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1
Introduction

Reciprocity is certainly not a good
basis for a morality of aspiration.
Yet it is more than just the morality
of egoism.

Robert Axelrod

1.1 Background

1.1.1 Social dilemmas

In [1], social dilemmas are broadly defined to be situations that involve conflicts
between immediate self-interest and longer-term collective interests. These situations
are complex psychological, social and economic behaviors because the immediate
self-interests make it tempting for individuals to choose selfish decisions that in the
longer term become detrimental to the collective and possibly to themselves. A
classical example is known as the tragedy of the commons, in which individual users in
a shared resource system, by acting in their self-interests, deplete a resource through
their collective actions [2, 3]. Although the theory originated almost 200 years ago [4],
the tragedy of the commons, and in a broader sense, social dilemmas, remain relevant
for today’s societal concerns. From over-fishing, global warming, smoking in public
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Figure 1.1: The social dilemma and tragedy of the commons in over-fishing. By
Cardow, The Ottawa Citizen.

places to the more recent social dilemma of autonomous vehicles [5]. All of these
situations, to some extent, affect our day-to-day lives.

While some common resource systems have indeed collapsed due to overuse, for
others the tragedy of the commons was averted through cooperation, regulation or
some other mechanism that enables to govern the commons [6]. Knowledge of social
dilemmas can thus help in understanding when personal interests are set aside for
selfless cooperative behavior and under which conditions cooperation in large groups
and organizations can be maintained or even promoted [1].

Because social dilemmas come in all sorts and sizes, and obtaining a uniform
understanding of the consequences of individual choice and collective behavior is
desirable, it is necessary to apply a unifying framework in which the large variety of
social dilemmas can be studied formally. A defining feature of game theory [7] is that
outcomes of decision-making processes or games do not only depend on one’s own
decision, but also on that the decisions of others. It is precisely this characteristic
feature that makes game theory a suitable modeling framework for social dilemmas.
The prisoner’s dilemma is the most simple and widely studied game that captures
a social dilemma between two individuals that simultaneously choose between two
actions: to cooperate or defect. The payoffs, in this game are[

R S

T P

]
, T > R > P > S.

In the case of the prisoner’s dilemma defection refers to betraying the other pris-
oner, while cooperation refers to staying silent. When both players cooperate, they
receive the reward for mutual cooperation (R). When both defect, they receive the
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punishment for mutual defection P . When one player defects, while the other coop-
erates, the cooperator who kept silent is betrayed by his/her assailant and receives
the sucker’s payoff (S), while the defector obtains the temptation to defect (T ).

Figure 1.2: Mechanisms
for the evolution of coop-
eration in social dilemmas
from [8], reprinted with
permission from AAAS.

This classic game has a single Nash equilibrium [9, 10] at
which both players make the rational decision to defect
because this action receives a higher payoff independent
of what the other player chooses (i.e. T > R and P > S).
To see that the prisoner’s dilemma is indeed a social
dilemma, notice that if the two prisoners neglected their
self-interests and would choose to cooperate, they would
receive R, that is higher than the payoff received when
both players are selfish and choose to defect, i.e. R > P.

Social dilemmas do not always have a dominant strat-
egy (like defection in the prisoner’s dilemma), and there
can exist more than just one equilibrium. A simple exam-
ple is the game of Chicken, the Hawk-Dove game or Snow-
drift game in which the payoffs satisfy S > P > T > R.
There may also be more than two players, in this case, the
game is called a multiplayer or n-player game. A famous
example is the public goods game in which players need to
decide to contribute to a publicly available good. Multi-
player games are interesting because they can capture the
collective behavior of a large group of decision-makers.

In the simple static models described above, the emer-
gence of this selfless cooperative behavior is impossible
to achieve. However, when decisions are repeated, social
structure or individual sanctioning is added, several so-
lutions to social dilemmas present themselves. Through
individual sanctioning, cooperators can be rewarded and
defectors can be punished by the players themselves or
an overarching institution. Punishment and reward have
proven to be effective in promoting cooperation both
experimentally and theoretically [11–14]. Punishment
and rewards are related to indirect reciprocity [8, 15–18],
through which cooperators enjoy good reputations, while
defectors have bad reputations. Indirect reciprocity relies
on the assumption that players are inclined to cooperate
against players who have cooperated before, and thus
have a good reputation. Provided that this reputation information is available to
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the players, indirect reciprocity, as the name suggests, enables cooperative actions
to be played against “strangers”, i.e. players that an individual has not interacted
with in the past (Fig. 1.2). Empirical evidence of indirect reciprocity can be found
in [19, 20]. From a more evolutionary point of view the mechanisms known as kin
selection [21–25] and group selection [26–28] have been proposed as a means for
promoting the evolution of selfless cooperation. Under kin selection, the relatedness
between individuals, defined by the probability of sharing a gene, affects the behavior
of the individual against their kin: cooperative actions are more likely if relatedness
between individuals is higher. This idea supports the concept of inclusive fitness, in
which payoffs, or the more biological term fitness, are evaluated by including the effect
actions may have on closely related individuals or kin [8]. Inclusive fitness or kin
selection is where the concept of selfish genes [24] comes from: cooperation against
kin increases their fitness and hence increases the reproductive rate and spread of
closely related genes. Under group selection, the natural selection forces act not only
on individuals but also on groups: groups of cooperators can obtain a higher payoff
than groups of defectors and can therefore grow and split into multiple groups faster
than groups of defectors [8].

This thesis will not cover all of these mechanisms for the evolution of cooperation.
Rather we will focus on structural and strategic solutions to social dilemmas that
can allow for cooperative actions to evolve through network reciprocity and direct
reciprocity, respectively (Fig. 1.2). These mechanisms are introduced in the following
sections.

Structural solutions: network reciprocity

In its original application to an evolving biological population, evolutionary game
theory [29] describes how competing strategies propagate through a well-mixed pop-
ulation via natural selection. In such a well-mixed population, all players interact
equally likely with all other players [29–33]. In real populations, individuals often
interact with each other via spatial or social structures that tend to be very different
between individuals. These effects can be captured by evolutionary graph theory [34],
that allows to study how spatial and social structures affect evolutionary dynam-
ics [35, 36, 36–38]. The majority of these works focus on formulating conditions for
evolutionary success of structured populations in which the micro-dynamics describe
birth-death and imitation processes of the players occupying the nodes of the graph. In
social dilemmas this evolutionary success depends on the emergence and maintenance
of cooperation in the population [39]. The mechanism that allows cooperation to
exist in evolutionary games on graphs is known as network reciprocity [8]: clusters of
cooperators can form in the network in which the mutual cooperative actions help each
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other (Fig. 1.2). Unfortunately, evolutionary games on graphs are difficult to analyze
mathematically because of the large number of configurations that are possible. When
individuals interact in pairs and they have no more than two strategies, the conditions
for evolutionary success can be characterized analytically by benefit-to-cost ratios
and the average degree of the network [38,40].

Evolutionary games on graphs stay true to their original application to evolving bi-
ological populations via natural selection and hence mainly study dynamical processes
based on replication. In contrast, network games take a more economic perspective
and typically describe how individual decision-makers change their actions over time
under the bounded rationality principles [41]: even when individuals intend to make
rational decisions, limitations on cognitive capacity or available information might
limit their ability to make optimal decisions in complex situations. In this economic
context, “evolutionary” dynamics driven by simple rational thinking, (e.g. myopic
best response) have been studied extensively for games on networks using potential
functions [42–44] and Markov chain theory [45,46], and brought forth a number of
algorithms that ensure convergence to an equilibrium [47–49]. However, as we have
seen in the tragedy of the commons, myopic optimizations tend to generate outcomes
with payoffs that are far from the system optimum [50]. Hence, under these rationality
principles, network reciprocity is less effective. We will return to this problem in part
I of the thesis.

Strategic solutions: direct reciprocity

We have seen that the only rational decision in the prisoner’s dilemma game is to
defect. However, when the prisoner’s dilemma game is repeated, decisions become
more cooperative [51]. Repeated games allows us to formalize how reciprocity [52] can
influence the behavior of the players. In repeated games the reciprocity effects occur
between the same set of players and hence, the mechanism that allows cooperative
decisions to emerge is called direct reciprocity. Repeated games can capture a variety
of complicated trade-offs in decision-making processes. For instance, players can
learn from past decisions and adjust their behavior accordingly. Indeed, a strategic
player would base his or her decision on what to do now, by taking into account what
happened before. This allows for a variety of strategies that differ in memory, rewards,
punishments, fairness, etc.

Another interesting process that is captured by repeated games is how one’s
current actions can affect future interactions and their associated payoffs. If one
would consider to defect at some point in time, how large will the consequences
of retaliation be? Is the fear of retaliation enough to remain cooperative? These
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strategic trade-offs are sometimes referred to as “the shadow of the future” and can
be studied using discounting techniques. Direct reciprocity is only effective when
the shadow of the future is uncertain. To see this, let us assume the players know
they will interact in 0 < k <∞ rounds and payoffs are not discounted. Regardless of
what happened in the k − 1 rounds before, at round k the only rational choice is to
defect because there will be no future play and hence no opportunities for retaliation.
Under the rationality principle, both players will thus choose to defect at round k.
Knowing this, the action made at the penultimate round k − 1 cannot affect the
actions at round k and defection strongly dominates cooperation. Hence, the players
will choose to defect at k − 1 as well. An induction argument shows that defection in
all rounds is the only equilibrium. [53, 54]. The repeated prisoner’s dilemma with an
undetermined number of rounds (possibly finite) has many different equilibria. The
famous folk theorem guarantees that any feasible average payoff can be obtained at
an equilibrium, as long as the players obtain at least the mutual defection payoff [55].
However, in evolving populations these equilibria are not evolutionarily stable [29]
i.e., the equilibrium strategies can be invaded by a mutant strategy that performs
better [56–58]. This motivated researchers to identify strategies that perform well
under a variety circumstances [59–62]. Perhaps the most famous of these strategies
is known as Tit-for-Tat (TFT), in which players simply repeat the action that their
co-player chose in the previous round. Next to TFT’s ability to let cooperation evolve,
in [63] it was shown that TFT is “unbeatable” in the class of exact potential games
(See Preliminaries chapter), that includes all symmetric games with two players and
two actions. This means that no other strategy can get strictly more than a player
applying the simple imitations of the TFT rule. This rather surprising result can
be placed into the broader context of Zero-determinant strategies (ZD) [64]. ZD
strategies can enforce a linear payoff relation between the ZD strategist and their
co-players. The n-player version of TFT known as proportional-TFT (pTFT) is a
fair ZD strategy. That is, it enforces that the average payoffs of all players are equal.
If pTFT is applied to a 2-player game, it naturally recovers the classic TFT strategy,
implying that TFT is unbeatable.

In part II, we will investigate the existence, efficiency and evolutionary stability of
ZD strategies under a variety of circumstances.

1.2 Contributions and thesis outline

Part I: rationality and social influence in network games

The contributions in Part I are mainly concerned with how network reciprocity can
result in rational cooperation in social dilemmas on networks. New decision-making
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rules are introduced that combine rational economic behavior with social learning by
imitation and a mechanism called strategic differentiation is introduced.

Chapter 3

The role of human decision making is becoming increasingly important for complex
engineering systems. More often than not, this social behavior of large groups of
humans is modeled based on rationality. However, behavioral and experimental
economics suggest that humans are not always rational and our decisions are likely to
be influenced by a form of social learning in which new behaviors result from imitation.
In this chapter, novel evolutionary dynamics for network games are proposed, called
the h-Relative Best Response (h-RBR) dynamics, that result from an intuitive mixture
of rational Best Response (BR) and social learning by imitation. Under such a class
of dynamics, the players optimize their payoffs over the set of actions employed by
relatively successful neighbors. As such, the h-RBR dynamics share the defining non-
innovative characteristic of imitation based dynamics that can lead to equilibria that
differ from classic Nash equilibria. We study the asymptotic behavior of the h-RBR
dynamics for both finite and convex games and provide preliminary sufficient conditions
for finite-time convergence to an (approximate) generalized Nash equilibrium. We
then couple the results to those obtained for classic best response dynamics and show
how a mixture of rational best responding individuals and h-relative best responders
can affect the equilibria of fundamental economic and behavioral problems that are
more and more intertwined with today’s engineering challenges.

Chapter 4

As mentioned before, in both economic and evolutionary theories of games two general
classes of evolution can be identified: dynamics based on myopic optimization and
dynamics based on imitations or replications. In network games, in which the players
interact exclusively with a fixed set of neighbors, the dynamical features of these
classes of dynamics vary significantly. In particular, myopic optimizations in social
dilemmas tend to lead to Nash equilibrium payoffs that are well below the optimum
(tragedy of the commons). Under imitation dynamics, the outcomes in terms of
payoffs can be better, but convergence to an equilibrium is typically not guaranteed.
In this chapter, we show that for a general class of public goods games, rational
imitation dynamics converge to an imitation equilibrium in finite time independent of
the spatial structure. For the more irrational ‘imitate-the-best’ dynamics, we identify
network structures for which pure imitations lead to beneficial equilibrium profiles
in which the players are satisfied with their decisions. Perhaps more importantly,
we provide evidence that, in contrast to purely rational or purely imitation based



8 1. Introduction

decision rules, the combination of rationality and imitations in rational imitation
dynamics guarantees both finite time convergence on arbitrarily connected graphs
and high levels of cooperation in the imitation equilibrium profiles.

Chapter 5

In the existing models for finite non-cooperative network games, it is usually assumed
that in each single round of play, regardless of the update rule driving the dynamics,
each player selects the same action against all of its co-players. When a selfish player
can distinguish the identities of his or her opponents, this assumption becomes highly
restrictive. In this chapter, we will introduce the mechanism of strategic differentiation
through which a subset of players in the network, called differentiators, can employ
different actions against different opponents in their local game interactions. Within
this new framework, we will study the existence of pure Nash equilibria and finite-time
convergence of differentiated myopic best response dynamics by extending the theory
of potential games to non-cooperative games with strategic differentiation. Finally,
via simulation, we illustrate the effect of strategic differentiation on the equilibrium
strategy profiles of a non-linear spatial public goods game. The simulation results
show that depending on the position of differentiators in the network, the level of
cooperation of the whole population at an equilibrium can be promoted or hindered.
Moreover, if players imitate successful neighbors, a small number of differentiators
placed on high degree nodes can result in large scale cooperation at very low benefit-
to-cost ratios. Our findings indicate that strategic differentiation provides new ideas
for solving the challenging free-rider problem on complex networks.

Part II: strategic play and control in repeated games

Part II is concerned with repeated games that are used to study the evolution of
cooperation in social dilemmas through repeated interactions and the possibilities for
future rewards and punishments. In particular, it is studied how individuals can exert
control in n-player repeated games and in doing so can promote cooperation in repeated
social dilemmas. New theory is developed for ZD strategies in a broad class of social
dilemmas with discounting of future payoffs. Moreover, a novel discounting framework
is proposed for repeated games that provides new insights into how individuals can
exert control when the probability for future interactions is uncertain.

Chapter 6

The manipulative nature of ZD strategies attracted significant attention from re-
searchers due to their close connection to controlling distributively the outcome of
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evolutionary games in large populations. In this chapter, we study the existence
of ZD strategies in repeated n-player games with a finite but undetermined time
horizon. Necessary and sufficient conditions are derived for a linear relation to be
enforceable by a ZD strategist in n-player social dilemmas, in which the expected
number of rounds is modeled by a fixed and common discount factor (0 < δ < 1).
For the first time in the studies of repeated games, ZD strategies are examined in
the setting of finitely repeated n-player, two-action games. The results show that
depending on the group size and the ZD-strategist’s initial probability to cooperate,
for finitely repeated n-player social dilemmas, it is possible for extortionate, generous
and equalizer ZD-strategies to exist.

Chapter 7

In this chapter, we build upon the existence results in chapter 6 by developing a
new theory that allows us to express threshold discount factors that determine how
efficiently a strategic player can enforce a desired linear payoff relation. The efficiency
is determined by a threshold discount factor that relies on the slope and baseline
payoff of the desired linear relation and the variation in the “one-shot" payoffs of the
n-player game. These general results apply to multiplayer and two-player repeated
games and can be applied to a variety of complex social dilemma settings including
the famous prisoner’s dilemma, the public goods game, the volunteer’s dilemma, the
n-player snowdrift game and much more. The theory developed in this chapter can, for
instance, be used to determine one’s possibilities for exerting control given a constraint
on the expected number of interactions or the general efficiency of generosity and
extortion in n-player social dilemmas. To show the utility of these general results, we
apply them to a variety of social dilemmas and show under which conditions mutual
cooperation can be enforced by a single player in the group.

Chapter 8

In this chapter, we investigate the evolutionary stability of ZD strategies in a finite
population. Necessary and sufficient conditions are provided for a resident ZD strategy
to satisfy the equilibrium condition of evolutionarily stable strategies when they are
invaded by a single ZD strategy. The derived conditions show that, for generous
strategies that facilitate mutual cooperation to satisfy the stability condition with
respect to one mutant strategy, the resident ZD strategists cannot be too generous.
We provide an analytical expression for what exactly too generous is, and show that
this depends on the one-shot payoff, the population size and the contest size of the
n-player evolutionary game. Because in each contest, no other strategy can do better
than an extortionate strategy, the evolutionary equilibrium conditions carry over to
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arbitrary mutant strategies in a finite population. Finally, a convenient method is
proposed to check the evolutionary stability of resident ZD strategies with respect to
any number of identical mutants.

Chapter 9

Evolutionary theories suggest that repeated interactions are necessary for direct
reciprocity to be effective in promoting cooperative behavior in social dilemmas,
and the discovery of zero-determinant strategies suggests that witty individuals can
influence -for better or worse- the outcome of such repeated interactions. But what
happens if the probability of repeating the mutual interactions is uncertain, and to
what degree is it possible for a player to deal with this uncertainty in their efforts
to influence the behavior of others? By incorporating the additional psychological
complexity of an uncertain belief about the continuation probability into the framework
of repeated games, in this chapter, we develop a general theory that can describe
to what degree strategic players can influence the outcomes of multiplayer social
dilemmas with uncertain future interactions. Our results suggest that this uncertainty
can drastically alter one’s opportunities to exert control and that some existing
theories only hold in a more deterministic world. In particular, uncertainty may deny
one’s ability to ensure others do well, but the system remains vulnerable to extortion.
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1.4 Notations

The set of real, positive, and non-negative numbers are denoted by R, R>0, R≥0,
respectively. The set of natural numbers is denoted by N and the set of integers
is indicated by Z. The cardinality of a set A is denoted by |A|. For some vector
v ∈ Rn we denote its ith element by vi. To emphasize a vector v ∈ Rn is obtained
by stacking its elements vi we write v = (vi) ∈ Rn. For a pair of vectors w, u ∈ Rn,
w · v =

∑n
i=1 wivi is the dot product. Given a non-empty finite set B with cardinality

m, the single valued function maxk(B), where k ≤ m, evaluates the kth highest value
in the set B. The power set of a non-empty set B is denoted by 2B. We denote the
n-ary Cartesian product over the sets B1,B2, . . .Bn by

∏n
i=1 Bi.
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2
Preliminaries

2.1 Network Games

Non-cooperative network games have three main ingredients: the network structure,
the action space, and the combined payoff function. The action space is defined for
both finite games, and convex games, in which the action sets are finite discrete sets
and infinite compact and convex sets, respectively.

2.1.1 Network structure, action space and payoff functions

Let G = (V, E) be a graph whose node set V = {1, . . . , N} represents players. The
edge set E ⊆ V × V, represents the player interaction topology. Let Ai denote the
set of actions for player i ∈ V and let σi ∈ Ai denote the action of player i. The
action space of the game is defined as the Cartesian product of the action sets of
the players, i.e., A =

∏
i∈V Ai. An action profile of the game is an element of

this set σ := (σi)i∈V ∈ A, representing the actions chosen by all players in the
network. To emphasize the ith element of σ ∈ RN , we write σ = (σi,σ−i) where
σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ). Let πi : A → R indicate the payoff function of
player i. The combined payoff function π : A→ RN maps each action profile σ ∈ A
to a payoff vector π(σ) = (πi(σ))i∈V whose elements correspond to the payoffs that
the players receive for a single round of interaction. In network games, the spatial
structure is incorporated into the payoff function π. Thus, the network structure
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determined by the graph G, the action space A, and combined payoff function π

defines the network game as the triplet Γ = (G,A, π).

2.1.2 Finite and convex games

We say Γ is a finite game if the action set of each player is a finite discrete set such
that Ai ⊂ Z and A ⊂ ZN . A finite game is denoted by Γf. We say Γ is a convex game
if the action set of each player is a non-empty, convex subset of Rm, i.e., A ⊂ Rm

and A ⊂ RNm. A convex game is denoted by Γc. The convexity assumption over the
action set for convex games is common in the literature of monotone games [47,65].

2.2 Potential games

In Part I of the thesis, the theory of potential games is used. In [42], Monderer
and Shapely identify several classes of games for which there exists a function that
increases or decreases monotonically along the trajectory of rational decisions in a
game. The most restrictive class is known as exact potential games that are defined
as follows.

2.2.1 Finite games

Definition 1 (Exact potential game). Given a finite game Γf, if there exists a
function P : A → R such that for every i ∈ V, for every σi, σ

′
i ∈ Ai and every

σ−i ∈
∏

j∈V\{i}
Aj, the following implication holds:

πi(σ
′
i,σ−i)− πi(σi,σ−i) = P (σ′i,σ−i)− P (σi,σ−i) (2.1)

then Γf is an exact potential game.

Several generalizations of exact potential games exist. The following definitions
provide an overview of increasingly general classes of games.

Definition 2 (Weighted potential game). Given a finite game Γf, if there exists
a function P : A → R such that for every i ∈ V, for every σi, σ′i ∈ Ai and every
σ−i ∈

∏
j∈V\{i}

Aj, the following implication holds:

πi(σ
′
i,σ−i)− πi(σi,σ−i) = αi [P (σ′i,σ−i)− P (σi,σ−i)] , (2.2)

then Γf is a weighted potential game.
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Definition 3 (Ordinal potential game). Given a finite game Γf, if there exists a
function P : A → R such that for every i ∈ V, for every σi, σ

′
i ∈ Ai and every

σ−i ∈
∏

j∈V\{i}
Aj, the following implication holds:

πi(σ
′
i,σ−i)− πi(σi,σ−i) > 0⇔ P (σ′i,σ−i)− P (σi,σ−i) > 0, (2.3)

then Γf is an ordinal potential game.

Definition 4 (Generalized ordinal potential game). Given a finite game Γf, if there
exists a function P : A→ R such that for every i ∈ V, for every σi, σ′i ∈ Ai and every
σ−i ∈

∏
j∈V\{i}

Aj, the following implication holds:

πi(σ
′
i,σ−i)− πi(σi,σ−i) > 0⇒ P (σ′i,σ−i)− P (σi,σ−i) > 0, (2.4)

then Γf is a generalized ordinal potential game.

Potential games (and their generalizations) with finite action sets have an important
property called the Finite Improvement Property (FIP) that is formalized as follows.

Definition 5 (Finite Improvement Property [42, Sec. 2] ). Let γ = (σ(0),σ(1), . . . )

denote a action profile sequence for Γ. If for every t ≥ 1 there exists a unique player,
say it ∈ V such that

σ(t) = (σit(t),σ−it(t− 1)) for some σit(t) 6= σit(t− 1),

then γ is called a path in the action profile. If additionally it holds that for each
consecutive action profile in a path γ the payoff of the unique deviator it is strictly
increasing, that is

∀t ≥ 1 : πit(σ(t)) > πit(σ(t− 1)),

then γ is called an improvement path. Γ has the Finite Improvement Property (FIP)
if every improvement path is finite.

Lemma 1 (Finite Improvement paths in potential games [42, Sec. 2]). Γf has the
FIP if and only if Γf has a generalized ordinal potential function.

2.2.2 Infinite games

In finite potential games, the action space is finite and in turn, the potential function
is bounded. Naturally, these properties do not hold when the number of actions is
infinite. In the following, we shortly introduce concepts from the theory of infinite
potential games, i.e. potential games with an infinite number of actions. We will
focus on convex games, that unless the action sets are singleton sets, can also be
characterized as infinite games. We begin with the infinite game counterpart of
improvement paths, commonly referred to as approximate improvement paths.



16 2. Preliminaries

Definition 6 (ε-improvement paths). Let γ denote a sequence in the action profile
of Γc and let ε > 0 be an arbitrarily small positive real. When for every t ≥ 1 there
exists a unique player, say it ∈ V, such that

σ(t) = (σit(t),σ−it(t− 1)) for some σit(t) 6= σit(t− 1),

then γ is called a path in the action profile. When additionally it holds that for each
consecutive action profile in a path γ the payoff of the unique deviator it is strictly
increasing, i.e., ∀t ≥ 1

if i = it : πi(σ(t)) > πi(σ(t− 1)) + ε,

then γ is called an ε–improvement path with respect to Γc.

The FIP for infinite games is known as the Approximate Finite Improvement
Property (AFIP).

Definition 7 (Approximate Finite Improvement Property, [42]). Γc has the AFIP if
for every ε > 0, every ε–improvement path is finite.

Finite approximate improvement paths are naturally connected to the concept of
an approximate Nash Equilibrium (NE), that is defined as follows.

Definition 8 (ε-Nash equilibrium). The action profile σ ∈ A is an ε–NE for Γc, if
for all i ∈ V, σi ∈ σ is such that

πi(σi,σ−i) > πi(σ
′
i,σ−i) + ε, ∀σ′i ∈ Ai,

for some ε > 0.

To characterize the class of infinite games that have the AFIP, it is necessary to
introduce the concept of a bounded game.

Definition 9 (Bounded Game). Γc is a bounded game if for all σ ∈ A there exists
M ∈ R such that ∀i ∈ V it holds that |πi(σ)| ≤M.

Bounded games thus have bounded payoff functions on the action space of the
infinite game. For weighted and exact potential games, this implies that also the
potential function is bounded. This leads to the following Lemma.

Lemma 2 ( Lemma 4.2, [42]). Every bounded w–potential game has the AFIP.
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3
Relative Best Response dynamics in network
games

When people are free to do as they
please, they usually imitate each
other.

Eric Hoffer

Game-theoretic scenarios in which players interact exclusively with a fixed group
of neighbors traces back to the early 1990’s when economists and biologists started
to explore the effect of simple spatial structures in (probabilistic) decision-making
processes driven by rational best response processes and more biologically inspired
imitation processes [66–68]. Later, simple spatial structures were extended to arbitrary
structures defined by graphs [34,37,45].

The long-run collective behavior of non-cooperative network games have been
extensively studied for best response dynamics in which the players, given the history
of plays of their neighbors, select a strategy that maximizes their payoffs. These
extended research efforts have resulted in the identification of several classes of
games that converge to a pure Nash equilibrium under a variety of such best response
processes [42–44,69] and brought forth a number of algorithms that ensure convergence
to an equilibrium [47–49]. Best response dynamics are “innovative" in the sense that,
to optimize their payoffs, players are always able to select new actions that are not
played in the current strategy profile. They are in line with classic economic theories
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that support the idea that absolute optimization (or rational behavior) is a natural
result of evolutionary forces [70]. Recently, the systems and control community has
been interested in the analysis of dynamical systems driven by imitation [71–73].
Such dynamics are “non–innovative": players can only select actions that already
exist in the networked population. Therefore, non–innovative dynamics can lead
to equilibrium concepts that differ from traditional Nash equilibria. In [74,75], the
authors studied an evolutionary process where the players, most of the time, choose a
best response from the set of actions that exist in the entire population strategy profile.
In [75], this evolutionary process was simply referred to as imitation. Perhaps a more
suitable name was proposed in [74], where such a revision was called a Relative Best
Response (RBR). RBR combines the non-innovative nature of pure imitation with
the rationality of best response. Such dynamics match classic economic studies that
support the idea that rather than absolute performance, it is relative performance,
that proves to be decisive in the long run [76]. Experimental evidences of such
behavior are documented in [77, 78]. Another motivation for studying such dynamics
is that they can take into account the effect of word-of-mouth communication and
social learning in decision making processes [79]. For example, when reconsidering
alternative technologies, an individual may ask friends or family about their current
choice and benefits. This local spread of information, in turn, is likely to affect her
decision, and may very well lead to a complete disregard of technology that is not
used by her peers. Indeed, the adoption of new technologies is affected by social
influence [80–82]. Traditional best response dynamics do not capture such a process
of information exchange and social learning, rather they reflect situations in which an
individual adopts some technology solely based on his/her own expectation, regardless
of how others have perceived it. In many real-world decision-making processes, it is
likely that both types of learning processes occur [83], but from a theoretical point of
view the effects of social learning is often overlooked.

In this chapter, a novel game dynamics for finite and convex games on networks
are proposed that result from an intuitive combination of rational behavior and social
learning. We start on the basis of a spatial version of Relative Best Response (RBR)
dynamics under which the players choose a best response from (a convex combination
of) the current set of actions in their neighborhood. In this case, the players interact
and relate their success exclusively with a fixed group of neighbors Even though
this process contains an element of social learning, namely that the players prefer to
conform themselves to observed actions, it does not take into account the relative
performance of these actions. To this end, we generalize RBR dynamics to the h-RBR,
where players relate their success to the subset of neighbors that obtain at least the
h-highest payoffs within their neighborhood. This process relies on local information
exchange of both decisions and benefits, that are fundamental to social learning by
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imitation. Even though under h-RBR dynamics the feasible action sets of the players
are state-dependent and the overall problem is not-jointly convex, we show that for a
general class of games such dynamics converge to an (approximate) generalized Nash
equilibrium in finite-time, and relate the results to classes of games for which best
response dynamics converge to a Nash equilibrium.

Throughout this chapter, it is assumed the action sets of the players are the same.
This naturally allows players to imitate each other, and is in fact common in imitation
dynamics [68,71,72].

Assumption 1 (Identical action sets). All players have the same action set, i.e.,
Ai = A for all i ∈ V.

One can argue that there exist decision-making processes in which the action
sets of the players are inherently different. For example, when individual A aims
to go to destination Z, and individual B aims to go a different destination Y . In
such cases, it does not make sense that individual A and B learn from each other
how to arrive at their destinations. However, in many real-world decision-making
processes, it is observed that, through social learning, new behaviors are acquired by
imitating others [84]. For example, a company can decide to enter a market because
they observed another company having success there. Assumption 1, in this sense, is
a technical one that ensures all decision-makers can imitate each other’s actions and
affect one another in this process. We note that it is possible to relax this assumption,
for instance by adding constraints on one’s ability to imitate another player’s action.
However, the additional technicalities would defy the main purpose of this chapter,
namely to illustrate clearly how rationality and social influence can be combined and
studied in a common framework.

3.1 h-relative best response dynamics

Before defining the h–RBR dynamics, for the purpose of comparison, we give the
definition of a best response.

Definition 10 (Best response). For player i ∈ V, a best response is any action in
the set

Bi(σ−i) := argmax
y∈A

πi(y,σ−i).

The defining distinction of a relative best response is that, instead of optimizing
over a fixed action set A, player i ∈ V optimizes its payoffs over some feasible subset
of A that depends on the actions of the neighbors of i and σi itself. For a game Γ
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and an action profile σ ∈ A, we denote the feasible action set for player i ∈ V by
Fi(σ) ⊆ A. For a finite game Γf, the feasible action set of player i ∈ V is simply
determined as the local set of actions, i.e.,

F f
i(σ) := {σj ∈ σ | j ∈ Ni} ∪ {σi} ⊆ A. (3.1)

Instead, for a convex game Γc, the action sets are convex and compact subsets of Rn,
hence the feasible action set for player i ∈ V is determined as

Fc
i (σ) = conv(F f

i) ⊆ A . (3.2)

We are now ready to formalize the idea of RBR.

Definition 11 (Relative Best Response). Given a game Γ, a relative best response
of player i ∈ V is any action in the set

Br
i(σ−i) := argmax

y∈Fi(σ)

πi(y,σ−i),

where the feasible action set Fi(σ∗, hi) of a finite game and convex game are given by
Eq. (3.1) and Eq. (3.2), respectively.

Imitations are often linked to social learning, in which new behaviors are acquired
by observing and imitating others [84]. In the context of a game, to choose which
neighbor’s action to imitate, the players must thus have information about the actions
and the current payoffs of their neighbors. It is this local exchange of information,
that is absent in best response dynamics, that can lead to surprising “non-rational”
behavior. As in BR, an RBR is based only on the local actions, and thus does not
take into account the payoffs of others. An interesting and natural generalization of
RBRs is a decision process in which the feasible action set of player i ∈ V depends
on a subset of the neighbors that receive the hi highest payoffs. Roughly speaking,
only those actions that are taken by successful neighbors are considered in the action
update. In this case, the relative success of the neighbors of i will have an influence on
the future action of player i, and hi ∈ N is a measure for how restricting this relative
success is for player i′s feasible action set.

We dedicate the remainder of this section to formalize this novel revision process
and illustrate its concepts with examples of interesting applications that are likely
to be affected by relative performance considerations and social influence. Before
defining the revision process formally, it is necessary to introduce some additional
auxiliary sets. For some action profile σ ∈ A, let us define the set of distinct payoffs
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Figure 3.3: Suppose the network is as in (a) such that n = 5. The set of actions of the
neighbors of 1 isM1(σ−i) = {s3, s4, s5}. Moreover, suppose that π4(σ) > π3(σ) >

π2(σ) > π5(σ) and hi = 2. Then,M1(σ−i, 2) = {s4, s5}, Fc
1(σ, 2) = {s4, s5, s1} and

the shaded area with the dashed border in (b) illustrates Fc
1(σ, 2). Moreover, C(σ) is

the convex hull of the entire action profile as is indicated by the region with the red
border.

obtained by the neighbors of i as Ri(σ) := {πj(σ) | j ∈ Ni}, and define the set of
neighbors that receive at least the hi highest payoff as

Hi(σ−i, hi) := {j ∈ Ni | πj(σ) ≥ max hi(Ri(σ))} ,

Note that, it always holds that |Ni| ≥ |Hi(σ−i, hi)| ≥ hi. Then, the set of actions of
these successful players is given by

Mi(σ−i, hi) := {σj ∈ σ | j ∈ Hi(σ−i, hi)}. (3.3)

In this case, for a finite game Γf, the feasible set of actions is determined by

∀i ∈ V : F f
i(σ, hi) := {Mi(σ−i, hi)} ∪ {σi} ⊆ A, (3.4)

while for a convex game Γc, it is

∀i ∈ V : Fc
i (σ, hi) := conv{F f

i(σ, hi)}. (3.5)

Let h = (hi)i∈V ∈ NN . An h–RBR can now be formalized as follows.
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Definition 12 (h-Relative Best Response). Given a game Γ, a h–relative best response
of player i ∈ V is any action in the set

Br
i(σ−i, hi) := argmax

y∈Fi(σ,hi)
πi(y,σ−i).

It is worth mentioning that, if hi = |Ni| for every i ∈ V, then Definition 12
recovers the definition of a relative best response. In contrast, for finite games, when
hi = 1, player i can only choose between his/her own action and the actions of the
most successful neighbors. Therefore, if for all i ∈ V, hi = 1 the feasible actions of
the h-RBR dynamics for finite games are exactly the feasible set of actions in an
unconditional imitation process. We will explore this link to imitation dynamics in
Chapter 4.

3.1.1 Examples of h-RBR applications

Example 1 (Adoption of competing products). Let us elaborate on the role of hi in
the context of the technology adoption example. Suppose an individual i is considering
to adopt a new product and can choose between models X, Y and Z, to replace her
current product C. In this case, A = {X,Y, Z,C}. She values her current product
with a 3 on a scale from zero to five. To make a decision about which product
to adopt, she gathers information from three peers, labeled as Ni = {a, b, c}, who
she believes value the product in a similar manner as herself. Suppose model X is
used by peer a and values the model with a full score of 5 out of five. In this case,
σa = X and πa = 5. Model Y is used by peer b who values it with 2 (i.e., σb = Y ,
πb = 2)and model Z is used by peer c who values it with 4 (i.e., sc = Z, πc = 4). In
our notation, the distinct payoffs obtained by her neighbors is Ri(σ) = {5, 2, 4}. If
hi = 1 then, the individual would only consider to keep her current phone or buy
model X because she believes model Z is worse than X and model Y is not worth
the upgrade from her current product. In our notation, the set of action chosen by
her most successful peer isMf

i(σ, 1) = {σa} = {X}, and the set of feasible actions is
F f
i(σ, 1) = {C,X}. However, if hi = 2, she would also consider buying model Z that

due to individual differences in the perception of values may be a better choice for
her. In this case, Mf

i(σ, 1) = {σa, σc} = {X,Z} and F f
i(σ, 2) = {C,Z,X}. In this

example, hi influences how the information from peers reflect her own valuation of a
product. That is, if hi = 3 then she would take into account every product because she
could be uncertain if the low score of model Y reflects her own preferences accurately.

Example 2 (Adoption of renewable energy). Suppose a fossil-fueled household is
allowed to determine the fraction of energy obtained from renewable sources. In
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this case, A = [0, 1]. To obtain an idea of how costly and sustainable the usage of
renewable energy is compared to fossil fuel, they gather information from neighboring
households with similar energy demands. If none of the neighbors are using renewable
energy sources, due to inertia in the decision making the household may be inclined to
refrain from using renewable energy simply because they lack information to make a
reasonable decision about it and there are no forces of conforming to a green source of
energy. In our notation, this would lead to Fc

i (σ, hi) = {0}. However, if neighboring
households are already using renewable energy and have informed the household that
they are satisfied with the supply and costs, an appealing option is to choose some
fraction of sustainable energy based on the fraction chosen by the neighbors. This
decision is plausible because of two reasons: first, the information gathered from similar
households suggests that renewable energy is a good alternative source of energy and
second, conformity forces that result in peer pressures may lead the household to decide
to try renewable energy sources [85].

