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1 Introduction

Coordinating behaviors in large groups of interacting units are pervasive in nature.
Remarkable examples include fish schooling [1], avian flocking [2], land animals herd-
ing [3], rhythmic firefly flashing [4], and synchronized neuronal spiking [5]. Extensive
efforts have been made to uncover the mechanisms behind these astonishing coordinat-
ing behaviors. There have been major progresses, and many of them have also been
applied to solving various problems in engineering practice. For example, distributed
weighted averaging has found applications in distributed computation in robotic
networks. On the other hand, the mechanisms of many coordinating behaviors remain
unknown. For example, what gives rise to a variety of synchronization patterns in the
human brain is still an intriguing question. In this thesis, we first study distributed
coordination algorithms in stochastic settings. We then investigate partial instead of
global synchronization in complex networks, trying to reveal some possible mecha-
nisms that could render correlations across only a part of brain regions as indicated
by empirical data. In this chapter, we introduce some background knowledge of
distributed coordination algorithms as well as synchronization, provide a sketch of
the main contributions, and explain how this thesis is structured. Some notations
used throughout the thesis are also presented.

1.1 Background

In the next two subsections, we introduce some background information of distributed
coordination algorithms and synchronization, respectively.
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1.1.1 Distributed Coordination Algorithms

A huge number of models have been proposed to describe coordinating behaviors
in a network of autonomous agents. The DeGroot model and the Vicsek model are
two of the most popular models. Introduced in 1975, the DeGroot model describes
how a group of people might reach an agreement by pooling their individual opinions
[6]. Proposed in 1995, the Vicsek model is used to investigate the emergence of
self-organized motion in systems of particles [7]. These two models have fascinated
a lot of researchers in different fields because they are very simple yet revealing,
and they are capable of explaining rich collective behaviors in nature. They have
also inspired the development of distributed coordination algorithms in multi-agent
systems. There are two key features of distributed coordination algorithms that are
inherited from the Vicsek model and the DeGroot model: 1) each agent simply needs
to compute the weighted average of the states of itself and its neighbors; and 2) only
local information is required for computation of the weighted averages, and thus
the distributed coordination algorithms are also known as the distributed weighted
averaging algorithms.

Distributed coordination algorithms in complex networks have attracted much
interest in the recent two decades. Just like the Vicsek’s model, each agent’s nearest
neighbors in distributed coordination algorithms can change with time. To study
this, early works have considered dynamically changing networks and provided some
connectivity conditions for convergence [8–12]. Moreover, agents may not have a
common clock to synchronize their update actions in practice. Thus, asynchronous
events have also been taken into account, and conditions have been obtained such that
the convergence can be preserved [10, 13, 14]. Distributed coordination algorithms
actually serve as a foundation for a considerable number of network algorithms for
various purposes such as load balancing [15,16], information fusion [17,18], rendezvous
of robots [19, 20], placement of mobile sensors [21, 22], formation control [23, 24].
More recently, distributed coordination algorithms have also been used for many
other research topics including distributed optimization [25,26], distributed observer
design [27,28], solving linear equations distributively [29,30], and modeling of opinion
dynamics in social networks [31–33].

Most of the aforementioned studies on distributed coordination algorithms and
their applications are in deterministic settings. However, in many circumstances, the
implementation of distributed coordination algorithms is often under the influence of
uncertainty in the environment. Some further works have shown that the convergence
can still be guaranteed even with the presence of randomly changing network topologies
[34–36], random network weights [37], random communication delays [38–40], and
random asynchronous events [41, 42]. Much less attention has been paid to the
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Figure 1.1: Original drawing of Christiaan Huygens: two pendulum clocks hanging
side by side on a beam (source: [46] )

investigation of how the presence of some randomness can be helpful for coordination in
a network. Surprisingly, random noise, usually believed to be troublesome, sometimes
brings benefits to a system in terms of achieving better system-level performance. For
example, the survivability of a group of fish can be boosted by random schooling [43];
random deviation can enhance cooperation in social dilemmas [44]; and behavioral
randomness can improve the global performance of human in a coordination game [45].
There is a great need in systematically studying stochastic distributed algorithms,
which enables the analysis of coordination in networks under the influence of both
detrimental and beneficial randomness.

1.1.2 Synchronization and Brain Communication

In February 1665, staring aimlessly at two pendulum clocks hanging side by side on
a wooden structure (shown in Fig. 1.1), Christiaan Huygens suddenly noticed they
began to swing perfectly in step. More unexpectedly, he found that they seemed to
never break step. This renowned Dutch physicist, mathematician and astronomer
described this surprising discovery by “an odd sympathy”. After more than 350 years,
the interesting phenomenon is nowadays termed synchronization.

As another form of coordinating behaviors, synchronization has attracted attention
from scientists in various disciplines due to its ubiquitous occurrence in many natural,
engineering, and social systems. The snowy tree crickets are found to be able to
synchronize their chirping [47]; rhythmic hand clapping often appears after theater



6 1. Introduction

Figure 1.2: In illustration of how EEG records brain waves (source:
https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875 )

and opera performances [48]; power generators operate synchronously to function
properly [49]; and circadian rhythms of almost all land animals are often in accordance
with the environment [50] (e.g., sleep and wakefulness are closely related to daily
cycles of daylight and darkness).

Synchronization has also been detected pervasively in neuronal systems [51–53].
It plays a central role in information processing within a brain region and neuronal
communication between different regions. Investigation on synchronization of neuronal
ensembles in the brain, especially in cortical regions, becomes one of the most important
problems in neuroscience. The electroencephalogram (EEG) is a typical method to
measure brain activities, and is essential to experimentally study synchronization of the
cerebral cortex. Measuring brain waves using EEG is quite simple since it is noninvasive
and painless. Fig. 1.2 provides an illustration of how EEG is used to record brain
signals. Several early experiments indicate that synchronization of neuron spikes in
the visual cortex of animals accounts for different visual stimulus features [5,53]. Inter-
regional spike synchronization is shown to have a functional role in the coordination
of attentional signals across brain areas [54, 55]. Recently, it has been shown that
phase synchronization contributes mechanistically to attention [56], cognitive tasks
[57], working memory [58], and particularly interregional communication [52,59].

In fact, synchronization across brain regions is believed to facilitate interregional
communication. Only cohesively oscillating neuronal groups can exchange information
effectively because their communication windows are open at the same time [52].
However, abnormal synchronization in the human brain is always a sign of pathology
[60,61]. As an example, Fig. 1.3 presents the EEG recording of brain waves during
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(a) (b)

Figure 1.3: A EEG recording of an epileptic seizure (source: [50, Fig. 19.14]): (a)
positions on the scalp where EEG electrodes are placed; (b) the EEG signals recorded
by the electrodes.

an epileptic seizure, where synchronization across the entire brain is observed. Such
strikingly abnormal behavior is never detected in a healthy brain. This suggests that
there are some robust and powerful regulation mechanisms in a non-pathological brain
that are able to not only facilitate but also preclude neuronal communication. Partial
synchronization is believed to be such a mechanism [52]. Only necessary parts of
regions are synchronized for some specific brain function. Communication between
incoherent brain regions is prevented. In this case, information exchange between
two neuronal groups is not possible because their communication windows are not
coordinated. Synchronizing a selective set of brain regions can render and also prevent
neuronal communication in a selective way.

When it comes to the study of synchronization, the Kuramoto model serves as a
powerful tool. After it was first proposed in 1975 [62], the Kuramoto model rapidly
became one of the most widely-accepted models in understanding synchronization
phenomena in a large population of oscillators. It is simple enough for mathematical
analysis, yet still capable of capturing rich sets of behaviors. Thus, it has been
extended to many variations [63]. The Kuramoto model and its generalizations are
also widely used to model the dynamics of coupled neuronal ensembles in the human
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brain. It is of great interest to analytically study partial synchronization with the help
of the Kuramoto model and its variations, trying to reveal the possible underlying
mechanisms that can give rise to different synchrony patterns in the human brain.

1.2 Contributions
In the first part of this thesis, we restrict our attention to distributed coordination algo-
rithms in stochastic settings since the implementation of them is often under random
influences and the introduction of some randomness sometimes can be beneficial.

Study of stochastic distributed coordinate algorithms is often associated with
stability analysis of stochastic discrete-time systems. There are some noticeable
Lyapunov theories on stability of stochastic systems including Khasminskii’s book [64],
and Kushner’s works [65–67]. Particularly in [66,67], the expectation of a Lyapunov
function is required to decrease after every time step, in order to show the stability
of a stochastic discrete-time system. However, it is not always easy to construct
such a Lyapunov function. Therefore, we propose some new Lyapunov criteria for
asymptotic and exponential stability analysis of stochastic discrete-time systems.
We allow the expectation of Lyapunov function candidates to decrease after some
finite steps instead of every step. This relaxation enlarges the range of applicable
Lyapunov functions and also provides us with the possibility of working on systems
with non-Markovian states.

Using these new Lyapunov criteria, we then study the convergence of products of
random stochastic matrices. While implementing distributed coordinate algorithms,
one always encounters the need to prove the convergence of products of stochastic
matrices, or equivalently the convergence of inhomogeneous Markov chains. The
study of products of stochastic matrices dates back to more than 50 years ago in
Wolfowitz’s paper [68]. Since then, a lot of progress has been made [69–73], and
many applications have been implemented [8–11, 74]. Recent years have witnessed an
increasing interest in studying products of random sequences of stochastic matrices
[35,75,76]. Nevertheless, most of the existing results rely on the assumption that each
matrix in a sequence has strictly positive diagonal entries. Without this assumption,
many existing results do not hold anymore. Moreover, the underlying random processes
driving the random sequences are usually confined to some special types, such as
independent and identically distributed (i.i.d) sequences [35], stationary ergodic
sequences [36], or independent sequences [75, 76]. The new Lyapunov criteria we
obtained enable us to work on more general classes of random sequences of stochastic
matrices without the assumption of nonzero diagonal entries. We obtain some quite
mild conditions compared to the existing results on random sequences of stochastic
matrices such that convergence of the products can be guaranteed. The convergence
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speed, which is believed to be quite challenging, is also estimated. We also consider
some special random sequences including stationary processes and stationary ergodic
processes.

As another application, we study agreement of multi-agent systems in periodic
networks. Periodic networks often lead to oscillating behavior, but we show that
agreement can surprisingly be reached if the agents activate and update their states
asynchronously. We relax the requirement that networks need to be aperiodic,
and obtain a necessary and sufficient condition for the network topology such that
agreement can take place almost surely. We further apply our Lyapunov criteria to
solving linear equations distributively. We relax the existing conditions in [77] on the
changing network topology such that equations can be solved almost surely.

In the second part of this thesis, we study partial synchronization in complex
networks. As we have discussed in the previous section, partial synchronization is
perhaps more common than global synchronization in nature. Particularly, global
synchronization in the human brain is often a symptom of serious diseases [60]. Unlike
global synchronization, partial synchronization is a phenomenon that only a specific
portion of units in a network are synchronized, while the rest remains incoherent.
Unlike global synchronization, on which a lot of results have been obtained (we refer
the readers to a survey paper [78]), the study on partial synchronization is much
less. However, it has attracted growing interests recently. Cluster synchronization
is a type of partial synchronization, which describes the situation where more than
one synchronized groups of oscillators coexist in a network. It has been shown that
network topology and the presence of time delays are quite important to render
cluster synchronization [79–85]. The Chimera state is another interesting type of
partial synchronization, which is characterized by the coexistence of both coherent and
incoherent groups within the same network. Chimera states were initially discovered
by Kuramoto et al. in 2002. Since then several investigations have been made [86–88].
We refer the readers to a survey for more details [89].

With the help of the Kuramoto model and its variations, we identify two mecha-
nisms that can account for the emergence and stability of partial synchronization: 1)
strong local or regional connections, and 2) network symmetries. Inspired by some
empirical works [90,91], we show that a part of oscillators in a network can be quite
coherent if they are directly connected and the connections between them are strong,
while the rest that are weakly connected remain incoherent. In addition, we also show
that oscillators that are not directly connected can also be synchronized, with the
ones connecting them having different dynamics, if they are located at symmetric
positions in a network. Such a phenomenon is called remote synchronization, which
has also been widely detected in the human brain, where distant cortical regions
without direct neural links also experience functional correlations [92].
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In the first case, we utilize the incremental 2-norm and the incremental ∞-norm
based Lyapunov functions to study partial synchronization. Sufficient conditions on
the network parameters (i.e., algebraic connectivity and nodal degrees) are obtained
such that partial synchronization can take place. We calculate the regions of attraction
and estimate the ultimate level of synchrony. The results using incremental ∞-norm
are the first known ones that are used to study synchronization in non-complete
networks.

In the second case, we study remote synchronization in star networks by using
the Kuramoto-Sakaguchi model. The phase shift in the Kuramoto-Sakaguchi model
is usually used to model synaptic connection delays [93]. A star network is simple
in structure, but has basic morphologically symmetric properties. The peripheral
nodes have no direct connection, but obviously play similar roles in the whole network.
The node at the center acts as a relay or mediator. As an example, the thalamus
is such a relay in neural networks. It is connected to all the cortical regions, and
is believed to enable separated regions to be completely synchronized [94, 95]. We
show that network symmetries indeed play a central role in giving rise to remote
synchronization as is predicted in some works such as [80, 96]. We reveal that the
symmetry of outgoing connections from the central oscillator is crucial to shaping
remote synchronization, and is possible to render several clusters for the peripheral
oscillators. Note that the coupling strengths of incoming links to the central oscillator
are not required to be symmetric.

Motivated by some experimental works [97,98], we then study how detuning the
natural frequency of the central oscillator in a star network with two peripheral
nodes can enhance remote synchronization. To analyze this interesting problem,
we obtained some new Lyapunov criteria for partial stability of nonlinear systems.
Partial stability describes the behavior of a dynamical system in which only a given
part of its state variables, instead of all, are stable. To show partial asymptotic
or exponential stability, the time derivative of a Lyapunov function candidate is
required to be negative definite according to the existing results [99–101]. We relax
this condition by allowing the time derivative of the Lyapunov function to be positive,
as long as the Lyapunov function per se decreases after a finite time. We then
establish some further criteria for partial exponential stability of slow-fast systems
using periodic averaging methods. We prove that partial exponential stability of the
averaged system implies that of the original one. As some intermediate results, a new
converse Lyapunov theorem and some perturbation theorems are also obtained for
partial exponential stability systems. Finally, we use the obtained Lyapunov criteria
to prove that natural frequency detuning of the central oscillator actually strengthens
the remote synchronization, making it robust against to the phase shift. The proof
reduces to the demonstration of the partial exponential stability of a slow-fast system.



1.3. Thesis Outline 11

1.3 Thesis Outline
The remainder of this thesis is organized as follows. Chapter 2 provides some
preliminary concepts and theories that will be used throughout the thesis, including
probability theory, graph theory, and some concepts related to stochastic matrices.

The main body of the thesis is divided into two parts. The first part consists of two
chapters, i.e., Chapters 3 and 4, in which we focus on stochastic distributed coordina-
tion algorithms. In Chapter 3, we propose some new Lyapunov criteria for stability
and convergence of stochastic discrete-time systems. The results in Chapter 3 provide
some tests for stability analysis of asymptotic convergence, exponential convergence,
asymptotic stability in probability, exponential stability in probability, almost sure
asymptotic stability, or almost sure exponential stability of a stochastic discrete-time
system. These criteria are then used in Chapter 4, where the convergence of products
of random stochastic matrices, agreement problems induced by asynchronous events,
and solving linear equations by distributed algorithms are studied. The content of
Chapter 3 is based on [102], and that of Chapter 4 on [102] and [103].

The second part of the thesis consists of three chapters, i.e., Chapters 5, 6, and
7. In this part, we aim at identifying some possible underlying mechanisms that
could lead to partial synchronization in complex networks. We first investigate in
Chapter 5 how partial synchronization can take place among directly connected
regions. We find that strong local or regional coupling is a possible mechanism.
Tightly connected oscillators can have coherent behaviors, while other oscillators
that are weakly connected to them can evolve quite differently. In addition, we also
study how partial synchronization is possible to occur among oscillators that have
no direct connections, namely remote synchronization phenomena. In order to study
remote synchronization, we develop some new criteria for partial stability of nonlinear
systems in Chapter 6. In Chapter 7, we analytically study remote synchronization in
star networks. We employ the Kuramoto model and the Kuramoto-Sakaguchi model
to describe the dynamics of the oscillators. Some sufficient conditions are obtained
such that remote synchronization can emerge and remain stable. The content of
Chapter 5 is based on [104] and [105], Chapter 6 on [106] and [107], and Chapter 7
on [107] and[108].
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1.5 Notation

Sets

Let R be the set of real numbers, N0 the set of non-negative integers, and N the
collection of positive integers. Let Rq denote the real q-dimensional vector space, 1q
the q-dimensional vector consisting of all ones, and for any n ∈ N let N = {1, 2, . . . , n}.
For any δ > 0, x ∈ Rn, define Bδ(x) := {y ∈ Rn : ‖y−x‖ < δ} and B̄δ(x) := {y ∈ Rn :
‖y− x‖ ≤ δ}. Particularly, let Bδ = {y ∈ Rn : ‖y‖ < δ} and B̄δ = {y ∈ Rn : ‖y‖ ≤ δ}.

Norms

Let ‖·‖p, p ≥ 1, be any p-norm for both vectors and matrices.

Comparison functions

A continuous function h(x) : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and h(0) = 0. It is said to belong to class K∞ function if a = ∞ and
h(r)→∞ as r →∞.

Other Notation

Given two sets A and B, the union of them is denoted by A ∪ B, the intersection is
denoted by A ∩ B, and A\B presents the difference between A and B, i.e., A\B =
{x : x ∈ A, x /∈ B}. Given x ∈ Rn, y ∈ Rm, denote col(x, y) = (x>, y>)>. With a bit
abuse of notation, we denote col(f1, f2) = (f1(x)>, f2(x)>)> for two given functions
f1 : Rn+m → Rn and f2 : Rn+m → Rm.

In Part I of this thesis, we let xi denote the ith element of a given vector x ∈ Rn

for the purpose of notational clarity; in Part II, we denote the ith element of x in the
conventional way, i.e., xi. Given a vector x ∈ Rn, let

diag(x) =

 x1
. . .

xn

 .
For any x ∈ R, Let bxc denote the largest integer that is less than or equal to x,

and dxe the smallest integer that is greater than or equal to x.





2 Preliminaries

In this chapter, we introduce some theories and concepts that will be used in the
remainder of this thesis.

2.1 Probability Theory

Probability Space and Random Variables

The sample space Ω of an experiment is the set of all possible outcomes. A collection
F of subsets of Ω is called a σ-field if it satisfies: 1) ∅ ∈ F ; 2) if A1, A2, · · · ∈ F , then
∪∞i=1Ai ∈ F ; and 3) A ∈ F , then its complement Ac ∈ F . A probability space is
defined by a triple (Ω,F ,Pr), where Pr : F → [0, 1] is a function (called a probability
measure) that assigns probabilities to events [109].

A random variable X is a measurable function from a sample space to the set
of real numbers R, i.e., X : Ω → R. We are only concerned with discrete random
variables in this thesis. Thus, the subsequent concepts are all associated with discrete
random variables. A vector-valued random variable Y is defined by Y : Ω→ Rn.

Conditional Probability and Conditional Expectation

In probability, a conditional probability measures the probability of an event A
occurring given that another event B has occurred. It is usually denoted by Pr[A|B],
and can be calculated by

Pr[A|B] = Pr[A ∩B]
Pr[B] ,

assuming that P (B) > 0.
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A conditional expectation of a random variable X is its expected value given an
event has already occurred. It can be calculated in the following way

E[X|B] =
∑
ω∈Ω

X(ω) · Pr[ω|B].

Stochastic Processes

A stochastic process is an infinite collection of (vector-valued) random variables,
indexed by an integer often interpreted as time, usually denoted by {X(k) : k ∈ N0}.

Joint Probability Distribution

Given n random variables X1, X2, . . . , Xn, the joint probability distribution of them
is

pX1,...,Xn(x1, . . . , xn) = Pr[X1 = x1, . . . , Xn = xn].

2.2 Graph Theory
Graphs are used to describe network topologies. An n-node graph is defined by
G = (V, E), where V = {1, 2, . . . , n} is the set of nodes, and E ⊂ V × V is the set of
edges. A directed graph is a graph where all the edges are directed from one node
to another. We use (i, j) to denote a directed edge from i to j; i is said to be the
source, and j is said to be the target. Given Ep ∈ E , we let s(Ep) denote the source
of Ep, and t(Ep) the target of Ep. A directed path is a sequence of edges of the form
(p1, p2), (p2, p3), . . . , (pm−1, pm), where pi are distinct nodes in V, and (pj , pj+1) ∈ E .

On the other hand, a graph, in which all the edges are undirected, is called an
undirected graph. An undirected path is defined in the same way as the directed one,
but the edges are undirected.

Directed Graph

A directed graph is said to be strongly connected if there is a path from every node
to every other node [110]. A directed graph is said to be a directed spanning tree if
there is exactly one node, called root, such that any other node can be reached from
it via exactly one directed path. A directed graph is said to be rooted if it contains a
directed spanning tree that contains all the nodes.

Given two directed graphs G1 and G2 with the same node set V, the composition
of them, denoted by G2 ◦ G1, is a directed graph with the node set V and edge set
defined in such a way that (i, j) is an edge of the composition if there is a node i1 such
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that (i, i1) is an edge in G1 and meanwhile (i1, j) is an edge in G2. Given a sequence
of graphs {G(1),G(2), . . . ,G(k)}, a route over it is a sequence of vertices i0, i1, . . . , ik
such that (ij−1, ij) is an edge in G(j) for all 1 ≤ j ≤ k.

