For the rigidity of tensegrity frameworks, we introduce the following lemmas.

Lemma 2.6. [25, Theorem 4.3.1] If a tensegrity (G, p) is infinitesimally rigid, then it
is rigid.

Lemma 2.7. [104] Let (G, p) be a tensegrity framework in Rd, and (Ḡ, p) the corre-
sponding bar framework, where all the members of the tensegrity framework have
been replaced by bars. Then (G, p) is infinitesimally rigid (and equivalently statically
rigid) if and only if the following two conditions are satisfied:

1). (Ḡ, p) is infinitesimally rigid in Rd, and
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2). there is a proper self-stress ω for (G, p), where for each cable and strut (i, j) of
G, ωij 6= 0.

Lemma 2.8. [25, Corollary 4.8.2] If a tensegrity (G, p), with n nodes in Rd, m
members and at least one strut or cable, is infinitesimally rigid, then m > nd− d(d+

1)/2 + 1.

To define the universal rigidity for a class of tensegrity frameworks, we present
the following lemma.

Lemma 2.9. [1] Let (G, q) be a generic tensegrity framework on n vertices in Rd,
d 6 n − 2. Then (G, q) is universally rigid if and only if there exists a positive
semi-definite stress matrix Ω such that its rank is n− d− 1.

Next we present conditions to guarantee super-stability of a tensegrity frame-
work. We first introduce some basic concepts.

Definition 2.10. [23] If ω is a proper equilibrium stress for the tensegrity framework
(G, q), then the relative position qi − qj is called a stressed direction if ωij 6= 0.

Definition 2.11. [43] We say a function A : Rm → Rn is affine if there is a linear
function L : Rm → Rn and a vector b ∈ Rn such that

A(x) = L(x) + b (2.7)

for all x in Rm.

Definition 2.12. [24] A flex of a framework (G, q) is a continuous motion q(s), 0 6
s 6 1, q(0) = q, where q(s) is equivalent to q. It is nontrivial if q(s) is not congruent
to q for all s > 0. If q(s) = A(s)p(0), where A(s) is an affine function of Euclidean
space, then we say q(s) is an affine flex.

Definition 2.13. Given a collection of vectors V = {vi}i∈N,1 affine span of V is
defined as the collection of all finite linear combinations, i.e.,

k∑
1

aivsi , k ∈ N+, 2 vsi ∈ V,

where ai are all scalars satisfying
∑
ai = 1.

Lemma 2.14. [25] Let (G, q) be a tensegrity framework whose affine span of q is Rd,
with an equilibrium stress ω and stress matrix Ω. Suppose further that

1. Ω is positive semi-definite,
1N denotes the set of natural numbers.
2N+ denotes the set of positive natural numbers.
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2. the rank of Ω is n− d− 1,

3. and (G, q) has no affine flex in Rd,

then (G, q) is super stable.

Remark 2.15. Lemma 2.14 is known as the fundamental theorem for super-stability.
When ω is a proper equilibrium stress for (G, q), a stressed direction is the relative
position of two connected nodes i and j with ωij 6= 0, i.e., qi − qj . Note that
condition (3) of Lemma 2.14 can be replaced by “the framework (G, q) is rigid in
Rd”[23], and “the configuration q is in general position” [24]. We also have the
conclusion that super stable tensegrity frameworks are universally rigid, but not
vice versa.

Another lemma describing translation movements of a generic configuration is
introduced as follows.

Lemma 2.16. [78] Suppose q = [qT1 , · · · , qTn ]T is a generic configuration in Rd. A
configuration p ∈ A(q) is a translation of q if and only if there exist at least d pairs of
vertices such that the dimension of the convex hull of that d pairs of vertices is d and

pk − pj = qk − qj .

The following lemma will be used in the sequel in different places for the
discussion of positive semi-definite stress matrices.

Lemma 2.17. Given positive semi-definite matrices X ∈ Rn×n and Y ∈ Rn×n, let
Z = X + Y . Then for any nonzero vector ξ ∈ Rn, ξ ∈ null(Z) if and only if
ξ ∈ null(X) and ξ ∈ null(Y ).



Chapter 3

Merging rigid tensegrity frameworks

This chapter is to analyze the existence of a strictly proper self-stress for the
merged tensegrity framework obtained by connecting two separate ones.

It discusses what kind of condition allows the combined framework to be in
equilibrium with the new stress without altering any existing member’s type, viz.
cable or strut, in the previously existing frameworks. In addition, this chapter also
studies the problem of merging two rigid tensegrity frameworks. It is shown that
there exists an insertion of four new members with which the combined tensegrity
framework is still rigid. By injecting distance perturbations into the combined
framework, we propose a method with which the type of the fourth member can
be determined.

3.1 Introduction

Rigidity graph theory serves as a fundamental mathematical tool to solve a wide
range of problems in different fields, such as formation control of teams of mobile
robots [6, 15, 35, 54, 64, 75, 98], localization of sensor networks [41, 110],
molecular structural analysis in bio-chemistry [61, 128] and construction of stable
frameworks in [107]. Of particular theoretical and practical interest are tensegrity
frameworks, which are able to support large loads because of the use of cables and
struts in comparison with bar frameworks. This property has been well employed
in the design and control of tensegrity robots, see e.g. [94, 105].

In many, if not most, applications, the framework is expected to be rigid. This
means the formation shape of the framework can be maintained as long as the
distance constraints associated with all the edges are maintained, i.e. for a bar, an
exact distance is maintained, for a cable, an upper bound is maintained, and for
a strut, a lower bound is maintained. As stated in Chapter 2, global rigidity and
universal rigidity can be accordingly defined if rigidity still holds in the whole given
space and any higher dimensional space, respectively.

From an engineering point of view, a framework may be required to be aug-
mented by adding one or more vertices, or even merging or becoming connected
with another framework. More precisely, by merging we mean, given two frame-
works, the operations of superimposing some of their vertices and adding additional
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members joining a vertex pair with the vertices drawn from the two different frame-
works. Normally, rigidity of frameworks is aimed to be preserved after adding
vertices or merging.

In the plane, it is well known that the Henneberg construction (HC) [120] is
an efficient technique to grow minimally rigid graphs. Recall that a rigid graph is
said to be minimally rigid if no single edge can be removed without losing rigidity.
The constructions of [120] propose two techniques, termed vertex addition and
edge splitting. Due originally to Henneberg [58], a minimally rigid framework (in
an ambient two or three-dimensional space) can acquire an additional vertex (in
the process that additional members are introduced). Henneberg also proposed a
merging procedure for two (minimally) rigid graphs in an ambient two-dimensional
space, whereby three members (bars in a normal framework) were inserted to link
the two frameworks.

However, the HC did not impose any geometric constraints, such as the length
and angle, on the newly added edges, which might result in contradictions with the
practical use. To solve this problem, a new construction method using Delaunay
triangulation is proposed such that the angle measurements and the number of links
can be optimized in [39]. As a follow-up, [40] addressed several topics relevant to
rigid frameworks, including minimal cover problem, splitting and merging problem,
and closing ranks problem. By minimal cover problem, we mean finding a new set
of edges to be inserted into a given framework, such that the resulting framework
is minimally rigid. The merging problem was regarded as one special case of
minimal cover problem therein, and a type of new strategy based on reduction
procedure was designed. Later, the conditions on how to generate globally rigid
frameworks through merging in two- and three- dimensional space are provided,
respectively. To fully cover all the possible cases of merging frameworks, where
it is permitted to have one or more of the vertices of one merging framework
made coincident with the same number of the other framework, three principles to
conduct optimal merging of minimally or globally rigid frameworks were proposed
in [133] for R2 and R3 frameworks. The merging is said to be optimal if the number
of newly added member for a given number of shared vertices is minimized.
At the same time, merging of multiple (more than two) rigid frameworks was
investigated in [134], where each framework is regarded as a meta-vertex, and thus
the problem can be solved from the metameta-formation prospective. In this way,
the proposed strategies in [133] can be extended to the case involving multiple
frameworks. Relying on HC operations, [136] investigated optimal growing of rigid
frameworks in the sense of H2 performance. Motivated by the implications of rigid
networks in formation control and localizability, [18] identified the conditions for
rigidity-preserving splitting as opposed to merging, under which the corresponding
algorithms to perform the partition were also proposed therein. In addition to
these work on growing rigid frameworks with undirected underlying graphs, some
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efforts were also made based on directed graphs [53, 57]. In parallel to rigidity of
undirected graphs, persistence was introduced for directed graphs in [57], where
the conditions to ensure persistence after merging was given in both two- and
three-dimensional space. Recently in [53], the dynamic merging problem under
switching topology has been solved under the condition that each follower is jointly
reachable from a leader over any time interval of certain length.

Even though some strategies have been proposed for growing rigid bar frame-
works, to the best of our knowledge, the systematic analysis on how to create rigid
tensegrity frameworks by merging has been rarely reported due to the complexity
caused by the inequality constraints (2.4). One relevant work was presented in
[119], where it has been shown that labeled 1-extension operation on a rigid tenseg-
rity graph does not change its rigidity. A Tensegrity graph G(V, C, S) is obtained
through replacing the edges of a graph G(V, E) by cables and struts. Denote by C
and S the cable and strut set, respectively. The labeled 1-extension is defined in
such a way that the original member (u,w) is removed and a new vertex v is added
together with three new members (v, u), (u,w) and (v, t) under the constraint that
the type of (u,w) is the same as at least one of (v, u) and (v, w).

Motivated by this circumstance, in this chapter, we will first prove that by
merging two isolated infinitesimally rigid tensegrity framework with four members,
there exist a proper self-stress such that the resulting tensegrity framework is
still infinitesimally rigid and the type of the members can be preserved. We
then explore the existence of the assignment of cables and struts to the four
linking members when merging two rigid tensegrity frameworks, under which
the combined tensegrity framework is rigid. In this chapter, all of the results are
constrained to R2 unless otherwise indicated.

The rest of this chapter is organized as follows. In Section 3.2, we prove that the
infinitesimal rigidity can be preserved by linking two originally infinitesimally rigid
tensegrity frameworks with four appropriate members. In addition to infinitesimal
rigid tensegrity frameworks, we also considered the problem of merging rigid
tensegrity frameworks in Section 3.3. Concluding remarks are given in Section 3.4.

3.2 Merging infinitesimally rigid tensegrity frameworks

In this section, we investigate whether infinitesimal rigidity can be maintained after
merging two pre-existing infinitesimally rigid tensegrity frameworks by inserting
four members of the different type.

To be specific, the two given planar separate tensegrity frameworks TA and
TB , shown in Fig. 3.1, are infinitesimally rigid with underlying graphs GA(VA, EA)

and GB(VB , EB), respectively. It is assumed that the underlying graphs GA and GB
respectively consist of nA and nB nodes, which are linked via mA and mB members,
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i.e., |VA| = nA, |VB | = nB, |EA| = mA, and |EB | = mB. For infinitesimally rigid
tensegrity frameworks in R2, it follows from Lemma 2.8 that

mA > 2nA − 2 and mB > 2nB − 2. (3.1)

Note that to obtain a rigid tensegrity framework from interconnecting two
separate rigid tensegrity frameworks, it is necessary to have at least four connecting
members. In addition, the absolute position (centroid location and orientation) of
the frameworks TA and TB is irrelevant (though after insertion of the connections
some freedom is of course lost).

TA := (GA, qA)

A3

A2

A4

A1

TB := (GB , qB)

B3

B2

B4

B1

3

2

1

4

Figure 3.1: Growing rigid tensegrity framework by inserting four new members in ambient
space R2.

In the sequel, denote by ωAi , i = 1, · · · ,mA, the original stress of member i
in TA, and denote by ω̂Ai , i = 1, · · · , nA, the new stress after inserting the four
members (Ai, Bi), i = 1, · · · , 4. Analogously, we can define the stress ωBi and
ω̂Bi , i = 1, · · · ,mB associated with tensegrity framework TB . Those four members
are labeled as member i , i = 1, · · · , 4, shown in Fig. 3.1. All the points of Ai are
distinct and so are all the points of Bi. It is also assumed that at least three of
the members, without loss of generality (Ai, Bi), i = 1, 2, 3, are not concurrent or
parallel. If all four members are concurrent or parallel, it is not hard to see that
there is an infinitesimal displacement at right angles to each of the Ai exists for
which the corresponding infinitesimal length changes are zero, i.e. infinitesimal
rigidity cannot hold.

Theorem 3.1. Consider two infinitesimally rigid tensegrity frameworks TA and TB
in R2 and assume they are connected by 4 new members that are not concurrent or
parallel. Then there exist an assignment of cables and struts to the new members such
that the combined tensegrity framework is infinitesimally rigid as well. Furthermore,
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the sign of the new proper self-stress associated with pre-existing members can be
maintained, namely, the members’ type, viz. cable or strut, can be preserved in both
TA and TB .

Proof. We first prove that there exists a new strictly proper self-stress such that the
signs of the stress associated with the previously existing members do not change.
Then by invoking Lemma 2.7, the infinitesimal rigidity of the combined tensegrity
framework can be ensured.

For an infinitesimally rigid tensegrity framework TA, the self-stress satisfies

R>A(q)ωA = 0, (3.2)

where RA(q) ∈ RmA×2nA is the rigidity matrix of TA, and ωA = [ωA1 , · · · , ωAmA ]> ∈
RmA is the stress with respect to TA. With the four members (Ai, !‘!‘Bi), i =

1, · · · , 4, joining the two separate tensegirty frameworks, the combined self-stress
satisfies

RTA(q)ω̂A + rTAw
N = 0, (3.3)

where ωN is the stress associated with new edges in the form of ωN = [ω1, · · · , ω4]T

∈ R4. The matrix rA ∈ R4×2nA is defined by

rA =
[
r>A1, r

>
A2, r

>
A3, r

>
A4

]>
=


0 · · · 0 (qA1 − qB1)> 0 0 0

0 · · · 0 0 (qA2 − qB2)> 0 0

0 · · · 0 0 0 (qA3 − qB3)> 0

0 · · · 0 0 0 0 (qA4 − qB4)>

 .
(3.4)

Suppose the types of pre-existing members are maintained after interconnec-
tion. A sufficient condition meeting this requirement is given by

ω̂A = ωA + ΨA sign(ωA), (3.5)

where ΨA = diag(ψA1 , · · · , ψAmA) ∈ RmA×mA is a diagonal matrix with ψAi > 0, i =

1, · · · ,mA, an arbitrary scalar. sign(ωA) = [sign(ωA1 ), · · · , sign(ωAmA)]> ∈ RmA .
The setting ω̂A as in (3.5) ensures that sign(ω̂A) = sign(ωA). Note that (3.5) can
be equivalently written as

ω̂Ai =

{
ωAi + ψAi , ifωAi > 0,

ωAi − ψAi , ifωAi < 0.
(3.6)
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Substituting (3.5) into (3.3), we get

R>A(q)
(
ωA + ΨA sign(ωA)

)
+ r>Aw

N = 0. (3.7)

In light of (3.2), we have

R>A(q)
(
ΨA sign(ωA)

)
+ r>Aw

N = 0. (3.8)

Analogously, for tensegrity framework TB , we also have

R>B(q)
(
ΨB sign(ωB)

)
+ r>Bw

N = 0, (3.9)

where variables RTB(q),ΨB , ωB and rB are defined in the same way as the corre-
sponding variables associated with TA. Denote by ψA ∈ RmA the vector consisting
of the diagonal entries of ΨA, i.e., ψA = [ψA1 , · · · , ψAmA ]T . Note that for diagonal
matrices ΨA, there holds

ΨA sign(ωA) = diag(sign(ωA))ψA, (3.10)

and
ΨB sign(ωB) = diag(sign(ωB))ψB . (3.11)

Then, in view of (3.8)-(3.11), we have[
R>A(q)diag(sign(ωA)) 0

0 R>B(q)diag(sign(ωB))

] [
ψA

ψB

]
+ r>ωN = 0, (3.12)

where r = [rA, rB ] ∈ R4×2(nA+nB). Summarizing, to show the existence of a
strictly proper self-stress associated with the combined tensegrity framework is
equivalent to showing that the linear algebraic equation (3.12) has nontrivial so-
lutions to the unknowns ψA, ψB and ωN subject to ψA > 0 and ψB > 0. [Here by
denoting x > 0, x ∈ Rn, we mean that all of its entries are positive.]

This equation can be further written as

[(
R>A(q)diag(sign(ωA)) 0

0 R>B(q)diag(sign(ωB))

)
, r>

] ψA

ψB

ωN

 = 0. (3.13)

Note that the rigidity matrix of the combined tensegrity framework is in the
form of

R(q) =

 RA(q) 0

0 RB(q)

r

 . (3.14)
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Therefore, (3.13) can be transformed to

R>(q)

 diag(sign(ωA)) 0 0

0 diag(sign(ωB)) 0

0 0 I4


︸ ︷︷ ︸

:=D

 ψA

ψB

ωN

 = 0. (3.15)

From the definition of R(q) in (3.14), it is easy to see that the dimension of R(q)

is (mA + mB + 4) × 2(nA + nB), and thus R>(q) ∈ R2(nA+nB)×(mA+mB+4). This
rigidity matrix R(q) corresponds to the underlying bar framework as well. Given
two infinitesimally rigid bar frameworks in the plane, it has been established by
Henneberg [58] that if one joins the two frameworks by bars (Ai, Bi), i = 1, 2, 3,

that are neither concurrent (when prolonged if necessary) nor parallel, then the
framework with the three bars inserted is also infinitesimally rigid. Therefore, the
combined new bar framework is infinitesimally rigid. Thus, there holds

rank(R(q)) = rank(R>(q)) = rank(R>(q)D) = 2(nA + nB)− 3, (3.16)

which implies

dim
(
null(R>(q))

)
= (mA +mB + 4)− 2(nA + nB) + 3

> (2nA − 2 + 2nB − 2 + 4)− 2(nA + nB) + 3

= 3

(3.17)

Hence there always exist nontrivial solutions with respect to [ψA, ψB , ωN ]> of
equation (3.15), disregarding for the moment sign constraints. We now choose
one set of specified solutions with nonzero entries as ηA, ηB and ηN , satisfying

R>(q)

 diag(sign(ωA)) 0 0

0 diag(sign(ωB)) 0

0 0 I4

 ηA

ηB

ηN

 = 0, (3.18)

where one or more entries of ηA and ηB might be negative. Hence to show the
existence of a strictly proper self-stress, we still need to find the positive solutions
with respect to ψA and ψB satisfying (3.15).

Before moving on, note that (3.18) can be equivalently rewritten as[
R>A(q)diag(sign(ωA)) 0

0 R>B(q)diag(sign(ωB))

] [
ηA

ηB

]
+ r>ηN = 0. (3.19)
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Now, we consider the homogeneous part of (3.12), i.e.,[
R>A(q) 0

0 R>B(q)

] [
diag(sign(ωA)) 0

0 diag(sign(ωB))

] [
ψA

ψB

]
= 0. (3.20)

Then any solution of (3.20), denoted by ξA and ξB , satisfies[
R>A(q)diag(sign(ωA)) 0

0 R>B(q)diag(sign(ωB))

] [
ξA + ηA

ξB + ηB

]
+ r>ηN = 0.

(3.21)
Therefore,

[
ξA + ηA, ξB + ηB , ηN

]>
can be regarded as one set of solutions to

the unknowns
[
ψA, ψB , ωN

]>
in (3.12). Here note that ξA and ξB are general

solutions to the homogeneous linear algebraic equation (3.20) rather then specific
vectors. However, to satisfy the constraints that ψA > 0 and ψB > 0 in (3.12)
under the chosen ωN = ηN , we need to find at least one set of solutions among
ξA and ξB , denoted by ζA and ζB , such that ζA + ηA > 0 and ζB + ηB > 0.

From (3.2), it is evident that{
span(ωA) ⊆ null(R>A(q)),

span(ωB) ⊆ null(R>B(q)).
(3.22)

Note that the dimension of R>A(q) is 2nA ×mA, and rank
(
R>A(q)

)
= 2nA − 3 for a

infinitesimally rigid framework TA. We denote by col(X) and null(X) the column
space and the null space of a matrix X. Since

dim
(
col
(
R>A(q)

))
+ dim

(
null

(
R>A(q)

))
= mA,

and
rank

(
R>A(q)

)
= dim

(
col
(
R>A(q)

))
,

we have
dim

(
null

(
R>A(q)

))
= mA − 2nA + 3. (3.23)

In view of (3.1), i.e., mA > 2nA − 2, (3.23) satisfies

dim
(
null

(
R>A(q)

))
> 1. (3.24)

By taking (3.22) into account, (3.24) implies that though span(ωA) lies in the null
space of R>A(q), it might not fully span the null space. Only when the equality sign
holds in (3.24), span(ωA) = null

(
R>A(q)

)
. For framework TB , we have the similar
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results. So the specific solution ζA and ζB to (3.20) can be set to satisfy{
diag(sign(ωA))ζA ∈ span(ωA),

diag(sign(ωB))ζB ∈ span(ωB).
(3.25)

To be specific, ζA and ζB can be chosen as

ζA = kA|ωA| and ζB = kB |ωB |, (3.26)

where kA and kB are positive scalars. This equation can be written in the component-
wise form as ζA1

...
ζAmA

 = kA

 |ωA1 |
...

|ωAmA |

 and

 ζB1
...

ζBmB

 = kB

 |ωB1 |
...

|ωBmB |

 . (3.27)

Recall the requirement that ζA + ηA > 0, which is equivalent to
ζA1 + ηA1 > 0,

...

ζAmA + ηAmA > 0.

(3.28)

Substituting (3.27) into (3.28), it yields
kA|ωA1 |+ ηA1 > 0,

...

kA|ωAmA |+ ηAmA > 0.

(3.29)

Then, the parameter kA can be derived from (3.29) that

kA > max

{
− ηA1
|ωA1 |

, · · · ,−
ηAmA
|ωAmA |

}
. (3.30)

Analogously, in terms of parameter kB , we can also have

kB > max

{
− ηB1
|ωB1 |

, · · · ,−
ηBmB
|ωBmB |

}
. (3.31)

Therefore, the existence of a strictly proper self-stress associated with the com-
bined framework is proved. In addition, the type of pre-existing members can be
maintained. Then it follows from Lemma 2.7 that the overall tensegrity frame-
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work after interconnection is also infinitesimally rigid. This completes the proof
of Theorem 3.1.

3.3 Merging rigid tensegrity frameworks 1

In this section we explain how to choose the type, viz. strut or cable, of the four
elements in a tensegrity framework generated by joining two separate tensegrity
frameworks.

More precisely, we shall consider two tensegrity frameworks, call them TA and
TB , with four identified points in each framework, viz, A1, · · · , A4, B1, · · · , B4. We
assume that these are in general position and that connections are made, with
either a strut or a cable, between each Ai and the corresponding Bi, i = 1, · · · , 4.

3.3.1 General approach to the problem

We first assume that the two separate tensegrity frameworks are infinitesimally
rigid. In addition, there are (for the moment) bars between three points A1, A2, A3

say of framework TA and the corresponding three points B1, B2, B3 of framework
TB . We can measure the distance between A4 and B4 but there is no bar.

It was established by Henneberg [58] that if one extends the lines joining
Ai, Bi, i = 1, 2, 3 and they are not concurrent or parallel, then the single framework
with the three bars inserted to join the separate frameworks TA and TB is also
infinitesimally rigid (the converse also holds).

This means that there is a finite number of noncongruent frameworks (defined
up to inessential translation, reflection and rotation) realizing the associated set of
lengths, with the frameworks TA and TB being held invariant apart from possible
translation, reflection or rotation. Consequently, there is a finite number of possi-
bility for the squared distance d̄4 := ||qA4 − qB4||2, one value of squared distance
being associated with each of the noncongruent frameworks. (Of course, in some
special cases, the distance for two noncongruent frameworks might coincide, but
in general this cannot be expected).

Now if the squared distances d̄i := ||qAi − qBi||2 for i = 1, 2, 3 are varied by an
infinitesimally small amount to di = d̄i + δdi, by for example holding framework A
fixed and rotating and/or translating framework B infinitesimally, then there will be
necessarily be a corresponding infinitesimal change replacing d̄4 by d4 = d̄4 + δd4.

It is evident that having fixed a particular framework from the finite set realizing
the joining of TA and TB using bars of squared lengths d̄1, d̄2, d̄3 we can find a

1The majority of this section is taken from one of Prof. Brian D. O. Anderson’s unpublished technical
reports. For completeness of the strategy for growing locally rigid tensegrity frameworks, we put it in
this thesis.
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smooth function f : R3 → R for which

f(d1, d2, d3) = d4 (3.32)

with in particular
f(d̄1, d̄2, d̄3) = d̄4. (3.33)

Moreover, to first order,

δd4 =
∂f

∂d1
δd1 +

∂f

∂d2
δd2 +

∂f

∂d3
δd3. (3.34)

It is assumed that for generic d̄1, d̄2, d̄3, the function f will not have a critical
point, i.e. there will not hold ∂f

∂di
= 0, i = 1, 2, 3 at d̄1, d̄2, d̄3. Now we make a

change of viewpoint. We suppose that the three bars linking Ai to Bi for i = 1, 2, 3

are replaced by either a strut or a cable, and a strut or cable is placed between A4

and B4. We claim the following theorem.

Theorem 3.2. Consider the arrangement described above. There exists a choice of
strut or cable for each of the four linkages between qAi and qBi to ensure rigidity.

Proof. When a desired distance is d̄i, a strut of this length allows a positive value
of δdi and a chain a negative value. For i = 1, 2, 3, choose link i to be a strut or a
cable according as ∂f

∂di
is positive or negative. For i = 4, choose a cable.

Observe that the choices for i = 1, 2, 3 ensure that any allowed changes of
length in three links will always cause the right side in (3.34) to be positive. The
choice for i = 4 however means that any allowed change in d4 must be negative.
This means there is no set of nonzero changes δdi consistent with the assignation
of struts and cables. Equivalently, the framework is rigid. This proves the theorem.

Obviously, the same conclusion follows if we reverse the assignment of cables
and struts in the proof.