In some contexts it makes sense to apply a transformation to the action profile
and payoffs before applying an h-relative best response.

Example 3 (Opinion dynamics). Take for example an opinion dynamics model in
which si ∈ R represents an opinion that takes values on the unit interval. In these
settings, it is well-established that social learning plays a crucial role in the evolution of
opinions as individuals tend to adjust their opinion to a local weighted average [86,87].
Such a process can be represented by a network game with best responses. Now, let us
define a simple auxiliary “payoff function” that player i observes in neighbor j as

εij(σ) := 1− |σi − σj |,

and let εi(σ) ∈ R|Ni|+1 be the vector of these opinion errors. Now suppose the player
applies the principle of selecting the hi highest valued neighbors. Then the opinion
dynamics would result in a bounded-confidence model in which the player only takes
into account those neighbors that have an opinion similar to the player’s own opinion.

Now that we have defined an h–RBR, let us introduce the asynchronous, or
sequential, game dynamics that are associated with the h-RBR via an activation
sequence: at each time step t ∈ N for which σ(t+ 1) 6= σ(t), there exists a unique
player it ∈ V such that the collective dynamics satisfy

if i = it : σ(t+ 1) = (σi(t+ 1)),σ−i(t+ 1))

∈ (Br
i(σ−i(t), hi),σ−i(t)).

(3.6)

For the asynchronous dynamics in Eq. (3.6) we assume that the activation sequence
ensures that at any time step, each player is guaranteed to be active at some finite
future time.
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Assumption 2 (persistent activation sequence). Every sequence of activated players
(it)t∈N driving the asynchronous dynamics Eq. (4.8) is persistent, i.e., if for every
player j ∈ V and every time t ∈ N, there exists some finite-time t̄ > t at which player
j is active again, i.e., it̄ = j.

3.1.2 Convergence problem statement

We are interested in characterizing the conditions under which the dynamics in
Eq. (4.8) converge to an equilibrium action profile. In this case, all players in the
network reach a decision with which they are satisfied. For the h–BRB dynamics,
the local feasible action set for each player is constrained by the actions of the other
players and hence the equilibrium action profiles of these dynamics correspond to a
Generalized Nash Equilibria (GNE) [88].

Definition 13 (Generalized Nash Equilibrium). The action profile σ∗ ∈ A is a GNE
for Γ, if for all i ∈ V

σ∗i ∈ Br
i(σ
∗
−i, hi), (3.7)

where the feasible action set Fi(σ∗, hi) of a finite game and convex game are given by
Eq. (3.4) and Eq. (3.5), respectively.

It is worth mentioniong that, in the convex game case, our GNE problem is not
jointly convex [89]. In Sections 3.2 and 3.3, we will study the convergence properties
of Eq. (4.8) for finite and convex games under the following assumption which ensures
that players only switch to another action if they have an incentive to deviate from
their current action.

Assumption 3 (Incentive to deviate). For Γ, σi(t) 6= σi(t+ 1) only if there exists
y ∈ Fi(σ, hi) such that

πi(y,σ−i(t))− πi(σi(t),σ−i(t)) > 0.

3.2 Convergence in finite games

In this section, we study the convergence of the asynchronous h–RBR dynamics in
Eq. (4.8) when all players choose h-relative best responses and they can have a finite
set of actions that they can choose from. First, we define two sets that will prove
useful in the analysis of the h-BRB dynamics in finite and convex games. For an
initial action profile σ(0), let us denote the set that contains all actions that are
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employed by at least one player in the initial action profile by A0 := ∪i∈V{σi(0)}, and
let A0 := AN0 . The set A0 is called the support of σ(0) in [74]. The key property of
A0 is that it is positively invariant with respect to the h-RBR dynamics Eq. (4.8), due
to their non-innovative nature. To study the convergence properties of finite games
under the asynchronous h-RBR dynamics we use the theory of potential games [42].
Consider the following definition of a potential like function.

Definition 14 (A0–potential function). A function P : A → R is a A0-potential
function for Γf and some σ(0) ∈ A, if for every i ∈ V, σi, σ′i ∈ A0 and σ−i ∈ AN−1

0 ,
it holds that if

πi(σ
′
i,σ−i)− πi(σi,σ−i) > 0⇒ P (σ′i,σ−i)− P (σi,σ−i) > 0. (3.8)

If such a function exists, then we call Γf a relative potential game with respect to A0 .

Remark 1. When the initial action profile σ(0) ∈ A is such that A0 = A, then
Definition 14 is equivalent to the definition of a generalized ordinal potential function
and a generalized ordinal potential game [42, Sec. 2]. In its classic definition, the
implication in Eq. (3.8) needs to be satisfied on the entire action space A to ensure
convergence of the innovative best response dynamics to a pure Nash equilibrium.

We are now ready to present the main result for finite games that relies on the
existence of a A0-potential function.

Theorem 1. Suppose Assumption 3 is satisfied and that Γf is a relative potential
game with respect to A0. Then, for all σ(0) ∈ A0 the asynchronous h–RBR dynamics
in Eq. (4.8) converge to a GNE in finite-time.

Proof. Suppose σ(0) ∈ A0. Because the h–RBR dynamics are non–innovative, it
follows that σ(t) ∈ A0, for all t ≥ 0. By Assumption, Γ is a relative potential game
with respect to A0, hence there exists a function P : A→ R such that for every i ∈ V ,
for every σi, σ′i ∈ A0 ∩Ai and every σ−i ∈

∏
j∈V\{i}

A0, the following implication holds:

πi(σ
′
i,σ−i)− πi(σi,σ−i) > 0⇒ P (σ′i,σ−i)− P (σi,σ−i) > 0. (3.9)

By Definition 12, Eq. (3.4) and the asynchronous dynamics in Eq. (4.8) it follows that
after a player switches, their payoff is at least as high as it was before. That is, for all
t ≥ 1:

∃ it ∈ V : πit(t) ≥ πit(t− 1). (3.10)
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By Assumption 3, if a player switches, then inequality Eq. (3.10) holds strictly and
hence the trajectory of relative best response dynamics generates an improvement
path γ (see Definition 5). Since for all t ≥ 0, we have Fc

i (σ(t), hi) ⊆ A0. From the
implication Eq. (3.9), it follows that the A0-potential function P is strictly increasing
along γ. Since the action space is finite, P is a bounded function. This implies that
the h-relative best response dynamics converge to a GNE in finite-time.

It may happen that there exist A0-potential functions only for a subset of initial
action profiles. To guarantee finite-time convergence for all initial condition, it is
required there exists a generalized potential function, not necessarily the same, for
every initial action profile. This is formalized in the following definition.

Definition 15 (Generalized relative potential game). If for Γf there exist generalized
A0–potential functions for every σ(0) ∈ A, then Γf is called a generalized relative
potential game.

An example of a generalized relative potential game can be found in Example 4.
An immediate consequence of Theorem 1 is stated in the following corollary.

Corollary 1. For any finite generalized relative potential game, the asynchronous
h–RBR dynamics converge globally to a GNE in finite-time.

3.2.1 Relation to generalized ordinal potential games

From Definition 14, it can be easily seen that every generalized ordinal potential game
is a generalized relative potential game. By means of the following counter-example
we show that the converse is not always true, that is, not every generalized relative
potential game is a generalized ordinal potential game.

Example 4. Consider the symmetric Rock-Scissors-Paper (RSP) game with payoff
matrix

M =

a b c

c a b

b c a

 , b > a ≥ c. (3.11)

Because each improvement path in the RSP game converges to the improvement cycle:
(R,S) → (R,P ) → (P, S) → (S,R) → (P,R) → (P, S) → (R,S), the RSP game
is not a generalized ordinal potential game. However, for all initial action profile
σ(0) ∈ A := {R,S, P}2 there exists a generalized A0–potential and thus the RSP
game is a generalized relative potential game.
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Example 4 highlights that, especially for finite games in which the number of
actions is larger than the number of players (i.e. |A| > N), for the convergence
of h-RBR dynamics Eq. (4.8) it is easier to rely on the existence of generalized
A0–potential functions rather than generalized ordinal potential functions. In fact, it
can be easily proven that every symmetric two-player |A| × |A| game converges to
a GNE under Eq. (4.8) by using the fact that there always exist an exact potential
function for 2×2 games. The RSP game also shows the relation to generalized ordinal
potential games.

Proposition 1. Let G,R denote the class of generalized ordinal potential games and
generalized relative potential games, respectively. Then, G ⊂ R.

Proof. The inclusion G ⊆ R follows from Definitions 14 and 15. Strictness follows
from Example 4.

Corollary 2. For any finite generalized ordinal potential game, the asynchronous
h-RBR dynamics converge globally to a GNE in finite-time.

B

G

E WR

Figure 3.4: Let E, W , G, B, R represent the class of exact, weighted, generalized
ordinal, best response, and generalized relative potential games, respectively. For
finite games, the classic asynchronous best response dynamics are known to converge
to a Nash equilibrium for E, W , G, B (Set indicated by dashed border) Corollary 2
and Proposition 1 shows that the asynchronous h–RBR dynamics will converge to a
GNE for every game in the class R ⊃ G ⊃W ⊃ E.
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3.3 Convergence in convex games

In this section the concepts of bounded games and ε-improvement paths that are
defined in the preliminaries chapter 2. For convex games, we are interested in the
finite time convergence to an approximate GNE that is defined as follows.

Consider the following class of games inspired by weighted potential games [42].

Definition 16 (weighted A0-potential function). A function P : A→ R is a weighted
A0-potential function for Γc and some σ(0) ∈ A, if for every i ∈ V, σi, σ′i ∈ A0 and
σ−i ∈ AN−1

0 , the following implication holds

πi(σ
′
i,σ−i)− πi(σi,σ−i) = wi [P (σ′i,σ−i)− P (σi,σ−i)] ,

for some wi ∈ R+. If such a function exists, then we call Γc a weighted relative
potential game with respect to A0 . Moreover, if wi = 1 for all i ∈ A, then Γc is called
an exact relative potential game with respect to A0.

The following Lemma relates weighted A0-potential functions to exact A0-potential
functions.

Lemma 3 (Equivalence weighted and exact A0–potential function). Γc is a weighted
relative potential with respect to A0 if and only if Γ′c,with payoff functions 1

wi
πi, is an

exact relative potential with respect to A0

Proof. From the definition of a weighted potential game Γ we have πi(σi, σ−i) −
πi(σ

′
i, σ−i) = wi (P (σi,σ−i)− P (σ′i,σ−i)). On the other hand, from the definition of

a potential game Γ′ we have 1
wi
πi(σi, σ−i)− 1

wi
πi(σ

′
i, σ−i) = P (σi,σ−i)− P (σi,σ

′
−i).

Clearly these are equivalent.

The following result provides sufficient conditions for the convergence of h-relative
best response dynamics in convex games.

Theorem 2. Suppose Γ is a bounded game and a weighted relative potential game
with respect to A0. Then for every ε > 0, and initial action profile σ(0) ∈ A0, every
ε−improvement path generated by Eq. (4.8), converges to a ε–GNE in finite-time.

Proof. Because of Lemma 3 it suffices to prove the statement if Γ is an exact relative
potential game with respect to A0. By the definition of Fc

i (σ−i, hi) in equation
Eq. (3.5) it follows that the evolutionary dynamics Eq. (4.8) are positively invariant
w.r.t A0. That is,

σ(t) ∈ A0, ∀t ≥ 0. (3.12)

Because Γ is a bounded game from Definition 16, it follows that P must be bounded
as well. That is,

∃M ∈ R+ : |P (σ)| ≤M, ∀σ ∈ A0 (3.13)
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To prove that the game has the AFIP (see Preliminaries 2), a classic argument can be
used based on a contradiction. Suppose γ is an infinite ε–improvement path. Denote
the unique deviator at time t as it. By definition, if i = it then

πi(t+ 1)− πi(t) > ε,

if and only if
P (σi(t+ 1),σ−i(t+ 1))− P (σi(t),σ−i(t)) > ε. (3.14)

This implies that
P (t)− P (0) > tε⇔ P (t) > tε+ P (0) (3.15)

Then, for every ε > 0

lim
t→∞

P (t) =∞. (3.16)

Because P is a bounded function this is a contradiction. Hence, every ε–improvement
path terminates after a finite number of time steps T . At which it holds that

P (σ(T )) ≤M < P (σ(T )) + ε⇒ P (σ(T )) > M − ε.

This completes the proof.

Remark 2. The concept of generalized ordinal potential games also exists for convex
games in which an increase in the payoff of the unique deviator implies an increase in
the generalized ordinal potential function. However, for this class of convex games, in
general, the bounded payoff functions do not imply the generalized ordinal potential
function is bounded and hence one cannot guarantee convergence. If one, however,
assumes this generalized potential function is bounded for every σ ∈ A0, then the
result in Theorem 2 carries over to this more general class of convex games.

3.4 Networks of best and h-relative best
responders

We have shown that the dynamics of network games in which all players choose
h-relative best responses converge to a generalized Nash equilibrium. And that due
to the their non-innovative nature, the relative best response dynamics converge for a
more general class of games than best response dynamics. This also implies that any
homogeneous action profile, in which all players choose the same action is a trivial
generalized Nash equilibrium. Indeed, payoff monotone imitation dynamics share
this property. In reality, noise in the decision-making process will destabilize most
of these trivial equilibrium profiles. A characterization for the stochastically stable
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states of network games is beyond the scope of this chapter. Instead, we investigate
an interesting scenario in which both best responses and relative best responses occur
in the network game. In this case, it is not guaranteed that a homogeneous action
profile is an equilibrium and the behavior may closer to real-world scenarios in which
decision-makers value social information in different ways. And hence, the mixture of
rationality and social learning can lead to more realistic outcomes. For simplicity, we
assume that players always best respond or always relative best respond, and thus do
not switch between the two decision rules. Although this is a simplification, it is a
reasonable one that may be motivated by the empirical findings in [83] that suggest
humans tend to consistently apply a decision rule under a variety of contexts. The
following result follows immediately from the proofs of Theorem 1 and Theorem 2
and we omit its proof.

Corollary 3. For a weighted potential game Γc, in which players consistently choose
best responses as in Definition 10 or consistently choose h-relative best responses as
in Definition 12, for every ε > 0, and initial condition, every ε−improvement path
generated by Eq. (4.8), converges to a ε-GNE in finite-time. The same holds for
generalized ordinal potential games Γf, with ε = 0.

For the convergence analysis of a mixture of best responders and h-relative best
responders no new theory is required. However, having both types of decision-makers
in a network game can lead to significantly different behavior and equilibrium profiles
that have not yet been studied in the context of network games. As more and more
engineering systems take into account the complex behavior of humans, one may
be interested in how different levels of social learning or different topologies of local
information flows, affect the long-run behavior of economic decision making models.
In the remainder of the chapter, we investigate the various effects that social learning
through h-relative best response can have in economic models related to product
adoption.

3.5 Competing products with network effects

Suppose there are two competing substitute products X and Y on the market and
every player is using one of the two. Each product has an associated price γ > 0 and
λ > 0 and individuals decide which product to use. Note that we are not modeling
how a certain initial product adoption came to be, but we are interested if in the long
run one of the technologies becomes dominant or not. However, it is worth mentioning
that the adoption of a new product can be modeled in a very similar manner. Let
si = 1 and si = 0 denote that player i uses product X and Y , respectively. Due to
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network effects [90] the utility that an individual experiences from these products
partially depends on the number of individuals that are using it. Individuals may
perceive this network effect differently but in general, a growing number of users
increases the utility of the product. To this end, let S =

∑
i∈V σi denote the number

of players in the network that are using product X. Then, the network effect X is
modeled with an affine function, that is for all i ∈ V

Gi(S) := aS + bi, a > 0, bi ≥ 0.

Because Y and X are substitutes, their network effects have a negative correlation.
Such that, for all i ∈ V

Hi(N − S) := d(N − S) + fi, d > 0, fi ≥ 0

The individual network effect parameters bi and fi may reflect how important beneficial
network effects are for a player. For example, if bi is relatively large, the player is
eager to use product X even though the network effect is small. In a simplified
model in which di = 0 and the player simply needs to choose to adopt a new product
the players with a high bi represent “early adopters” and players with a low bi can
represent “laggards” [91]. The utility that player i ∈ V obtains from using X or Y are
given by

Gi(S)− γ, and Hi(N − S)− λ.

Hence, the payoff of a player is

πi(σi, σ−i) = [Gi(S)− γ]σi + (1− σi) [Hi(N − S)− λ] .

Then, the following function is an exact potential function for the competing product
game

P (σ) =

N∑
i=1

(bi + λ− dN − γ − fi)si − d
N∑
i=1

si+

(a+ d)

 N∑
i=1

s2
i +

1

2

N∑
i=1

N∑
j 6=i

sisj

 .
Because this competing product game is an exact potential game, Theorem 1 applies.
Moreover, any mixture of best responders and h-relative best responders the fraction of
the population using product X and Y will converge to a generalized Nash equilibrium
in finite-time (Corollary 3).

Remark 3 (Mixed strategy extension). Because the competing products model is an
exact potential game, it follows that its mixed-strategy extension, in which the players



34 3. Relative Best Response dynamics in network games

choose the fraction of time to use product X or Y , is also a potential game [42, Lemma
2.10]. And thus, the convergence results for h-relative best response dynamics in convex
games are valid in this game. Such a setting can represent the dynamics of Example 2,
in which the network effect of renewable energy can represent an increasingly cleaner
environment.

The addition of h-relative best responses is of particular interest in this model
because they add a social influence to the competing product game that is not captured
by best responses in which decisions of a player are solely based on the aggregate
network effects and the cost and benefit parameters of the player. For relative best
responses, the local information exchanges in the underlying social network of the
players will affect their decisions.

Fig. 3.5 shows that when h = 1 the variation in the fraction of X adopters in the
network is significantly larger than in myopic best response dynamics. These simulation
results were obtained for 100 random initial conditions with ±50% adopters of product
X. The slopes of the network effects are: a = 0.15 and b = 0.12. To introduce variation
in the individual payoffs, the offsets bi and fi were randomly chosen between 0 and 10.
The costs associated with the products are γ = 3 and λ = 2. The large variation in
the standard deviation of the X adopters in the network is also typical for imitation
dynamics and can be attributed to the variation in the initial action profiles, the
stochasticity of the activation sequence and the large variety of generalized Nash
equilibrium profiles in the product adoption game. From the blue line in Fig. 3.5
it can also be seen that, on average, the relative performance considerations in the
1-RBR dynamics allow for significantly higher adoption rates of product X that has
a higher cost (γ > λ), but also a larger slope of the network effect (a > b). Naturally,
these social effects are rather sensitive to the payoffs. In particular, for large networks,
the network effect in the payoff can become dominant and an obvious best choice
may arise that dominates under both types of dynamics. Fig. 3.6 shows another
simulation on a similar network under the same conditions as in Fig. 3.5. One can
observe that the 1-RBR dynamics have very similar qualitative behavior as imitation
dynamics in which players imitate their best performing neighbor.

A typical feature of h-RBR dynamics is shown in Fig. 3.7. As h increases up to
the point that all players employ relative best responses, the standard deviation in
the fraction of X adopters tends to decrease. Interestingly, even for random initial
conditions, the network structure causes significant differences in the behavior between
best response and relative best response dynamics (shown in Fig. 3.5). However,
these differences decrease when the connectivity in the network increases. In Fig.
3.8, the extreme case of a well-mixed network is shown and it can be seen that the
behavior of the two types of dynamics are very similar.
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Figure 3.5: Simulations for the product adoption game with a preferential attachment
network [92] with 50 players. The solid lines represent the mean of 100 iterations
with random initial conditions. The shaded areas represent the standard deviation of
the fraction of players adopting product X over all 100 iterations.
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Figure 3.6: Another simulation of the product aoption game that compares myopic best
response, imitate-the-best (indicated by IM) and 1-RBR dynamics on a preferential
attachment network of size 50.
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Figure 3.7: The effect of h on the fraction of players in the network that adopt X.
Observe that the variation in the fraction reduces as h becomes larger.
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Figure 3.8: The product adoption game on a complete network with 50 players under
best response and relative best response dynamics. Conditions are as described in the
main text.
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3.6 Final Remarks

We have introduced novel dynamics for finite and convex network games that result
from an intuitive mix of rational best responses and social learning by imitation. It
was shown that for a general class of games these dynamics converge to a generalized
Nash equilibrium and that the corresponding decision-making process is “compatible”
with best response dynamics. That is, any mix of best responders and h-relative best
responders will eventually reach an equilibrium action profile. These results make it
possible to rigorously study how relative performance considerations of “irrational” or
conforming decision makers affect the behavior and equilibrium profiles of complex
socio-technical and socio-economic processes. These effects are especially important
for technological challenges that require increasingly complex models of large social
systems that, in reality, are often affected by social learning effects that are not present
in best responses.

In the next chapter, we will couple relative best response dynamics to imitation in
finite games and study how rational imitation can significantly alter the decisions at
equilibria of social dilemmas.





C
h

a
p

t
e

r

4
Imitation, rationality and cooperation in spa-
tial public goods games

Imitation is not just the sincerest
form of flattery– it’s the sincerest
form of learning.

George Bernard Shaw

Imitation and rationality are two seemingly paradoxical behaviors that are often
observed in real-life decision-making processes. For example, companies can make

investment decisions based on deliberate benefit-to-cost analysis or simply decide
to invest because a successful competitor has done so already [93–95]. Likewise,
the adoption of a product can be motivated by others, or because it provides some
immediate benefit for an “innovator" [91]. Indeed, whereas rationality is often coupled
to innovation, imitation is often linked to social learning [84]. Also in the literature
of game theory, myopic best response dynamics are known as innovative dynamics
because they can introduce actions that were not played before [37]. Dynamics based
on imitations do not share this innovative feature. It is for this reason that decision-
making processes based on imitations can have significantly different equilibrium
profiles than those processes based on best responses.

The rationality of best responses is in line with economic theories that suggest
absolute optimization is a natural result of evolutionary forces [70]. For these types
of dynamics, the long-run collective behavior of non-cooperative network games, in
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which players interact exclusively with a fixed group of neighbors, have been studied
extensively [42–45,47–49,69] More biologically inspired imitation dynamics on spatial
structures defined by graphs have, amongst others, been studied in [34, 37, 68, 96].
One of the key drivers of evolutionary graph theory is to identify conditions and
mechanisms under which cooperation can emerge, evolve and persist in social dilemmas
in which the individual incentives are contradictory to the benefit of the system as
a whole [8]. As mentioned before, in such social dilemmas, myopic optimizations
tend to generate outcomes with payoffs that are far from the system optimum: a
situation known as the tragedy of the commons [2, 50]. Spatial structure in the game-
play interactions potentially overcomes this problem by means of network reciprocity
through which cooperators can succeed by forming network clusters in which they
help each other [8, 40]. However, for innovative rational dynamics in which players
can introduce new actions at any given time, network reciprocity is far less effective in
promoting cooperative actions. The main reason is that within a cluster of cooperators
the best response of a player is to defect. Hence, the clusters can break down relatively
easily if players can best respond and introduce new actions.

The convergence properties related to decision-making processes based on myopic
optimizations are well understood. However, because the mechanisms for the evolution
of cooperation tends to be less effective, more often than not at the equilibrium of
a social dilemma, the players need to be satisfied with relatively low payoffs. And
even though imitation based dynamics can lead to better outcomes, the mathematical
study of their dynamics on spatial games is a challenging problem: first, because
there typically exist a multitude of possible non-trivial outcomes [68] and second,
because the existing optimization techniques, used in the analysis of rational best
responses, are not applicable. And indeed, imitations can easily prevent the decision
process to converge to an equilibrium at which all players are satisfied with their
decisions [97, Ch. 10], [98]. We study the effects of rationality and imitation on the
convergence properties and cooperation levels in a social dilemma model known as the
spatial public goods game [96] and study the properties of rational imitation. Under
rational imitations, players apply the rationality principle in their decisions to imitate
a relatively successful neighbor or not. That is, actions are imitated only if they are
expected to be efficient in terms of one’s own success. This combination of rational
decisions and imitation leads to beneficial dynamic features in the social dilemma that
cannot be explained only by best responses or imitation. Hence, rational imitations
can open the door to the design of novel methods for complex systems that have to
rely on large scale cooperation for the maintenance of publicly available goods.
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4.1 Spatial public goods games

In n-player games on networks, for each player i, a graph G defines a group of players
N̄i = Ni ∪ {i}, known as the closed neighborhood of player i, that play a public goods
game (PGG) referred to as the game centered around player i. Therefore, in total,
every player i participates in |Ni|+ 1 games; one centered around herself and |Ni|
centered around her neighbors. Every player i chooses an action σi ∈ {0, 1} that is
either to cooperate (σi = 1), namely to contribute a fixed amount ci > 0 to a publicly
available resource called the public good, or defect (σi = 0), namely to contribute
nothing. The player employs this same action in all of the games that she participates
in [96]. This applies to the cases when players do not have the cognitive capabilities
to discriminate between co-players, or when there is only one public good and the
contribution scales with the degree of the player. In the next chapter, we will study a
setting in which this “one-action” assumption is relaxed. Cooperators and defectors
profit equally from the public good: all players participating in a game centered around
player j ∈ V , evenly share the production of that game defined by pj : {0, 1}|N̄j | → R,
which is a function of the actions of the players in the neighborhood N̄j denoted by
the vector σj := {σl : l ∈ N̄j}. The local payoff of an player i upon the participation
in this game is, hence,

πij(σj) =
pj(σj)

|Nj |+ 1
− ciσi ∀i ∈ N̄j . (4.1)

Production functions are, typically, non-decreasing in the number of cooperators,
reflecting that contributions increase the public good. We relax this monotonicity
assumption, allowing us to study the maintenance of artificially scarce goods known
as club goods. The total payoff of player i is a weighted summation of the local payoffs
she earns at each of the |Ni|+ 1 games:

πi(σ) =
∑
j∈N̄i

λjπij(σj), (4.2)

where λj ∈ R, j ∈ V, represents the relative importance of the game centered around
player j, and σ = (σ1, . . . , σN )> ∈ {0, 1}n is the collective action profile of all the
players. We denote the combined payoff function by π = (π1, π2, . . . , πN )> and the
spatial public goods played under the network G by Γ = (G,π). In an alternative
spatial representation, the group structures are determined by a bipartite graph
B = (M,V,K), with the player set V, a set of non-empty group structuresM⊂ 2V

and edge set K ⊂ V ×M (Fig. 4.1) [99]. The biadjacency matrix of B, denoted
by B = [bji] ∈ R|M|×|V|, is defined such that bji = 1 if and only if (j, i) ∈ K and
zero otherwise, for all i ∈ V, j ∈ M. So the jth row of the biadjacency matrix B
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Figure 4.1: Group interaction on a given network can be represented by the neighbor-
hood hypergraph of a network [96]. When the social interaction network is constructed
from information of the group structure itself (middle), the interactions can alterna-
tively be represented by a bipartite graph (right) in which the players are assigned to
those groups in which they interact [99]. In this example, because of the central role
of player 6, the network representation that is a one mode projection of the bipar-
tite graph, induces different group structures than those in bipartite representation.
Therefore the behavior of a spatial public goods game for the two representations
differ. The figure is adapted from [99].

determines which players interact in the PGG played in group j. Hence, the number
of players in a group j ∈ M equals

∑
i∈V bji > 0. The payoff obtained in group

j ∈M and the total payoff of player i ∈ V are, thus,

πij(σj) =
pj(σj)∑
i∈V bji

− ciσi, πi(σ) =
∑
j∈M

bjiπij(σj). (4.3)

We denote the spatial PGG with the bipartite representation B and payoff functions
Eq. (4.3) by Γb = (B,π).

Example 5 (Homogeneous linear public goods game). The simplest and most widely
studied production function scales linearly with the number of cooperators in the game
and every player has the same contribution c > 0, i.e.,

pi(σ) = rc
∑
j∈Ni

σj , 1 < r < N. (4.4)

Here, r is the public good multiplier that can be seen as the benefit-to-cost ratio of
the game. It is worth to mention that, even though the parameters c and r are the
same for every player, a non-regular network structure introduces asymmetries in the
players’ payoffs and contributions as detailed in [96], and therefore, th corresponding
asynchronous dynamics can lead to complex behaviors.
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4.2 Rational and unconditional imitation update
rules

Each player is associated with an action at time t = 0, and at every time t ∈ Z≥0,
a single player it becomes active to update her action at time t+ 1 based on some
update rule, resulting in a dynamical decision making process called an asynchronous
spatial public goods game. We consider two update rules: unconditional imitation and
rational imitation. The unconditional imitation rule dictates that player i active at
time t updates her action at t+ 1 to that of one of the top hi highest-earning in her
neighborhood, hi ∈ {1, . . . , |N̄i|}:

σi(t+ 1) ∈ Iu
i (σ(t)), (4.5)

where Iu
i provides the set of actions of the relatively successful players:

Iu
i (σ) :=

{
σj

∣∣∣ j ∈ arg max
j∈N̄i

hiπj(σ)

}
. (4.6)

When hi = 1, unconditional imitation recovers “imitate-the-best” decisions [68], where
only the most successful players can be imitated. Unconditional imitation may
be seen as an irrational decision since players do not take into account their own
expected payoff change that results from imitating their neighbors’ actions. Arguably,
imitation becomes more rational when the expected payoff change is taken into
account. This is, for instance true under best-response dynamics in which players
choose actions that optimize their own payoffs against the current actions of their
opponents. Similarly, under rational imitation, players seek to improve their payoffs
myopically, but are restricted to only copy their neighbors’ actions. In other words,
(similar to unconditional imitation) players copy their neighbors’ actions (yet) only if
it improves their own payoffs. More specifically, under rational imitation,

σi(t+ 1) ∈ Ir
i (σ(t)), (4.7)

where Ir
i provides those actions of the top hi-earning players in the neighborhood of

player i who earn no less than player i herself:

Ir
i (σ) := {y ∈ Iu

i (σ) ∪ {σi} |πi(y,σ−i) ≥ πi(σi,σ−i)} .

Note that a rational imitation differs from a “relative best response” [74,75], in the
sense that a rational imitation only requires the imitated action in the feasible action
profile to be a better reply, not necessarily a best reply.
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Remark 4. The set Iu
i (σ) may also be defined under the that players only take into

account the actions of neighbors that receive a higher payoff than themselves (see also
Assumption 5). This modification of the feasible action set does not affect the results
presented in the remainder of the chapter.

4.2.1 Asynchronous imitation dynamics

The players’ activation sequence {it}∞t=0 together with the imitation update rule
govern the evolution of the players’ actions over time, resulting in asynchronous PGG
dynamics. Namely, for every time t ∈ Z≥0, there exists a unique player it ∈ V such
that the collective action dynamics satisfy

σ(t+ 1) ∈ (Iit(σ(t)),σ−it(t)), (4.8)

with Ii(·) = Ir
i (·) for rational imitation dynamics and Ii(·) = Iu

i (·) for unconditional
imitation dynamics. We assume Assumption 2, i.e. the activation sequence is
persistent.

In the long-run, the dynamics either reach an equilibrium action profile in which
all players are satisfied with their decisions or undergo perpetual oscillations in
which a subset of the players do not reach a satisfactory decision and, not necessarily
periodically, imitate each other’s actions indefinitely [68]. We call the action profile
σ∗ ∈ {0, 1}N an imitation equilibrium if

σ∗i ∈ Ii(σ∗) ∀i ∈ V. (4.9)

In the following section, we study the asymptotic behavior of the asynchronous PGG
dynamics under rational and unconditional imitation.

4.3 Finite time convergence of imitation dynamics

4.3.1 Rational Imitation

The imitation update rule Eq. (4.7) maps the action of the active player to a set of
actions of size at most two. If the set include both cooperation and defection, the
player can pick any of the two. We postulate the following assumption to ensure that
players switch to another action only if they have an incentive, i.e., earn more.

Assumption 4 (Incentive to deviate). For player i active at time t, σi(t) 6= σi(t+ 1)

only if there exists an action y ∈ Ir
i (σ) such that

πi(y,σ−i(t)) > πi(σi(t),σ−i(t)).
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The assumption is another reason why rational imitation can be considered to
be a rational decision: should the player’s expected payoff at the next time step not
exceed its current payoff, the player would not deviate. This allows us to obtain the
following general result.

Theorem 3 (Finite time convergence under rational imitation). Under Assumption 4,
any asynchronous spatial PGG governed by the rational imitation update rule reaches
an imitation equilibrium in finite time.

Proof. We first show that the local game with the players in N̄i with payoff function
Eq. (4.1) is an exact potential game. Consider the candidate potential function for a
local interaction

ψi(σ) =
pi(σi)

|Ni|+ 1
−

∑
j∈Ni∪{i}

cjσj . (4.10)

The local payoff difference from a deviation of any player j ∈ Ni ∪ {i} switching from
σj = 0 is

πji(0,σ−j)− πji(1,σ−j) =
pi(0,σ−j)

|Ni|+ 1
− pi(1,σ−j)

|Ni|+ 1
+ cj ,

and the difference in the potential function is ψi(0,σ−j)− ψi(1,σ−j), which reads as

pi(0,σ−j)

|Ni|+ 1
−
∑

l∈Ni∪{i}

clσl −
pj(1,σ−j)

|Ni|+ 1
+
∑

k∈Ni∪{i}

ckσl

=
pi(0,σ−j)

|Ni|+ 1
−
∑

k∈Ni∪{i}

ckσl −
pj(1,σ−j)

|Ni|+ 1
+
∑

k∈Ni∪{i}\{j}

ckσl + cj

=
pi(0,σ−j)

|Ni|+ 1
− pi(1,σ−j)

|Ni|+ 1
+ cj .

It follows that πji(0,σ−j) − πji(1,σ−j) = ψi(0,σ−j) − ψi(1,σ−j). Naturally, the
equality holds for the opposite switch as well. Moreover, observe that for all v /∈
Ni ∪ {i}, ψi(σv, σ−v)− ψi(σ′v, σ−v) = 0. Indeed, when the unique deviator is not a
member of the closed neighborhood, any payoffs of the players obtained in this local
game do not change. We proceed to show that the function P (σ) =

∑N
i=1 wiψi(σ) is

a potential function for the aggregated payoff function Eq. (4.2). To see this, note
that πj(σj ,σ−j)− πj(σ′j ,σ−j) reads as∑

k∈Nj

wk
(
πjk(σj ,σ−j)− πjk(σ′j ,σ−j)

)
=
∑
k∈Nj

wk
(
ψk(σj ,σ−j)− ψk(σ′j ,σ−j)

)
=

N∑
i=1

wi
(
ψi(σj ,σ−j)− ψi(σ′j ,σ−j)

)
.

(4.11)
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The last equality in Eq. (4.11) is because for all k /∈ Nj , ψk(σj ,σ−j)−ψk(σ′j ,σ−j) = 0.
It follows that the spatial PGG is an exact potential game. To finish the proof we
use the concept of the Finite Improvement Property (FIP) that is defined in the
preliminaries in Chapter 2. Because of Assumption 3, for every h = (hi)i∈V , the
rational imitation dynamics generates improvement paths and because we have shown
that the PGG is a potential game, by Lemma 1 each such improvement path terminates
in a finite time. This completes the proof.

Theorem 3 shows that for a general class of PGGs, i.e. with heterogeneous
contributions and arbitrary production functions, the rational imitation dynamics are
guaranteed to converge to an imitation equilibrium in finite time. For the bipartite
representation of the PGG, we have the following result.

Theorem 4 (Finite time convergence in bipartite representations). Under Assumption
3, every asynchronous spatial PGG with a bipartite group structure and governed by
the rational imitation update rule reaches an imitation equilibrium in finite time.

Proof. The proof can be obtained by substituting the expressions for the local payoff
and the total payoff in Eq. (4.3) into the payoff expressions in the proof of Theorem 3
and use the local potential function for the payoffs in group j ∈M

ψj(σ) =
pj(σj)∑
i∈V bji

−
∑
i∈V

bjiciσi, (4.12)

and the potential function for the complete payoffs as
∑
j∈M ψj(σ).

Remark 5. It is worth to mention that the proofs of Theorems 3 and 4 imply that for
these general classes of spatial PGG, best response dynamics will converge to a pure
Nash equilibrium in finite time and the stationary distribution of log-linear learning
in spatial public goods games can be characterized analytically for both representations
of the PGG [45, Theorem 6.1].

In Section 4.4, we will discuss how the imitation equilibria of rational imitation can
significantly differ from the long-run behavior of rational innovative dynamics, and in
some cases also from unconditional imitation dynamics. Before doing so, let us take
a closer look at the convergence properties of the unconditional imitation dynamics
for the spatial public goods game in which the group structures are determined by a
neighborhood hypergraph.

4.3.2 Unconditional imitation

The behavior of decision processes based on unconditional imitations is a challenging
open problem because the generated paths in the combined action profile are not
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necessarily improvement paths : by copying the action of a successful neighbor, a player
may decrease its payoff, even if all other players do not change their actions. A second
complicating factor is that imitations are limited to direct neighbors whereas the
payoffs of the players also depend on two-hop neighbors. This creates an asymmetry
in the spatial structure: the interaction graph that determines one’s payoff and
the replacement graph that determines one’s feasible action set are, in general, not
equal. Indeed, equilibration is not guaranteed under unconditional imitation for
arbitrary spatial structures. For example, even for the relatively simple homogeneous
linear PGG in Example 5, imitating the best performing neighbors can lead to
persistent oscillations (Fig. 4.2). Nevertheless, we will discuss in Section 4.4 how these
‘inconvenient’ properties of imitation dynamics can be beneficial for the maintenance
of publicly available goods. Here, our goal is to identify spatial structures that do
allow the players in the homogeneous linear PGG to reach a satisfactory decision.
We restrict our analysis to ‘imitate the best’ unconditional imitation dynamics, i.e.,
hi = 1 for all i ∈ V. Similar to the rational imitation case, here, we restrain the
active player to arbitrarily switch actions; that is, imitation occurs only if the target
action is more successful. Decision rules that have this property are called payoff
monotone [37, 100,101].