Undirected Graph

An undirected graph is said to be connected if there is an undirected path between any
pair of nodes. A complete graph is a graph in which each node is directly connected
to all the other nodes.

Laplacian Matrices and Incidence Matrices

Let wij > 0, i, j ∈ V, be the weight of the direct edge from i to j in the directed
graph G (if there is no edge between them, wij = 0). The weighted adjacency
matrix is defined by W = [wij ]n×n. The degree matrix of this graph is given by
D = diag(W1n).The Laplacian matrix of this direct graph is then defined by

L = D −W = diag(W1n)−W.

If G is an undirected graph, the Laplacian matrix L is symmetric, i.e., L> = L. For an
undirected graph, the second smallest eigenvalue of L, denoted by λ2(L), is referred
to as the algebraic connectivity [110].

For a directed graph with edge set E = {E1, . . . , Em}, its incidence matrix is an
n×m matrix, denoted by B = [bij ]n×m, whose elements are defined by

bip =


1, if s(Ep) = i;
−1, if t(Ep) = i;
0, otherwise.

For an undirected graph, its incidence matrix and Laplacian matrix satisfy the equality
L = BWB>, where W ∈ Rm×m is a diagonal matrix whose elements represent the
weights of the edges. We let Bc denote the incidence matrix of a complete graph.

2.3 Stochastic Matrices

A matrix A = [aij ] ∈ Rn×n is said to be (row) stochastic if aij ≥ 0 for any i, j, and it
satisfies

n∑
j=1

aij = 1, ∀i = 1, 2, . . . , n.
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A stochatic matrix A is said to be irreducible if for any pair (i, j), there exists an
m ∈ N such that Amij > 0. On the other hand, it is said to be reducible if it is not
irreducible [71]. A stochastic matrix A is indecomposable and aperiodic (SIA) if

Q = lim
k→∞

Ak

exists and all the rows of Q are identical [68].
A stochastic matrix A ∈ Rn×n is said to be: 1) scrambling if no two rows are

orthogonal; 2) Markov if it has a column with all positive elements [71]. If two
stochastic matrices A1 and A2 have zero elements in the same positions, we say these
two matrices are of the same type, denoted by A1 ∼ A2.

Given a stochastic matrix A ∈ Rn×n, we can associate it with a directed, and
weighted graph GA = {V, E}, where V := {1, . . . , n} is the set of vertices, and E is the
set of edges. A directed edge Eij = (i, j) is in the set of E if aji > 0, and then its
weight is aji.



Part I
Stochastic Distributed

Coordination Algorithms:
Stochastic Lyapunov Methods
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Overview of Part I
The past few decades have witnessed the fast development of network computational
algorithms, in which computational processes are carried out in coupled computational
units. The distributed coordination algorithms [111] are a typical type of network
algorithms. Units in a network compute individually, but communicate and coordinate
locally. They repeatedly update their states (computed results) to the weighted average
of their neighbors’, seeking for coordination. This type of algorithms are widely applied
to many research topics, including distributed optimization [25,26], distributed control
of networked robots [112], distributed linear equation solving [29,30, 113,114], and
opinion dynamics modeling [6, 32,115,116].

When applying distributed coordination algorithms, one cannot ignore the fact
that the computational processes are usually under inevitable random influences,
resulting from random changes of network structures [36, 37, 117, 118], stochastic
communication delays [38–40], and random asynchronous updating events [41, 42].
Moreover, some randomness may also be introduced deliberately to improve the
global performance in a network [44,45]. Traditional methods for stability analysis
of deterministic systems cannot be directly applied due to the presence of random
uncertainty in the system dynamics. Instead, the stochastic Lyapunov theory serves as
a powerful tool for the analysis of such stochastic systems. Different from deterministic
Lyapunov theory, one needs to evaluate the expectation of a constructed Lyapunov
function. For example, if the expectation of a Lyapunov candidate decreases at every
time step along the solution to a stochastic discrete-time system, the stability of this
system can be shown [65,66]. However, it is sometimes quite difficult to construct a
Lyapunov function using the existing stochastic Lyapunov theory, especially when
the systems are influenced by non-Markovian random processes.

The purpose of this part of the thesis is to further develop Lyapunov criteria
for stochastic discrete-time systems, and use them to study stochastic distributed
coordination algorithms. In Chapter 3, we establish some finite-step stochastic
Lyapunov criteria, which enlarge the range of choices of applicable Lyapunov functions
for stochastic stability analysis. In Chapter 4 , we show how these new criteria can
be applied to the analysis of some stochastic distributed coordination algorithms.





3 New Lyapunov Criteria for
Discrete-Time Stochastic

Systems

More recently, with the fast development of network algorithms, more and more
distributed computational processes are carried out in networks of computational
units. Such dynamical processes are usually modeled by stochastic discrete-time
dynamical systems since they are usually under inevitable random influences or
deliberately randomized to improve performance. So there is a great need to further
develop the Lyapunov theory for stochastic dynamical systems, in particular in the
setting of network algorithms for distributed computation. And this is exactly the
aim of this chapter.

3.1 Introduction
Stability analysis for stochastic dynamical systems has always been an active research
field. Early works have shown that stochastic Lyapunov functions play an important
role, and to use them for discrete-time systems, a standard procedure is to show
that they decrease in expectation at every time step [65–67, 119]. Properties of
supermartingales and LaSalle’s arguments are critical to establishing the related
proofs. However, most of the stochastic stability results are built upon a crucial
assumption, which requires that the state of a stochastic dynamical system under
study is Markovian (see e.g., [64–67]), and very few of them have reported bounds for
the convergence speed.

In this chapter, we aim at further developing the Lyapunov criterion for stochas-
tic discrete-time systems in order to solve the problems we encounter in studying
distributed coordination algorithms in the next chapter. Inspired by the concept of
finite-step Lyapunov functions for deterministic systems [120–122], we propose to
define a finite-step stochastic Lyapunov function, which decreases in expectation, not
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necessarily at every step, but after a finite number of steps. The associated new
Lyapunov criterion not only enlarges the range of choices of candidate Lyapunov
functions but also implies that the systems that can be analyzed do not need to have
Markovian states. An additional advantage of using this new criterion is that we are
enabled to construct conditions to guarantee exponential convergence and estimate
convergence rates [102].

Outline

The remainder of this chapter is structured as follows. First, we introduce the system
dynamics and formulate the problem in Section 3.2. Main results on finite-step
Lyapunov functions are provided in Section 3.3. Finally, some concluding remarks
appear in Section 3.4.

3.2 Problem Formulation
Consider a stochastic discrete-time system described by

xk+1 = f(xk, yk+1), k ∈ N0, (3.1)

where xk ∈ Rn, and {yk : k ∈ N} is a Rd-valued stochastic process on a probability
space (Ω,F ,Pr). Here Ω = {ω} is the sample space; F is a set of events which is a
σ-field; yk is a measurable function mapping Ω into the state space Ω0 ⊆ Rd, and
for any ω ∈ Ω, {yk(ω) : k ∈ N} is a realization of the stochastic process {yk} at ω.
Let Fk = σ(y1, . . . , yk) for k ≥ 1, F0 = {∅,Ω}, so that evidently {Fk}, k = 1, 2, . . . ,
is an increasing sequence of σ-fields. Following [123], we consider a constant initial
condition x0 ∈ Rn with probability one. It then can be observed that the solution to
(3.1), {xk}, is a Rn-valued stochastic process adapted to Fk. The randomness of yk
can be due to various reasons, e.g., stochastic disturbances or noise. Note that (3.1)
becomes a stochastic switching system if f(x, y) = gy(x), where y maps Ω into the
set Ω0 := {1, . . . , p}, and {gp(x) : Rn → Rn, p ∈ Ω0} is a given family of functions.

A point x∗ is said to be an equilibrium of system (3.1) if f(x∗, y) = x∗ for any
y ∈ Ω0. Without loss of generality, we assume that the origin x = 0 is an equilibrium.
Researchers have been interested in studying the limiting behavior of the solution
{xk}, i.e., when and to where xk converges as k → ∞. Most noticeably, Kushner
developed classic results on stochastic stability by employing stochastic Lyapunov
functions [65–67]. We introduce some related definitions before recalling some of
Kushner’s results. Following [124, Sec. 1.5.6] and [125], we first define convergence
and exponential convergence of a sequence of random variables.
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Definition 3.1 (Convergence). A random sequence {xk ∈ Rn} in a sample space Ω
converges to a random variable x almost surely if Pr [ω ∈ Ω : limk→∞ ‖xk(ω)− x‖ = 0] =
1. The convergence is said to be exponentially fast with a rate no slower than γ−1 for
some γ > 1 independent of ω if γk‖xk − x‖ almost surely converges to y for some
finite y ≥ 0. Furthermore, let D ⊂ Rn be a set; a random sequence {xk} is said
to converge to D almost surely if Pr [ω ∈ Ω : limk→∞ dist(xk(ω),D) = 0] = 1, where
dist (x,D) := infy∈D ‖x− y‖.

Here “almost surely” is exchangeable with “with probability one”, and we some-
times use the shorthand notation “a.s.”. We now introduce some stability concepts for
stochastic discrete-time systems analogous to those in [64] and [126] for continuous-
time systems1.

Definition 3.2. The origin of (1) is said to be:
1) stable in probability if limx0→0 Pr [supk∈N ‖xk‖ > ε] = 0 for any ε > 0;
2) asymptotically stable in probability if it is stable in probability and moreover

limx0→0 Pr [limk→∞ ‖xk‖ = 0] = 1;
3) exponentially stable in probability if for some γ > 1 independent of ω, it holds

that limx0→0 Pr
[
limk→∞ ‖γkxk‖ = 0

]
= 1;

Definition 3.3. For a set Q ⊆ Rn containing the origin, the origin of (1) is said to
be:

1) locally a.s. asymptotically stable in Q (globally a.s. asymptotically stable,
respectively) if a) it is stable in probability, and b) starting from x0 ∈ Q (x0 ∈ Rn,
respectively) all the sample paths xk stay in Q (Rn, respectively) for all k ≥ 0 and
converge to the origin almost surely;

2) locally a.s. exponentially stable in Q (globally a.s. exponentially stable,
respectively) if it is locally (globally, respectively) a.s. asymptotically stable and the
convergence is exponentially fast.

Now let us recall some Kushner’s results on convergence and stability, where
stochastic Lyapunov functions have been used.

Lemma 3.1 (Asymptotic Convergence and Stability [67, 127]). For the stochastic
discrete-time system (3.1), let {xk} be a Markov process. Let V : Rn → R be a
continuous positive definite and radially unbounded function. Define the set Qλ :=
{x : 0 ≤ V (x) < λ} for some λ > 0, and assume that

E [V (xk+1) |xk]− V (xk) ≤ −ϕ(xk),∀k, (3.2)
1Note that 1) and 2) of Definition 3.2 follow from the definitions in [64, Chap. 5], in which an

arbitrary initial time s rather than just 0 is actually considered; we define 3) following the same lines
as 1) and 2). In Definition 3.3, 1) follows from the definitions in [126], and we define 2) following the
same lines as 1).
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where ϕ : Rn → R is continuous and satisfies ϕ(x) ≥ 0 for any x ∈ Qλ. Then the
following statements apply:

(i) for any initial condition x0 ∈ Qλ, xk converges to D1 := {x ∈ Qλ : ϕ(x) = 0}
with probability greater than or equal to 1− V (x0)/λ [67];

(ii) if moreover ϕ(x) is positive definite on Qλ, and h1 (‖s‖) ≤ V (s) ≤ h2 (‖s‖)
for two class K functions h1 and h2, then x = 0 is asymptotically stable in
probability [67], [127, Theorem 7.3].

Lemma 3.2 (Exponential Convergence and Stability [66, 127]). For the stochastic
discrete-time system (3.1), let {xk} be a Markov process. Let V : Rn → R be a
continuous nonnegative function. Assume that

E [V (xk+1) |xk]− V (xk) ≤ −αV (xk), 0 < α < 1. (3.3)

Then the following statements apply:

(i) for any given x0, V (xk) almost surely converges to 0 exponentially fast with a
rate no slower than 1− α [66, Th. 2, Chap. 8], [127];

(ii) if moreover V satisfies c1‖x‖a ≤ V (x) ≤ c2‖x‖a for some c1, c2, a > 0, then
x = 0 is globally a.s. exponentially stable [127, Theorem 7.4].

To use these two lemmas to prove asymptotic (or exponential) stability for a
stochastic system, the critical step is to find a stochastic Lyapunov function such that
(3.2) (respectively, (3.3)) holds. However, it is not always obvious how to construct
such a stochastic Lyapunov function. We use the following simple but suggestive
example to illustrate this point.

Example 3.1 Consider a randomly switching system described by xk = Aykxk−1,
where yk is the switching signal taking values in a finite set P := {1, 2, 3}, and

A1 =
[

0.2 0
0 1

]
, A2 =

[
1 0
0 0.8

]
, A3 =

[
1 0
0 0.6

]
.

The stochastic process {yk} is described by a Markov chain with initial distribution
v = {v1, v2, v3}. The transition probabilities are described by a transition matrix

π =

 0 0.5 0.5
1 0 0
1 0 0

 ,
whose ijth element is defined by πij = Pr[yk+1 = j|yk = i]. Since {yk} is not inde-
pendent and identically distributed, the process {xk} is not Markovian. Nevertheless,
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we might conjecture that the origin is globally a.s. exponentially stable. In order
to try to prove this, we might choose a stochastic Lyapunov function candidate
V (x) = ‖x‖∞, but the existing results introduced in Lemma 3.2 cannot be used
since {xk} is not Markovian. Moreover, by calculation we can only observe that
E [V (xk+1)|xk, yk] ≤ V (xk) for any yk, which implies that (3.3) is not necessarily
satisfied. Thus V (x) is not an appropriate stochastic Lyapunov function for which
Lemma 3.2 can be applied. As it turns out however, the same V (x) can be used as a
Lyapunov function to establish exponentially stability via the alternative criterion set
out subsequently. 4

It is difficult, if not impossible, to construct a stochastic Lyapunov function,
especially when the state of the system is not Markovian. So it is of great interest to
generalize the results in Lemmas 3.1 and 3.2 such that the range of choices of candidate
Lyapunov functions can be enlarged. For deterministic systems, Aeyels et al. have
introduced a new Lyapunov criterion to study asymptotic stability of continuous-time
systems [120]; a similar criterion has also been obtained for discrete-time systems,
and the Lyapunov functions satisfying this criterion are called finite-step Lyapunov
functions [121, 122]. A common feature of these works is that the Lyapunov function
is required to decrease along the system’s solutions after a finite number of steps,
but not necessarily at every step. We now use this idea to construct stochastic
finite-step Lyapunov functions, a task which is much more challenging compared to
the deterministic case due to the uncertainty present in stochastic systems. The tools
for analysis are totally different from what are used for deterministic systems. We
will exploit supermartingales [109] and their convergence property, as well as another
lemma found in [66, P.192]; these concepts are introduced in the two following lemmas.

Lemma 3.3 ([109, Sec. 5.2.9]). Let the sequence {Xk} be a nonnegative supermartin-
gale with respect to Fk = σ(X1, . . . , Xk), i.e., suppose: (i) EXn <∞; (ii) Xk ∈ Fk
for all k; (iii) E (Xk+1| Fk) ≤ Xk. Then there exists some random X such that
Xk

a.s.−→ X, k →∞, and EX ≤ EX0.

Lemma 3.4 ([66, P.192]). Let {Xk} be a nonnegative random sequence. If
∑∞
k=0 EXk <

∞, then Xk
a.s.−→ 0.

Lemma 3.4 is also called Borel-Cantelli Lemma by Kushner in his book [66].
However, it is a bit different from the standard Borel-Cantelli Lemma (see [109, Chap.
2]). We provide a proof of Lemma 3.4 following the ideas in [66], which can be found
in Section 3.5.
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3.3 Finite-Step Stochastic Lyapunov Criteria
In this subsection, we present some finite-step stochastic Lyapunov criteria for stability
analysis of stochastic discrete-time systems, which are the main results in the chapter.
In these criteria, the expectation of a Lyapunov function is not required to decrease
at every time step, but is allowed to decrease after some finite steps. The relaxation
enlarges the range of choices of candidate Lyapunov functions. In addition, these
criteria can be used to analyze non-Markovian systems.

Theorem 3.1. For the stochastic discrete-time system (3.1), let V : Rn → R be a
continuous nonnegative and radially unbounded function. Define the set Qλ := {x :
V (x) < λ} for some λ > 0, and assume that

(a) E [V (xk+1) |Fk]− V (xk) ≤ 0 for any k such that xk ∈ Qλ;

(b) there is an integer T ≥ 1, independent of ω, such that for any k,

E [V (xk+T ) |Fk]− V (xk) ≤ −ϕ(xk),

where ϕ : Rn → R is continuous and satisfies ϕ(x) ≥ 0 for any x ∈ Qλ.

Then the following statements apply:

(i) for any initial condition x0 ∈ Qλ, xk converges to D1 := {x ∈ Qλ : ϕ(x) = 0}
with probability greater than or equal to 1− V (x0)/λ;

(ii) if moreover ϕ(x) is positive definite on Qλ, and h1 (‖s‖) ≤ V (s) ≤ h2 (‖s‖)
for two class K functions h1 and h2, then x = 0 is asymptotically stable in
probability.

Proof. Before proving (i) and (ii), we first show that starting from x0 ∈ Qλ the
sample paths xk(ω) stay in Qλ with probability greater than or equal to 1− V (x0)/λ
if Assumption a) is satisfied. This has been proven in [66, p. 196] by showing that

Pr [supk∈N V (xk) ≥ λ] ≤ V (x0)/λ. (3.4)

Let Ω̄ be a subset of the sample space Ω such that for any ω ∈ Ω̄, xk(ω) ∈ Qλ for
all k. Let J be the smallest k ∈ N (if it exists) such that V (xk) ≥ λ. Note that, this
integer J does not exist when xk(ω) stays in Qλ for all k, i.e., when ω ∈ Ω̄.

We first prove (i) by showing that the sample paths staying the Qλ converge to
D1 with probability one, i.e., Pr[xk → D1|Ω̄] = 1. Towards this end, define a new
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function ϕ̃(x) such that ϕ̃(x) = ϕ(x) for x ∈ Qλ, and ϕ̃(x) = 0 for x /∈ Qλ. Define
another random process {z̃k}. If J exists, when J > T let

z̃k = xk, k < J − T,
z̃k = ε, k ≥ J − T,

where ε satisfies V (ε) = λ̃ > λ; when J ≤ T , let z̃k = ε for any k ∈ N0. If J
does not exist, we let z̃k = xk for all k ∈ N0. Then it is immediately clear that
E [V (z̃k+T ) |Fk]− V (z̃k) ≤ −ϕ̃(z̃k) ≤ 0. By taking the expectation on both sides of
this inequality, we obtain

E
[
V
(
z̃k+T

)]
− EV

(
z̃k
)
≤ −Eϕ̃

(
z̃k
)
, k ∈ N0. (3.5)

For any k ∈ N, there is a pair p, q ∈ N0 such that k = pT + q. From (3.5) one obtains
that

E
[
V
(
z̃pT+j

)]
− EV

(
z̃(p−1)T+j

)
≤ −Eϕ̃

(
z̃(p−1)T+j

)
holds for all j = 0, . . . , q, and

E
[
V
(
z̃iT+m

)]
− EV

(
z̃(i−1)T+m

)
≤ −Eϕ̃

(
z̃(i−1)T+m

)
holds for all i = 1, . . . , p− 1 and m = 0, . . . , T − 1. By summing up all the left and
right sides of these inequalities respectively for all the i, j and m, we have

T−1∑
m=0

(
E
[
V (z̃(p−1)T+m − EV (z̃m

)])
+

q∑
j=1

(
E
[
V (z̃pT+j − EV (z̃(p−1)T+j

)])
≤ −

k−T∑
i=1

Eϕ̃
(
z̃i
)
. (3.6)

As V (x) is nonnegative for all x, from (3.5) it is easy to observe that the left side of (3.6)
is greater than −∞ even when k →∞ since T and q are finite numbers, which implies
that

∑∞
i=0 Eϕ̃

(
z̃k
)
< ∞. By Lemma 3.4, ones knows that ϕ̃

(
z̃k
) a.s.−→ 0 as k → ∞.

For ω ∈ Ω̄, one can observe that ϕ̃(xk(ω)) = ϕ(xk(ω)) and z̃k (ω) = xk(ω) according
to the definitions of ϕ̃ and {z̃k}, respectively. Therefore, ϕ̃(z̃k(ω)) = ϕ(xk(ω)) for all
ω ∈ Ω̄, and subsequently

Pr[ϕ (xk)→ 0|Ω̄] = Pr[ϕ̃ (z̃k)→ 0|Ω̄] = 1.

From the continuity of ϕ(x) it can be seen that Pr[xk → D1|Ω̄] = 1. The proof of
(i) is complete since (3.4) means that the sample paths stay in Qλ with probability
greater than or equal to 1− V (x0)/λ.
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Qλ, V (x) < λ

x0

x1

x2

x3

x5

D

x′1
x′2

x′3

x4

Figure 3.1: An illustration of the asymptotic behavior in Qλ.

Next, we prove (ii) in two steps. We first prove that the origin x = 0 is stable in
probability. The inequalities h1 (‖s‖) ≤ V (s) ≤ h2 (‖s‖) imply that V (x) = 0 if and
only if x = 0. Moreover, it follows from h1 (‖s‖) ≤ V (s) and the inequality (3.4) that
for any initial condition x0 ∈ Qλ,

Pr
[
sup
k∈N

h1 (‖xk‖) ≥ λ1

]
≤ Pr

[
sup
k∈N

V (xk) ≥ λ1

]
≤ V (x0)

λ1

for any λ1 > 0. Since h1 is a class K function and thus invertible, it can be observed
that

Pr
[
sup
k∈N
‖xk‖ ≥ h−1

1 (λ)
]
≤ V (x0)/λ ≤ h2(‖x0‖)/λ.