While the above theorem asserts the existence of a mixture of struts and cables
assuring rigidity, the actual determination of the link type appears to involve
knowledge of the functions fi, or their derivatives. The functions themselves in
general may be very difficult to find. The derivatives on the other hand are easier
to find, and we now show how this can be done using the rigidity matrix.

3.3.2 Determining δd4 using the rigidity matrix

Suppose that the frameworks TA and TB referred to above are described by stacked
vectors of vertex positions qA, qB and stacked vectors of squared edge lengths
realized in the frameworks using tensegrity elements given by d̄A, d̄B. In obvious
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notation, the rigidity matrix of the overall framework with four tensegrity elements
connecting the two frameworks is given by

R =



RA 0

0 RB
r>1
r>2
r>3
r>4


. (3.35)

Now let us consider infinitesimal perturbations of the squared distances d̄1, d̄2, d̄3 by
amounts δd1, δd2 and δd3. There will be a consequential perturbation in d4 of δd4,
and consequential perturbations δqA, δqB of the vertex positions qA, qB. The fact
that R is the Jacobian of the mapping from vertex positions to squared distances
means we can write 

0
...
0

δd1

δd2

δde
δd4


= R

[
δqA
δqB

]
. (3.36)

Note that for given δd1, δd2 and δd3, the perturbations δqA, δqB are not unique; the
adjustment of any vertex perturbation vector by the same infinitesimal translation
and/or rotation will leave the right side of the above equation invariant.

In pursuit of our ultimate goal of explaining how the derivatives ∂d4

∂di
, i =

1, 2, 3 can be computed using the rigidity matrix, it is convenient to eliminate this
nonuniquenessss. This is done as follows. Suppose that a new framework is formed
by making four changes:

1. Bars replace all tensegrity elements within framework TA and framework TB .

2. Bars are removed from framework TA and framework TB to make the frame-
works both minimally rigid.

3. The tensegrity elements of squared lengths d̄1, d̄2, d̄3 and d̄4 are replaced by
bars.

4. One vertex of framework TA is pinned at the origin and a neighbor vertex in
the framework is pinned on the x axis.

The resulting framework is pinned and is a rigid joint-bar framework. It is
not minimally rigid but has the property that removal of the bar corresponding
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to length d̄4 would make it minimally rigid. Call the associated rigidity matrix R̂;
this is a ‘reduced’ rigidity matrix, of size (2n− 2)× (2n− 3) where n is the total
vertex count for frameworks TA and TB. The reduced rigidity matrix is obtained
from R defined in (3.35) through deletion of rows within the blocks [RA 0] and
[0 RB ], corresponding to step 2 of the reduction procedure and deletion of three
columns of R, corresponding to step 4. The rank of R̂ is the same as the rank of R.
viz 2n− 3. Let r̂> denote the last row of R̂, and note that it is obtainable from r>

through deletion of three entries. It is also a linear combination of the rows first
2n− 3 rows of R̂.

Let us also define one further matrix, ˆ̂
R, which we term a doubly reduced

rigidity matrix, obtained from R̂ by deleting its last row.

Define δqredA to be the vector obtained from δqA by deletion of those entries of
δqA associated with the pinning process of step 4 above. Define δq̂redA and δq̂B to be
the infinitesimal perturbations in vertex positions (disregarding pinned coordinates)
given infinitesimal perturbations δd1, δd2, δd3 for the transformed framework.

Then these perturbations still satisfy (3.36) but they are now unique. To see
this, observe that for the transformed framework, there will hold (with 0mA,0mB
denoting vectors of zeros with 2nA−3, 2nB−3 entries, nA, nB denoting the number
of nodes in frameworks TA, TB)

0mA
0mB
δd1

δd2

δd3

 =
ˆ̂
R

[
δq̂redA

δq̂B

]
, (3.37)

and 

0mA
0mB
δd1

δd2

δd3

δd4


= R̂

[
δq̂redA

δq̂B

]
=

[
ˆ̂
R

r̂>

] [
δq̂redA

δq̂B

]
. (3.38)

Now suppose that infinitesimal values of δd1, δd2 and δd3 are specified. It

follows from the invertibility of ˆ̂
R that δq̂redA , δq̂B are expressible uniquely in terms
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of δd1, δd2, δd3 and entries of the inverse of ˆ̂
R, i.e.

[
δ̂qA
δqB

]
=

ˆ̂
R−1


0mA
0mB
δd1

δd2

δd3

 . (3.39)

Then from (3.38) we have simply

δd4 = r̂>4
ˆ̂
R−1


0mA
0mB
δd1

δd2

δd3

 , (3.40)

and now we see how the partial derivatives of the function d̄4 = f(d̄1, d̄2, d̄3) are
identified in terms of entries of the rigidity matrix. The derivatives are in fact the

last three entries of the row vector r̂>4
ˆ̂
R−1.

3.4 Concluding remarks

In this chapter, we considered two scenarios of merging rigid tensegrity frameworks.
First, we have shown that by interconnecting infinitesimally rigid tensegrity frame-
works with four new members, there exists a distribution of cables and struts to
the new members such that the merged tensegrity framework is still infinitesimally
rigid. Furthermore, we also proved that the infinitesimal rigidity of the combined
tensegrity framework can be obtained without changing the type of pre-existing
members. In the case of merging rigid tensegrity frameworks, it has been shown
that the rigidity can also be preserved by properly choosing the joining members.
To efficiently determine the type of the fourth member once others are fixed, one
method has been proposed by invoking the rigidity matrix.



Chapter 4

Growing super stable tensegrity frameworks

This chapter discusses methods for growing tensegrity frameworks akin to
what is now known as Henneberg constructions, which apply to bar-joint

frameworks. In particular, this chapter presents tensegrity framework versions
of the three key Henneberg constructions of vertex addition, edge splitting and
framework merging (whereby separate frameworks are combined into a larger
framework). This is done for super stable tensegrity frameworks in a Euclidean
two or three-dimensional space. We start with the operation of adding a new
vertex to an original super stable tensegrity framework, named vertex addition. We
prove that the new tensegrity framework can be super stable as well if the new
vertex is attached to the original framework by an appropriate number of members,
which include struts or cables, with suitably assigned stresses. Edge splitting can
be secured in R2 (R3) by adding a vertex joined to three (four) existing vertices,
two of which are connected by a member, and then removing that member. This
procedure, with appropriate selection of struts or cables, preserves super-stability.
In d dimensional Euclidean space, merging two super stable frameworks sharing at
least d+1 vertices that are in general positions, we show that the resulting tensegrity
framework is still super stable. Based on these results, we further investigate the
strategies of merging two super stable tensegrity frameworks in Rd, (d ∈ {2, 3})
that share fewer than d+ 1 vertices, and show how they may be merged through
the insertion of struts or cables as appropriate between the two structures, with a
super stable structure resulting from the merge.

4.0.1 Introduction

In addition to rigidity and infinitesimal rigidity discussed in Chapter 2, much
attention, especially but not exclusively in the tensegrity literature, has been given
to super-stability due to its superior properties in robustness. One surprising fact
is that a globally rigid tensegrity framework can be drastically deformed under
mild perturbation even at an equilibrium configuration [21]. It turns out that
it is generally easier to analyze super stable tensegrity structures as opposed to
tensegrity structures that are not super stable, due to the availability of more
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relevant theoretical foundations. Universally rigid tensegrity structures are often
intuitively and easily understandable, for example, we note the concept of Cauchy
polygon [19]. It is a class of tensegrity frameworks in the plane, where the vertices
1, · · · , n in order form a convex polygon, and the edges (i, i + 1), i = 1, · · · , n,
are cables and (i, i + 2), i = 1, · · · , n − 2, are struts with the indices modulo
n. In [19], it was shown that any Cauchy polygon is super stable. In addition,
sufficient conditions were given for general convex polygons to be super stable,
and these conditions are cast in terms of scalar variables termed stresses, one of
which is associated with each member of the framework. Later, the results were
extended in [23] for general tensegrity frameworks. This makes it possible to infer
super-stability using the stress concept tool.

Providing foundations to study universal rigidity, [22] and [50] investigated
global rigidity for tensegrity frameworks that are generic. These results were further
extended to universal rigidity in [49]. In addition, [3] presented conditions for
frameworks in general position to be universally rigid. In [2], it was demonstrated
that universal rigidity can be maintained even under the weaker condition that
each vertex and its neighbors affinely span Rd. In [41], it has been proved that the
extended framework is still generically globally rigid if the new vertex is linked to
d+ 1 existing vertices in general positions of a generically globally rigid framework.

All these results mentioned above on merging/splitting were for bar frameworks;
in contrast, the merging of tensegrity frameworks was first reported in [21], where
only two special examples were discussed as illustrations. More recently, it has
been shown that a necessary and sufficient condition for a framework obtained
by merging two super stable frameworks that are in general positions in Rd to be
super stable, and without the introduction of new members, is that the number
of their shared vertices is at least d+ 1 [99]. This has implications for tensegrity
frameworks.

In spite of the aforementioned efforts made to study merging of tensegrity
frameworks, there exists no systematic strategy for augmenting super stable tenseg-
rity frameworks by adding new vertices in sequence. It is also desirable to design
strategies for merging super stable tensegrity frameworks if they share fewer than
d + 1 vertices, indeed possibly no vertices; this requires the introduction of new
members. Motivated by these considerations, the aim of this chapter is to first
extend the various Henneberg construction steps to super stable tensegrity frame-
works in Rd, (d ∈ {2, 3}), such that the tensegrity frameworks after the vertex
addition or edge splitting operation are still super stable. We then show that if two
super stable tensegrity frameworks in Rd share at least d+1 vertices, super-stability
of the merged tensegrity framework can be guaranteed under the weaker condition
that only the shared vertices are in general positions. We further develop strategies
to merge super stable frameworks in the case of sharing fewer than d+ 1 vertices
by introducing new elements in Rd, (d ∈ {2, 3}), to bridge the theoretical gap.
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Our constructions also are underpinned by algorithms for determining whether an
introduced member should be a cable or a strut.

The rest of this chapter is organized as follows. In Section 4.1, we propose a
Henneberg construction on super stable frameworks, including vertex addition and
edge splitting operations. The strategies of merging super stable frameworks are
presented in Section 4.2. We finally give concluding remarks in Section 4.3.

4.1 Henneberg construction on super stable tenseg-
rity frameworks

In this section, we aim at extending the classical Henneberg constructions (HC)
operating on graphs associated with bar-joint frameworks to super stable tensegrity
frameworks in Rd, (d ∈ {2, 3}). Two types of operations to grow minimally rigid
graphs are reviewed as follows.

1. Vertex addition: Adding a new vertex u to the existing graph G via d new
edges between u and d vertices in G.

2. Edge splitting: Removing an edge (j, k), then adding a new vertex u and d+ 1

new edges between u and d + 1 vertices to G, two of which are (u, j) and
(u, k).

It can be checked that for both operations in the plane, the increase in the
number of edges at each step to form a new minimally rigid graph is two. Cor-
respondingly, for the spatial graphs, the number will increase by three. We first
consider the growing of super stable tensegrity frameworks in the plane. Under this
scenario, vertex addition requires three new members; any notion of minimality is
destroyed. However, if the three new members are linked to vertices for which a
pair already have a member between them, that member can be removed without
loss of super-stability by properly adjusting the remaining members’ stresses, known
as edge splitting, and each additional vertex involves adding d new members. Thus
this is a cheaper approach in terms of members than vertex addition.

The tensegrity framework (G, q) to be operated on is assumed to be super stable
with n > 3 vertices, three arbitrary vertices of which are denoted by i, j and k. The
resulting tensegrity framework after adding the new vertex u and new members
of cables and struts, is denoted by (Ḡ, q̄), where q̄ = [q1, · · · , qn, qu] ∈ R2×(n+1).
Now, we first consider the vertex addition operation to generate a super stable
framework (Ḡ, q̄).
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4.1.1 Vertex addition in R2

The position of the new vertex u to be connected to (G, q) can fall into the following
three situations:

(a) not collinear with any two of i, j and k;

(b) collinear with two of i, j and k;

(c) collinear with all of i, j, k. (This situation can be reduced to (b).)

For situation (a), under the assumption that i, j and k are not collinear, there
are seven possible regions to place the new vertex u, shown in Fig. 4.1, denoted
by region A,B · · · , F , and H. Note that the members (cables or struts) need to
be inserted between the new vertex u and the vertices in the original tenserity
framework (G, q) vary as the position of vertex u changes. But, the necessary
condition of the equilibrium stress with respect to vertex u is always

ωui(qu − qi) + ωuj(qu − qj) + ωuk(qu − qk) = 0, (4.1)

where ωui, ωuj and ωuk are the stresses of members (u, i), (u, j) and (u, k), respec-
tively. Here, we associate the new vertex u with three vertices i, j and k rather than
only two, since in scenario (a), any two of the three vectors, (qu− qi), (qu− qj) and
(qu − qk), are linearly independent, which implies that there is no solution to (4.1)
if we remove any single term on its left-hand side; equivalently, the three stresses
must all be nonzero. This immediately means that in the plane, any one of the
three vectors can be represented as a linear combination of the other two. Without
loss of generality, we assume

qu − qk = κ1(qu − qi) + κ2(qu − qj), (4.2)

where κ1 and κ2 are nonzero scalars. Using the fact that any two vectors in the
vector set {(qu − qi), (qu − qj), (qu − qk)} are linearly independent, we have

ωui + κ1ωuk = 0, (4.3a)

ωuj + κ2ωuk = 0. (4.3b)

Now, we record the member assignations (cable/strut) required to meet the
equilibrium stress condition with respect to u in different regions.

1. The new vertex u lies in regions outside of H, i.e., A, · · · , F , shown in Fig.
4.1.
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Figure 4.1: Possible regions for placing u in scenario (a).

First, consider the case when u lies in region A or E. In this case, the two
scalars κ1 and κ2 in (4.2) are both positive, i.e., κ1 > 0 and κ2 > 0. Then,
(4.3) implies 

ωuiωuk < 0

ωujωuk < 0

ωuiωuj > 0

, (4.4)

which in turn implies 
ωui > 0

ωuk < 0

ωuj > 0

, or


ωui < 0

ωuk > 0

ωuj < 0

. (4.5)

Equivalently, members (u, i) and (u, j) are cables with (u, k) being a strut, or
members (u, i) and (u, j) are struts with (u, k) being a cable.

Analogously, when vertex u is located in region B or F , we know (u, i) and
(u, k) are the same type of members, either cable or strut, while (u, j) should
be different from them; when vertex u is located in region C or D, the two
members that are of the same type are (u, j) and (u, k), which differ from
member (u, i).

2. The new vertex u lies in region H.

In this case, from the geometric relationship, we know both κ1 and κ2 in
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(4.2) are negative, and consequently solutions to (4.3) satisfy
ωuiωuk > 0,

ωujωuk > 0,

ωuiωuj > 0,

(4.6)

which implies all the three stresses have the same sign. In other words, when
the newly added vertex u lies within the convex hull spanned by the three
existing vertices i, j and k, the three new members connecting u and i, j, k
are of the same type, which are either cables or struts.

We then consider situation (b) for which the newly added vertex u is collinear
with two of the existing vertices, say i and j, and thus the new members to be
inserted are (u, i) and (u, j). In view of the collinearity between i, j and u, we have

qu − qi = λ(qu − qj), (4.7)

where λ > 0 if u lies outside of the line segment with two endpoints i and j; λ < 0,
otherwise. Hence, the equilibrium stress condition (4.1) reduces to

ωui(qu − qi) + ωuj(qu − qj) = 0, (4.8)

where ωui and ωuj are stresses of the new members (u, i) and (u, j), respectively.
Consequently, ωuiωuj < 0 if λ > 0; ωuiωuj > 0, if λ < 0. In other words, when the
new vertex u is not between i and j, the two new members (u, i) and (u, j) are of
different types. In contrast, when the new vertex u is between i and j, the two new
members are of the same type. At the same time, it should be noted that to stabilize
three vertices in R1, the two members incident to the middle vertex should be of
the same type, and the other member connecting the two endpoints is of the other
type. A sketch will rapidly show these conclusions are intuitively reasonable, if not
obvious.

Situation (c) can be reduced to situation (b) by only considering the new vertex
u and any two of the three collinear vertices i, j, k in (G, q). Actually, both (b) and
(c) can be regarded as operations in R1.

The main theorem on vertex addition for super stable tensegrity frameworks in
the plane is given as follows.

Theorem 4.1. Given a super stable tensegrity framework (G, q) in R2, consider two
growing strategies in terms of the position of the new vertex u. One is adding a new
vertex u and three members between u and three distinct noncollinear vertices i, j and
k to (G, q) when u is not collinear with any two of i, j, k. The other one is adding u
and two members between u and two distinct vertices i, j when u is collinear with two
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vertices of the original framework. Then there always exist stresses of the new members,
such that the newly obtained tensegrity framework (Ḡ, q̄) is also super stable.

Proof. First, we consider the scenario when the new vertex u is not collinear with
any two of the three distinct noncollinear vertices i, j and k in (G, q). Note that
the equilibrium condition (4.1) can be written as

[qu − qi, qu − qj , qu − qk]︸ ︷︷ ︸
∆
=qr

 ωui
ωuj
ωuk

 = 0, (4.9)

where qr ∈ R2×3. Since rank(qr) = 2, the solution to (4.9) with respect to ω can-
not be uniquely determined. However, for a fixed but arbitrary vector [a1, a2, a3]T

satisfying a1 + a2 + a3 6= 0 in the null space of qr, the solution to (4.9) is

ωui = a1s, ωuj = a2s, ωuk = a3s, (4.10)

for s ∈ R and s 6= 0. In view of the non-collinearity of the three vertices, there
holds qk − qu = c1(qk − qi) + c2(qk − qj) for some nonzero c1, c2. It follows that
c1(qu − qi) + c2(qu − qj) − (c1 + c2 − 1)(qu − qk) = 0. Then one can observe that
there always exist vectors satisfying (4.10).

Assume the stress matrix of the original framework (G, q) is Ω ∈ Rn×n, which
is positive semi-definite with rank n − 3. Then, to derive the new stress matrix
Ω̄ ∈ R(n+1)×(n+1) for the framework (Ḡ, q̄), one seeks to directly augment Ω by
adding a new row and column to Ω in the form of

Ω̂ =



0
...

0

Ω −ωui
−ωuj
−ωuk

0 · · · 0 −ωui −ωuj −ωuk Ω̂uu


. (4.11)

However, this Ω̂ is not a stress matrix, since the (n− 2)th to nth row/column sum
is not zero. Therefore, to obtain a valid stress matrix based on Ω̂, the values of
some entries in the original stress matrix Ω need to be changed correspondingly.
Further, to ensure the new tensegrity framework (Ḡ, q̄) is super stable, the new
stress matrix should be positive semi-definite with rank n− 2.

Since the new edges might affect the stresses of the edges between vertices i, j
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and k, we look for the new stress matrix Ω̂ with the following form

Ω̂ =

(
Ω 0n×1

01×n 0

)
︸ ︷︷ ︸

∆
=Ωa

+

(
0(n−3)×(n−3) 0(n−3)×4

04×(n−3) Ωu

)
︸ ︷︷ ︸

∆
=Ωb

, (4.12)

where Ωu ∈ R4×4 is a positive semi-definite stress matrix of rank 1 associated with
the vertices i, j, k and u. Existence and construction of Ωu will be demonstrated
later. Further, we seek to ensure that Ω̂ satisfies

a) Ω̂ is positive semi-definite.

b) Ω̂ is a stress matrix associated with vertices 1, · · · , n, u, whose stresses are in
equilibrium with the configuration q̄ = [q, qu] ∈ R2×(n+1).

c) rank(Ω̂) = n− 2.

For statement a), it is straightforward to check Ωa and Ωb are both positive
semi-definite from (4.12). So obviously, Ω̂ = Ωa+Ωb is also positive semi-definite.

For statement b), consider the facts that∑
j=1,··· ,n,(n+1)

ωaij(qj − qi) = 0, ∀i, (4.13)

and ∑
j=(1,··· ,n−3),n−2,··· ,n+1

ωbij(qj − qi) = 0, ∀i, (4.14)

where ωaij and ωbij are respectively the entries associated with matrices Ωa and
Ωb, vertices i, j and k are assigned with the indexes as (n − 2), (n − 1) and n,
repectively, and the new vertex u is labeled as n+ 1 for consistence. Summing up
(4.13) and (7.19), we get the equilibrium equation∑

j=1,··· ,n+1

ω̂ij(qj − qi) = 0, ∀i, (4.15)

where ω̂ij = ωaij + ωbij .
Furthermore, it can be concluded from Lemma A.1 in the Appendix that state-

ment c) also holds.
Hence, the augmented stress matrix Ω̂ through operation (4.12) is positive

semi-definite with the maximal rank n − 2, and the stresses are in equilibrium
with q̄. Note that for a general framework (G, q) that is rigid, through the typical
Henneberg operation, the resulted new framework is still rigid. Hence, it can be
concluded from Lemma 2.14 that the new framework (Ḡ, q̄) is super stable. In the
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construction, the type of the new members, strut or cable, is determined by the
signs of the stresses, which satisfy (4.9) and (4.10).

As for the scenario that the newly added vertex u is collinear with two existing
vertices in the original framework, the dimension of the stress matrix Ωu in (4.12)
will decrease to 3-by-3 since three vertices are sufficient to determine a super
stable tensegrity framework in R1. Moreover, it should be noted that in this case
only two new members are required to make the new tensegrity framework super
stable. The proof can be conducted following the same argument as above, which
is omitted here.

To sum up, we have shown that for a super stable framework in the plane, by
vertex addition, the newly obtained tensegrity framework is still super stable.

Remark 4.2. When vertices i, j and k in (G, q) are collinear, one can always find
another vertex k′ in the original framework such that i, j and k′ are not collinear;
otherwise the tensegrity framework will be reduced to 1D. Then the new ver-
tex u will be connected to vertices i, j and k′. Following the same analysis, we
know there exist proper stresses of the new members such that the augmented
framework (Ḡ, q̄) is super stable.

4.1.2 Vertex addition in R3

For the vertex addition in R3, the type of new members are also determined by the
position of the new vertex u with respect to the four vertices, denoted by i, j, k and
l, to be connected in (G, q). In view of their geometric relationship in the space,
three cases might arise, namely

(a) The new vertex u is collinear with two of the four vertices;

(b) The new vertex u is coplanar with three of the four vertices;

(c) u and the four vertices are neither collinear nor coplanar.

Cases (a) and (b) can be reduced to R1 and R2 respectively, which have been
addressed above. For case (c), analogously, the equilibrium stress condition with
respect to u implies

ωui(qu − qi) + ωuj(qu − qj) + ωuk(qu − qk) + ωul(qu − ql) = 0, (4.16)

where ωui, ωuj , ωuk and ωul are the stresses of members (u, i), (u, j), (u, k) and
(u, l), respectively. Again from the linear independence relationship, we have

qu − ql = κ′1(qu − qi) + κ′2(qu − qj) + κ′3(qu − qk), (4.17)
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where κ′1, κ
′
2 and κ′3 are nonzero scalars. Combining (4.16) and (4.17), we know

ωui + κ′1ωul = 0,

ωuj + κ′2ωul = 0,

ωuk + κ′3ωul = 0.

(4.18)

Then, following the same analysis in R2, one can determine the type of new
members by looking at the signs of the stresses, derived from (4.18). To avoid
repetition, we omit the details here. Correspondingly, for case (c), we have the
following main result on vertex addition for super stable tensegrity frameworks in
R3.

Corollary 4.3. For a given super stable tensegrity framework (G, q) in R3, adding a
new vertex u and four members between u and four distinct vertices in (G, q), where
there exists no collinear or coplanar relationship between u and the four vertices, there
always exist stresses of the members incident to the chosen vertices, such that the
extended tensegrity framework is also super stable.

The same strategy employed in the proof of Theorem 4.1 can be used for proving
Corollary 4.3. We omit it here, again to avoid repetition.

4.1.3 Computation of the stress matrix Ωu

In this subsection, for completeness, we present the specific form of the matrix
Ωu. Since the techniques used in the computation of the matrix Ωu in R2 and R3

are the same, we only focus on the scenario of R2. For the case when u is not
collinear with any two of the existing vertices i, j and k, the stresses of the newly
added members are represented in (4.10), based on which we will come up with a
numerical method to derive the stress matrix Ωu. Before moving on, we define the
sub-configuration matrix with respect to vertices i, j, k and u as

Qu
∆
=

(
qi qj qk qu
1 1 1 1

)
∈ R3×4, (4.19)

and note it satisfies
QuΩu = 03×4. (4.20)

Since rank(Qu) = 3, there exists a nonzero vector φ = [φ1, φ2, φ3, φ4]T ∈ R4

satisfying
Quφ = 0. (4.21)
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Then matrix Ωu can be determined up to scaling through

Ωu = φφT =


φ2

1 φ1φ2 φ1φ3 φ1φ4

φ2φ1 φ2
2 φ2φ3 φ2φ4

φ3φ1 φ3φ2 φ2
3 φ3φ4

φ4φ1 φ4φ2 φ4φ3 φ2
4

 . (4.22)

Combining (4.22) and (4.10), we have
φ1φ4 = −ωui = −a1s

φ2φ4 = −ωuj = −a2s

φ3φ4 = −ωuk = −a3s

. (4.23)

Furthermore, in light of the fact that the row/column sum of Ωu in (4.22) is zero,
we know

φ2
4 = (a1 + a2 + a3)s. (4.24)

Then, by setting s so that (a1 + a2 + a3)s > 0, it follows from (4.23) and (4.24)
that φ can be represented in terms of s as follows

φ1

φ2

φ3

φ4

 =
1√

(a1 + a2 + a3)s


−a1s

−a2s

−a3s

(a1 + a2 + a3)s

 . (4.25)

Therefore, as long as s is determined, the specific form of Ωu can be obtained as
well by substituting (4.25) into (4.21).