Assumption 5 (Payoff monotone [37, 100]). For player i active at time t, σi(t) 6=
σi(t+ 1) only if there exists an player j ∈ Ni with σj ∈ Iu

i (σ(t)) such that

πj(σ(t)) > πi(σ(t)).

It can be easily shown that if Assumption 5 holds and the network is fully connected
(complete), then the linear homogeneous PGG converges to full defection for every
initial action profile in which defectors exist. This is in line with experimental
results in [78], that indicate that focusing on the success of others leads to selfish
behavior in complete network games. This observed highly defective tendency does
not necessarily occur in more complex spatial structures. We proceed to one of the
minimally-connected network structures: a star.

Lemma 4. Consider a linear homogeneous PGG played on a star network. If
the central player defects at some time instance, then the action profile generated
by ‘imitate the best’ unconditional imitation dynamics will reach the full-defection
imitation equilibrium in finite time.

Proof. Let player 1 represent the central player and players lc and ld represent the
cooperating and defecting leaves, respectively. The following result can be derived
directly from Eq. (4.1), Eq. (4.2) and Eq. (4.4).
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Lemma 5. Consider a star network consisting of one central player and p cooperating
and q defecting leaf players. The players’ accumulated payoffs are given by

π1 =
(σ1 + p)r

N
+
σ1 + 1

2
pr +

σ1

2
qr − (N + 1)σ1, (4.13)

πlc =
(σ1 + p)r

N
+

1 + σ1

2
r − 2, (4.14)

πld =
(σ1 + p)r

N
+
σ1

2
r. (4.15)

We now continue proving the main statement in Lemma 4. We prove by induction
on m defined as the number of cooperating leaves when the central player is defecting.
The result is trivial for m = 0, i.e., when all the players are defecting. Assume the
result holds for m = p − 1, p ≥ 1. Consider some time k0 when the central player
is defecting and there are p cooperating leaves in the network, i.e., m = p. If the
active player at k0 is a defecting leaf, she will not switch since her only neighbor is
the central player who is also defecting. Hence, the state at k0 + 1 will be the same as
the initial state. So consider the first time k1 ≥ k0 when a cooperating leaf is active.
This time exists due to the persistent activation assumption. From Lemma 5, the
payoffs at k1 of the active player lc and her neighbor, player 1, are given by

π1 =
pr

N
+

1

2
pr

πlc =
pr

N
+

1

2
r − 2.

 p≥1
==⇒ π1 > πlc .

Therefore, the cooperating leaf will switch to defection at k1 + 1, resulting in a new
state where the central player is still defecting and there are p− 1 cooperating leaves.
This is the case with m = p− 1, which completes the proof.

Next, we consider to the case when the central player is cooperating and provide
sufficient conditions for reaching the full-cooperation equilibrium and a mixed equilib-
rium in which cooperators and defectors coexist. We refer to the non-central players
as leaf players.

Lemma 6. Consider a linear homogeneous PGG played on a star network. Assume
that initially the central player is cooperating and there are p ≥ 0 cooperating and
q ≥ 1 defecting leaf players. Then

• if r < p+q+1
p+ 1

2 q−
1
2

, then the network will reach the full-defection imitation equilib-
rium;

• if r = p+q+1
p+ 1

2 q−
1
2

, the network is already at a mixed imitation equilibrium;
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• if r > p+q+1
p+ 1

2 q−
1
2

, then the network will reach the full-cooperation imitation equi-
librium.

Proof. Case 1: r < p+q+1
p+ 1

2 q−
1
2

. It follows from Lemma 5 that π1 < πld . Now in case
there are no cooperating leaves in the network, the central player switches to defection
in the next time step, and hence, the networks reaches the full-defection equilibrium.
So consider the case when there is at least one cooperating leaf in the network, i.e.,
p ≥ 1. Then since q ≥ 1, it holds that

3 < 3p+ q ⇒ p+ q + 1

p+ 1
2q −

1
2

< 4⇒ r < 4.

Thus, from Lemma 5 it follows that πlc < πld . Now since π1 < πld , it can be concluded
that only the central player may switch at the next time step. Due to the persistent
activation assumption, there exists some time that the central player becomes active,
and the fist time when that happens, she will switch to defection. Then in view of
Proposition 4, the network will reach the full-defection equilibrium state.

Case 2: r = p+q+1
p+ 1

2 q−
1
2

. Then π1 = πld . Hence, neither the central player nor any
of the defecting leaves will switch actions at the next time step. Trivially the same
holds for every cooperating leaf, resulting in an equilibrium state.

Case 3: r > p+q+1
p+ 1

2 q−
1
2

. Then π1 > πld . Hence, since the cooperating leaves do
not switch actions, the first time that a defecting leaf is active, she will switch to
cooperation. So the new number of cooperating and defecting leaves will be p̄ = p+ 1

and q̄ = q − 1. Then the condition r > p+q+1
p+ 1

2 q−
1
2

for the new state becomes

r >
p̄+ q̄ + 1

p̄+ 1
2 q̄ −

1
2

=
p+ q + 1

p+ 1
2q

,

which holds since r > p+q+1
p+ 1

2 q−
1
2

. Hence, again a defecting leaf will switch to cooperation.
Therefore, eventually the network will reach a full-cooperation equilibrium state. This
completes the proof.

Theorem 5 (Finite time convergence star networks). Every linear homogeneous PGG
played on a star network reaches an imitation equilibrium in finite time.

Proof. The proof follows from Proposition 4 and 6.

After establishing convergence of a completely connected and a minimally con-
nected network, we now proceed to a network that has a regular and close-to-minimal
connectivity: a ring. Before stating the main result, let us postulate the following
assumption that we assume to hold for some values of the public goods multiplier r.
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Assumption 6 (Pairwise persistence). For any pair of players i, j ∈ V and each time
k, there exists some finite time k′ > k such that i and j are activated consecutively at
k′ and k′ + 1.

Although stronger than the persistent activation assumption, the pairwise per-
sistent activation assumption still holds almost surely in most stochastic settings,
particularly when players are activated independently, e.g., according to Poisson clocks
or by a stochastic process where at each time step, one random player becomes active
to alter its current action [46].

Theorem 6 (Finite time convergence ring networks). Consider a linear homogeneous
PGG played on a ring network. If the public goods multiplier r belongs to the interval[
0, 9

2

]
the ‘imitate the best’ unconditional imitation dynamics reach an imitation

equilibrium in finite time. The same holds for r > 9
2 , but when the pairwise persistent

activation Assumption 6 holds.

Proof. We first show that the behavior of the homogenous linear PGG under the
imitate the best unconditional imitation dynamics, although depending on the public-
goods multiplier r, is the same for different values of r in certain ranges. In order
to do this we first introduce the notation σ(k)|r=g , which denotes the state vector at
time k, given that r = g ∈ R≥0.

Lemma 7. Given a ring network, its initial action vector and activation sequence,
for every public goods multiplier r1 and r2 taken from one of the following intervals(

0,
9

5

)
,

(
9

5
,

9

4

)
,

(
9

4
,

9

3

)
,

(
9

3
,

9

2

)
,

(
9

2
,

9

1

)
,

(
9

1
,∞
)
,

it holds that for all time k ≥ 0 σ(k)|r=r1 = σ(k)|r=r2 .

Proof. We prove by strong induction. The statement is trivial for k = 0. Assume that
the statement is true for all k ≤ t for some t ∈ Z≥0. Let i denote the active player at
time t. It suffices to show that all r that belong to one of the above 6 intervals yield
the same σi(t+ 1). According to the unconditional imitation update rule with hi = 1

for all i ∈ V in Eq. (4.6), player i’s action at the next time step σi(t+ 1) depends on
the payoffs of player i and her neighbors at time t. The payoff of player i is determined
by the action of herself, her neighbors and the neighbors of her neighbors (recall that
player i also participates in the games centered around her neighbors). Due to the
ring topology, this implies that πi is determined by σi−2, σi−1, σi, ai+1 and σi+2. By
following the same argument for each of the neighbors of player i, i.e., i− 1 and i+ 1,
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we conclude that the payoffs of player i and her neighbors are determined by the
vector

si =
(
σi−3 σi−2 σi−1 σi σi+1 σi+2 ai+3

)
. (4.16)

Therefore, σi(t+ 1) is completely determined by the actions in si(t). Clearly si allows
for 27 different action profiles. Some of the possible action profiles keep the action
of player i unchanged at t+ 1, some others make player i switch and the rest of the
possible action profiles require r to fulfill a certain condition in order for the action of
player i to change. For example, if si(t) = (1, 1, 1, 1, 1, 1, 1), then σi(t + 1) = σi(t).
Moreover, if si(t) = (1, 0, 0, 1, 0, 0, 1), then we obtain the following payoffs:

πi−1 = r, πi = r − 3, πi+1 = r.

Hence, σi(t+ 1) 6= σi(t) since πi−1, πi+1 > πi, implying that player i’s action changes
regardless of r. However, if si(t) = (1, 0, 1, 0, 1, 0, 1), then we obtain the following
payoffs:

πi−1 =
5

3
r − 3, πi =

4

3
r, πi+1 =

5

3
r − 3.

Hence, σi(t + 1) 6= σi(t) if and only if πi−1 = πi+1 > πi, resulting in r > 9. By
investigating all 128 values of si, we obtain the following critical values of r, so that
for a given si(t), all values of r between any two consecutive critical values result in
the same σi(t+ 1):

0,
9

5
,

9

4
,

9

3
,

9

2
, 9.

This proves the statement for k = t+ 1, which completes the proof.

We now continue with proving the statement in Theorem 6.
For ring networks consisting of 5 players or fewer, the result can be verified by

exhausting all the cases. For ring networks consisting of more than 5 players, we show
the result only for the following two cases. Other cases can be handled similar to
Case 1. Based on Lemma 7, we prove the theorem for each of the following cases:

Case 1: 0 < r < 9
5 . In view of Lemma 7, we only need to prove the result for just

one value of r in this range, say r = 1. Consider the function n1111(σ) : {0, 1}n → Z≥0

defined as the number of 4 consecutive cooperators in the whole network:

n1111(σ) = |{j ∈ V |σj = σj+1 = σj+2 = σj+3 = 1}|

where |X | denotes the cardinality of the set X . We show that n1111 never decreases
over time, i.e., at every time K ≥ 0,

∆n1111(K) = n1111(σ(K + 1))− n1111(σ(K)) ≥ 0. (4.17)
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Let player i be active at K. Then all consecutive quadruple actions that may change
in number at K + 1 are

(σi−3, σi−2, σi−1, σi), (σi−2, σi−1, σi, σi+1),

(σi−1, σi, σi+1, σi+2), (σi, σi+1, σi+2, σi+3).

Therefore, it suffices to show that the number of these four quadruples equaling
(1, 1, 1, 1) at K + 1 is not less than the number of quadruples at K. Since all of
these four quadruples are included in si defined in Eq. (4.16), it suffices to show
that the number of quadruples (1, 1, 1, 1) in si(K + 1) is no less than that in si(K).
Again, the vector si(K) allows for 27 different states. On the other hand, for each of
these states, si(K + 1) can be determined uniquely based on si(K) as discussed in
the proof of Lemma 7 (this is because only player i’s action may change at K + 1,
which is uniquely determined by the actions of herself and her three left and right
neighbors at K). It is worth to mention that if the action that receives the maximum
payoff in the neighborhood is not unique, then the binary action set implies that
the player will not switch. Stack all 27 different states of si(K) and si(K + 1) in
two 27 × 7 binary-matrices S− and S+ so that for every row j = 1, 2, 3, . . . , 27, if
si(K) = S−j , then si(K + 1) = S+

j where Xj represents the jth row of matrix X.
For every j = 1, 2, 3, . . . , 27, delete the jth rows of S+ and S−, if they are the same,
to obtain S+

0 and S−0 . Then the rows of S−0 represent all possible values of si(K)

that will result in player i switching her action. One can check that the number
of 4 consecutive 1’s in every row of S+

0 is no less than that in the same row in
S−0 . This implies that the number of quadruplets (1, 1, 1, 1) in si(K + 1) is no less
than si(K), regardless of what value si(K) takes. Consequently, Eq. (4.17) holds.
Hence, whenever an player switches, the function n1111 either increases or remains
constant. Since n1111 is bounded, this yields the existence of some time k1 at which
n1111 becomes fixed and never changes afterwards. Consider the matrices S−1 and S+

1

that are obtained from S−0 and S+
0 after deleting each row j from both of them if

the number of (1, 1, 1, 1)s in the jth row of S−0 is less than that in S+
0 . Since n1111

is fixed after k1, no switching that results in a change in the number of quadruples
(1, 1, 1, 1) may take place after k1. Hence, for k ≥ k1, si(k) equals one of the rows
of S−1 and si(k + 1) equals the corresponding row in S+

1 . Now one can check that
the number of quadruples (1, 1, 0, 1) in every row of S+

1 is no less than that in the
same row in S−1 . Hence, the function n1101 defined as the number of (1, 1, 0, 1)s in
the network never decreases after k1. Therefore, similar to the argument above, there
exists some finite time k2 when n1101 becomes fixed and never changes afterwards.
So after k2, the number of quadruples (1, 1, 1, 1) and (1, 1, 0, 1) will remain constant.

Next, we obtain S−2 and S+
2 by deleting all rows j from both S−1 and S+

1 where the
number of (1, 1, 0, 1)s in the jth row of S+

1 is more than that in S−1 . Then by following



4.3. Finite time convergence of imitation dynamics 53

the above process, one can show the existence of some time k5 after which the number
of each of the quadruples (1, 1, 1, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (0, 1, 0, 1) and
(1, 1, 1, 0) becomes fixed. Correspondingly, we obtain S−5 and S−5 . Then one can check
that the number of quadruples (0, 0, 0, 0) in every row of S+

5 is no more than that
in the same row in S−5 . Hence, the function −n0000 where n0000 is defined as the
number of quadruples (0, 0, 0, 0) in the network never decreases after k5. Therefore,
there exists some finite time k7, after which n0000 remains constant.

Following this approach and by using consecutively the functions n0011, n0110,
n1100, n1001, −n0010, −n0100, −n1000 and −n0001, one can show the existence of some
time k15 after which, the number of each corresponding quadruple becomes fixed.
Moreover, we obtain S−15 and S+

15 as explained above, yet this time they both become
an empty matrix. This implies that after k15, no more switches of actions may take
place in the network. Hence, the network will reach a stationary state at k15, which
must be an equilibrium due to the persistent activation assumption.

Case 2: 9
5 ≤ r ≤

9
4 . In view of Lemma 7, we only need to prove the result for just

one value of r in this range, say r = 2. Similar to the previous case and by using
the exact same potential-like functions, one can show that the network reaches an
equilibrium.

Case 3: 9
4 ≤ r ≤

9
3 . This case can be proven exactly as case 1.

Case 4: 9
3 ≤ r ≤

9
2 . In view of Lemma 7, we only need to prove the result for just

one value of r in this range, say r = 3.5. Similar to the previous case and by using
consecutively the functions n1110, n1101, n1011, n0111, n0101, n0011, n1100, n1010, n0110,
−n1111, n1001, n0010, n0100 and −n0000, one can show the existence of some time k14

when the network reaches an equilibrium.
Case 5: 9

2 ≤ r ≤ 9. This case can be proved similar to case 6.
Case 6: r > 9. In view of Lemma 7, we only need to prove the result for just one

value of r in this range, say r = 10, which we do in two steps. First, we follow a similar
approach to that in the previous cases. However, this time, instead of particular
quadruples we investigate the number of particular quintuplets. We start with n11111

that is the number of 5 consecutive 1’s in the network. Similar to above, in order to
inspect the evolution of n11111, we consider some time K and denote the active player
at K by i. In order to count the difference of the quintuplets (1, 1, 1, 1, 1) at and after
time K, we need to investigate the actions of 4 players before and after player i in
the ring, resulting in the action vector

qi = (ai−4, σi−3, σi−2, σi−1, σi, σi+1, σi+2, σi+3, σi+4).

Then similar to S−0 and S+
0 , we construct the 29 × 9 binary-matrices Q−0 and Q+

0 .
Now one can check that the number of 5 consecutive 1’s in every row of Q−0 is
non-less than that in the same row in Q+

0 . Hence, there exists some time t1, at
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which −n11111 becomes fixed. By following this approach and using consecutively
the functions −n01111, −n11110, −n01110, n11101, n10111, −n11100, −n01100, −n00111,
n00101, −n00110, −n11010, n11001, n10101, n10001, −n00001, n01010, −n10000, −n11000,
−n00000, −n10011, n00011, n00010, one can show the existence of some time t23, after
which the number of all corresponding quintuplets is fixed. Moreover, we obtain Q−23

and Q+
23 as follows:

Q−23 =

(
1 0 0 1 1 0 1 1 0

0 0 1 0 0 1 0 1 1

)
,

Q+
23 =

(
1 0 0 1 0 0 1 1 0

0 0 1 0 1 1 0 1 1

)
.

Therefore, whenever a player i switches after time t23, the actions of herself and her
four left and right neighbors must be in the form of one of the rows in Q−23 before the
switch and becomes in the form of one of the rows in Q+

23 after the switch.
As the second step of the proof, we show that only a finite number of these switches

is possible. First we prove that only a finite number of switches can happen when the
actions of the active player and her four left and right neighbors are in the form of
the first row in Q−23 before the switch. Assume on the contrary that there are infinite
number of these types of switches. Then there exists some player i ∈ V such that
qi equals the first row of Q−23 for an infinite time sequence K = {k1, k2, . . .}. On the
other hand, due to the pairwise persistent assumption, there exists some time kj ∈ K
such that player i− 1 is active at kj + 1. The actions of player i− 1 and her three
left and right neighbors at kj + 1 are

si−1(kj + 1) = (1, 0, 0, 1, 0, 0, 1).

Hence, player i− 1 switches actions at kj + 2 resulting in

si−1(kj + 2) = (1, 0, 0, 0, 0, 0, 1).

Correspondingly, we have

qi−1(tj + 1) = (∗, 1, 0, 0, 1, 0, 0, 1, ∗),
qi−1(tj + 2) = (∗, 1, 0, 0, 0, 0, 0, 1, ∗)

where ∗ can be either 0 or 1. However, neither qi−1(tj + 1) equals any of the rows of
Q−23, nor q

i−1(tj + 2) equals any of the rows of Q+
23. This is in contradiction with the

fact that the actions of every player who switches and her four left and right neighbors
are in the form of one of the rows in Q−23 before the switch. So there exists some time
k24 ≥ t23, after which no player i whose corresponding qi is in the form of the first row
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of Q−23 takes place. Similarly, the same can be shown for the second row. Therefore,
after some finite time, no player will switch actions, and hence, the network will be
fixed at some state. On the other hand, due to the persistent activation assumption,
that state must be an equilibrium since every player gets the chance to update her
action infinitely many times. This completes the proof.

The proof of Theorem 6 is algorithmic and can be generalized to symmetric spatial
structures, e.g., regular graphs, but is less useful in the convergence analysis for
games on irregular networks. A key feature of the proof is the exploitation of the
fact that the behavior of the homogeneous linear PGG under the ‘imitate the best’
unconditional imitation dynamics is equivalent for different values of r in certain
ranges. This enabled us to significantly decrease the computations necessary to show
finite time convergence for every r ≥ 0.

4.4 Cooperation, convergence and imitation

We have seen that for the spatial PGG, rational imitation dynamics converge to an
imitation equilibrium regardless of the spatial structure and heterogeneity in the
payoff parameters. When the rationality of having incentives to deviate is broken,
as in unconditional imitation dynamics, convergence of the decision process can only
be guaranteed for specific spatial structures. Thus, even under payoff monotonicity
assumptions, in general, one cannot expect that players reach a decision they are
satisfied with. However, an important aspect of imitation dynamics even in the
absence of convergence and mechanisms such as punishment, reward and voluntary
participation [102], unconditional imitations can allow for cooperative actions to exist
in the imitation equilibrium of a social dilemma game (Lemma 6, Fig. 4.2 and [96]).
Hence, under unconditional imitation dynamics the maintenance of a publicly available
resource (i.e. the public good in a PGG), can be assured with relative ease.

For the homogeneous linear PGG, the best response depends solely on the public
goods multiplier r, the degree of a player and the degree of its neighbors. In this
case, cooperation is promoted (resp. impeded) for players with a degree that is higher
(resp. lower) than their neighbors’ degrees. For regular networks, in which all players
have the same degree, say d ≥ 1, cooperation can only exist at the Nash equilibrium
if r > d+ 1. This simple condition, however, implies that cooperation is a dominant
pure strategy in each local interaction, and hence, at least in the spatial PGG, network
reciprocity [8] is ineffective under such rational and innovative decision processes.
Take, for example, the simple 2-regular tree depicted in Fig. 4.2. For a public goods
multiplier r = 5

2 , the unique Nash equilibrium is full defection. Under ‘imitate the best’
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unconditional imitation dynamics, the action profile has persistent oscillations with a
high number of cooperators in the oscillations action profiles. An example of such
oscillations is shown in Fig. 4.2: starting from the action profile in (a) either the play-
ers labeled as 2 and 5, or 3 and 6 persistently imitate each other’s actions. Thus, even
though players cooperate, they are not necessarily satisfied with their decision and keep
changing their actions. This behavior can also occur in matrix games on networks [97].

Interestingly, for a rational imitation process with hi = 1 for all i, the action
profile in Fig. 4.2(a) is, in fact, an imitation equilibrium that coincides with a
generalized Nash equilibrium [88] in which each players selects a relative best response.
Thus it is not the rationality of selfish players that is necessarily detrimental to the
cooperation levels in spatial PGG, but rather their ability to innovate rationally. This
example shows that rational imitation can facilitate cooperative decisions without
compromising the finite time convergence of the decision process, and hence, rational
imitations of selfish players can facilitate cooperative decisions without requiring
any punishment of defectors [12], reputation considerations [12] or the possibility
of players to waive participation in the game and opt for a more self-sustaining
action [102]. Aside from this specific example, extensive simulations on arbitrarily
connected networks support this finding. Thus, it is not always the irrationality of
imitations that allows cooperation to exist, but rather the combination of imitations
and the ability of players to predict, via the (lack of) success of others, when their
own defective motives will become detrimental to their own success. In the folowing
we will show via simulations, how rational imitation can even result in even higher
cooperation levels than unconditional imitation.

4.4.1 Simulations on a bipartite graphs

Let us set hi = 1 for all players and simulate imitate the best unconditional imitation
and rational imitation dynamics for a homogeneous linear PGG with c = 1 and
a variable public goods multiplier r. By varying r we are interested in how the
public goods parameter, acting like a benefit-to-cost ratio, influences the number
of cooperators in the imitation equilibrium. Group structures are determined by
the neighborhoods of a bipartite graph with two independent and disjoint sets each
containing 14 players so that the total number of players is 28. We vary the number
of connections of a player by varying the probability of a player to be connected
to another player in the other disjoint independent player set. Imitate the best
unconditional imitation dynamics need not converge to an imitation equilibrium.
In this case, we let the action profile evolve for 104 time steps and determine the
fraction of cooperators by the number of cooperators at the final time step t = 104.
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(a) Player 2 imitates its best performing neighbor 4.

(b) Player 5 imitates its best performing neighbor 2.

(c) Player 2 imitates its best performing neighbor 1.

(d) Player 5 imitates its best performing neighbor 2, and the action profile
returns to (a). A similar imitation cycle exists for players 3 and 6 when in the
action profile (c) player 3 imitates its best performing neighbor 1.

Figure 4.2: Persistent imitation oscillations in a spatial PGG on a 2-regular tree under
asynchronous unconditional imitation dynamics with parameters c = 1 and r = 2.5.
Green vertices represents a cooperators, red vertices represent defectors. The square
indicates the unique deviator.
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To get a feeling for how rational imitation can facilitate cooperation we initialize one
of the independent sets as cooperators and the other as defectors. The simulation
results are shown in Fig. 4.3. The plots are obtained by averaging over 100 random
activation sequences. In the top sub-figures of Fig. 4.3 one can see that if the
average degree of the players in the network is relatively high e.g. 10 and 7, rational
imitation can facilitate half the network to cooperate for a large range of public goods
multiplier values, whereas unconditional imitation dynamics result in significantly
lower proportion of cooperators. When the average degree of the players is reduced,
this promoting effect of rational imitation is less noticeable, and the proportion of

Figure 4.3: Simulations for a homogeneous linear PGG on a bipartite network with
a clustered initial condition. The four subgraphs correspond to simulation results
obtained for different levels of connectivity between the two independent and disjoint
sets of vertices with an average degree of: 10, 7, 2.5 and 3 (clockwise starting from
top left).
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Figure 4.4: Simulations for a homogeneous linear PGG on a bipartite network with
initial actions that are determined by a discrete uniform distribution. The average
degrees of the players in the networks correspond with those in Fig. 4.3.

cooperators of rational and unconditional imitations are similar (bottom sub-figures
of Fig. 4.3).

When the initial action profile is random but equal for both dynamics, the number
of cooperators are similar for both unconditional and rational imitation, see Fig. 4.4.
The proportion of cooperators in these simulations are obtained by averaging over 500

random initial conditions and activation sequences. In this case, the rational imitation
dynamics promote cooperation more than unconditional imitation dynamics for larger
values of public goods multipliers and an average degree of 7. These simulations
illustrate that rational imitation dynamics of spatial PGG in which the players have
relatively high degrees, the rational imitation dynamics can facilitate initially clustered
cooperators better than unconditional imitation. It is in these cases that network
reciprocity and rational imitations can optimally maintain publicly available goods.
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4.5 Final Remarks

We have shown that rational imitation dynamics in a general class of asynchronous
spatial PGG converge to an imitation equilibrium in a finite time. By means of a
counter-example we have shown that this general case of convergence is not guaranteed
when imitation is unconditional. For regular spatial structures and production
functions, however, we have proven convergence either directly from the payoff
functions or by using an algorithmic proof technique that takes advantage of the
regularity of the network. We have shown that in the case of rational imitation,
convergence is also guaranteed when the group structures are determined by a
bipartite graph. Such a representation of a social dilemma can, for instance, be used
when the group structures are obtained from data that does not contain information
about the entire social network. Next to convergence, we have provided evidence that
in contrast to best response dynamics, rational imitation can effectively facilitate the
evolution of cooperation via network reciprocity. Our results indicate that through
the combination of rationality and imitation, beneficial dynamic features can arise
that are able to sustain the availability of a publicly available good, providing new
insights in the design of solutions to the tragedy of the commons.
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5
Strategic differentiation in finite network
games

Masked, I advance.

René Descartes

Simple decisions or actions taken by interacting individuals can lead to surprisingly
complex and unpredictable population-level outcomes. In particular, when in-

dividual decisions or actions are based on personal interest, the long run collective
behavior, characterized by these selfish decisions, can be detrimental for the popula-
tion as a whole. Mathematical models of such systems require trade-offs between the
complexity of micro-dynamics and the accuracy with which the model can describe a
macro-behavior.

Evolutionary game theory has proven to be a valuable tool in providing mathe-
matical models for such complex dynamical systems. In its original application to
evolving biological populations, rational reasoning or decision-making is not needed;
rather, competing strategies propagate through a population via natural selection.
Economists later adapted this evolutionary game model for the mathematical modeling
of individual decision-makers with bounded rationality [41]. To reach decisions they
are satisfied with, players may thus rely on simple rules. Relative best responses and
rational imitations, that we have studied in the previous chapters, are examples of such
myopic decision rules. As we have seen, these decision-making models can be extended
to include groupwise interactions [96], that are important to study because many



62 5. Strategic differentiation in finite network games

biological and social interactions involve more than two individuals whose collective
decisions can have a variety of behaviors even in well-mixed populations [103].

A common assumption in the existing models for finite network games is that
players do not distinguish between their opponents. In some sense the opponents are
anonymous and hence, there is no difference in the actions employed against each of
them. Indeed, in the previous chapters, it was assumed that all players employ the
same action against their opponents. However, to create a competitive advantage, in
real life competitive settings, it is often crucial to identify the rivals [104]. Avoiding
‘blindspots’ in a competitive decision-making process, i.e. those decisions that require
taking into account the decisions of competitors, is a major topic in the strategic
decision-making literature [105]. In such competitive environments, decision-makers
are likely to distinguish their opponents, and consequently, they may employ different
actions against them.

In this chapter, the mechanism of strategic differentiation is introduced through
which a subset of players in the network, called differentiators, can employ different
actions against different opponents. We will connect strategic differentiation to the
theory of potential games and their generalizations and show that for the class of
weighted potential games the effect of strategic differentiation on any network topology
can be studied analytically using the potential function of the original game. In the
following, we will distinguish groupwise and pairwise games on networks. To make
the difference clear we introduce some additional notation. let πij(σi, σj) denote the
payoff that player i obtains from action σi ∈ Ai in the pairwise interaction against
opponent j ∈ Ni with action σj ∈ Aj . The total payoff that player i obtains in a
single round of play with pairwise interactions is

πi(σi,σ−i) =
∑
j∈Ni

wijπij(σi, σj), (5.1)

with wij ∈ R denoting the weight associated to the local interaction between i and j.
We refer to a non-cooperative game with a payoff function of the form Eq. (5.1) as a
pairwise network game. An example of such a game is the famous spatial prisoner’s
dilemma game. As we have seen in the previous chapter, players may also interact in
groups with a size greater than two, and thus the local interactions form a multiplayer
game. The spatial public goods game studied in the previous chapter is an example of
such a groupwise network game. In general, the payoffs of groupwise network games
cannot be represented by the corresponding sum of pairwise interactions, however the
total payoff that player i obtains in a single round of play is again a weighted sum of
the local payoffs,

πi(σi,σ−i) =
∑
j∈N̄i

wjπij(σi,σ−i), (5.2)
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with wj ∈ R denoting the weight associated to the multiplayer game with exactly
those players in N̄j . Note that in Eq. (5.2) the single round local payoffs depend
on |Nj + 1| ≥ 2 actions and the network structure imposes an interdependence in
the payoffs of players that are connected via an undirected path with length two,
sometimes referred to as the 2-hop neighbors.

5.1 Strategic Differentiation

In a network game with strategic differentiation, a differentiator can employ a separate
pure action for each neighbor; see figure 5.1 for an example of a pairwise game with a
single differentiator on a ring network. Let D be a non-empty subset of V denoting
the set of differentiators in the network, and let F := V \ D denote the set of non-
differentiators. In a groupwise network game, the actions of a player i ∈ D is a
vector si ∈ Si := A|Ni|+1

i : a separate action can be chosen in each of the multiplayer
game with the closed neighborhoods that the player belongs to. The action space
of differentiatiors is indicated by SD :=

∏
i∈D Si. When the game interactions are

pairwise, the dimension of the action vector of player i is reduced by one because
in this case players only interact with their |Ni| neighbors. For some j ∈ Ni, we
indicate by sij ∈ si the action that player i ∈ D employs in the local pairwise (resp.
groupwise) game played against j (resp. Nj). Note that for all i ∈ D and j ∈ N̄i
we assume that sij ∈ Ai, i.e. each action employed by a differentiator is in its
own action set. The action space of players who do not differentiate is indicated by
AF :=

∏
j∈F Aj . Without loss of generality, label differentiators by D = {1, . . . |D|}

and the non-differentiators by F = {|D + 1|, . . . , n}. Then the action space of the

12

43

σ2

s14σ4

s12

σ3

σ4

σ3 σ2

Figure 5.1: Graphical interpretation of a pairwise non-cooperative game on a network
with strategic differentiation. The label of outgoing edges indicates the action played
in the local pairwise interaction. In this example D = {1} and F = {2, 3, 4}.
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networked game with strategic differentiation is given by

S = SD ×AF ,

An action profile in the action space of a game with strategic differentiation is
indicated by s ∈ S. As before, s−i ∈ S−i indicates the action profile of all players
except player i. In a game with strategic differentiation we denote the local payoff
function for the interaction between i and (the neighbors of) j ∈ N̄i by uij : S → R.
Similarly, u : S → Rn denotes the combined payoff vector of the game with strategic
differentiation. For pairwise interactions the payoffs of a differentiator i ∈ D is

ui(si, s−i) =
∑

j∈Ni∩D
wijuij(sij , sji) +

∑
h∈Ni∩F

wihuih(sih, σh). (5.3)

The payoff of a non-differentiator k ∈ F is

uk(sk, s−k) =
∑

m∈Nk∩D
wkmukm(σk, smk) +

∑
v∈Nk∩F

wkvukv(σk, σv) (5.4)

For games with strategic differentiation and groupwise interactions, as in Eq. (5.2),
the local payoff function uij will depend on more than two actions. For i ∈ D,

ui(si, s−i) =
∑
k∈N̄i

wkuik(sik, s−i). (5.5)

And the payoff of a non-differentiator j ∈ F is,

uj(sj , s−j) =
∑
k∈N̄j

wkujk(σj , s−j) (5.6)

We are now ready to formally define a network game with strategic differentiation.

Definition 17 (Strategically differentiated game). A network game with strategic
differentiation is defined by the triplet Ξ := (G,S, u). If πij = uij for all (i, j) ∈ E,
then Ξ is said to be the strategically differentiated version of Γ = (G,A, π).

Example 6 (Strategic differentiation in a groupwise game). As an example of a
groupwise game with strategic differentiation consider a linear public goods game in
which players need to determine whether or not to contribute to a public good that their
opponents can profit from. This decision is modeled by the pure action set Ai = {0, 1}
for all i ∈ V. A differentiator i ∈ D may choose to contribute to one good but withhold
from contributing to another. Hence, si ∈ {0, 1}|Ni|+1. For some j ∈ N̄i, when sij = 1

(resp. sij = 0 ) player i is cooperating (resp. defecting) in the local game against the
group of opponent players N̄j. Let cij ∈ R>0 denote the contribution of a cooperating
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player i in the game against the neighbors of N̄j ⊆ D. In a public goods game, the
contributions get multiplied by an enhancement factor r ∈ [1, n], which can be seen as
a benefit-to-cost ratio of the local interaction. The payoff that player i in this local
game is,

uij(sij , s−i) =
r(
∑
k∈N̄j skjckj + sjjcjj)

dj + 1
− cijsij . (5.7)

5.2 Rationality in games with strategic
differentiation

A best response of a differentiator is a vector of actions for which each element is a
best response in the corresponding local game.

Definition 18 (Differentiated Best Response). For a differentiator i ∈ D, the action
si ∈ Si is a strategically differentiated pure best response against s−i if for all sik ∈ si

sik ∈ arg max
x∈Ai

uik(x, s−i) (5.8)

Based on the definition of a differentiated best response, a Nash equilibrium in a
strategically differentiated game is naturally defined as follows.

Definition 19 (Differentiated Pure Nash equilibrium). An action profile s ∈ S is a
differentiated pure Nash equilibrium of Ξ if for all j ∈ F , σj ∈ s is a best response
and for all i ∈ D, si ∈ s is a strategically differentiated pure best response.

When D = ∅ the original definition of a pure Nash equilibrium is recovered. Best
responses of differentiators are thus defined as vectors of actions for which each element
is locally optimal. Herein lies the main distinguishing feature of best replies in games
without strategic differentiation: a best reply x∗i over the aggregated payoff πi(xi, x−i)
might not optimize the payoffs of each separate local game with payoff πij . Hence, a
strategically differentiated Nash equilibrium can contain actions that are not present
in the Nash equilibrium of the game without strategic differentiation.

Let us now consider myopic best response dynamics in games with strategic
differentiation: the action sij is chosen such that it maximizes uij , ceteris paribus.

Definition 20 (Differentiated myopic best response dynamics). If a player i updates
using differentiated best responses the resulting (myopic) best response dynamics are

sij(t+ 1) ∈ arg max
y∈Ai

uik(y, s−i(t)). (5.9)
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When all differentiators update their actions according to the differentiated best
response dynamics Eq. (5.9) and the others according to myopic best response
dynamics, we indicate the “evolutionary” game with strategic differentiation by (Ξ, β).

Remark 6. Differentiated myopic best response dynamics are an unconstrained
version of myopic best responses in the sense that the local actions are optimized over
the local payoffs without requiring that the employed actions are equal. It follows that
when D = V, for innovative update dynamics like myopic best response the effect
of the network structure on the equilibria of the network game is lost. That is, the
equilibrium action profiles of the networked game would, in this case, correspond to a
collection of separate Nash equilibria of the local games played on the network. When
D ⊂ V the network structure remains important to the myopic best response dynamics.
Moreover, the differentiators may obtain an advantage over their opponents that are
not able to differentiate their actions because for each σi ∈ Ai, s−i ∈ S−i

∃si ∈ Si : ui(si, s−i) ≥ ui(σi, s−i).

Hence, in terms of payoffs, players that differentiate their actions rationally are always
at least as successful as they would have been not differentiating. The benefit that
differentiators can get over non-differentiators implies that especially for evolutionary
update dynamics in which the most successful players are imitated, the existence of
differentiators can have a significant impact on the evolution of the actions in the
network.

5.3 Potential functions for network games with
strategic differentiation

In this section, we describe conditions on the local interactions of network games that
ensure that their strategically differentiated versions have pure Nash equilibria and
convergence of differentiated myopic best response dynamics is guaranteed. For this,
we apply the theory of potential games to strategically differentiated games. Consider
the following definition derived from ordinal potential games [42].

Definition 21 (Differentiated ordinal potential game). Ξ is a strategically differenti-
ated ordinal potential game if there exists an ordinal potential function P : S → R
such that for all σj , σ′j ∈ Aj, si, s′i ∈ Si, s−i ∈ S−i and s−j ∈ S−j the following
holds:

ui(si, s−i)− ui(s′i, s−i) > 0⇔ P (si, s−i)− P (s′i, s−i) > 0, ∀i ∈ D,
uj(σj , s−j)− uj(σ′j , s−j) > 0⇔ P (σj , s−j)− P (σ′j , s−j) > 0, ∀j ∈ F .
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Note that if D = ∅, the original definition of an ordinal potential game introduced in
[42] is recovered from Definition 21. It is well known that every finite ordinal potential
game has a pure Nash equilibrium. This property is generalized to strategically
differentiated games in the following lemma.