Then for any ε > 0, it holds that

lim
x0→0

Pr
[
sup
k∈N
‖xk‖ > ε

]
≤ Pr

[
sup
k∈N
‖xk‖ ≥ ε

]
= 0,

which means that the origin is stable in probability.
Second, we show the probability that xk → 0 tends to 1 as x0 → 0. One knows

that D1 = {0} since ϕ is positive definite in Qλ. From (i) one knows that xk converges
to x = 0 with probability greater than or equal to 1− V (x0)/λ. Since V (x)→ 0 as
x0 → 0, it holds that limx0→0 Pr [limk→∞ ‖xk‖ = 0]→ 1. The proof is complete.

With the help of Fig. 3.1, let us provide some explanations on what have been
mainly stated in Theorem 3.1. The sample paths xk always have a possibility to
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leave the set Qλ, but with probability less than V (x0)/λ (see the blue trajectory
{x′k}). In other words, they stay in Qλ with probability no less than 1 − V (x0)/λ.
If E [V (xk+T ) |Fk]− V (xk) ≤ −ϕ(xk) for a finite positive integer T , all the sample
paths remaining in Qλ will converge to the set D1 (see the black trajectory {xk}).
If moreover, D1 is a singleton {0}, and h1 (‖s‖) ≤ V (s) ≤ h2 (‖s‖) for two class K
functions h1 and h2, then x = 0 is asymptotically stable in probability.

Particularly, if Qλ is positively invariant, i.e., starting from x0 ∈ Qλ all sample
paths xk will stay in Qλ for all k ≥ 0, this corollary follows from Theorem 3.1
straightforwardly.

Corollary 3.1. Assume that Qλ is positively invariant along the system (3.1), and
there hold that

(a) E [V (xk+1) |Fk]− V (xk) ≤ 0 for any k such that xk ∈ Qλ;

(b) there is an integer T ≥ 1, independent of ω, such that for any k,

E [V (xk+T ) |Fk]− V (xk) ≤ −ϕ(xk),

where ϕ : Rn → R is continuous and satisfies ϕ(x) ≥ 0 for any x ∈ Qλ.

Then the following statements apply:

(i) for any initial condition x0 ∈ Qλ, xk converges to D1 with probability one;

(ii) if moreover ϕ(x) is positive definite on Qλ, and h1 (‖s‖) ≤ V (s) ≤ h2 (‖s‖) for
two class K functions h1 and h2, then x = 0 is locally a.s. asymptotically stable
in Qλ. Furthermore, if Qλ = Rn, then x = 0 is globally a.s. asymptotically
stable.

Theorem 3.1 and Corollary 3.1 provide some Lyapunov criteria for asymptotic
stability and convergence of stochastic discrete-time systems. The next theorem
provides a new criterion for exponential convergence and stability of stochastic
systems, relaxing the conditions required by Lemma 3.2.

Theorem 3.2. Suppose that the following conditions are satisfied

(a) E [V (xk+1) |Fk]− V (xk) ≤ 0 for any k such that xk ∈ Qλ;

(b) there is an integer T ≥ 1, independent of ω, such that for any k,

E [V (xk+T ) |Fk]− V (xk) ≤ −αV (xk), 0 < α < 1, (3.7)

where ϕ : Rn → R is continuous and satisfies ϕ(x) ≥ 0 for any x ∈ Qλ.
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Then, the following statements apply:

(i) for any given x0 ∈ Qλ, V (xk) converges to 0 exponentially at a rate no slower
than (1−α)1/T , and xk converges to D2 := {x ∈ Qλ : V (x) = 0}, with probability
greater than or equal to 1− V (x0)/λ;

(ii) if moreover V satisfies that c1‖x‖a ≤ V (x) ≤ c2‖x‖a for some c1, c2, a > 0,
then x = 0 is exponentially stable in probability.

Proof. We first prove (i). From the proof of Theorem 3.1, we know that the sample
paths xk stay in Qλ with probability greater than or equal to 1− V (x0)/λ for any
initial condition x0 ∈ Qλ if the assumption a) is satisfied. We next show that for
any sample path that always stays in Qλ, V (xk) converges to 0 exponentially fast.
Towards this end, we define a random process {ẑk}. Let J be as defined in the proof
of Theorem 3.1. If J exists, when J > T , let

ẑk = xk, k < J − T,
ẑk = ε, k ≥ J − T,

where ε satisfies V (ε) = 0, when J ≤ T , let ẑk = ε for any k ∈ N0; if J does not exist,
we let ẑk = xk for all k ∈ N0.

If the inequality (3.7) is satisfied, one has E [V (ẑk+T ) |Fk]− V (ẑk) ≤ −αV (ẑk).
Using this inequality, we next show that V (ẑk+T ) converges to 0 exponentially. To
this end, define a subsequence

Y (r)
m := V (ẑmT+r), m ∈ N0,

for each 0 ≤ r ≤ T − 1. Let G(r)
m := σ(Y (r)

0 , Y
(r)
1 , . . . , Y

(r)
m ), and one knows that G(r)

m

is determined if we know FmT+r. It then follows from the inequality (3.7) that for
any r, E[Y (r)

m+1|G
(r)
m ]− Y (r)

m ≤ −αY (r)
m . We observe from this inequality that

E
[
(1− α)−(m+1)Y

(r)
m+1|G(r)

m

]
− (1− α)−mY (r)

m ≤ 0.

This means that (1−α)−mYm is a supermartingale, and thus there is a finite random
number Ȳ (r) such that (1− α)−mY (r)

m
a.s.−→ Ȳ (r) for any r. Let γ = T

√
1/(1− α), and

then by the definition of Y (r)
m we have

γmTV (ẑmT+r)
a.s.−→ Ȳ (r).

Straightforwardly, it follows that γmT+rV (ẑmT+r)
a.s.−→ γrȲ (r). Let k = mT +

r, Ȳ = maxr{γrȲ (r)}, then it almost surely holds that limk→∞ γkV (ẑk) ≤ Ȳ . From
Definition 3.1, one concludes that V (ẑk) almost surely converges to 0 exponentially no



3.3. Finite-Step Stochastic Lyapunov Criteria 33

slower than γ−1 = (1− α)1/T . From the definition of ẑk, we know that V (ẑk(ω)) =
V (xk(ω)) for all ω ∈ Ω̄, with Ω̄ defined in the proof of Theorem 3.1. Consequently, it
holds that

Pr
[

lim
k→∞

γkV (xk) ≤ Ȳ |Ω̄
]

= Pr
[

lim
k→∞

γkV (ẑk) ≤ Ȳ |Ω̄
]

= 1. (3.8)

The proof of (i) is complete since the sample paths stay in Qλ with probability greater
than or equal to 1− V (x0)/λ.

Next, we prove (ii). If the inequalities c1‖x‖a ≤ V (x) ≤ c2‖x‖a are satisfied, and
then we know that V (x) = 0 if and only if x = 0. Moreover, it follows from (3.8) that
for all the sample paths that stay in Qλ it holds that c1γk‖x‖a ≤ γkV (xk) ≤ Ȳ since
c1‖xk‖a ≤ V (x). Hence,

‖xk(ω)‖ ≤
(
V̄ /c1

)1/a
γ−k/a, ∀ω ∈ Ω̄,

and one can check that this inequality holds with probability greater than or equal
to 1 − V (x0)/λ. If x0 → 0, we know that 1 − V (x0)/λ → 1, which completes the
proof.

If Qλ is positively invariant, the following corollary follows straightforwardly.

Corollary 3.2. Suppose that Qλ is positively invariant along the system (3.1), and
the following conditions are satisfied

a) E [V (xk+1) |Fk]− V (xk) ≤ 0 for any k such that xk ∈ Qλ;
b) there is an integer T ≥ 1, independent of ω, such that for any k,

E [V (xk+T ) |Fk]− V (xk) ≤ −αV (xk), 0 < α < 1, (3.9)

where ϕ : Rn → R is continuous and satisfies ϕ(x) ≥ 0 for any x ∈ Qλ.
Then, the following statements apply:

(i) for any given x0 ∈ Qλ, V (xk) converges to 0 exponentially no slower than
(1− α)1/T with probability one;

(ii) if moreover V satisfies that c1‖x‖a ≤ V (x) ≤ c2‖x‖a for some c1, c2, a > 0,
then x = 0 is locally a.s. exponentially stable in Qλ. Furthermore, if Qλ = Rn,
then x = 0 is globally a.s. exponentially stable.

The following corollary, which can be proven following the same lines as Theorems
3.1 and 3.2, shares some similarities to LaSalle’s theorem for deterministic systems. It
is worth mentioning that the function V here does not have to be radially unbounded.
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Corollary 3.3. Let D ⊂ Rn be a compact set that is positively invariant along
the system (3.1). Let V : Rn → R be a continuous nonnegative function, and
Q̄λ := {x ∈ D : V (x) < λ} for some λ > 0. Assume that E [V (xk+1) |Fk]−V (xk) ≤ 0
for all k such that xk ∈ Q̄λ, then

(i) if there is an integer T ≥ 1, independent of ω, such that for any k ∈ N0,
E [V (xk+T ) |Fk] − V (xk) ≤ −ϕ(xk), where ϕ : Rn → R is continuous and
satisfies ϕ(x) ≥ 0 for any x ∈ Q̄λ, then for any initial condition x0 ∈ Q̄λ, xk
converges to D̄1 := {x ∈ Q̄λ : ϕ(x) = 0} with probability greater than or equal to
1− V (x0)/λ;

(ii) if the inequality in a) is strengthened to E [V (xk+T ) |Fk] −V (xk) ≤ −αV (xk)
for some 0 < α < 1, then for any given x0 ∈ Q̄λ, V (xk) converges to 0
exponentially at a rate no slower than (1− α)1/T , and xk converges to D̄2 :=
{x ∈ Q̄λ : V (x) = 0}, with probability greater than or equal to 1− V (x0)/λ;

(iii) if Q̄λ is positively invariant w.r.t the system (3.1), then all the convergence in
both (i) and (ii) takes place almost surely.

Continuation of Example 3.1 Now let us look back at Example 1 and still choose
V (x) = ‖x‖∞ as a stochastic Lyapunov function candidate. It is easy to see that V (x)
is a nonnegative supermartingale. To show the stochastic convergence, let T = 2 and
one can calculate the conditional expectations

E [V (xk+T )|xk, yk = 1]− V (xk)

= 0.5
∥∥∥∥ 0.2x1

k

0.8x2
k

∥∥∥∥
∞

+ 0.5
∥∥∥∥ 0.2x1

k

0.6x2
k

∥∥∥∥
∞
−
∥∥∥∥ x1

k

x2
k

∥∥∥∥
∞

≤ −0.3V (xk) ,∀xk ∈ R2.

When yk = 2, 3, it analogously holds that

E[V (xk+T )|xk, yk]− V (xk) ≤ −0.3V (xk),∀xk ∈ R2.

From these three inequalities one can observe that starting from any initial condition
x0, EV (x) decreases at an exponential speed after every two steps before it reaches 0.
By Corollary 3.2, one knows that origin is globally a.s. exponentially stable, consistent
with our conjecture. 4

Kushner and other researchers have used more restricted conditions to construct
Lyapunov functions than those appearing in our results to analyze asymptotic or
exponential stability of random processes [66, 67, 119]. It is required that E[V (xk)]
decreases strictly at every step, until V (xk) reaches a limit value. However, in
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our result, this requirement is relaxed. In addition, Kushner’s results rely on the
assumption that the underlying random process is Markovian, but we work with more
general random processes.

3.4 Concluding Remarks
Many distributed coordination algorithms are stochastic since they are often under
inevitable random influences, or randomness is deliberately introduced into them to
improve global performance. Stochastic Lyapunov theory is often needed to study
them. However, it is not always easy to construct a stochastic Lyapunov function
using the existing criteria. In this chapter, we have further developed a tool, termed
finite-step stochastic Lyapunov criteria, using which one can study the convergence
and stability of a stochastic discrete-time system together with its convergence rate.
Unlike what is required in the existing Lyapunov criteria [65–67,119], the constructed
Lyapunov function does not have to decrease after every time step. Instead, decreasing
after some finite time steps is sufficient to guarantee the asymptotic or exponential
convergence and stability of a system, which makes the construction of a Lyapunov
function easier. In addition, the states of a system under study do not have to be
Markovian. The tool we developed in this chapter plays a very important role in
studying some stochastic coordination algorithms, which we will discuss in more detail
in the next chapter.

3.5 Appendix: Proof of Lemma 3.4
We first provide two lemmas and a definition that will be used in the proof.

Lemma 3.5 (Borel-Cantelli lemma [109, Chap. 2]). Let {Ak} be a sequence of events
in some probability space. If the sum of the probabilities of the Ak is finite

∞∑
k=1

Pr [Ak] <∞,

then the probability that infinitely many of them occur is 0, that is,

Pr
(

lim sup
k→∞

Ak

)
= 0.

Lemma 3.6 (Markov’s inequality [109, Chap. 1]). If X is a nonnegative random
variable and a > 0, then Pr[X ≥ a] ≤ EX/a.
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Definition 3.4. We say the nonnegative sequence Xk converges to 0 almost surely if

Pr
[
lim inf
k→∞

Xk < ε

]
= 1,∀ε > 0.

Note that this definition is equivalent to the almost sure convergence defined in
Definition 3.1 in Section 3.2. We are now ready to provide the proof of Lemma 3.4.

Proof of Lemma 3.4. We complete the proof in two steps. First, we show
∞∑
k=1

Pr [Xk ≥ ε] <∞,∀ε ⇒ Xk
a.s.−→ 0.

Second, we prove
∞∑
k=1

E[Xk] <∞ ⇒
∞∑
k=1

Pr [Xk ≥ ε] <∞,∀ε.

Let us start with the first step. From the Borel-Cantelli lemma, one knows that if∑∞
k=1 Pr [Xk ≥ ε] <∞ for all ε > 0, then

Pr
[
lim sup
k→∞

(Xk ≥ ε)
]

= 0,∀ε.

Let Ac denote the complementary of the event A. Using the property that(
lim sup
k→∞

(Xk ≥ ε)
)c

= lim inf
k→∞

(Xk < ε),

we have

Pr
[
lim inf
k→∞

(Xk < ε)
]

= 1− Pr
[
lim sup
k→∞

(Xk ≥ ε)
]

= 1,∀ε > 0.

Then one can say that Xk
a.s.−→ 0.

We finally use the Markov’s inequality to show the second step. Using the lemma,
we know that EXk ≥ εPr[Xk ≥ ε] for any ε > 0. Then there holds that

ε

∞∑
n=1

Pr[Xk ≥ ε] ≤
∞∑
k=1

E[Xk] <∞,

which implies that
∑∞
n=1 Pr[Xk ≥ ε] <∞ for any ε > 0. The proof is complete.



4 Stochastic Distributed
Coordination Algorithms

In this chapter, we deal with several stochastic distributed coordination algorithms,
which is the central aim of Part I. The new stochastic Lyapunov criteria developed in
Chapter 3 will be used to prove the convergence of these stochastic algorithms.

4.1 Introduction
Distributed coordination algorithms, known as distributed weighted averaging algo-
rithms, have been playing crucial roles in various distributed systems and algorithms,
including distributed optimization [25, 26], distributed control of networked robots
[112], opinion dynamics [6, 32, 115, 116], and many other distributed algorithms
[8, 9, 9–11, 35, 36]. In order to analyze such systems and algorithms, one frequently
encounters the need to prove convergence of inhomogeneous Markov chains, or equiv-
alently the convergence of backward products of random sequences of stochastic
matrices {W (k)}. Most of the existing results assume exclusively that all the W (k) in
the sequence have all positive diagonal entries, see e.g., [73,128,129]. This assumption
simplifies the analysis of convergence significantly; moreover, without this assumption,
the existing results do not always hold. For example, from [35, 36] one knows that
the product of W (k) converges to a rank-one matrix almost surely if exactly one of
the eigenvalues of the expectation of W (k) has the modulus of one, which can be
violated if W (k) has zero diagonal elements. Note also that most of the existing
results are confined to special random sequences, e.g., independently distributed
sequences [35], stationary ergodic sequences [36], or independent sequences [75,76].
In the first part of this chapter, we work on more general classes of random sequences
of stochastic matrices without the assumption of non-zero diagonal entries. Using the
novel Lyapunov criteria we developed in Chapter 3, we show that if there exists a
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fixed length such that the product of any successive subsequence of matrices of this
length has the scrambling property (see the definition in Section 2.3) with positive
probability, the convergence to a rank-one matrix for the infinite product can be
guaranteed almost surely. We also prove that the convergence can be exponentially
fast if this probability is lower bounded by some positive number, and the greater
the lower bound is, the faster the convergence becomes. For some particular random
sequences, we further relax this “scrambling” condition. If the random sequence is
driven by a stationary process, the almost sure convergence can be ensured as long as
the product of any successive subsequence of finite length has a positive probability
to be indecomposable and aperiodic (SIA). The exponential convergence rate follows
without other assumptions if the random process that governs the evolution of the
sequence is a stationary ergodic process.

Using these results on products of random stochastic matrices, we then investigate
a classic agreement problem, in which agents coupled by a network repeatedly update
their states to the weighted average of their neighbors’ states and their own. This
problem is usually modeled by a linear recursion equation x(k) = Wx(k − 1) with
W a stochastic matrix describing the interaction structure. The agreement problem
is equivalent to studying whether W k converge to a rank-one matrix. Usually, W is
required to be indecomposable and aperiodic matrix (SIA) [68,71]. However, the case
when W is not an SIA matrix has not been studied before. For example, a periodic
W leads to oscillating behaviors. We address the agreement problem when W is
periodic in Section 4.3. We show that, instead of oscillation, agreement takes place if
the agents update asynchronously. Specifically, we assume that each agent has access
to its own state while executing averaging actions at every time instant. In other
words, at each time step, a random number of agents are activated and then update.
In sharp contrast to the existing works, e.g. [130,131] and [129], agents do not need
to use their own states to update. The obtained results reveal that asynchrony can
play a very important role in giving rise to an agreement.

We then investigate another distributed coordination algorithm for solving linear
algebraic equations of the form Ax = b, as another application of the finite-step
stochastic Lyapunov criteria in Chapter 3. The problem is to design a distributed
algorithm such that the equations are solved in parallel by n agents, each of whom
just knows a subset of the rows of the matrix [A, b]. Each agent recursively updates
its estimate of the solution using the current estimates from its neighbors. Recently
several solutions under different sufficient conditions have been proposed [29,30, 77],
and particularly in [77], the sequence of the neighbor relationship graphs G(k) is
required to be repeated jointly strongly connected. We show that a much weaker
condition is sufficient to solve the problem almost surely, namely the algorithm in
[77] works if there exists a fixed length such that any subsequence of {G(k)} at this
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length is jointly strongly connected with positive probability. The proof also relies on
the new Lyapunov criteria we developed in the previous section.

Outline

The remainder of this chapter is structured as follows. Products of random sequences
of stochastic matrices are studied in Section 4.2. We investigate asynchronous updating
induced agreement problem in Section 4.3. A distributed algorithm to solve linear
equation is studied in Section 4.4. Concluding remarks appear in Section 4.5.

4.2 Products of Random Sequences of Stochastic
Matrices

In this section, we study the convergence of products of stochastic matrices, where
the obtained results on finite-step Lyapunov functions are used for analysis. Let
Ω0 := {1, 2, . . . ,m} be the state space and M := {F1, F2, . . . , Fm} be the set of m
stochastic matrices Fi ∈ Rn×n. Consider a random sequence {Wω(k) : k ∈ N} on
the probability space (Ω,F ,Pr), where Ω is the collection of all infinite sequences
ω = (ω1, ω2, . . . ) with ωk ∈ Ω0, and we defineWω(k) := Fωk . For notational simplicity,
we denote Wω(k) by W (k). For the backward product of stochastic matrices

W (t+ k, t) = W (t+ k) · · ·W (t+ 1), (4.1)

where k ∈ N, t ∈ N0, we are interested in establishing conditions on {W (k)}, under
which it holds that limk→∞W (k, 0) = L for a random matrix L = 1ξ> where ξ ∈ Rn

satisfies ξ>1 = 1.
Before proceeding, let us introduce some concepts in probability. Let Fk =

σ(W (1), . . . ,W (k)), so that evidently {Fk}, k = 1, 2, . . . , is an increasing sequence
of σ-fields. Let χ : Ω → Ω be the shift operator, i.e., χ(ω1, ω2, . . . ) = (ω2, ω3, . . . ).
A random sequence of stochastic matrices {W (1),W (2), . . . ,W (k), . . . } is said to
be stationary if the shift operator is measure-preserving. In other words, for any
k1, k2, . . . , kr and τ ∈ N, the sequence

{W (k1 + τ),W (k2 + τ), . . . ,W (kr + τ)}

has the same joint distribution as {W (k1),W (k2), . . . ,W (kr)}. Moreover, a sequence
is said to be stationary ergodic if it is stationary, and every invariant set B is trivial,
i.e., for every A ∈ B, Pr[A] ∈ {0, 1}. Here by an invariant set B, we mean χ−1B = B.
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4.2.1 Convergence Results
In this subsection, we provide some sufficient conditions such that the backward
product of the sequence {W (k)} converges to a rank one matrix.

We first recall three classes of stochastic matrices defined in Section 2.3, denoted by
M1,M2, andM3, respectively. Give a stochastic matric A ∈ Rn×n, we say A ∈M1
if A is SIA (stochastic, indecomposable, and aperiodic); A ∈M2 if A is scrambling;
and A ∈M3 if A is Markov.