Based on (4.25), Ωu is in the form of

Ωu =
1

Ωuu


ω2
ui ωuiωuj ωuiωuk −ωuiΩuu

ωuiωuj ω2
uj ωujωuk −ωujΩuu

ωuiωuk ωujωuk ω2
uk −ωukΩuu

−ωuiΩuu −ωujΩuu −ωukΩuu Ω2
uu

 . (4.26)

For the case when vertex u is collinear with at least two vertices, we omit the
calculation procedure here due to space limitations. It is similar to the computations
above.

Remark 4.4. If the configuration of vertices i, j, k and u is fixed, the values of Ωu
is unique up to the affine transformation of [qi, qj , qk, qu]. We define the affine
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transformation of q by

A(q)
∆
= {p = [p1, · · · , pn]|pi = Aqi + b,

A ∈ Rd×d and b ∈ Rd, i = 1, · · · , n}.
(4.27)

4.1.4 Edge splitting

In this subsection, the edge splitting strategy on super stable tensegrity frameworks
is designed based on the vertex addition of a degree 3 or degree 4 vertex in R2

or R3 respectively, together with the removal of a member (j, k) of the original
tensegrity framework. To be consistent with the discussions above, the matrix Ω̂

will denote the stress matrix of the new super stable tensegrity framework after the
operation of vertex addition. Note that from the perspective of stress, removing a
member (following the vertex addition) is equivalent to altering the stress of the
corresponding member to be zero without changing the positive semi-definiteness
and the rank of Ω̂, as well as the self-equilibrium condition for q̄. As mentioned
before, the new vertex u can lie in several possible regions. We first consider the
case when u is not collinear (coplanar) with any two (three) of the existing vertices
i, j and k (i, j, k and l) in R2 (R3). The main result is given as follows.

Theorem 4.5. Assume we remove a member (j, k) in the original super stable tenseg-
rity framework (G, q) in R2 (R3), and then add to (G, q) a new vertex u together with
three (four) members incident on u, two of which are (u, j) and (u, k). Then, there
exist appropriate stresses of the three (four) members such that the new tensegrity
framework (G′, q̄) is super stable.

Proof. We present the proof only for R2 for simplicity; it can be straightforwardly
extended to the analysis in R3. The stress matrix after a vertex addition operation
is presented in (4.39).

Ω̂ =



Ω1,1 · · · Ω1,n−3 Ω1,n−2 Ω1,n−1 Ω1,n 0
...

. . .
...

...
...

...
...

Ωn−3,1 · · · Ωn−3,n−3 Ωn−3,n−2 Ωn−3,n−1 Ωn−3,n 0

Ωi,1 · · · Ωi,n−3 Ωii +
ω2
ui

Ωuu
Ωij +

ωuiωuj
Ωuu

Ωik + ωuiωuk
Ωuu

−ωui

Ωj,1 · · · Ωj,n−3 Ωji +
ωujωui

Ωuu
Ωjj +

ω2
uj

Ωuu
Ωjk +

ωujωuk
Ωuu

−ωuj

Ωk,1 · · · Ωk,n−3 Ωki + ωukωui
Ωuu

Ωkj +
ωukωuj

Ωuu
Ωkk +

ω2
uk

Ωuu
−ωuk

0 · · · 0 −ωui −ωuj −ωuk Ωuu


.

(4.39)
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Notice that in light of (4.25), the values of the entries of the matrix Ωu in
(4.26) is uniquely determined up to the scaling variable s. This implies that we
have one degree of freedom to set the values of ωui, ωuj and ωuk. The observation
motivates us to seek to zero out Ω̂jk through properly setting ωuk such that

Ωjk +
ωujωuk

Ωuu
= 0.

Then by simple calculation, it follows

ωuk = −ΩjkΩuu
ωuj

. (4.40)

Replacing ωuk in (4.39) with (4.40), we have the matrix Ω̂′ given as follows.

Ω̂′ =



Ω1,1 · · · Ω1,n−3 Ω1,n−2 Ω1,n−1 Ω1,n 0
...

. . .
...

...
...

...
...

Ωn−3,1 · · · Ωn−3,n−3 Ωn−3,n−2 Ωn−3,n−1 Ωn−3,n 0

Ωi,1 · · · Ωi,n−3 Ωii +
ω2
ui

Ωuu
Ωij +

ωuiωuj
Ωuu

Ωik − ωui
ωuj

Ωjk −ωui

Ωj,1 · · · Ωj,n−3 Ωji +
ωujωui

Ωuu
Ωjj +

ω2
uj

Ωuu
0 −ωuj

Ωk,1 · · · Ωk,n−3 Ωik − ωui
ωuj

Ωjk 0 Ωkk +
Ω2
jkΩuu

ω2
uj

ΩjkΩuu

ωuj

0 · · · 0 −ωui −ωuj
ΩjkΩuu

ωuj
Ωuu



.

(4.43)

It is obvious that rank(Ω̂′) = rank(Ω̂). Moreover, the positive semi-definiteness,
as well as the null space, of the matrix Ω̂ is not altered. Therefore, the new stress
matrix Ω̂′ is still positive semi-definite with rank n−2, and at equilibrium with the
configuration q̄. Recalling that rigidity of a framework can be maintained through
typical Henneberg operation, so the new tensegrity framework (G′, q̄) is still super
stable with the corresponding stress matrix Ω̂′.

Note that if u is coplanar with some of the vertices in R3, then one can fall back
on the analysis in R2. Hence, as for the location of the new vertex u, we only need
to consider another possible scenario that u is collinear with two vertices in R2. In
this case, only three vertices together with three members are involved to construct
the stress matrix Ωu, and the dimension of their configuration has reduced to one.
It can be further checked that no one of the three members can be removed without
losing super-stability. Hence, for the collinear situation, only when the newly added
vertex u is collinear with at least three vertices in the original tensegrity framework
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(G, q), can an edge splitting operation be conducted. We have the following result.

Corollary 4.6. Given a super stable tensegrity framework (G, q) with three collinear
vertices i, j and k, add a new vertex u on some member (j, k) and thus replace the
member (j, k) by two new members (j, u) and (u, k). Then, there exist appropriate
members (j, u), (u, k) and (u, i) to be inserted to (G, q) such that the new tensegrity
framework is still super stable.

Remark 4.7. The idea of Corollary 4.6 is the same as that of Theorem 4.5, namely,
remove some member by altering its stress to be zero through properly setting one
of the stresses associated with the new members. Hence, the proof of Corollary
4.6 is omitted here. For the case when the new vertex u is collinear with four or
more vertices, only three of them together with the new vertex u are needed to
conduct the edge splitting operation.

4.2 Merging two super stable tensegrity frameworks

In this section, we aim to investigate the strategies of merging two super stable
tensegrity frameworks (GA, qA) and (GB , qB). According to the number of shared
vertices between the two tensegrity frameworks before merging, denoted by |VC |,
we consider two sub-scenarios: |VC | > d+ 1, and |VC | < d+ 1. When (GA, qA) and
(GB , qB) share no fewer than d + 1 vertices, we show that the merged tensegrity
framework is still super stable if the shared vertices are in general position. This
result relaxes the stringent condition that both of the two frameworks need to
be in general positions in [99]. For the case when |VC | < d + 1, we summarize
the results recording the minimum number of new members required in a table
by constraining d to be 2 and 3. The type of these members, i.e. strut or cable,
depends on the specific location of the various vertices, and so cannot be recorded.

In the following, we denote the positive semi-definite (PSD) stress matrices
associated with (GA, qA) and (GB , qB) as ΩA and ΩB, respectively, each of which
has nullity d+ 1. The cardinalities of the vertex sets satisfy |VA| = nA, |VB | = nB ,
and |VC | = nC .

4.2.1 The number of shared vertices is no fewer than d+ 1

To be consistent with the merging of two tensegrity frameworks, we assume that the
last (resp. first) nC rows and columns of ΩA (resp. ΩB) correspond to the stresses
incident on the shared vertices. The merged tensegrity framework is denoted by
(G̃, q̃) with the stress matrix Ω̃ ∈ Rn×n, where ñ = nA + nB − nC . Accordingly, we
argument the stress matrices ΩA and ΩB to form matrices Ω̃A and Ω̃B of size ñ× ñ
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by adding zeros as follows:

Ω̃A =

(
ΩA 0nA×(ñ−nA)

0(ñ−nA)×nA 0(ñ−nA)×(ñ−nA)

)
,

Ω̃B =

(
0(nA−nC)×(nA−nC) 0(nA−nC)×nB

0nB×(nA−nC) ΩB

)
.

(4.44)

Note that the stress matrices ΩA and ΩB can also be partitioned as

ΩA =

(
ΩA1 ΩA2

ΩA3 ΩA4

)
, and ΩB =

(
ΩB4 ΩB2

ΩB3 ΩB1

)
, (4.45)

where ΩA1 ∈ R(nA−nC)×(nA−nC), ΩA2 ∈ R(nA−nC)×nC , ΩA3 ∈ RnC×(nA−nC),
ΩA4 ∈ RnC×nC , ΩB1 ∈ R(nB−nC)×(nB−nC), ΩB2 ∈ RnC×(nB−nC), ΩB3 ∈ R(nB−nC)×nC ,
and ΩB4 ∈ RnC×nC . Then, the stress matrix of the post-merged tensegrity frame-
work (G̃, q̃) can be written as

Ω̃ = Ω̃A + Ω̃B

=

 ΩA1 ΩA2 0(nA−nC)×(nB−nC)

ΩA3 ΩA4 + ΩB4 ΩB2

0(nB−nC)×(nA−nC) ΩB3 ΩB1

. (4.46)

Now, we are ready to give another main result.

Theorem 4.8. Given two super stable tensegrity frameworks in Rd with the corre-
sponding PSD stress matrices of nullity d + 1, if they share at least d + 1 vertices
that are in general position, then the merged tensegrity framework (G̃, q̃) is still super
stable. Moreover, one of the PSD stress matrices of nullity d+ 1 associated with the
new framework is in the form of (4.46).

Proof. We first consider the case when the two tensegrity frameworks share exactly
d+ 1 vertices, i.e., nC = d+ 1. Then, by denoting the configuration of shared d+ 1

vertices as qC1, · · · , qC(d+1), one has

q̃ = [qA1, · · · , qA(nA−d−1), qC1, · · · , qC(d+1), qB(d+2), · · · , qBnB ]. (4.47)

From Lemma 2.14, to show that (G̃, q̃) is super stable, it is sufficient to prove
the synthetic stress matrix Ω̃ in (4.46) satisfies the three conditions therein. It
is obvious that Ω̃ is PSD, as Ω̃A and Ω̃B are both PSD from their definitions in
(4.44). In addition, for two rigid frameworks in Rd, if they share no fewer than d
vertices, then the framework after merging is rigid [133], which implies that the
third condition in Lemma 2.14 is satisfied. Hence, what is left to show is that the
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rank of Ω̃ is ñ− d− 1, namely, the nullity of Ω̃ is d+ 1.

Similar to the analysis in the proof of Theorem 4.1, we consider the solution
space of the following equations,

Ω̃AxA = 0, (4.48a)

Ω̃BxB = 0. (4.48b)

Then the solution spaces of (4.48a) and (4.48b) are respectively given by

SA =





qA11

...

qA(nA−d−1)1

qC11

...

qC(d+1)1

ξ11

...

ξ(nB−d−1)1



, · · · ,



qA1d
...

qA(nA−d−1)d

qC1d
...

qC(d+1)d

ξ1d
...

ξ(nB−d−1)d



,



1

...

1

1

...

1

cA1

...

cA(nB−d−1)





, (4.49)

and

SB =





ζ11

...

ζ(nA−d−1)1

qC11

...

qC(d+1)1

qB(d+2)1

...

qBnB1



, · · · ,



ζ1d
...

ζ(nA−d−1)d

qC1d
...

qC(d+1)d

qB(d+2)d

...

qBnBd



,



cB1

...

cB(nA−d−1)

1

...

1

1

...

1





, (4.50)

where for configuration q the superscript denotes the configuration set, and the
subscripts, say (ij) in qAij , represent the jth component of vector qAi. ξi ∈ Rd, i =

1, · · · , nB−d−1, ζj ∈ Rd, j = 1, · · · , nA−d−1, cA ∈ RnB−d−1, and cB ∈ RnA−d−1

are arbitrary real vectors. Following the same line of the proof of Theorem 4.1, we
get

null(Ω̃) = SA ∩ SB = span
(
q̃T ,1ñ

)
, (4.51)
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which implies nul(Ω̃) = d+ 1. Therefore, it follows from the relationship between
nullity and rank of Ω̃, nul(Ω̃) + rank(Ω̃) = ñ, that rank(Ω̃) = ñ− d− 1.

The analysis for the scenario when two super stable tensegrity frameworks
share more than d+ 1 vertices is similar to the aforementioned scenario. We omit
it to avoid redundancy. This completes the proof of Theorem 4.8.

4.2.2 The number of shared vertices is less than d + 1 in Rd

(d ∈ {2, 3})
The aim of this sub-section is to determine the minimum number of both new
members and vertices incident to them when merging two super stable tensegrity
frameworks in Rd (d ∈ {2, 3}). We refer to this operation as optimal merging.
Based on Theorem 4.8 and the HC discussed in Section 4.1, we present iterative
procedures to merge two separate tensegrity frameworks.

Before describing the results, let us define Vnew to denote a set of vertices
satisfying Vnew ⊆ VB\VA and |Vnew| = d+ 1− |VC | = nnew. Let Enew be the set of
members connecting the vertices in Vnew to (GA, qA). We will indicate how Enew is
obtained and determine |Enew| in the process. The situation is akin to linking to
globally rigid formations with further edges to ensure the combined formation is
globally rigid (see [133]). Then, as a direct extension of Theorem 4.8, we have the
following Corollary.

Corollary 4.9. Given two super stable tensegrity frameworks (GA, qA) and (GB , qB)

in Rd (d ∈ {2, 3}), satisfying |VC | 6 d, if the tensegrity framework (G′A, q′A) with
V ′A = VA ∪ Vnew and E ′A = EA ∪ Enew is super stable, in which vertices in Vnew
are in general position, then the tensegrity framework (G̃, q̃) is super stable, where
Ṽ = VA ∪ VB and Ẽ = E ′A ∪ EB .

Illustrations of Corollary 4.9 are given in Figs. 4.2-4.4, where the merging
operation is carried out in R2. In the plane, three scenarios are considered in terms
of |Vc| as follows.

1. |VC | = 0.

In this case, nnew = 3− |VC | = 3.

As Fig. 4.2 shows, to construct (G′A, q′A), we first add a new vertex u from VB
to VA and three new members (u, i), (u, j) and (u, k) by employing Theorem
4.1. Then applying Theorem 4.5, one adds the second new vertex v together
with the corresponding members (v, i) and (v, j), noting there is already an
explicit or implicit member (v, u). Consequently, the member (u, j) can be
removed. Analogously, w and the member (w, i) are added in the last step,
in which two explicit or implicit members (w, u) and (w, v) are considered.
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(GA, qA)

(a)

(GB , qB)
i

j

k

u

(GA, qA)

(b)

(GB , qB)
i

j

k

u

v

(GA, qA)

(c)

(GB , qB)
i

j

k

u

v

w

Figure 4.2: Three steps of merging two super stable frameworks when |VC | = 0, where
dashed lines and loosely dotted lines represent explicit or implicit members and removed
members, respectively.

Again from Theorem 4.5, the member (v, i) can be removed without losing
super-stability. Hence, Enew = {(u, i), (u, k), (v, j), (w, i)}, and thus |Enew| =
4.

2. |VC | = 1.

In this case, nnew = 3− |VC | = 2.

Vertex k is assumed to be common to VA and VB . Based on Theorem 4.1 and
4.5, Fig. 4.3 shows that two new members, (u, i) and (v, j), are required to
construct a super stable tensegrity framework. Hence, we know |Enew| = 2.

3. |VC | = 2.
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(GA, qA)

(a)

(GB , qB)

i

j

k
u

(GA, qA)

(b)

(GB , qB)

i

j

k
u

v

Figure 4.3: Procedures of merging two super stable frameworks when |VC | = 1, where
dashed lines and loosely dotted lines represent explicit or implicit members and removed
members, respectively.

In this case, nnew = 3− |VC | = 1.

(GA, qA) (GB , qB)

i

j

k

u

Figure 4.4: Merging two super stable frameworks when |VC | = 2, where dashed lines
represent explicit or implicit members.

The common vertices are j and k. From Theorem 4.1, it can be checked that
only one member is required to construct a super stable tensegrity framework
as shown in Fig. 4.4, and thus |Enew| = 1.

The results for structures defined in R3 are obtained similarly. Note that whether
a new member is a cable or a strut is determined at each step of the addition process
in accord with the procedure set out in the earlier section treating vertex addition
and edge splitting. To sum up, the optimal merging of two super stable frameworks
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is listed in Table 4.1 and 4.2.

Table 4.1: Optimal merging of two super stable tensegrity frameworks in R2.

|VC | |Enew| |Vnew|

0 4 3

1 2 2

2 1 1

3 or more 0 0

Table 4.2: Optimal merging of two super stable tensegrity frameworks in R3.

|VC | |Enew| |Vnew|

0 7 4

1 3 3

2 2 2

3 1 1

4 or more 0 0

The numbers contained in these tables are partially identical with those to be
found in [133] for global rigidity. This is not completely surprising, given that
super-stability is a specialized form of global rigidity.

4.3 Concluding remarks

In this chapter, we have addressed the problem of how to grow super stable
tensegrity frameworks by adding a vertex or a super stable framework in Rd,
(d ∈ {2, 3}). We have systematically developed the HC on tensegrity frameworks
and a numerical method of calculating stress matrices associated with resultant
tensegrity frameworks. In addition, in the case of merging two super stable
tensegrity frameworks in Rd, we have shown that super-stability can be maintained
if the frameworks share no fewer than d+ 1 vertices in general positions. Finally, to
cover all the possible scenarios of merging in Rd, (d ∈ {2, 3}), we have presented
the detailed steps of optimal merging. The results have been summarized in two
tables.



Chapter 5

Constructing
universally rigid tensegrity frameworks with
application in multi-agent formation control

Rigidity graph theory has found broad applications in engineering, architecture,
biology, and chemistry, while systematic and computationally tractable con-

struction of rigid frameworks is still a challenging task. In this chapter, starting
from any given configuration in general positions, we show how to construct a
universally rigid tensegrity framework by looking into the kernel of the tensegrity
framework’s stress matrix. As one application, we show how to stabilize a formation
of mobile agents by assigning a universally rigid virtual tensegrity framework for
the formation and then design distributed controllers based on the forces deter-
mined by the stresses of the edges. Such formation controllers are especially useful
when one needs to satisfy formation constraints in the form of strict upper or lower
bounds on inter-agent distances arising from tethered robots

5.1 Introduction

Rigidity graph theory has always been playing a key role in solving topology related
problems in various fields, e.g. the formation control problem of multi-agent
systems [15, 35, 78], the geometric analysis of molecular models in bio-chemistry
[128], and the localization of wireless sensor networks [139]. A challenging
problem concerned with rigidity is to determine whether a given framework is rigid
(resp. globally rigid and universally rigid). It is already well known that the local
rigidity can be guaranteed if the rank of the corresponding rigidity matrix exceeds
some bound. However, for global rigidity and universal rigidity, the problem is
shown to be NP-hard even in the lower dimensional space E1 [108]. Then, to make
the problem more tractable, researchers concentrate on the frameworks with a
generic configuration, where the nodal coordinates are algebraically independent
over the rationals. Some exploring efforts along this line have been made in [1, 20,
22], where the sufficient conditions for a framework of generic configurations to
be globally/universally rigid have been given, and the necessity of these conditions
is later proved in [49]. Recently, a new kind of universal rigidity called ‘iterative
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universal rigidity’ has been addressed in [24], where the analysis of the rigidity of
the framework is decomposed into a sequence of affine sets in the configuration
space. One weaker condition compared with being generic for the configuration
of the framework is general, which is preferable in practice since it is checkable in
polynomial time, while not for the generic configuration [4]. It has been verified
that the genericity assumption of the configuration to ensure universal rigidity can
be relaxed to the situation of general positions in [3]. In addition, the universal
rigidity of one-dimensional framework in general positions with a complete bipartite
underlying graph is fully discussed in [63].

Of particular theoretical and practical interest is tensegrity frameworks. In re-
cent years, they have found broad applications in engineering, architecture, biology,
and arts because of their superior features, such as deployability, deformability and
robustness [76, 123]. However, little research has been conducted to construct
universally rigid tensegrity frameworks from some given geometric shape described
by the overall configuration. One of the well-established findings is that for a
framework in the shape of convex polygons in the plane, the universal rigidity can
be obtained if the boundary and the interior members are respectively set to be
cables and struts [19]. For a class of so-called Grünbaum frameworks, the con-
struction for universally rigid tensegrity frameworks in two and three dimensions
is studied in [66], in which the approach strongly relies on the computation of
the convex hull. If the underlying graph of the framework is given beforehand, a
purification based algorithm is designed to compute the corresponding stresses for
the (d + 1)-lateration frameworks in general positions [4]. In the case that only
the configuration is known, to create a universally rigid tensegrity framework, the
underlying graph together with the type of members are determined through the
algorithm in [88], while it is highly likely to result in a complete graph.

For control engineers, the issue of identifying and designing rigid frameworks
are particularly relevant for the formation control problem of teams of mobile
agents. The stable tensegrity frameworks, due to their strong robustness and clear
physical interpretation, have been used as the virtual multi-agent framework to
understand better the behavior of the agents around the equilibrium corresponding
to the prescribed formation shape. Tensegrity frameworks, due to their robustness
and scalability, have been employed as the virtual framework to solve the formation
control problem of multi-agent systems. Starting from one-dimensional space,
i.e., a line, [93] introduced a tensegrity-based control law that can exponentially
stabilize the agents with prescribed distances. Then the same idea was used to deal
with the problem in higher-dimensional space by collinear projections. In [72], the
model of an unmanned aerial vehicle was integrated with a virtual cross-tensegrity
framework, based on which a decentralized control strategy was designed such that
a scalable formation was achieved. As a direct application, a stress-based formation
control scheme is proposed to stabilize “affine” formations in [78]. In contrast
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to a rigid formation, an affine formation allows more transformations besides
translation and rotation, such as scaling, shearing and reflection. But most of the
existing results are restricted to special class of frameworks, e.g., one-dimensional
tensegrity framework [93] or cross-tensgrities that are rectangles with four boarder
cables and two crossing struts [71, 72].

Motivated by the recent advances in rigidity graph theory, it is the goal of
this chapter to first design an algorithm to construct a universally rigid tensegrity
framework for any given configurations in general positions. Taking into account
the engineering and theoretical concerns that sparse frameworks are more de-
sirable because of extendibility, complexity and computation, we will focus on
building tensegrity frameworks with fewer members through constructing stress
matrices with close to maximal allowed number of zeros. We then use the con-
structed universally rigid tensegrity framework for multi-agent formation control.
Distributed control laws are designed to stabilize formations when their topologies
are implemented using the virtual tensegrity framework. So the main contribution
of this chapter is two-fold. First, we develop a systematic algorithm to construct
universally rigid tensegrity frameworks. Such algorithms have not been reported in
the literature. Second, we apply the virtual tensegrity frameworks to distributed
formation control, which therefore enables us to have a clear intuitive estimate
of the domain of attraction around the system’s equilibrium. This application is
particularly useful for the emerging cooperative control of tethered robots, where
the challenging formation constraints, such as the strict maximum or minimum
inter-agent distances, could be incorporated in the virtual tensegrity framework.

The rest of this chapter is organized as follows. In Section 5.2, we propose
our algorithm to construct universally rigid tensegrity frameworks for any given
configuration in general position. The application for formation control is discussed
in Section 5.3. Some illustrative examples are presented in Section 5.4. Section 5.5
concludes this chapter.

5.2 Constructing universally rigid tensegrity frame-
works

We first provide the steps of the algorithm in detail and then show the constructed
tensegrity frameworks are in general close to minimal by giving an upper bound of
the numbers of their members.

5.2.1 Algorithm

We assume the given configuration q∗ ∈ Rd×n is in general position. Define the
extended configuration matrix Q∗ , [(q∗)T ,1n]T ∈ R(d+1)×n. Then, it follows that
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every (d + 1)× (d + 1) submatrix of Q∗ has full rank. From the definition of the
stress matrix Ω and (2.5), one can check that matrix Ω always lives in the null
space of Q∗, i.e.

Q∗Ω = 0(d+1)×n. (5.1)

Given q∗, the key component of the algorithm is to determine matrix Ω, which
determines in turn which two nodes are connected together with their nonzero
stress. Obviously, such Ω is in general not unique and naturally we want to obtain
an Ω with more zeros which leads to fewer members and thus lower complexity.
Towards this end, we convert our problem into the sparse null space problem first
considered in [96], namely, given a matrix A, to find a sparse matrix B such that
B is full rank and its column span is null(A) [51].

In view of Lemmas 2.9, to obtain a universally rigid tensegrity framework,
matrix Ω is required to be positive semi-definite with rank n−d−1. However, since
Ω in (5.1) is not full rank, we cannot directly solve the sparse null space problem.
Instead, we try to construct a column full-rank matrix D ∈ Rn×(n−d−1) such that

Q∗D = 0(d+1)×(n−d−1), (5.2)

where D is a Gale matrix of q∗ [3]. If indeed such a D can be constructed, it must
be true that

Q∗DDT = 0(d+1)×(n−d−1)D
T = 0(d+1)×n, (5.3)

and hence the matrix DDT can serve as the stress matrix Ω. So the construction of
an Ω is equivalent to the design of such a sparse D. In addition, for computational
efficiency, we make an even stronger requirement that Ω is in its band form, whose
non-zero entries are confined to be in a diagonal band containing the main diagonal.
Now we present our 5-step algorithm to construct the universally rigid framework
with the stress matrix Ω, which is inspired by the classical “turning back” method
for computing the sparse null space basis [48].

Step 1: Arrange matrix
Q∗ = [(q∗)T ,1n]T ∈ R(d+1)×n.