Lemma 8. Every finite differentiated ordinal potential game possesses a differentiated
pure Nash equilibrium.

Proof. First assume s∗ ∈ S is a differentiated Nash equilibrium for Ξ. Then, for all
i ∈ D, s∗i ∈ s∗ is such that

ui(s
∗
i , s
∗
−i)− ui(si, s∗−i) ≥ 0, ∀si ∈ Si.

For all j ∈ F the actions of the non-differentiators σ∗j ∈ s∗ are such that

ui(σ
∗
j , s
∗
−i)− ui(σj , s∗−i) ≥ 0, ∀σj ∈ Aj .

By the definition 21 of a differentiated ordinal potential game it follows that

P (s∗i , s
∗
−i)− P (si, s

∗
−i) ≥ 0,∀i ∈ D and ∀si ∈ Si,

P (σ∗j , s
∗
−j)− P (σj , s

∗
−i) ≥ 0,∀j ∈ F and ∀σj ∈ Aj .

Hence s∗ is also a maximum point in P . Similarly one can show that each maximum
point in P is a differentiated Nash equilibrium of Ξ. Since for finite games S is
bounded, a maximum of P always exists. This completes the proof.

One can show that if Ξ is a differentiated ordinal potential game, then (Ξ, β)

will always terminate in a differentiated Nash equilibrium. Instead, we now focus
on finding conditions on the local interactions in groupwise games on networks that
ensure the convergence properties of Γ under best responses are preserved in its
strategically differentiated version Ξ. This is especially useful when one already has a
potential function for the original game on a network and is interested in comparing
the behavior of the game with strategic differentiation. Before doing so, consider the
following definition.

Definition 22 (Differentiated weighted potential games). Ξ is a strategically dif-
ferentiated weighted potential game if there exists a potential function P̄ : S → R
and weights αi, αj ∈ R>0, such that for all σj , σ′j ∈ Aj, si, s′i ∈ Si, s−i ∈ S−i and
s−j ∈ S−j the following holds:

ui(si, s−i)− ui(s′i, s−i) = αi
[
P̄ (si, s−i)− P̄ (s′i, s−i)

)
], ∀i ∈ D

uj(σj , s−j)− uj(σ′j , s−j) = αj
[
P̄ (σj , s−j)− P̄ (σ′j , s−j)

]
, ∀j ∈ F .

Note that if D = ∅, the original definition of a weighted potential game introduced
in [42] is recovered.



68 5. Strategic differentiation in finite network games

The following result relates the fundamental properties of weighted potential games
to their strategically differentiated version.

Theorem 7. In Γ, if for all players i ∈ V there exists for each local payoff function
πij : A→ R, j ∈ Ni, a weighted potential function ρj : A→ R with a common weight
αi ∈ R>0 for player i, then (Ξ, β) converges to a differentiated pure Nash equilibrium.

Proof. For all j ∈ F , let s̄j := (σj , . . . , σj) ∈ A
|Nj+1|
j such that each element in s̄j is

equal to σj ∈ Aj . For all differentiators i ∈ D let s̄i := si. Then, for all j ∈ F the
payoff in the strategically differentiated game can be written as

uj(σj , s−j) =
∑
k∈N̄j

wkujk(s̄jk, s̄−jk),

where s̄−jk denotes the set of actions in the game centered around k, chosen by the
neighbors of k different from j, i.e., s̄−jk := {s̄vk ∈ Av : v 6= j ∧ v ∈ Nk}. For
differentiators i ∈ D, the payoff in the strategically differentiated game is

ui(si, s−i) =
∑
k∈N̄i

wkuij(s̄ik, s̄−ik).

By assumption, in any local game with the neighbors of some k ∈ V, for all
i ∈ N̄k there exists a function ρk : A→ R and weights αi ∈ R+, such that for every
σi, σ

′
i ∈ Ai and every σ−i ∈ A−i the following equality holds,

πik(σi,σ−i)− πik(σ′i,σ−i) = αi [ρk(σi,σ−i)− ρk(σ′i,σ−i)] .

For all the non-differentiators j ∈ N̄k ∩ F , it follows that for every σj , σ′j ∈ Aj and
s̄−jk ∈

∏
v∈N̄k\{j}

Ak it holds that

ujk(xj , s̄−jk)− ujk(x′j , s̄−jk) = αj
[
ρk(xj , s̄−jk)− ρk(x′j , s̄−jk)

]
= αj

[
ρk(s̄jk, s̄−jk)− ρk(s̄′jk, s̄−jk)

]
.

Similarly for the differentiators i ∈ D ∩ N̄k, since s̄ik ∈ Ai and s̄−ik ∈ A−ik, from the
existence of the local weighted potential function ρk it follows that for all s̄ik, s̄′ik ∈ Ai,
s̄−ik ∈ A−ik

uik(s̄ik, s̄−ik)− uik(s̄′ik, s̄−ik) = αi [ρk(s̄ik, s̄−ik)− ρk(s̄′ik, s̄−ik)] .

Let s̄{N̄v} := {s̄kv ∈ Ak : k ∈ N̄v} denote the set of actions employed by the players in
the local interaction with the closed neighborhood of l. The difference in the payoffs
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of a unique deviator i ∈ V switching from action s̄i to s̄′i is given by

ui(s̄i, s̄−i)− ui(s̄′i, s̄−i) =
∑
j∈N̄i

wj
[
uij(s̄ij , s̄−ij)− uij(s̄′ij , s̄−ij)

]
=
∑
j∈Ni

wj
[
αi
(
ρj(s̄ij , s̄−ij)− ρj(s̄′ij , s̄−ij)

)]
= αi

n∑
j=1

wj

(
ρj(s̄{Nj})− ρj(s̄

′
{Nj})

)
.

(5.10)

The last equality in Eq. (5.10) follows from the fact that when the unique deviator
is not a member of some closed neighborhood Nh, then ρh(s{Nh})− ρh(s′{Nh}) = 0.
This implies that

P̄ =
∑
j∈V

wjρj(s̄Nj ),

with weights αi is a weighted potential function and thus Ξ is a strategically differen-
tiated weighted potential game. The convergence of the differentiated myopic best
response then follows from the argument used in traditional potential games. Clearly,
since S̄ is finite, P̄ is bounded. Moreover it is increasing along the trajectory gener-
ated by asynchronous myopic best responses of non-differentiators and asynchronous
differentiated myopic best responses of differentiators. This implies convergence of
the differentiated myopic best response action update dynamics to a differentiated
pure Nash equilibrium.

The proof of Theorem 7 can be easily adjusted to show that the same statement
holds for strategically differentiated pairwise games on networks with wij = wji for all
(i, j) ∈ E . The following corollary of Theorem 7 applies to the class of exact potential
games in which αi = 1 for all i ∈ V.

Corollary 4. If the local groupwise interactions of Γ are potential games, then (Ξ, β)

converges to a strategically differentiated Nash equilibrium.

Remark 7. Theorem 7 and its corollary hold because there always exists a weighted
potential function for payoffs that are a linear combination of local payoffs obtained
from either potential games or weighted potential games with the same action sets and
fixed weight vectors [106]. Hence, conditions on the local game interactions extend
to the entire network game and its strategically differentiated version. This linear
combination property does not hold for ordinal potential games [42]. Thus, assuming
that the entire network game Γ is an ordinal potential game may not be sufficient
for convergence of its strategically differentiated version (Ξ, β). Up to now, we have
not been able to find conditions for ordinal potential games that ensure that their
differentiated versions share their fundamental convergence properties.
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5.4 The free-rider problem with strategic
differentiation

In many social situations, individual members of a group can benefit from the efforts
of other group members. When the individuals tend to be selfish the possibility to
profit from others naturally results in trying to balance out one’s efforts and rewards.
In economics, the free-rider problem describes a situation in which a good or service
becomes under-provided or even depleted as a result of selfish individuals profiting
from a good without contributing to it. Here, we seek to determine how strategic
differentiation can result in more desirable outcomes in which contributions to a good
are preserved in the long run. The problem of finding a pure Nash equilibrium in
a finite potential game is PLS-complete [107]. Therefore, we investigate the effect
of strategic differentiation on the equilibrium action profiles of multiplayer games
on networks via simulation. Unless stated otherwise, all simulations are conducted
on a threshold public goods game which is a non-linear version of the public goods
game described in Example 6. The non-linearity in the payoff function is created
by requiring a minimum number of cooperators in order for the players to obtain a
benefit from the local interaction. For all i ∈ V, let τi denote this threshold value of
cooperators in the local game played by the players in Ni. The payoffs in the local
game of the threshold public goods game are given by,

∀j ∈ Ni : uji(σ) =
r
∑
j∈Ni (σjcji)

|Ni|+ 1
θi(σ, τi)− cjiσj ,

with θi(σ, τi) defined by

θi(σ, τi) =

{
1, if

∑
j∈Ni σj ≥ τi,

0, otherwise.

This model is well established in the fields of economics, sociology and evolutionary
biology and captures the free-rider problem because defectors can benefit from contri-
butions of cooperators [96,108,109], and it is known that the cooperator thresholds in
the model can promote moderate levels of cooperation at an equilibrium [110]. In the
absence of thresholds (i.e. τi = 1 for all i ∈ V), it can be shown that the best response
set for a player is solely determined by the degree distribution of the network and the
public goods multiplier r, and thus, is static. The addition of thresholds thus allows
for richer and more complex decision-making dynamics under best responses. In all
simulations we start with 50% cooperators which are randomly assigned to the nodes
on the network. The local contributions are determined by a players degree: for all
i ∈ V, j ∈ N̄i, cij = 1

|Ni|+1 . Hence, the total contributions that a player can make is
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∑
j∈N̄i cij = 1. This corresponds to a set-up known as fixed costs per individual [96].

The total number of contributions in an equilibrium action profile ŝ is determined as,

0 ≤
∑
i∈D

∑
j∈Ni

cijsij +
∑
h∈F

∑
l∈Nh

chσh ≤ n.

5.4.1 Differentiated Best Response

In this section, we investigate the effect of differentiators on the existence of cooperation
in a differentiated Nash equilibrium. For every player the threshold is equal to two,
i.e., τi = 2 for all i ∈ V. The considered network has size 50 and was formed by
a preferential attachment process and thus has high degree heterogeneity. When
initially there are no differentiators in the network, the total contributions in the Nash
equilibrium is close to zero. Because r = 2.4 < d̄ :=

∑
i∈V |Ni|
N , this is consistent with

a rule for the emergence of cooperation in games on networks proposed in [40]. When
differentiators are added to the network the level of cooperation in equilibrium changes
significantly. For low values of r, within the two-hop neighborhood of differentiators
located at high degree nodes, cooperation starts to exist in the differentiated Nash
equilibrium (Fig. 5.2). However, when the differentiators are placed on low degree
nodes (i.e., |Ni| ≤ d̄) the total number of contributions in equilibrium tends to be
lower than in the Nash equilibrium without differentiators. The same qualitative
effects of strategic differentiation in a set-up known as fixed cost per game, in which the
total contribution that a player can make is equal to their degree in the network. This
illustrates that cooperation can be promoted if individuals with a large social network
(i.e. hubs) can differentiate their actions. An explanation is that, in traditional
network games, cooperating hubs can be taken advantage of by many players and
therefore tend to defect when they cannot differentiate. Indeed, when the groupsize of
a multiplayer game becomes larger the emergence of cooperation becomes more difficult
[111]. When players located at hubs can differentiate however, they can cooperate
against cooperators and defect against defectors, thereby promoting the emergence
of cooperation in their neighborhood. On the other hand, when low degree players
can differentiate, network reciprocity [8] becomes less effective because cooperators
surrounded by other cooperators can start to free-ride in their separate local games.
When the network has a narrow degree distribution as in small-world networks or
regular networks, the effect of differentiators on the emergence of cooperation in the
equilibrium action profile is not as pronounced and more differentiators are needed to
make a significant change to the equilibrium action profile.
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Figure 5.2: Each plot is obtained by averaging 10 trajectories generated by the
differentiated myopic best response dynamics for the same initial condition with
differentiators placed on high degree nodes. In both cases n = 50 and the network is
generated by a preferential attachement process [92].

5.4.2 Differentiated Imitation

We have seen that the existence of differentiators and social influence in network
games can promote the emergence of cooperation at an equilibrium action profile of a
non-cooperative game on a network in which players seek to optimize their payoffs by
playing best responses. Now we assume the players update their actions according to an
imitation process in which each differentiator updates his/her action in a local game by
imitating an action of the best performing players in that local game. The players who
do not differentiate, update their actions by imitating one of their best performing
neighbors [112]. For these imitation based dynamics, the effect of differentiators
located on high degree nodes in the network is remarkable. For a neutral benefit to
cost ratio (r = 1), increasing the number of differentiators tends to increase the level
of cooperation in the equilibrium. When there are only four differentiators located
at high degree nodes, almost half of the players cooperate at the equilibrium action
profile. This behavior was consistent for different activation sequences. Such levels of
cooperation cannot be seen without strategic differentiation. As in the differentiated
best response dynamics, when differentiators employ cooperation against groups of
cooperators and defection against groups of defectors, network reciprocity allows
clusters of cooperators to emerge around differentiators in the equilibrium action
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profile even for very low values of r. More importantly, the concept of false action
attribution seems to be crucial for large scale cooperation in the equilibrium of a social
dilemma with imitation based update rules and strategic differentiation. In these
games, the players who differentiate can obtain high payoffs when they defect against
some of their cooperating opponents. Other players in the network observe these high
payoffs and imitate the action that the differentiator employs in their local game.
False action attribution occurs when that local action happens to be cooperation: a
defecting neighbor of the differentiator is then likely to switch to cooperation, even
though the differentiator obtained the payoffs mostly by defecting. This suggests that
when the number of differentiators increases, not the payoff parameters, but the initial
action profile and the network structure become determinative for the frequency of
the actions in equilibrium. Indeed, when there are many differentiators in the network
the influence of the benefit to cost ratio r on the total contributions in equilibrium is
suppressed. This effect is similar to topological enslavement [113] seen in evolutionary
games on multiplex networks in which hubs dominate the game dynamics. When the
differentiators are placed on low degree nodes, these effects are mitigated.

5.5 Final Remarks

We have shown how network games can be extended to include a subset of players
that can employ different actions against different opponents. When the local games
in the network admit a weighted potential function convergence of the strategically
differentiated version under myopic best response dynamics is guaranteed. For both
imitation and best response like dynamics, the topology of the network, the existence,
and location of differentiators in the networks can crucially alter the action profile at
an equilibrium of groupwise games. When differentiators are plentiful the equilibrium
action profile becomes less sensitive to changes in the values of the payoff parameters.
The convergence results in this framework can be combined with those of Chapter 3
and 4. The combination of relative best responses, rational imitation and strategic
differentiation allows us to study the behavior of many classic games from a novel
perspective.

This chapter concludes the first part of the thesis. We have mainly focused on
network games and structural solutions to social dilemmas via network reciprocity
that allows for the emergence of cooperation via a spatial or social structure. Part
II of the thesis focuses on direct reciprocity in repeated games. In this setting there
is no network structure, in stead, cooperation can evolve through the expectation
of repeated interactions with a fixed group of players. In the following, we will
investigate how such probabilistic decision-making processes can be studied by their
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average behavior and show how strategic individuals can exert significant control in
the long-run outcomes of repeated games.
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6
Exerting control in finitely repeated n-player
social dilemmas

The advantage of a bad memory is
that one enjoys several times the
same good things for the first time.

Friedrich Nietzsche

The functionalities of many complex social systems rely on their composing in-
dividuals’ willingness to set aside their interest for the benefit of the greater

good [39]. In the previous chapters, we have studied how social influence and network
structure can promote these selfless decisions. Another mechanism for the evolution
of cooperation is known as direct reciprocity : even if in the short run it pays off to be
selfish, mutual cooperation can be favored when the individuals encounter each other
repeatedly. Direct reciprocity is often studied in the standard model of repeated games
and it is only recently, inspired by the discovery of a novel class of strategies, called
zero-determinant (ZD) strategies [64], that repeated games began to be examined
from a new angle by investigating the level of control that a single player can exert on
the average payoffs of its opponent. In [64] Press and Dyson showed that in infinitely
repeated 2 × 2 prisoners dilemma games if a player can remember the actions in
the previous round, this player can unilaterally impose some linear relation between
his/her own expected payoff and that of his/her opponent. It is emphasized that
this enforced linear relation cannot be avoided even if the opponent employs some
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intricate strategy with a large memory. Such strategies are called zero-determinant
because they enforce a particular matrix, that depends on the player’s strategy to
have a determinant equal to zero. Later, ZD strategies were extended to games with
more than two possible actions [114], continuous action spaces [115], and alternative
moves [116]. Most of the literature has focused on two-player games; however, in [117]
the existence of ZD strategies in infinitely repeated public goods games was shown by
extending the arguments in [64] to a symmetric public goods game. Around the same
time, characterization of the feasible ZD strategies in multiplayer social dilemmas
and those strategies that maintain cooperation in such n-player games were reported
in [118]. In this chapter, we study the existence of ZD strategies in n-player social
dilemmas with a finite but undetermined number of rounds. That is, future payoffs
are discounted using a fixed and common discount factor [53]. In doing so, we will
unravel how an individual can exert a significant level of control under the “shadow of
the future”.

6.1 Symmetric n-player games

We consider n-player games in which players can repeatedly choose to either cooperate
or defect. The set of actions for each player is denoted by A = {C,D}. The actions
chosen in the group in round t of the repeated game is described by an action profile
σt ∈ A = {C,D}n. A player’s payoff in a given round depends on the player’s action
and the actions of the n− 1 co-players. In a group in which z co-players cooperate,
a cooperator receives payoff az, whereas a defector receives bz. As in [117, 118] we
assume the game is symmetric, such that the outcome of the game depends only on
one’s own decision and the number of cooperating co-players, and hence does not
depend on which of the co-players have cooperated. Accordingly, the payoffs of all
possible outcomes for a player can be conveniently summarized as in Table 6.1.

Table 6.1: Payoffs of the symmetric n-player games. A player’s payoff depends on its
own decision and the number of co-players who cooperate.

Number of cooperators
among co-players

n− 1 n− 2 . . . 2 1 0

Cooperator’s payoff an−1 an−2 . . . a2 a1 a0

Defector’s payoff bn−1 bn−2 . . . b2 b1 b0

We have the following assumptions on the payoffs of the symmetric n-player game.
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Assumption 7 (Social dilemma assumption [118,119]). The payoffs of the symmetric
n-player game satisfy the following conditions:

For all 0 ≤ z < n− 1, it holds that az+1 ≥ az and bz+1 ≥ bz.a)

For all 0 ≤ z < n− 1, it holds that bz+1 > az.b)

an−1 > b0.c)

Assumption 7 is standard in n-player social dilemma games and it ensures that
there is a conflict between the interest of each individual and that of the group as
a whole. Thus, those games whose payoffs satisfy Assumption 7 can model a social
dilemma that results from selfish behaviors in a group. Besides the classic prisoner’s
dilemma game, examples of n-player games that satisfy these assumptions include
the n-player public goods game [109], the volunteers dilemma [120], and the n-player
snowdrift and stag-hunt games [109]. Detailed examples can be found in Section 6.5.

6.1.1 Strategies in repeated games

In repeated games, the players must choose how to update their actions as the
game interactions are repeated over multiple rounds of plays. A strategy of a player
determines the conditional probabilities with which actions are chosen by the player.
To formalize this concept we introduce some additional notation. A history of plays
up to round t is denoted by ht = (σ0, σ1, . . . , σt−1) ∈ At such that each σk ∈ A for
all k = 0 . . . t− 1. The union of possible histories is denoted by H = ∪∞t=0A

t, with
A0 = ∅ being the empty set. Finally, let ∆(A) denote the probability distribution
over the action set A. As is standard in the theory of repeated games, a strategy of
player i is then defined by a function ρ : H → ∆(A) that maps the history of play to
the probability distribution over the action set. An interesting and important subclass
is comprised of those strategies that only take into account the action profile in round
t− 1, (i.e. σt−1 ∈ ht) to determine the conditional probabilities to choose some action
in round t. Correspondingly these strategies are called memory-one strategies and
are formally defined as follows.

Definition 23 (Memory-one strategy [121]). A strategy ρ is a memory-one strategy
if ρ(ht) = ρ(ĥt

′
) for all histories ht = (σ0, . . . , σt−1) and ĥt

′
= (σ̂0, . . . , σ̂t

′−1) with
t, t′ ≥ 1 and σt−1 = σ̂t

′−1.

The theory of Press and Dyson showed that, for determining the best performing
strategies in terms of expected payoffs in two-action repeated games, it is sufficient to
consider only the space of memory-one strategies [64,114].
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6.2 Mean distributions and memory-one strategies

In this section we zoom in on a particular player that employs a memory-one strategy
in the n-player game and refer to this player as the key player. In particular, we
focus on the relation between the mean distribution of the action profile and the
memory-one strategy of the key player. Let pσ ∈ [0, 1] denote the probability that the
key player cooperates in the next round given that the current action profile is σ ∈ A.
By stacking these probabilities for all possible outcomes into a vector, we obtain the
memory-one strategy p = (pσ)σ∈A whose elements are conditional probabilities for
the key player to cooperate in next round. Accordingly, the memory-one strategy prep

σ ,

gives the probability to cooperate when the current action is simply repeated. To be
more precise, let σ = (σi, σ−i) ∈ A, where σi ∈ {C,D} and σ−i ∈ {C,D}n−1. Then
for all σ−i, the entries of the repeat strategy are given by prep

C,σ−i
= 1 and prep

D,σ−i
= 0.

To describe the relation between the memory-one strategy and the mean distribution
of the action profile we introduce some additional notation. Let vσ(t) denote the
probability that the outcome of round t is σ ∈ A. And let v(t) = (vσ(t))σ∈A be the
vector of outcome probabilities in round t. As in [115, 116, 121, 122], we focus on
repeated games with a finite but undetermined expected number of rounds.1. Given
the current round, a fixed and common discount factor 0 < δ < 1 determines the
probability that a next round takes place. By taking the limit of the geometric sum of
δ, the expected number of rounds is 1

1−δ . As in [121], the mean distribution of v(t) is:

v = (1− δ)
∞∑
t=0

δtv(t). (6.1)

As is common in the theory of repeated games, we are interested in the average
discounted payoffs of the repeated n-player game. Alternatively, this can be interpreted
as the expect payoff to the player at the end of the repeated game. Let giσ denote
the payoff in a given round that player i receives in the action profile σ ∈ A. By
stacking the possible payoffs we obtain the vector gi = (giσ)σ∈A that contains all
possible payoffs in a given round of player i. The expected “one-shot” payoff of player
i in round t is πi(t) = gi · v(t). And the average discounted payoff in repeated game

1There is some inconsistency in the repeated games literature and the ZD literature about the
terminology “finitely repeated”. Here we adopt the terminology of [122], in which “finite” refers to
the expected number of rounds 1

1−δ
with δ < 1. In the repeated games literature, this is referred

to as an infinitely repeated game with a finite but undermined number of rounds, or simply as a
infinite repeated game with discounting. In this case, “infinite” refers to the infinite horizon sum over
which the expected number of rounds and the expected payoff (see Eq. (6.2)) are calculated.
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for player i is

πi = (1− δ)
∞∑
t=0

δtπi(t) = (1− δ)
∞∑
t=0

δtgi · v(t) = gi · v. (6.2)

The following lemma relates the limit distribution v of the finitely repeated
game to the memory-one strategy p of the key player. The presented lemma is a
straightforward n-player extension of the 2-player case that is given in [121] and relies
on the fundamental results from [123].

Lemma 9 (Limit distribution). Suppose the key player applies memory-one strategy
p and the strategies of the other players are arbitrary, but fixed. For the finitely
repeated n-player game, it holds that

(δp− prep) · v = −(1− δ)p0,

where p0 is the key player’s initial probability to cooperate.

Proof. The probability that i cooperated in round t is qC(t) = prep · v(t). And the
probability that i cooperates in round t+ 1 is qC(t+ 1) = p · v(t). Now define,

u(t) := δqC(t+ 1)− qC(t) = (δp− prep) · v(t). (6.3)

Multiplying Eq. (6.3) by (1− δ)δt and summing up over t = 0, . . . , τ we obtain

(1− δ)
τ∑
t=0

δtu(t) = (1− δ)(δqc(1)− qc(0) + δ2qc(2)− δqc(1)+

· · ·+ δτ+1qc(τ + 1)− δτqc(τ) = (1− δ)δτ+1qc(τ + 1)− (1− δ)qc(0).

Because 0 < δ < 1, it follows that

lim
τ→∞

(1− δ)
τ∑
t=0

δtu(t) = −(1− δ)p0.

And by the definition of v in Eq. (6.1):

lim
τ→∞

(1− δ)
τ∑
t=0

δt(δp− prep) · v(t) = (δp− prep) · v.

By substituting u(t) back into the equation we obtain

(δp− prep) · v = −(1− δ)p0.

This completes the proof.
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Remark 8 (An infinite expected number of rounds). Note that in the limit δ → 1,
the infinitely repeated game is recovered. In this setting, the expected number of rounds
is infinite. And, if the limit exists, the average payoffs are given by

πi = lim
τ→∞

1

τ + 1

τ∑
t=0

πi(t).

By Akin’s Lemma (see [118,123]), for the infinitely repeated game without discounting,
irrespective of the initial probability to cooperate, it holds that

(p− prep) · v = 0. (6.4)

Hence, a key difference between the infinitely repeated and finitely repeated games is
that p0 is important for the relation between the memory-one strategy p and the mean
distribution v when the game is repeated a finite number of expected rounds. When
the game is infinitely repeated, i.e. δ → 1, the importance of the initial conditions on
the relation between p and v disappears [118].

6.3 ZD strategies in finitely repeated n-player
games

Based on Lemma 9 we now formally define a ZD strategy for a finitely repeated
n-player game. To this end, let 1 = (1)σ∈A.

Definition 24 (ZD strategy). A memory-one strategy p is a ZD strategy for an
n-player game if there exist constants α, βj , γ, 1 ≤ j ≤ n with

∑n
j 6=i βj 6= 0 such that

δp = prep + αgi +

n∑
j 6=i

βjg
j + (γ − (1− δ)p0)1. (6.5)

The following proposition shows how the ZD strategy can enforce a linear relation
between the key player’s expected payoff and that of her co-players.

Proposition 2 (Enforcing a linear payoff relation). Suppose the key player employs
a fixed ZD strategy with parameters α, βj and γ as in definition 24. Then, irrespective
of the fixed strategies of the remaining n− 1 co-players, the payoffs obey the equation

απi +

n∑
j 6=i

βjπj + γ = 0. (6.6)
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Proof.

(δp− prep) = αgi +

n∑
j 6=i

βjg
j + (γ − (1− δ)p0)1

(δp− prep) · v = απi +

n∑
j 6=i

βjπj + γ − (1− δ)p0

(δp− prep) · v + (1− δ)p0 = απi +

n∑
j 6=i

βjπj + γ

0 = απi +

n∑
j 6=i

βjπj + γ.

(6.7)

To be consistent with the earlier work on ZD strategies in infinitely repeated
n-player games [118], we introduce the parameter transformations:

l =
−γ

(α+
∑n
k 6=i βk)

, s =
−α∑n
k 6=i βk

,

wj 6=i =
βj∑n
k 6=i βk

, φ = −
n∑
k 6=i

βk, wi = 0.

Using these parameter transformations, Eq. (6.5) can be written as

δp = prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

− (1− δ)p01, (6.8)

under the conditions that φ 6= 0, wi = 0 and
∑n
j=1 wj = 1. Moreover, the linear

payoff relation in Eq. (6.6) becomes

π−i = sπi + (1− s)l, (6.9)

where π−i =
∑n
j 6=i wjπj .

Remark 9. When all weights are equal, i.e. wj = 1
n−1 for all j 6= i, the formulation

of the ZD strategy for a symmetric multiplayer social dilemma can be simplified using
only the number of cooperators in the social dilemma. To this end, let g−iσi,z denote the
average payoff of the n−1 co-players of i when player i selects action σi ∈ {C,D} and
0 ≤ z ≤ n− 1 co-players cooperate. Using the payoffs in Table 6.1 this may be written
as g−iC,z = azz+(n−1−z)bz+1

n−1 , and g−iD,z = az−1z+(n−1−z)bz
n−1 . We obtain g−i = (g−iσi,z) by

stacking these payoffs into a vector. Similarly, let vσi,z(t) denote the probability that
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at round t, player i chooses action σi and z co-players cooperate. By stacking these
probabilities into a vector we obtain v(t) = (vσi,z(t)). The expected payoff of player
i at time t is again given by πi(t) = gi · v(t). Moreover, the average expected payoff
of the co-players at time t can be conveniently written as π−i(t) = g−i · v(t). The
mean distribution of v(t) is again obtained by using Eq. (6.1), but now the entries of
v provide the fraction of rounds in the repeated game in which player i chooses σi and
z players cooperate. Then πi = gi ·v and π−i = g−i ·v which leads to the ZD strategy

δp = prep + αgi + g−i + (γ − (1− δ)p0)12n.

The four most widely studied ZD strategies are given in Table 6.2. When the
mutual cooperation payoff an−1 results in the highest possible average payoff of the
group, the enforced payoff relation of generous ZD strategies ensure π−i ≥ πi. On
the other hand, when mutual defection gives the lowest possible average payoff of
the group, extortionate ZD strategies ensure π−i ≤ πi. However, in both cases, the
positive slopes (s) of the linear payoff relation Eq. (6.9) ensures that the payoff of the
of the ZD strategist and the average payoff of his/her co-players are positively related.
Implying that the collective best response of the co-players is to maximize the payoff
of the ZD strategist by cooperating.

Table 6.2: The four most widely studied ZD strategies. Depending on the parameter
values s and l, players may be fair, generous, extortionate or equalizers.

ZD strategy Parameter values Enforced relation Typical relation
Fair s = 1 π−i = πi π−i = πi

Generous l = an−1, 0 < s < 1 π−i = sπi + (1− s)an−1 π−i ≥ πi
Extortionate l = b0, 0 < s < 1 π−i = sπi + (1− s)b0 π−i ≤ πi
Equalizer s = 0 π−i = l π−i = l

Because the entries of the ZD strategy correspond to conditional probabilities,
they are required to belong to the unit interval. Hence, not every linear payoff relation
with parameters s, l is valid. Let w = (wi) ∈ Rn−1 denote the vector of weights that
the ZD strategist assigns to her co-players. Consider the following definition that was
given in [121] for two-player games.

Definition 25 (Enforceable payoff relations). Given a discount factor 0 < δ < 1,
a payoff relation (s, l) ∈ R2 with weights w is enforceable if there are φ ∈ R and
p0 ∈ [0, 1], such that each entry in p according to Eq. (6.5) is in [0, 1]. We indicate
the set of enforceable payoff relations by Eδ.

An intuitive implication of decreasing the expected number of rounds in the
repeated game (e.g. by decreasing δ) is that the set of enforceable payoff relations
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will decrease as well. This monotone effect is formalized in the following proposition
that extends a result from [121] to the n-player case.

Proposition 3 (Monotonicity of Eδ). If δ′ ≤ δ′′, then Eδ′ ≤ Eδ′′ .

Proof. Albeit with different formulations of p, the proof follows from the same
argument used in the two-player case [118]. It is presented here to make the chapter
self-contained. From Definition 25, (s, l) ∈ Eδ if and only if one can find φ ∈ R and
p0 ∈ [0, 1] such that the entries of p are in the closed unit interval. Let 0 = (0)σ∈A,
we have

0 ≤ p ≤ 1⇒ 0 ≤ δp ≤ δ1. (6.10)

Then by substituting Eq. (6.8) into the above inequality we obtain,

p0(1− δ)1 ≤ p∞ ≤ δ1+ (1− δ)p01, (6.11)

with

p∞ = prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

 .
Now observe that p0(1 − δ)1 on the left-hand side of the inequality Eq. (6.11) is
decreasing for increasing δ. Moreover, δ1+ (1− δ)p01 on the right-hand side of the
inequality is increasing for increasing δ. The middle part of the inequality, which is
exactly the definition of a ZD strategy for the infinitely repeated game in [118], is
independent of δ. It follows that by increasing δ the range of possible ZD parameters
(s, l, φ) and p0 increases and hence if 0 ≤ p ≤ 1 is satisfied for some δ′, then it is also
satisfied for some δ′′ ≥ δ′.

Now we are ready to state the existence problem studied in this chapter.

Problem 1 (The existence problem in n-player social dilemmas). For the class of
n-player games with payoffs as in Table 6.1 that satisfy Assumption 7, what are
the enforceable payoff relations when the expected number of rounds is finite, i.e.,
δ ∈ (0, 1)?

6.4 Existence of ZD strategies

In this section, the main results on the existence problem are given. We begin by
formulating conditions on the parameters of the ZD strategy that are necessary for
the payoff relation to be enforceable in the finitely repeated n-player game.
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Proposition 4. The enforceable payoff relations (l, s, w) for the finitely repeated
n-player game with 0 < δ < 1, with payoffs as in Table 6.1 that satisfy Assumption 7,
require the following necessary conditions:

− 1

n− 1
≤ −min

j 6=i
wj < s < 1,

φ > 0,

b0 ≤ l ≤ an−1, (6.12)

with at least one strict inequality in Eq. (6.12).

Proof. Suppose all players are cooperating e.g. σ = (C,C, . . . , C). Then from the
definition of δp in Eq. (6.8) and the payoffs given in Table 6.1, it follows that

δp(C,C,...,C) = 1 + φ(1− s)(l − an−1)− (1− δ)p0. (6.13)

Now suppose that all players are defecting. Similarly, we have

δp(D,D,...,D) = φ(1− s)(l − b0)− (1− δ)p0. (6.14)

In order for these payoff relations to be enforceable, it needs to hold that both entries
in Eq. (6.13) and Eq. (6.14) are in the interval [0, δ]. Equivalently,

(1− δ)(1− p0) ≤ φ(1− s)(an−1 − l) ≤ 1− (1− δ)p0, (6.15)

and
0 ≤ p0(1− δ) ≤ φ(1− s)(l − b0) ≤ δ + (1− δ)p0 (6.16)

Combining Eq. (6.15) and Eq. (6.16) it follows that 0 < (1− δ) ≤ φ(1− s)(an−1− b0).

From the assumption that an−1 > b0 listed in Assumption 7, it follows that

0 < φ(1− s). (6.17)

Now suppose there is a single defecting player, i.e., σ = (C,C, . . . ,D) or any of its
permutations. In this case, the entries of the memory-one strategy are

δpσ =

{
1 + φ[san−2 − (1− wj)an−2 − wjbn−1 + (1− s)l]− (1− δ)p0, if xi = C;

φ[sbn−1 − an−2 + (1− s)l]− (1− δ)p0, if xi = D.

(6.18)
Again, for both cases we require δpσ to be in the interval [0, δ]. This results in

the inequalities given in Eq. (6.19) and Eq. (6.20).
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0 ≤ p0(1− δ) ≤ φ[sbn−1 − an−2 + (1− s)l] ≤ δ + (1− δ)p0 (6.19)

(1−δ)(1−p0) ≤ φ[−san−2 +(1−wj)an−2 +wjbn−1− (1−s)l] ≤ 1−p0(1−δ) (6.20)

By combining these equations we obtain

0 < (1− δ) ≤ φ(s+ wj)(bn−1 − an−2). (6.21)

Because of the assumption bz+1 > az it follows that

0 < φ(s+ wj), ∀j 6= i. (6.22)

Then, Eq. (6.22) and Eq. (6.17) together imply that

0 < φ(1 + wj),∀j 6= i. (6.23)

Because at least one wj > 0, it follows that

φ > 0. (6.24)

Combining with Eq. (6.17) we obtain

s < 1. (6.25)

In combination with Eq. (6.22) it follows that

∀j 6= i : s+ wj > 0⇔ ∀j 6= i : wj > −s⇔ min
j 6=i

wj > −s. (6.26)

The inequalities in Eq. (6.25) and Eq. (6.26) finally produce the bounds on slope:

−min
j 6=i

wj < s < 1. (6.27)

Moreover, because it is required that
∑n
j=1 wj = 1, it follows that min

j 6=i
wj ≤ 1

n−1 .

Hence the necessary condition turns into:

− 1

n− 1
≤ −min

j 6=i
wj < s < 1. (6.28)

We continue to show the necessary upper and lower bound on l. From Eq. (6.15)
we obtain:

φ(1− s)(l − an−1) ≤ (1− p0)(δ − 1) ≤ 0. (6.29)
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From Eq. (6.17) we know φ(1− s) > 0. Together with Eq. (6.29) this implies the
necessary condition

l − an−1 ≤ 0⇔ l ≤ an−1. (6.30)

We continue with investigating the lower-bound on l, from Eq. (6.16)

0 ≤ p0(1− δ) ≤ φ(1− s)(l − b0) ≤ δ + (1− δ)p0. (6.31)

Because φ(1− s) > 0 (see Eq. (6.17) it follows that

l ≥ b0.

Naturally, when l = an−1 by assumption 7 it holds that l > b0 and when l = b0 then
l < an−1.

Because fair strategies are defined with the slope s = 1 (see, Table 6.2), an
immediate consequence of Proposition 4 is stated in the following corollary.

Corollary 5. For repeated n-player social dilemma with a finite number of expected
rounds and payoffs that satisfy Assumption 7, there do not exist fair ZD strategies.

In the following result, we extend the theory for infinitely repeated n-player games
from [118] to repeated games with a finite number of expected interactions. To write
the statement compactly, let a−1 = bn = 0. Moreover, let ŵz = min

wh∈w
(
∑z
h=1 wh)

denote the sum of the z smallest weights and let ŵ0 = 0.