Coefficients of ergodicity serve as a fundamental tool in analyzing the convergence
of products of stochastic matrices. In this chapter, we employ a standard one. For a
stochastic matrix A ∈ Rn×n, the coefficient of ergodicity τ(A) is defined by

τ (A) = 1−mini,j
∑n

s=1
min(ais, ajs). (4.2)

It is known that this coefficient of ergodicity satisfies 0 ≤ τ(A) ≤ 1, and τ(A) is
proper since τ(A) = 0 if and only if all the rows of A are identical. Importantly, it
holds that

τ(A) < 1 (4.3)

if and only if A ∈M2 (see [71, p.82]). For any two stochastic matrices A,B, there is
an important property for this coefficient of ergodicity

τ(AB) ≤ τ(A)τ(B). (4.4)

This property will be used also in the proof in Section 4.6. Before providing our first
results in this subsection, we make the following assumption for the random sequence
{W (k)}.

Assumption 4.1. Suppose the sequence of stochastic matrices {W (k) : k ∈ N} is
driven by a random process satisfying the following conditions:

a) There exists an integer h > 0 such that for any k ∈ N0, it holds that

Pr [W (k + h, k) ∈M2] > 0, (4.5)
∞∑
i=1

Pr
[
W
(
k + ih, k + (i− 1)h

)
∈M2

]
=∞; (4.6)

b) There is a positive number α such that Wij(k) ≥ α for any i, j ∈ N, k ∈ N0
satisfying Wij(k) > 0.

In other words, Assumption 4.1 requires that any corresponding matrix product
of length h becomes a scrambling matrix with positive probability, and the positive
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elements for any matrix inM are uniformly lower bounded away from some positive
value. Now we are ready to provide our main result on the convergence of stochastic
matrices’ products.

Theorem 4.1. Under Assumption 4.1, the product of the random sequence of stochas-
tic matrices W (k, 0) converges to a random matrix L = 1ξ> almost surely.

To prove Theorem 4.1, consider the stochastic discrete-time dynamical system
described by

xk+1 = Fy(k+1)xk := W (k + 1)xk, k ∈ N0, (4.7)

where xk ∈ Rn; the initial state x0 is a constant with probability one; y(k) ∈ {1, . . . ,m}
is regarded as the randomly switching signal; and {W (1),W (2), . . . } is the random
process of stochastic matrices we are interested in. One knows that xk is adapted
to Fk. Thus, to investigate the limiting behavior of the product (4.1), it is sufficient
to study the limiting behavior of system dynamics (4.7). We say the state of system
(4.7) reaches an agreement state if limk→∞ xk = 1ξ for some ξ ∈ R. Then, from [75]
one can say that the agreement of system (4.7) for any initial state x0 implies that
W (k, 0) converges to a rank-one matrix as k →∞.

To investigate the agreement problem, we define

dxke := max
i∈N

xik, bxkc := min
i∈N

xik

where k ∈ N0, and
vk = dxke − bxkc . (4.8)

For any k ∈ N, vk is adapted to Fk since xk is. The agreement is said to be reached
asymptotically almost surely if vk

a.s.−→ 0 as k → ∞; and it is said to be reached
exponentially almost surely with convergence rate no slower than γ−1 for some γ > 1
if γkvk

a.s.−→ y for some finite y ≥ 0. The random variable vk has some important
properties given by the following proposition.

Proposition 4.1. Consider a system xk+1 = Axk, k ∈ N0, where A is a stochastic
matrix. For vk defined in (4.8), it follows that vk+1 ≤ vk, and the strict inequality
holds for any xk /∈ span(1) if and only if A is scrambling.

Proof. It is shown in [71] that vk+1 ≤ τ(A)vk with τ(·) defined in (4.2). Therefore,
the sufficiency follows from (4.3) straightforwardly. We then prove the necessity by
contradiction. Suppose A is not scrambling, and then there must exist at least two
rows, denoted by i, j, that are orthogonal. Define the two sets i := {l : ail > 0, l ∈ N}
and j := {m : ajm > 0,m ∈ N}, respectively. It follows then from the scrambling
property that i ∩ j = ∅. Let xqk = 1 for all q ∈ i, xqk = 0 for all q ∈ j, and let xmk be
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any arbitrary positive number less than 1 for all m ∈ N\(i ∪ j) if N\(i ∪ j) is not
empty. Then the states of i and j at time k + 1 become

xik+1 =
∑n

l=1
ailx

l
k =

∑
l∈i
ailx

l
k = 1,

xjk+1 =
∑n

l=1
ajlx

l
k =

∑
l∈j
ajlx

l
k = 0,

and 0 ≤ xmk+1 ≤ 1 for all m ∈ N\(i ∪ j). This results in vk+1 = vk = 1. By
contradiction one knows that a scrambling A is necessary for vk+1 < vk, which
completes the proof.

In order to prove Theorem 4.1, we obtain the following intermediate result.

Proposition 4.2. For any scrambling matrix A ∈ Rn×n, the coefficient of ergodicity
τ(A) defined in (4.2) satisfies

τ(A) ≤ 1− γ

if all the positive elements of A are lower bounded by γ > 0.

Proof. Consider any two rows of A, denoted by i, j. Define two sets, i := {s : ais > 0}
and j := {s : ajs > 0}. From the scrambling hypothesis, one knows that i ∩ j 6= ∅.
Thus it holds that

n∑
s=1

min (ais, ajs) =
∑
s∈i∩j

min (ais, ajs) ≥ γ.

Then from the definition of τ(A), it is easy to see

τ (A) = 1−min
i,j

n∑
s=1

min (ais, ajs) ≤ 1− γ,

which completes the proof.

We are in the position to prove Theorem 4.1 by showing that vk
a.s.−→ 0 as k →∞,

where the results obtained in Corollary 3.3 will be used.

Proof of Theorem 4.1. Let V (xk) = vk be a finite-step stochastic Lyapunov function
candidate for the system dynamics (4.7). It is easy to see V (x) = 0 if and only if
x ∈ span(1). Since all W (k) are stochastic matrices, we observe that

E[V (xk+1)|Fk]− V (xk) ≤ 0

from Proposition 4.1, which implies that V (xk) is exactly a supermartingale with
respect to Fk. From Lemma 3.3, we know V (xk) a.s.−→ V̄ for some V̄ because V (xk) ≥ 0
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and EV (xk) <∞. From Assumption 4.1, we know that there is an h such that the
product W (k + h, k) is scrambling with positive probability for any k. Let Wk be the
set of all possible W (k + h, k) at time k, and nk the cardinality of Wk. Let nsk be the
number of scrambling matrices in Wk. We denote each of these scrambling matrices
and each of non-scrambling matrices by Sik, i = 1, . . . , nsk and S̄jk, j = 1, . . . , nk − nsk,
respectively. The probabilities of all the possible W (k + h, k) sum to 1, i.e.,

nsk∑
i=1

Pr
[
Sik
]

+
nk−nsk∑
j=1

Pr
[
S̄jk

]
= 1. (4.9)

Then the conditional expectation of V (x) after finite steps for any k becomes

E [V (xk+h)| Fk]− V (xk)
= E

[
V
(
W (k + h, k)xk

)]
− V (xk)

≤ E
[
τ
(
W (k + h, k)

)]
V
(
xk
)
− V (xk) ,

where τ(·) is given by (4.2). One can calculate that

E
[
τ
(
W (k + h, k)

)]
− 1

=
∑nsk

i=1
Pr
[
Sik
]
τ
(
Sik
)

+
∑nk−nsk

j=1
Pr
[
S̄jk

]
τ
(
S̄jk

)
− 1

≤
∑nsk

i=1
Pr
[
Sik
](
τ
(
Sik
)
− 1
)
,

where Proposition 4.1 and equation (4.9) have been used. From Assumption 4.1.b),
we know that the positive elements of W (k) are lower bounded by α, and thus the
positive elements of Sik in (4.10) are lower bounded by αh. Thus τ(Sik) ≤ 1 − αh
according to Proposition 4.2, and it follows that

E[V (xk+h)| Fk]− V (xk)

≤ −
∑nsk

i=1
Pr
[
Sik
]
αhEV (xk) := ϕk (xk) . (4.10)

By iterating, one can easily show that

E [V (xnh)]− V (x0) ≤ −
∑n−1

k=0
ϕk (xk)

= −
∑n−1

k=0

∑nsk

i=1
Pr
[
Sik
]
αhEV (xk). (4.11)

It then follows that V (x0) − E [V (xnh)] < ∞ even when n → ∞, since V (x) ≥ 0.
According to the condition (4.6), we know

∑n−1
k=0

∑nsk
i=1 Pr

[
Sik
]

=∞. By contradiction,
it is easy to infer that EV (xk) a.s.−→ 0. Since we have already shown that V (xk) a.s.−→ V̄
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for some random V̄ ≥ 0, one can conclude that V (xk) a.s.−→ 0. For any given x0 ∈ Rn,
define the compact set Q := {x : dxe ≤ dx0e , bxc ≥ bx0c. For any random sequence
{W (k)}, it follows from the system dynamics (4.7) that

dxke ≤ dxk−1e ≤ · · · ≤ dx1e ≤ dx0e ,
bxkc ≥ bxk−1c ≥ · · · ≥ bx1c ≥ bx0c ,

and thus xk will remain within Q. From Corollary 3.3, we know that xk asymptotically
converges to {x ∈ Q : ϕk(x) = 0}, or equivalently, {x ∈ Q : V (x) = 0} almost surely
as k →∞ since V (x) is continuous. In other words, for any x0 ∈ Rn, xk

a.s.−→ ζ1 for
some ζ ∈ R, which proves Theorem 4.1.

Compared to the existing results, Theorem 4.1 has provided a quite relaxed
condition for the convergence of the backward product (4.1) determined by the
random sequence {W (k)} to a rank-one matrix: over any time interval of length
h, i.e., [h + k, k] for any k ∈ N0, the product W (k + h) · · ·W (k + 1) has positive
probability to be scrambling. The following corollary follows straightforwardly since
a Markov matrix is certainly scrambling.

Corollary 4.1. For a random sequence {W (k) : k ∈ N}, the product (4.1) converges
to a random matrix L = 1ξ> almost surely if there exists an integer h such that for
any k the product W (k + h, k) is a Markov matrix with positive probability and∑∞

i=1
Pr [W (k + ih, k + (i− 1)h) ∈M3] =∞.

Next we assume that the sequence {W (k)} is driven by an underlying stationary
process. Then the condition in Theorem 4.1 can be further relaxed. Let us make the
following assumption and provide another theorem in this subsection.

Assumption 4.2. Suppose the random sequence of stochastic matrices {W (k) : k ∈
N} is driven by a stationary process satisfying the following conditions:

a) There exists an integer h > 0 such that for any k ∈ N0, it holds that

Pr [W (k + h, k) ∈M1] > 0; (4.12)

b) There is a positive number α such that Wij(k) ≥ α for any i, j ∈ N, k ∈ N0
satisfying Wij(k) > 0.

In other words, Assumption 4.2 requires that any corresponding matrix product of
length h becomes an SIA matrix with positive probability, and the positive elements
for any matrix inM are uniformly lower bounded away from some positive value.
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Theorem 4.2. Under Assumption 4.2, the product of the random sequence of stochas-
tic matrices W (k, 0) converges to a random matrix L = 1ξ> almost surely.

Recall in Section 2.3 that we denote A1 ∼ A2 if these two stochastic matrices are
of the same type (have zero elements in the same positions). Obviously, it holds the
trivial case A1 ∼ A1. One knows that for any SIA matrix A, there exists an integer l
such that Al is scrambling; it is easy to extend this to the inhomogeneous case, i.e.,
any product of l stochastic matrices of the same type of A is scrambling if all the
matrices’ elements are lower bounded away by some positive number. We are now
ready to prove Theorem 4.2.

Proof of Theorem 4.2. Since {W (k)} is driven by a stationary process, we know that
for any t ∈ N0, h ∈ N, {W (t+ h) , . . . ,W (t+ 1)} has the same joint distribution as
{W (t+ 2h) , . . . , W (t+ h+ 1)}. For the h given in Assumption 4.2, there exists an
SIA matrix A such that Pr[W

(
t+ kh+ h, t+ kh+ 1

)
= A] > 0. Thus it follows that

Pr[W
(
t+ kh+ 2h, t+ kh+ 1

)
= A] > 0 for any k ∈ N0. Thus

Pr
[
W
(
t+ (k + 2)h, t+ (k + 1)h

)
∼W

(
t+ (k + 1)h, t+ kh

) ∣∣∣∣W (h, t+ kh)
]
> 0.

When W (t+ h, t) ∈M1, which happens with positive probability, we have

Pr [W (t+ 2h, t+ h) ∼W (t+ h, t),W (t+ h, t) ∈M1]

= Pr
[
W (t+ 2h, t+ h)

∼W (t+ h, t)

∣∣∣∣Pr [W (t+ h, t) ∈M1]
]

Pr [W (t+ h, t) ∈M1] > 0.

By recursion one can conclude that all the m products W (t+ (k + 1)h, t+ kh), k ∈
{0, . . . ,m− 1}, occur as the same SIA type with positive probability. Since all the
products W (t+ (k + 1)h, t+ kh) are of the same type, one can choose m such that
W (t + mh, t) is scrambling. This in turn implies that Pr [W (t+mh, t) ∈M2] > 0,
and the property of stationary process makes sure that (4.6) holds. The conditions in
Assumption 4.1 are therefore all satisfied, and then Theorem 4.2 follows from Theorem
4.1.

Remark 4.1. Theorems 4.1 and 4.2 have established some sufficient conditions for
the convergence of a random sequence of stochastic matrices to a rank-one matrix. A
further question is how these results can be applied to controlling distributed computa-
tion processes. To answer this question, let us still consider a finite set of stochastic
matricesM = {F1 . . . , Fm}, from which each W (k) in the random sequence {W (k)}
is sampled. It is defined in [132] thatM is a consensus set if the arbitrary product∏k
i=1W (i),W (i) ∈ M, converges to a rank-one matrix. However, it has also been
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shown that to decide whetherM is a consensus set is an NP-hard problem [132,133].
For a non-consensus set M, it is always not obvious how to find a deterministic
sequence that converges, especially whenM has a large number of elements and Fi
has zero diagonal entries. However, the convergence can be ensured almost surely
by introducing some randomness in the sequence, provided that there is a convergent
deterministic sequence intrinsically.

4.2.2 Estimate of Convergence Rate
In Subsection 4.2.1, we have shown how the product W (k, 0) determined by a random
process asymptotically converges to a rank-one matrix W a.s. as k →∞. However,
the convergence rate for such a randomized product is not yet clear. It is quite
challenging to investigate how fast the process converges, especially when each W (k)
may have zero diagonal entries. In this subsection, we address this problem by
employing finite-step stochastic Lyapunov functions. Now let us present the main
result on convergence rate.

Theorem 4.3. In addition to Assumption 4.1, if there exists a number p, 0 < p < 1,
such that for any k ∈ N0

Pr [W (h, k) ∈M2] ≥ p > 0,

then the almost sure convergence of the product W (k, 0) to a random matrix L = 1ξ>

is exponential, and the rate is no slower than
(
1− pαh

)1/h.
Proof. Choosing V (xk) = vk as a finite-step stochastic Lyapunov function candidate,
from (4.10) we have

E [V (xk+h)| Fk]− V (xk) ≤ −
∑nsk

i=1
Pr
[
Sik
]
αhV (xk) . (4.13)

Furthermore, it is easy to see that∑nsk

i=1
Pr
[
Sik
]

= Pr [W (h, t) ∈M2] ≥ p,

Substituting it into (4.13) yields

E [V (xk+h)| Fk] ≤
(
1− pαh

)
V (xk) .

It follows from Corollary 3.3 that V (xk+h) a.s.−→ 0, with an convergence rate no slower
than

(
1− pαh

)1/h. In other words, the agreement is reached exponentially almost
surely, which, in turn, completes the proof.
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Theorem 4.3 has established the almost sure exponential convergence rate for the
product of {W (k)}. If any subsequence {W (k+1), . . . ,W (k+2),W (k+h)} can result
in a scrambling product W (k + h, k) with positive probability and this probability
is lower bounded away by some positive number, and then the convergence rate is
exponential. Interestingly, the greater this lower bound is, the faster the convergence
becomes. If we consider a special random sequence which is driven by a stationary
ergodic process, the exponential convergence rate follows without any other conditions
apart from Assumption 4.2, and an alternative proof is given in Appendix 4.6.

Corollary 4.2. Suppose the random process governing the evolution of the sequence
{W (k) : k ∈ N} is stationary ergodic, then the product W (k, 0) converges to a random
rank-one matrix at an exponential rate almost surely under Assumption 4.2.

4.2.3 Connections to Markov Chains
In this subsection, we show that Theorems 4.2, and 4.3 are the generalizations of
some well known results for Markov chains in [68, 71]. A fundamental result on
inhomogeneous Markov chains is as follows.

Lemma 4.1 ([71, Th. 4.10], [68]). If the product W (k, t), formed from a sequence
{W (k)}, satisfies W (t+ k, t) ∈ M1 for any k ≥ 1, t ≥ 0, and Wij(k) ≥ α whenever
Wij(k) > 0, then W (k, 0) converges to a rank-one matrix as k →∞.

Let h be the number of distinct types of scrambling matrices of order n. It is
known that the product W (k + h, k) is scrambling for any k. In this case, we may
take the probability of each product W (k+h, k) being scrambling as p = 1, and as an
immediate consequence of Theorem 4.3, we know thatW (k, 0) converges to a rank-one
matrix at a exponential rate that is no slower than (1 − αh)1/h. This convergence
rate is consistent with what is estimated in [71, Th. 4.10]. This also applies to the
homogeneous case where W (k) = W for any k with W being scrambling. Moreover,
it is known that the condition can be relaxed by just requiring W to be SIA to ensure
the convergence, which is an immediate consequence of Theorem 4.2.

In next section, we discuss how the results in this section can be further applied
to the context of asynchronous computations.
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4.3 Agreement Induced by Stochastic Asynchronous
Events

In this section, we study the agreement problem of multi-agent systems in networks
that are allowed to be periodic (which will be defined later in this section). Periodic
networks often lead to oscillating behaviors, but we show that asynchronous updating
can induce agreement even the network is periodic. The results on products of random
sequences of stochastic matrices obtained in Section 4.2 will be used to construct the
proofs.

We take each component xj in x from (4.7) as the state of agent i in an n-agent
system. Define the distributed coordination algorithm

xi (tk+1) =
∑n

j=1
wijx

j (tk), k ∈ N0, i ∈ N, (4.14)

where the averaging weights wij ≥ 0,
∑n
j=1 wij = 1, and tk denote the time instants

when updating actions happen. Here we assume the initial state x(t0) is given. It
is always assumed that T1 ≤ tk+1 − tk ≤ T2, where t0 = 0 and T1, T2 are positive
numbers. We say the states of system (4.14) reach agreement if limk→∞ x(tk) = 1ζ,
mentioned in Section 4.2. Let W = [wij ] ∈ Rn×n, and obviously W is a stochastic
matrix. The algorithm (4.14) can be rewritten as

x(tk+1) = Wx(tk). (4.15)

In fact, the matrix W can be associated with a directed, weighted graph GW = (V, E),
where V := {1, 2, · · · , n} is the vertex set and E is the edge set for which (i, j) ∈ E
if wji > 0. The graph GW is called a rooted one if there exists at least one vertex,
called a root, from which any other vertex can be reached. It is known that agents
are able to reach agreement for all x(0) if W is SIA ([68,71]). However, the situations
when W is not SIA have not been studied before, although they appear often in real
systems, such as social networks.

In the context of distributed computation, it is always assumed that each com-
putational unit in the network has access to its own latest state while implementing
the iterative update rules [10, 25]. A class of situations that has received considerably
less attention in the literature arise when some individuals are not able to obtain
their own states, a case which can result from memory loss. Similar phenomena
have also been observed in social networks while studying the evolution of opinions.
Self-contemptuous people change their opinions solely in response to the opinions of
others. The existence of computational units or individuals who are not able to access
their own states sometimes might result in the computational failure or opinions’
disagreement. As such an example, a periodic matrix W , which must has all zero
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diagonal entries (no access to their own states for all individuals), always leads the
system (4.14) to oscillation. This is because for a periodic W , W k never converges
to a matrix with identical rows as k → ∞. Instead, the positions of W k that have
positive values are periodically changing with k, resulting in a periodically changing
value of W kx(0). We illustrate this point by the following example.

Example 4.1. For system (4.15), the initial state is given by x(0) = [1, 2, 3, 4]T , and
the matrix P is

W =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

By simple computation, one can check that x(t1) = [4, 1, 2, 3]T , x(t2) = [3, 4, 1, 2]T , x(t3) =
[2, 3, 4, 1]T , x(t4) = [1, 2, 3, 4]T = x(0). It is easy to see that the state equals the initial
state after updating for four times. Then the same process will repeat again, which
obviously implies a oscillating behavior instead of agreement. 4

This motivates us to investigate the particular case where W is periodic. In the
following two definitions, we provide the formal definitions of periodic stochastic
matrices. We first introduce the definition of periodic irreducible matrices found in
[71, Def. 1.6], and then extend this definition to the case when the matrices do not
have to be irreducible.

Definition 4.1 ([71, Def. 1.6]). Consider an irreducible stochastic matrix A = [aij ] ∈
Rn×n. An index i ∈ {1, 2, · · · , n} is said to have period d(i) if d(i) is the common
divisor of those m ∈ N+ for which a(m)

ii > 0. The matrix A is said to be periodic with
period d if d(i) = d > 1 for all i.

Definition 4.2. Consider a stochastic matrix A ∈ Rn×n, and let P := {i : ∃m ∈
N+ : a(m)

ii > 0}. An index i ∈ P is said to have period d(i) if d(i) is the common
divisor of those m for which a(m)

ii > 0. The matrix A is said to be periodic if d(i) > 1
for any i ∈ P, and the period d is the common divisor of those m such that a(m)

ii > 0
for all i ∈ P.