Step 2: Locate the nonzero elements of D. We first find the smallest k1 > 0 such that
Q∗’s columns with the indices d+2, d+1, . . . , d+2−k1 are linearly dependent.
We then set the nonzero elements of D’s first column to be located at the
positions d+ 2− k1 through d+ 2. Then, in order to record the positions of
the nonzero elements of the second column of D, we find the smallest k2 > 0
such that those columns with the indices d+3, d+2, . . . , d+3−k2, excluding
d+ 2− k1, of Q∗ are linearly dependent. Again, the indices correspond to the
nonzero elements’ positions of D’s second column. We repeat this procedure
until we have determined the positions of the nonzero elements of the last
column of D. Note that the configuration q∗ is in general position, there are
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exactly d+ 2 nonzero elements in each column of D, yielding

D =

1 2 · · · n− d− 1



∗ 0 · · · 0 1

∗ ∗ · · · 0 2
...

...
. . .

...
...

∗ ∗ · · · 0 d+ 2

0 ∗ · · · ∗ d+ 3
...

...
. . .

...
...

0 0 · · · ∗ n

(5.4)

where ‘∗’ indicates a nonzero element.

Step 3: Now we compute the values of the nonzero elements of D by solving the
following equation

Q∗D = 0(d+1)×(n−d−1), (5.5)

which is underdetermined since it is a set of d+ 1 linear equations with d+ 2

unknowns. Hence, we can always find a set of nonzero elements of D and
thus fully determine D. In addition, it is easy to check that the constructed D
is always column full-rank.

Step 4: The stress matrix is then the positive semidefinite matrix Ω = DDT whose
rank is n−d−1. The obtained Ω is a square, symmetric, band matrix with one
upper triangular and one lower triangular (n− d− 2)-dimensional submatrix
in its upper right and lower left corners respectively. We write Ω in the
notation below where all the determined zero elements are denoted by zero
and all the other elements that may or may not be zero are denoted by ‘×’:

Ω =



× · · · × 0 · · · · · · 0

× · · · · · · ×
. . .

. . .
...

...
...

. . .
...

× · · · · · · × · · · × 0

× · · · · · · × · · · · · · ×
...

...
...

0 × · · · × · · · · · · ×
...

. . .
...

...
...

. . .
. . . × · · · · · · ×

0 · · · · · · 0 × · · · ×


n×n

(5.6)
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Step 5: According to Ω, assign cables and struts to the n-node framework: For each
Ωij < 0, we assign a cable between nodes i and j and for each Ωii > 0, we
assign a strut between nodes i and j. The stresses of the assigned cables and
struts are ωij = −Ωii. The desired tensegrity framework is then obtained.

Now we prove that the constructed tensegrity framework is indeed universally
rigid.

Theorem 5.1. Given a configuration q∗ in general position, the proposed 5-step
algorithm returns a universally rigid tensegrity framework with the geometric shape
prescribed by q∗.

Proof. The constructed tensegrity framework has the stress matrix Ω which, as
shown in step 4, is positive semi-definite and has rank n−d− 1. So the conditions
(1) in Lemma 2.9 is satisfied. Recalling that the given configuration q∗ is in general
position, so the obtained tensegrity framework is again universally rigid because
of Lemma 2.9.

Remark 5.2. In step 4, the stress matrix Ω can be more generally determined by
Ω = DΨDT , where Ψ is a nonsingular, (n−d−1)× (n−d−1), symmetric matrix,
used to adjust the magnitudes of the stresses of the members of the constructed
tensegrity framework. In this chapter, we set Ψ = In−d−1 for simplicity.

In practice, one usually prefers fewer edges to reduce the complexity, if possible,
in a rigid framework. Hence, a natural question to ask is whether the tensegrity
framework obtained by the proposed algorithm is indeed structurally simple. To
address this question, we construct an upper bound of the number of members
of the obtained tensegrity framework, namely |E| of (G, q∗), which is roughly nd
when n is big.

5.2.2 Upper bound of |E|

We look into the number of nonzero elements of Ω in (5.6). The densest Ω, namely
that contains the largest possible number of nonzero elements, appears when all
the elements denoted by ‘×’ are nonzero. Then the number of off-diagonal zero
elements in Ω = DDT is

2((n− d− 2) + (n− d− 3) + · · ·+ 1) = (n− d− 1)(n− d− 2),

or equivalently the number of off-diagonal nonzero elements in Ω is

n(n− 1)− (n− d− 1)(n− d− 2) = (d+ 1)(2n− d− 2),
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which, when divided by 2, is exactly the number of members to be inserted into the
tensegrity framework in view of Step 5 of the algorithm. Therefore, this densest Ω

gives an upper bound (d+ 1)
(
n− d+2

2

)
.

So we have proved the following theorem.

Theorem 5.3. The number of members of the constructed tensegrity framework is
bounded from above by

|E| 6 (d+ 1)

(
n− d+ 2

2

)
. (5.7)

Remark 5.4. One necessary condition for a tensegrity framework in generic con-
figurations (with n larger than d + 1) to be globally rigid or universally rigid is
that it has to be rigid with at least one self-stress state, which in turn implies that
it needs to have at least nd− d(d+ 1)/2 + 1 members. This is the lower bound of
the number of members required to construct a globally rigid or universally rigid
tensegrity framework in generic configurations. The lower bound differs from the
constructed upper bounded roughly by n when n is big.

Remark 5.5. The upper bound of the number of members presented in (5.7) corre-
sponds to the number of members of universally rigid tensegrity frameworks con-
structed on (d+1)-tree graphs [4]. The construction of universally rigid Grünbaum
frameworks in generic configurations with the minimal number of edges in 2D and
3D are investigated in [66], where it is shown that the two-dimensional Grünbaum
frameworks in nongeneric configurations are also universally rigid. The problem
on how to compute the stress matrix has also been considered in [88], which,
however, most likely yields stress matrices without any zero elements. In compari-
son, our algorithm in general always returns a stress matrix with close to maximal
allowed number of zeros.

In the next section, we show how universally rigid tensegrity frameworks can
be used as virtual structures to help the design of distributed formation controllers
for teams of mobile agents.

5.3 Formation stabilization

5.3.1 Formation Control Problem

We consider a group of n mobile agents, each of which is modeled by a kinematic
point

q̇i = ui, i = 1, 2, · · · , n, (5.8)

where qi ∈ Rd represents agent i’s position and ui ∈ Rd is its control input. The
neighbor relationships will be designed and characterized by an undirected graph
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G with the vertex set V and the edge set E .
The formation stabilization problem is that given a desired configuration q∗ =

[q∗1 , · · · , q∗n] ∈ Rd×n for this team of n agents (5.8), design the neighbor relationship
graph G for the team and correspondingly, for each agent i = 1, . . . , n, design
distributed control laws ui(qi − qj , q∗i − q∗j ), j ∈ Ni, such that the agents’ positions
are driven to the target set

T = {q ∈ Rdn| qi − qj = q∗i − q∗j , ∀(i, j) ∈ E}. (5.9)

Note that here q∗ is given in an arbitrary coordinate system of choice. When each
agent has its own coordinate system that may differ from each other, q∗ is then
given to each agent in its own coordinate system, in which case different agents’
given q∗ differ up to some congruent transformation of translation and rotation.

Ample previous work has discussed how to solve this problem locally when
(G, q∗) is rigid and the controllers are derived by attaching virtual springs to the
agents. To make the controllers simpler, G is usually required to contain as few edges
as possible. In what follows, we use the virtual tensegrity framework constructed in
Section 5.2 to describe the necessary sensings between the agents and the resulted
distributed controllers whose gains are derived from the stresses.

5.3.2 Controller design and stability analysis

We use the universally rigid tensegrity framework constructed previously to de-
termine which agents need to sense which other agents. To be specific, from the
given q∗, we run the 5-step algorithm and obtain a framework (G, q∗). Then the
underlying graph G is used to represent the sensing graph of the n-agent team.

To calculate the virtual forces utilizing the stresses, we set the rest length of
each edge to be

lij = γij‖r∗ij‖ =

{
γcij‖r∗ij‖ if ωij > 0,

γsij‖r∗ij‖ if ωij < 0,
(5.10)

where γcij ∈ (0, 1) and γsij ∈ (1,+∞) are constants as design parameters, and r∗ij is
the prescribed relative position of agent j with respect to agent i, i.e., r∗ij = q∗j − q∗i .
Then the formation control gain kij for agent i with respect to its neighbor j is
given by

kij =
ωij

1− γij
, ∀(i, j) ∈ E . (5.11)

For convenience in notation, we define the auxiliary variable

zi = qi − q∗i . (5.12)

Let z ∈ Rdn be the vector obtained by stacking all the zi together.
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Now, we define the set D(0) as

D(0)
∆
= {z(0) ∈ Rnd|‖zi(0)− zj(0)‖ < sign(ωij)(‖r∗ij‖ − lij),
∀(i, j) ∈ E}.

(5.13)

To proceed, we assume all the agents are initially located in the set Dε(0) defined
as

Dε(0)
∆
= {z(0) ∈ Rnd|‖zi(0)− zj(0)‖ 6 sign(ωij)(‖r∗ij‖ − lij)− ε,
∀(i, j) ∈ E},

(5.14)

where ε is a small positive number.

The potential function for agent i is defined as

Pi(z(t))
∆
=
∑
ωij<0

kij
[
(lij − ‖r∗ij‖)α − ραij

]β
ρij

+
∑
ωij>0

kij
[
(‖r∗ij‖ − lij)α − %αij

]β
%ij

,

(5.15)

where
ρij = lij − ‖r∗ij‖ − ‖rij(t)− r∗ij‖,
%ij = ‖r∗ij‖ − lij − ‖rij(t)− r∗ij‖,

(5.16)

with rij = qj − qi being the relative position between agents i and j. α > 2 and
0 < β < 1 are the positive exponents. Note that in the set Dε(0), ρij and %ij are
both small positive numbers. The parameters kij are chosen such that

P0 =

{
kij(‖r∗ij‖ − lij)αβ , if ωij > 0,

kij(lij − ‖r∗ij‖)αβ , if ωij < 0,
(5.17)

where P0 is an arbitrary positive pre-defined constant. All the parameters kij would
be determined if any one of them is decided with given α and β.

Correspondingly, the potential function for the whole system is given by

P (z(t)) =
1

2

n∑
i=1

Pi(z(t)) (5.18)

The control input of agent i is

q̇i = żi = ui = −∇ziPi(z(t)) (5.19)
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Proposition 5.6. For any given initial position q(0) ∈ Dε(0), the set D(0) is invariant
for the system (5.8) under the control law (5.19).

Before presenting the proof for Proposition 5.6, we first analyse the properties
of the potential function (5.15). Consider the numerators of (5.15), where δs (resp.
δc) are regarded as independent variables. Define function f(x) as

f(x) = kf (cαf − xα)β > 0, kf > 0, x ∈ (0, cf ], (5.20)

which coincides with the form of the numerators of the potential function. The first
order derivative of f(x) satisfies

f ′(x) = −αβkfxα−1(cαf − xα)β < 0, x ∈ (0, cf ], (5.21)

which implies that the function f(x) is monotonically decreasing with respect to x.
Besides this, for sufficiently small xs, f ′(xs)→ 0, due to xα−1

s → 0, when α > 2.

Look at the second order derivative of f(x),

f ′′(x) =− α(α− 1)βkfx
α−2(cαf − xα)β−1

+ α2β(β − 1)kfx
2(α−1)(cαf − xα)β−2.

(5.22)

It follows from α > 2 and 0 < β < 1 that f ′′ < 0, ∀x ∈ (0, cf ]. Together with the
fact that f ′(x) < 0, it implies that the decreasing rate of f(x) increases as x grows.

Consider

f(x) = f(0) +

∫ x

0

f ′(s)ds = f(0)−
∫ x

0

|f ′(s)|ds, x ∈ (0, cf ]. (5.23)

It can be seen that f ′(x) drops rapidly, when the value of x increases.

Based on f(x), together with (5.15), we introduce the function Pf (x) as

Pf (x) =
f(x)

x
, x ∈ (0, cf ]. (5.24)

The first order derivatives of Pf (x) satisfies

P ′f (x) < 0. (5.25)

It can be seen that Pf (x) has the same monotonicity with the potential function
in (5.15) for a single edge. Hence, the potential energy (5.15) is monotonically
decreasing with respect to δs and δc. This property implies that the closer the edges
approach their rest lengths, the higher their potential energy will become.

Now, we give the proof of Proposition 5.6, which is partially motivated by [62].
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Proof of Proposition 5.6. Recall the control input (5.19) for agent i

ui = −∇ziPi(z(t)). (5.26)

Hence the time derivative of Pi(t) satisfies,

Ṗi(z(t)) = ∇ziPi(z(t))T żi(t)

= − [∇ziPi(z(t))]
T

[∇ziPi(z(t))] 6 0,
(5.27)

which implies that the potential energy associated with agent i is not increasing.
However, the potential energy stored in some edge, say (i, ν) with negative stress,
might increase, even though Pi(z(t)) is not increasing. This means that the length
of (i, ν) tends to its rest length liν and the other edges are driven far away from
their rest lengths. Since the potential function for every edge defined in (5.15) is
monotonically decreasing, the potential energy of edge (i, ν) will increase when
‖riν‖ approaches to its rest length, i.e., liν . Meanwhile, since the energy generated
by the single edge (i, ν) is less than that generated by all the edges that connecting
agent i, by letting Pi(z(t)) = Piν(t), we can get the maximum length for edge
(i, ν). Then, it can be checked whether ‖riν‖ reaches its rest length liν .

Now, we consider the length changes of the edges. Since the potential energy
Pi(z(t)) is not increasing, we have

Piν(t) +
[
Pi(z(t))− Piν(t)

]
6 Pi(z(0)), t > 0, (5.28)

where Piν(t) denotes the potential energy of edge (i, ν) stored at time t. Pi(z(t))
is the potential energy of all the neighbor edges of agent i. Obviously, we have
Pi(z(t)) > Piν(t). Then, from (5.28), it is straightforward to check

Piν(t) 6 Pi(z(0))−
[
Pi(z(t))− Piν(t)

]
< Pi(z(0)). (5.29)

Hence, to obtain the upper bound of ‖riν‖, it is assumed that

Piν(t) = Pi(z(0)). (5.30)

According to (5.25), the potential energy Pi(z(t)) would increase if the length
of the edges reach closer to their rest lengths. Hence, the maximum of Pi(z(0)) is
obtained when the initial positions of the edges satisfy

‖zi(0)− zj(0)‖ = sign(ωij)(‖r∗ij‖ − lij)− ε, ∀(i, j) ∈ E . (5.31)
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Consequently,

Pi(z(0))max =
∑
ωij<0

kij
[
(lij − ‖r∗ij‖)α − εα

]β
ε

+
∑
ωij>0

kij
[
(‖r∗ij‖ − lij)α − εα

]β
ε

.

(5.32)

Then, we let

Piν =
kiν [(liν − ‖r∗iν‖)α − ραiν ]

β

liν − ‖r∗iν‖ − ‖riν − r∗iν‖
= Pi(z(0))max. (5.33)

So far, the ‖riν‖ can be derived from (5.32)-(5.33) theoretically. However, it can
be seen that the resulting ‖riν‖ depends on the other edges’ rest lengths and de-
sired lengths, which is difficult to determine whether edge (i, ν) reaches its rest
length or not. Therefore, we further look for another relationship on the potential
energy between the edge (i, ν) and the other edges.

According to the statement above, to check whether ‖riν‖ reaches the rest
length, only the potential energy of edge (i, ν) increases, i.e., only the edge (i, ν)

changes towards its rest length, and the other edges move away from their rest
lengths. This implies

0 < ρiν(t)
∆
= ε1 < ε, (5.34)

where ε1 is a sufficiently small number. Now, we only take the numerators of
(5.15) into consideration.

For two different edges, consider two functions

f1(x) = kf1(cαf1 − xα)β , kf1 > 0, x ∈ (0, ε], (5.35)

and
f2(x) = kf2(cαf2 − xα)β , kf2 > 0, x ∈ (0, ε]. (5.36)

Given sufficiently small number ε1, we have

f1(ε1) = f1(0) +

∫ ε1

0

f ′1(x)dx. (5.37)

Since the function f1(x) is continuous and differentiable in (0, ε), it follows from
mean value theorem that

f1(ε1) = f1(0) + ε1f
′
1(s1), s1 ∈ (0, ε1). (5.38)
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Similarly, for ε > ε1, it follows

f2(ε) = f2(0) +

∫ ε

0

f ′2(x)dx

= f2(0) +

∫ ε1

0

f ′2(x)dx+

∫ ε

ε1

f ′2(x)dx

= f2(0) + ε1f
′
2(s2) + (ε− ε1)f ′2(s3),

(5.39)

where s2 ∈ (0, ε1) and s3 ∈ (ε1, ε).

From (5.11), the initial values satisfy

f1(0) = f2(0) = P0. (5.40)

And, from (5.21), for a sufficiently small ε1, under the condition that α > 2, we
have

f ′1(s1) = f ′2(s2)→ 0. (5.41)

Considering the fact that f ′′(x) < 0 in (5.22), it yields

f ′2(s3) < f ′2(s2) < 0. (5.42)

Combining (5.38)-(5.42), we obtain

f2(ε) < f1(ε1), (5.43)

which implies
fij(ε) < fiν(ρiν), j ∈ Ni. (5.44)

In view of (5.32)-(5.34), we know that the edge (i, ν) satisfies

kij
[(

sign(ωij)(‖r∗ij‖ − lij)
)α − εα]β

<kiν [(liν − ‖r∗iν‖)α − ρiν(t)α]
β
, j ∈ Ni.

(5.45)

Taking (5.32)-(5.33) and (5.45) into consideration, we have

1

liν − ‖r∗iν‖ − ‖riν(t)− r∗iν‖
<
|Ni|
ε
, (5.46)

where |Ni| denotes the cardinality of the set Ni, i.e., the number of agent i’s
neighbors. Then, through simple calculation, we get

‖riν(t)− r∗iν‖ 6 liν − ‖r∗iν‖ −
ε

|Ni|
. (5.47)
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Note that ziν(t) satisfies

‖ziν(t)‖ = ‖riν(t)− r∗iν‖ > ‖riν(t)‖ − ‖r∗iν‖. (5.48)

Then, the upper bound for ‖riν(t)‖ can be derived from (5.47)-(5.48)

‖riν(t)‖ 6 liν −
ε

|Ni|
, (5.49)

which implies the length of edge (i, ν) will not reach its rest length if it starts from
Dε(0).

For the edge (i, ζ) with positive stress, we can prove similarly that

‖riζ(t)‖ > liζ +
ε

|Ni|
. (5.50)

Therefore, we can draw the conclusion from (5.49) and (5.50) that the edges
will never escape from the set D(0) during the evolution, if the edges are initially
located in Dε(0), namely, the set D(0) is an invariant set. This completes the
proof.

Remark 5.7. Proposition 5.6 indicates that using the control law (5.19) the agents
will not escape the set D(0) if they start from Dε(0), which implies there will al-
ways be virtual forces along the edges. This further implies no sensing breakdown
will happen since the virtual edges represent the sensing relationships between
the agents.

Now, we are ready to present our main theorem.

Theorem 5.8. For any given initial position q(0) ∈ Dε(0), the formation stabiliza-
tion of the networked single-integrator systems modeled by (5.8) is achieved by the
controller (5.19).

Proof. From the control law (5.19) and potential function (5.15), we have

ui =−

 ∑
ωij<0

φij
ρ2
ij‖rij − r∗ij‖

+
∑
ωij>0

ϕij
%2
ij‖rij − r∗ij‖

 (zi − zj), (5.51)

where

φij = kij
(
αβραij

[
(lij − ‖r∗ij‖)α − ραij

]β−1
+
[
(lij − ‖r∗ij‖)α − ραij

]β )
,

ϕij = kij
(
αβ%αij

[
(‖r∗ij‖ − lij)α − %αij

]β−1
+
[
(‖r∗ij‖ − lij)α − %αij

]β )
,

with ρij and %ij being defined in (6.4). We further write the closed-loop system
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(5.8) and (5.15) into their compact form

˙̄q = ż = −(Lw(l, q̄, q̄∗)⊗ Id)z, (5.52)

where q̄ = [qT1 , · · · , qTn ]T ∈ Rdn, q̄∗ = [(q∗1)T , · · · , (q∗n)T ]T ∈ Rdn, and Lw =

HTW (l, q̄, q̄∗)H is G’s weighted Laplacian matrix. H is G’s incidence matrix defined
in (2.2.1), and the diagonal weight matrix W (l, q̄, q̄∗) is

W (l, q̄, q̄∗) = diag({)wι}, ι = 1, 2, · · · , |E|, with

wι =


φι

ρ2
ι ‖rι − r∗ι ‖

, if ωι < 0,

ϕι
%2
ι ‖rι − r∗ι ‖

, if ωι > 0.
(5.53)

Given q(0) ∈ Dε(0), it follows from Proposition 5.6 that Lw in (5.52) is well
defined and positive semi-definite [62]. Also, the interaction graph of the agents
is connected due to the fact that the edges are always in tension or in compression.
Then, it can be concluded from Lemma 2.1 that

lim
t→∞

z1(t) = lim
t→∞

z2(t) = · · · = lim
t→∞

zn(t), (5.54)

which implies that
lim
t→∞

rij(t) = r∗ij , ∀(i, j) ∈ E . (5.55)

Thus, the prescribed formation is achieved. This completes the proof.

Remark 5.9. Even though the result is in the sense of local stability, we can enlarge
the stability region by choosing small γcij for edges with positive stress and large
γsij for those with negative stress. The definition of Dε(0) also describes clearly an
estimate of the domain of attraction of the desired equilibrium of the closed-loop
system.

Remark 5.10. Note that the configuration of the desired formation coincides with
the given configuration q∗ in (5.1) for designing universally rigid tensegrity frame-
work, we thus can stabilize the proper formation consisting of any arbitrary num-
ber of agents theoretically. When one or more agents encounter mechanical fail-
ures, to stabilize the rest, the weights kij in control law (5.51) are required to be
updated by recalculating the stresses ωij based on the proposed algorithm, where
the matrix Q∗ needs to be altered via removing the failure agents’ configuration.
The resultant formation will remain the same as the original one associated with
the agents without failure.
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Remark 5.11. From (5.55), we know the equilibrium configuration is

lim
t→∞

q(t) = q∗ + γ span(1d),

where γ is an arbitrary real number. Indeed, the stabilized configuration q is a
class of affine transformation of q∗ [23], which is still in equilibrium with the stress
ω, i.e., ∑

j∈Ni

ωij(qi − qj) =
∑
j∈Ni

ωij(q
∗
i − q∗j ) = 0, i = 1, · · · , n.

Remark 5.12. In this chapter, the single integrator model is taken into account
under the assumption that the velocities of the agents can be controlled directly.
In practice, the signals generated by the system can serve as the commanded 3D-
velocity for the tracking controllers of the quadrotors [59, 81] or vessels [44]. This
technique has been employed in experimental setups in formation and motion
control [42].

5.4 Simulation results

This section gives the simulation results to validate the effectiveness of the theoret-
ical results derived in the preceding sections. For the construction of universally
rigid tensegrity frameworks, we consider a general as well as generic configuration.
Then, the formation stabilization algorithm is simulated on the resultant universally
rigid tensegrity framework.

5.4.1 Construction of universally rigid tensegrity frameworks

The generic configuration is given as follows

q∗ =

 −
√

3/2
√

3/2 0 −1/2 1 −2/3

−1/2 −1/2 1 −1/2 0 8/3−
√

3

0 0 0 3 3 3
√

3− 2

 . (5.56)

With this configuration, the corresponding geometric shape of the six nodes is
shown in Fig. 5.1. Based on our proposed algorithm, one solution of the Gale
matrix D of the Gale matrix D derived from (5.5) is given as follows

D =
1

3

[
2
√

3 −
√

3 −
√

3 −3 3 0

0 3 3
√

3− 8 −
√

3 2− 2
√

3 3

]T
.
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Then the stress matrix Ω can be calculated via Ω = DDT :

Ω =
1

9



12 −6 −6 −6
√

3 6
√

3 0

−6 12 9
√

3− 21 0 6− 9
√

3 9

−6 9
√

3− 21 94− 48
√

3 11
√

3− 9 19
√

3− 34 9
√

3− 24

−6
√

3 0 11
√

3− 9 12 −3− 2
√

3 −3
√

3

6
√

3 6− 9
√

3 19
√

3− 34 −3− 2
√

3 25− 8
√

3 6− 6
√

3

0 9 9
√

3− 24 −3
√

3 6− 6
√

3 9


. (5.57)

It can be seen from Ω that 13 members are required to construct a universally
rigid tensegrity framework, 10 of which are cables and 3 struts. The corresponding
tensegrity framework is shown in Fig. 5.2, where the thin black and thick blue lines
are cables and struts, respectively. It is worth noting that 13 is exactly the minimal
number of members required to build a universally rigid tensegrity framework in
generic configurations with 6 nodes in 3D.
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Figure 5.1: Desired geometric shape
associated with (5.56).
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Figure 5.2: Resultant framework
based on Ω in (5.57).

5.4.2 Formation stabilization

Based on the obtained tensegrity framework, where the nodes represent the agents
modeled by (5.8), the control input (5.51) for each agent can be specified. For
simplification, we set the parameters γsij to be the same value γs = 2, and γcij is
chosen to be γc = 0.5. The initial states of q(t) are chosen as qi(0) = q∗i + 0.3 ∗
rands(3, 1), i = 1, 2, · · · , 6.

It can be seen from Fig. 5.3 that the length of each member converges to its
desired one. The upper panel of Fig. 5.3 shows the stabilization errors of the cables,
and the corresponding stabilization errors of the struts are shown in the lower
panel. The length evolution intervals of the cables and struts together with their
rest lengths are presented respectively in Table 5.1 and 5.2, from which we can
observe that the length of any cable (resp. strut) is always longer (resp. shorter)
than its rest length during the evolution, verifying Proposition 5.6 numerically. As
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can be seen from Fig. 5.3, all the stabilization errors converge to zero within 0.1s.
Then the formation shape variations during [0, 0.1]s are depicted sequentially in Fig.
5.4, where the motion of the straight line of the whole formation results from an
additional control input ue = [140, 0, 0]T for each agent. This input is independent
of the system state, and thus can be separated from the control input (5.51). The
intention of designing ue is to clearly show the variation of the geometric shape
of the formation during the system evolution. Overall, these numerical results
indicate that the prescribed formation can be achieved using the virtual framework
and our proposed control algorithm (5.51).
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Figure 5.3: The stabilization errors of the members.