Theorem 8 (Characterizing the enforceable set). For the finitely repeated n-player
game with payoffs as in Table 6.1 that satisfy Assumption 7, the payoff relation
(s, l) ∈ R2 with weights w ∈ Rn−1 is enforceable if and only if − 1

n−1 < s < 1 and

max
0≤z≤n−1

{
bz −

ŵz(bz − az−1)

(1− s)

}
≤ l,

min
0≤z≤n−1

{
az +

ŵn−z−1(bz+1 − az)
(1− s)

}
≥ l,

(6.32)

moreover, at least one inequality in Eq. (6.32) is strict.

Proof. In the following we refer to the key player, who is employing the ZD strategy,
as player i. Let σ = (x1, . . . , xn) such that xk ∈ A and let σC be the number of i′s
co-players that cooperate and let σD = n− 1− σC , be the number of i′s co-players
that defect. Also, let |σ| be the total number of cooperators including player i. Using
this notation, for some action profile σ we may write the ZD strategy as

δpσ = prep + φ[(1− s)(l − giσ) +

n∑
j 6=i

wj(g
i
σ − gjσ)]− (1− δ)p0. (6.33)
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Also, note that
n∑
j 6=i

wjg
j
σ =

∑
k∈σD

wkg
k
σ +

∑
h∈σC

whg
h
σ , (6.34)

and because
∑n
j 6=i wj = 1 it holds that∑

l∈σC
wl = 1−

∑
k∈σD

wk.

Substituting this into Eq. (6.34) and using the payoffs as in Table 6.1 we obtain
n∑
j 6=i

wjg
j
σ = a|σ|−1 +

∑
j∈σD

wj(b|σ| − a|σ|−1).

Accordingly, the entries of the ZD strategy δpσ are

δpσ =


1 + φ

[
(1− s)(l − a|σ|−1)−

∑
j∈σD

wj(b|σ| − a|σ|−1)

]
− (1− δ)p0, if xi = C,

φ

[
(1− s)(l − b|σ|) +

∑
j∈σC

wj(b|σ| − a|σ|−1)

]
− (1− δ)p0, if xi = D.

(6.35)
For all σ ∈ A we require that

0 ≤ δpσ ≤ δ. (6.36)

This leads to the inequalities,

0 ≤ (1− δ)(1−p0) ≤ φ

(1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1)

 ≤ 1− (1− δ)p0,

(6.37)

0 ≤ (1− δ)p0 ≤ φ

(1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ| − a|σ|−1)

 ≤ δ+ (1− δ)p0. (6.38)

Because φ > 0 can be chosen arbitrarily small, the inequalities in Eq. (6.37) can
be satisfied for some δ ∈ (0, 1) and p0 ∈ [0, 1] if and only if for all σ such that xi = C

the inequalities in Eq. (6.39) are satisfied.

0 ≤ (1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1). (6.39)
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The inequality Eq. (6.39) together with the necessary condition s < 1 (see also
Proposition 4) implies that

a|σ|−1 +

∑
j∈σD

wj(b|σ| − a|σ|−1)

(1− s)
≥ l, (6.40)

and thus provides an upper-bound on the enforceable baseline payoff l. We now turn
our attention to the inequalities in Eq. (6.38) that can be satisfied if and only if for
all σ such that xi = D the following holds

0 ≤ (1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ| − a|σ|−1)

(1−s)>0
=====⇒ b|σ| −

∑
j∈σC

wj(b|σ| − a|σ|−1)

(1− s)
≤ l.

(6.41)

Combining Eq. (6.41) and Eq. (6.40) we obtain

max
|σ|s.t.xi=D

b|σ| −
∑
l∈σC

wl(b|σ| − a|σ|−1)

(1− s)

 ≤ l,
l ≤ min

|σ|s.t.xi=C

a|σ|−1 +

∑
k∈σD

wk(b|σ| − a|σ|−1)

(1− s)

 .

(6.42)

Because b|σ|−a|σ|−1 > 0 and (1−s) > 0 the minima and maxima of the bounds in
Eq. (6.42) are achieved by choosing the wj as small as possible. That is, the extrema
of the bounds on l are achieved for those states σ|xi=D in which

∑
l∈σC

wl is minimum

and those σ|xi=C in which
∑
k∈σD

wk is minimum. Let ŵz = min
wh∈w

(
∑z
h=1 wh) denote

the sum of the j smallest weights and let ŵ0 = 0. By the above reasoning, Eq. (6.42)
can be equivalently written as in the theorem in the main text. Now, suppose we
have a non-strict upper-bound on the base-level payoff, i.e.,

l = a|σ|−1 +

∑
k∈σD

wk(b|σ| − a|σ|−1)

(1− s)
.

Then from Eq. (6.37) it follows that p0 = 1 is required. Then Eq. (6.38) implies

0 < (1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ| − a|σ|−1)

(1−s)>0
=====⇒ b|σ| −

∑
j∈σC

wj(b|σ| − a|σ|−1)

(1− s)
< l.

(6.43)



6.4. Existence of ZD strategies 91

This is exactly the corresponding lower-bound of l, which is thus required to be
strict when the upper-bound is non-strict.

Now suppose we have a non-strict lower bound, e.g.

l = b|σ| −

∑
l∈σC

wl(b|σ| − a|σ|−1)

(1− s)
.

From Eq. (6.38) it follows that p0 = 0 is required. Then, the inequalities in Eq. (6.37)
require that

0 < (1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1)

(1−s)>0
=====⇒ a|σ|−1 +

∑
j∈σD

wj(b|σ| − a|σ|−1)

(1− s)
> l.

(6.44)

This completes the proof.

Remark 10 (The prisoner’s dilemma). For n = 2 the full weight is placed on the
single opponent i.e., ŵj = 1. When the payoff parameters are defined as b1 = T ,
b0 = P , a1 = R, a0 = S, the result in Theorem 8 recovers the result obtained for the
finitely repeated 2-player game in [121].

Theorem 8 does not stipulate any conditions on the key player’s initial probability
to cooperate other than p0 ∈ [0, 1]. However, the existence of extortionate and
generous strategies does depend on the value of p0. This is formalized in the following
proposition.

Proposition 5 (The influence of the initial probability to cooperate). For the
existence of extortionate strategies it is necessary that p0 = 0. Moreover, for the
existence of generous ZD strategies it is necessary that p0 = 1.

Proof. For brevity, in the following proof we refer to equations that are found in the
proof of Proposition 4. Assume the ZD strategy is extortionate, hence l = b0. From
the lower bound in Eq. (6.16) in order for l to be enforceable, it is necessary that
p0 = 0. This proves the first statement. Now assume the ZD strategy is generous,
hence l = an−1. From the lower bound in Eq. (6.15) in order for l to be enforceable,
it is necessary that p0 = 1. This proves the second statement and completes the
proof.

These requirements on the key player’s initial probability to cooperate make
intuitive sense. In a finitely repeated game, if the key player aims to be an extortioner
that profits from the cooperative actions of others, she cannot start to cooperate
because she could be taken advantage of by defectors. On the other hand, if she
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aims to be generous, she cannot start as a defector because this will punish both
cooperating and defecting co-players.

6.5 Applications

In the following, we will apply the theory developed in this chapter to three n-player
social dilemmas: the n-player linear public goods game, the n-player snowdrift game,
and the n-player stag-hunt game. For simplicity the following assumption is made.

Assumption 8 (Equal weights). The ZD strategists puts equal weight on each co-
player, such that wj = 1

n−1 for all j 6= i.

Under this assumption, we will derive explicit conditions on the group size n,
and the payoff parameters of the n-player social dilemmas under which generous,
extortionate, and equalizer strategies exist. Detailed proofs are provided to show how
the results are obtained, and numerical examples are used to illustrate the implications
of the theory under a variety of circumstances.

6.5.1 n-player linear public goods games

In the n-player linear public goods game, cooperators contribute an amount c > 0

to a publicly available good that grows linearly with the number of cooperators
[109,124–126]. The sum of the contributions is scaled by a public goods multiplier
1 < r < n and then distributed evenly among all players. For cooperators, this results
in one-shot payoffs az = rc(z+1)

n − c and defectors receive bz = rcz
n . The following

Lemma characterizes the bounds on the baseline payoffs.

Lemma 10. For the public goods game the enforceable baseline payoffs are determined
by

max
{

0,
rc(n− 1)

n
− c

1− s

}
≤ l, (6.45)

min
{
rc

n
− c+

c

1− s
, rc− c

}
≥ l, (6.46)

with at least one strict inequality.

Proof. The bounds are obtained by substituting the single-round payoffs az = rc(z+1)
n −

c and bz = rcz
n into the inequalities of Theorem 8 and use the fact that the bounds

are linear in z. The obvious details are omitted.
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Proposition 6 (Extortion in public goods games). Suppose p0 = 0, l = 0 and
0 < s < 1. For a public goods game with r > 1, every slope s ≥ r−1

r can be enforced
independent of n. If s < r−1

r , the slope can be enforced if and only if

n ≤ r(1− s)
r(1− s)− 1

.

Proof. For extortionate strategies l = 0 and 0 < s < 1. The inequalities Eq. (6.45)
and Eq. (6.46) in Lemma 10 become

max
{

0,
rc(n− 1)

n
− c

1− s

}
≤ 0 (6.47)

min
{
rc

n
− c+

c

1− s
, rc− c

}
≥ 0 (6.48)

Solving for s will yield the enforceable slopes in the extortionate ZD strategy. Observe
that a necessary condition for Eq. (6.47) to hold is that the left-hand side is equal 0

and in order for this to hold it is required that

rc(n− 1)

n
− c

1− s
≤ 0⇔ rc(n− 1)− n c

1− s
≤ 0. (6.49)

Equivalently,

n(r − 1

1− s
) ≤ r ⇔ n(r(1− s)− 1) ≤ r(1− s). (6.50)

The conditions − 1
n−1 < s < 1 in Theorem 8 and the assumption that r is positive

implies that r(1 − s) in the right-hand side of Eq. (6.50) is required to be strictly
positive. It follows that if r(1− s)− 1 ≤ 0 the inequalities in Eq. (6.49) are always
satisfied. To obtain the criteria on the slope s we may write,

r(1− s)− 1 ≤ 0⇔ −rs ≤ 1− r ⇔ s ≥ r − 1

r
. (6.51)

Note that if s ≥ r−1
r is satisfied, the left-hand side of the inequality Eq. (6.48) reads

as rc − c. The requirement 0 ≤ rc − c leads to r ≥ 1, which is very natural and
satisfied for the payoff of the public goods game. It follows that for every r > 1, every
s ≥ r−1

r can be enforced independent of n. Due to the requirement that at least one
of the inequalities needs to be strict it follows that for the special case r = 1 it must
hold that s > 0.

On the other hand, when s < r−1
r in order for Eq. (6.49) to be satisfied it must

hold that
n ≤ r(1− s)

r(1− s)− 1
. (6.52)
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Note that s < r−1
r implies r(1− s)− 1 6= 0 so the above inequality is well-defined.

If Eq. (6.52) does not hold and s < r−1
r than

rc(n− 1)

n
− c

1− s
> 0, (6.53)

thus the lower-bound in Eq. (6.47) is not satisfied and consequently there cannot exist
extortionate strategies. We now investigate the inequality Eq. (6.48). We already
know that when s ≥ r−1

r the upper-bound reads as 0 < rc− c and is satisfied for any
r > 1. On the other hand, the left-hand side of Eq. (6.48) is equal to rc

n − c+ c
1−s if

rc

n
− c+

c

1− s
≤ rc− c⇔ n[(1− s)r − 1] ≥ r(1− s).

Because r(1− s) > 0, these inequalities can only be satisfied if s < r−1
r and

n ≥ r(1− s)
r(1− s)− 1

. (6.54)

Under these conditions, the only possibility for an enforceable payoff relation is
the equality case in which n = r(1−s)

(1−s)r−1 , otherwise the lower-bound is not satisfied
and there cannot exist extortionate strategies.

Finally, we check the necessary condition for the existence of solutions of Eq. (6.47)
and Eq. (6.48) that the lower-bound cannot exceed the upper-bound. We already
know that when s ≥ r−1

r the lower and upper-bound read as 0 ≤ 0 ≤ rc− c and is
satisfied for any r > 1. When s < r−1

r for existence, n cannot exceed r(1−s)
r(1−s)−1 . When

equality holds note that we have

if n =
r(1− s)

r(1− s)− 1
and s <

r − 1

r
:

0 =
rc(n− 1)

n
− c

1− s
≤ 0 ≤ rc

n
− c+

c

1− s
= rc− c,

which is satisfied with a strict upper-bound if r > 1. We conclude that the lower-bound
never exceeds the upper-bound and this condition does not limit the existence of
extortionate ZD strategies in the public goods game. This completes the proof.

We now continue to characterize the generous strategies in linear public goods
games.

Proposition 7 (Generosity in public goods games). Suppose p0 = 1, l = rc− c and
0 < s < 1. For a public goods game with 1 < r < n, the region of enforceable slopes of
generous strategies is equivalent to the region of the enforceable slopes for extortionate
strategies.
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Proof. For generous strategies l = rc− c and 0 < s < 1, the inequalities Eq. (6.45)
and Eq. (6.46) in Lemma 10 become

max
{

0,
rc(n− 1)

n
− c

1− s

}
≤ rc− c, (6.55)

min
{
rc

n
− c+

c

1− s
, rc− c

}
≥ rc− c. (6.56)

Clearly in order for generous strategies to exist it is necessary that the left-hand
side of Eq. (6.56) reads as rc− c. Therefor it is required that

rc

n
− c+

c

1− s
≥ rc− c⇔ n(r(1− s)− 1) ≤ (1− s)r.

Hence, this condition is equivalent to the condition in Eq. (6.50) and thus this
condition gives the same feasible region for the existence of extortionate strategies.
Now suppose that, s < r−1

r and n ≥ r(1−s)
r(1−s)−1 . Also in this case, only equality is

possible i.e. n = r(1−s)
r(1−s)−1 because otherwise the upper-bound is not satisfied. Next

to this, if s < r−1
r and n = r(1−s)

r(1−s)−1 in order for the lower-bound to be satisfied it is
required that

rc− c =
rc

n
− c+

c

1− s
≥ rc− c ≥ 0,

which is satisfied with a strict lower-bound for any r > 1. We conclude that, in
the linear public goods game, the region of feasible slopes for generous strategies is
equivalent to the region of feasible sloped for extortionate strategies. This completes
the proof.

Proposition 8 (Equalizers in public goods games). Suppose s = 0. For a public goods
game with 1 < r < n, if n ≤ r

r−1 an equalizer strategy can enforce any baseline payoff
0 ≤ l ≤ rc−c. If r

r−1 < n < 2r
r−1 the equalizer strategy can enforce rc(n−1)

n −c ≤ l ≤ rc
n .

If n ≥ 2r
r−1 no equalizer strategies exist.

Proof. Suppose s = 0 such that the ZD strategy is an equalizer. Then equation
Eq. (6.45) and Eq. (6.46) of Lemma 10 become

max
{

0,
rc(n− 1)

n
− c
}
≤ l ≤ min

{
rc− c, rc

n

}
. (6.57)

Solving for l yield the baseline payoffs that an equalizer strategy can enforce. We
first investigate the conditions under which the entire range of baseline payoffs can
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Figure 6.1: Numerical examples of enforceable slopes for extortionate and generous
strategies in n-player linear public goods games. Observe that when n increases, the
range of enforceable slopes decreases according to the condition on n in Proposition 6
that implies that for larger groups the slope must satisfy s ≥ 1− n

r(n−1) . Also, when r
increases, the set of slopes that can be enforced independent of n decreases according
to the condition s ≥ r

r−1 . One can also see that the requirement r < n, shifts the
feasible region as r increases.

be enforced by the equalizer strategy. Note that the left-hand side of the inequality
Eq. (6.57) is equal to zero if and only if

rc(n− 1)

n
− c ≤ 0⇔ n ≤ r

r − 1
⇔ r ≤ n

n− 1
.

In this case, the upper-bound of Eq. (6.57) is equal to rc− c. It follows that when
n ≤ r

r−1 or equivalently r ≤ n
n−1 , then Eq. (6.57) becomes

if n ≤ r

r − 1
: 0 ≤ l ≤ rc− c, (6.58)
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in other words, almost the entire range (remember one inequality is necessarily strict)
of possible payoffs can be enforced by the equalizer strategy. In the case that n > r

r−1

Eq. (6.57) becomes

if n >
r

r − 1
:

rc(n− 1)

n
− c ≤ l ≤ rc

n
. (6.59)

Thus when n increases and r is fixed, an equalizer strategy can enforce a smaller
range of baseline payoffs. Finally, it must be noted that in the case of Eq. (6.59) it is
possible that the lower-bound is equal or larger than the upper-bound. In this case
no equalizer strategies can exist. To obtain a condition we may write

rc(n− 1)

n
− c ≥ rc

n
⇔ n ≥ 2r

r − 1
⇔ r ≥ n

n− 2
.

It follows that for n ≥ 2r
r−1 no equalizer strategies exist. Finally, we can conclude that

within the range r
r−1 < n < 2r

r−1 the enforceable baseline payoffs for the equalizer
strategy are

rc(n− 1)

n
− c ≤ l ≤ rc

n
,

with at least one strict inequality that is implied by the strict bounds on n. This
completes the proof.

Remark 11 (Enforcing the mutual cooperation payoff in public goods games). A
particularly interesting implication on the bounds of the equalizer strategy is that
whenever r > 1 and n ≤ r

r−1 , then the equalizer ZD strategist can enforce the mutual
cooperation payoff, e.g. π−i = rc− c. This also holds in the extreme case in which
all co-players of the ZD strategist employ the ALLD strategy and thus always defect.
In this special case, only the outcomes (C, 0) and (D, 0) can occur with a positive
probability. Because all co-players employ the same strategy and payoffs are symmetric,
all co-players receive the same payoff that depends on the chosen action of the strategic
player, namely: b1 = rc

n if the ZD strategist cooperates, and b0 = 0 otherwise. Because
r > 1, the condition n ≤ r

r−1 may be written as r ≤ n
n−1 . In this case, the highest

possible public goods multiplier is r = n
n−1 . By substituting this into the payoffs we

obtain
an−1 = rc− c =

n

n− 1
c− c =

c

n− 1
,

and
b1 =

rc

n
=

n

(n− 1)n
c = an−1.

Thus, under these conditions, the ZD strategist will enforce the mutual cooperation
payoff to the ALLD co-players by always cooperating. Indeed, one can define the
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Figure 6.2: Numerical examples of the bounds on the baseline payoff for equalizer
strategies in n-player linear public goods games. When n or r increases the feasible
region becomes smaller. It can be observed that the entire range of baseline payoffs
can be enforced if the group size is sufficiently small, e.g. n ≤ r

r−1 , see Proposition
8. Once this inequality is not satisfied anymore, the region of enforceable baseline
payoffs shrinks according to rc(n−1)

n − c ≤ l ≤ rc
n . Note that the payoffs are obtained

for c = 1, the payoffs can be scaled for higher values of c without affecting the result.

equalizer ZD strategy by setting l = an−1, s = 0 and φ = δ

(1−s)( rcn −c)+c
. Then,

Eq. (6.8) implies

δp = δ1⇒ p = 1.

How to exactly choose the parameter φ depending on δ and the payoff parameters is
one of the topics in the next chapter (see Remark 13 as well).
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6.5.2 n-player snowdrift games

The n-player snowdrift game traditionally describes a situation in which cooperators
need to clear out a snowdrift so that everyone can go on their merry way. By clearing
out the snowdrift together, cooperators share a cost c required to create a fixed benefit
b [109,127–129]. If a player cooperates together with z group members, their one-shot
payoff is az = b− c

z+1 . If there is at least one cooperator (z > 0) who clears out the
snowdrift, then defectors obtain a benefit bz = b. If no one cooperates, the snowdrift
will not be cleared and everyone’s payoff is b0 = 0.

Lemma 11. For the n-player snowdrift game the enforceable baseline payoffs l are
determined as

max
{

0, b− c

(n− 1)(1− s)

}
≤ l ≤ b− c

n
, (6.60)

with at least one strict inequality.

Proof. Suppose z = 0, then the inequalities in Theorem 8 on the baseline payoff
become

0 ≤ l ≤ b− c+
c

1− s
. (6.61)

And if 1 ≤ z ≤ n− 1, the bounds on the enforceable baseline payoffs read as

l ≥ b− c

(n− 1)(1− s)
, (6.62)

l ≤ min
1≤z≤n−1

{
b− c

z + 1
+
n− z − 1

n− 1

c

(z + 1)(1− s)

}
. (6.63)

We continue to investigate the minimum upper-bound of l. After some basic manipu-
lation we find that upper-bound in Eq. (6.63) can be written as

l ≤ min
1≤z≤n−1

b+
((n− 1)s+ 1) c

(n− 1)(z + 1)(1− s)︸ ︷︷ ︸
:=ξ(z)

− c

(n− 1)(1− s)
. (6.64)

From Theorem 8, in order for a ZD strategy to exist it is necessary that s < 1 and
because in a multiplayer game n > 1, the denominator of the fraction ξ(z) is positive
for any 0 ≤ z ≤ n − 1. Thus, if the numerator of ξ(z) is positive as well, then the
minimum of the upper-bound occurs when z is maximum. Now because c > 0 we
have,

[(n− 1)s+ 1]c > 0⇔ (n− 1)s+ 1 > 0⇔ s > − 1

n− 1
.

It follows from the bounds of enforceable slopes s in Theorem 8, that ξ(z) is required
to be positive, otherwise no ZD strategies can exist. Hence, for 1 ≤ z ≤ n− 1 and
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enforceable slope − 1
n−1 < s < 1, the minimum of the upper-bound occurs when all

co-players are cooperating, i.e., z = n− 1. In combination with the upper-bound in
Eq. (6.61) for the case z = 0 we obtain l ≤ min{b− c

n , b− c+ c
1−s}. Note that

b− c

n
< b− c+

c

(1− s)
⇔ s >

1

1− n
⇔ s > − 1

n− 1
.

Hence, for any enforceable slope − 1
n−1 < s < 1 we obtain

l ≤ b− c

n
.

In summary, for the n-player snowdrift game the enforceable base level payoffs l are
determined as

max
{

0, b− c

(n− 1)(1− s)

}
≤ l ≤ b− c

n
,

with at least one strict inequality. This completes the proof.

Proposition 9 (Extortion in n-player snowdrift games). Suppose p0 = 0, l = 0 and
0 < s < 1. For the n-player snowdrift game with b > c > 0, extortionate strategies can
enforce any s ≥ 1 − c

b(n−1) . For high benefit-to-cost b
c >

1
(n−1)(1−s) no extortionate

strategies exist.

Proof. Suppose l = 0 and 0 < s < 1, such that the strategy is extortionate. In this
case, Eq. (6.60) in Lemma 11 becomes

max
{

0, b− c

(n− 1)(1− s)

}
≤ 0 ≤ b− c

n
. (6.65)

For any b > c the upper-bound is satisfied. In order for the lower-bound to be satisfied
it is required to hold that

b− c

(n− 1)(1− s)
≤ 0⇔ b

c
≤ 1

(n− 1)(1− s)
, (6.66)

or equivalently, s ≥ 1 − c
b(n−1) . Clearly, for smaller slopes s < 1 − c

b(n−1) no
extortionate strategies can exist. Finally, because the lower-bound cannot exceed
the upper-bound as long as s > − 1

n−1 we conclude that extortionate strategies with
slopes s ≥ 1− c

b(n−1) can exist in the n-player snowdrift game.

Proposition 10 (Generosity in n-player snowdrift games). Suppose p0 = 1, l = b− c
n

and 0 < s < 1. For the n-player snowdrift game with b > c, generous strategies can
enforce any 0 < s < 1 independent of n.
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Figure 6.3: Enforceable slopes in the n-player snowdrift game for extortionate (left,
dark area) and generous ZD strategies (left, light area) with b = 2 and c = 1. In
this game, extortionate strategies only exist when the slope is sufficiently high, see
Proposition 9, in this numerical example s ≥ 1 − 1

2(n−1) . In contrast, generous
strategies can enforce any slope 0 < s < 1, see Proposition 10. However, the desired
slope will affect the minimum number of rounds necessary to enforce the linear payoff
relation. As in Proposition 11 equalizer strategies can enforce a limited range of
baseline payoffs that becomes smaller when the group size increases (right).

Proof. Now suppose l = b− c
n and 0 < s < 1. In this case, Eq. (6.60) in Lemma 11

becomes

max
{

0, b− c

(n− 1)(1− s)

}
≤ b− c

n
≤ b− c

n
. (6.67)

Clearly, for any b > c > 0, n > 0 these inequalities are satisfied for any s > − 1
n−1 .

And hence, generous strategies always exist in the n-player snowdrift game. This
completes the proof.

Proposition 11 (Equalizers in n-player snowdrift games). Suppose s = 0. For the
n-player snowdrift game with b > c > 0 the enforceable baseline payoffs for equalizer
strategies are b− c

n−1 ≤ l ≤ b−
c
n .

Proof. Suppose s = 0. We solve for the range of enforceable base-level payoffs. In
this case, Eq. (6.60) in Lemma 11 becomes

max
{

0, b− c

(n− 1)

}
≤ l ≤ b− c

n
, (6.68)

Clearly, for b > c > 0 and n > 1 the lower-bounds reads as b − c
(n−1) and the

lower-bound cannot exceed the upper-bound. This completes the proof.
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6.5.3 n-player stag hunt games

In the public goods and the n-player snowdrift game, a single player can create a
benefit. In some social dilemmas a single cooperator is not sufficient to create a
benefit. In the n-player stag hunt game players obtain a benefit b if only if all players
cooperate [109]. This results in the payoffs,

bz = 0, for all 0 ≤ z ≤ n− 1,

az =

{
b− c, if z = n− 1;

−c, otherwise.

Lemma 12. For the n-player stag hunt game the enforceable baseline payoffs are
determined by

0 ≤ l ≤ min
{

c

1− s
1

n− 1
− c, b− c

}
.

Proof. By substituting the expressions for the single round payoff of the n-player stag
hunt game into the lower bound on l in Theorem 8 we obtain,

max
0≤z≤n−1

{
− z

n− 1

c

1− s

}
≤ l (6.69)

Because c > 0 and 1 − s > 0, it follows that the maximum lower bound is 0. Now
assume 0 ≤ z ≤ n− 2, the upper bound on the baseline payoff in Theorem 8 reads as

min
0≤z≤n−1

{
−c+

n− z − 1

n− 1

c

1− s

}
= −c+

1

n− 1

c

1− s
(6.70)

Now suppose z = n− 1, then the upper bound reads as b− c > 0. This completes the
proof.

From Lemma 12, we can immediately observe that there do not exist equalizer
strategies in the n-player stag hunt game. Namely, by substituting s = 0 into the
bounds of Lemma 10 one arrives at a contradiction because b > c and n > 1. However,
the following propositions show that extortionate and generous strategies do exist.

Proposition 12 (Extortion in n-player stag-hunt games). Suppose p0 = l = 0, and
0 < s < 1. For the n-player stag hunt game with b > c, extortionate strategies can
enforce any slope s ≥ 1 − c

(n−1)b independent of the group size n > 2. For smaller
slopes s < 1− c

b(n−1) it needs to hold that n < 2−s
1−s .

Proof. Assume l = b0 = 0, the bounds on the baseline payoff in Lemma 12 become

0 ≤ 0 ≤ min
{

c

1− s
1

n− 1
− c, b− c

}
. (6.71)
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By assumption b > c > 0, hence if

c

1− s
1

n− 1
− c ≥ b− c > 0⇒ s ≥ 1− c

(n− 1)b
,

then the bounds in Eq. (6.71) are satisfied with a strict lower bound. Alternatively, if
s < 1− c

(n−1)b , then the bounds are satisfied with one strict inequality if and only if

c

1− s
1

n− 1
− c > 0⇒ n <

2− s
1− s

.

This completes the proof.

Proposition 13 (Generosity in n-player stag-hunt games). Suppose p0 = 1, l = b− c
and 0 < s < 1. For the n-player stag hunt game with b > c, generous strategies can
enforce any slope s ≥ 1− c

b(n−1) . Smaller slopes s < 1− c
b(n−1) cannot be enforced.

Proof. Assume l = an−1 = b − c, the bounds on the baseline payoff in Lemma 12
become

0 ≤ b− c ≤ min
{

c

1− s
1

n− 1
− c, b− c

}
, (6.72)

clearly for this upper bound to hold it is required that

b− c ≤ c

1− s
1

n− 1
− c⇒ s ≥ 1− c

(n− 1)b
.

This completes the proof.

Remark 12. Interestingly, the enforceable slopes of generous strategies in the n-
player stag hunt game coincide with the enforceable slopes of extortionate strategies in
n-player snowdrift games.

6.6 Final Remarks

We have characterized the enforceable payoff relation in finitely repeated n-player
social dilemma games. Even though the single-round payoffs of the players are
symmetric, it turns out that a single player can exert a significant level of control
on their co-players in a variety of social dilemmas. Naturally, exerting this control
requires repeated interactions. In the next chapter we will investigate how “fast” a
ZD strategist can enforce some desired payoff relation.
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The efficiency of exerting control in multi-
player social dilemmas

However beautiful the strategy, you
should occasionally look at the
result.

Winston Churchill

In the previous chapter we characterized the enforceable payoff relations of ZD-
strategies in repeated n-player social dilemma games with a finite but undetermined

number of rounds. The obtained conditions generalize those for two-player games
and illustrate how a single player can exert control over the outcome of an n-player
repeated game with discounted payoffs. However, the conditions that result from
the existence problem do not specify requirements on the discount factor other than
δ ∈ (0, 1). One could be interested in how many expected rounds a ZD strategists
would require to enforce some desired payoff relation. In this chapter, we will address
exactly this “efficiency” problem.

Problem 2 (The minimum threshold problem). Suppose the desired payoff relation
(s, l) ∈ R2 satisfies the conditions in Theorem 8. What is the minimum δ ∈ (0, 1) under
which the linear relation (s, l) with weights w can be enforced by the ZD strategist?

Because δ determines the expected number of rounds, solutions to this problem
also provide insight into one’s possibilities for exerting control given a constraint on
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the expected number of interactions. We will consider the three enforceable classes of
ZD-strategies in n-player social dilemmas separately. Before giving the main results
it is necessary to introduce some additional notation. Define w̃z = max

wh∈w

∑z
h=1 wh to

be the maximum sum of weights for some permutation of σ ∈ A with z cooperating
co-players. Additionally, for some given payoff relation (s, l) ∈ R2 and w ∈ Rn−1

define

ρC := max
0≤z≤n−1

(1− s)(az − l) + w̃n−z−1(bz+1 − az),

ρC := min
0≤z≤n−1

(1− s)(az − l) + ŵn−z−1(bz+1 − az),

ρD := max
0≤z≤n−1

(1− s)(l − bz) + w̃z(bz − az−1),

ρD := min
0≤z≤n−1

(1− s)(l − bz) + ŵz(bz − az−1). (7.1)

In the following, we will use these extrema to derive threshold discount factors for
extortionate, generous and equalizer strategies in symmetric n-player social dilemma
games.

7.0.1 Extortionate ZD-strategies

We first consider the case in which l = b0 and 0 < s < 1, such that the ZD-strategy is
extortionate.

Theorem 9 (Thresholds for extortion). Assume that p0 = 0 and (s, b0) ∈ R2 satisfy
the conditions in Theorem 8, then ρC > 0 and ρD + ρC > 0. Moreover, the threshold
discount factor above which extortionate ZD-strategies exist is determined by

δτ = max

{
ρC − ρC

ρC
,

ρD

ρD + ρC

}
.

Proof. For brevity in the following proof we refer to equations that can be found in
the proof of Theorem 8, in Chapter 6. From Proposition 5 we know that in order
for the extortionate payoff relation to be enforceable it is necessary that p0 = 0. By
substituting this into Eq. (6.37) it follows that in order for the payoff relation to be
enforceable it is required that for all σ such that xi = C the following holds:

ρC(σ) := (1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ|−a|σ|−1
) > 0. (7.2)

Hence, Eq. (6.37) with p0 = 0 implies that for all σ such that xi = C it holds that

1− δ
ρC(σ)

≤ φ ≤ 1

ρC(σ)
⇒ 1− δ

ρC(z, ŵz)
≤ φ ≤ 1

ρC(z, w̃z)
. (7.3)
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Naturally, it holds that ρC ≥ ρC . In the special case in which equality holds, it follows
from equation Eq. (7.3) that δ ≥ 0, which is true by definition of δ. We continue to
investigate the case ρC > ρC . In this case, a solution to Eq. (7.3) for some φ > 0

exists if and only if

1− δ
ρC(z, ŵz)

≤ 1

ρC(z, w̃z)
⇒ δ ≥

ρC − ρC

ρC
, (7.4)

which leads to the first expression in the theorem. Now, from Eq. (6.38) with p0 = 0,
it follows that in order for the payoff relation to be enforceable it is necessary that

∀σ s.t. xi = D : 0 ≤ φρD(σ) ≤ δ ⇒ 0 ≤ φρD(z, w̃z) ≤ δ. (7.5)

Because φ > 0 is necessary for the payoff relation to be enforceable, it follows that
ρD(σ) ≥ 0 for all σ such that xi = D. Let us first investigate the special case in which
ρD(z, w̃z) = 0. Then Eq. (7.5) is satisfied for any φ > 0 and δ ∈ (0, 1). Now, assume
ρD(z, w̃z) > 0. Then, Eq. (7.5) and Eq. (7.3) imply

1− δ
ρC(z, ŵz)

≤ φ ≤ δ

ρD(z, w̃z)
. (7.6)

In order for such a φ to exist it needs to hold that

1− δ
ρC(z, ŵz)

≤ δ

ρD(z, w̃z)

ρD, ρC>0
======⇒ δ ≥ ρD

ρD + ρC
. (7.7)

This completes the proof.

7.0.2 Generous ZD-strategies

If a player instead aims to be generous, in general, different thresholds will apply.
Thus, let us now consider the case in which l = an−1 and 0 < s < 1 such that the
ZD-strategy is generous.

Theorem 10 (Thresholds for generosity). Assume that p0 = 1 and (s, an−1) ∈ R2

satisfy the conditions in Theorem 8. Then ρD > 0 and ρC + ρD > 0. Moreover, the
threshold discount factor above which generous ZD-strategies exist is determined by

δτ = max

{
ρD − ρD

ρD
,

ρC

ρC + ρD

}
.

Proof. The proof is similar to the extortionate case in the proof of Theorem 9. From
Proposition 5 we know that in order for the generous payoff relation to be enforceable
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it is necessary that p0 = 1. By substituting this into Eq. (6.38) it follows that in order
for the payoff relation to be enforceable it is required that for all σ such that xi = D

the following holds:

ρD(σ) = (1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ|−a|σ|−1
) > 0. (7.8)

Hence, Eq. (6.38) with p0 = 1 implies that for all σ such that xi = D it holds that

1− δ
ρD(σ)

≤ φ ≤ 1

ρD(σ)
⇒ 1− δ

ρD(z, ŵz)
≤ φ ≤ 1

ρD(z, w̃z)
. (7.9)

If ρD = ρD > 0 this implies δ ≥ 0. Otherwise Eq. (7.9) implies that

1− δ
ρD(z, ŵz)

≤ 1

ρD(z, w̃z)
⇒ δ ≥

ρD − ρD

ρD
, (7.10)

which leads to the first expression in the theorem. Moreover, from Eq. (6.37) we know
that the following must hold:

∀σ s.t. xi = C : 0 ≤ φρC(σ) ≤ δ ⇒ 0 ≤ φρC(z, w̃z) ≤ δ. (7.11)

Because φ > 0 it follows that ρC(σ) ≥ 0 for all σ such that xi = C. Let us now
consider the special case in which φρC(z, w̃z) = 0. Then, Eq. (7.11) is satisfied for
any φ > 0 and δ ∈ (0, 1). Now suppose ρC(z, w̃z) > 0. Then, Eq. (7.11) and Eq. (7.9)
imply that in order for the generous strategy to be enforceable it is necessary that

1− δ
ρD(z, ŵz)

≤ φ ≤ δ

ρC(z, w̃z)
. (7.12)

Such a φ exists if and only if

1− δ
ρD(z, ŵz)

≤ δ

ρC(z, w̃z)

ρD, ρC>0
======⇒ δ ≥ ρC

ρD + ρC
. (7.13)

This completes the proof.

Remark 13. The proofs of the threshold discount factors rely on the existence of
solutions of the parameter φ > 0 that make the ZD strategy well-defined. In Remark
11 (Chapter 6), φ was chosen as the upper bound in Eq. (7.6). In the public goods
game this is a valid choice of φ for both generous and extortionate strategies, see
Eq. (7.35).
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7.0.3 Equalizer ZD-strategies

The existence of equalizer strategies with s = 0 does not impose any requirement on
the initial probability to cooperate. In general, one can identify different regions of the
unit interval for p0 in which different threshold discount factors exist. For instance,
the boundary cases can be examined in a similar manner as was done for extortionate
and generous strategies and, in general, will lead to different requirements on the
discount factor. In this section, we derive an expression for the threshold discount
factor such that the equalizer payoff relation can be enforced for a variable initial
probability to cooperate that is within the open unit interval, i.e. p0 ∈ (0, 1).