Definition 4.2 is a generalization of Definition 4.1. In this definition, a periodic
stochastic matrix is not necessarily irreducible. The following example provides some
intuition on these two definitions.



50 4. Stochastic Distributed Coordination Algorithms

Example 4.2. Consider the following two matrices:

A =

 0 1 0
0 0 1
1 0 0

 , B =

 0 1 0
1 0 0
1 0 0

 , C =


0 1 0 0 0
1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 .

One can see that A is irreducible, and B,C are reducible. According to Definition 4.1,
it can be calculated that the indices 1, 2 and 3 of A all have period 3, which means A
is periodic with period 3. According to Definition 4.2, P = 1, 2 for B, and the indices
1, 2 have period 2. Then it is clear that the period of B is 2. Likewise, one can check
that the period of C is 6. 4

With a slight abuse of terminology, we say the graph GW is periodic if the associated
matrix W is. In this section, we show that agreement can be reached even when W is
periodic, just by introducing asynchronous updating events to the coupled agents. In
fact, perfect synchrony is hard to realize in practice as it is difficult for all agents to
have access to a common clock according to which they coordinate their updating
actions, while asynchrony is more likely. Researchers have studied how an agreement
can be preserved with the existence of asynchrony, see e.g., [13, 14]. Unlike these
works, we approach the same problem from a different aspect, where agreement occurs
just because of asynchrony.

To proceed, we define a framework of randomly asynchronous updating events.
It is usually legitimate to postulate that on occasions more than one, but not all,
agents may update. Assume that each agent is equipped with a clock, which need
not be synchronized with other clocks. The state of each agent remains unchanged
except when an activation event is triggered by its own clock. Denote the set of event
times of the ith agent by T i = {0, ti1, · · · , tik, · · · }, k ∈ N. At the event times, agent i
updates its state obeying the asynchronous updating rule

xi
(
tik+1

)
=
∑n

j=1
wijxj

(
tik
)
, (4.16)

where i ∈ N. We assume that the clocks which determine the updating events for
the agents are driven by an underlying random process. The following assumption is
important for the analysis.

Assumption 4.3. For any agent i, the intervals between two event times, denoted
by hik = tik − tik−1, are such that

(i) hik are upper bounded with probability 1 for all k and all i;
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T :
0 1 2 3 4 5 6

ti1, t
j
1 ti2, t

k
1 ti3 ti4 ti5, t

k
2 ti6

Figure 4.1: Event times of all agents: one (or more) agents can be activated
simultaneously.

(ii) {hik : k ∈ N0} is a random sequence, with {h1
k}, {h2

k}, . . . , {hnk} being mutually
independent.

Assumption 4.3 ensures that an agent can be activated again within finite time
after it is activated at tik−1 for all k ∈ N, which implies that all agents will update
their states for infinitely many times in the long run. In fact, Assumption 4.3 can be
satisfied if the agents are activated by mutually independent Poisson clocks or at rates
determined by mutually independent Bernoulli processes ([134, Ch. 6], [124, Ch. 2]).

Let T = {t0, t1, t2, · · · , tk, · · · } denote all event times of all the n agents, in which
the event times have been relabeled in a way such that t0 = 0 and tτ < tτ+1, τ =
{0, 1, 2, · · · }. This idea has been used in [135] and [10] to study asynchronous iterative
algorithms. One situation may occur in which there exists some k such that tk ∈ T i
and tk ∈ T j for some i, j, which implies more than one agent is activated at some
event times. Although this is not likely to happen when the underlying process is
some special random ones like Poisson, our analysis and results will not be affected.
The arrangement of T is illustrated clearly by Figure 4.1. For simplicity, we rewrite
the set of event times as T = {0, 1, 2, · · · , k, · · · }. Then the system with asynchronous
updating can be treated as one with discrete-time dynamics in which the agents are
permitted to update only at certain event times k, k ∈ N, according to the updating
rule (4.16) at each time k. Since each k ∈ T can be the event time of any subset
of agents, we can associate any set of event times {k + 1, k + 2, . . . , k + h} with the
updating sequence of agents {λ(k + 1), λ(k + 2), . . . , λ(k + h)} with λ(i) ∈ V. Under
Assumption 4.3, one knows that this updating sequence can be arbitrarily ordered,
and each possible sequence can occur with positive probability, though the particular
value is not of concern.

Assume at time k, m ≥ 1 agents are activated, labeled by k1, k2, . . . , km, then we
define the following matrices

W (k) =
[
u1, · · · , w>k1

, uk+1, · · · , w>km , · · · , un
]>
, (4.17)

where ui ∈ Rn is the ith column of the identity matrix In and wk ∈ Rn denotes the
kth row of W . We call W (k) the asynchronous updating matrix at time k. Then the
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asynchronous updating rule (4.16) becomes

xk = W (k)xk−1, k ∈ N, (4.18)

where {W (k)} is a random sequence of asynchronous updating matrices which are
stochastic, and x0 ∈ Rn is a given initial state. We say the asynchronous agreement
is reached if xk converges to a scaled all-one vector when the agents update asyn-
chronously. It suffices to study the convergence of the product W (k) . . .W (2)W (1) to
a rank-one matrix.

In Subsection 4.3.1, we consider the agents are coupled by a strongly connected
and periodic network, and show that agreement is reached almost surely if the agents
update their states asynchronously under Assumption 4.3. In Subsection 4.3.2, we
identify a necessary and sufficient condition on the graph structure for asynchronous
agreement, where aperiodicity is not required anymore.

4.3.1 Asynchronous Agreement over Strongly Connected Pe-
riodic Networks

In this subsection, we assume that the agents are coupled by a strongly connected and
periodic network GW . Equivalently, the associated stochastic matrix W in the system
(4.15) is irreducible and periodic (see Definition 4.1). We show in the following theorem
that agreement can be reached if the agents update their states asynchronously.

Theorem 4.4. Suppose that the agents are coupled by a strongly connected and
periodic graph GW . Then, they can reach agreement almost surely if they update
asynchronously under Assumption 4.3.

We use the results in Corollary 4.1 to construct the proof. Then, it suffices to prove
that there is a class of updating sequence of finite length such that the product of
the corresponding asynchronous updating matrices, i.e., W (k) in (4.18), is a Markov
matrix, and this class of updating sequence appears with positive probability. This is
formally stated in the following proposition.

Proposition 4.3. There exists T ∈ N such that the product of the asynchronous
updating matrices W (k + T )W (k + T − 1) · · ·W (k + 1) have a positive probability to
be a Markov matrix for any k ∈ N0.

To prove this proposition, we define an operator N (·, ·) for any stochastic matrix
and any subset S ∈ V

N (A,S) := {j : Aij > 0, i ∈ S}, (4.19)
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and we write N (A, {i}) as N (A, i) for brevity. It is easy to check then for any two
stochastic matrices A1, A2 ∈ Rn×n and for any subset S ∈ V, it holds that

N (A2A1,S) = N (A1,N (A2,S)) . (4.20)

Proof of Proposition 4.3. This proposition can be proved by considering a special
class of updating sequences, which appears with probability greater than 0. Since
the directed graph GW = (V, E) considered in this chapter is strongly connected (W
is irreducible), for any fixed node λ(1) ∈ V one can always find some directed paths
starting from λ(1) and passing through all other nodes with finite lengths. Choose
the path with the minimal length T − 1, denoted by

λ (1)→ λ (2)→ · · ·λ (T − 1)→ λ (T ) .

Obviously, it satisfies
⋃T
i=1 λ (i) = V . Now we assume that the updating sequence of the

agents is {λ (1) , λ (2) , · · · , λ(T )}, where only one agent updates at the corresponding
time. Let {Wλ(1),Wλ(2), · · · ,Wλ(T )} denote the sequence of the updating matrices.
Let Φ be the backward product of this sequence, and it is given by

Φ = Wλ(T )Wλ(T−1) · · ·Wλ(2)Wλ(1) (4.21)

We next show Φ in (4.21) has at least one positive column. One knows Φ has a
positive column if only if all the nodes in the associated graph GΦ share a common
neighbor. Then we will prove all the nodes in GΦ share a common neighbor, i.e.,⋂n

i=1
N (Φ, i) 6= ∅. (4.22)

We first define the following iteration

sm = {λ (km−1)} ∪ sm−1,

km = max {k : λ (k) /∈ sm, 1 ≤ k ≤ T}

where m = 2, · · · , n. Let s1 = ∅, k1 = T . Since
⋃T
i=1 λ (i) = V, it holds that⋃T

i=1 λ (ki) = V. For any ki, it is obvious to see

N
(
Wλ(T ) · · ·Wλ(ki+1)Wλ(ki) · · ·Wλ(2)Wλ(1), λ (ki)

)
= N

(
Wλ(ki) · · ·Wλ(2)Wλ(1), λ (ki)

)
.

As λ(ki − 1) is one of the neighbors of λ(ki), i.e.,

λ (ki − 1) ∈ N
(
Wλ(ki), λ (ki)

)
,

it follows that
N
(
Wλ(ki)Wλ(ki−1) · · ·Wλ(2)Wλ(1), λ (ki)

)
⊇ N

(
Wλ(ki−1) · · ·Wλ(2)Wλ(1), λ (ki − 1)

) (4.23)
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where the inequality (4.20) has been used. Also, λ(ki − 2) is an neighbor of λ(ki − 1),
then

N
(
Wλ(ki−1)Wλ(ki−2) · · ·Wλ(2)Wλ(1), λ (ki)

)
⊇ N

(
Wλ(ki−2) · · ·Wλ(2)Wλ(1), λ (ki − 2)

) (4.24)

By recurrence one can conclude that

N
(
Wλ(ki−m) · · ·Wλ(2)Wλ(1), λ (ki −m)

)
⊇ N

(
Wλ(ki−m−1) · · ·Wλ(2)Wλ(1), λ (ki −m− 1)

)
,

where 0 ≤ m ≤ ki − 2. It is straightforward to see

N (Φ, λ(ki)) ⊇ N
(
Wλ(1), λ (1)

)
= N (W,λ (1)) (4.25)

It is worth mentioning that (4.25) holds for any i = 1, 2, · · · , n, which implies (4.22).
Till here we know that all the nodes in the associated graph GΦ have at least one
common neighbor which is the neighbor of λ(1) in GW . It is easy to see that Φ has at
least one positive column, which implies that it is a Markov matrix.

The updating sequence {λ (1) , λ (2) , · · · , λ(T )} can appear with positive probabil-
ity at every interval of T time steps. This means that the product of the asynchronous
updating matrices W (k + T )W (k + T − 1) · · ·W (k + 1) have a positive probability to
be a Markov matrix for any k, which completes the proof.

4.3.2 A Necessary and Sufficient Condition for Asynchronous
Agreement

In the previous subsection, we prove that the agents coupled by a strongly connected
and periodic graph can reach an agreement if the agents update asynchronously. It
is surprising since it has been believed that agreement through weighted averaging
algorithms like (4.16) requires the graph to be aperiodic. In this subsection, we
generalize the result in the previous subsection, and obtain a necessary and sufficient
condition on the graph structure of GW such that asynchronous agreement is ensured.
The main result is presented in the following theorem.

Theorem 4.5. Suppose the agents coupled by a network update asynchronously under
Assumption 4.3, then they reach agreement almost surely if and only if the network is
rooted, i.e., the matrix W is indecomposable.

To prove this theorem, we need to introduce some additional concepts and results.
It is equivalent to say the associated graph GW is rooted if W is indecomposable.
Denote the set of all the roots of GW by r ⊆ V. We can partition the vertices of GW
into some hierarchical subsets as follows. For any κ ∈ r, there must exist at least
one directed spanning tree rooted at κ, see e.g., Fig. 4.2 (a). We select any of these
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Figure 4.2: An illustration of the graph partition; the hierarchical subsets: H0 =
{3},H1 = {2, 6},H2 = {1, 4},H3 = {5}; for example, {3,2,6,1,4,5} is a hierarchical
updating vertex sequence.

directed spanning trees, denoted by GsW . There exists a directed path from κ to any
other vertex i ∈ V\κ, see e.g., Fig. 4.2 (b). Let li be the length of the directed path
from κ to i, and there exists an integer L ≤ n such that li < L for all i. Define

Hr := {i : li = r} , r = 1, · · · , L− 1,

and H0 = {κ}. From this definition, one can partition the vertices of GsW into L
hierarchical subsets, i.e., H0,H1, · · · ,HL−1, according to the vertices’ distances to
the root κ. Let nr be the number of vertices in the subset Hr, 0 ≤ r ≤ L − 1 (see
the example in Fig. 4.2 (b)). Note that given a spanning tree, its corresponding
hierarchical subsets Hr’s are uniquely determined.

Definition 4.3. An updating vertex sequence of length n is said to be hierarchical if it
can be partitioned into some successive subsequences, denoted by {A0, . . . ,AL−1} with
Ar = {λr(1), λr(2), · · · , λr(nr)}, such that

⋃nr
k=1 λr (k) = Hr for all r = 0, · · · , L− 1,

where Hr’s are the hierarchical subsets of some spanning tree GsW in GW .

Proposition 4.4. If agents coupled by GW update in a hierarchical sequence {a1, · · · , an}, ai ∈
V for all i, the product of the corresponding asynchronous updating matrices,

Φ := Wan · · ·Wa2Wa1

is a Markov matrix.

Proof of Proposition 4.4. It suffices to show that all i ∈ V share at least one common
neighbor in the graph GΦ, i.e., ⋂n

i=1
N (Φ, i) 6= ∅. (4.26)
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We rewrite the product of asynchronous updating matrices into

Φ =
{
WλL−1(1) · · ·WλL−1(nL−1) · · ·WλL−2(1) · · ·Wλ0(1)

}
.

For any distinct i, j ∈ V, we know that N (Wj , i) = {i} from the definition of
asynchronous updating matrices. Then for any λr(t) ∈ Hr, t ∈ {1, · · · , nr}, r ∈
{1, · · · , L− 1}, it holds that

N (Φ, λr(t))
= N

(
Wλr(t)Wλr(t+1) · · ·Wλr(nr) · · ·Wλ0(1), λr (t)

)
= N

(
Wλr(t+1) · · ·Wλr(nr) · · ·Wλ0(1),N

(
Wλr(t), λr (t)

))
,

where the property (4.20) has been used. From Definition 4.3, one knows that
there exists at least one vertex λr−1 (t1) ∈ Hr−1 that can reach λr (t) in GW and
subsequently in GWλr(t) , which implies

λr−1 (t1) ∈ N
(
Wλr(t), λr (t)

)
.

It then follows

N
(
Wλr(t+1) · · ·Wλr(nr) · · ·Wλ0(1), λr−1 (t1)

)
⊆ N (Φ, λr(t)) .

Similarly, one obtains

N
(
Wλr(t+1) · · ·Wλr(nr) · · ·Wλ0(1), λr−1 (t1)

)
= N

(
Wλr−1(t1) · · ·Wλr(nr) · · ·Wλ0(1), λr−1 (t1)

)
= N

(
Wλr−1(t1+1) · · ·Wλ0(1),N

(
Wλr−1(t1), λr−1 (t1)

))
⊇ N

(
Wλr−1(t1+1) · · ·Wλ0(1), λr−2 (t2)

)
.

As a recursion, it must be true that

N
(
Wλ0(1), κ

)
⊆ N (Φ, λr(t)) , (4.27)

where κ is a root of GsW . In fact, it holds that λ0(1) = κ, and then we know

N
(
Wλ0(1), κ

)
= N (Wκ, κ) = N (W,κ) . (4.28)

Substituting (4.28) into (4.27) leads to

N (W,κ) ⊆ N (Φ, λr(t))

for all λr(t). Since
⋃
r,t {λr (t)} = V, we know

N (W,κ) ⊆
⋂

r,t
N (Φ, λr(t)).

Straightforwardly, (4.26) follows, which completes the proof.
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Since the hierarchical sequences will appear with positive probability in any
sequence of length n, one can easily prove the following proposition by letting l = n.

Proposition 4.5. There exists an integer l such that the productW (k+l) · · ·W (k+1),
where W (k) is given in (4.18), is a Markov matrix with positive probability for any
k ∈ N.

Proof of Theorem 4.5. We prove the necessity by contradiction. Suppose the matrix
W is decomposable. Then there are at least two sets of vertices that are isolated from
each other. Then agreement will never happen between these two isolated groups if
they have different initial states. Let l = n, in view of Corollary 4.1, the sufficiency
follows directly from Proposition 4.5, which completes the proof.

Note that the hierarchical sequence is a particular type of updating orders that
results in a Markov matrix as the product of the corresponding updating matrices.
We have identified another type of updating orders in our earlier work when W

is irreducible and periodic in the previous subsection. It is of great interest for
future work to look for other updating mechanisms to enable the appearance of
Markov matrices or scrambling matrices, which plays a crucial role in giving rise to
an asynchronous agreement.

In the next subsection, we demonstrate the obtained results in the two subsections
by simulation.

4.3.3 Numerical Examples
In this section, we demonstrate the obtained results by a numerical example. Consider
the system (4.15) with the following periodic matrix

P =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.5 0.5
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


.

The corresponding graph is given by Fig. 4.3, which is strongly connected and
periodic. Let the initial state be x(0) = [1.1, 4.2, 7.3, 3.4, 4.5, 5.6]T . If the agents in
the network have a common clock to synchronize the updating actions, the states of
the agents cannot reach an agreement, instead, a oscillating behavior takes place, as
shown in Fig. 4.4.

However, if individuals update according to their own clocks under Assumption
4.3, the agreement can be reached. To illustrate this, we assume the clocks are driven
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Figure 4.5: Update asynchronously: agreement.

by mutually independent Poisson processes in which the interarrival intervals have
the density functions

fi(x) = λie
−λix, for x ≥ 0,



4.4. A Linear Algebraic Equation Solving Algorithm 59

where i = 1, 2, · · · , n. Let λi = 2 for all i. The evolution of the agents’ states is shown
in Fig. 4.3.3, which shows that the states converge to a common value instead of an
oscillation although the network is periodic. Thus one observes that asynchronous
updating events have played a fundamental role in giving rise to agreement.

4.4 A Linear Algebraic Equation Solving Algorithm
In this section, we apply the finite step Lyapunov criteria obtained in Chapter 3 to
solving linear algebraic equations distributively.

Researchers have been quite interested in solving a system of linear algebraic
equations in the form of Ax = b in a distributed way [29, 30,113,114]. In this section
we deal with the problem under the assumption that this system of equations has at
least one solution. The set of equations is decomposed into smaller sets and distributed
to a network of n processors, referred to as agents, to be solved in parallel. Agents can
receive information from their neighbors and the neighbor relationships are described
by a time-varying n-vertex directed graph G(t) with self-arcs. When each agent knows
only the pair of real-valued matrices (Ani×mi , bni×1

i ), the problem of interest is to
devise local algorithms such that all n agents can iteratively compute the same solution
to the linear equation Ax = b, where A = [A>1 , A>2 , . . . , A>n ]>, b = [b>1 , b>2 , . . . , b>n ]>
and

∑n
i=1 ni = m.

A distributed algorithm to solve the problem is introduced in [77], where the
iterative updating rule for each agent i is described by

xik+1 = xik −
1
dik
Pi

(
dikx

i
k −

∑
j∈Ni(k)

xjk

)
, k ∈ N, (4.29)

where xik ∈ Rm, dik is the number of neighbors of agent i at time k, Ni(k) is the
collection of i’s neighbors, Pi is the orthogonal projection on the kernel of Ai, and
the initial value xi1 is any solution to the equations of Aix = bi.

The results in [77] have shown that all xik converge to the same solution expo-
nentially fast if the sequence of graphs G(t) is repeatedly jointly strongly connected.
This condition requires that for some integer l, the composition of the sequence of
graphs, {G(k), . . . ,G(k + l − 1)}, must be strongly connected for any t. It is not so
easy to satisfy this condition if the network is changing randomly. Now assume that
the evolution of the sequence of graphs {G(1), . . . ,G(k), . . . } is driven by a random
process. In this case, results in Theorem 3.1 and Corollary 3.1 can be applied to
relaxing the condition in [77] to achieve the following more general result.
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Theorem 4.6. Suppose that each agent updates its state xik according to the rule
(4.29). All states xik converge to the same solution to Ax = b almost surely if the
following two conditions are satisfied:

a) there exists an integer l such that for any k ∈ N the composition of the sequence of
randomly changing graphs {G(k),G(k+1), . . . ,G(k+ l−1)} is strongly connected
with positive probability p(k) > 0;

b) for any k ∈ N, it holds that
∑∞
i=0 p (k + il) =∞.

To prove the theorem, we define an error system. Let x∗ be any solution to Ax = b,
so Aix∗ = bi for any i. Then, we define

eik = xik − x∗, i ∈ V, k ∈ N,

which, as is done in [77], can be simplified into

eik+1 = 1
dik
Pi
∑

j∈Ni(k)
Pje

j
k. (4.30)

Let ek = [e1
k
>
, . . . , enk

>]>, A(k) be the adjacency matrix of the graph G(k), D(k) be
the diagonal matrix whose ith diagonal entry is dik, and W (k) = D−1(k)A>(k). It is
clear that W (k) is a stochastic matrix, and {W (k)} is a stochastic process. Now we
write equation (4.30) into a compact form

ek+1 = P (W (k)⊗ I)Pek, k ∈ N, (4.31)

where ⊗ denotes the Kronecker product, P := diag{P1, P2, . . . , Pn}, and {W (k)} is a
random process. We will show this error system is globally a.s. asymptotically stable.
Define the transition matrix of this error system by

Φ(k + T, k) = P (W (k + T − 1)⊗ I)P · · ·P (W (k)⊗ I)P.