5.5 Concluding remarks

In this chapter, we have proposed a numerical algorithm, based on which uni-
versally rigid tensegrity frameworks can be built for any given configuration in
general position. Furthermore, the upper bound of the members inserted in the
framework has also been given. Then, we have investigated the formation stabi-
lization problem as one of the applications, where distributed control strategies
have been designed, such that the prescribed formation can be realized. During
the stabilization evolution, the lengths of the members are shown to vary over or
below some bounds, which is of great interest for tethered robot control.
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Table 5.1: Length evolution intervals of the cables and their rest lengths.

Cable Length interval Rest length

(1, 2) [1.5238, 1.7328] 0.8660

(1, 3) [1.0683, 1.7340] 0.8660

(1, 4) [2.8182, 3.0474] 1.5222

(2, 3) [1.7211, 1.8152] 0.8600

(2, 5) [2.8860, 3.0471] 1.5222

(3, 5) [2.8011, 3.3172] 1.6583

(3, 6) [3.1644, 3.2659] 1.6328

(4, 5) [1.7305, 1.9374] 0.8600

(4, 6) [1.8143, 2.0299] 0.9095

(5, 6) [1.8263, 1.9219] 0.9604

Table 5.2: Length evolution intervals of the struts and their rest lengths.

Strut Length interval Rest length

(1, 5) [3.0050, 3.5694] 7.1364

(2, 6) [3.8210, 4.0727] 7.6479

(3, 4) [3.1661, 3.5706] 7.1364
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Figure 5.4: Formation evolution between t = 0− 0.1s.





Chapter 6

Stress matrix-based formation scaling
control

This chapter investigates the formation scaling control problem for multi-agent
systems by mapping the formation into a universally rigid tensegrity frame-

work with the underlying graph representing the agents and their interaction
relationship. We first propose distributed formation scaling control laws by utilizing
the stress of the universally rigid tensegrity framework. It is shown that global
exponential convergence to the prescribed formation in Rd can be achieved by only
controlling d pairs of agents whose position vectors span Rd, under the assumption
that each of the d pairs of agents has the knowledge of the desired formation size.
Then by employing the technique of orthogonal projection, we design a new class
of distributed control laws under which the agents are steered to form the desired
formation under the relaxed assumption that only one pair of agents knows the
scaling size; it is further proved that if the stress in the developed control law admits
a generic universally rigid tensegrity framework, the equilibria correspond only to
the translation and scaling of the given configuration among all the possible affine
transformations. Finally, we propose a class of estimator-based control strategies,
which can solve the formation scaling problem under the stricter condition that
only one agent knows the prescribed size of the formation. Numerical simulations
are carried out to validate the theoretical results.

6.1 Introduction

There has been a significant increase in the research on cooperative control of
multi-agent systems. A fundamental task for cooperative control is formation
control, which has found a wide range of applications, including networked mobile
sensors performing ocean sampling tasks, a group of mobile robots enclosing a
target, and unmanned aircrafts imaging in space [11, 73]. The main objective of
distributed formation control is to design control laws using only local information
to realize a given prescribed formation shape.

In general, the shape of a formation can be specified by various types of vari-
ables: absolute position, relative position (or displacement), distance, bearing
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[138], and complex Laplacian [77]. In position-based control, each agent is in-
formed of its absolute position and the desired position with respect to a global
coordinate system, where agents can be controlled individually without any inter-
action with their neighbors. Therefore, network interaction among agents is not
required but a global coordinate system for all agents is needed [91]. When the
relative position becomes the sensed and controlled variable, the desired realizable
formation can be achieved based on consensus algorithms using only measurements
from local coordinate systems. However, the orientations of the local coordinate
systems are required to be the same as that of a global coordinate system. In recent
years, researchers have thoroughly studied the relative-position-based formation
control from various aspects: linear and nonholonomic agent dynamics [79, 127];
undirected and directed switching interaction graphs [62, 92]; continuous- and
discrete-time models [28, 130], to name a few.

In comparison, it is allowed in distance-based formation control that the sensed
variable, i.e., relative position, can be measured in an arbitrary local coordinate
system for each agent [91, 115]. However, using the gradient control protocols,
only local stability is guaranteed for distance-based control systems under general
graphs. In this scenario, rigidity graph theory has been shown to be an effective tool
for analyzing the equilibrium formations up to translations and rotations. In [70],
infinitesimal rigidity is shown to be a sufficient condition for locally asymptotically
stabilizing an equilibrium formation under gradient control laws. To investigate
global stability for triangular formations in the plane, it is shown in [14] that
properly initialized formations can be controlled to exponentially converge to the
desired formation with proper orientation. Note that to implement gradient control
laws, relative positions are measured. The paper [15] proposes a stop-and-go cyclic
strategy, which can stabilize a generically minimally rigid formation using only
inter-agent distances. More recently, researchers have investigated the formation
robustness issues, and have established formation movements in the presence of
measurement mismatches [87, 116].

Investigating formation scaling is a growing major concern within formation
control since the formation with varying size can dynamically adapt to changing
environments in practice, such as obstacle avoidance for a group of vehicles. In
[27], via a projection operator approach, two strategies are designed for the case
when the scaling parameter is known to some of the agents. However, for the
single-link method developed in [27], the monitoring graph needs to be chosen
to contain all the vertices in the sensing graph. Later, the projection operator is
also employed in [138], where bearing-based control frameworks are established.
In addition, [54] addresses the formation scaling problem for both single- and
double-integrator agent dynamics in the context of complex Laplacians.

In this chapter, we adopt a stress matrix-based approach to control a formation
with the desired scaling, where the stress may contain negative values. It is worth
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noting that most of the interacting weights in consensus-based protocols are positive.
However, in some complex networks, e.g., social networks, the weights of the links
cannot always be guaranteed to be positive. It is also shown in [129] that negative
weights could contribute to faster convergence speed. Therefore, it is meaningful
to incorporate negative weights in cooperative control. The stress matrix, defined
in the same structure as a typical Laplacian matrix, is widely used to represent
the stresses of edges and their connection relationships in a framework. Stress
can be interpreted physically as the force per unit length, whose sign indicates the
direction of the force. Hence, the stress matrix implicitly captures the features of
a framework, e.g., rigidity, stability, and robustness [25]. Recently, a new type of
formation pattern called affine formation has been investigated in [78], in which
necessary and sufficient graphical conditions to achieve an affine formation are
presented by employing the concept and properties of universal rigidity theory. It
has also been revealed that an affine transformation of a given configuration is
invariant to translation and scaling.

Motivated by these results, the goal of the current chapter is to first design
distributed formation scaling control algorithms using the stress associated with
a universally rigid tensegrity framework, such that the desired formation with
predefined size in Rd is achieved. In the control algorithm, d pairs of agents whose
position vectors span Rd are assumed to know the desired formation size, which
renders the global exponential stability of the closed-loop system. Then to relax
the condition that the chosen d pairs of the agents need to know the size, we
propose orthogonal-projection-based control laws, where only two neighboring
agents are required to be aware of the desired formation size. We show that the
affine formation can be constrained to only translation and scaling even though
only two of them have access to the desired size of the formation. Furthermore,
under the more restrictive condition that only one agent knows the prescribed size,
we design a class of estimator-based control laws, which successfully stabilize the
agents to a predefined pattern from disordered initial formations. As a consequence,
the feasibility of the proposed control law is highly improved in practice.

The rest of this chapter is organized as follows. Section 6.2 introduces the
formation scaling control problem. In Section 6.3, we present basic stress matrix-
based cooperative control laws for controlling formation scaling, followed by the
stability analysis of the closed-loop system. Section 6.4 provides a new type of
control laws by combining the stress and orthogonal projections. In Section 6.5, we
introduce another type of estimator-based control strategies to further reduce the
number of agents knowing the scaling parameter. Simulation results are presented
in Section 6.6. Finally, we draw the conclusion in Section 6.7.
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6.2 Problem formulation

Consider a group of n > d+ 2 mobile agents, each of which is modeled by single
integrator dynamics

q̇i = ui, i = 1, · · · , n, (6.1)

where qi ∈ Rd is the position of agent i and ui ∈ Rd is the control input. Given a
generic universally rigid tensegrity framework (G, q∗) with an equilibrium stress
ω, the objective of formation scaling is, by using the stress ω, to design distributed
control laws ui(q∗i − q∗j , qi − qj), j ∈ Ni, such that

lim
t→∞

(qi(t)− qj(t)) = κ(q∗i − q∗j ), ∀(i, j) ∈ E , (6.2)

where κ is a positive constant indicating the size of the formation. Here, by mapping
the multi-agent system to the universally rigid tensegrity framework, we assigned
each edge of the formation with a weight (or stress), which can be either positive
or negative.

Remark 6.1. The formation scaling problem becomes trivial if each agent knows
the scaling parameter κ. However, in this chapter, we show the formation scaling
can still be achieved using the proposed algorithms even only a small number of
agents knows κ.

6.3 Formation scaling control using the stress ma-
trix

In this section, we consider the formation scaling control problem, in which the
formation can expand or shrink according to the parameter κ defined in (6.2).
Distributed control laws are proposed by employing the stress of a universally rigid
tensegrity framework.

Before moving on, we select d pairs of nodes in the given universally rigid
tensegrity framework (G, q∗), such that the dimension of the convex hull of the
selected nodes is d. Denote the set of edges corresponding to the d pairs of
chosen nodes as El. All the nodes involved in El are assembled in the node
set Vl = {1, · · · , nl}, and the set of the remaining nodes in V is denoted by
Vf = {nl + 1, · · · , n}. Here, the d pairs of nodes are chosen such that the resultant
subgraph Gl(Vl, El) is connected. It is worth noting that the chosen d pairs of nodes
can involve less than 2d nodes, due to the common endpoint shared by distinct
edges. Fig. 6.1 shows an example of the setup for the subgraph Gl(Vl, El), where
the dashed lines and solid lines represent the cables and struts, respectively.
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(a) A tensegrity frame-
work (G, q∗) in R2.

1 2

3

4

(b) El = {(1, 2), (2, 3)},
Vl = {1, 2, 3}.

Figure 6.1: An example of setting Gl(Vl, El).

Then the control input for each agent i is designed as

ui = −
∑

(i,j)∈E

ωij(qi − qj)−
∑

(i,j)∈El

aij
[
(qi − qj)− κ(q∗i − q∗j )

]
, (6.3)

where ωij is the stress of member (i, j). It can be seen that the control input
includes two parts:

uFi = −
∑

(i,j)∈E

ωij(qi − qj), (6.4)

and
uSi = −

∑
(i,j)∈El

aij
[
(qi − qj)− κ(q∗i − q∗j )

]
, (6.5)

where the internal force uFi generated from the virtual tensegrity framework is
used to stabilize the formation shape, and the input uSi is to realize formation
scaling. Equivalently, the control input (6.3) can be written as

ui =

{
uFi + uSi , if i ∈ Vl,
uFi , if i ∈ Vf .

One of the main results concerning the formation scaling is presented as follows.

Theorem 6.2. For system (6.1), by employing the virtual tensegrity-framework-based
control law (6.3) for each agent, the target formation with the prescribed size is
globally exponentially stabilized.

Proof. The control input uFi in (6.3) can be written in the compact form as

uF = −(Ω⊗ Id)q̄, (6.6)

where q̄ = [qT1 , · · · , qTn ]T ∈ Rdn and uF =
[
(uF1 )T , · · · , (uFn )T

]T
are the vector

form of qi and uFi , respectively. Similarly, consider the scaling control part of (6.3),
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i.e., uSi , which can be written in the vector form as

uS = −(Ls ⊗ Id)q̃, (6.7)

where uS is the concatenated form of uSi , and q̃ = [q̃T1 , · · · , q̃Tn ]T ∈ Rdn, with
q̃i ∈ Rd being defined by

q̃i = qi − κq∗i . (6.8)

The matrix Ls is given by

Ls =

[
Ll 0nl×(n−nl)

0(n−nl)×nl 0(n−nl)×(n−nl)

]
, (6.9)

where Ll is the Laplacian matrix associated with the agents in the set Nl, defined
by

[Ll]ij =


∑
j∈Ni

aij , i = j,

− aij , i 6= j.

By combining (6.6) and (6.7), it follows

u = − ((Ω + Ls)⊗ Id) q̃, (6.10)

where we have used the equilibrium stress condition that (Ω⊗ Id)q̄∗ = 0, and q̄∗ is
defined as q̄∗ =

[
(q∗1)T , · · · , (q∗n)T

]T
. Then the dynamics of q̃ is given by

˙̃q = − ((Ω + Ls)⊗ Id) q̃
∆
= −Ω̄q̃. (6.11)

Note that the stress matrix Ω is positive semi-definite, so is Ls. Therefore, the
matrix Ã is positive semi-definite. Hence, the equilibrium of the closed-loop system
(6.11) is globally stable. Furthermore, the equilibrium points of system (6.11),
denoted by qe, satisfy

˙̃qe = − ((Ω + Ls)⊗ Id) q̃e
∆
= −Ω̄q̃e = 0nd×1,

where q̃e is the stacked vector of q̃ei = qei −κq∗i , i = 1, · · · , n. It follows from Lemma
2.17 that

q̃e ∈ null(Ω⊗ Id), and q̃e ∈ null(Ls ⊗ Id). (6.12)

Therefore, we have

[
uF1 , · · · , uFn

]
= −

 ∑
(1,j)∈E

ω1j(q
e
1 − qej ), · · · ,

∑
(n,j)∈E

ωnj(q
e
n − qej )

 = 0, (6.13)
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and similarly, [
uS1 , · · · , uSn

]
= −(qe − κq∗)Ls = 0d×n. (6.14)

Equivalently, we consider the reduced form of (6.14) as follows[
uS1 , · · · , uSnl

]
= −(qes − κq∗s )Ll = 0d×nl , (6.15)

where qes = [qe1, · · · , qenl ] ∈ Rd×nl , nl > d, and q∗s = [q∗1 , · · · , q∗nl ].
Combining (2.5) and (6.13), we know qe is the affine transformation of q∗ with

respect to Ω, i.e.,
qei = Mq∗i + b, i = 1, · · · , n, (6.16)

where M ∈ Rd×d and b ∈ Rd. Substituting (6.16) into (6.15), yields[
(M − κId)q∗1 + b, · · · , (M − κId)q∗nl + b

]
Ll = 0d×nl . (6.17)

Note that the Laplacian matrix Ll satisfies

null(Ll) = span(1nl). (6.18)

Therefore, it follows from (6.17) and (6.18) that

span
[
(M − κId)q∗1 + b, · · · , (M − κId)q∗nl + b

]
= span(1nl),

i.e.,
span[(M − κId)q∗s + (b⊗ 1Tnl)] = span(1nl). (6.19)

In view of nl > d, to make (6.19) hold, it requires

(M − κId)q∗s = [ξ, · · · , ξ],

where ξ ∈ Rd is any arbitrary real vector. Then we obtain

(M − κId)(q∗i − q∗j ) = 0, i, j ∈ Vl. (6.20)

By recalling that the dimension of the convex hull of (q∗i − q∗j ), i, j ∈ Vl, is d,
it follows from (6.20) that M = κId. Then, we can draw the conclusion that
formation scaling is achieved.

Note that
null(Ω) = span

(
(q∗)T ,1n

)
. (6.21)

Since q converge to κq∗, only the freedom of translation is left for the stabilized
formation, which results from the basis 1n in the null space of Ω. Note that

span(1n) ∈ null(Ls).
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Consequently, again from Lemma 2.17, we have

null ((Ω + Ls)) = span(1n). (6.22)

Now, we show the convergence is achieved globally exponentially and derive
the guaranteed exponential rate.

Define the formation centroid by

qc =
1

n

n∑
i=1

qi =
1

n
(1n ⊗ Id)T q̄.

Then the dynamics of the centroid satisfy

q̇c =
1

n
(1n ⊗ Id)T ˙̄q =

1

n
(1n ⊗ Id)T ((Ω + Ls)⊗ Id) q̃ = 0,

which implies that the centroid of the formation keeps static. Following the
same line of the proof in [118, Theorem 3], we construct an orthogonal matrix
S ∈ Rdn×dn as

S =

(
1√
n

(1n ⊗ Id)T

Sr

)
,

where Sr ∈ Rd(n−1)×dn. Then consider the coordinate transformation

p = Sq̃ =

(
pc
pr

)
, (6.23)

where pc = 1√
n

(1n ⊗ Id)T (q̄ − κq̄∗) =
√
nqc − κ

√
nq∗c , with q∗c defined by q∗c =

1/n
∑n
i=1 q

∗
i . From (6.23), one has

q̃ = S−1p = ST p. (6.24)

Taking the derivative of both sides of (6.23), we have

ṗ = S ˙̃q = −SΩ̄q̃ = −SΩ̄ST p.

Equivalently,[
ṗc
ṗr

]
= −SΩ̄ST

[
pc
pr

]

= −

[
1√
n

(1n ⊗ Id)T

Sr

]
Ω̄

[
1√
n

(1n ⊗ Id)T

Sr

]T [
pc
pr

]
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=

 0d×d 0d×d(n−1)

0d(n−1)×d SrÃS
T
r

[ pc
pr

]
.

Consequently, the transformed system dynamics become{
ṗc = 0

ṗr = −SrΩ̄STr pr
. (6.25)

In view of (6.22), we know the matrix SrΩ̄STr is positive definite. Therefore, the
state pr will globally exponentially converges to the equilibrium pr = 0. Recalling
(6.24) with orthogonal matrix S and the fact that pc keeps constant, we draw
the conclusion that q̃ globally exponentially converges to zero, which implies q
converges to κq∗ globally exponentially from (6.8). This implies that the formation
scaling is achieved in the sense of globally exponential stability. In addition, it
can be seen from (6.25) that the convergence rate depends on the eigenvalues of
matrix Ω̄, or equivalently, matrices Ω and Ls.

Remark 6.3. From (6.21), it is clear that if one only uses the control law uFi in
(6.4), then there is no constraint for the size of the formation. Therefore, the idea
of designing the uSi in (6.5) is to reduce the dimension of the null space of Ω,
namely, to restrict the null space of (Ω⊗ Id) to span(1n⊗ Id). To achieve this goal,
at least d pairs of agents are required to construct the sub-Laplacian matrix Ll in
(6.9).

6.4 Formation scaling control via the stress matrix
and orthogonal projections

In Section 6.3, we have shown that the formation scaling problem can be solved
using the proposed control law (6.3) if d pairs of agents have accesses to the
formation scaling parameter κ. Aiming to further reduce the number of the agents
knowing κ, in this section, we present a new class of distributed control laws by
utilizing the orthogonal projections.

To facilitate the design of control laws, we choose d + 1 members in (G, q∗),
automatically yielding d + 1 pairs of nodes corresponding to the chosen d + 1

members, such that the dimension of the convex hull spanned by any d pairs of
the chosen nodes is d. The subgraph associated with those d+ 1 pairs of agents is
denoted by Gl(Vl, El), with |Vl| = nl, |El| = d+ 1. Here, the nodes are also properly
chosen to make subgraph Gl(Vl, El) connected. Correspondingly, we have Vf and
Ef , such that Vl∪Vf = V and El∪Ef = E . As illustrated before, there must be fewer
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than 2(d+ 1) nodes involved in the chosen d+ 1 members due to the connectivity
constraint of the subgraph Gl(Vl, El). Fig. 6.2 shows an example of determining the
sub-graph Gl(Vl, El), where the dashed lines and solid lines represent cables and
struts, respectively.
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4

(a) A tensegrity frame-
work (G, q∗) in R2.

1 2

3

4

(b) Vl = {1, 2, 3},El=
{(1, 2), (2, 3), (1, 3)}.

Figure 6.2: An example of determining Gl(Vl, El).1

Then the incidence matrix H can be partitioned as

H =

 Hll Hlf

Hfl Hff

 , (6.26)

where Hll ∈ Rnl×(d+1), Hlf ∈ Rnl×(m−d−1), Hfl ∈ R(n−nl)×(d+1), and Hff ∈
R(n−nl)×(m−d−1). Furthermore, from the definition of the sets Vl and El, we know
that no vertex in Vf is adjacent to the edges in El, which implies Hfl = 0.

Suppose none of the agents has the knowledge of κ. However, the information
of κ is implicitly contained in one specific edge. Without loss of generality, we
assume this edge is adjacent to agents 1 and 2. This means κ(q∗1 − q∗2) is known by
agents 1 and 2 as a whole piece of information. For other edges in the edge set
El, only the information of q∗i − q∗j , (i, j) ∈ El\(1, 2), is available to their adjacent
agents.

Define an auxiliary variable z = [zT1 , · · · , zTm]T ∈ Rmd as follows

z = (HT ⊗ Id)q,

where H is the incidence matrix, and zι = qi − qj , ι = 1, · · · ,m, with agents i and
j being the head and tail of the ιth edge, respectively. To be consistent, we assume
the specific edge connecting agents 1 and 2 is labeled as the 1st edge. Therefore, it
follows z1 = q1 − q2. Analogously, we have

z∗ = (HT ⊗ Id)q∗.
1Fig. 6.2 differs from Fig. 6.1 in the edge set El of the subgraph (b), where there is one more edge

(1, 3) in Fig. 6.2(b) compared with Fig. 6.1(b).
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The projection of zι along z∗ι is given by

κι =
1

‖z∗ι ‖2
(z∗ι )T zι, ι = 2, · · · , d+ 1. (6.27)

The projection method is also employed in [27, 138], where the projection operator
(6.27) is used to ‘estimate’ the scaling parameter [27] and to realize the bearing-
based control [138].

The control inputs for agents 1 and 2 are designed as

u1 = −
∑

(1,j)∈E

ω1j(q1 − qj)− h11(z1 − κz∗1)−
d+1∑
ι=2

h1ι(zι − κιz∗ι ), (6.28)

and

u2 = −
∑

(2,j)∈E

ω2j(q2 − qj)− h21(z1 − κz∗1)−
d+1∑
ι=2

h2ι(zι − κιz∗ι ). (6.29)

where ωij is the stress associated with member (i, j). It is worth noting that even
though κz∗1 is contained in the control laws (6.28) and (6.29), agents 1 and 2

have no knowledge of the value of κ, since κz∗1 is transmitted as a whole piece of
information. The reason that the desired information of edge 1 is written as κz∗1
is to facilitate the stability analysis. For the rest of the agents, their control inputs
ui, i = 3, · · · , n, are given by

ui =−
∑

(i,j)∈E

ωij(qi − qj)−
d+1∑
ι=2

hiι(zι − κιz∗ι ). (6.30)

Similar to (6.3), the proposed control input for each agent consists of two parts:
the internal force −

∑
(i,j)∈E ωij(qi − qj) generated from the virtual tensegrity

framework used to drive the whole group of agents to the affine space of the
configuration q∗, and the rest used to fix the size of the formation. To implement the
proposed control inputs (6.28)-(6.30) in practice, agents 1 and 2 can be arbitrarily
chosen among the d+ 1 pairs of agents. The proposed control input has a similar
part as the control laws proposed in [27, 138], while we introduce the negative
weight that can model the antagonistic interactions between neighbor agents.
Furthermore, using the stress matrix makes it possible that only a few number
of agents are required to have the common knowledge of the global coordinate
system, which will greatly broaden the applicability of the proposed control laws
in practice. In addition, even though the conditions to achieve affine formations
in the context of graph theory are presented in [78], no control law on formation
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(scaling) control has been given.

Then we are ready to present another main result as follows.

Theorem 6.4. Suppose the given generic framework (G, q∗) is universally rigid with
an equilibrium stress ω. Then for a group of agents modeled by (6.1), the formation
scaling control task (6.2) can be achieved globally using the proposed distributed
control laws (6.28)- (6.30).

Proof. Since κιz∗ι = z∗ι κι, for κι defined in (6.27) is a scalar, we have

zι − κιz∗ι =

(
Id −

(z∗ι )(z∗ι )T

‖z∗ι ‖2

)
zι. (6.31)

The vector corresponding to the right-hand side of (6.31) is in the direction of (z∗ι )⊥.
The (orthogonal) projection is to project vector zι to the orthogonal complement
of z∗ι . We denote the orthogonal projection operator as Projι

∆
= Id − (z∗ι )(z∗ι )T

‖z∗ι ‖2
, ι =

2, · · · , d + 1. Since κz∗1 is known to agents 1 and 2, to keep consistent with the
notations, we denote Proj1

∆
= Id.

Then the control laws (6.28)-(6.30) can be integrated as

ui =−
∑

(i,j)∈E

ωij(qi − qj)−
d+1∑
ι=1

hiιProjι(zι − κz∗ι ),

i = 1, · · · , n,

(6.32)

where we have used the fact that

Projι(κz
∗
ι ) = 0d, ∀κ ∈ R, ι = 2, · · · , d+ 1.

The compact form of (6.32) is in the form

u = −(Ω⊗ Id)q − (H̄ll ⊗ Id)P̄l(z − κz∗), (6.33)

where

H̄ll =

 Hll 0nl×(m−d−1)

0(n−nl)×(d+1) 0(n−nl)×(m−d−1)

 ,

and
P̄l = diag(Proj1, · · · , P rojd+1,0d, · · · ,0d).