Theorem 11 (p0 and δ conditions for equalizers). Suppose s = 0 and l satisfies the
bounds in Theorem 8. Then, the equalizer payoff relation can be enforced for p0 ∈ (0, 1)

if and only if the following inequalities hold

δ ≥ 1−
ρD

ρD + (ρD − ρD)p0

, (7.14)

δ ≥ 1−
ρC

(1− p0)(ρC + ρD)
, (7.15)

δ ≥ 1−
ρC

(1− p0)(ρC − ρC) + ρC
, (7.16)

δ ≥ 1−
ρD(

ρC + ρD
)
p0

. (7.17)

Proof. For brevity, we refer to equations found in the proof of Theorem 8. From
Eq. (6.37) and Eq. (6.38) it follows that in order for the payoff relation to be enforceable
for any p0 ∈ (0, 1) it must hold that for all σ such that xi = C, ρC(σ) > 0, and for all
σ such that xi = D, ρD(σ) > 0. For the existence of equalizer strategies this must
also hold for the special case in which s = 0. Hence, we can rewrite Eq. (6.37) and
Eq. (6.38) to obtain the following set of inequalities

(1− δ)(1− p0)

ρC(z, ŵz)
≤φ ≤ 1− (1− δ)p0

ρC(z, w̃z)
, (7.18)

(1− δ)p0

ρD(z, ŵz)
≤ φ ≤ δ + (1− δ)p0

ρD(z, w̃z)
. (7.19)
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There exists such a φ > 0 if and only if the following inequalities are satisfied

(1− δ)p0

ρD(z, ŵz)
≤ δ + (1− δ)p0

ρD(z, w̃z)
, (7.20)

(1− δ)p0

ρD(z, ŵz)
≤ 1− (1− δ)p0

ρC(z, w̃z)
, (7.21)

(1− δ)(1− p0)

ρC(z, ŵz)
≤ 1− (1− δ)p0

ρC(z, w̃z)
, (7.22)

(1− δ)(1− p0)

ρC(z, ŵz)
≤ δ + (1− δ)p0

ρD(z, w̃z)
. (7.23)

By collecting the terms in p0 and δ for Eq. (7.20)-Eq. (7.23) the conditions can be
derived as follows. Eq. (7.20) can be satisfied if and only if

p0(1− δ)
(
ρD(z, w̃z)− ρD(z, ŵz)

)
≤ ρD(z, ŵz)δ.

In the special case that ρD(z, w̃z)−ρD(z, ŵz) = 0, this is satisfied for every p0 ∈ (0, 1)

and δ ∈ (0, 1). On the other hand, if ρD(z, w̃z)− ρD(z, ŵz) > 0, then the inequality
can be satisfied for every p0 ∈ (0, 1) if and only if Eq. (7.14) holds. Likewise, Eq. (7.22)
can be satisfied if and only if

−p0(1− δ)
(
ρC − ρC

)
≤ ρC − (1− δ)ρC .

If ρC − ρC = 0, this inequality is satisfied for every p0 ∈ (0, 1). On the other hand, if
ρC − ρC > 0, the inequality is satisfied if and only if the condition in Eq. (7.16) holds.
Eq. (7.21) holds if and only if the condition in Eq. (7.17) holds. Finally, Eq. (7.23)
holds if and only if the condition in Eq. (7.15) holds.

Based on Lemma 11, the following corollary provides relatively easy to check
sufficient conditions that allow an equalizer strategy to enforce a desired linear
relation for every initial probability to cooperate in the open unit interval. These
sufficient conditions link thresholds for generous and extortionate strategies to those
of equalizer strategies.

Corollary 6 (Sufficient conditions for equalizer thresholds). Suppose s = 0 and l
satisfies the bounds in Theorem 8. Then, the equalizer payoff relation can be enforced
for any p0 ∈ (0, 1) if

δ ≥ δτ = max

{
ρC − ρC

ρC
,
ρD − ρD

ρD
,

ρD

ρC + ρD
,

ρC

ρC + ρD

}
.
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Proof. It follows from the proof of Theorem 11 that for all p0 ∈ (0, 1) it holds that
ρD > 0. Because ρD − ρD ≥ 0 and Eq. (7.14) is linear in p0 it follows that the
condition Eq. (7.14) is satisfied for all p0 ∈ (0, 1) if it holds in particular for the
extreme case p0 = 1, that is

δ ≥
ρD − ρD

ρD
.

Likewise, the conditions in Eq. (7.15), Eq. (7.16) and Eq. (7.17) are linear in p0

and in their most stringent cases imply the fractions ρD

ρC+ρD
, ρC−ρC

ρC
, and ρC

ρC+ρD

respectively.

7.1 Applications

Under Assumption 8 the ZD strategist puts equal weight on each co-player and thus
enforces a linear payoff relation between her own average discounted payoff and the
mean of the average discounted payoffs of all her co-players. In this case, the functions
that determine the threshold discount factors in Eq. (7.1) simplify into

ρC = max
0≤z≤n−1

(1− s)(az − l) +
n− z − 1

n− 1
(bz+1 − az),

ρC = min
0≤z≤n−1

(1− s)(az − l) +
n− z − 1

n− 1
(bz+1 − az),

ρD = max
0≤z≤n−1

(1− s)(l − bz) +
z

n− 1
(bz − az−1),

ρD = min
0≤z≤n−1

(1− s)(l − bz) +
z

n− 1
(bz − az−1).

(7.24)

In the following, these functions will be used to derive threshold discount factors in
the three social dilemma games that we have studied in Chapter 6.

7.1.1 Thresholds for n-player linear public goods games

Let us first examine the threshold discount factors of extortionate strategies and thus,
l = 0 and 0 < s < 1. In this case the parameters in Eq. (7.24) result from the extreme
points of the functions

ρCe (z) := (1− s)
(
rc(z + 1)

n
− c
)

+
n− z − 1

n− 1
c, (7.25)

ρDe (z) := −(1− s)
(rcz
n

)
+

z

n− 1
c. (7.26)
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From Proposition 6 we know that if − 1
n−1 < s ≤ 1− n

r(n−1) no extortionate strategies
can exist. Therefore, suppose that the slope is sufficiently large, i.e. s ≥ 1− n

r(n−1) .
Then, the extreme points of ρCe (z) and ρDe (z) are determined as

ρCe = ρCe (0), ρC
e

= ρCe (n− 1),

ρDe = ρDe (n− 1), ρD
e

= ρDe (0).
(7.27)

In the public goods game, next to the region of enforceable slopes, also the
threshold discount factors for generous and extortionate strategies are equivalent, as
highlighted in the following proposition.

Proposition 14 (Thresholds for extortion and generosity in public goods games).
For the enforceable slopes s ≥ 1 − n

r(n−1) , in the public goods game the threshold
discount factor for extortionate and generous strategies is determined as

δτ =
1− (1− s)(r − r

n )

1− (1− s)(1− r
n )
. (7.28)

Proof. For the linear public goods game the functions in Eq. (7.24) can be obtained
from the extrema of the following functions

ρC(z) = (1− s)
(
rc(z + 1)

n
− c− l

)
+
n− z − 1

n− 1
c,

ρD(z) = (1− s)
(
l − rcz

n

)
+

z

n− 1
c

(7.29)

We focus first on the case in which l = 0 and 0 < s < 1, and thus the strategy is
extortionate. In this case Eq. (7.29) become

ρCe (z) := (1− s)
(
rc(z + 1)

n
− c
)

+
n− z − 1

n− 1
c (7.30)

ρDe (z) := −(1− s)
(rcz
n

)
+

z

n− 1
c (7.31)

We continue to obtain the maximizers and minimizers of Eq. (7.25), that because
of linearity in z can only occur at the extreme points z = 0 and z = n − 1. When
n > r and r > 1, as is the case when the linear public goods game is a social dilemma,
we have the following simple conditions on the slope of the extortionate strategy.
If − 1

n−1 < s ≤ 1 − n
r(n−1) no extortionate or generous strategies can exist. Hence
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assume s ≥ 1− n
r(n−1) . Then,

ρCe = ρCe (0) = (1− s)
(rc
n
− c
)

+ c,

ρC
e

= ρCe (n− 1) = (1− s)(rc− c) > 0,

ρDe = ρDe (n− 1) = −(1− s)
(
rc(n− 1)

n

)
+ c,

ρD
e

= ρDe (0) = 0.

(7.32)

The fractions in Theorem 9 become

ρDe
ρDe + ρC

e

=
ρCe − ρCe
ρCe

=
(1− s)( rn − r) + 1

(1− s)( rn − 1) + 1
. (7.33)

We focus now on the case in which l = rc− c and 0 < s < 1, and hence the strategy
is generous. If l = rc− c, Eq. (7.29) becomes

ρCg (z) := (1− s)
(
rc(z + 1)

n
− rc

)
+
n− z − 1

n− 1
c

ρDg (z) := (1− s)
(
rc− c− rcz

n

)
+

z

n− 1
c

(7.34)

The extreme points of these functions read as

ρCg = ρCg (0) = ρDe ,

ρC
g

= ρCg (n− 1) = ρD
e
,

ρDg = ρDg (n− 1) = ρCe ,

ρD
g

= ρDg (0) = ρC
e
.

(7.35)

It follows that the fractions in Theorem 10 are equivalent to those in Theorem 9. This
completes the proof.

Remark 14 (Efficiency of enforcing the mutual cooperation payoff). Assume r ≤ n
n−1 ;

then the range of enforceable slopes in Proposition 14 includes s = 0 and the strategy
can thus be an equalizer and the extreme points of the threshold functions ρC and ρD

remain the same. Now assume s = 0; from Proposition 8 we know that l = rc− c is
enforceable by the equalizer strategy and from Proposition 14 we know that the threshold
discount factor for the equalizer ZD-strategist to enforce the mutual cooperation payoff
to her co-players is given by

1− n
(

1− 1

r

)
. (7.36)
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Figure 7.1: The left figure shows a numerical example of threshold discount factors for
extortionate and generous strategies in the linear public goods game. The parameter
values are c = 1, r = 2, n = 5. The lines represent the values of the fractions in the
expression for δτ in Theorem 9 and Theorem 10 using the extreme points of the
functions in Eq. (7.25) and Eq. (7.26). The threshold discount factor for an enforceable
s can be determined from the left figure by the red curve. In the right figure, one can
see how the extreme points in Eq. (7.27) change over s. For the existence of generous
and extortionate strategies the point s = 1− n

r(n−1) = 3/8 is a crucial point, namely,
beyond this point up to s < 1 all the functions ρCe (z) and ρDe (z) in Eq. (7.25) and
Eq. (7.26) (and those of generous strategies) are non-negative, which is necessary for
existence. An equivalent condition is formulated in Proposition 6 in which for any
slope s < r−1

r for existence of extortionate and generous strategies it is necessary that
n ≤ r(1−s)

r(1−s)−1 . Before this point, no generous or extortionate strategies can exist. The
second vertical line indicates the point s = r−1

r = 1/2, after which any slope can be
enforced independent of n, see Proposition 6.

7.1.2 Thresholds for n-player snowdrift games

The values of ρC(z) and ρC(z) from Eq. (7.24) for the n-player snowdrift game are
obtained from the extreme points of the following expression, for 0 ≤ z ≤ n− 1:

ρC(z) = (1− s)
(
b− c

z + 1
− l
)

+
n− z − 1

n− 1

c

z + 1
. (7.37)

For any enforceable slope − 1
n−1 < s < 1 the extreme points read as

ρC(z) = ρC(0) = (1− s)(b− c− l) + c,

ρC(z) = ρC(n− 1) = (1− s)(b− c

n
− l).

(7.38)

The values of ρD(z) and ρD(z) are obtained from the extreme points of the function

ρD(z) =

{
(1− s)l, if z = 0

(1− s)(l − b) + c
n−1 , if z = 1 . . . n− 1.

(7.39)
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We first focus on the extortionate case. Suppose l = 0, we obtain

ρDe (z) :=

{
0, if z = 0

−(1− s)b+ c
n−1 , if z = 1 . . . n− 1.

(7.40)

From Proposition 9, we know that for s < 1− c
b(n−1) no extortionate strategies can

exist, therefore assume s ≥ 1− c
b(n−1) . Then, the extreme points of ρDe (z) read as

ρD
e

= ρDe (0) = 0 and ρDe = −b(1− s) c

n− 1
. (7.41)

Proposition 15 (Thresholds for extortion in n-player snowdrift games). For the
n-player snowdrift game with b > c, the threshold discount factor for the enforceable
slopes s ≥ 1− c

b(n−1) of an extortionate strategy is given by

δτ =
(1− s)( cn − c) + c

(1− s)(b− c) + c
(7.42)

Proof. Assume l = 0 and 0 < s < 1 such that the ZD-strategy is extortionate, from
Eq. (7.39) we obtain

ρDe (z) :=

{
0, if z = 0
c

n−1 − (1− s)b, if z = 1 . . . n− 1.
(7.43)

For b
c >

1
(1−s)(n−1) or equivalently, s < 1 − c

b(n−1) it follows that ρD(z) = 0. From
Proposition 9 we know that in this case no extortionate strategies can exist. Therefore
assume s ≥ 1− c

b(n−1) . Then, the extreme points of ρDe (z) are

ρDe =
c

n− 1
− (1− s)b ≥ 0,

ρD
e

= ρDe (0) = 0.

Using the expressions in Eq. (7.38) and substituting l = 0 we also have

ρCe = ρCe (0) = (1− s)(b− c) + c,

ρC
e

= ρCe (n− 1) = (1− s)(b− c

n
) > 0.

(7.44)

The fractions in Theorem 9 become

ρCe − ρCe
ρCe

=
(1− s)( cn − c) + c

(1− s)(b− c) + c
(7.45)

ρDe
ρDe + ρC

e

=
c

n−1 − b(1− s)
c

n−1 −
c
n (1− s)

(7.46)
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Note that the denominator in Eq. (7.46) is strictly positive for any enforceable slope
s > − n

n−1 . Furthermore, for any 0 < s < 1 and b > c > 0 it holds that

(1− s)( cn − c) + c

(1− s)(b− c) + c
>

c
n−1 − b(1− s)
c

n−1 −
c
n (1− s)

.

This completes the proof.

Now let us look at the threshold discount factors of generous strategies. Suppose
l = b− c

n and 0 < s < 1.

ρDg (z) :=

{
(1− s)(b− c

n ), if z = 0

−(1− s) cn + c
n−1 , if z = 1 . . . n− 1.

(7.47)

For s ≤ 1− c
b(n−1) we have

ρDg = ρDg (0), ρD
g

= ρDg (n− 1). (7.48)

And for s > 1− c
b(n−1) the extreme points become

ρDg = ρDg (n− 1), ρD
g

= ρDg (0). (7.49)

Proposition 16 (Thresholds for generosity in n-player snowdrift games). For the
n-player snowdrift game with b > c and n ≥ 2, for slopes s ≤ 1− c

b(n−1) the threshold
discount factor is determined by

δτ = max
{
n− 1

n
,

(1− s)b− c
n−1

(1− s)(b− c
n )

}
(7.50)

For higher slopes s > 1− c
b(n−1) ,

δτ =
(1− s)( cn − c) + c

(1− s)(b− c) + c
(7.51)

Proof. Assume l = b− c
n and 0 < s < 1 such that the ZD-strategy is generous, from

Eq. (7.39) we obtain

ρDg (z) :=

{
(1− s)(b− c

n ), if z = 0
c

n−1 − (1− s) cn , if z = 1 . . . n− 1.
(7.52)

For s ≤ 1− c
b(n−1) we have

ρDg = ρDg (0) = (1− s)(b− c

n
) > 0,

ρD
g

=
c

n− 1
− (1− s) c

n
.

(7.53)
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Note that ρD
g
> 0 for all s > − 1

n−1 . Using the expressions in Eq. (7.38) and
substituting l = 0 we also have

ρCg = (1− s)( c
n
− c) + c > 0,

ρC
g

= 0.
(7.54)

Note that ρCg > 0 for any s > − n
n−1 . The fractions in Theorem 10 become

ρDg − ρDg
ρDg

=
(1− s)b− c

n−1

(1− s)(b− c
n )

(7.55)

ρCg

ρCg + ρD
g

=
n− 1

n
(7.56)

This completes the proof of the first statement. We now continue to the case in which
1− c

b(n−1) < s < 1. Then, the extreme points become

ρDg =
c

n− 1
− (1− s) c

n
, ρD

g
= ρDg (0) = (1− s)(b− c

n
), (7.57)

and the fractions in Theorem 10 become

ρDg − ρDg
ρDg

=
c

n−1 − b(1− s)
c

n−1 −
c
n (1− s)

, (7.58)

ρCg

ρCg + ρD
g

=
(1− s)( cn − c) + c

(1− s)(b− c) + c
, (7.59)

it follows that in this region, the threshold discount factors for extortion and generosity
in the n-player snowdrift game are equivalent. This completes the proof.

Remark 15 (Efficiency of mutual cooperation in n-player snowdrift games). Assume
s = 0 < 1− c

b(n−1) . In this case, Eq. (7.49) and Eq. (7.38) are still satisfied. From
Proposition 11 we know that l = b− c

n is enforceable. From Proposition 16 we know the
threshold discount factor for the equalizer strategist to enforce the mutual cooperation
payoff on all its co-players is

max
{
n− 1

n
,
b(n− 1)− c

(b− c
n )(n− 1)

}
. (7.60)
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Figure 7.2: A numerical example of threshold discount factors for extortionate (left)
and generous (right) strategies in the n-player snowdrift game with b = 2, c = 1 and
n = 5. For extortionate strategies, the threshold is determined by the expression
in Proposition 15. The red part of the line shows the threshold discount factor
for enforceable slopes. As one can see, only relatively large slopes that satisfy
s ≥ 1− c

b(n−1) = 7
8 can be enforced by the extortioner. This critical point is indicated

by the vertical line in the figure to the left and coincides with value of the slope for
n = 5 in Figure 6.3. In the figure on the right, the threshold discount factors for
generous strategies are shown as determined by Proposition 10. One can see that
even though any slope can be enforced by a generous ZD strategist, the threshold
discount factor depends on the value of the slope, and is illustrated by the red line.
The blue lines in the plots indicate the several expressions for the threshold discount
factor as formulated in the main text.

7.1.3 Thresholds for n-player stag-hunt games

The thresholds for extortionate and generous strategies can be determined by the
extreme points of the functions

ρC(z) =

{
(n−z−1)c
n−1 − (1− s)(c+ l), if 0 ≤ z < n− 1;

(1− s)(b− c− l), if z = n− 1.

ρD(z) = (1− s)l +
zc

n− 1
.

(7.61)

Now suppose l = 0; then the functions in Eq. (7.61) become,

ρCe (z) =

{
(n−z−1)c
n−1 − (1− s)c, if 0 ≤ z < n− 1;

(1− s)(b− c), if z = n− 1.

ρDe (z) =
zc

n− 1
.

(7.62)
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Proposition 17 (Thresholds for extortion in n-player stag-hunt games). For the
n-player stag hunt game with b > c, for any slope s ≥ 1− c

(n−1)b the threshold discount
factor for extortionate strategies is determined by

δτ =
c

c+ (1− s)(b− c)
.

Assume n < 2−s
1−s holds. Then, enforceable extortionate slopes in the region

1− c
b ≤ s < 1− c

b(n−1) have a threshold discount factor determined by

δτ =
1

1
n−1 + s

.

Assume n < 2−s
1−s holds. For enforceable extortionate slopes in the region n−2

n−1 < s ≤
1− c

b , the threshold discount is determined by

δτ = max

{
(1− s)b− c

n−1

(1− s)(b− c)
,

1
1

n−1 + s

}
.

Proof. Suppose l = 0 and 0 < s < 1. Then, the extreme points of Eq. (7.62) become

ρCe = max {(1− s)(b− c), sc} (7.63)

ρC
e

= min
{

c

n− 1
− (1− s)c, (1− s)(b− c)

}
(7.64)

ρDe = c (7.65)

ρD
e

= 0 (7.66)

For different regions of the slope s the extreme points of ρCe are different. For
s ≥ 1− c

b(n−1) we have

ρCe = ρCe (0) = sc, ρC
e

= ρCe (n− 1) = (1− s)(b− c). (7.67)

And the thresholds are

ρCe − ρCe
ρCe

=
c− (1− s)b

sc
, (7.68)

ρDe
ρDe + ρC

e

=
c

c+ (1− s)(b− c)
. (7.69)

For b > c > 0 and 0 < s < 1, the right-hand-side of Eq. (7.69) is larger than or
equal to the right-hand-side of Eq. (7.68). This completes the first statement. From
Proposition 12 we know that for slopes s < 1 − c

b(n−1) in order for extortionate
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strategies to exist it needs to hold that n < s−2
s−1 . Hence, assume that n < s−2

s−1 . For
the region of slopes 1− c

b ≤ s < 1− c
b(n−1) we have

ρCe = ρCe (0) = sc, ρC
e

= ρCe (n− 2) =
c

n− 1
− (1− s)c. (7.70)

The thresholds become

ρCe − ρCe
ρCe

=
1− 1

n−1

s
, (7.71)

ρDe
ρDe + ρC

e

=
1

1
n−1 + s

. (7.72)

For n < s−2
s−1 , the right-hand-side of Eq. (7.72) is larger than or equal to the

right-hand-side of Eq. (7.71). This completes the second statement.
We again assume n < s−2

s−1 , for smaller slopes in the region n−2
n−1 < s ≤ 1− c

b we
obtain

ρCe = (1− s)(b− c), ρC
e

=
c

n− 1
− (1− s)c. (7.73)

The thresholds become

ρCe − ρCe
ρCe

=
(1− s)b− c

n−1

(1− s)(b− c)
, (7.74)

ρDe
ρDe + ρC

e

=
1

1
n−1 + s

. (7.75)

It is worth noting that in the case of a non-strict upper bound s = 1 − c
b , it holds

that ρCe = (1 − s)(b − c) = sc and the right-hand-side of Eq. (7.71) is equal to the
right-hand-side of Eq. (7.74). This completes the proof.

Now suppose l = b− c; then the functions in Eq. (7.61) become

ρCg (z) =

{
(n−z−1)c
n−1 − (1− s)b, if 0 ≤ z < n− 1;

0, if z = n− 1.

ρDg (z) = (1− s)(b− c) +
zc

n− 1
.

(7.76)

Proposition 18 (Thresholds for generosity in n-player snowdrift games). For the
n-player stag hunt game with b > c, for any slope s ≥ 1− c

(n−1)b the threshold discount
factor for generous strategies is determined by

δτ =
c

c+ (1− s)(b− c)
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Figure 7.3: Numerical example of threshold discount factors for extortionate strategies
in the n-player stag-hunt game with n = 3, b = 5/2 and c = 1. The left figure shows
the threshold discount factors for slopes n−2

n−1 < s ≤ 1 − c
b . The figure on the right

shows threshold discount factors for slopes 1− c
b ≤ s < 1− c

b(n−1) . The figures are
obtained by the expressions in Proposition 17.

Proof. Suppose l = b− c. Then, the threshold functions read as

ρCg = max {0, c− (1− s)b} (7.77)

ρC
g

= min
{

c

n− 1
− (1− s)b, 0

}
(7.78)

ρDg = (1− s)(b− c) + c (7.79)

ρD
g

= (1− s)(b− c) (7.80)

From Proposition 13 we know that only slopes s ≥ 1− c
b(n−1) can be enforced. For

this region we obtain

ρDg − ρDg
ρDg

=
c

(1− s)(b− c) + c
(7.81)

ρCg

ρCg + ρD
g

=
c− (1− s)b

c(1 + 1
n−1 )− (1− s)b

(7.82)

Because the denominator of Eq. (7.82) is strictly larger than 0 for s > 1 − c
b , the

threshold is well-defined for any s ≥ 1− c
b(n−1) . Moreover, for s > 1− c

b , the right-
hand-side of Eq. (7.82) is larger than the right-hand-side of Eq. (7.81). This completes
the proof.
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Figure 7.4: Numerical example of threshold discount factors in the n-player stag-hunt
game with n = 3, b = 5/2 and c = 1. The red line in the left figure shows the
threshold discount factors for the complete range of enforceable extortionate slopes.
In this figure, one can also observe how the different regions of enforceable slopes,
indicated by the vertical lines, are determined by the intersections of the blue lines
that represent the ratios in Theorem 9 evaluated at the different extreme points
of Eq. (7.62). The figure on the right shows the the threshold discount factors for
generous strategies, as detailed in Proposition 18.

7.2 Final Remarks

With Theorems 9, 10 and 6, we have provided expressions for deriving the minimum
discount factor for some desired linear relation. Because the expressions depend on
the one-shot payoff of the n-player game, in general, they will differ between social
dilemmas. To determine these expressions, one needs to find the global extrema of a
function over z that can be efficiently done for a large class of social dilemma games.
The derived thresholds can, for example, be used as an indicator for a minimum number
of rounds in experiments on extortion and generosity in repeated games, or simply
as an indicator for how many expected interactions a single ZD strategists requires
to enforce some desired payoff relation in a group of decision-makers. Of particular
interest to the emergence of cooperation in social dilemmas are the thresholds for
equalizer strategies that enforcer the full cooperation payoff to all co-players. In
the linear public goods game, this threshold depends non-linearly on n and r, see
Eq. (7.36). When n = 2, this requirement turns into the simple condition δτ = 2−r

r .
For 1 < r < 2 this is a decreasing function in r, which is to be expected. In the
n-player snowdrift game it is also possible to enforce full cooperation, see Eq. (7.60).
In the classic two-player snowdrift game, a simple threshold can be formulated that is
the maximum between a half and

b
c−1
b
c−

1
2

.
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8
Evolutionary stability of ZD strategy

Mutation is random; natural
selection is the very opposite of
random.

Richard Dawkins

In the previous two chapters we have seen how a single memory-one player can
exert a level of control on the payoffs of opponents by employing a ZD strategy

in a repeated game. In this chapter we explore the stability of such strategies in
an evolutionary setting. In [130], stochastic evolutionary imitation dynamics were
studied in a finite population of ZD strategists playing an iterated prisoner’s dilemma
game. In these dynamics, strategies that receive higher expected payoffs are typically
preferred by forces of selection [131]. It was shown that in reasonably large popula-
tions, extortionate strategies can act as a catalyst for the evolution of cooperation
but they are not a stable outcome of natural selection. Through numerical simulation,
it was also argued that the population size has a considerable impact on the dynamics
and long-run outcomes in a well-mixed population, see also [132]. This effect was
attributed to the probability of one being paired to themselves, which decreases as the
population size increases. In [133], it was analytically shown that, in the limit of weak
selection and pairwise interactions in a finite population, only generous strategies are
“evolutionarily robust” against any other strategy in the repeated prisoner’s dilemma
game. That is, under the stochastic evolutionary imitation dynamics proposed in [134],
only generous strategies cannot be selectively replaced by a mutant strategy. The
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Figure 8.1: As a result of a random mutation, a population of C players is invaded by
a single D player. If the mutant D player has an advantage in terms of payoffs over
resident C players, selection will tend to favor D and the mutant can eventually take
over the population. Figure from [8], reprinted with permission from AAAS.

evolutionary performance of ZD strategy in multiplayer games under similar stochastic
evolutionary imitation dynamics were studied in [135]. Their simulations showed
that for small group sizes extortionate ZD strategy are critical for the emergence of
cooperation, and generous strategies are important to maintain cooperation in large
finite populations. However, as group sizes become larger, the generous strategies
become unstable and selfish behavior dominates in the long-run.

In this chapter, we study conditions for ZD strategy to be evolutionarily stable in
a finite population of size N , when players interact in randomly formed groupwise
contests of size 2 ≤ n ≤ N . When the number of interactions is large, the composition
of these groups can be described by a hypergeometric distribution. To obtain neat
analytical results in this setting, we will focus on a finite population that is invaded
by a single mutant (Fig. 8.1). Selection prefers the mutant strategy if the single
mutant obtains a higher expected payoff than the resident players. On the other hand,
selection will favor the resident strategy if residents obtain a higher expect payoff
than the mutant. An illustration of this process in a social dilemma game is shown
in Fig. 8.1, were a defecting mutant can take over the population of cooperators.
In the following, we will derive explicit relations between the population size, the
group size, and the ZD strategy parameters that allow us to characterize necessary
and sufficient conditions under which a resident ZD strategy is evolutionarily stable
with respect to a single mutant strategy. Moreover, a computationally convenient
method is provided to evaluate the evolutionary stability of a resident strategy that is
invaded by any number of mutant ZD strategy. The theoretical conditions shed light
on how population sizes and group sizes influence the emergence and maintenance of
cooperation in large finite populations and are consistent with simulation results in
existing literature [130,135].

The results in this chapter may appropriate only for the situation in which all
players apply ZD strategies, however, when mutual defection leads to the lowest
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possible average group payoff, extortionate ZD strategies can ensure to do at least as
good as any other strategy. In this case, the result presented in this chapter can be
generalized to an arbitrary mutant strategy and therefore provide a rather general
stability condition for extortionate strategies. The same holds for generous strategies
when mutual cooperation leads to the highest possible average group payoff.

8.1 The standard ESS conditions

Consider a large well-mixed population of players of which the majority employs a
resident strategy indicated by pR, and a small number of mutants employ a mutant
strategy pM . The players interact in random pairwise contests. If a resident is
matched with another resident they obtain π(pR,pR), likewise if a resident is matched
with a mutant the resident receives π(pR,pM ) and the mutant receives π(pM ,pR).
If two mutants are matched they receive π(pM ,pM ). Let πR (resp. πM ) denote
the expected payoff of a resident (resp. mutant) player in the evolutionary game.
Then, the resident strategy is an Evolutionarily Stable Strategy (ESS) if it satisfies
the following two conditions [29,136].

Equilibrium condition: the resident strategy pR is a best response against itself

∀pM 6= pR : π
(
pM ,pR

)
≤ π

(
pR,pR

)
. (8.1)

a)

Stability conditions: if π(pM ,pR) = π
(
pR,pR

)
, then

π
(
pM ,pM

)
< π

(
pR,pM

)
. (8.2)

b)

These conditions are valid in infinite populations. To see this, suppose that a small
fraction ε > 0 of the population are mutants, then

πR = (1− ε)π
(
pR,pR

)
+ επ

(
pR,pM

)
, (8.3)

and
πM = (1− ε)π

(
pM ,pR

)
+ επ

(
pM ,pM

)
. (8.4)

The conditions in Eq. (8.1) and Eq. (8.2) simply imply that

∃ε > 0 : πM < πR,

and thus the mutation will be selected against. However, if the population size is
finite a problem arises with this definition. Because a player cannot be matched in a
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contest against herself, the probability of a mutant being matched to another mutant
is not equal to the probability of a resident being matched to a mutant. Naturally,
this discrepancy becomes larger when N becomes smaller and smaller.

8.2 Generalized ESS equilibrium condition

Earlier work that studied ESS ZD strategy in finite populations used the evolutionary
stability conditions presented in [132] that rely on the computation of fixation probabil-
ities. In contrast, this chapter employs an approach proposed in [136] that is suitable
for analysis and has an intuitive connection to the standard Maynard-Smith condi-
tions for evolutionarily stable strategies described in the previous section. Let us now
consider a finite population of size N . At each discrete time step, that may represent
a generation, groups of size n are randomly formed by sampling from the population
without replacement and engage in contests of size n ≤ N . Let π(pR|n − 1 − j, j)
denote the payoff that a resident player obtains from a contest with n− 1− j other
residents and j mutants and let π(pM |n− 1− j, j) denote the payoff that a mutant
obtains from a contest against n − 1 − j residents and j mutants. Starting from
a homogeneous population of resident players, let us assume one resident player is
replaced by a mutant. With this single mutant in the population, the average payoff
of a resident ZD player is

πR =

(
1− n− 1

N − 1

)
π
(
pR|n− 1, 0

)
+
n− 1

N − 1
π
(
pR|n− 2, 1

)
. (8.5)

And the average payoff of the mutant is simply:

πM = π
(
pM |n− 1, 0

)
. (8.6)

Using the expected payoffs in Eq. (8.5) and Eq. (8.6), for the resident strategy to be
evolutionarily stable the following equilibrium condition is necessary [136],

∀pM 6= pR : πM ≤ πR. (8.7)

By substituting the expected payoffs, we obtain

π
(
pM |n− 1, 0

)
≤
(

1− n− 1

N − 1

)
π
(
pR|n− 1, 0

)
+
n− 1

N − 1
π
(
pR|n− 2, 1

)
.

Observe that for n = 2 and N →∞, this equilibrium condition turns into the standard
Maynard-Smith equilibrium condition in Eq. (8.1) in which pR needs to be a best
response against itself.
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Remark 16 (Playing the field). The following observations were made in [136], well
before ZD strategy were invented. A strategy satisfying the ESS equilibrium condition
Eq. (8.7) may be written as a solution of

argmax
pM

πM − πR. (8.8)

Now suppose that n = N , which is a situation Maynard-Smith refers to as “playing
the field”. Then, πR = π(pR|n− 2, 1) and an ESS strategy is a solution to

argmax
pM

π
(
pM |n− 1, 0

)
− π

(
pR|n− 2, 1

)
(8.9)

Because every player in the population is in the contest, we can use the conventional
notation of n-player games. To this end, label the mutant as player m and the ESS
players as r 6= m. Furthermore, denote the strategy of player j by sj, j = 1 . . . N .
Because all ESS players employ the same strategy, for symmetric games, we may write

πESS = πR = π
(
pR|n− 2, 1

)
=

1

n− 1

N∑
i 6=m

π (si, s−i) ,

by substituting this into the equilibrium condition Eq. (8.8) one can see that any
strategy satisfying the equilibrium ESS condition is a solution to

argmax
pM

πM − 1

n− 1

N∑
i6=m

π(si, s−i). (8.10)

This, in turn, is a best response for Shubik’s zero sum “beat-the-average” game [137].
The relation in Eq. (8.10) is a natural connection between the ESS equilibrium condition
and extortionate strategies that ensure the ZD strategist’s expected payoff is larger than
the average of her opponents. Thus, when n = N , extortionate ZD strategy satisfy the
ESS equilibrium condition. This property is further examined in Theorem 12.

8.3 Equilibrium conditions for ZD strategies

To investigate the ESS conditions of ZD strategy in finite populations and groupwise
contests, we assume that at each time step, groups of size n are randomly formed by
sampling from the population without replacement and engage in contest in the form
of a finitely repeated n-player game. The following assumption ensures that the ZD
strategists enforce a linear relation in each groupwise contest.

Assumption 9 (Repeated contests). In each contest, the players in the evolutionary
game participate in a sufficient number of expected rounds to enforce a payoff relation.
This can be determined by the threshold discount factors in Chapter 7.
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Assumption 9 requires multiple interactions to occur during one time step or
generation in the evolutionary game. This differs from the traditional setup but is
common in evolutionary dynamics of direct reciprocity [131].

To obtain an equilibrium condition for some resident ZD strategy, we assume
all weights are equal such that Assumption 8 is satisfied. Let us consider a finite
population that is initially composed entirely of players that employ a ZD strategy
such that each player enforces a payoff relation with parameters (s, l). Now, say that
one random player is replaced by a mutant that employs a ZD strategy that enforces
the payoff relation (ŝ, l̂). We indicate this mutant strategy by pM 6= pR.

Theorem 12 (Equilibrium conditions). Assume all weights are equal and payoffs
satisfy Assumption 7. When the N − 1 resident players employ an enforceable ZD
strategy pR and the single mutant employs some enforceable ZD strategy pM 6= pR

in a population of size N with contests of size n ≤ N , then the resident ZD strategy
pR satisfies the equilibrium condition Eq. (8.7) if and only if one of the following
conditions hold:

(i) s > 1
N−1 + n−2

n−1 and l̂ ≤ l;

(ii) s < 1
N−1 + n−2

n−1 and l̂ ≥ l;

(iii) s = 1
N−1 + n−2

n−1 .

Proof. We begin by finding an expression for π(pR|n − 1, 0). Because the payoff
relation (s, l) is assumed to be enforceable it must hold that s < 1. Then each resident
enforces the linear relation:

π
(
pR|n− 1, 0

)
= π

(
pR|n− 1, 0

)
s+ (1− s)l.

It follows that π
(
pR|n− 1, 0

)
= l. We continue to find expressions for the payoffs when

the mutant is present in the contest. For ease of notation, let π∗ = π
(
pR|n− 2, 1

)
.

Because the residents apply an enforceable ZD strategy we obtain the payoff relation:

n− 2

n− 1
π∗ +

1

n− 1
πM = π∗s+ (1− s)l. (8.11)

Define s∗ := s(n− 1)− (n− 2). Then the above equation can be written as

πM = s∗π∗ + (1− s∗)l. (8.12)

Because the mutant plays an enforceable ZD strategy with parameters (l̂, ŝ) the
following linear relation is enforced by the mutant:

π∗ = πM ŝ+ (1− ŝ)l̂. (8.13)
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Substituting this into Eq. (8.12) we obtain an expression for the payoff of the mutant
in terms of the ZD parameters s∗, l, ŝ, l̂:

πM =
l(1− s∗) + l̂s∗(1− ŝ)

1− ŝs∗
. (8.14)

Because s < 1, it holds that s∗ < 1 and because the mutant payoff relation is also
assumed to be enforceable it also holds that ŝ < 1. Hence the above equation is well
defined for any enforceable ZD strategy in the repeated contest. By substituting the
expressions for πM , π∗ and π(pR|n− 1, 0) into the equilibrium condition Eq. (8.7),
we obtain

s∗π∗ + (1− s∗) l ≤
(

1− n− 1

N − 1

)
l +

n− 1

N − 1
π∗. (8.15)

Collecting the terms in π∗ and bringing them to the left-hand side we obtain(
s∗ − n− 1

N − 1

)
π∗ ≤

(
s∗ − n− 1

N − 1

)
l. (8.16)

From Eq. (8.16) we can distinguish three cases: first, s∗ = n−1
N−1 ; second, s

∗ > n−1
N−1 ;

third, s∗ < n−1
N−1 . We consider these cases separately. First suppose s∗ = n−1

N−1 then
Eq. (8.16) implies 0 = 0 and the equilibrium condition is always satisfied and condition
(iii) follows. Now suppose s∗ > n−1

N−1 , then Eq. (8.16) implies:

π∗ ≤ l Eq. (8.13)
======⇒ πM ŝ+ (1− ŝ)l̂ ≤ l.

By substituting Eq. (8.14) into this equation we obtain[
l(1− s∗) + l̂s∗(1− ŝ)

1− ŝs∗

]
ŝ+ (1− ŝ)l̂ ≤ l. (8.17)

Because 1− ŝs∗ > 0, Eq. (8.17) is satisfied if and only if

(l̂ − l)(1− ŝ) ≤ 0.