In order to study the stability of the error system (4.31), we define a mixed-matrix
norm for an n× n block matrix Q = [Qij ] whose ijth entry is a matrix Qij ∈ Rm×m,
and

[[Q]] = |〈Q〉|∞,

where 〈Q〉 is the matrix in Rn×n whose ijth entry is |Qij |2. Here ‖ · ‖2 and ‖ · ‖∞
denote the induced 2 norm and infinity norm, respectively. It is easy to show that [[ ·]]
is a norm. Since ‖Ax‖2 ≤ ‖A‖2‖x‖2 for x ∈ Rnm×nm, it follows straightforwardly
that [[Ax]] ≤ [[A]] [[x]] . It has been proven in [77] that Φ(k + T, k) is non-expansive
for any k > 0, T ≥ 0. In other words, it holds that

[[Φ(k + T, k)]] ≤ 1.
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Moreover, the transition matrix is a contraction, i.e., [[Φ(k + T, k)]] < 1, if there
exists a route j = i0, i1, . . . , iT = i over the sequence {G(k), . . . ,G(k+ T − 1)} for any
i, j ∈ V that satisfies

⋃T
k=0 {ik} = V. Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. Let V (ek) = [[ek]] be a finite-step stochastic Lyapunov func-
tion candidate. Let {Fk}, where Fk = σ(G(1), · · · ,G(k), · · · ), be an increasing
sequence of σ-fields. We first show that V (ek) is a supermartingale with respect to
Fk by observing

E
[
V
(
ek+1

)∣∣Fk] = E [[Φkek]] ≤ E [[Φk]] [[ek]] ≤ [[ek]] ,

where Φk = Φ(k, k) = P (W (k)⊗ I)Pek. The last inequality follows from the fact that
E [[Φk]] ≤ 1 since all the possible Φk are non-expansive. Consider the sequence of
randomly changing graphs {G(1),G(2), · · · ,G(q)}, where q = (n− 1)2l. Let r = n− 1,
and partition this sequence into r successive subsequences G1 = {G(1), . . . ,G(rl)},
G2 = {G(rl + 1), . . . ,G(2rl)},· · · , Gr = {G((r − 1)l + 1), . . . ,G(r2l)}. Let Cz denote
the composition of the graphs in the zth subsequence, i.e., Cz = G (zl) ◦ · · · ◦
G ((z − 1)l + 2) ◦ G ((z − 1)l + 1) , z = 1, 2, . . . , r. Since all the subsequences have
the length rl, each can be further partitioned into r successive sub-subsequences of
length l. From the condition of Theorem 4.6, one knows that the composition of the
graphs in any sub-subsequence has positive probability to be strongly connected. The
event that the composition of the graphs in each of the r sub-subsequences in Gz
is strongly connected also has positive probability. This holds for all z. We know
that the composition of any r or more strongly connected graphs, within which each
vertex has a self-arc, results in a complete graph [9]. It follows straightforwardly that
the graphs C1, · · · ,Cr have positive probability to be all complete. Therefore, for
any pair i, j ∈ V, there exists a route from j to i over the graph Cz for any z. It is
easy to check that there exists a route i1, i2, . . . , in over the graphs C1, · · · ,Cr, where
i1, i2, . . . , in can be any reordered sequence of {1, 2, . . . , n}. Similarly, for any x there
must exist a route of length rl, iz = i1z, i

2
z, . . . , i

rl
z = iz+1, over Gz. Thus there is a route

i11, i
2
1, . . . , i

rl
1 , i

2
2, . . . , i

rl
2 . . . , i

rl
r over the graph sequence {G(1),G(2), · · · ,G(q)} so that⋃r

δ=1
⋃rl
θ=1

{
iθδ
}

= V . This implies that the probability that Φ(q, 1) being a contraction
is positive. Since all Φ(q, 1) are non-expansive, there is a number ρ(1) < 1 such that
E [[Φ(q, 1)]] = ρ(1). Straightforwardly, it also holds E [[Φ(k + q, k)]] = ρ(k) < 1 for
all k <∞. Thus there a.s. holds that

E
[
V (ek+q)| Fk

]
− V (ek) = E [[Φ (k + q, k)ek]] − V (ek)

≤ E [[Φ (k + q, k)]] · [[ek]] − V (ek) = (ρ(k)− 1)V (ek).

Similarly as in the proof of Theorem 4.1, the condition b) in Theorem 4.6 ensures
that

∑∞
i=1(1 − ρ(k)) = ∞. It follows that V (ek) a.s.−→ 0 as t → ∞ since V (e0) −
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E
[
V (enq)| Fk

]
<∞ for any N . Define the set Q := {e : V (e) ≤ V (e1)} for any initial

e1 corresponding to x1. For any random sequence {G(k)}, it follows from the system
dynamics (4.31) that

V (ek) ≤ V (ek−1) · · · ≤ V (e2) ≤ V (e1),

and thus ek will stay within the set Q with probability 1. From Theorem 3.1 and
Corollary 3.1, it follows that ek asymptotically converges to {e : V (e) = 0} almost
surely. Moreover, since V (e) is a norm of e, it can be concluded from Corollary
3.1 that the error system (4.31) is globally a.s. asymptotically stable. The proof is
complete.

It is worth mentioning that the error system is globally a.s. exponentially stable
under the assumption that the probability of the composition of any sequence of
randomly-changing graphs, {G(k), . . . ,G(k + 1),G(k + l − 1)}, for any k ∈ N, being
strongly connected is lower bounded by some positive number. This can be proven
with the help of Theorem 3.2 and Corollary 3.2.

4.5 Concluding Remarks
In this chapter, we have shown how the finite-step Lyapunov criteria established in the
Chapter 3 can be applied to studying several distributed coordination algorithms. As
the first application, we look at the product of random sequences of stochastic matrices,
including those with zero diagonal entries, and obtain sufficient conditions to ensure
that the product almost surely converges to a matrix with identical rows; we also show
that the rate of convergence can be exponential under additional conditions. Using
these results, we have further investigated how asynchronous updating events can
induce agreement among agents coupled by periodic networks. As another application,
we have studied a distributed network algorithm for solving linear algebraic equations.
We relax the existing conditions on the network structures, while still guaranteeing
the equations are solved asymptotically.
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4.6 Appendix: An Alternative Proof of Corollary
4.2

For ergodic stationary sequences, the following important property is the key to
construct the convergence rate.

Lemma 4.2 (Birkhoff’s Ergodic Theorem, see [109, Th. 7.2.1]). For an ergodic
sequence {Xk}, k ∈ N≥0, of random variables, it holds that

lim
m→∞

1
m

∑m−1

k=0
Xk

a.s.−→ E(X0) (4.32)

For the product given in (4.1), we say W (k, 0) converges to a rank-one matrix
W = 1ξ> a.s. as k →∞ if τ(W (k, 0))→ 0 as k →∞, where τ(·) is defined in (4.2).
According to Definition 3.1, if there exists β > 1 such that

βkτ
(
W (k, 0)

) a.s.−→ 0, k →∞, (4.33)

then the convergence rate is said to be exponential at the rate no slower than β−1.
We are now ready to present the proof of Corollary 4.2.

Proof of Corollary 4.2. Let h be the same as that in Assumption 4.2. There is an
integer θ ∈ N such that W (t + θh, t) is scrambling with positive probability. Let
T = θh. Consider a sufficiently large r, and then W (r, 0) can be written as

W (r, 0)) = W̄ ·W
(
mT, (m− 1)T

)
· · ·W (T, 0) ,

where m is the largest integer such that mT ≤ r, W (kT + T, kT ) , k = 0, · · · ,m− 1,
are the matrix products defined by (4.1), and W̄ = W (r,mT ) is the remaining part,
which is obviously a stochastic matrix. To study the limiting behavior of W (r, 0), we
compute its coefficients of ergodicity

τ
(
W (r, 0)

)
≤ τ

(
W̄
)∏m−1

k=0
τ
(
W (kT + T, kT )

)
≤
∏m−1

k=0
τ
(
W (kT + T, kT )

)
,

where the property (4.4) has been used. The last inequality follows from the property
of coefficients of ergodicity, i.e., τ(A) ≤ 1 for a stochastic matrix A. Taking logarithms
yields that

log τ
(
W (r, 0)

)
≤
∑m−1

k=0
log τ

(
W (KT + T, kT )

)
. (4.34)

Since the sequence {W (k)} is ergodic, it is easy to see that the sequence of products
{W (kT + T, kT )}, k = 0, · · · ,m− 1, over non-overlapping intervals of length T , is
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also ergodic. It follows in turn that {log τ
(
W (kT + T, kT )

)
} is ergodic. From Lemma

4.2, one can further obtain

lim
m→∞

1
m

m−1∑
k=0

log τ
(
W (kT + T, kT )

)
a.s.−→ E

[
log τ

(
W (T, 0)

)]
≤ logE

[
τ
(
W (T, 0)

)]
.

The last inequality follows from Jensen’s inequality (see [109, Th. 1.5.1]) since log(·)
is concave. According to Assumption 4.1, one knows that W (t+ h, t) is scrambling
with positive probability, and thus it follows that 0 < E

[
τ (W (T, 0))

]
< 1. Taking a

positive number λ satisfying λ < − logE
[
τ
(
W (T, 0)

)]
, one obtains

mλ+
∑m−1

k=0
log τ

(
W (KT + T , kT )

) a.s.−→ −∞.

Adding mλ to both sides of (4.34) yields that

mλ+ log τ
(
W (r, 0)

)
≤ mλ+

∑m−1

k=0
log τ

(
W (kT + T, kT )

) a.s.−→ −∞.

It follows straightforwardly that(
eλ
)m
τ
(
W (r, 0)

) a.s.−→ 0.

Let β = eλ, which apparently satisfies β > 1. From Definition 3.1, one can conclude
that the product W (k, 0) almost surely converges to a rank-one stochastic matrix
exponentially at a rate no slower than β−1, which completes the proof.



Part II
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Overview of Part II
Synchronization is a ubiquitous phenomenon that has been observed pervasively in
many natural, social and man-made systems [46, 136–138]. Remarkable examples
include synchronized flashing of fireflies [4], animal flocking [7], pedestrian footwalk
synchrony on London’s Millennium Bridge [139], phase synchronization of coupled
Josephson junction circuits [140], and synchronous operation of power generators [49].

Global synchronization describes the situation where all units in a network evolve
in unison. Strong network coupling plays a fundamental role in the emergence and
stability of global synchronization [78]. Recently, another form of synchronization,
termed partial synchronization, has attracted a lot of attention [82, 141, 142]. In
contrast to global synchronization, partial synchronization characterizes a circumstance
in which only some parts of, instead of all, units in a network have similar dynamics.
It is believed to be more common [82] in nature, for example in the human brain.

Neuronal synchronization across cortical regions of the human brain, which has
been widely detected through recording and analyzing brain waves, is believed to
facilitate communication among neuronal ensembles [55]. Only closely correlated
oscillating neuronal ensembles can exchange information effectively, because their
input and output windows are open at the same time [52]. In healthy human brain, it
is frequently observed that only a part of its cortical regions are synchronized [59], and
such a phenomenon is commonly referred to as partial phase cohesiveness or partial
synchronization of brain neural networks. In contrast, in the pathological brain of an
epileptic patient, global synchronization of neural activities are detected to take place
across the entire brain [60]. These observations suggest that healthy brain has powerful
regulation mechanisms that are not only able to render synchronization, but also
capable of preventing unnecessary synchronization among neuronal ensembles. Partly
motivated by these experimental studies, researchers are interested in theoretically
studying cluster synchronization [82,85,142,143] and chimera states [88], even though
analytical results are much more difficult to obtain, while analytical results for global
synchronization are ample, e.g., [78, 144,145].

In this part of the thesis, our objective is to identify some possible underlying
mechanisms that could give rise to partial synchronization in complex networks,
particularly in human brain networks. The Kuramoto model and its variations [62]
will be used to describe the dynamics of oscillators. We first investigate in Chapter
5 how partial synchronization can take place among directly connection regions.
We find that strong local or regional coupling is a possible mechanism. Oscillators
that are tightly connected can exhibit coordinating behavior, while the rest that are
weakly connected to them remain different. In addition, we also study how remote
synchronization, a phenomenon also detected in the human brain [92], can take place
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in star networks. In order to study remote synchronization, we develop some new
criteria for partial stability of nonlinear systems in Chapter 6. These new criteria are
then used to analytically study remote synchronization in Chapter 7.



5 Partial Phase Cohesiveness in
Networks of Kuramoto

Oscillator Networks

In this chapter, we aim at identifying a mechanism that could account for the
emergence of partial synchronization among adjacent brain regions. We use the
Kuramoto model to describe the dynamics of neural ensembles. The oscillators are
assumed to have heterogeneous natural frequencies, and thus phase synchronization is
not possible to take place among them. We employ another terminology, partial phase
cohesiveness, to describe the situation where the oscillators have different phases,
but the phase differences are bounded to be small. Motivated by the organization
of cortical neurons, we assume that each region consists of a number of Kuramoto
oscillators that are fully connected, and different regions are interconnected with
each other. We try to identify some sufficient conditions such that partial phase
cohesiveness of Kuramoto oscillators coupled by this type of network-of-networks
structure can occur.

5.1 Introduction
As a powerful tool for understanding synchronization patterns emerged in the human
brain, the Kuramoto model has fascinated researchers in neuroscience. It has been
widely used to describe the dynamics of coupled neural ensembles [146, 147]. In
this chapter, we employ the Kuramoto model and analytically study how partial
phase cohesiveness can occur in a network motivated by the organization structure of
neurons. In the human brain, the organization of cortical neurons exhibits a “network-
of-networks” structure in the sense that a cortical region is typically composed of
strongly connected ensembles of neurons that interact not only locally but also with
ensembles in other regions [148]. As neural ensembles in a cortical region are adjacent
in space, it is thus reasonable to assume that oscillators within a brain region are
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coupled through an all-to-all network, forming local communities at the lower level; at
the higher level, the communities are interconnected by a sparse network facilitated
through bundles of neural fibers connecting regions of the brain. Motivated by these
facts, we consider in this chapter the networks describing the interaction between
Kuramoto oscillators have this two-level structure.

The main contributions of this chapter are some new sufficient conditions for partial
phase cohesiveness by using Lyapunov functions utilizing the incremental 2-norm and
∞-norm. The incremental 2-norm was first proposed in [145, 149], in which some
conditions for locally exponentially stable synchronization was obtained. Later on, it
was also employed in the study of non-complete networks [150,151]. Inspired by these
works, we first employ the incremental 2-norm and obtain a sufficient condition for
the algebraic connectivity λ2(L) of the considered subnetwork, and then estimate the
region of attraction and the ultimate boundedness of phase cohesiveness. This critical
value for λ2(L) depends on the natural frequency heterogeneity of the oscillators
within the subnetwork and the strength of the connections from its outside to this
subnetwork. Since the incremental 2-norm depends greatly on the scale, the obtained
critical value and the estimated region of attraction are both conservative, especially
when there are large numbers of oscillators in the considered subnetwork.

On the other hand, the incremental ∞-norm is scale-independent. It has been
utilized to prove the existence of phase-locking manifolds and their local stability.
Existing conditions are usually expressed implicitly by a combined measure [152,153],
and the regions of attraction are not estimated [85, 154]. To the authors’ best
knowledge, the best result on explicit conditions utilizing the incremental ∞-norm is
given in [144], which has only studied unweighted complete networks. It is challenging
to extend it to the non-complete or even weighted complete networks. To meet
the challenges, we introduce a concept of the generalized complement graph in this
chapter, which, in turn, enables us to make use of the incremental ∞-norm and
obtain an explicit condition. Compared to the results obtained by the incremental
2-norm: 1) the established sufficient condition is less conservative if the dissimilarity of
natural frequencies and the strengths of external connections are noticeable; 2) more
importantly, the region of attraction we identified is much larger. After simplifying
the network structure, our results on partial phase cohesiveness can reduce to some
results on complete phase cohesiveness. The reduced results are sharper than the
best-known result obtained by using incremental 2-norm for the case of weighted
complete and non-complete networks [151, Theorem 4.6] (especially in terms of the
region of attraction), and are identical to the sharpest one found in [144] for the case
of unweighted complete networks. The only drawback of our condition is that each
oscillator is required to be connected to a minimum number of other oscillators. Finally,
we perform some simulations using the anatomical brain network data obtained in
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[155]; the simulation results show how our theoretical findings may reveal a possible
mechanism that gives rise to various patterns of synchrony detected in empirical data
of the human brain [156].

Outline

The remainder of this chapter is structured as follows. We introduce the model on
the two-level networks and formulate the problem of partial phase cohesiveness in
Section 5.2. The first result is obtained by using the incremental 2-norm in Section
5.3. Section 5.4 introduces the notion of generalized complement graphs and derives
the main result utilizing the incremental ∞-norm. Some simulations are performed in
Section 5.5. Concluding remarks appear in Section 5.6.

5.2 Problem Formulation
We consider a network of M > 1 communities, each of which consists of N ≥ 1 fully
connected heterogeneous Kuramoto oscillators. The graph of the network, which
describes which community is interconnected to which other communities, is in general
not a complete graph. The dynamics of the oscillators are described by

θ̇pi = ωpi +Kp
∑N

n=1
sin(θpn − θ

p
i ) +

∑M

q=1

∑N

n=1
ap,qi,n sin(θqn − θ

p
i ), (5.1)

for any p ∈ TM := 1, . . . ,m and any i ∈ TN := 1, . . . , n, where θpi ∈ S1 and
ωpi ≥ 0 represent the phase and natural frequency of the ith oscillator in the pth
community, respectively. Here, the uniform coupling strength of all the edges in the
complete graph of the pth community is denoted by Kp > 0, which we refer to as the
intra-community coupling strengths. The coupling strengths ap,qi,n, which we call the
inter-community coupling strengths, satisfy ap,qi,n > 0 if i 6= n and there is a connection
between the ith oscillator in the pth community and the jth oscillator in the qth
community, and ap,qi,n = 0 otherwise. We define the inter-community coupling matrices
by Ap,q := [ap,qi,j ]N×N ∈ RN×N , and each satisfies Ap,q = Aq,p.

Remark 5.1. Our analysis later on applies to the case when each community has a
different network topology and even when the numbers of oscillators in the communities
are different. However, for the sake of notational simplicity, we assume that each
community is connected by a uniformly weighted complete network.

The Kuramoto oscillator network model (5.1) is used in [146] to study synchro-
nization phenomena of the human brain. Along this line of research and motivated
by brain research data, we focus on studying the widely observed but still not well
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understood phenomenon for networks of communities of Kuramoto oscillators, the so
called partial phase cohesiveness, in which some but not all of the oscillators have
close phases. To facilitate the discussion of some properties of interest for a subset of
communities in the network, we use Tr = {1, . . . , r}, 1 ≤ r ≤ M , to denote a set of
chosen communities with the aim to investigate how phase cohesiveness can occur
among these r communities. We then define the following set to capture the situation
when the oscillators in the communities in Tr reach phase cohesiveness.

Definition 5.1. Let θ ∈ TMN be a vector composed of the phases of all N oscillators
in all M communities. Then, for a given Tr and ϕ ∈ [0, π], define the partial phase
cohesiveness set:

S∞(ϕ) :=
{
θ ∈ TMN : max

i,j∈TN ,k,l∈Tr
|θki − θlj | ≤ ϕ

}
. (5.2)

Note that ϕ describes a level of phase cohesiveness since it is the maximum pair-
wise phase difference of the oscillators in Tr. The smaller ϕ is, the more cohesive the
phases are. All the phases in Tr are identical when ϕ = 0, which is called partial phase
synchronization, and this can only happen when all the oscillators have the same
natural frequency. In this chapter, we allow the natural frequencies to be different,
and are only interested in the cases when phase differences in Tr are small enough. We
say that partial phase cohesiveness can take place in Tr if the solution θ : R≥0 → TMN

to the system (5.1) asymptotically converges to this set S∞(ϕ) for some ϕ ∈ [0, π/2).
We call the particular case when Tr = TM complete phase cohesiveness, which is also
called practical phase synchronization in [78]. In the rest of the chapter, we study
the partial phase cohesiveness by investigating how a solution θ(t) can asymptotically
converge to the set S∞(ϕ) and also by estimating the value of ϕ.

Let Gr = (Vr, Er, Z) denote the subgraph composed of the nodes in the communities
contained in Tr and the edges connecting pairs of them. The weighted adjacency
matrix of this subgraph Z := [zij ]Nr×Nr ∈ RNr×Nr is then given by

Z :=


K1C A1,2 · · · A1,r

A1,2 K2C · · · A2,r

...
...

. . .
...

A1,r A2,r · · · KrC

 , (5.3)

where C = [cij ]N×N ∈ RN×N is the adjacency matrix of a complete graph with N
nodes, where cij = 1 for i 6= j, and cij = 0 otherwise (recall that Ap,q is symmetric).
Let D := diag(Z1Nr), then the Laplacian matrix of the graph Gr is L := D−Z. Let
λ2(L) denote the second smallest eigenvalue of L, which is always referred to as the
algebraic connectivity [110].
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Let θp := [θp1 , . . . , θ
p
N ]>, ωp := [ωp1 , . . . , ω

p
N ]> for all p ∈ TM . As we are only

interested in the behavior of the oscillator in Gr, we define x := [θ1>, . . . , θr>]>, and
$ := [ω1>, . . . , ωr>]>. For i ∈ N, we define µ(i) := di/Ne and ρ(i) := i−N · bi/Nc.
By using these new notations, from (1), the dynamics of the oscillators on Gr can be
rewritten as

ẋi = $i +
∑Nr

n=1
zi,n sin(xn − xi)

+
∑M

q=r+1

∑N

n=1
a
µ(i),q
ρ(i),n sin(θqn − xi), (5.4)

where i ∈ TNr. The first summation term describes the interactions among the
oscillators within the subset of communities Tr, and the second one represents the
interactions from the outside of Tr to the oscillators in Tr. In order to study the phase
cohesiveness of the oscillators in Gr, we then look into the dynamics of pairwise phase
differences, given by

ẋi − ẋj =$i −$j

+
Nr∑
n=1

(zi,n sin (xn − xi)− zjn sin (xn − xj)) + uij , i, j ∈ TNr, (5.5)

where

uij :=
M∑

q=r+1

N∑
n=1

(
a
µ(i),q
ρ(i),n sin(θqn − xi)− a

µ(j),q
ρ(j),n sin(θqn − xj)

)
.