Note that
(Ω⊗ Id)(κq∗) = κ(Ω⊗ Id)q∗ = 0. (6.34)
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Substituting (6.34) into (6.33), we have

u = −(Ω⊗ Id)(q − κq∗)− (H̄ll ⊗ Id)P̄l(z − κz∗). (6.35)

In light of the fact that z = (HT ⊗ Id)q, (6.35) can be rewritten as

u = −(Ω⊗ Id)(q − κq∗)− (H̄ll ⊗ Id)P̄l(HT ⊗ Id)(q − κq∗). (6.36)

Recalling that Hfl = 0 in (6.26), one has

(H̄ll ⊗ Id)P̄l(HT ⊗ Id)

=

 Hll ⊗ Id 0

0 0

 Pl 0

0 0

 HT
ll ⊗ Id 0

HT
lf ⊗ Id HT

ff ⊗ Id


=

 (Hll ⊗ Id)Pl(HT
ll ⊗ Id) 0

0 0

 ∆
= Ψ,

(6.37)

where Pl = diag(Proj1, · · · , P rojd+1). Combining (6.36) and (6.37), we have

q̇ − ˙κq∗ = − ((Ω⊗ Id) + Ψ) (q − κq∗). (6.38)

It can be checked that the eigenvalues of the matrix (z∗ι )(z∗ι )T /‖z∗ι ‖2 are
{0, · · · , 0, 1}, where the algebraic multiplicity of eigenvalue 0 is d − 1. Hence,
the nonzero eigenvalue of the projection operator Projι is 1 with the algebraic
multiplicity d − 1. This implies that the matrix (Hll ⊗ Id)Pl(HT

ll ⊗ Id) is positive
semi-definite, and so is the matrix Ψ. Note that for a universally rigid framework
(G, q∗), its stress matrix Ω is positive semi-definite. Therefore, the equilibrium of
the closed-loop system (6.38) is globally stable. In addition, the equilibrium points
of system (6.38), denoted by qe, satisfy

− ((Ω⊗ Id) + Ψ) (qe − κq∗) = 0.

In view of Lemma 2.17, we have{
(Ω⊗ Id)(qe − κq∗) = 0, (6.39)

Ψ(qe − κq∗) = 0. (6.40)

Note that for a generic and universally rigid tensegrity framework (G, q∗), it
follows from Lemma 2.9 that its corresponding stress matrix Ω is positive semi-
definite with rank n− d− 1. Moreover, for the stress ω in equilibrium with q∗, in
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view of the definition of Ω, we know

null(Ω) = span



q∗11

q∗21
...
q∗n1



q∗12

q∗22
...
q∗n2

 · · ·

q∗1d
q∗2d
...
q∗nd




1

1
...
1


 .

Then, it follows that qe is an affine transformation of q∗, i.e.,

qei = Mq∗i + b, (6.41)

where M ∈ Rd×d and b ∈ Rd. Substituting (6.41) into (6.40), we get

Ψ ((In ⊗M)q∗ + (1n ⊗ b)− κq∗) = 0. (6.42)

In view of the structure of Ψ in (6.37), (6.42) can be reduced to

(Dll ⊗ Id)Pl(DT
ll ⊗ Id) [(Inl ⊗M)q∗l + (1nl ⊗ b)− κq∗l ] = 0. (6.43)

Note that
(DT

ll ⊗ Id)(1nl ⊗ b) = DT
ll1nl ⊗ b = 0. (6.44)

Then (6.43) can be equivalently written as

(Dll ⊗ Id)Pl(DT
ll ⊗ Id) [(Inl ⊗M)q∗l − κq∗l ] = 0. (6.45)

To determine the value of matrix M , we write (6.45) in the componentwise
form

d+1∑
ι=1

ξι = 0,

where edge ι is assumed to be adjacent to vertices i and j, and ξι is given by

ξι =


· · · · · · · · · · · · · · ·
· · · h2

iιProjι · · · hiιhjιProjι · · ·
...

...
. . .

...
...

· · · hjιhiιProjι · · · h2
jιProjι · · ·

· · · · · · · · · · · · · · ·




· · ·

(M − κId)q∗i
...

(M − κId)q∗j
· · ·

 . (6.46)

Noting that hiιhjι = −1, for each edge ι, we have

Projι(M − κId)(q∗i − q∗j ) = 0,
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i.e.,
Projι(M − κId)z∗ι = 0.

Next, we will prove by contradiction that M = κId. Assume M 6= κId. Recalling
that Proj1 = Id, and that Projι(αz∗ι ) = 0, we get

(M − κId)z∗1 = 0,

(M − κId)z∗2 = α2z
∗
2 ,

...

(M − κId)z∗d+1 = αd+1z
∗
d+1,

(6.47)

where αι 6= 0, ι = 2, · · · , d+ 1.

Since the dimension of the convex hull spanned by any d pairs of the agents in
the set Vl is d, there exist βi, i = 2, · · · , d+ 1, such that

z∗1 = β2z
∗
2 + · · ·+ βd+1z

∗
d+1, (6.48)

where at least one of the coefficients βi is nonzero. Then multiplying (M − κId) on
both sides of (6.48), we obtain

(M − κId)z∗1 = (M − κId)(β2z
∗
2 + · · ·+ βd+1z

∗
d+1) = 0. (6.49)

Combining (6.47) and (6.49), we have

(M − κId)(β2z
∗
2 + · · ·+ βd+1z

∗
d+1)

=β2(M − κId)z∗2 + · · ·+ βd+1(M − κId)z∗d+1

=α2β2z
∗
2 + · · ·+ αd+1βd+1z

∗
d+1

=0,

(6.50)

where at least one of αιβι, ι = 2, · · · , d+ 1, is nonzero.

Considering again that any d pairs of agents in Vl linearly span Rd, it is obvious
that vectors z∗2 , · · · , z∗d , and z∗d+1 are linearly independent. This implies that 0d is
the unique solution of γ = [γ1, · · · , γd]T to the following equation

γ1z
∗
2 + · · ·+ γdz

∗
d+1 = 0,

which contradicts (6.50). Therefore, the assumption M 6= κId does not hold. In
other words, M = κId. Then, from (6.41) we know

qei = κq∗i + b, i = 1, · · · , nl.
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Consequently, it follows

zι = κz∗ι , ι = 1, · · · , d+ 1.

Then one can draw the conclusion from Lemma 2.16 that formation scaling for the
whole group of agents is achieved. This completes the proof.

6.5 Estimation-based formation scaling control

In this section, we further extend the results in Section 6.4 by assuming only one
agent knows the desired formation size, i.e., the scaling parameter κ. With the
intention to drive the agents to form the prescribed formation pattern with fixed
scaling, we design a new type of distributed estimator-based control laws.

It has been shown in Section 6.3 that the formation can be scaled to the
prescribed size if d pairs of agents with the associated connected subgraph Gl(Vl, El)
knows κ. Following the same principle of constructing the subgraph Gl(Vl, El), we
know there must exist a path (1, 2, · · · , nl) through relabeling the agents due to
the bidirectional property of an undirected graph. Without loss of generality, we
assume only agent 1 knows the scaling parameter κ among the |Vl| agents.

Assumption 6.5. For any given q∗i , i = 2, · · · , n, there holds

|N l
i−1|(q∗i−1 − q∗i ) +

∑
j∈N li−1∩N li

(q∗i − q∗j ) 6= 0d. (6.51)

With these background knowledge, the control input for agent 1 is the same as
(6.3), given by

u1 = −
∑
j∈N1

ω1j(q1 − qj)−
∑
j∈N l1

a1j

(
(q1 − qj)− κ(q∗1 − q∗j )

)
, (6.52)

where N l
1 denotes the set of neighbor agents of agent 1 in the subgraph (El,Vl).

For the rest, we introduce the following estimation-based control protocols

ui =−
∑
j∈Ni

ωij(qi − qj)

−
∑
j∈N li

aij
(
(qi − qj)− κ̂i(q∗i − q∗j )

)
, i = 2, · · · , n,

(6.53)

where κ̂i is the estimation of κ by agent i. As illustrated in Section 6.3, the
first part of the control input is used to achieve the affine formations associated
with the stress ω, and the second part aims to fix the formation size from the
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affine formations. It can be observed from (6.52)-(6.53) that only agent 1 knows
the desired size of the formation, and the others employ the estimation variable
κ̂i, i = 2, · · · , nl, in their control inputs. We propose the following estimators for
agent 2 {

θ̇2 = −Λ2ξ
T
2 ζ2

κ̂2 = −θ2 − Λ2ξ
T
2 (q2 − q1)

, (6.54)

and for agent i, i = 3, · · · , nl,{
θ̇i =− Λiξ

T
i ζi

κ̂i =κ̂i−1 − θi − Λiξ
T
i (qi − qi−1)

, (6.55)

where θi is an intermediate variable, and Λi is a positive scalar. The variables ξi
and ζi are respectively given by

ξi = |N l
i−1|(q∗i−1 − q∗i ) +

∑
j∈N li−1∩N li

(q∗i − q∗j ), (6.56)

and
ζi =κ̂i

(
|N l

i−1|+ 1
)

(q∗i−1 − q∗i )−
∑
j∈Ni

ωij(qi − qj)

−
∑
j∈N li

aij(qi − qj) +
∑

k∈Ni−1

ω(i−1)k(qi−1 − qk)

+
∑

k∈N li−1

a(i−1)k(qi−1 − qk), i = 2, · · · , nl.

(6.57)

Remark 6.6. As can be seen from (6.54) and (6.55), two-hop information is
required to implement the relative-position-based estimator. Similar estimation
problem was also addressed in [82] to estimate an unknown rotation parame-
ter, in which the estimator is designed under the complete graph. In addition, it
stated that constructing estimator using only relative position information under
a general connected graph is an open problem.

Proposition 6.7. Consider the estimator (6.54) and (6.55) for agent i, i = 2, · · · , nl.
Then, we have limt→∞κ̂i = κ.

Proof. First considering the control inputs for the first two agents, we obtain
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their dynamics from (6.52) and (6.53) as

q̇2 − q̇1 =−
∑
j∈N2

ω2j(q2 − qj) +
∑
k∈N1

ω1k(q1 − qk)

−
∑
j∈N l2

a2j

(
(q2 − qj)− κ̂2(q∗2 − q∗j )

)
+
∑
k∈N l1

a1k

(
(q1 − qk)− κ(q∗1 − q∗k)

)
.

(6.58)

Define the estimation error for agent 2 by

κ̃2 = κ̂2 − κ, (6.59)

and denote the quantity associated with κ and κ̂ in (6.58) by q∗2r, i.e.,

q∗2r
∆
=
∑
j∈N l2

a2j κ̂2(q∗2 − q∗j )−
∑
k∈N l1

a1kκ(q∗1 − q∗k). (6.60)

By invoking the fact that q∗1 − q∗k = q∗1 − q∗2 + (q∗2 − q∗k), we have

q∗2r =
∑
j∈N l2

a2j κ̂2(q∗2 − q∗j )−
∑
k∈N l1

a1kκ(q∗2 − q∗k)

−
∑
k∈N l1

a1kκ(q∗1 − q∗2)

=
∑

j∈N l1∩N l2

(κ̂2 − κ)(q∗2 − q∗j ) + a21κ̂2(q∗2 − q∗1)

−
∑
k∈N l1

a1kκ(q∗1 − q∗2) +
∑
k∈N l1

a1kκ̂2(q∗1 − q∗2)

−
∑
k∈N l1

a1kκ̂2(q∗1 − q∗2)

= κ̃2

∑
j∈N l1∩N l2

(q∗2 − q∗j ) + κ̃2|N l
1|(q∗1 − q∗2)

+ κ̂2(|N l
1|+ 1)(q∗2 − q∗1).

(6.61)

Substituting (6.61) into (6.58), we get

q̇2 − q̇1 = ζ2 +N l
1|(q∗1 − q∗2) +

∑
j∈N l1∩N l2

(q∗2 − q∗j ), (6.62)

where ξ2 and ζ2 are defined in (6.56) and (6.57). By differentiating κ̂2 in (6.54),
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and replacing q̇2 − q̇1 with (6.62), it follows

˙̂κ2 = −κ̃2Λ2‖|N l
1|(q∗1 − q∗2) +

∑
j∈N l1∩N l2

(q∗2 − q∗j )‖2. (6.63)

Recall that the scaling parameter is constant, there holds κ̇ = 0. Hence, it is
straightforward to have

˙̃κ2 = ˙̂κ2 = −κ̃2Λ2‖|N l
1|(q∗1 − q∗2) +

∑
j∈N l1∩N l2

(q∗2 − q∗j )‖2. (6.64)

Therefore, it is easy to know κ̃2 converges to zero exponentially under Assumption
6.5, namely, limt→∞ κ̂2(t) = κ.

Analogously, define the estimation error for agent i, i = 3, · · · , nl by

κ̃i = κ̂i − κ̂i−1. (6.65)

Similar to the calculations for agent 2, we get

˙̃κi = −κ̃iΛi‖|N l
i−1|(q∗i−1 − q∗i ) +

∑
j∈N li−1∩N li

(q∗i − q∗j )‖2 (6.66)

In light of Assumption 6.5, we know limt→∞ κ̃i(t) = 0, which implies limt→∞ κ̂i(t) =

κ̂i−1(t), i = 3, · · · , nl. Since limt→∞ κ̂2 = κ, we can conclude that limt→∞ κ̂nl =

· · · = κ̂2 = κ. This completes the proof.

Theorem 6.8. Suppose the given generic framework (G, q∗) is universally rigid with
an equilibrium stress ω. Under Assumption 6.5, for a group of agents modeled by (6.1),
the formation scaling control problem can be solved in the sense of global stability
using the proposed estimation-based control laws (6.52) and (6.53).

Proof. Note that (6.53) can be written as

ui =−
∑
j∈Ni

ωij(qi − qj)−
∑
j∈N li

aij
(
(qi − qj)− κ(q∗i − q∗j )

)
,

+ (κ̂i − κ)
∑
j∈N li

aij(q
∗
i − q∗j ), i = 2, · · · , n.

(6.67)

Recalling (6.10), the compact form of (6.67) is given by

˙̃q = ((Ω + Ls)⊗ Id) q̃ + K̃(Ls ⊗ Id)q∗, (6.68)

where K̃ is a diagonal matrix defined by K̃ ∆
= diag(()κ̂1−κ, · · · , κ̂nl−κ). If follows

from Theorem 6.2 that the autonomous part of system (6.68) is globally stable. In
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view of the fact that q∗ is fixed and K̃ globally converge to zero from Proposition
6.7 , by invoking the input-to-state stability theorem [68], we can conclude that

lim
t→∞

(qi(t)− qj(t)) = κ(q∗i − q∗j ), ∀(i, j) ∈ E . (6.69)

This completes the proof.

6.6 Simulation results

In this section, we present simulation results to validate the effectiveness of the
theoretical results. Consider a generic configuration in R2, given by

q∗ =

[
0 −0.8 −2 −2 −1

0 1.6 2 −2 −2

]
.

With q∗, the prescribed formation shape is depicted in Fig. 6.3. One universally
rigid tensegrity framework associated with the configuration q∗ is shown in Fig.
6.4, in which the dashed and solid lines represent the cables and struts, respectively.

1

2
3

4 5

Figure 6.3: Prescribed formation shape.

1

2
3

4 5

Figure 6.4: Universally rigid tensegrity
framework.

Correspondingly, the stress matrix has the form

Ω =


27.5 −45 26.75 −8.25 −1

−45 75 −45 15 0

26.75 −45 27.1250 −9.375 0.5

−8.25 15 −9.3750 4.125 −1.5

−1 0 0.5 −1.5 2

 .
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The initial positions for the five agents are randomly chosen as

q(0) =

[
−0.0573 −1.4483 −2.053 −2.3178 −1.6165

−0.9285 2.0435 1.3054 −1.7852 −1.5231

]
.

6.6.1 Formation scaling control using the proposed control law
(6.3)

First, we consider the formation scaling control using only the stress. Let the
formation scaling parameter κ be

κ =

{
6, 0 6 t < 6,

12, 6 6 t 6 12.

To implement the control law(6.3), 2 pairs of nodes, (1, 2) and (2, 3), are chosen
to constitute Vl, and consequently El = {(, 2), (2, 3)}, both of which are marked in
blue in Fig. 6.5. To clearly show the variations of the formation shape at different

1

2
3

4 5

1

2
3

4 5

Figure 6.5: The universally rigid framework with Vl = {1, 2, 3} and El = {(1, 2), (2, 3)}.

time instants, we design an extra input, ue = [18, 0]T for each agent. Since the
extra input is constant and the same for each agent, it will not affect the stability of
the closed-loop system. Then under the control law (6.3), the formation shapes
at t ∈ {0, 2, 4, 6, 8, 10, 12}s are sequentially shown in Fig. 6.6, where the initial
formation shape is zoomed in on the top. It can be seen that the desired formations
with prescribed sizes are achieved for a piecewise constant scaling parameter κ.
Fig. 6.7 shows that the scaling length errors, i.e., κ‖q∗i − q∗j ‖ − ‖qi − qj‖, where the
errors of the cables are plotted in the upper part and struts in the lower part. We
can observe from Fig. 6.7 that all the edge lengths converge to their desired ones.
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Figure 6.6: Formation evolution using the control law (6.3).
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Figure 6.7: Scaling length errors using the control law (6.3).
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6.6.2 Formation scaling control using the proposed control law
(6.28)-(6.30)

We then consider the formation scaling control using the stress and the orthogonal
projections. In this case, the formation scaling parameter is defined by

κ =


6, 0 6 t < 6,

12, 6 6 t < 12,

6, 12 6 t < 18.

According to the principle of choosing d + 1 pairs of nodes illustrated in Section
6.4, let El = {(1, 2), (2, 3), (1, 3)} and Vl = {1, 2, 3}, shown in Fig. 6.8. Following

1
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3

4 5

1

2
3

4 5

Figure 6.8: The universally rigid framework with El = {(1, 2), (2, 3), (3, 1)}.

the formation scaling control laws (6.28)-(6.30) and the extra input [18, 0]T , the
formation changes are sequentially shown in Fig. 6.9, in which the initial formation
shape is again zoomed in on the top. It can be seen from Fig. 6.9 that the formation
expands from t = 0s to 12s, and then shrinks until t = 18s, which agrees with the
setup of the formation scaling parameter κ. The scaling length errors of cables and
struts are presented in the upper and lower part of Fig. 6.10, which clearly shows
the convergence of the lengths of all edges to the desired ones.

6.6.3 Formation scaling control using the proposed control law
(6.52)-(6.53)

In this subsection, we present the numerical simulation results of the proposed
estimation-based controller (6.52)-(6.53). The scaling parameter κ is set to be a
constant scalar 10 at all times. The subgraph G(Vl, El) is constructed the same as
Fig. 6.5, in which only agent 1 knows the precise information of κ, while agents
2 and 3 approach the scaling information by estimation. Again, to separate the
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Figure 6.9: Formation evolution using the control laws (6.28)-(6.30).
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Figure 6.10: Scaling length errors using the control laws (6.28)-(6.30).

formation patterns at different time instants, we design an additional input [2.5, 0]T

accompanying the control law (6.52)-(6.53). From Fig. 6.11, we can see that
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the formation shape starts from an anomalous status and finally converge to the
desired shape. The corresponding scaling length errors are shown in Fig. 6.12,
where the errors of cables and struts are presented in the upper and lower part,
respectively. It is clear that the errors of all the members converge to zero.

0 50 100 150 200 250 300 350
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t=0s

t=2s t=4s t=6s t=8s t=10s t=12s t=14s

Figure 6.11: Formation evolution using the control laws (6.28)-(6.30).

6.7 Concluding remarks

In this chapter, we have addressed the formation scaling problem for multi-agent
systems. First, by employing the stress of universally rigid tensegrity frameworks,
we have designed distributed control laws to achieve the formation shape with the
prescribed size. Then to relax the constraint that the formation scaling parameter
has to be known to d pairs of agents in Rd, we have proposed a class of new
distributed control laws that utilize the (orthogonal) projections. It has been shown
that the desired formation scaling can be achieved under the mild assumption that
only one pair of agents knows their desired relative positions. Moreover, we have
constructed a relative-position-based estimator to further reduce the number of
agents knowing the scaling parameter, so that only one agent is informed of the
scaling size of the formation. Relying on the estimator, all the agents can be driven
to form the desired formation under the proposed control laws.
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Figure 6.12: Scaling length errors using the control laws (6.28)-(6.30).



Chapter 7

Distributed formation tracking using local
coordinate systems

This chapter studies the formation tracking problem for multi-agent systems,
for which a distributed estimator-controller scheme is designed relying only

on the agents’ local coordinate systems such that the centroid of the controlled
formation tracks a given trajectory. By introducing a gradient descent term into the
estimator, the explicit knowledge of the bound of the agents’ speed is not necessary
in contrast to existing works, and each agent is able to compute the centroid of
the whole formation in finite time. Then, based on the centroid estimation, a
distributed control algorithm is proposed to render the formation tracking and
stabilization errors to converge to zero, respectively. Finally, numerical simulations
are carried to validate our proposed framework for solving the formation tracking
problem.

7.1 Introduction

Formation control for multi-agent systems has attracted increasing attention from
control scientists and engineers due to its broad applications [12, 65, 131]. A
central problem is to drive the agents to realize some prescribed formation shape,
and such a problem is usually referred to as the formation stabilization problem. In
this line of research, formation stabilization for those with different shapes has been
investigated, see, for example, circular formation [109, 137], acyclic formation
[86], and formations associated with tree graphs [31], minimally rigid graphs
[15, 117], and more general rigid graphs [89]. Time-varying formation control
problems for linear multi-agent systems under switching directed topologies are
also investigated in [32]. In addition, the effects of the measurement inconsistency
between neighboring agents on the formation’s stability are addressed in [87],
where it is shown the resulted distorted formation will move following a closed
circular orbit in the plane for any rigid, undirected formation consisting of more
than two agents. In [47], the steady-state rigid formation is achieved using an
estimator-based gradient control law; in addition, both the static and time-varying
mismatched compasses are studied in [82].
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Another key problem concerned with formation control for multi-agent systems
is formation tracking, which requires to stabilize the prescribed formation, and,
additionally, requires that the whole formation follows a given reference trajectory.
One commonly reported approach to deal with the formation tracking problem is
to use the virtual structure strategy. This technique is built upon assigning a virtual
leader to the centroid of the formation to be tracked while achieving the prescribed
formation shape [103]. Under this framework, it is shown that the formation
tracking can be achieved in finite time by employing the signum function if the
virtual leader has directed paths to all the followers [16]. The virtual structure
approach is also reported in [95], in which the control and estimation of a common
virtual leader is addressed using a consensus algorithm. Integrating the techniques
from nonsmooth analysis, collective potential functions and navigation feedback, a
distributed algorithm for second-order systems is designed such that the velocity
consensus to the virtual leader is achieved [135]. The formation tracking problem
can also be solved using the distributed receding horizon control (RHC), for a group
of nonholonomic multi-vehicle systems [125]. By applying RHC, some additional
tasks, e.g., collision avoidance and consistency, can be realized through adding
constraints on the allowed uncertain deviation.

Akin to the virtual structure approach, the leader-follower strategy has also
been widely employed to solve formation tracking problems (e.g., [33, 34, 100,
126, 132]). In [100], the formation tracking problem is solved based on formation
stabilization with one designated leader among the group. To deal with the intrinsic
unknown parameters for a class of nonlinear systems, an adaptive control law using
the backstepping technique is proposed in [126], such that all the subsystems’
outputs are regulated to achieve consensus tracking. In [132], to compensate the
unknown slippage effect of mobile robots, a distributed recursive design strategy
involving the adaptive function approximation technique is developed. More
recently, the formation tracking problem for second-order multi-agent systems
under switching topologies is studied in [34], where one of the agents is set to be
the leader to perform tracking tasks. The results therein are also feasible to the
target enclosing problem for multi-quadrotor unmanned aerial vehicle systems. In
[33], different from the one-leader tracking case, the formation tracking problem
with multiple leaders is addressed. To drive the followers to the convex hull
spanned by the leaders, a protocol is designed via solving an algebraic Riccati
equation.

It should be noted that in the results discussed above, almost all the desired
formations are specified by offset vectors with respect to the virtual/real leader or
virtual centroid of the group. Those offset vectors are required to be set a priori
in a common global coordinate system. In addition, each agent needs to know its
corresponding desired offsets as well as its neighbors’. In particular, the agreement
reached on the estimations of the virtual centroid is normally different from the
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real centroid of the group. However, it is sometimes meaningful to locate the real
centroid when performing tasks like the transportation of objects. Furthermore, the
approaches developed in these existing works are only applicable to the scenarios
where the reference trajectory is an exogenous signal that is independent of the
states of the system. To estimate the centroid of the formation, a consensus-based
algorithm is proposed in [45], wherein the estimation of each agent is updated
by averaging their projections and directions. However, the convergence can
be ensured only when the underlying graph is complete. In [52], a tree-based
algorithm is adopted to estimate the centroid, while, each agent is required to
maintain a list of trees with constant size. Recently, the weighted-centroid tracking
problem has been considered in [7, 8, 130]. Unlike the leader-follower structures
in which the dynamics of the followers and leaders can be separated, the control
objective therein is to track some globally assigned function which is implicitly
related to all agents’ dynamics. In [7], a controller-observer scheme is designed
for the single integrator dynamics such that the weighted centroid of the whole
formation follows some given trajectory. As an extension, one additional task
function for the formation is introduced in [8]. In [130], a finite-time centroid
observer is constructed, and the distance-based control laws are developed by
employing rigidity graph theory.

In the present chapter, we consider the formation tracking problem, in which
the centroid of the formation moves as the agents move and is unknown to all
of the agents. In this case, the problem becomes more challenging due to the
inner coupling and conflict between centroid estimation, formation stabilization,
and reference tracking. By adopting the feedback term from the gradient descent
control, we design a new class of finite-time centroid estimator that is continuously
differentiable. Based on the output of the estimator, the proposed distance-based
control laws render the convergence to the prescribed formation shape while
keeping its centroid following the reference. Compared with the previous work of
using virtual/real leader structure, the proposed estimator-controller framework
can be implemented in agents’ local coordinate systems, which not only increases
the robustness to the noises in the sensing signals but also reduces the equipment
cost of the overall system. Moreover, the control law in this chapter is more scalable
and distributed in the sense that some constraints are removed, including the a
priori knowledge of the position information of the reference trajectory [7, 8]
and the agents’ maximum speed [130]. In addition, the precise knowledge of
the time-varying centroid can be obtained in finite time via the proposed smooth
centroid estimator, which renders a faster convergence speed than that in [45, 52].
In addition, the centroid estimator in [45] is only valid under complete graphs
whereas the one in this chapter can be directly applied to any general undirected
graphs.