And because (1− ŝ) > 0, this inequality can be satisfied if and only if

l̂ ≤ l.

Hence, when s∗ > n−1
N−1 , then l̂ ≤ l is a necessary and sufficient condition for the

equilibrium condition to be satisfied for enforceable payoff relations (s, l) and (ŝ, l̂).
Condition (i) is obtained by substituting the definition of s∗ into this requirement.

Now suppose s∗ < n−1
N−1 ; then Eq. (8.16) implies:

π∗ ≥ l⇒ l̂ ≥ l.

By flipping the inequality sign in Eq. (8.17), condition (ii) follows. This completes
the proof.
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Corollary 7 (Playing the field equilibrium conditions). Under the conditions of
Theorem 12, when the group size of the contests is equal to the population size, that
is n = N , in the finitely repeated n-player game only extortionate ZD strategy can
satisfy the equilibrium condition Eq. (8.7). In particular, by substituting N = n into
condition (ii) it follows that any extortionate ZD strategy with a slope s < 1 satisfies
the equilibrium condition.

Corollary 8 (Maynard-Smith conditions). Let n = 2 such that the interactions
are pairwise. From condition (ii), it follows that an extortionate strategy satisfies
the equilibrium condition if and only if s < 1

N−1 . Now, observe that in the limit
of an infinite population size N → ∞ this condition becomes s < 0, which is a
contradiction with the definition of an extortionate strategy that have positive slopes
0 < s < 1. Hence, in the standard Maynard-Smith ESS equilibrium condition,
extortionate strategies cannot be ESS. In fact, only equalizer strategies with s = 0 and
generous strategies with s > 0 and l = an−1 satisfy the equilibrium condition under
the classic conditions.

Remark 17. When N →∞, the equilibrium condition (i) in Theorem 12 is in line
with the analytical condition for generous strategies being able to withstand an invasion
of an ALLD mutant given in [135]. Our result however shows that when the population
size N is finite, in order for generous strategies to withstand an invasion from an
extortionate mutant, the generosity of the residents players needs to decrease according
to the size of the population.

Remark 18 (Instability of generous equalizers). Condition (i) in Theorem 12 indi-
cates that for a resident ZD strategy with l = an−1 to satisfy the equilibrium condition
it must hold that s > 1

N−1 + n−2
n−1 . Because this equilibrium condition on the slope

implies s > 0, any equalizer strategy with s = 0 and l = an−1 cannot be evolutionarily
stable. Hence, strategies that enforce the full cooperation payoff to all co-players exist
in the public goods game and the n-player snowdrift game but cannot be sustained in
an evolutionary selection process within a finite population.

8.4 Stability conditions for ZD strategies

Let us now consider the case in which there exist k identical mutants in the population.
Assuming a large number of interactions, the expected payoffs of the residents and
mutants are [136]
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πR =

k∑
j=0

(
k
j

)(
N−1−k
n−1−j

)(
N−1
n−1

) π(pR | n− 1− j, j), (8.18)

πM =

k−1∑
j=0

(
k−1
j

)(
N−k
n−1−j

)(
N−1
n−1

) π(pM | n− j, j − 1). (8.19)

To obtain convenient expressions for these payoffs we use the following Lemma
from which the payoffs of a group of ZD strategists can be obtained in terms of the
slopes and baseline payoffs of their strategies.

Lemma 13 (payoffs of groups of ZD strategists, [135]). Suppose in a group of n
players, every player applies some ZD strategy with parameters si and li. Then the
expected payoff of player i can be written as

πi = (κi + 1)

∑n
k=1 κk · lk∑n
k=1 κk

− κi · li, with κk :=
(n− 1)(1− sk)

1 + (n− 1)sk
. (8.20)

Proof. The proof follows from rewriting the enforced linear payoff relations by including
one’s own expected payoff in the average of the group. Further details can be found
in [135].

In order to obtain an expression for the expected payoffs of residents and mutants,
let us define

κR :=
(n− 1)(1− s)
1 + (n− 1)s

, κM :=
(n− 1)(1− ŝ)
1 + (n− 1)ŝ

, ψj :=
j · κM · l̂ + (n− j)κR · l
j · κM + (n− j)κR

.

From Lemma 13 it follows that the payoffs of the residents and mutants in a group
with j identical mutants and n− j identical residents are given by

π(pR | n− 1− j, j) = (κR + 1) · ρj − κR · l,

π(pM | n− j, j) = (κM + 1)ρj − κM · l̂.

By plugging these payoffs into Eq. (8.18), the stability condition in a finite population
of ZD strategy can be evaluated solely on the basis of the hypergeometric distribution
and the ZD strategy parameters in the population.

8.5 Applications

In the remainder of this chapter, we apply the result in Theorem 12 to the n-player
linear public goods games, n-player snowdrift games and n-player stag hunt games. In
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doing so, we combine the existence conditions for generous and extortionate strategies
in the n-player social dilemma games with the equilibrium condition Eq. (8.7). The
following results give insight under which conditions on the population size N and
the group size n, generous and extortionate strategies exist and when they are able to
withstand an invasion by a single mutant strategist with an arbitrary but fixed strategy.
Throughout this section it is assumed that Assumptions 9 and 8 are satisfied such
that within each generation, the expected number of rounds is sufficient for the ZD
strategist to enforce the linear payoff relation. Depending on the game being played,
this minimum number of expected rounds in each generation can be determined by
the threshold discount factor for generosity in Propositions 14, 16 and 18.

8.5.1 n-player linear public goods games

Proposition 19 (Stable generosity in public goods games). Suppose Assumptions
9 and 8 are satisfied. Then in the n-player linear public goods game, all generous
strategies with slopes s ≥ r−1

r satisfy the equilibrium condition if and only if r < n <

1 + r and

N ≥ n(r − 1)− 1

r − n+ 1
,

and for smaller enforceable slopes s < r−1
r this inequality needs to hold strictly.

Proof. From Proposition 7 we know that in order for generous strategies to enforce a
payoff relation independent of the group size n it must hold that s ≥ r−1

r . Moreover,
from the conditions (i) and (iii) in Theorem 12, we know that the slope must satisfy

s ≥ 1

N − 1
+
n− 2

n− 1
. (8.21)

This equilibrium condition on the slope can be satisfied for all enforceable slopes
s ≥ r−1

r if and only if
1

N − 1
+
n− 2

n− 1
≤ r − 1

r
.

This inequality is satisfied for the conditions in the statement. For smaller slopes
s < r−1

r to be enforceable, it needs to hold that n ≤ r(1−s)
r(1−s)−1 or equivalently,

s ≥ 1− n
r(n−1) . Hence for s < r−1

r , the equilibrium condition can be satisfied if and
only if

s ≥ max

{
1

N − 1
+
n− 2

n− 1
, 1− n

r(n− 1)

}
r<n
==⇒ s ≥ 1

N − 1
+
n− 2

n− 1
.

It follows that in order for the equilibrium condition to be satisfied it is required that

1

N − 1
+
n− 2

n− 1
≤ s < r − 1

r
,
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such an s exist if and only if 1
N−1 + n−2

n−1 <
r−1
r , which is satisfied when the condition

in the statement is strict.

Proposition 20 (Stable extortion in public goods games). Suppose Assumptions 9
and 8 are satisfied. Then in the n-player linear public goods game, any enforceable
extortionate strategy with a slope s ≥ r−1

r satisfies the equilibrium condition if n > r+1

or n < r + 1 and N ≤ n(r−1)−1
r−n+1 . Smaller slopes s < r

r−1 satisfy the equilibrium
condition regardless of n and N .

Proof. From Theorem 12 and Proposition 6 it follows that in order for enforceable
slopes s ≥ r

r−1 to satisfy the equilibrium condition it must hold that

r − 1

r
≤ s ≤ 1

N − 1
+
n− 2

n− 1
.

These inequalities are satisfied for the conditions in the statement. Smaller slopes
s < r

r−1 are only enforceable if the group size satisfies n ≤ r(1−s)
r(1−s)−1 . Together with

the requirements in Theorem 12, it follows that in order for the enforceable slope to
satisfy the equilibrium condition it needs to hold that

1− n

r(n− 1)
≤ s ≤ 1

N − 1
+
n− 2

n− 1
.

This condition is satisfied for any N ≥ n > r.

Figure 8.2 shows numerical examples of the influence of N and n on the equilibrium
conditions for generous and extortionate strategies in the n-player linear public
goods game. The blue regions indicate the slopes and population sizes for which
generous strategies satisfy the equilibrium condition. Extortionate strategies satisfy
the equilibrium condition in the region between the vertical line and the border of
the blue region, this region is indicated in the figure by the dot and text "stable
extortion". Thus, for relatively small slopes, extortionate strategies satisfy the
equilibrium condition. On the contrary, for higher slopes, generous strategy satisfy the
equilibrium condition. At the border of the equilibrium regions for extortionate and
generous strategies at s = 1

N−1 + n−2
n−1 , both strategies satisfy the equilibrium condition.

This is an immediate result of condition (iii) in Theorem 12. One can observe in the
figures that as N increases more generous slopes satisfy the equilibrium condition.
Thus, as the population size increases, players can become more generous without
risking an invasion of defecting strategies. However, as n increases, the total region
in which generous strategies satisfy the equilibrium condition shrinks. Indicating
that in larger groups, it becomes more difficult for generous strategies to resist an
invasion of an extortionate strategy. The bottom two figures show an example of
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Figure 8.2: Equilibrium condition for generous and extortionate strategies in n-player
linear public goods game played in a finite population of size N . In the blue area,
generous strategies satisfy the equilibrium condition. In the area to the right of the
vertical line and below the blue curve, extortionate strategies satisfy the equilibrium
condition.
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the result in Proposition 19. The vertical line indicates the point s = r−1
r , after

which an extortionate and generous strategy can enforce a linear relation independent
of n (see Propositions 6 and 7). For generous strategies, every such slope satisfies
the equilibrium condition if and only if the population size is sufficiently large, see
Proposition 19. For particular values of n and r, this population size is indicated
by the horizontal line in the bottom two figures. One can see that the equilibrium
condition is very sensitive to slight changes in the public goods multiplier r. When
r = 41

20 , in order for all generous slopes s ≥ r−1
r to satisfy the equilibrium condition,

the population size needs to be just above 90, but when r decreases to r = 201/100

(a difference of 0.04), the population size needs to grow beyond 400.

8.5.2 n-player snowdrift games

Proposition 21 (Stable generosity in n-player snowdrift games). Suppose Assump-
tions 9 and 8 are satisfied. In the n-player snowdrift game, any slope 0 < s < 1

of a generous strategies is enforceable. Moreover, the generous strategy satisfies the
equilibrium condition if and only if

s ≥ 1

N − 1
+
n− 2

n− 1
.

Proof. The proof follows immediately from Proposition 10 and Theorem 12.

Proposition 22 (Stable extortion in n-player snowdrift games). Suppose Assumptions
9 and 8 are satisfied. For the n-player snowdrift game, extortionate strategies satisfy
the equilibrium condition if and only if n = N or

N ≤ bn− c
b− c

Proof. From Proposition 9 we know that enforceable slopes satisfy

s ≥ 1− c

b(n− 1)
.

From Theorem 12 it follows that in order for the extortionate strategy to satisfy the
equilibrium condition it needs to hold that

1− c

b(n− 1)
≤ s ≤ 1

N − 1
+
n− 2

n− 1
.

Such an s exists if and only if n = N or b satisfies the bound in the statement.

Figure 8.3 shows numerical examples of generous and extortionate slopes in the
n-player snowdrift game that satisfy the equilibrium condition. As can be seen in
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Figure 8.3: Equilibrium condition for generous and extortionate strategies in n-
player snowdrift games played in a finite population of size N . In the blue area,
generous strategies satisfy the equilibrium condition. In the small regions below the
blue curve and to the right of the vertical line, extortionate strategies satisfy the
equilibrium condition. A dot is used to indicate the region. On the border, the slope
is s = 1

N−1 + n−2
n−1 , and both classes of strategies satisfy the equilibrium condition.
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the top two figures, when n increases, extortionate slopes can satisfy the equilibrium
condition for larger population sizes and less generous strategies satisfy the equilibrium
condition. As a result, when the size of groupwise contests increases, in order for
generous strategies to satisfy the equilibrium condition, the population size must
increase as well. This is also shown by the vertical lines that indicate the size of N ,
below which extortionate strategies can satisfy the equilibrium condition, see also
Proposition 22. As can be seen in the middle two figures, as the benefit b increases,
in order for extortionate slopes to satisfy the equilibrium condition, the population
size must become smaller. This indicates that, as the benefit increases, extortionate
strategies can only invade a generous population if the population size is sufficiently
smaller.

8.5.3 n-player stag-hunt games

Proposition 23 (Stable generosity in n-player stag-hunt games). Suppose Assump-
tions 9 and 8 are satisfied. For the n-player stag hunt game with b > c, every generous
strategy satisfies the equilibrium condition if and only if N ≥ bn−c

b−c .

Proof. From Proposition 13 we know that in order for the generous strategy to be
enforceable it is required that s ≥ 1− c

b(n−1) . In this case, the conditions in Theorem
12 can be satisfied for every enforceable slope if and only if 1

N−1 ≤ 1− c
b(n−1) −

n−2
n−1 =

b−c
b(n−1) , note that because b > c > 0 the right hand side is strictly larger than 0. This
leads to the requirement in the main statement.

Proposition 24 (Stable extortion in n-player stag-hunt games). For the n-player
stag hunt game with b > c, extortionate strategies with a slope s ≥ 1− c

(n−1)b satisfy
the equilibrium condition if and only if N ≤ bn−c

b−c . Smaller slopes s < 1 − c
b(n−1)

satisfy the equilibrium condition independent of N ≥ n > 1 .

Proof. From Proposition 12 we know that an extortionate strategy can enforce any
slope s ≥ 1− c

(n−1)b independent of n. In order to satisfy the equilibrium condition
it must hold that 1 − c

(n−1)b ≤ s ≤ 1
N−1 + n−2

n−1 ; Such an s exists if and only if
the condition on N in the main statement holds. For smaller enforceable slopes
s < 1− c

(n−1)b it is required that n < 2−s
1−s , equivalently, s >

n−2
n−1 ; Such slopes satisfy

the equilibrium condition if and only if n−2
n−1 < s ≤ 1

N−1 + n−2
n−1 , which is clearly

satisfied independent of 1 < N <∞.
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Figure 8.4: Equilibrium condition for generous and extortionate strategies in n-player
stag-hunt games played in a finite population of size N .
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8.6 Final Remarks

We have shown how the population size, the group size of the contests, and the ZD
strategy parameters affect the evolutionary stability of a resident ZD strategy with
respect to a single mutant. Extortionate strategies cannot be evolutionarily stable
under the classic Maynard-Smith conditions. In sharp contrast, when the population
size is equal to the group size, only extortionate strategies can be evolutionarily stable.
In finite populations in which the group size is smaller than the population size both
generosity and extortion can be stable; however, this highly depends on the benefit to
cost ratio, the population size and group size of the contests. In the previous chapter,
we have identified under which conditions equalizers strategies can enforce the full
cooperation payoff in a group of players. However, here we have shown that these
strategies cannot be evolutionarily stable. To show the utility of the results we have
applied them to three n-player social dilemmas and provided explicit conditions under
which generous and extortionate strategies are evolutionarily stable with respect to a
single mutant ZD strategist in a finite population.

In the next chapter we return to the traditional repeated game setting in which a
fixed group of players interact repeatedly. In particular, we will investigate the level of
control that an individual can exert if the probability for continuation δ is uncertain.
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9
Exerting control under uncertain discount-
ing of future outcomes

I believe that we do not know
anything for certain, but everything
probably.

Christiaan Huygens

If individuals choose between rewards that differ only in amount, timing, or certainty,
decisions are relatively predictable because general principles of choice apply. For

example, individuals tend to choose higher rewards over lower ones, sooner rewards
over later rewards, and secure rewards over risky rewards. Indeed, such decisions
make sense from both an economic and evolutionary perspective and are observed in
both humans and animals [138,139]. Predicting decisions becomes more challenging
when the choice options differ in a combination of these factors. For example, it
can be difficult to predict how an individual chooses between a small but immediate
reward and a large but distant one. Although such combinations of different features
usually require trade-offs in decision making, saliently temporal features can be
studied from the perspective of discounting on the basis of the expected time or
likelihood of their occurrence [139, 140]. Theoretical models of both temporal and
probabilistic discounting often use hyperbola-like functions in which discount rates
decrease monotonically over time [141–143]. And indeed, these hyperbolic discounting
functions prove to be a better fit to empirical data than exponential functions [139, and
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the references therein]. From the very nature of games, outcomes depend on not
only one’s own decision but also the decisions of others. This interdependence
inherently causes some level of uncertainty in the (probabilistic) outcome and its
associated payoff. After all, in most real-world scenarios a decision-maker cannot
force others to behave exactly to their liking. It becomes more complicated in repeated
games, where a series of interactions occur over time, and individuals need to deal
with the possibilities of how their past and current decisions can influence future
payoffs under altruism, antagonism, punishment or reward [144–146]. Clearly, this
is a rather complex setting in which both temporal and probability discounting
based on hyperbolic discounting functions are likely to play a role. Consequently,
traditional exponential discounting methods, which are commonly applied to repeated
games, seem less suitable for describing how individuals would make trade-offs in real-
world decisions. Indeed, discrepancies between economic and evolutionary models of
cooperation and observed experimental behaviors motivated researchers to investigate
how an individual’s uncertain beliefs about the number of game interactions affects
the possibilities to cooperate in one-shot prisoner’s dilemma game [147]. It was found
that this source of uncertainty can indeed explain the “overly” generous behavior
that experimentalists observed [20,20, 148,149]. Interestingly, economics research on
discounting shows that there is an immediate connection between uncertainty and
the hyperbolic discounting functions observed in subjects. Namely, if one’s belief of
the discount rate is distributed according to a gamma or exponential distribution,
then discounting will be hyperbolic [138,150]. The exponential discount rates that
are commonly applied to repeated games have two equivalent interpretations. First,
it can be seen as a source of probabilistic discounting in which the constant discount
rate represents a continuation probability. Second, it can be interpreted as a source
of temporal discounting in which the present values of future payoffs are determined
according to a fixed interest rate. However, independent of the interpretation of the
discount rate, uncertainty in its value seems to be coupled to real-world discounting
in such repeated interactions.

Inspired by the work of Press and Dyson [64], recent developments in the theory
of repeated games suggest that a single, or small group of strategic individuals, can
have a much larger influence on the other players’ performances than previously
anticipated [115–118,121]. It is, however, not yet known how these intricate strategies
hold up under the influence of uncertainty. By incorporating a common uncertain
belief about the discount factor into these manipulative strategies, we generalize
existing theories on zero-determinant strategies and show how a witty strategic player
can unilaterally exert control in repeated games with probabilistic discounting. The
proposed theoretical framework of discounting supports the hyperbolic form observed
by experimentalists and can recover infinitely repeated games without discounting
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and exponentially discounted repeated games that were studied in Chapters 6 and
7. We postulate that this theoretical framework is more appropriate for describing
real-world decision-making procedures in which judgments on the number of repeated
interactions is made under uncertainty [147]. To obtain the specific results, we again
consider the general class of symmetric repeated n-player social dilemma games
introduced in Chapter 6.

9.1 Uncertain repeated games

In repeated games with finite but undetermined time horizons, the expected number
of rounds is determined by a fixed and common discount factor δ ∈ (0, 1) that, given
the current round of interactions, determines the probability of a next round and is
therefore referred to as a continuation probability. Consequently, expected payoffs are
calculated using a discounting function δt that corresponds to deterministic discrete-
time exponential discounting with a constant discount rate [53]. If, however, the
continuation probability or discount rate is uncertain, then the payoffs relying on these
future interactions are uncertain as well and it is not immediate that a fixed parameter
can be used to represent expected payoffs. In the spirit of gamma discounting [150],
let us instead assume that discounting takes the form dk(t) = xtk, where the {xk} are
distributed according to the realization of a random variable x, whose probability
density function f(x, α, β), defined for all x ∈ [0, 1], is of the beta form1

f(x, α, β) :=
x(α−1)(1− x)(β−1)

B(α, β)
, α, β ∈ R+,

where B(α, β) is the beta function of the form

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

The mean and variance of the beta distribution are, as usual, defined as

µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
.

Indeed, the beta distribution is often used to describe the distribution of a
probability and is thus a suitable choice [151]. Examples of such a distribution are
given in Figure 9.1. By using the relation between beta and gamma functions, the
obtained effective discounting function [150] becomes

d(t) :=

∫ 1

0

xtf(x, α, β)dx =
Γ(t+ α)Γ(α+ β)

Γ(t+ α+ β)Γ(α)
, (9.1)

1The notation of the shape parameters α, β of the Beta distribution should not be confused with
the linear payoff relation parameters used in Chapter 6.
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where Γ(·) indicates the gamma function. This effective discounting function indicates
how in beta discounting, delayed or uncertain future payoffs are discounted when the
probability for future interactions is uncertain. As one would expect, the payoffs that
are received now are not subject to this uncertainty and are ‘discounted’ by the factor
d(0) = 1. In contrast to the deterministic case with a fixed discount rate, the rate of
change of the effective discount function in Eq. (9.1) is

d(t+ 1)− d(t)

d(t)
= − β

t+ α+ β
, t ≥ 0, (9.2)

and thus is in line with the empirically well-supported feature of hyperbolic discounting
in which the effective discount rate decreases monotonically over time [138,139,150, and
the references therein]. Evaluations of the effective discounting function and an
example of deterministic exponential discounting are given in Figure 9.2. Going back
to the main formulation of the effective discount function in Eq. (9.1), if one denotes
the expected payoff of player i in round t by πi(t), then the average discounted payoff
of player i in the repeated game with beta discounting is

πi :=

∑∞
t=0 d(t)πi(t)∑∞
t=0 d(t)

. (9.3)

To evaluate this payoff, we note that the series of the effective discounting function
converges for β > 1 to

α+ β − 1

β − 1
. (9.4)

Thus, the shape parameters of the discount factor’s distribution analytically
determine the normalization factor of the average discounted payoffs. It is worth
pointing out that the requirement β > 1 excludes the possibility of a uniform or
U-shaped distribution of the discount rate, but does not limit the skewness of the
distribution as shown in Figure 9.1.

Remark 19 (Determistic limits). In the deterministic limit α→∞ and β <∞,
an infinitely repeated game without discounting is recovered. Moreover, if one sets
β = α(1−δ)

δ with δ ∈ (0, 1), then in the deterministic limit α → ∞, arbitrarily high
probability density is put on δ and exponential discounting with a fixed discount factor
δ is recovered.

9.1.1 Time-dependent memory-one strategies and mean
distributions

Zero-determinant strategies determine the probability to select an action based
only on the outcome of the previous round, and therefore belong to the class of
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3 for sufficiently large values of α.

memory-one strategies. When the rate of change of the discount factor is fixed, these
strategies can be written as a vector whose elements are time-independent conditional
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probabilities [64, 118,152]. However, when the discount factor is uncertain, its rate of
change given in Eq. (9.2), varies with time and a strategic player should take this time
dependency into account when deciding whether to cooperate (C) or defect (D). Now,
let ptσ ∈ [0, 1] denote the probability that the strategic player cooperates at round t+1

given that, at round t, the action profile is σ. By stacking the conditional probabilities
for all possible outcomes into a vector, we obtain a time-dependent memory-one
strategy that determines the probability for the strategic player to cooperate at round
t+ 1:

pt = (ptσ)σ∈{C,D}n .

Accordingly, the repeated memory-one strategy given by prep determines the prob-
ability to cooperate when the current decision is simply repeated and is defined as
in Chapter 6. Let v(t) = (vσ(t))σ∈{C,D}n be the vector of outcome probabilities at
round t as in Chapter 6. Using the limit of the series of the effective discounting
function in Eq. (9.4), the mean distribution of the action profiles is

v =

∑∞
t=0 d(t)v(t)∑∞
t=0 d(t)

=
β − 1

α+ β − 1

∞∑
t=0

d(t)v(t). (9.5)

In order to relate the average discounted payoff to the mean distribution we,
introduce some additional notation adopted from [118]. Remember that giσ denotes
the one-shot payoff that the strategic player i receives in the action profile σ ∈ {C,D}n.
By stacking the possible payoffs into a vector, one obtains gi, which contains all
possible payoffs of player i in a given round of play. As in Chapter 6, the expected
payoff of player i at round t can then be expressed by multiplying this one-shot payoff
vector by the probability of the outcome. That is, πi(t) = gi · v(t). Consequently, the
average discounted payoff is πi = gi ·v, and the expected payoffs in the repeated game
follow from the mean distribution v and the payoff functions of the social dilemma.

9.2 Risk-adjusted zero-determinant strategies

Let us now investigate under which conditions a single strategic player, say player i,
can unilaterally enforce a linear relation in the average discounted payoff calculated
according to Eq. (9.3). Towards this end, one would need to know the relation between
the time dependent memory-one strategy pt and the mean distribution v. As in the
deterministic case, we use the fact that the probability that player i cooperated at
round t is qC(t) = prep · v(t). And the probability that i cooperates at the next round
t+ 1 is qC(t+ 1) = pt · v(t). Now, let us define the function

u(t) :=
d(t+ 1)

d(t)
qC(t+ 1)− qC(t) =

t+ α

t+ α+ β
qC(t+ 1)− qC(t), (9.6)
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and observe that its discounted telescoping sum evaluates as

T∑
t=0

d(t)u(t) = d(0)

(
α

α+ β
qC(1)− qC(0)

)
+

d(1)

(
1 + α

1 + α+ β
qC(2)− qC(1)

)
+ d(2)

(
2 + α

2 + α+ β
qC(3)− qC(2)

)
+ . . .

+ d(t)

(
T + α

T + α+ β
qC(T + 1)− qC(T )

)
= d(t)

T + α

T + α+ β
qC(T + 1)− d(0)qC(0).

(9.7)

For real β > 1 and α > 0, we have

lim
t→∞

d(t) = 0. (9.8)

Thus,

lim
T→∞

T∑
t=0

d(t)u(t) = lim
T→∞

T∑
t=0

d(t)

(
t+ α

t+ α+ β
pt − prep

)
· v(t) = −qC(0).

Furthermore, dividing by the series in Eq. (9.4), we obtain

β − 1

α+ β − 1

∞∑
t=0

d(t)u(t) =
β − 1

α+ β − 1

∞∑
t=0

d(t)

(
t+ α

t+ α+ β
pt − prep

)
· v(t) (9.9)

=
β − 1

α+ β − 1

∞∑
t=0

d(t)v(t) ·
(

t+ α

t+ α+ β
pt − prep

)
(9.10)

= − β − 1

α+ β − 1
qC(0) = − β − 1

α+ β − 1
p0, (9.11)

where p0 is player i’s initial probability to cooperate, i.e. p0 := qC(0).

Remark 20 (Relation to deterministic discounting). The relation in Eq. (9.9)
can be seen as a probabilistic discounting extension of Akin’s result on the relation
between a memory-one strategy and the mean distribution of an infinitely repeated
game without discounting, see [123, Theorem 1.3] and Eq. (6.4). Indeed, in the
deterministic limit α→∞ and β <∞, the influence of p0 on the relation between pt

and v in Eq. (9.9) disappears. In the deterministic limit α→∞ and β = α(1−δ)
δ , one

recovers a relation as in Lemma 9.

The relation in Eq. (9.9) links the mean distribution of the action profiles v to
the time dependent memory-one strategy pt and is the starting point for defining
strategies that allow a single player to exert significant influence on the outcome of
the uncertain repeated game. We are now ready to formulate a risk-adjusted ZD
strategy for repeated games with beta discounting.
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Definition 26 (risk-adjusted ZD strategy). A time dependent memory one strat-
egy pt with entries in the closed unit interval is a risk-adjusted ZD strategy for a
symmetric n-player game if there exist shape parameters α > 0, β > 1, constants
(s, l) ∈ R2, weights wj for 1 ≤ j ≤ n and φ such that

pt =
t+ α+ β

t+ α

prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01

 , (9.12)

under the requirement that wi = 0,
∑n
j=1 wj = 1 and φ 6= 0.

Remark 21. As detailed in Remark 9, when wj = 1
n−1 for all j 6= i, the formulation

of a risk-adjusted ZD strategy for a symmetric social dilemma can be simplified to
have 2n elements.

Theorem 13 (Enforcing a linear relation under uncertain disocunting). As-
sume the probabilistic discount factor has a fixed beta distribution with real parameters
α > 0 and β > 1. If a player applies a fixed risk-adjusted ZD strategy as in Definition
26 then, independent of the fixed strategies of the n − 1 group members, expected
payoffs obey the equation

π−i = sπi + (1− s)l, (9.13)

Proof. Substituting the expression for pt into Eq. (9.10) we obtain

β − 1

α+ β − 1

∞∑
t=0

d(t)v(t) ·

φ
sgi − n∑

j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01

 =

− β − 1

α+ β − 1
p0 (9.14)

By the distributive and commutative properties of the dot product, this impliesφ
sgi − n∑

j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01

 · v = − β − 1

α+ β − 1
p0

φ

sπi − n∑
j 6=i

wjπj + (1− s)l

− β − 1

α+ β − 1
p0 = − β − 1

α+ β − 1
p0,

φ

sπi − n∑
j 6=i

wjπj + (1− s)l

 = 0.
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where we have used the fact that v · 1 = 1. Finally, because φ 6= 0, it follows that

sπi −
n∑
j 6=i

wjπj + (1− s)l = 0
π−i:=

∑n
j 6=i wjπj

==========⇒ sπi + (1− s)l = π−i. (9.15)

This completes the proof.

9.3 Existence of risk-adjusted ZD strategies

As in the case of deterministic discounting discussed in Chapter 6, the entries of
risk-adjusted zero-determinant strategies are conditional probabilities and in order
to obtain a well-defined strategy, they need to belong to the closed unit interval.
Consequently, there are limitations on how a strategic player can choose the slope s
and the baseline payoff l of the linear payoff relation.

Definition 27 (Enforceable payoff relations under beta discounting). A lin-
ear relation (s, l) ∈ R2 with weights w ∈ Rn, is enforceable under beta discounting if
there exist real uncertainty parameters α > 0 and β > 1 of the beta distribution, and
strategy parameters φ > 0 and p0 ∈ [0, 1] such that for all t ≥ 0 the entries of pt are
in the closed unit interval.

As we have seen in Chapter 6, the parameter φ > 0 determines how fast the linear
relation is enforced and plays a crucial role in determining threshold discount factors
in deterministically discounted games [122, 146]. Because for beta discounting the
discount rate is monotonically decreasing over time, the set of enforceable payoff
relations of a risk-adjusted zero-determinant strategy is determined at time t = 0.
This is formalized in the following lemma.

Lemma 14 (Monotonically decreasing upper bounds). If the entries of p0 are
in the closed unit interval, then also the entries of pt are in the closed unit interval
for all t ≥ 0.

Proof.

0 ≤ pt ≤ 1,

0 ≤ t+ α+ β

t+ α

prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01

 ≤ 1,

0 ≤ prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01 ≤

t+ α

t+ α+ β
1.
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To satisfy this inequality for all t ≥ 0 it needs to hold for the minimum upper bound
in t. We continue to show that this minimum occurs at t = 0. To this end, observe
that

α

α+ β
≤ t+ α

t+ α+ β

α>0,β>0,t≥0
========⇒ 0 ≤ βt. (9.16)

Clearly, this is satisfied for any t ≥ 0 and β > 0.

The result in Lemma 14 has an intuitive interpretation: for a strategic player, the
possibilities for exerting control over uncertain future interactions are constrained by
her initial possibilities for exerting control.

Lemma 14 implies that the existence problem for risk-adjusted ZD strategies with
beta discounting can be solved by the implications of the inequality

0 ≤ prep + φ

sgi − n∑
j 6=i

wjg
j + (1− s)l1

− β − 1

α+ β − 1
p01 ≤

α

α+ β
1. (9.17)

Let us first show that generous strategies cannot exist in the case of beta discount-
ing.

Proposition 25 (No possibilities for generosity). In the case of beta discounting,
generous payoff relations are not enforceable in symmetric multiplayer social dilemma
games.

Proof. Suppose all players are cooperating e.g. σ = (C,C, . . . , C), then all players
receive the one shot payoff an−1. By plugging these payoffs into the risk-adjusted ZD
strategy in Definition 26, and using the fact that

∑
j 6=i wj = 1, one obtains

pt(C,C, . . . , C) =
t+ α+ β

t+ α

(
1 + φ(1− s)(l − an−1)− β − 1

α+ β − 1
p0

)
. (9.18)

Using Lemma 14, the requirement that at t = 0 the entries of the risk-adjusted ZD
strategy are in the unit interval implies

0 ≤ α+ β

α

(
1 + φ(1− s)(l − an−1)− β − 1

α+ β − 1
p0

)
≤ 1, (9.19)

β − 1

α+ β − 1
p0 − 1 ≤ φ(1− s)(l − an−1) ≤ α

α+ β
+

β − 1

α+ β − 1
p0 − 1. (9.20)

Now for the generous strategy it is required that l = an−1. From the above equation
we obtain the requirement,

β − 1

α+ β − 1
p0 − 1 ≤ 0 ≤ α

α+ β
+

β − 1

α+ β − 1
p0 − 1 (9.21)
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Clearly, for any p0 ∈ [0, 1], the lower bound is satisfied. However, the upper bound
reads as

0 ≤ α

α+ β
+

β − 1

α+ β − 1
p0 − 1. (9.22)

Because β > 1 and α > 0, we have β−1
α+β−1 > 0 and because p0 ∈ [0, 1], a necessary

condition for this inequality to hold for some p0 ∈ [0, 1] is that it holds for p0 = 1, i.e.,

0 ≤ α

α+ β
+

β − 1

α+ β − 1
− 1. (9.23)

We proceed to show that Eq. (9.23) cannot be satisfied for α > 0, β > 1. For this, we
write Eq. (9.23) equivalently as

0 ≤ α

α+ β
+

β − 1

α+ β − 1
− α+ β − 1

α+ β − 1
,

0 ≤ α

α+ β
− α

α+ β − 1
,

α

α+ β − 1
≤ α

α+ β
.

Because β > 1 and α > 0 the left hand side is positive. Moreover, because α and β
are reals they are finite and we arrive at a contradiction. This completes the proof.

Remark 22 (Generosity in deterministic limits). In the deterministic limit
α → ∞ and β < ∞, we obtain 1 ≤ 1 which is always satisfied and thus in the
deterministic limit of infinitely repeated games without discounting, generous strategies
can exist, which is consistent with the results in [64, 118]. If we additionally let
β = α(1−δ)

δ , then

lim
α→∞

α

α+ α(1−δ)
δ − 1

≤ lim
α→∞

α

α+ α(1−δ)
δ

⇒ δ ≤ δ,

thus generous strategies also exist in the deterministic limit of exponential discounting,
which is consistent with the results in [152].

We now continue to characterize the enforceable payoff relations of risk-adjusted
zero determinant strategies. We begin by formulating necessary conditions.

Proposition 26. In n-player symmetric social dilemma games with payoffs as in
Chapter 6, the enforceable payoff relations of a risk-adjusted ZD strategy with beta
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discount factors require the following necessary conditions

φ > 0, (9.24)

− 1

n− 1
≤ −min

j 6=i
wj < s < 1, (9.25)

b0 ≤ l < an−1. (9.26)

Proof. In the following, we refer to the ZD strategist as player i. Let t = 0 and
suppose all players are cooperating e.g. σ = (C,C, . . . , C). In this case, every player
receives the one shot payoff an−1. By plugging these payoffs into the risk-adjusted
ZD strategy in Definition 26, and using the fact that

∑
j 6=i wj = 1, one obtains

p0(C,C, . . . , C) =
α+ β

α

(
1 + φ(1− s)(l − an−1)− β − 1

α+ β − 1
p0

)
(9.27)

Now suppose that to the contrary all players defect; then all players receive the one
shot payoff b0 and the entry of the risk-adjusted ZD strategy is

p0(D,D, . . . ,D) =
α+ β

α

(
φ(1− s)(l − b0)− β − 1

α+ β − 1
p0

)
(9.28)

The requirement that Eq. (9.27) and Eq. (9.28) belong to the closed unit interval
results in the inequalities

β − 1

α+ β − 1
p0 − 1 ≤ φ(1− s)(l − an−1) ≤ α

α+ β
+

β − 1

α+ β − 1
p0 − 1 < 0 (9.29)

0 ≤ β − 1

α+ β − 1
p0 ≤ φ(1− s)(l − b0) ≤ α

α+ β
+

β − 1

α+ β − 1
p0, (9.30)

where the strict upper bound in Eq. (9.29) follows from the fact that Eq. (9.22) cannot
be satisfied for α > 0, β > 1 and p0 ∈ [0, 1]. By multiplying Eq. (9.29) by −1 we
obtain

0 < 1− α

α+ β
− β − 1

α+ β − 1
p0 ≤ φ(1− s)(an−1 − l) ≤ 1− β − 1

α+ β − 1
p0 (9.31)

By adding Eq. (9.30) and Eq. (9.31) we obtain

0 < 1− α

α+ β
≤ φ(1− s)(an−1 − b0) ≤ 1 +

α

α+ β
(9.32)

Combining this with the assumption in the main text that an−1 > b0, it follows that
in order for the payoff relation to be enforceable it is necessary that

φ(1− s) > 0. (9.33)
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Now suppose that there is a single defecting player, i.e., σ = (C,C, . . . ,D) or any of
its permutations. In this case, the cooperators receive an−2 and the single defector
obtains bn−1. In the case that the single defector is j 6= i, the entry of the risk-adjusted
ZD strategy is

p0
σ =

α+ β

α

(
1 + φ[san−2 − (1− wj)an−2 − wjbn−1 + (1− s)l]− β − 1

α+ β − 1
p0

)
,

(9.34)

and if the unique defector is i, the entry of prep is equal to zero and thus, the entry
of the risk-adjusted ZD strategy is

p0
σ =

α+ β

α

(
φ[sbn−1 − an−2 + (1− s)l]− β − 1

α+ β − 1
p0

)
. (9.35)

The requirement that Eq. (9.34) and Eq. (9.35) belong to the closed unit interval
results in the following inequalities

β − 1

α+ β − 1
p0 ≤ φ[sbn−1 − an−2 + (1− s)l] ≤ α

α+ β
+

β − 1

α+ β − 1
p0 (9.36)

β − 1

α+ β − 1
p0 − 1 ≤ φ[san−2 − (1− wj)an−2 − wjbn−1 + (1− s)l] ≤

α

α+ β
+

β − 1

α+ β − 1
p0 − 1 (9.37)

By combining these two conditions in a similar manner as was done for the
homogeneous action profile case we obtain

0 < 1− α

α+ β
≤ φ[(s+ wj)(bn−1 − an−2)] ≤ 1 +

α

α+ β
(9.38)

From the assumption bz+1 > az in the main text, it follows that

∀j 6= i : φ(s+ wj) > 0. (9.39)

Together with Eq. (9.33) this implies that

φ(1 + wj) > 0
∃ j 6=i s.t.wj>0
=========⇒ φ > 0.