Let ur := [uij ]i<j ∈ RNr(Nr−1)/2. The incremental dynamics (5.5) play crucial roles
in what follows. In the next two sections, we study partial phase cohesiveness in
Gr with the help of (5.5) using the incremental 2-norm or ∞-norm (which will be
introduced subsequently). To analyze phase cohesiveness, the techniques of ultimate
boundedness theorem [157, Theorem 4.18] will be employed.

5.3 Incremental 2-Norm
In this section, we introduce the incremental 2-norm, and use it as a metric to study
partial phase cohesiveness. According to Definition 5.1, we observe that a partially
phase cohesive solution across Tr should satisfy |xi − xj | ≤ ϕ for all i, j ∈ TNr. A
quadratic Lyapunov function has been widely used to study phase cohesiveness even
when the graph is not complete [78,145,149,151], which is defined by

W (x) := 1
2‖B

>
c x‖22, (5.6)
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where Bc ∈ RNr×(Nr(Nr−1)/2) is the incidence matrix of the complete graph. It is also
known as the incremental 2-norm metric of phase cohesiveness. For a given γ ∈ [0, π),
define

S2(γ) :=
{
θ ∈ TMN : ‖B>c x‖2 ≤ γ

}
. (5.7)

Note that S2(γ) ⊆ S∞(γ) for any given γ ∈ [0, π). Different from the existing
results that apply to complete cohesiveness taking place among all the oscillators in
the networks [78, 145,149,151], we have studied partial phase cohesiveness in [104]
using the incremental 2-norm metric. Compared to [104] , we consider more general
inter-community coupling structures as stated in Section 5.2.

Let B̂c = |Bc| be the element-wise absolute value of the incidence matrix Bc. Let
dex
i =

∑M
m=r+1

∑N
n=1 a

µ(i),m
ρ(i),n for all i ∈ TNr, and denote Dex := [dex

1 , . . . , d
ex
Nr]>. Now

let us provide our first result on partial phase cohesiveness on incremental 2-norm.
A similar result can be found in [150, Theorem 4.4]. Difference from it, we consider
a two-level network, i.e., communities of oscillators, and study the partial phase
cohesiveness.

Theorem 5.1. Assume that the algebraic connectivity of Gr is greater than the critical
value specified by

λ2(L) > ‖B>c $‖2 + ‖B̂>c Dex‖2. (5.8)

Then, each of the following equations

λ2(L) sin(γs)− ‖B̂>c Dex‖2 = ‖B>c $‖2, (5.9)

(π/2)λ2(L) sinc(γm)− ‖B̂>c Dex‖2 = ‖B>c $‖2, (5.10)

has a unique solution, γs ∈ [0, π/2) and γm ∈ (π/2, π], respectively, where sinc(η) =
sin(η)/η for any η ∈ S1. Furthermore, the following statements hold:

(i) for any γ ∈ [γs, γm], S2(γ) is a positively invariant set of the system (5.1);

(ii) for any γ ∈ [γs, γm), the solution to (5.1) starting from any θ(0) ∈ S2(γ)
converges to the set S2(γs).

Proof. First, let us show the existence and uniqueness of the solutions to (5.9) and
(5.10). The equality (5.9) can be written as sin(γs) = (‖B̂>c Dex‖2+‖B>c $‖2)/λ2(L) <
1, which apparently has a unique solution in [0, π/2), which is given by

γs = arcsin
(
‖B̂>c Dex‖2 + ‖B>c $‖2

λ2(L)

)
.
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To show there is a unique solution to (5.10), define the function of γ ∈ [π/2, π]

f(γ) = (π/2)λ2(L) sinc(γ)−
(
‖B̂>c Dex‖2 + ‖B>c $‖2

)
. (5.11)

Since sinc(γ) is an decreasing functions on [π/2, π], respectively, we know f(γ) is
monotonically decreasing. Moreover, we observe that

f(π/2) = λ2(L)−
(
‖B̂>c Dex‖2 + ‖B>c $‖2

)
> 0,

and f(π) = −
(
‖B̂>c Dex‖2 + ‖B>c $‖2

)
< 0, then one can deduce that there is a

unique γm ∈ (π/2, π) such that f(γm) = 0. This means that (5.10) has a unique
solution in (π/2, π].

Next, we show that for any γ ∈ [γs, γm], the set S2(γ) is positively invariant.
Choose W (x) in (5.6) as a Lyapunov candidate. Similar to the proof of [151, Theorem
4.6], we take the time derivative of W (x) along the solution to (5.1) and obtain

Ẇ (x) ≤ x>BcB>c $ − sinc(γ)Nrx>Bc diag({zij}i<j)B>c x+ x>Bcur.

From [150, Lemma 7], it holds that x>Bc diag({zij}i<j)B>c x ≥ λ2(L)‖B>c x‖22/(Nr).
From the definition of ur, one can evaluate that ‖ur‖2 ≤ ‖B̂>c Dex‖2. As a consequence,
we arrive at

Ẇ (x) ≤ x>BcB>c $ − λ2(L) sinc(γ)‖B>c x‖22 + ‖B>c x‖2‖B̂>c Dex‖2

≤ ‖B>c x‖2
(
‖B>c $‖2 + ‖B̂>c Dex‖2 − λ2(L) sinc(γ)‖B>c x‖2

)
.

One can obtain that Ẇ (x) ≤ 0 if x ∈ S2(γ) for any γ ∈ [γs, γm], which proves that
the set S2(γ) is positively invariant.

Finally, we prove the asymptotic convergence stated in (ii). In fact, one can show
that Ẇ (x) < 0 if x ∈ S2(γ) with γ ∈ (γs, γm). This means that starting from any
point in S2(γ) with γ ∈ (γs, γm), the solution converges to S2(γs) asymptotically.
Since we have shown in (i) that S2(γs) is positively invariant, we know the solution
remain in it if starting from it. The proof is complete.

Suppose there is only 1 oscillator in each community (i.e., N = 1), and it hold that
Tr = TM , Do = 0, Theorem 5.1 reduces to the best-known result on the incremental
2-norm in single level networks [151, Theorem 4.6]. One observes that the established
result in Theorem 5.1 is quite restrictive if the number of oscillators is large because we
use the incremental 2-norm metric. First, the critical value λ2(L) is quite conservative
since the right side of (5.8) depends greatly on the number of oscillators in the network.
Second, the region of attraction we have identified in Theorem 5.1(ii) is quite small.
To ensure ‖B>c x(0)‖2 < γ < π, the initial phases are required to be nearly identical.
In the next section, we use incremental-∞ norm, aiming at obtaining less conservative
results.
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5.4 Incremental ∞-Norm
In this section, we seek to obtain some less conservative conditions than the ones in
the previous section, for partial phase cohesiveness in networks of Kuramoto-oscillator
networks described by (5.1). Instead of incremental 2-norm, we employ incremental
∞-norm in what follows.

5.4.1 Main Results
We take the following function as a Lyapunov candidate for partial phase cohesiveness:

V (x) = ‖B>c x‖∞, (5.12)

which is also referred to as the incremental∞-norm metric. It evaluates the maximum
of the pairwise phase differences, and thus does not depend on the number of oscillators.
Then, one notices that S∞(ϕ) in (5.2) can be rewritten into

S∞(ϕ) =
{
θ ∈ TMN : V (x) = ‖B>c x‖∞ ≤ ϕ

}
. (5.13)

To the best of the authors’ knowledge, the incremental ∞-norm has not been used
to established explicit conditions for phase cohesiveness analysis in weighted complete
or non-complete networks, although some implicit conditions ensuring local stability
of phase-locked solutions, such as [152,153], have been obtained. To obtain explicit
conditions by using the incremental ∞-norm, it is always required that the oscillators
in a network have the same coupling structures (see [78, Theorem 6.6], [144]). The
oscillators in a non-complete network always have distinct coupling structures, which
makes the analysis quite challenging. To overcome the challenge, we introduce the
notion of the generalized complement graph as follows, which can be viewed as an
extension of the complement graph of an unweighted graph.

Definition 5.2. Consider the weighted undirected graph G with the weighted adjacency
matrix Z, and let Km be the maximum coupling strength of its edges. Let Ac denote
the unweighted adjacency matrix of the complete graph with the same node set as
G. We say Ḡ is the generalized complement graph of G if the following two are
satisfied: 1) it has the same node set as G; 2) the weighted adjacency matrix is given
by Z̄ := KmAc − Z.

Let Km be the maximum element in the matrix (5.3), and Ac the unweighted
adjacency matrix of the complete graph consisting of the same node set as Gr. Then
Z̄ = KmAc − Z is the weighted adjacency matrix of the generalized complement
graph Ḡr. In order to enable the analysis using the incremental ∞-norm, we then
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rewrite (5.4) into the form taking the difference between the complete graph and the
generalized complement graph

ẋi = $i −Km

Nr∑
n=1

sin(xi − xn) +
Nr∑
n=1

z̄i,n sin(xi − xn)

+
M∑

q=r+1

N∑
n=1

a
µ(i),q
ρ(i),n sin(θqn − xi),

where i ∈ TNr. Accordingly, the incremental dynamics (5.5) can be rearranged into

ẋi − ẋj =$i −$j −Km

Nr∑
n=1

(sin(xi − xn)− sin(xj − xn))

+
Nr∑
n=1

(z̄in sin(xi − xn)− z̄jn sin(xj − xn)) + uij , (5.14)

where i, j ∈ TNr, and uij is given by (5.5).
In the incremental 2-norm analysis, the algebraic connectivity plays an important

role since it relates to the matrix induced 2-norm. When we proceed with the
incremental ∞-norm analysis, the corresponding ideas in terms of the matrix induced
∞-norm are introduced subsequently. Let D̄m := ‖Z̄‖∞, and call it the maximum
degree of the generalized complement graph Ḡr. Let Din

s := mini=1,...,Nr
∑Nr
j=1 zij ,

which we call the minimum internal degree of Gr. Likewise, let the maximum external
degree be Dex

m := ‖Dex‖∞. The following proposition provides a relation between the
maximum degree of Ḡr and minimum internal degree of Gr.

Proposition 5.1. Given the graph Gr, its minimum degree and the maximum degree
of the associated generalized complement graph satisfy D̄m = (Nr − 1)Km −Din

s .

Proof. From Z̄ = KmAc − Z, the following holds:

z̄ij =
{

0, i = j

Km − zij , i 6= j.

By taking the summation with respect to j, we have

∑Nr

j=1
z̄ij = (Nr − 1)Km −

∑Nr

j=1
zij ,

where zii = 0. From the definition of the ∞-norm of the matrix and the fact that all



78 5. Partial Phase Cohesiveness in Networks of Kuramoto Oscillator Networks

the elements of Z̄ and Z are non-negative, it follows that

D̄m = ‖Z̄‖∞ = max
i=1,...,Nr

(
(Nr − 1)Km −

∑Nr

j=1
zij

)
= (Nr − 1)Km − min

i=1,...,Nr

∑Nr

j=1
zij

= (Nr − 1)Km −Din
s .

The proof is complete.

Now we provide our main result in this section.

Theorem 5.2. Suppose that the minimum internal degree Din
s is greater than the

critical value specified by

Din
s >

‖B>c $‖∞ + 2Dex
m + (Nr − 2)Km

2 . (5.15)

Then, there exist two solutions, ϕs ∈ [0, π/2) and ϕm ∈ (π/2, π], to the equation
‖B>c $‖∞ + 2Dex

m + 2(Nr − 1)Km − 2Din
s = NrKm sinϕ, which are given by

ϕs = arcsin
(
‖B>c $‖∞ + 2Dex

m + 2(Nr − 1)Km − 2Din
s

NrKm

)
, (5.16)

ϕm = π − ϕs, (5.17)

respectively. Furthermore, the following statements hold:

(i) For any ϕ ∈ [ϕs, ϕm], S∞(ϕ) is a positively invariant set of the system (5.1);

(ii) For every initial condition θ(0) ∈ TMN such that ϕs < ‖B>c x(0)‖∞ < ϕm, the
solution θ(t) to (5.1) converges to S∞(ϕs).

Proof. We first prove (i) by showing that the upper Dini derivative of V (x(t)) along
the solution to (5.1),

D+V (x(t)) = lim sup
τ→0+

V (x(t+ τ))− V (x(t))
τ

,

satisfiesD+V (x(t)) ≤ 0 when V (x(t)) = ϕ. Define I ′M (t) := {i : xi(t) = maxj∈Vr xj(t)}
and I ′S(t) := {i : xi(t) = minj∈Vr xj(t)}. Then one can rewrite (5.12) into

V (x(t)) = |xp(t)− xq(t)|, ∀p ∈ I ′M (t),∀q ∈ I ′S(t).

Let IM (t) := {i : ẋi(t) = maxj∈I′
M
ẋj(t)} and IS(t) := {i : ẋi(t) = minj∈I′

S
ẋj(t)}.

Then the upper Dini Derivative is

D+V (x(t)) = ẋm(t)− ẋs(t)
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for all m ∈ IM (t) and s ∈ IS(t). It follows from (5.14) that

D+V (x(t)) =ẋm − ẋs

=$m −$s −Km

Nr∑
n=1

(sin(xm − xn)− sin(xs − xn))

+
Nr∑
n=1

(z̄mn sin(xm − xn)− z̄sn sin(xs − xn)) + ums

By using the trigonometric identity sin(x)− sin(y) = 2 sin x−y
2 cos x+y

2 , we have

D+V (x(t)) =$m −$s

− 2Km

Nr∑
n=1

sin
(
xm − xs

2

)
cos
(
xm − xn

2 − xn − xs
2

)

+
Nr∑
n=1

(z̄mn sin(xm − xn)− z̄sn sin(xs − xn)) + ums.

Since for any ϕ ∈ [0, π], V (x(t)) = ϕ implies that xm(t)− xs(t) = ϕ, it follows that

−ϕ2 ≤
xm(t)− xj(t)

2 − xj(t)− xs(t)
2 ≤ ϕ

2 .

Consequently, from the double-angle formula sin(ϕ) = 2 sin(ϕ/2) cos(ϕ/2), it holds
that

D+V (x(t)) ≤$m −$s −NrKm sin(ϕ)

+
Nr∑
n=1

(z̄mn sin(xm − xn)− z̄sn sin(xs − xn)) + ums.

Recalling the definitions of D̄m and Dex
m , one knows that∣∣∣∣∑Nr

n=1
(z̄mn sin(xm − xn)− z̄sn sin(xs − xn))

∣∣∣∣ ≤ 2D̄m

and |ums| ≤ 2Dex
m . As a consequence, from $m −$s ≤ ‖B>c $‖∞ and Proposition

5.1, we have

D+V (x(t)) ≤ $m −$s −NrKm sin(ϕ) + 2D̄m + 2Dex
m ≤ g(ϕ), (5.18)

where

g(y) := ‖B>c $‖∞−NrKm sin(y)
+2
(
(Nr − 1)Km −Din

s

)
+ 2Dex

m .



80 5. Partial Phase Cohesiveness in Networks of Kuramoto Oscillator Networks

Now, we aim to find a subinterval in [0, π] such that g(ϕ) ≤ 0 for any ϕ in it. If the
condition (5.15) holds, then g(π/2) < 0 and thus there exists such a subinterval around
ϕ = π/2. Moreover, sin(y) is an increasing and decreasing function in [0, π/2] and
[π/2, π], respectively. Then there always exist two points y1 ∈ [0, π/2), y2 ∈ (π/2, π]
such that g(y1) = g(y2) = 0. These two points y1 and y2 are nothing but ϕs in (5.16)
and ϕm in (5.17), respectively. In summary, for any ϕ ∈ [ϕs, ϕm], D+V (x(t)) ≤ 0
when V (x(t)) = ϕ, which implies that S∞(ϕ) is positively invariant.

Next, we prove (ii). Given x(0), it follows from (5.18) that for any t there exists
γ(t) satisfying γ(t) = V (x(t)) such that

D+V (x(t)) ≤ ‖B>c $‖∞ −NrKm sin(γ(t))
+ 2

(
(Nr − 1)Km −Din

s

)
+ 2Dex

m . (5.19)

Recalling that the initial condition satisfies that ϕs < ‖B>c x(0)‖∞ < ϕm, one knows
that ϕs < γ(0) < ϕm. Then the right side of (5.19) is negative, and thus the strict
inequality D+(V (x(0))) < 0 holds. From t = 0 on, D+(V (x(0))) < 0 for all t such
that ϕs < γ(t) < ϕm, and D+(V (x(0))) ≤ 0 if γ(t) = ϕs. One can then conclude that
θ(t) converges to S∞(ϕs).

The following proposition provides a necessary condition for Km such that (5.15)
can be satisfied.

Proposition 5.2. Suppose that Din
s satisfies the condition (5.15), then Km satisfies

the following inequality

Km >
‖B>c $‖∞ + 2Dex

m

Nr
. (5.20)

Proof. If the condition (5.15) is satisfied, we have

‖B>c $‖∞ + 2Dex
m + (Nr − 2)Km < 2Din

s .

One notices that Din
s ≤ (Nr− 1)Km since there are at most Nr− 1 edges connecting

each node, and the coupling strength of each of them is at most Km. It then follows
that

‖B>c $‖∞ + 2Dex
m + (Nr − 2)Km < 2(Nr − 1)Km,

which implies Km >
(
‖B>c $‖∞ + 2Dex

m

)
/Nr.

In the study of synchronization or phase cohesiveness, the network is usually
required to be connected. The following proposition shows that the condition (5.15)
implies the connectedness of the graph Gr since from the condition (5.15) the minimum
internal degree satisfies Din

s > (Nr − 2)Km/2.
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Proposition 5.3. Consider a graph G consisting of n nodes. Let K be the maximum
coupling strength of its edges. Suppose the minimum degree of the nodes satisfies
Ds > (n− 2)K/2, and then the graph G is connected.

Proof. We prove this proposition by contradiction. We assume that the graph is not
connected, and let i∗, j∗ be any two nodes that belongs to two isolated connected
components Gi∗ ,Gj∗ , respectively. Let the numbers of nodes that are connected to
i∗, j∗ be ni∗ and nj∗ , respectively. The degree of i∗, denoted by Di∗ , satisfies

Ds ≤ Di∗ ≤ ni∗K,

It follows from the assumption Ds > (n− 2)K/2 that ni∗ > (n− 2)/2. which implies
that the number of nodes in Gi∗ is strictly greater than ni∗ + 1 = n/2. Likewise, one
can show the number of nodes in Gj∗ is strictly greater than nj∗ + 1 = n/2. Then the
total number of nodes in these two isolated connected components is strictly greater
ni∗ + nj∗ + 2 = n, which implies the number of node in the graph G is greater than n.
This is a contradiction, and thus the network G is connected.

5.4.2 Comparisons with Existing results

We first compare the results in Theorems 5.1 and 5.2. It is worth mentioning that
the condition in Theorem 5.2 is less dependent on the number of nodes Nr than
that in Theorem 5.1 in most cases. In sharp contrast to ‖B>c $‖2 and ‖B̂>c Dex‖2 in
(5.8), both ‖B>c $‖∞ and Dex

m in (5.15) are independent of Nr. Specifically, if we take
δs, δm to be the smallest and largest elements in |B>c $|, respectively, it holds that
δs
√
Nr(Nr − 1)/2 ≤ ‖B>c $‖2 ≤ δm

√
Nr(Nr − 1)/2. A similar inequality holds for

‖B̂>c Dex‖2. Then, one can observe that ‖B>c $‖2 + ‖B̂>c Dex‖2 in (5.8) can be much
larger than (Nr− 2)Km/2 in (5.15) if Nr is large. More importantly, S∞(ϕ) is much
larger than S2(ϕ) for the same ϕ, which implies that the domain of attraction we
estimated in Theorem 5.2 is much larger than that in Theorem 5.1. Therefore, the
convergence to a partially phase cohesive solution can be guaranteed by Theorem 2
even if the initial phases are not nearly identical.

On the other hand, the condition (5.8) can be less conservative than (5.15), but
one would require the natural frequencies to be quite homogeneous, and meanwhile
the external connections to be very weak in comparison with Km. In addition, it can
be observed from Proposition 5.3 that each node in Gr is required to have more than
(Nr − 2)/2 neighbors from the condition (5.15). In this sense, the condition (5.8) is
less conservative since it only requires Gr to be connected.

The following corollary provides a sufficient condition that is independent of the
network scale for the partial phase cohesiveness in a dense non-complete subnetwork
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Gr. It is certainly less conservative than its counterpart based on the incremental
2-norm.

Corollary 5.1. Suppose each node in Gr is connected by at least ne edges, where
ne > (Nr − 2)/2, and all the edges have the same weight K. Assume that

K >
‖B>c $‖∞ + 2Dex

m

2ne − (Nr − 2) , (5.21)

then the statements (i) and (ii) in Theorem 5.2 hold.

The proof follows straightforwardly by letting Din
s = neK and Km = K. Since

2ne − (Nr − 2) ≥ 1, any K satisfying K > ‖B>c $‖∞ + 2Dex
m satisfies the condition

(5.21) for any Nr.
Next, we compare our results with the previously-known works in the literature

[144,151]. Since in the existing results, researchers usually deal with one-level networks,
and study the complete phase cohesiveness, we assume, in what follows, that there is
only one oscillator in each community in our two-level network, and let the set Tr in
which we want to synchronize the oscillators be the entire community set TM . Then
we obtain the following two corollaries.