The rest of this chapter is organized as follows. Section 7.2 introduces the
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formation tracking problem and basic concepts of graph rigidity. In Section 7.3,
the main results are presented including the estimator-controller scheme and the
theoretical analysis. Section 7.4 extends the results to a more general case. The
numerical simulations are presented in Section 7.5. Finally, we give the conclusions
in Section 7.6.

7.2 Problem formulation

A team of n > 1 agents is considered, each of which is characterized by the single
integrator dynamics

q̇gi = ugi , i = 1, · · · , n, (7.1)

where qgi ∈ Rd and ugi ∈ Rd are, respectively, the position and the control input
of mobile agent i with respect to the global coordinate system gΣ. Each agent i
is also assigned with the local coordinate system iΣ, whose origin is exactly the
point qgi . In this chapter, the local coordinate systems are assumed to share the
same orientations. We use qij to denote agent j’s position with respect to iΣ. This
definition also applies to other variables. Note that the local variable qij and the
global one qgj have the following relationship

qgj = qij + qgi .

Here, qgi is actually unknown to the agents, since the global coordinate system is
introduced only for analysis purposes.

The neighboring relationships between the agents are defined by an undirected
graph G(V, E). The interaction relationships among the agents and the reference
signal is denoted by matrix B = diag(b1, · · · , bn), where bi = 1 if agent i has access
to the reference signal directly, and bi = 0 otherwise.

Now, we formulate the problem to be investigated in this chapter. On one hand,
to achieve a desired shape of the formation, each agent i is required to keep some
prescribed distance dij , j ∈ Ni, namely, the agents are driven to the following
target set

Td = {qg ∈ Rnd| ‖qgi − q
g
j ‖ = dij , ∀(i, j) ∈ E}. (7.2)

On the other hand, at the same time, the stabilized formation is guided through
the control law such that its centroid qgc tracks some smooth reference signal
qgd(t) : t→ Rd, where the centroid of the formation is defined by

qgc =
1

n

n∑
i=1

qgi . (7.3)
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Equivalently, the tracking task can be written as

lim
t→∞

(qgc − q
g
d(t)) = 0. (7.4)

7.3 Formation tracking control

In this section, we first present the estimation algorithm for each agent to obtain
the centroid information in finite time. Then, distributed control laws are proposed
in local coordinate systems such that the formation tracking problem is solved.

Some useful lemmas are introduced as follows.

Lemma 7.1. [92]. For an undirected connected graph, the following property holds,

min
x 6=0

1Tnx=0

xTLx

‖x‖2
= λ2(L),

where λ2 is the algebraic connectivity of the undirected graph, i.e., the smallest
non-zero eigenvalue of the Laplacian matrix.

Lemma 7.2. [124] Let ξ1, · · · , ξn > 0 and 0 < p 6 1, then

n∑
i=1

ξpi >

(
n∑
i=1

ξi

)p
.

Lemma 7.3. [124]. Suppose that the function V (t) : [0,∞) → [0,∞), is differen-
tiable (the derivative of V(t) at 0 is in fact its right derivative) and

dV (t)

dt
6 −KV (t)α,

where K > 0 and 0 < α < 1. Then V (t) will reach zero at some finite time
T0 6 V (0)1−α/(K(1− α)) and V (t) = 0 for all t > T0.

Assumption 7.4. The reference signal is bounded, as well as its first derivative,
satisfying supt>0 ‖q̇

g
d(t)‖ 6 σ. In addition, at least one of the n followers has access

to the reference signal.

Remark 7.5. The reference signal is defined locally, namely, the information of
the reference known by agent i is qid if agent i has access to the reference signal.
And, the local variable can be transformed to the global one through the following
equation

qgd = qid + qgi .
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We first introduce the vector zg = [(zg1)T , · · · , (zgm)T ]T ∈ Rmd [36], defined as

zg = (H> ⊗ Id)qg,

where H ∈ Rn×m is the incidence matrix. Then, it is straightforward to check that
zg lies in the column space of (H> ⊗ Id), i.e., zg ∈ col(H> ⊗ Id). zgk = qgj − q

g
i

denotes the relative position of agents i and j connected by the kth edge. Note that
zgk = zik, i = 1, · · · , n, owing to the fact that the local coordinate systems share the
same orientation with the global one. Let q̂ici be agent i’s estimation of the centroid
with respect to iΣ, then

q̂gci = q̂ici + qgi , (7.5)

where q̂gci is agent i’s estimation of the centroid with respect to gΣ.

For controlling an infinitesimally rigid formation shape, we employ the standard
quadratic potential function [87]

P (qg) =
1

4

m∑
k=1

(‖zgk‖
2 − d2

k)2. (7.6)

Correspondingly, the gradient of P (q) with respect to qgi , denoted by ∇qgi P (q) is
given by

∇qgi P (qg) =
∑
j∈Ni

(‖zgk‖
2 − d2

k)(qgi − q
g
j ) = −

∑
j∈Ni

(‖zik‖2 − d2
k)zik. (7.7)

It can be aggregated as
∇P (qg) = R(qg)Tφ(qg), (7.8)

where R(qg) is the rigidity matrix defined in (2.2) and φ(qg) is as follows

φ(qg) =
[
· · · , ‖zgk‖

2 − d2
k, · · ·

]T ∈ Rm.

For achieving the tracking of the centroid to the reference with a prescribed
formation shape, we propose the following control law for each agent i with respect
to the reference qd in iΣ

udi = q̇di = −kpbi
q̂gci − q

g
d

δ + ‖q̂gci − q
g
d‖
− ks∇qgi P (qg), (7.9)

where δ > 1 is a constant scalar, and kp and ks are positive control gains. It also
follows from (7.5) and (7.5) that

q̂gci − q
g
d = q̂ici + qgi − (qid + qgi ) = q̂ici − qid.
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Then, the control law udi can be equivalently written as

udi = −kpbi
q̂ici − qid

δ + ‖q̂ici − qid‖
+ ks

∑
j∈Ni

(‖zik‖2 − d2
k)zik. (7.10)

The first term of the control law (7.10) is responsible for driving the centroid of
the formation to track the reference signal, and the second one aims for stabilizing
the desired formation. Note that not all the agents need to implement the first term
but only those having access to the reference signal qid, which is encoded in the
binary variable bi ∈ {0, 1} as described in Section 7.2. However, all the agents are
required to estimate the centroid of the formation through q̂ici and to share this
information with their neighbors. The dynamics of q̂ici will be given later. It can be
shown that the estimator can be implemented in a fully distributed manner. For
the second term of (7.10), the relative position zik and the distance ‖zik‖ between
neighbors can be measured by sensors in the local coordinate system iΣ.

The dynamics of q̂ici is given by

˙̂qici = −k1

∑
j∈Ni

aijsig
(
q̂ici − q̂icj

)ρ − k2

∑
j∈Ni

aij
q̂ici − q̂icj
fij(q̂ici, q̂

i
cj)
− ks

∑
j∈Ni

(‖zik‖2 − d2
k)zik.

(7.11)
fij(q̂

i
ci, q̂

i
cj) = ‖q̂ici − q̂icj‖ +

(√
1 + ‖q̂ici − q̂icj‖ − 1

)
, and k1 and k2 are positive

constants, and ks is defined in (7.9). aij is the (i, j)th entry of the adjacency matrix
A. q̂icj is the centroid estimation of agent j with respect to iΣ. For any x ∈ R,

sig(x)ρ = [sign(x1)|x1|ρ, · · · , sign(xn)|xn|ρ]T , (7.12)

where sign(·) is the signum function and ρ ∈ (0, 1). For a vector x ∈ Rd, the
function sig(x) is defined componentwise. It can be shown that the function sig(·)ρ
is continuous. The initial values for q̂ici are chosen such that

∑n
i=1 q̂

i
ci(0) = 0. Note

that under the assumption that the orientation of the local coordinate systems are
the same, the variable q̂icj in (7.11) can be calculated by

q̂icj = q̂jcj + qiji. (7.13)

where the neighbor’s estimation q̂jcj is transmitted to agent i through communi-
cation. The relationship between q̂jcj and q̂icj is shown in Fig. 7.1. Therefore, the
estimator (7.11) can be implemented locally, and thus the proposed distributed
control actions (7.10) and (7.11) can be implemented by only employing local
information.

To precisely estimate the centroid, it is required that all the local coordinate
systems share the same orientation with the global one. However, it will be shown
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cj

Figure 7.1: Relationship between q̂jcj and q̂icj .

in Section 7.4 that this constraint can be removed.
Now, we present the following main result.

Theorem 7.6. Suppose the framework (G, q) is minimally and infinitesimally rigid.
Under Assumption 7.4, the formation tracking task (7.4) is achieved using the control
law (7.20) for each agent i together with the estimator (7.11), if the parameters are
chosen such that

k2 >
(kp + σ)

√
n

ε
√

1− cosπn
, (7.14)

and
ks >

kpn

2δ
, (7.15)

where ε is a positive scalar satisfying ε ∈ (0, 2/3]. For an undirected connected graph,
the estimation q̂gci, i = 1, · · · , n, will converge to qgc in finite time.

Proof. We carry out the proof in two steps. We first prove the estimation q̂gci, i =

1, · · · , n, will converge to qgc in finite time. Consider the following equality

q̂ici − q̂icj = q̂ici − q̂
j
cj − q

i
ji = −

(
q̂jcj − q̂

i
ci − qiij

)
.

In view of the definition (7.12), we have

sig
(
q̂ici − q̂

j
cj − q

i
ji

)ρ
= −sig

(
q̂jcj − q̂

i
ci − qiij

)ρ
.

Note that for an undirected graph, aij = aji, thus it follows

n∑
i=1

˙̂qici = 0. (7.16)
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Define the estimation error with respect to the global coordinate system gΣ as

q̃gci = q̂gci − q
g
c , i = 1, · · · , n.

Now, consider the following Lyapunov function candidate

V1 =
1

2

n∑
i=1

‖q̂gci − q
g
c‖2 =

1

2

n∑
i=1

(q̃gci)
T (q̃gci), (7.17)

where the centroid qgc is defined in (7.3). The time derivate of V1 is given by

V̇1 =

n∑
i=1

(q̃gci)
T
(

˙̂qici + q̇gi − q̇
g
c

)
. (7.18)

By combining (7.16) and the initial conditions for the estimator, i.e.,
∑n
i=1 q̂

i
ci(0) =

0, it follows
∑n
i=1 q̂

i
ci(t) = 0,∀t > 0. Consequently, recalling (7.5), we have∑n

i=1 q̂
g
ci =

∑n
i=1 q

g
i = nqgc , and thus

n∑
i=1

(q̃gci)
T q̇gc =

n∑
i=1

(q̂gci − q
g
c )
T
q̇gc =

(
n∑
i=1

q̂gci −
n∑
i=1

qgc

)T
q̇gc = 0. (7.19)

From the geometrical relationship, we know qdi = −qid, and qid = qgd − q
g
i . Then,

in view of the system model (7.1), the control input with respect to the global
coordinate system gΣ, i.e., ugi is

q̇gi = ugi = q̇gd − kpbi
q̂ici − qid

δ + ‖q̂ici − qid‖
+ ks

∑
j∈Ni

(‖zik‖2 − d2
k)zik. (7.20)

Then substituting (7.19) and (7.20) into (7.18), together with the facts that qiji =

qgj − q
g
i and q̂gci = q̂ici + qgi , we have

V̇1 =− k1

n∑
i=1

(q̃gci)
T
∑
j∈Ni

aijsig
(
q̂gci − q̂

g
cj

)ρ − k2

n∑
i=1

(q̃gci)
T
∑
j∈Ni

aij
q̂gci − q̂

g
cj

fij(q̂
g
ci, q̂

g
cj)

− kp
n∑
i=1

bi(q̃
g
ci)

T

(
q̂ici − qid

δ + ‖q̂ici − qid‖

)
+

n∑
i=1

(q̃gci)
T q̇gd ,

where fij(q̂
g
ci, q̂

g
cj) = ‖q̂gci − q̂

g
cj‖+

(√
1 + ‖q̂gci − q̂

g
cj‖ − 1

)
.

Note that
q̂gci − q̂

g
cj = q̂gci − q

g
c − (q̂gcj − q

g
c ) = q̃gci − q̃

g
cj .

When g(xi−xj) is an odd function, under an undirected graph, we have
∑
i,j aijxig(xi−
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xj) = 1
2

∑
i,j aij(xi − xj)g(xi − xj). Therefore, V̇1 satisfies

V̇1 6− k1

2

n∑
i=1

∑
j∈Ni

aij

(
d∑
k=1

∣∣∣q̃gci(k) − q̃
g
cj(k)

∣∣∣ρ+1
)

− k2

2

n∑
i=1

∑
j∈Ni

aij

(
q̃gci − q̃

g
cj

)T (
q̃gci − q̃

g
cj

)
fij(q̃

g
ci − q̃

g
cj)

+ kp

n∑
i=1

bi‖q̃gci‖
(
‖q̂ici − qid‖

δ + ‖q̂ici − qid‖

)
+ ‖(q̃gc )T (1n ⊗ q̇gd)‖, (7.21)

where fij(q̃
g
ci, q̃

g
cj) = ‖q̃gci − q̃

g
cj‖ +

(√
1 + ‖q̃gci − q̃

g
cj‖ − 1

)
, and q̃gci(k) denotes the

kth entry of the vector q̃gci. In addition, we have(
q̃gci − q̃

g
cj

)T (
q̃gci − q̃

g
cj

)
‖q̃gci − q̃

g
cj‖+

(√
1 + ‖q̃gci − q̃

g
cj‖ − 1

) > ε‖q̃gci − q̃
g
cj‖, (7.22)

where ε ∈ (0, 2/3]. The proof of (7.22) is given in Appendix. It is also straightfor-
ward to know

‖q̂ici − qid‖
δ + ‖q̂ici − qid‖

< 1. (7.23)

Substituting (7.22) and (7.23) into (7.21), we obtain

V̇1 6− k1

2

n∑
i=1

∑
j∈Ni

aij

d∑
k=1

∣∣∣q̃gci(k) − q̃
g
cj(k)

∣∣∣ρ+1

− k2

2
ε

n∑
i=1

∑
j∈Ni

aij‖q̃gci − q̃
g
cj‖

+ kp

n∑
i=1

bi‖q̃gci‖+
√
nσ‖q̃gc‖. (7.24)

It is clear that

n∑
i=1

bi‖q̃gci‖ = ‖(B1n)T q̃gc‖ 6 ‖B1n‖‖q̃gc‖ 6
√
n‖q̃gc‖. (7.25)

In light of Lemma 7.2 and Lemma 7.1, it yields

n∑
i=1

∑
j∈Ni

aij‖q̃gci − q̃
g
cj‖ >

 n∑
i=1

∑
j∈Ni

a2
ij‖q̃

g
ci − q̃

g
cj‖

2

 1
2

>
√

2λ2(LAs)‖q̃gc‖, (7.26)

where As = [a2
ij ] ∈ Rn×n is an adjacency matrix and q̃gc = [(q̃gc1)T , · · · , (q̃gcn)T ]T .
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From [84], we know that λ2(LAs) > 2e(G)(1 − cos πn ), where e(G) is the edge
connectivity of the underlying graph G, i.e., the minimal number of those edges
whose removal would result in losing connectivity of the graph G. Obviously,
for an undirected connected graph, e(G) > 1. Under the condition (7.14), and
combining (7.25) and (7.26), we have

− k2

2
ε

n∑
i=1

∑
j∈Ni

aij‖q̃gci − q̃cj‖+ kp

n∑
i=1

bi‖q̃gci‖+
√
nσ‖q̃gc‖

6− k2√
2
ε
√
λ2(LAs)‖q̃gc‖+ kp

√
n‖q̃gc‖+

√
nσ‖q̃gc‖ 6 0. (7.27)

By Substituting (7.27) into (7.24), and applying Lemma 7.2, it can be obtained
that

V̇1 6− k1

2

n∑
i=1

∑
j∈Ni

aij

(
d∑
k=1

∣∣∣q̃gci(k) − q̃
g
cj(k)

∣∣∣ρ+1
)

6− k1

2

∑
i,j

aij

[
d∑
k=1

(q̃gci(k) − q̃
g
cj(k))

2

] ρ+1
2

6− k1

2
(2q̃gcLAρ q̃

g
c )

1+ρ
2 ,

where Aρ = [a
2
ρ+1

ij ] ∈ Rn×n. From Lemma 7.1, we have

V̇1(t) 6 −k1

2

[
2λ2(LAρ)

] 1+ρ
2
(
‖q̃c‖2

) 1+ρ
2 6 −k12ρ[λ2(LAρ)]

1+ρ
2 V1(t)

1+ρ
2 .

Consequently, we conclude from Lemma 7.3 that

lim
t>T0

(q̂gci(t)− q
g
c (t)) = 0, (7.28)

where T0 6 V1(0)/k1(1 − ρ)2ρ−1
[
λ2(LAρ)

] 1+ρ
2 . This completes the proof that q̂gci

converge to qgc in finite time.

Now we prove that the tracking errors converge to zero.

We will prove in Appendix B.2 that, by applying the proposed estimator and
control algorithms, the state of the closed-loop system, i.e., q̃gd , is bounded in
(0, T0]. In addition, the states qgi , the control signal ugi and the estimation variable
q̂ici are also bounded in finite time given bounded initial states qgi (0) and q̂gci(0).

Now we are in the position to show the effectiveness of our control laws in
achieving estimation based average tracking. Note that control laws (7.9) can be



110 7. Distributed formation tracking using local coordinate systems

written in a stacked form as

ug = 1n ⊗ q̇gd − kp
(
BQ̂δ ⊗ Id

)
(q̂gc − 1n ⊗ qgd)− ks∇P (qg), (7.29)

where

Q̂δ =


1

δ+‖q̂gc1−q
g
d‖
· · · 0

...
. . .

...
· · · · · · 1

δ+‖q̂gcn−qgd‖

 .
It is easy to show the matrix Qδ is positive definite. From Theorem 7.6, when
t > T0, q̂gci can be replaced by qgc . Then, ug becomes

ug = 1n ⊗ q̇gd − kp (BQδ ⊗ Id)
[
1n ⊗ (qgc − q

g
d)
]
− ks∇P (qg), (7.30)

where
Qδ =

1

δ + ‖qgc − qgd‖
In.

Multiplying both sides of (7.30) by (1Tn ⊗ Id), we have

(1Tn⊗Id)(ug−1n⊗ q̇
g
d) = −kp[

(
1TnBQδ ⊗ Id

) [
1n⊗(qgc −q

g
d)
]
−ks(1Tn⊗Id)∇P (qg).

(7.31)
When t > T0, the Lyapunov function candidate is chosen as

V =
1

2
(q̃gd)T (q̃gd) + P (qg), (7.32)

where q̃gd
∆
= qgc − q

g
d is the centroid tracking error. The derivative of V is given by

V̇ = (q̃gd)T (q̇gc − q̇
g
d) +∇P (qg)T q̇g. (7.33)

Note that

q̇gc =
1

n

n∑
i=1

q̇gi =
1

n
(1Tn ⊗ Id)q̇g =

1

n
(1Tn ⊗ Id)ug. (7.34)

Then it follows

q̇gc − q̇
g
d = −kp (BQδ ⊗ Id)

[
1n ⊗ (qgc − q

g
d)
]
− ks∇P (qg).
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Substituting (7.29), (7.31), and (7.34) into (7.33), we get

V̇ =− kp
n

(q̃gd)T
(
1TnBQδ1n ⊗ Id

)
q̃gd −

ks
n

(q̃gd)T
(
1Tn ⊗ Id

)
∇P (qg)

− kp∇P (qg)T (BQδ ⊗ Id) (1n ⊗ q̃gd)− ks(∇P (qg))T∇P (qg)

+ (∇P (qg))T (1n ⊗ q̇gd).

From (7.8), we have (q̃gd)T
(
1Tn ⊗ Id

)
∇P (qg) = 0 and (∇P (qg))T (1n ⊗ q̇gd) = 0

due to the fact that R(qg)
(
1Tn ⊗ Id

)
= 0. In light of (7.34), we obtain that

V̇ 6− kp
n

n∑
i

bi
δ + ‖q̃gd‖

‖q̃gd‖
2 − ks‖∇P (qg)‖2 +

kp
√
n

δ + ‖q̃gd‖
‖q̃gd‖‖∇P (qg)‖

6−
[
‖q̃gd‖

‖∇P (qg)‖

]T
Q

[
‖q̃gd‖

‖∇P (qg)‖

]
, (7.35)

where

Q =

 kp
δ+‖q̃gd‖

− kp
√
n

2(δ+‖q̃gd‖)

− kp
√
n

2(δ+‖q̃gd‖)
ks

 .
It can be checked that the matrix Q is positive definite when the control gains kp
and ks are chosen such that

ks >
kpn

4(δ + ‖q̃gd‖)
,

which naturally holds if the condition (7.15) is satisfied.
Then, we know q̃gd is bounded, which implies qgc , and thus qgi are bounded

under Assumption 7.4. It follows from (7.7) that ∇P (qg) is bounded. Hence, the
control input (7.20), i.e., the velocity q̇gi is bounded. Together with Assumption
7.4, we know ˙̃qgd and ∇Ṗ (qg) are bounded. Therefore, taking the time derivative
of (7.35), we know V̈ is bounded. It can be concluded from the Barbalat’s Lemma
[68] that V̇ → 0, as t → ∞, i.e., q̃gd → 0 and R(qg)Tφ(qg) → 0, as t → ∞, which
implies the tracking objective is achieved. For a minimally and infinitesimally rigid
framework, the rigidity matrix R(qg) is full row rank. Hence, we have φ(qg)→ 0,
namely, all the agents converge to the target set Td in (7.2)

The proof of Theorem 7.6 is completed.

Remark 7.7. It is worth noting that ugi is employed in (7.20) for purposes of the-
oretical analysis. While the control input to be implemented in practice is (7.10)
and (7.11).

Remark 7.8. The assumption that the framework is minimally and infinitesimally
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rigid can be relaxed to that the framework is only infinitesimally rigid [87, 89].
In view of the developed techniques for analyzing non-minimally infinitesimally
rigid frameworks in [87], the proof is omitted here for the sake of brevity.

Remark 7.9. In this chapter, to implement the centroid estimator (7.11), the un-
derlying communication graph is only required to be a general undirected graph,
which could be the same one as required for formation shape control. To explore
whether the condition of an undirected graph is necessary for the convergence
of the proposed estimator, we carried out a numerical example with three agents
under directed graphs. The results show that all the estimation errors will reach a
consensus, but not at zero, which implies the proposed estimator fails in directed
graphs, even in the simplest case of three agents. Focusing on the second term
of (7.10), i.e., the distance-based formation controller, there has been progress
for achieving such formations by employing directed graphs using the notion of
persistency [56].

7.4 Extension to more general scenarios

The results in Section 7.3 are obtained under the condition that the local coordinate
systems iΣ, i = 1, · · · , n, have the same orientations with the global coordinate
system gΣ. However, this constraint may not be satisfied in some applications. In
this section, we consider a more general case where the orientations of the local
coordinate systems differ from the global one, which is depicted in Fig. 7.2.

O x

y

Oi

x iy
i Oj

x jy
j

q̂
g cj

Ôjc

q
i
ji

q̂
ic
j

q̂ j
cj

Figure 7.2: Different orientations between local coordinate systems and the global one.

From Fig. 7.2, we have
q̂gci = Rgi q̂

i
ci + qgi , (7.36)

where Rgi ∈ SO(d) is a constant rotation matrix. The centroid estimator is now
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given by

˙̂qici = −k1

∑
j∈Ni

aijsig
(
q̂ici − q̂icj

)ρ− k2

∑
j∈Ni

aij
q̂ici − q̂icj
fij(q̂ici, q̂

i
cj)

+ ks
∑
j∈Ni

(‖zik‖2− d2
k)qiij ,

(7.37)
where k1 and k2 are chosen according to Theorem 7.6, and fij(q̂ici, q̂

i
cj) = ‖q̂ici −

q̂icj‖ +
(√

1 + ‖q̂ici − q̂icj‖ − 1
)

. Again, the variable q̂icj is obtained through q̂icj =

q̂jcj + qiji, where qiji is the relative position between Oj and Oi with respect to iΣ,
which can be measured by agent i locally. It is worth noting that the variable qiji
employed in (7.37) is measured in the local coordinate system iΣ, allowing the
distinction of the orientations between the local coordinate systems and the global
one, since the value of qiji will not be altered in that case. Summing up both sides
of (7.36), we have

n∑
i=1

q̂gci =

n∑
i=1

Rgi q̂
i
ci +

n∑
i=1

qgi . (7.38)

Since the local coordinate systems have the same orientation, we obtain that
Rgi = Rgj , i, j = 1, · · · , n. By denoting Rgl

∆
= Rgi , (7.38) can be written as

n∑
i=1

q̂gci = Rgl

n∑
i=1

q̂ici +

n∑
i=1

qgi .

Considering the estimator (7.37), we know
∑n
i=1

˙̂qici = 0. Then, in combination
with the initial condition

∑n
i=1 q̂

i
ci(0) = 0, it yields

∑n
i=1 q̂

g
ci =

∑n
i=1 q

g
i = nqgc .

Following the similar steps as in Section 7.3, it can be shown that q̂gci converges to
qgc in finite time.

In this scenario, the control law is designed as

udi = q̇di = −kpbi
q̂ici − qid

δ′ + ‖q̂ici − qid‖
− ks

∑
j∈Ni

(‖zik‖2 − d2
k)qiij , (7.39)

where δ′ > 1 is a constant scalar, and kp and ks are chosen such that (7.15) holds.
It can be seen that (7.39) has the same form as that of (7.10), while the value
of qiij here differs from qgij due to orientation difference between local and global
coordinate systems.

Following the similar proof steps as in Section 7.3, the centroid of the formation
can be proved to converge to the reference signal. The details of the proof are
omitted in this section to avoid repetition.