This also implies that

φ(1− s) φ>0
==⇒ (1− s) > 0⇒ s < 1.

In combination with Eq. (9.39) it follows that

∀j 6= i : s+ wj > 0⇔ ∀j 6= i : wj > −s⇔ min
j 6=i

wj > −s. (9.40)
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Moreover, because it is required that
∑n
j=1 wj = 1, it follows that min

j 6=i
wj ≤ 1

n−1 .

Hence the necessary condition turns into:

− 1

n− 1
≤ −min

j 6=i
wj < s < 1. (9.41)

Let us now investigate the bounds on the baseline payoffs. From Eq. (9.30) we have

0 ≤ β − 1

α+ β − 1
p0 ≤ φ(1− s)(l − b0) (9.42)

Thus, in order for Eq. (9.42) to hold it is required that

0 ≤ β − 1

α+ β − 1
p0 ≤ φ(1− s)(l − b0)

φ(1−s)>0
======⇒ l ≥ b0. (9.43)

From Eq. (9.29) we have

φ(1− s)(l − an−1) ≤ α

α+ β
+

β − 1

α+ β − 1
p0 − 1 < 0 (9.44)

It follows that it must hold that
l < an−1.

Let us now formulate the result that fully characterizes the enforceable payoff
relations of risk-adjusted zero determinant strategies. For this let w = (wj) ∈ Rn−1

denote the vector of weights and let ŵz = min
wh∈w

(
∑z
h=1 wh) denote the sum of the

j smallest weights of j 6= i and finally let ŵ0 = 0. We note that the proof of the
following theorem is very similar to the deterministic case in Chapter 6.

Theorem 14 (Characterizing enforceable sets under uncertain discounting).
For the repeated n-player game with beta discount factors such that α > 0 and β > 1

and payoffs as in the main text that satisfy the social dilemma assumptions in the
main text, the payoff relation (s, l) ∈ R2 with weights w ∈ Rn−1 is enforceable by the
risk-adjusted ZD strategy in Eq. (9.12) if and only if − 1

n−1 < s < 1 and

max
0≤z≤n−1

{
bz −

ŵz(bz − az−1)

(1− s)

}
≤ l < min

0≤z≤n−1

{
az +

ŵn−z−1(bz+1 − az)
(1− s)

}
.

(9.45)

Proof. Let t = 0. In the following we refer to the key player, who is employing the
ZD strategy, as player i. Let σ = (x1, . . . , xn) such that xk ∈ Ak and let σC be the
number of i′s co-players that cooperate and let σD = n− 1− σC , be the number of
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i′s co-players that defect. Also, let |σ| be the total number of cooperators including
player i. Using this notation, and using the fact that α, β > 0, for some action profile
σ we may write the ZD strategy in Eq. (9.12) as

α

α+ β
p0
σ = prep + φ[(1− s)(l − giσ) +

n∑
j 6=i

wj(g
i
σ − gjσ)]− β − 1

α+ β − 1
p0. (9.46)

Also, note that
n∑
j 6=i

wjg
j
σ =

∑
k∈σD

wkg
k
σ +

∑
h∈σC

whg
h
σ , (9.47)

and because
∑n
j 6=i wj = 1 it holds that∑

h∈σC
wh = 1−

∑
k∈σD

wk.

Additionally, note that because of the symmetric one shot payoffs, for all h ∈ σC it
holds that ghσ = a|σ|−1, and for all k ∈ σD, gkσ = b|σ|. It follows that Eq. (9.47) can
be written as

n∑
j 6=i

wjg
j
σ = a|σ|−1 +

∑
j∈σD

wj(b|σ| − a|σ|−1).

Accordingly, the entries of the ZD strategy α
α+βp

0
σ are given by Eq. (9.49). For all

σ ∈ S we require that

0 ≤ p0
σ ≤ 1⇒ 0 ≤ α

α+ β
p0
σ ≤

α

α+ β
. (9.48)

This leads to the inequalities in Eq. (9.50) and Eq. (9.51). Because φ > 0 can be
chosen arbitrarily small, the inequalities in Eq. (9.50) can be satisfied for some α > 0

and β > 1 and p0 ∈ [0, 1] if and only if for all σ such that xi = C the inequalities in
Eq. (9.52) are satisfied.

α

α+ β
pσ =


1 + φ

[
(1− s)(l − a|σ|−1)−

∑
j∈σD

wj(b|σ| − a|σ|−1)

]
− β−1

α+β−1p0, if xi = C,

φ

[
(1− s)(l − b|σ|) +

∑
j∈σC

wj(b|σ| − a|σ|−1)

]
− β−1

α+β−1p0, if xi = D.

(9.49)
By substituting Eq. (9.49) into this requirement we obtain that for all σ such that
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xi = C the following inequalities are required to hold:

0 < 1− α

α+ β
− β − 1

α+ β − 1
p0 ≤ φ

(1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1)

 ≤
1− β − 1

α+ β − 1
p0. (9.50)

On the other hand, when xi = D the following inequalities are required to hold:

0 ≤ β − 1

α+ β − 1
p0 ≤ φ

(1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ| − a|σ|−1)

 ≤
α

α+ β
+

β − 1

α+ β − 1
p0. (9.51)

Let us first derive the conditions that result from Eq. (9.50). From the lower
bound we obtain

0 < (1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1). (9.52)

The inequality in Eq. (9.52) together with the necessary condition that (1− s) > 0

implies that

a|σ|−1 +

∑
j∈σD

wj(b|σ| − a|σ|−1)

(1− s)
> l, (9.53)

and thus provides an upper-bound on the enforceable baseline payoff l. We now turn
our attention to the inequalities in Eq. (9.51) that can be satisfied if and only if for
all σ such that xi = D the following holds

0 ≤ (1− s)(l − b|σ|) +
∑
j∈σC

wj(b|σ| − a|σ|−1)

(1−s)>0
=====⇒ b|σ| −

∑
j∈σC

wj(b|σ| − a|σ|−1)

(1− s)
≤ l.

(9.54)

Combining Eq. (9.54) and Eq. (9.53) we obtain

max
|σ|s.t.xi=D

b|σ| −
∑
l∈σC

wl(b|σ| − a|σ|−1)

(1− s)

 ≤ l,
l < min

|σ|s.t.xi=C

a|σ|−1 +

∑
k∈σD

wk(b|σ| − a|σ|−1)

(1− s)

 .

(9.55)
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Because b|σ|−a|σ|−1 > 0 and (1−s) > 0 the minima and maxima of the bounds in
Eq. (6.42) are achieved by choosing the wj as small as possible. That is, the extrema
of the bounds on l are achieved for those states σ|xi=C in which

∑
l∈σC

wl is minimum

and those σ|xi=D in which
∑
k∈σD

wk is minimum. By the above reasoning, Eq. (9.55)

can be equivalently written as in the theorem in the main statement. This completes
the proof.

Theorem 14 provides insights in the existence of risk-adjusted zero determinant
strategies in repeated games with uncertain discounting. In particular, extortionate
strategies, the baseline payoff is equal to the full defection payoff, that is l = b0. In the
lower bound of Eq. (9.45), this occurs when z = 0 and due to the conservative lower
bound on the baseline payoff, one can conclude that extortionate strategies can exist
in multiplayer social dilemmas with beta discounting. The multiplayer social dilemma
thus remains vulnerable to extortionate behaviors even under uncertainty. Likewise,
equalizing strategies with a slope s = 0 can be enforced as long as their baseline payoff
l satisfies the lower and upper bounds. A crucial implication of uncertainty follows
from the strict upper bound in Eq. (9.45), that implies that generous strategies, for
which l = an−1, cannot exist in multiplayer social dilemmas. This has a revealing
intuitive interpretation: if future interactions and their payoffs are uncertain, then
one cannot guarantee that others will do well. The characterization of the enforceable
payoff relations can also be applied to the repeated prisoners dilemma game. To see
this, let n = 2, b1 = T, b0 = P, a1 = R, and finally a0 = S. Then, the enforceable
slopes satisfy −1 < s < 1 and the enforceable payoff relations must satifsy

max

{
P,

S− Ts

1− s

}
≤ l < min

{
R,

T − Ss

1− s

}
.

It follows that the mutual cooperation baseline payoff l = R cannot be enforced and
hence generous strategies do not exist in the repeated prisoners dilemma with beta
discounting.

9.4 Uncertainty and the level of influence

The characterization of enforceable payoff relations does not specify conditions on the
shape parameters other than α > 0 and β > 1. But how do these shape parameters
affect the payoff relations that a strategic player can enforce? When future interactions
are at least as likely as a termination of the game, the beta distribution is symmetric or
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Table 9.1: Existence of zero-determinant strategies for multiplayer social dilemma
games without discounting, deterministic exponential discounting and probabilistic
beta discounting.

ZD strategy No discounting Exponential Beta
Fair 3 7 7

Generous 3 3 7

Extortionate 3 3 X
Equalizing 3 3 3

negatively skewed such that α ≥ β > 1. In this case, the mean of the beta distribution

µ =
α

α+ β
,

is at least a half. If discounting would be deterministic, the players, in this case, would
expect at least two rounds of play. In the following, we provide a simple condition
on one shot payoffs and the ZD parameters s and l that suggest that in many social
dilemmas, in order to enforce a payoff relation it is, in fact, required that α ≥ β. For
any distribution with α < β, the mean discount factor would simply not allow a player
to exert enough influence because payoffs are discounted too fast. This additional
requirement on the shape parameters of the beta distribution also provides insight
into how uncertain a strategic player can be about the discount rate or continuation
probability before losing the possibility to enforce some desired payoff relation. For
α ≥ β > 1 the variance of the beta distribution is monotonically decreasing in α.
Consequently, the maximum variance that a risk-adjusted zero-determinant strategy
can handle in these situations occurs when α = β > 1, and evaluates as

σ2
max =

1

4(2β + 1)
<

1

12
.

Now let us suppose the strategic player has estimated the shape parameters of the
beta distribution. Then, exactly how extortionate can a payoff relation be? It is
exactly here where the parameter φ > 0 plays a crucial role for the level of influence
of the strategic player. In particular, for a given µ, in order for the risk-adjusted
zero-determinant strategy to be well-defined, additional requirements on φ > 0 are
necessary that in turn determine if the strategic player can enforce the linear payoff
relation fast enough. This is formalized in the following theorem which is related to
the deterministic case in Theorem 9.

Theorem 15 (Mean discount rates and the level of influence). Assume p0 = 0 and
(s, b0) ∈ R2 satisfy the conditions in Theorem 14. Then ρC > 0 and ρD + ρC > 0.
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Moreover, the threshold mean µ above which the extortionate payoff relation can be
enforced is given by

µτ = max

{
ρC − ρC

ρC
,

ρD

ρD + ρC

}
.

Proof. For α > 0, β > 1 for the existence of extortionate payoff relations with l = b0
we know p0 = 0 is required (this fact immediately follows from the lower bound in
Eq. (9.30)). By substituting this into Eq. (9.50) it follows that in order for the payoff
relation to be enforceable it is required that for all σ such that xi = C the following
holds:

0 < 1− α

α+ β
≤ φ

(1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1)

 ≤ 1.

ρC(σ) := (1− s)(a|σ|−1 − l) +
∑
j∈σD

wj(b|σ| − a|σ|−1) > 0. (9.56)

Hence, Eq. (6.37) with p0 = 0 implies that for all σ such that xi = C it holds that

1− µ
ρC(σ)

≤ φ ≤ 1

ρC(σ)
⇒ 1− µ

ρC(z, ŵz)
≤ φ ≤ 1

ρC(z, w̃z)
. (9.57)

Naturally, ρC ≥ ρC . In the special case in which equality holds, it follows from
Eq. (7.3) that µ ≥ 0, which is satisfied for any α, β > 0. We continue to investigate
the case in which ρC > ρC . In this case, a solution to Eq. (9.57) for some φ > 0 exists
if and only if

1− µ
ρC(z, ŵz)

≤ 1

ρC(z, w̃z)
⇒ µ ≥

ρC − ρC

ρC
, (9.58)

which leads to the first expression in the theorem. Now, from Eq. (9.51) with p0 = 0,
it follows that in order for the payoff relation to be enforceable it is necessary that

∀σ s.t. xi = D : 0 ≤ φρD(σ) ≤ µ⇒ 0 ≤ φρD(z, w̃z) ≤ µ. (9.59)

Because φ > 0 is necessary for the payoff relation to be enforceable, it follows that
ρD(σ) ≥ 0 for all σ such that xi = D. Let us first investigate the special case in which
ρD(z, w̃z) = 0. Then Eq. (9.59) is satisfied for any φ > 0 and µ ∈ (0, 1). Now, assume
ρD(z, w̃z) > 0. Then, Eq. (9.59) and Eq. (9.57) imply

1− µ
ρC(z, ŵz)

≤ φ ≤ µ

ρD(z, w̃z)
. (9.60)
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In order for such a φ to exist it needs to hold that

1− µ
ρC(z, ŵz)

≤ µ

ρD(z, w̃z)

ρD, ρC>0
======⇒ µ ≥ ρD

ρD + ρC
. (9.61)

This completes the proof.

Corollary 9 (symmetric and negatively skewed distributions). If ρC = ρD, enforce-
able payoff relations require α

α+β ≥
1
2 and hence α ≥ β.

Relation to deterministic discounting and generous strategies

Numerical examples of Theorem 15 for the n-player snowdrift game and n-player
linear public goods game are shown in Figure 9.3. These figures are related to
Propositions 9 and 6 in which existence conditions for extortionate strategies in these
games are provided. The n-player linear public goods game and n-player snowdrift
game are also illustrative examples of how uncertainty in the probability for a future
interaction can influence opportunities to enforce generous payoff relations. In the
case of deterministic discounting, in the n-player linear public goods game, generous
strategies can enforce the same slopes as extortionate strategies. For n-player snowdrift
games it can even be shown that a generous strategist can enforce any slope 0 < s < 1

provided that δ < 1 is sufficiently high. In this deterministic setting, it is the fixed
discount factor δ that determines one’s possibilities for the level of control. There is
however a subtle but crucial difference between the effects of µ and δ: only in the
deterministic limit can one enforce generous payoff relations in multiplayer social
dilemmas games.

9.5 Final Remarks

The discovery of zero-determinant strategies by Press and Dyson [64] showed that in the
absence of discounting, individuals can deterministically exert control over the outcome
of 2× 2 games without imposing any restriction on the strategy of the other player.
This surprising finding motivated others to investigate how such strategies hold up
under a variety of circumstances [114, 116, 118, 152]. Zero-determinant strategies were
first studied within the traditional deterministic discounting framework in [121]. One
of the conclusions was that with discounting, the strategic player’s initial probability
to cooperate remains important for her opportunities to influence the outcome of the
game. Perhaps a more important conclusion was that, fair strategies, which enforce
an equal payoff for everyone, do not exist in games with finite but undetermined time
horizons. The existence of extortionate, generous and equalizing strategies however
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remained unchanged. And thus, even with a finite expected number of rounds, a ZD
strategy could promote or maintain cooperative behavior.

Also in an evolutionary setting, generous strategies have since been studied both
theoretically and empirically for their ability to maintain cooperation [114,135,146].
However, independent of how one interprets the discount rate in traditional models of
repeated games, in many real-world scenarios it is likely that there is some degree
of uncertainty. Indeed, interest rates are subject to change over time and decision
makers do not always know the exact probability of a following mutual interaction.
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Figure 9.3: Numerical examples of enforceable slopes by extortionate strategies when
µ = 9

10 . Top: In an n-player snowdrift game with b = 5
4 , c = 1 and n = 3 extortionate

strategies can only enforce slopes after the vertical line at s = 1− c
b(n−1) = 6

10 . Every
slope s for which the blue curve is below µ is enforceable, this is indicated by the
blue region. Bottom: in a linear public goods game with r = 5

4 , c = 1 and n = 3.
extortionate strategies can enforce any slope s for which the red curve is under µ = 9

10 ,
this is indicated by the red region.
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This uncertainty in turn can influence decisions made during the repeated interactions
[147, 153]. Herein, we have extended the theory of repeated n-player games in two
directions. First, from a more general perspective, we provided a unifying framework
of discounting in repeated games that is able to capture infinitely repeated games
without and with traditional deterministic exponential discounting and can capture
the uncertainty in the discount rate or continuation probability. This additional layer
of psychological complexity can be useful in predicting real-world behaviors.

From an empirical point of view, it can be interesting to investigate how the
effective discounting function of this generalized framework holds up in laboratory or
field experiments of human interaction, knowing the promising fact that it supports
the monotone time-inconsistency property of hyperbolic discounting. From a more
theoretical point of view, it can be interesting to investigate classic folk theorems in
this uncertain setting, or to extend the proposed framework to individual beliefs about
the discount rate. For instance, what would happen if there is only one individual
that is uncertain about the continuation probability?

In addition, we have extended the theory of zero determinant strategies to repeated
games with uncertain discount rates or continuation probabilities. We have shown how
the mean discount factor can influence one’s level of control in repeated interactions
and how the amount of uncertainty affects one’s possibility to exert control. An
important consequence is that generous strategies seize to exist in this uncertain
setting. In some sense this theoretical finding is in line with the conclusions of [147].
Namely, when a witty strategic player aims at enforcing a generous payoff relation,
if the uncertain co-players tend to cooperate even when they “should not”, their
increased tendency to cooperate prevents them to profit maximally from the strategic
player’s generous actions. Consequently, the generous strategist cannot enforce that
her co-players do better than herself. In sharp contrast, when this witty strategic
player employs an extortionate strategy, she can enforce that others are worse off.
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10
Conclusion and Future Research

It is our task, both in science and in
society at large, to prove the
conventional wisdom wrong and to
make our unpredictable dreams
come true

Freeman Dyson

10.1 Conclusion

Part I: Rationality and social influence in network games

Based on theoretical and behavioral economics in Chapter 3, we proposed novel
dynamics for finite and convex network games that result from an intuitive mix of
rational best responses and social learning. We have shown that for a general class
of games these dynamics converge to a generalized Nash equilibrium and that the
corresponding decision-making process is “compatible” with rational best response
dynamics. That is, a mix of best responders and h-relative best responders will
eventually reach an equilibrium action profile. These results make it possible to
rigorously study how relative performance considerations of “irrational” or conforming
decision makers affect the behavior and equilibrium profiles of complex socio-technical
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and socio-economic processes. Considering these effects is important because many
technological challenges require increasingly complex models of large social systems
that, in reality, are often affected by social learning effects that are not captured by
best response dynamics.

In Chapter 4, we have shown that rational imitation dynamics in a general class of
asynchronous public goods games on networks converge to an imitation equilibrium
in finite time. By means of a counter-example, we have shown that this general
case of convergence is not guaranteed when imitation is unconditional. For regular
spatial structures and linear production functions, we have proven convergence either
directly from the payoff functions or by using an algorithmic proof technique that
takes advantage of the regularity of the network. We have shown that in the case
of rational imitation, convergence is also guaranteed when the group structures are
determined by a bipartite graph. Such a representation of a spatially structured
social dilemma can, for instance, be used when the group structures are obtained
from data that does not contain information about the entire social network. Next to
convergence, we have provided evidence that in contrast to best response dynamics,
rational imitation can effectively facilitate the evolution of cooperation via network
reciprocity. Our results indicate that through the combination of rationality and
imitation, beneficial dynamic features can arise that are able to sustain the availability
of a publicly available good, providing new insights in the design of solutions to the
tragedy of the commons.

In Chapter 5, we have shown how network games can be extended to include a
subset of players that can employ different actions against different opponents. When
the local games in the network admit a weighted potential function, convergence of the
strategically differentiated version with myopic best response dynamics is guaranteed.
For both imitation and best response dynamics the topology of the network, the
existence and location of differentiators in the networks can crucially alter the action
profile at an equilibrium of groupwise public goods games. When differentiators are
plentiful, the equilibrium action profile becomes less sensitive to changes in the values
of the payoff parameters and cooperation can exist for very low values benefit-to-cost
ratios.

Part II: Strategic play and control in repeated games

In Chapter 6, we have extended the existing results for ZD strategies in repeated
two-player two-action games to n-player two-action games. We focused on n-player
social dilemma games because of their importance to the current literature. However,
the fundamental relation between the memory-one strategy and the limit distribution
is independent of the structure of the game and thus the results in this chapter can
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be extended by considering n-player games that are not social dilemmas. Our theory
supports the finding that due to the finite number of expected rounds or discounting
of the payoffs, the initial probability to cooperate of the key player remains important,
and we have shown that for the existence of generous strategies the ZD strategist
must start to cooperate with probability one. Likewise, for extortionate strategies,
this initial probability must be zero. These results indicate that even in large
groups of players, a single player can unilaterally enforce the mutual cooperation
payoff independent of the strategies of the other players. Especially the latter is an
important feature of our results that distinguishes them from classical folk theorems
in which it is assumed all players are rational. If one however assumes that other
players are rational, the positive payoff relations that generous and extortionate ZD
strategies enforce ensure that the collective best response of the selfish co-players is
to maximize the ZD strategists payoff by cooperating every round.

In Chapter 7, a theory is developed that characterizes the efficiency of exerting
control in terms of the minimum required number of expected interactions in social
dilemmas. Based on the necessary conditions on the initial probability to cooperate,
we derived expressions for the minimum discount factors above which a ZD strategist
can enforce some desired generous or extortionate payoff relation. Because equalizer
strategies do not impose such conditions on the initial probability to cooperate, one
can identify a multitude of p0 regions in the unit interval for which there exist different
threshold discount factors. Consequently, we have derived an expression that ensures
the desired equalizer strategy to be enforceable for any initial probability to cooperate
in the open unit interval. The derived necessary and sufficient conditions for existence
and the thresholds discount factors presented in this chapter may also be helpful in
designing novel control techniques for repeated decision making processes in which
the objective is to achieve a desired relative performance within a given number of
rounds.

In Chapter 8 we have studied the evolutionary stability of ZD strategies in a finite
population in which players interact in randomly formed n-player repeated contests.
Necessary and sufficient conditions are provided for a resident ZD strategy to be stable
with respect to a single mutant ZD strategy. These conditions can characterize when
ZD strategies can enforce cooperation to evolve in a finite population. In particular,
they suggest that under the classic Maynard-Smith conditions (N = ∞, n = 2)
extortionate strategies cannot be evolutionarily stable. In this case, only generous
strategies and equalizers with generous slopes are favored by evolution. In sharp
contrast, when the population size is equal to the group size (n = N), only extortionate
strategies can be evolutionarily stable. In a finite population in which the group
size of the contests is smaller than the population size (n < N) both generosity and
extortion can be stable, however, this highly depends on the benefit-to-cost ratio, the
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population size N , and group size of the contests n.
In Chapter 9 we have proposed a novel discounting method for repeated games

that takes into account the added psychological complexity of uncertainty about
the discount factor or continuation probability of the repeated game. With this
generalized discounting framework it is possible to recover deterministic discounting
methods that exist in the current literature, as well as hyperbolic discounting that has
time-inconsistent discount rates. We have shown how ZD strategies, that are normally
fixed memory-one strategies, can be adapted to time-varying memory-one strategies
that take into account the changing discount rates that result from uncertainty in
the continuation probability. In deterministic limits these novel risk-adapted ZD
strategies recover the formulations of ZD strategies under deterministic discounting
methods and ZD strategies for repeated games with an infinite number of expected
rounds. Characterization of the enforceable slopes shows that in this uncertain setting,
generous strategies cannot be enforced. This result highlights that certain continuation
probabilities are necessary for mutual cooperation to be enforceable by a strategic
player.

10.2 Recommendations for future research

Part I: Rationality and social influence in network games

For the h-RBR dynamics proposed in Part I many challenging open problems and
future research directions can be identified. In this work, we have focused on determin-
istic decision-makers that do not deviate from their decision rule. In reality, trembling
hands [154] or random explorations are inevitable. For myopic best response dynamics,
these effects have been studied under a variety of noise models such as constant noise
as in adaptive play [45], or a noise that is proportional to one’s expected payoff as in
the log-linear response model [45]. These ideas can also be applied to relative best
responses, and it is interesting to characterize how stochastically stable equilibria
may change under the influence of social learning. For rational imitation dynamics,
proportional noise models from imitation processes may be incorporated [37,155] as
well. However, even for deterministic dynamics, the effects of social influence and
network structure on the equilibria of network games are not yet fully characterized.
In particular, it could be interesting to identify network structures that enhance the
opportunities for rational cooperation to evolve in social dilemmas on networks. The
same holds for the mechanism strategic differentiation.

From a more technical perspective, it would be interesting to study the convergence
properties of synchronous h-RBR and rational imitation dynamics. In this case,
the existence of a potential function is not immediately helpful in the convergence
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analysis and because the constrained sets imposed by the h-RBR dynamics are
not jointly convex, new analysis techniques must be developed to characterize the
convergence properties of this class of synchronous dynamics. Nevertheless, it can also
be interesting to study the effect that synchronous revisions have on the effectiveness
of network reciprocity under rational imitation and h-RBR dynamics. Finally, it would
be interesting to apply the idea of relative performance considerations in rational
imitations and relative best responses to opinion dynamics. In this case, the relative
performance of the players can, for instance, be associated with the differences in
opinions (3). In such a model, players will only take into account the opinions of
neighbors that are relatively close to their own opinion. In particular, it could be of
interest to investigate under which conditions polarization or clustering of opinions
will occur in such “relative” opinion dynamics.

Part II: Strategic play and control in repeated games

The theory developed in Part II can be extended in several ways. We will begin with
the most immediate extensions. We have seen how uncertainty in the continuation
probability or discount rate prevents the opportunities of an individual to enforce a
generous payoff relation, but it remains an open problem how the parameters of the
probability distribution affect the equilibrium payoffs of repeated games. In particular,
the uncertain discounting framework from Chapter 9 can used to investigate how
classical folk theorems hold up under uncertain discounting.

In chapter 6, we have focused on characterizing the enforceable payoff relations in
social dilemmas, but as mentioned before, the fundamental relation between memory-
one strategies and mean distributions of the repeated game do not require the social
dilemma assumptions. In particular, the results in [63] indicate that ZD strategies
possibly exist in the class of symmetric potential games. It would be interesting to
extend the theory in this thesis by characterizing the enforceable payoff relations in
this widely studied class of games.

Perhaps a more difficult research direction is to extend the theory of ZD strategies
in repeated games with individual discount factors. Indeed, the folk theorem has been
studied under these rather complex settings [53].

It would be also interesting to include other sources of psychological complexity
and uncertainty in n-player games. For instance, psychologists and game theorists
have recently studied the effect of uncertainty in the group size n [156,157]. It will
be interesting to study how this will affect the strategic behavior of individuals in
repeated games. Lastly, an interesting and challenging direction for future research
is to study ZD strategies in continuous-time repeated games [158]. For this, a new
analysis tool must be developed first. In particular, it is not yet clear how mean
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distributions of continuous time stochastic processes can be related to a strategy of a
strategic player in continuous time repeated games. With such a relation, one could
apply continuous-time discounting methods [150] to repeated games. This, in turn,
would allow us to formalize how the time “spent” in a certain action profile can affect
the strategic decisions of individuals.
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Summary

Human decisions have a central role in emerging engineering applications such as
smart energy grids and intelligent transportation systems. The decisions that impact
the performance of these complex systems are often made in situations in which
the immediate individual benefits conflict with the long-term performance of the
overall system. For instance, the system performance can rely on individuals to share
their energy resources, accept delays in energy consumption or product deliveries,
etc. Without strategic or structural influence on individual decisions, in these social
dilemmas selfish economic trade-offs can easily lead to an undesirable collective be-
havior. It is therefore crucial to identify mechanisms that can promote cooperative
decisions that lead to better collective performance and sustainable outcomes. In this
thesis, decision-making processes in social dilemmas are studied using the framework
of mathematical games or game theory.

Part I of the thesis is concerned with network games, network reciprocity, and
potential game theory. Based on economic and behavioral studies, novel decision-
making dynamics are defined and studied that combine rationality principles with
social learning through imitation (Chapter 4 and 5). It is shown how selfish decisions
can be moderated by social influence to promote sustainable outcomes. Moreover,
the mechanism called strategic differentiation is proposed through which players can
react differently to their various neighbors in the network (Chapter 5). In this setting,
at equilibrium cooperative decisions are promoted if players with a relatively high
degree in the network (e.g. individuals with a large social network) differentiate their
actions. However, strategic differentiation can become detrimental when it is applied
by players that have a relatively low degree in the network (e.g. individuals with a
small social network).

Part II is concerned with strategic solutions to social dilemmas in which players
repeatedly interact with each other in a multiplayer game. A theory is developed that
characterizes the level of control that a player can unilaterally exert in the eventual
outcome of a multiplayer game with a finite number of expected rounds (Chapter
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6). The theory covers a broad class of social dilemmas, that have been extensively
studied in a variety of research disciplines including sociology, psychology, biology,
and economics, and can capture a variety of complex situations in which the player’s
benefits (non-linearly) depend on the decisions of others. Through unilateral strategic
influence cooperative behavior of selfish, rational co-players can be promoted and
sustained. However, in contrast to classic theories, it is not necessary to assume
rational behavior of the co-players. By making virtually no assumptions on the
decision-making behavior, the theory can still ensure a relative payoff performance
between the strategic player and the co-players. By characterizing this level of
unilateral control we provide a robust framework through which the performance
of systems that rely on repeated human decisions can be studied and improved.
Expressions are given for the efficiency of strategic influence in terms of the minimum
number of expected interactions required to enforce a desired behavior or relative
performance (Chapter 7). This is useful, for instance, in designing additional benefits
when strategic influence in collective outcomes must be achieved within a given
time-frame. The evolutionary performance of these manipulative strategies is studied
in Chapter 8. It is shown that under classic Maynard-Smith conditions (i.e. infinite
population and pairwise interactions) only generous strategies, that typically enforce
a linear payoff relation in which others do better, can be evolutionarily stable against
an arbitrary mutant strategy. In sharp contrast, when “playing the field” (i.e. the
entire population interacts with each other in a multiplayer game), only extortionate
strategies, that typically enforce a linear payoff relation in which the strategic player
outperforms others, are favored by evolution. In a finite population with a variable
interaction size, we show how the evolutionary stability of a strategy depends on the
population size, the number of players in each interaction, and the payoff parameters
of the social dilemma. Finally, a general framework is proposed through which the
interaction between strategic decision-making and uncertainty about the valuation of
the future is studied (Chapter 9). With this novel framework, classic and modern
theories of strategic play can be recovered in deterministic limits. More importantly, it
enables to unveil, for the first time, how one might strategically influence the collective
behavior of a large group of decision-makers that are uncertain about events in the
future. This framework exhibits the characteristics of empirically validated time-
inconsistent discounting observed in social, temporal, and probabilistic discounting
frameworks, and indicates how strategic decisions and the possibilities for strategic
influence must be adjusted to the level of uncertainty in the future.



Samenvatting

De keuzes van mensen spelen een centrale rol in opkomende engineering applicaties
zoals slimme energie netwerken en intelligente transportsystemen. De keuzes die de
prestaties van dergelijke complexe systemen beïnvloeden worden vaak genomen onder
omstandigheden waarin onmiddellijke individuele belangen conflicteren met de langere
termijn prestaties van het algehele systeem, dat bijvoorbeeld kan afhangen van het
delen van energiebronnen of het uitstellen van energieverbruik of productleveringen.
Zonder enige vorm van strategische of structurele invloed op individuele keuzes
kunnen in dit soort situaties zelfzuchtige economische overwegingen leiden tot een
ongewenst collectief gedrag. Het is hierdoor cruciaal om mechanismen te identificeren
die coöperatieve keuzes kunnen promoten die leiden tot betere collectieve prestaties
en duurzame uitkomsten. In deze thesis worden de beslissingsprocessen in dergelijke
sociale dilemma’s bestudeerd aan de hand van wiskundige spellen ofwel speltheorie.

Deel I van de thesis is begaan met netwerk spellen, netwerk wederkerigheid en
potentieel speltheorie. Gebaseerd op economische en gedragskundige studies wordt een
nieuw type dynamica gedefinieerd en bestudeerd dat rationaliteitsprincipes combineert
met sociaal leren door middel van imitatie (Hoofdstuk 4 en 5). Het wordt aangetoond
hoe zelfzuchtige keuzes gemodereerd kunnen worden door sociale invloed om duurzame
uitkomsten te promoten. Daarnaast wordt een mechanisme, genaamd strategische
differentiatie, voorgesteld waarmee spelers anders kunnen reageren op de keuzes
van verbonden spelers in het netwerk (Hoofdstuk 5). In deze setting, worden in
de evenwichtstoestand coöperatieve keuzes gepromoot als spelers met een relatief
hoge graad in het netwerk (bijvoorbeeld individuen met een groot sociaal netwerk)
hun keuzes differentiëren. Strategische differentiatie kan echter een negatieve invloed
hebben op coöperatie als het wordt toegepast door spelers met een relatief lage graad
in het netwerk (ofwel individuelen met een klein sociaal netwerk).

Deel II gaat over strategische oplossingen voor sociale dilemmas waarin spelers
herhaaldelijk participeren in een meerpersoons spel. Een theorie wordt ontwikkeld
die de mate van controle karakteriseert die een speler eenzijdig kan uitoefenen op de
uiteindelijke uitkomst van het beslissingsproces met een eindig maar onbepaald aantal
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interacties (Hoofdstuk 6). Deze theorie omvat een groot aantal sociale dilemma’s
die uitvoerig bestudeerd zijn in onderzoek disciplines zoals sociologie, psychologie,
biologie, en economie, en kan een verscheidenheid aan complexe situaties beschrijven
waarin het resultaat van een speler (niet-lineair) afhangt van de keuzes van anderen.
Door de eenzijdige strategische invloed kunnen coöperatieve keuzes van zelfzuchtige
en rationele medespelers worden gepromoot. In tegenstelling tot klassieke theorieën, is
het echter niet noodzakelijk om aan te nemen dat de medespelers zich rationeel gedra-
gen. Hoewel er praktisch geen aannames worden gemaakt over het beslissingsgedrag
van anderen, kan de theorie alsnog een bepaalde relatieve prestatie van de strategische
speler ten opzichte van de medespelers garanderen. Door de mate van dergelijke eenz-
ijdige controle te karakteriseren wordt een robuust raamwerk ontwikkeld waarmee de
prestaties van een systeem dat afhankelijk is van herhaaldelijke menselijke beslissingen
bestudeerd en verbeterd kunnen worden. Analytische expressies worden gegeven voor
de efficiëntie van de strategische invloed in termen van het minimum aantal interacties
dat een strategische spelers nodig heeft om een bepaald gewenst gedrag of relatieve
prestatie af te dwingen (Hoofdstuk 7). Dit kan bijvoorbeeld gebruikt worden voor het
bepalen van extra voordelen wanneer strategische invloed in collectieve uitkomsten
behaald moet worden binnen een gegeven tijdsvlak. De evolutionaire prestaties van
deze manipulative strategieën wordt bestudeerd in Hoofdstuk 8. Er wordt aange-
toond dat onder klassieke Maynard-Smith condities (i.e. een oneindige populatie en
paarsgewijze interactie) alleen genereuze strategieën, die typisch ten voordele van de
medespelers zijn, evolutionair stabiel zijn ten opzichte van een willekeurige mutant
strategie. Echter, wanneer alle spelers in de populatie deelnemen in het spel (playing
the field condities) kunnen alleen afpersing strategieën, die typisch ten voordele van de
strategische speler zijn, bevoordeeld worden door evolutie. In een populatie met een
eindig aantal spelers en variabele interactie groottes, tonen we aan hoe de evolutionaire
stabiliteit van een strategie afhankelijk is van de populatiegrootte, de interactiegrootte
en de payoff parameters van het sociale dilemma. Als laatste wordt een algemeen
raamwerk ontwikkeld waarmee de interacties tussen strategische keuzes en onzekerheid
over de waarde van de toekomst bestudeerd wordt (Hoofdstuk 9). Met dit nieuwe
raamwerk kunnen klassieke en moderne theorieën over strategische beslissingen wor-
den afgeleid in deterministische limieten. Van groter belang is dat dit raamwerk het
mogelijk maakt om, voor de eerste keer, aan te tonen hoe strategische invloed kan
worden uitgeoefend op het collectieve gedrag van een grote groep beslissingsnemers
die niet geheel zeker zijn over gebeurtenissen in de toekomst. Het raamwerk bevat
de karakteristieken van empirisch gevalideerde tijdsinconsistente verdiscontering dat
geobserveerd is bij sociale, temporele, en probabilistische verdiscontering, en toont
aan hoe strategische keuzes en de mogelijkheden voor strategische invloed aangepast
moeten worden aan de onzekerheid in de toekomst.
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