Remark 7.10. For the scenario where the orientations of the local coordinate sys-
tems are different from each other, it can be shown that the estimator and the
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control law remain to be the same as (7.37) and (7.39) without loss of stability.
While the variable q̂icj in (7.37) is now calculated by q̂icj = Rij q̂

j
cj + qiji, where Rij

is the rotation matrix with respect to frames i and j. Note that the rotation matrix
depends only on the relative rotation angle between local coordinate systems iΣ

and jΣ. Therefore, with the sensing capability of rotation angles with respect to
neighbors, the proposed control framework is still applicable to the case when the
orientations of local systems are not necessarily equal to each other. For those sys-
tems without such sensing capability, estimation techniques are reported in recent
works, e.g., [82, 90].

7.5 Simulations

To validate the theoretical results, we consider the formation tracking problem for
eight agents with dynamics (7.1), whose interaction relationship is given in Fig.
7.3.

1
2

3

4
5

6

7

8

Figure 7.3: The prescribed framework of the eight agents–regular octagon.

Take the initial positions for the eight agents as, respectively, [1, 3]T , [−1, 1]T ,
[−3, 0.2]T , [−2.7,−0.2]T , [0.2,−4]T , [2,−2]T , [1,−0.5]T , [1, 2]T . The reference
signal is given by σd(t) = [6 ∗ t, 5 ∗ cos(t)]T . Let the initial values of the centroid
estimation be q̂ici(0) = [4.5− i, i− 4.5]T , i = 1, · · · , 8, which satisfies the condition
that

∑8
i=1 q̂

i
ci(0) = 0. The control parameters are chosen as ρ = 1/4, k1 = 3,

k2 = 12, kp = 9 and ks = 13.
The simulation results are shown in Fig. 7.4 – 7.6, where we use x(i), i = 1, 2,

to denote the ith component of vector x. The formation geometries of the agents
at t ∈ {0; 1; 2; 3; 4; 5}s are shown in Fig. 7.4, where the red cross and the solid
black line represent the centroid of the whole formation shape and the centroid’s
reference trajectory, respectively. From Fig. 7.4 we can see that the prescribed
regular octagon is achieved with its centroid converging to the reference trajectory.
The convergence of the centroid tracking error is further shown in Fig. 7.5. Fig.
7.6 depicts the centroid estimation errors associated with agents 1, 3, 5, and 7 as
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Figure 7.4: Formation shape evolution.
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Figure 7.5: Centroid tracking error qgc − qgd .

representatives, which demonstrates the effectiveness of the proposed finite-time
estimator.

7.6 Concluding remarks

In this chapter, we have investigated the formation tracking problem using local
coordinate systems. By introducing a new gradient descent term, an alternative
estimator is designed for each agent such that they can obtain the precise knowledge
of the formation’s centroid in finite time. Moreover, we propose a distributed
estimator-controller strategy, which can be implemented using only agents’ local
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Figure 7.6: Centroid estimation error q̂ici − qic.

coordinate systems.



Chapter 8

Conclusions and future work

This chapter summarizes the main results of this thesis and indicates the possible
future research directions.

8.1 Conclusions

This thesis has addressed the problem of constructing tensegrity frameworks and
has discussed the related applications in formation control for multi-agent systems.
We have discussed how to design tensegrity frameworks in two situations: one
is to assign different types of members to chosen pairs of vertices; the other is to
grow existing tensegrity frameworks through merging. To fully utilize tensegrity
frameworks, we have also explored stress-based formation controls in different
scenarios. Now, we provide the specific conclusions for each technical chapter.

In Chapter 3 we have studied the merging of infinitesimally rigid and rigid
tensegrity frameworks in the plane, respectively. In the case of merging infinitesi-
mally rigid tensegrity frameworks, we have shown that infinitesimal rigidity can be
preserved by guaranteeing the existence of the proper self-stress in combination
with the infinitesimal rigidity of the corresponding bar framework. In addition, we
further discussed the influence on the pre-existing members caused by merging.
By looking at the sign of the new stress, it has been verified that the types of the
members, viz. cable or strut, can also be preserved. With respect to rigid tensegrity
frameworks, we have proved the existence of appropriate linking members assur-
ing the rigidity of the combined tensegrity framework. We have also proposed a
distance perturbation method to determine the type of the new members. We have
presented the explicit expression on assigning the type of the fourth member based
on rigidity matrix.

Chapter 4 has extended the results in Chapter 3 from local rigidity to super
stability. In Chapter 4, we start with the problem of how to conduct vertex addition
and edge splitting operations on super stable tensegrity frameworks in parallel to
bar frameworks. By inserting a set of members, it has been proven that the obtained
tensegrity framework is super stable as well. We have also clarified the type of the
new members depending on the positions of the new vertex with respect to the
existing vertices. In addition, a numerical algorithm has been proposed to specify
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the values of the stresses of the new members. Analogously, we have illustrated that
super stability is also preserved under edge splitting. We then proceed to another
class of approaches used for growing tensegrity frameworks, i.e., merging. When
the super stable tensegrity frameworks share at least d+ 1 vertices in d-dimensional
Euclidean space, we provide a mild sufficient condition under which the merged
tensegrity framework is still super stable. We finally studied optimal merging of
super stable tensegrity frameworks when d reduces to 2 or 3. The detailed growing
procedures have been provided for better illustration.

We have created some connections between tensegrity frameworks and forma-
tion control in Chapter 5, where the problem on how to construct universally rigid
tensegrity frameworks under given configurations is first raised, followed by the
formation stabilization problem for multi-agent systems modeled by single integra-
tors. The construction of universally rigid tensegrity frameworks is equivalent to
the design of a positive semi-definite stress matrix with rank n − d − 1 since the
members can be consequently assigned based on the associated stress. Because of
the fact that the elements of the stress matrix lie in the null space of the generalized
configuration matrix at equilibrium, we have designed a numerical algorithm to
seek a stress matrix that agrees with a universally rigid tensegrity framework. In
view of the desirable features that the cables and struts have strict upper and lower
bounds on lengths, respectively, we proposed a class of nonlinear distance-based
control laws by mapping the multi-agent system to a virtual tensegrity framework.
It has been shown that the formation can be stabilized using the proposed con-
trol strategies and at the same time the inter-agent distances never exceed their
limitations during the evolution.

In Chapter 6 we further promote the use of tensegrity frameworks in formation
control. As a representative application, we investigate the formation scaling
problem under the virtual tensegrity framework with vertices and their associated
members denoting the agents and links between them, respectively. We first explore
the conditions under which the formations can be scaled to the desired size using
the proposed stress-based control laws. It has been shown that d pairs of agents
are sufficient to change the size of the whole formation if their position vectors
linearly span the whole space Rd. By introducing the orthogonal projections to the
controllers of a portion of agents, we have also proved that the size of the formation
can be decided by only one pair of agents. In addition, the formation is shown to
be uniquely determined up to the translation and scaling of the given configuration
among all the possible affine transformations. These results have been further
extended to satisfy the requirement that the scaling information is known to only
one agent. In this case, we have proposed a new class of estimator-based control
laws, such that the whole formation can be driven to the prescribed size.

Chapter 7 has solved the problem of formation tracking to a given reference
signal. In order to precisely follow the given trajectory, we have designed a
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distributed finite-time estimator with the advantage that the explicit knowledge of
the bound of the agents’ speed is not required in contrast to the existing results.
Based on rigidity graph theory, we have proposed distance-based control laws by
employing the output of the estimator. It has been shown that the shape of the
formation converges to the pre-defined one, and its centroid follows the given
reference.

8.2 Future work

Although in this thesis we have solved a sequence of problems related to the
construction of tensegrity frameworks and the applications in formation control,
several problems still need to be considered in future research. In this section, we
identify some future topics listed following the order of the chapters.

• Chapter 3: It has been shown that rigidity and infinitesimal rigidity can be
preserved in the process of merging given static separate tensegrity frame-
works. However, these results might not hold when the tensegrity framework
moves due to the change of geometric relationships with respect to each other.
Hence it is desirable to analyze the influence imposed by motion and design
rigidity (including infinitesimal and universal rigidity) maintenance control
laws.

• Chapter 4: In addition to the research on local rigidity (Chapter 3) and
super-stability of tensegrity frameworks, it is also important to investigate the
strategies of augmenting globally rigid tensegrity frameworks systematically.
The procedures therein can give more freedoms when setting stresses for
newly added members. In addition, it is of great interest to study splitting
tensegrity frameworks in contrast to merging as have been discussed in this
chapter.

• Chapter 5: Regarding the construction of tensegrity frameworks, the cost
and complexity of the whole framework are important criteria especially in
practical applications. Therefore it is appealing to investigate optimization
based construction algorithms to further reduce the number of members
required for creating a tensegrity framework.

• Chapter 6: The scaling parameter in this chapter is assumed to be constant.
However, the size of the formation might be time-varying. This motivate us
to extend our current results to the case involving a dynamic signal indicating
the size of the formation. In addition, it is of great interest to make use
of tensegrity frameworks in more cooperative control tasks for robots, e.g.,
autonomous formation enclosing and transformation.
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• Chapter 7: One future study is to generalize the results to fully local coordi-
nate systems, where the orientations might be inconsistent. Another possible
exploration is to develop more powerful control algorithms to cope with
system constraints, such as input saturation and transmission delay.



Appendix A

Lemma on the rank of the matrix Ω̂ in (4.12)

Lemma A.1. Consider the matrix Ω̂ ∈ R(n+1)×(n+1) defined in (4.12), where Ω ∈
Rn×n and Ωu ∈ R4×4 are the stress matrices associated with super stable tensegrity
frameworks with three common vertices. Then

rank(Ω̂) = n− 2. (A.1)

Proof. We first consider the solution to the following equations

Ωax = 0, (A.2a)

Ωby = 0, (A.2b)

where x, y ∈ Rn+1. In view of (4.12), (A.2a) can be equivalently written as(
Ω 0n×1

01×n 0

)(
x1

x2

)
=

(
0n×1

0

)
, (A.3)

where x1 ∈ Rn×1 and x2 ∈ R. After simple calculation, (A.3) can be reduced to{
Ωx1 = 0,

0x2 = 0.
(A.4)

Since null(Ω) = span(qT ,1n), the solution space of (A.4) (equivalently, (A.2a))
is as follows

Sa =span

 q·1

pa1

 ,

 q·2

pa2

 ,

 1n

ca


∆
=span (sa1 , s

a
2 , s

a
3) ,

(A.5)

where q·1 = [q11, · · · , qn1]T ∈ Rn with qi1 being the first component of qi, i =

1, · · · , n, and q·2 is defined analogously. pa1 , p
a
2 and ca are any arbitrary scalars.
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Similarly, the solution space of (A.2b) is given by

Sb =span





pb11

...

pb(n−3)1

q(n−2)1

...

q(n+1)1


,



pb12

...

pb(n−3)2

q(n−2)2

...

q(n+1)2


,



cb1
...

cb(n−3)

1
...

1




∆
=span

(
sb1, s

b
2, s

b
3

)

, (A.6)

where pbij , i = 1, · · · , n− 3, j = 1, 2, denote the jth component of an arbitrary real
vector pbi ∈ R2, and cbi, i = 1, · · · , n − 3, are arbitrary scalars. In view of Lemma
7.2, we know

null(Ω̂) = Sa ∩ Sb. (A.7)

To determine the non-trivial form of Sa ∩ Sb, let

α1s
a
1 + α2s

a
2 + α3s

a
3 = β1s

b
1 + β2s

b
2 + β3s

b
3, (A.8)

where αi and βi, i = 1, 2, 3, are scalars, at least one of which is nonzero. Note that
Sa and Sb share the same entries as follows

sc =

q(n−2)1

q(n−1)1

qn1

 ,

q(n−2)2

q(n−1)2

qn2

 ,

1

1

1

 . (A.9)

Combining (A.8) and (A.9), one has

(α1 − β1)

q(n−2)1

q(n−1)1

qn1

+ (α2 − β2)

q(n−2)2

q(n−1)2

qn2

+ (α3 − β3)

1

1

1

 = 0, (A.10)

which can be equivalently written asq(n−2)1 q(n−2)2 1

q(n−1)1 q(n−2)1 1

qn1 qn2 1

α1 − β1

α2 − β2

α3 − β3

 = 0. (A.11)

Recalling that vertices i, j and k are not collinear, it is equivalent to say that they
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are in general positions in the plane, which implies

rank

q(n−2)1 q(n−2)2 1

q(n−1)1 q(n−2)1 1

qn1 qn2 1

 = 3. (A.12)

Then in view of (A.11), the parameters αi and βi, i = 1, 2, 3, in (A.8) satisfy
α1 = β1,

α2 = β2,

α3 = β3.

(A.13)

From the fact that Ω̂ is a stress matrix associated with configuration q̄, we know

(q̄·1, q̄·2,1n+1) ⊆ null(Ω̂), (A.14)

where q̄·1 = [qT·1, q(n+1)1]T , and q̄·2 is defined analogously. Since rank (q̄·1, q̄·2,1n+1) =

3, we have
rank(Ω̂) 6 n− 2. (A.15)

Then, to prove rank(Ω̂) = n−2, we need to show that any other vector v ∈ null(Ω̂)

can be represented as a linear combination of vectors q̄·1, q̄·2, and 1n+1, namely,
there exist scalars γ1, γ2, and γ3, such that

v = γ1q̄·1 + γ2q̄·2 + γ31n+1, ∀v ∈ null(Ω̂), (A.16)

where at least one of γi, i = 1, 2, 3, is nonzero. In light of Lemma 7.2, one has

v ∈ null(Ω̂)⇐⇒ v ∈ Sa and v ∈ Sb, (A.17)

which implies
v =α1s

a
1 + α2s

a
2 + α3s

a
3

=β1s
b
1 + β2s

b
2 + β3s

b
3.

(A.18)

It follows from (A.13) that(
v

v

)
= α1

(
sa1
sb1

)
+ α2

(
sa2
sb2

)
+ α3

(
sa3
sb3

)
. (A.19)

Picking out respectively the first n entries of sai and the last entry of sbi , i = 1, 2, 3,
we get

v = α1

(
q·1

q(n+1)1

)
+ α2

(
q·2

q(n+1)2

)
+ α3

(
1n
1

)
, (A.20)
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equivalently,
v = α1q̄·1 + α2q̄·2 + α31n+1. (A.21)

Therefore, there exist scalars γi, i = 1, 2, 3, such that any vector v ∈ null(Ω̂) can be
written as a linear combination of q̄·1, q̄·2, and 1n+1. This completes the proof.
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Technical Proofs for Chapter 7

B.1 Proof of (7.22)

Suppose x ∈ Rd and ‖x‖ 6= 0, when ε is chosen such that 0 < ε 6 2
3 , we have

(1− ε)2‖x‖2 + ε(2− 3ε)‖x‖ > 0.

Equivalently,
(1− ε)2‖x‖2 + 2ε‖x‖ − 2ε2‖x‖ > ε2‖x‖. (B.1)

Then, adding ε2 to both sides of (B.1), we obtain that

(1− ε)2‖x‖2 + 2ε(1− ε)‖x‖+ ε2 > ε2‖x‖+ ε2,

which is can be written as

[(1− ε)‖x‖+ ε]
2 > ε2(1 + ‖x‖). (B.2)

By taking a square root of (B.2), it follows

(1− ε)‖x‖+ ε > ε
√

1 + ‖x‖.

After simple calculation, we get

‖x‖ > ε‖x‖+ ε
(√

1 + |x| − 1
)
. (B.3)

Multiplying both sides of (B.3) by |x|, we have

|x|2 > ε|x|2 + ε‖x‖
(√

1 + ‖x‖ − 1
)
.

Since ‖x‖+ ‖x‖
(√

1 + ‖x‖ − 1
)
> 0, it is straightforward to know

‖x‖2

‖x‖+
(√

1 + ‖x‖ − 1
) > ε‖x‖. (B.4)
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When ‖x‖ → 0, we have

lim
‖x‖→0

‖x‖2

ε‖x‖
(
‖x‖+

(√
1 + ‖x‖ − 1

)) = lim
‖x‖→0

‖x‖2

ε‖x‖2 + 1
2ε‖x‖2

=
2

3ε
,

where we have used the equivalent infinitesimal
(√

1 + ‖x‖ − 1
)
∼ 1

2‖x‖. In view

of the condition that 0 < ε 6 2
3 , we further obtain that

lim
‖x‖→0

‖x‖2

ε‖x‖
(
‖x‖+

(√
1 + ‖x‖ − 1

)) > 1.

In addition, it holds that

lim
‖x‖→0

‖x‖2

‖x‖+
(√

1 + ‖x‖ − 1
) = lim

‖x‖→0

‖x‖2

‖x‖+ 1
2‖x‖

= 0.

Hence, ∀x ∈ Rn, 0 < ε 6 2
3 , we have

‖x‖2

‖x‖+
(√

1 + ‖x‖ − 1
) > ε‖x‖.

B.2 Proof of the boundedness of q̃gd in (0, T0]

Now we consider the system dynamics during t ∈ (0, T0]. Then (7.29) can be
equivalently written as

ug =1n ⊗ q̇gd − kp
(
BQ̂δ ⊗ Id

)
(q̂gc − 1n ⊗ qgc + 1n ⊗ qgc − 1n ⊗ qgd)− ks∇P (qg)

=1n ⊗ q̇gd − kp
(
BQ̂δ ⊗ Id

)
(1n ⊗ qgc − 1n ⊗ qgd)− ks∇P (qg)

− kp
(
BQ̂δ ⊗ Id

)
(q̂gc − 1n ⊗ qgc )

(B.5)
Note that the first line after the second equality sign in (B.5) is exactly (7.30).

In addition, we know

−kp
n

(q̃gd)T (1TnBQ̂δ ⊗ Id)q̃gc 6
kp
2n

n∑
i=1

bi
δ + ‖q̂gci − q

g
d‖

(‖q̃gd‖
2 + ‖q̃gci‖

2)

6
kp
2n

n∑
i=1

bi
δ + ‖q̂gci − q

g
d‖
‖q̃gd‖

2 +
kp

2nδ
‖q̃gc‖2
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Then in view of (7.35), we have

V̇ 6− kp
2n

n∑
i

bi
δ + ‖q̂gci − q

g
d‖
‖q̃gd‖

2 − ks‖∇P (qg)‖2 +
kp
√
n

δ + ‖q̂gci − q
g
d‖
‖q̃gd‖‖∇P (qg)‖

+
kp
2n

n∑
i=1

bi
δ + ‖q̂gci − q

g
d‖
‖q̃gci‖

2

6−
[

‖q̃gd‖
‖∇P (qg)‖

]T
Q′
[

‖q̃gd‖
‖∇P (qg)‖

]
+

kp
2nδ
‖q̃gc‖2,

(B.6)
where

Q′ =

 kp

2(δ+supt∈(0,T ]) ‖q̂
g
ci−q

g
d‖)

− kp
√
n

2(δ+supt∈(0,T ]) ‖q̂
g
ci−q

g
d‖)

− kp
√
n

2(δ+supt∈(0,T ]) ‖q̂
g
ci−q

g
d‖)

ks

 .
Then, Q′ is positive definite if ks is chosen such that

ks >
kpn

2
(
δ + supt∈(0,T ]) ‖q̂

g
ci − q

g
d‖
) ,

which automatically holds under the condition (7.15). It follows from (B.6) that

V (T0) = V (0)−
∫ T0

0

[
‖q̃gd‖

‖∇P (qg)‖

]T
Q′
[

‖q̃gd‖
‖∇P (qg)‖

]
dt+

∫ T0

0

kp
2nδ
‖q̃gc‖2dt

Recalling the convergence of ‖q̃gc‖ from (7.28), we know
∫ T0

0
kp
2nδ‖q̃

g
c‖2dt is

bounded for finite number T0. It thus follows from the formula of V in (7.32) that
V (T0) is bounded. Hence, during t ∈ (0, T0], q̃gd and P (qg) are both bounded.

In addition, we can also infer ∇P (qg) is bounded from the boundedness of
P (qg), and thus the control input ugi in (7.20) is bounded. Hence, the position
variable qgi becomes bounded in finite time. It can also be obtained from (4.4) that
q̂ici is bounded in finite time.
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Summary

Tensegrity frameworks have drawn substantial attention from a range of disciplines,
including civil engineering, biology, and mechanics, due to their identified features,
such as strong stability, flexible scalability, and robustness. Motivated by these
advantages, we study how to grow tensegrity framework from the graphic and
algebraic point of view such that the superior features can be inherited. Another
central topic of this thesis is the distributed controller design for coordination of
multi-agent systems using virtual tensegrity frameworks.

We first investigate the problem of merging two separate rigid and infinitesimally
rigid tensegrity frameworks in the plane, respectively. For infinitesimally rigid
tenserity frameworks, the existence of the proper self-stress of the linked framework
has been proven, which implies that the infinitesimal rigidity can be preserved. In
addition, the type of the linked members can also be indicated by checking the sign
of the corresponding stress. When merging rigid frameworks, we have proposed
a disturbance perturbation-based method to justify the rigidity of the combined
framework by properly inserting new members, whose type can be determined
using rigidity matrix. Moreover, the Henneberg construction has been extended to
grow super stable tensegrity frameworks. It has been proven that the super stability
can also been preserved under the operation of vertex addition, edge splitting, and
merging.

Inspired by the “ turning back” method to generate sparse matrix, we propose
a numerical algorithm to construct universally rigid tensegrity frameworks given
a generic configuration. Then by projecting multi-agent system into the virtual
tensegrity framework, we study how to reach desired formations with the constraint
that inter-agent distances are upper or lower bounded. We design a control strategy
based on the idea that each edge is assigned to be a virtual cable or strut, with
which the physical distance constraints can be obtained.

We also propose a control strategy using the stress matrix associated with a
universally rigid tensegrity framework to scale the formation. We show that the size
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of the formation can be controlled by d pairs of agents whose configuration spans
Rd. By employing the orthogonal projection operator, the number of the agents
controlling formation size can be reduced to two. We further design estimator-based
control laws in combination with the stresses, in which the prescribed formation
can be realized even only one agent knows the desired size of the entire formation.

Finally, we address the issue of formation tracking for multi-agent systems
using only local measurements in local coordinate systems. Finite-time continuous
estimators are designed to dynamically estimate the centroid of the whole group.
We then make use of the estimations to propose a class of control algorithms such
that the desired formation shape can be achieved and at the same time the external
reference signal is tracked by the real centroid.



Samenvatting

Tensegrities hebben vanwege hun kenmerkende eigenschappen zoals een hoge
stabiliteit, flexibele opschaling en robuustheid aanzienlijke aandacht gekregen van
verschillende wetenschappelijke disciplines waaronder civiele techniek, biologie en
werktuigbouwkunde. Gemotiveerd door deze gunstige eigenschappen bestuderen
we vanuit een grafische en algebräısche invalshoek, hoe een tensegrity structuur
dusdanig kan worden opgebouwd zodat de kenmerkende en superieure eigen-
schappen van deze structuren kunnen worden overgenomen. Een ander centraal
onderwerp van dit proefschrift is het ontwerpen van gedistribueerde regelaars voor
het coördineren van multi-agent systemen door middel van virtuele tensegrities.

Als eerste bestuderen we hoe twee afzonderlijke rigide en respectivelijk infinite-
simaal rigide tensegrity structuren kunnen worden samengebracht in een plat vlak.
Voor infinitesimaal rigide tensigrity structuren is het bestaan van een evenwicht
tussen zelf genererende mechanische spanningen op de verbonden structuren aan-
getoond. Dit geeft aan dat de infinitesimale rigiditeit voor deze structuren kan
worden behouden. Ook kan het soort van de verbonden elementen worden bepaald
door het teken van de bijbehorende spanning te controleren. Om de rigiditeit van
de gecombineerde structuren aan te tonen hebben we gebruikt gemaakt van een
disturbance-perturbation gebaseerde methode die op basis van de rigiditeit matrix
op een gepaste manier nieuwe elementen toevoegt aan het structuur. Bovendien
is de Henneberg constructie uitgebreid om super stabiele tensigrity structuren te
laten ‘groeien’. We tonen aan dat de eigenschap van super stabiliteit kan worden
behouden door toevoeging van een knooppunt, splitsing van een verbinding, en
door samenvoeging van structuren.

Gëınspireed op de “turning back” methode voor het genereren van ijle matrices
dragen we een numeriek algoritme voor waarmee, gegeven een bepaalde generieke
configuratie, een universeel rigide tensegrity kan worden geconstrueerd.

Door een multi-agent systeem te projecteren op een virtuele tensegrity bestu-
deren we hoe een gewenste formatie kan worden gerealiseerd waarbij de afstand
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tussen de agenten een boven- en ondergrens heeft. We ontwerpen een regel strate-
gie die gebaseerd is op het idee dat elke verbinding in de structuur kan worden
gezien als een virtuele kabel of staaf en waarmee aan de fysieke afstandsbeperkin-
gen kan worden voldaan.

Door gebruik te maken van de spannings matrix die is geassocieerd aan een
universeel rigide tensegrity, dragen we een regel strategie voor die het mogelijk
maakt de schaal van de formatie aan te passen.

We tonen aan dat de grootte van de formatie kan worden bestuurd door d
paren van agenten wiens configuratie de vectorruimte Rd voortbrengt. Door
gebruik te maken van loodrechte vectorprojecties kan het aantal agenten dat de
formatie bestuurt gereduceerd worden tot twee. Vervolgens ontwerpen we een op
schattingen gebaseerde regel algoritme die, in combinatie met de spanningen in de
tensegrity, de gewenste formatie kan realiseren. Dit algoritme werkt zelfs wanneer
alleen één agent de gewenste grootte van de gehele formatie kent.

Tot slot richten we ons op de kwestie van formatie volging voor multi-agent sys-
temen waarbij alleen lokale metingen in lokale coordinatenstelsels worden gebruikt.
Eindige-tijd continue schattingsmethoden zijn ontworpen om het zwaartepunt van
de groep agenten op een dynamische manier te schatten. Een klasse van regel
algoritmes wordt voorgesteld die op basis van de geschatte waardes de gewenste
formatie kunnen realiseren en tegelijkertijd, met het echte zwaartepunt, een extern
referentie signaal kunnen volgen.
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