Corollary 5.2. Given an undirected graph G, assume that the following condition is
satisfied

Din
s >

‖B>c $‖∞ + (M − 2)Km

2 , (5.22)

then the solutions to the equation ‖B>c $‖∞ + 2Dex
m + 2(Nr − 1)Km − 2Din

s =
NrKm sinϕ, ϕs ∈ [0, π/2) and ϕm ∈ (π/2, π], are given by

ϕs = arcsin
(
‖B>c $‖∞ + 2(M − 1)Km − 2Din

s

MKm

)
,

ϕm = π − ϕs.

Furthermore, the following two statements hold:

(i) for any ϕ ∈ [ϕs, ϕm], the set S∞(ϕ) is positively invariant;

(ii) for every initial condition x(0) such that ϕs < |B>c x(0)‖∞ < ϕm, the solution
θ(t) converges to S∞(ϕs) asymptotically.

This corollary follows from Theorem 5.2 by letting N = 1, r = M and Dex
m = 0.

In this case, Km = maxi,j∈TM aij is the maximum coupling strength in G. Compared
to the best-known result on the incremental 2-norm [151, Theorem 4.6], the result
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established in Corollary 5.2 is often less conservative. The explanation is similar to
what we provide when we compare Theorem 5.2 with Theorem 5.1. Assuming the
network is complete, we obtain the following corollary.

Corollary 5.3. Suppose the graph G is complete, and the coupling strength is K/M .
Assume that the coupling strength satisfies K > ‖B>c $‖∞. Then, ϕs and ϕm become

ϕs = arcsin
(
‖B>c $‖∞

K

)
, ϕm = π − ϕs.

Furthermore, the statement (i) and (ii) in Corollary 5.2 hold.

This result is actually identical to the well-known one found in [144, Theorem 4.1],
which presents phase cohesiveness on complete graphs with arbitrary distributions of
natural frequencies.

5.5 Numerical Examples
In this section, we provide two examples to show the validity of the obtained results
(see Example 1), and also to show their applicability to brain networks (see Example
2). We first introduce the order parameter as a measure of phase cohesiveness [62],
which is defined by reiψ = 1

n

∑n
i=1 e

iθj . The value of r ranges from 0 to 1. The
greater the r is, the higher the degree of phase cohesiveness becomes. If r = 1, the
phases are completely synchronized; on the other hand, if r = 0, the phases are evenly
spaced on the unit circle S1.

Example 5.1 : We consider a small two-level network consisting of 6 communities
described in Fig. 5.1(a). Each community consists of 5 oscillators coupled by a complete
graph. We assume that the oscillators between every two adjacent communities are
interconnected in a way shown in Fig. 5.1(b). The inter-community coupling strengths
are given beside the edges in Fig. 5.1(a). Denote ω = [ω1>, . . . , ω6>]>, and let
ω1 = 0.5 rad/s and ωi = ω1 + 0.1(i− 1) for all i = 2, . . . , 30. Let the intra-community
coupling strengths be K2 = K3 = 2.9, and K1 = K4 = K5 = K6 = 0.01. One can
check that the condition (5.15) is satisfied for the candidate regions of partial phase
cohesiveness in the red rectangular, i.e., Tr = {2, 3}. The evolution of the incremental
∞-norm of the oscillators’ phases in Tr is plotted in Fig. 5.1(c), from which one can
observe that starting from a value less than ϕm, ‖B>c x(t)‖∞ eventually converges
to a value less than ϕs. One can then conclude that phase cohesiveness takes place
between the communities 2, 3. On the other hand, it can be seen in Fig. 5.1(d) that
the value of r, which measures the level of synchrony, remains small, which means
that the other communities in the network are always incoherent. These observations
validate our obtained results on partial phase cohesiveness in Theorem 5.2. Moreover,
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Figure 5.1: (a) The network structure considered in Example 5. 1; (b) the intercon-
nection structure: each oscillator in a community is connected to exact one oscillator
in another; (c) the trajectory of ‖B>c x(t)‖∞, where x = [θpj ]10×1, j = T5, p = 2, 3; (d)
the magnitude r of the order parameter evaluated on other regions (1, 4, 5 and 6).

calculating the algebraic connectivity of the subgraph in the red rectangular, we
obtain λ2(L) = 5.6, which is not sufficient to satisfy the condition (5.8) in Theorem
5.1. Consistent with what we have claimed earlier, the results in Theorem 5.2 can be
sharper than those in Theorem 5.1.

Example 5.2 : In this example, we investigate partial phase cohesiveness in the
human brain with the help of an anatomical network consisting of 66 cortical regions.
The coupling strengths between regions are described by a weighted adjacency matrix
A = [aij ]66×66 whose elements represent axonal fiber densities computed by means
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Figure 5.2: (a) the anatomical brain network visualized by BrainNet Viewer [158], edges
only of weights larger than 0.15 are shown for clarity; (b) the maximum phase difference
(absolute value) of the oscillators in 9, 30, 33, where x = [θpj ]30×1, j ∈ T10, p = 9, 30, 33;
(c) the magnitude r of the global order parameter; (d) the magnitude r evaluated on
the regions 2 and 23.

of diffusion tensor imaging (DTI). This matrix is the average of the normalized
anatomical networks obtained from 17 subjects [155]. From our earlier analysis, strong
regional connections play an essential role in forming partial phase cohesiveness. We
identify some candidate regions by selecting the connections of strengths greater than
20 (visualized by the large size edges in Fig. 5.2(a)). In particular, we consider two
subsets of the brain regions {9, 30, 33} and {2, 23}, (see the red and blue nodes in Fig.
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5.2(a)), and investigate whether phase cohesiveness can occur among them.
We use the model in which each of the 66 regions consists of 10 oscillators coupled

by a complete graph with the coupling strength Kp, p = 1, . . . , 66, and any two
adjacent regions are connected by 10 randomly generated edges. The weights of the
10 edges connecting regions i and j are assigned randomly, and sum up to aij . The
natural frequencies of all the oscillators are drawn from a normal distribution with the
mean 13π rad/s (6.5 Hz) and the standard deviation 1.5π. Let the intra-community
coupling strengths Kp = 8 for p = 9, 30, 33, and Kp = 0.1 for all the other p’s. Thus,
we have obtained a two-level network from the anatomical brain network. For this
two-level network, we obtain some simulation results in Fig. 5.2(b), 5.2(c) and 5.2(d).
One can observe from Fig. 5.2(b) that the regions 9, 30, 33 eventually become phase
cohesive, although the whole brain remains quite incoherent (see Fig. 5.2(c), where
the mean value of r is approximately 0.15). This observation indicates that strong
regional connections can be the cause of partial phase cohesiveness. On the other
hand, one observes from Fig. 5.2(d) that without strong intra-community coupling
strengths phase cohesiveness does not take place between the regions 2 and 23 (the
blue large nodes in Fig. 5.2(a)), although they have a strong inter-region connection,
a2,23 = 52.8023. This means that intra-community coupling strengths could play an
important role in selecting regions to be synchronized.

From our theoretical results and simulations, we believe that there are at least two
factors leading to partial brain synchronization. One factor relies on the anatomical
properties of the brain network. The second factor depends on local changes in
coupling strength. We hypothesize in this chapter that strong inter-regional coupling
is one of the anatomical properties that allow for synchrony among brain regions.
Then, selective synchronization of a subset of those strongly connected regions is
achieved by increasing the intra-community coupling strengths on the target regions,
which can give rise to various synchrony patterns. Other properties of the anatomical
brain network such as symmetries studied in [96] and [108], can be a topic of future
work.
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5.6 Concluding Remarks
We have studied partial phase cohesiveness, instead of global synchronization, of
Kuramoto oscillators coupled by two-level networks in this chapter. Sufficient condi-
tions in the forms of algebraic connectivity and nodal degree have been obtained by
using the incremental 2-norm and ∞-norm, respectively. The notion of generalized
complement graphs that we introduced provides a much better tool than those in the
literature to estimate the region of attraction and ultimate level of phase cohesiveness
when the network is weighted complete or non-complete. However, the disadvantage
of this method is that the number of edges connecting each node has a noticeable lower
bound. The simulations we have performed provides some insight into understanding
the partial synchrony observed in the human brain.





6 New Criteria for Partial
Stability of Nonlinear

Systems

We have studied partial synchronization among a set of directly connected oscillators
in the previous chapter. From what has been observed in the brain, partial synchro-
nization can also emerge among brain regions that have no direct links. We are also
interested in studying this interesting phenomenon, termed remote synchronization.
To study remote synchronization, one often needs to prove the partial stability of a
nonlinear system. In this chapter, we develop some new criteria for partial stability
of nonlinear systems. These new criteria will become very important theoretical tools
in the next chapter to study remote synchronization in star networks.

6.1 Introduction
Partial stability describes the behavior of a dynamical system in which only a given
part of its state variables, instead of all, are stable. The earliest study on partial
stability dates back to a century ago in Lyapunov’s seminal work in 1892, some
comprehensive and well known results of which were documented by Vorotnikov in
his book [99]. Different from classic full-state stability theory which usually deals
with the stability of point-wise equilibria, partial stability is more associated with the
stability of motions lying in a subspace [100].

A lot of engineering problems, such as spacecraft stabilization by rotating masses
[99], inertial navigation systems [159], combustion systems [160], and power systems
[161], can be analyzed by partial stability theory. It is also related to a wide range of
theoretic topics including Lotka-Volterm predator-prey models [162], output regulation
[163], and synchronization [108,164]. For example, in the study of synchronization
problems of coupled oscillators, only the pairwise state errors are desired to be stable,
while individual states can be periodic, unbounded or even chaotic [165]. Moreover,
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when designing an observer one usually requires the error between the constructed
observer and the system to be asymptotically stable, while the system itself, regarded
as a reference, does not need to be stable. Interestingly, the stability of time-varying
systems can be treated as partial stability of autonomous systems since the time t
can be taken as an additional unbounded variable [166]. In the above mentioned
problems, one frequently encounters the need to study stability of invariant manifolds
[167], sets [168], limit cycles [169]. Partial stability theory provides a unified and
powerful framework to study them.

As it turns out later in the next chapter, the existing criteria for partial stability
can not be directly applied to remote synchronization analysis in many circumstances.
Therefore, there is a great need for further developing new criteria for partial stability,
and that is exactly the aim of this chapter.

Outline

The remainder of this chapter is structured as follows. In Section 6.2, we develop some
new Lyapunov criteria for partial asymptotic and exponential stability of nonlinear
systems without requiring the time derivative of the constructed Lyapunov functions
to be negative definite. Some further new criteria for partial exponential stability of
a particular class of slow-fast systems are provided in Section 6.3. Some concluding
remarks appear in Section 6.4.

6.2 New Lyapunov Criteria for Partial Stability
The traditional Lyapunov theory is not directly applicable to partial stability analysis
since a partially stable system is not stable in the standard sense. By generalizing the
hypotheses on the traditional Lyapunov functions, researchers have established some
sufficient conditions for partial stability analysis [99–101]. Similar to the classical
Lyapunov theory, in order to show partial asymptotic or exponential stability, the time
derivative of a Lyapunov function candidate is required to be negative definite [99–101].
However, as one will see later in this section, it is not always easy to construct such a
Lyapunov function. For full-state asymptotic stability, the requirement for negative
definiteness can be relaxed under additional assumptions. A well known result is
to apply LaSalle’s invariance principle [157, Chap. 4]. Another method is to show
that a Lyapunov function candidate decreases after a finite time [170]. Aeyels and
Peuteman have further relaxed the requirement of the latter method by allowing the
time derivative to be positive [120]. A Lyapunov criterion using similar ideas has also
been obtained for stochastic discrete-time systems [102].

Inspired by these works, in this section we have obtained new sufficient conditions
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for partial asymptotic or exponential stability of autonomous nonlinear systems. We
first consider the case when the time derivative of a Lyapunov function candidate is
negative semi-definite and show that partial asymptotic or exponential stability is
guaranteed if the value of the candidate decreases after a finite time. Next, we further
show that the requirement of negative semi-definiteness can be relaxed by imposing
Lipshitz-like properties for the vector field of the system instead. Our obtained criteria
enlarge the class of allowable functions that can be used in the analysis of partial
stability of nonlinear systems. Compared with those Lyapunov criteria for full-state
stability in [120,170], theoretical analysis is more involved when it comes to partial
stability in this section.

6.2.1 System Dynamics
In this subsection, we first formally define partial stability and briefly review some
existing results. We then provide a motivating toy example.

Consider the autonomous system described by

ẋ = f1(x, y), (6.1a)
ẏ = f2(x, y), (6.1b)

where x ∈ D, y ∈ Rm (here D is a domain in Rn). The map f1 : D × Rm → Rn is
locally Lipschitz and satisfies f1(0, y) = 0 for any y, and f2 : D × Rm → Rm is also
locally Lipschitz. Furthermore, we assume that the solution to (6.1), i.e.,

s(t) := col(x(t), y(t)) (6.2)

exists for all t ≥ 0. Obviously, s(0) represents the initial condition.
In this section, we are interested in studying partial stability. Let us first introduce

some definitions of uniform partial stability which we will rely on in what follows.

Definition 6.1 ([100, Chap. 4]). The partial equilibrium point x = 0 of the system
(6.1) is

(i) x-stable uniformly in y if, for every ε > 0 and any y ∈ Rm, there exists
δ = δ(ε) > 0 such that ‖x(0)‖ < δ implies that ‖x(t)‖ < ε for all t ≥ 0.

(ii) asymptotically x-stable uniformly in y if it is stable uniformly in y, and there
exists δ > 0 such that ‖x(0)‖ < δ implies that limt→∞ ‖x(t)‖ = 0 for any
y(0) ∈ Rm.

(iii) exponentially x-stable uniformly in y if there exist c1, c2, δ > 0 such that
‖x(0)‖ < δ implies that ‖x(t)‖ ≤ c1‖x(0)‖e−c2t,∀t ≥ 0 for any y(0) ∈ Rm.
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Note that when we refer to the cases (i), (ii) or (iii), we also say that x = 0 is
partially stable, asymptotically stable or exponentially stable, respectively. Some
sufficient conditions for partial stability using Lyapunov methods can be found in
[99,100]. To be self-contained, we present them in the following lemma and discuss
the possibility of relaxing some conditions. Note that, in what follows, for a given
continuously differentiable function V : D × Rm → R we denote

V̇ (x, y) := ∂V (x, y)
∂x

f1(x, y) + ∂V (x, y)
∂y

f2(x, y)

for notational simplicity.

Lemma 6.1 ([100, Chap. 4]). Let V : D × Rm → R be a continuously differentiable
function such that

α1(‖x‖) ≤ V (x, y) ≤ α2(‖x‖), (6.3)
V̇ (x, y) ≤ −γ(‖x‖), (6.4)

for any (x, y) ∈ D × Rm, where α1, α2 and γ are class K functions. Then x = 0 of
the system (6.1) is asymptotically x-stable uniformly in y. If there is p ∈ N such that
V satisfies

β1‖x‖p ≤ V (x, y) ≤ β2‖x‖p, (6.5)
V̇ (x, y) ≤ −β3‖x‖p, (6.6)

for any (x, y) ∈ D × Rm, where β1, β2, β3 > 0, then x = 0 of the system (6.1) is
exponentially x-stable uniformly in y.

It is also shown by the converse theorems in [100, Chap. 4] that there always exists
a Lyapunov function such that (6.3) and (6.4) (or (6.5) and (6.6), respectively) are
satisfied provided that x = 0 is asymptotically (exponentially, respectively) x-stable
uniformly in y. However, it is not always easy to construct a Lyapunov function
candidate such that the condition (6.4) or (6.6) is satisfied. Let us illustrate this point
by a toy example.

Example 6.1. Consider the following system

ẋ = −1
5x− ax sin y, (6.7)

ẏ = 3b− b sin x, (6.8)

where x, y ∈ R, and a, b > 0. Note that x = 0 is exponentially x-stable uniformly
in y when b is sufficiently large. In order to prove this, choose V (x, y) = 1

2x
2 as a
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Lyapunov function candidate, then its time derivative is

V̇ = −
(

1
5 + a sin y

)
x2.

According to Lemma 6.1, one can show the uniform partial exponential stability when
a < 1

5 , since there holds that V̇ ≤ −( 1
5 −a)x2. However, if a ≥ 1

5 , the negative definite
property of V̇ is no longer guaranteed, implying that the considered Lyapunov function
candidate is not an appropriate one. 4

This motivates us to further develop Lyapunov theory for partial stability. When
it comes to full-state stability, the existing results have shown that the requirement
for classic Lyapunov theory can be relaxed by allowing the time derivative of Lya-
punov function candidates to be negative semi-definite or even positive [120,170–172].
Inspired by these ideas, we establish some Lyapunov criteria for the analysis of partial
stability, without requiring the time derivatives to be negative definite. This could
create more freedom to construct allowable functions in partial stability analysis. As
it turns out later, using the same Lyapunov function candidate in Example 6.1, one
is able to show the uniform partial exponential stability of x = 0 even when a ≥ 1

5
according to the alternative criteria set out in the next section.

6.2.2 Partial Asymptotic and Exponential Stability
In this subsection, we aim at further developing Lyapunov theory to enlarge choices
of allowable functions that can be used to analyze partial stability of autonomous
nonlinear systems. We first provide two criteria for partial asymptotic and exponential
stability in Theorems 6.1 and 6.2, respectively. Unlike what is required in Lemma 6.1,
we only assume that the time derivative of a Lyapunov function candidate is negative
semi-definite. Moreover, we further relax the requirement of negative semi-definiteness
in Theorems 6.3 and 6.4.

Let us first provide a new criterion for partial asymptotic stability of the system
(6.1).

Theorem 6.1. Let V : D × Rm → R be a continuously differentiable function such
that

α1(‖x‖) ≤ V (x, y) ≤ α2(‖x‖), (6.9)
V̇ (x, y) ≤ 0, (6.10)

for any (x, y) ∈ D × Rm. Furthermore, suppose that for any s(0) ∈ D′ × Rm with an
open set D′ ⊂ D, there exists T = T (s(0)) > 0 that is bounded from above so that∫ T

0
V̇ (x(τ), y(τ))dτ ≤ −γ(‖x(0)‖), (6.11)
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where α1, α2 and γ are class K functions. Then x = 0 of the system (6.1) is asymp-
totically x-stable uniformly in y.

Proof. We first prove the uniform stability. It follows from the inequality (6.10) that
V (x(t), y(t)) ≤ V (x(0), y(0)). Taking into the inequalities (6.9) into account, one
obtains α1(‖x(t)‖) ≤ V (x(t), y(t)) ≤ V (x(0), y(0)) ≤ α2(‖x(0)‖). This implies that
‖x(t)‖ ≤ α−1

1 (α2(‖x(0)‖)). It is clear that for any ε > 0 satisfying Bε ⊂ D, there
exists δ = α−1

2 (α1(ε)) such that x(0) ∈ Bδ and y(0) ∈ Rm implies that x(t) ∈ Bε for
all t ≥ 0.

It remains to show the convergence by finding δ1 > 0 such that for any s(0) ∈
Bδ1 × Rm and ε1 > 0, there exists T (ε1) > 0 for which x(t) ∈ Bε1 , ∀t ≥ T (ε1). Let
ε2 be such that Bε2 ⊂ D′, and let δ1 = α−1

2 (α1(ε2)). Then, from the analysis above,
x(0) ∈ Bδ1 implies that x(t) ∈ Bε2 for all t ≥ 0. We point out that T (ε1) = 0 if
ε1 ≥ ε2 for any x(0) ∈ Bδ1 and y(0) ∈ Rm.

We then consider the other case when ε1 < ε2, and show that for any x(0) ∈ Bδ1 ,
there exists a finite T (ε1) such that x(t) ∈ Bδ′1 , where δ

′
1 = α−1

2 (α1(ε1)), which
implies that x(t) will stay in Bε1 for all t ≥ T (ε1). From the choice of δ1, for any
x0 ∈ Bδ1 × Rm, x(t) ∈ D′ is guaranteed. Resetting the initial condition x0, it follows
from (6.11) that there exists a sequence {Ti, i ∈ N0}, (note that T0 = 0), such that∫ ∑k+1

i=0
Ti∑k

i=0
Ti

V̇
(
x(τ), y(τ)

)
dτ ≤ −γ

(
‖x(
∑k

i=0
Ti)‖

)
, (6.12)

for any k ∈ N0. By using this inequality, we show that there exists a finite k′ ∈ N0
such that ‖x(

∑k′+1
i=0 Ti)‖ < δ′1 = α−1

2 (α1(ε1)). Then, from the continuity of the
solution, the proof is completed by choosing T (ε1) =

∑k′+1
i=0 Ti.

We prove ‖x(
∑k′+1
i=0 Ti)‖ < δ′1 by contradiction. Suppose that for all k′, ‖x(

∑k′

i=0 Ti)‖
≥ δ′1. Then, it follows from the property of the classK function that−γ(‖x(

∑k′

i=0 Ti)‖) ≤
−γ(δ′1).

Moreover, from (6.10) and the first inequality of (6.9), we have

V
(
x
(∑k1

i=0
Ti
)
, y
(∑k1

i=0
Ti
))

≥ V
(
x
(∑k′

i=0
Ti
)
, y
(∑k′

i=0
Ti
))
≥ α1(δ′1),

for any 0 ≤ k1 ≤ k′. From the second inequality of (6.9), it follows that ‖x(
∑k1
i=0 Ti)‖ ≥

α−1
2 (α1(δ′1)) and consequently −γ(‖x(

∑k1
i=0 Ti)‖) ≤ −γ(α−1

2 (α1(δ′1))) for all k1 ≤ k′.
Summing up all the right and left sides of (6.12) from k = 0 to k = k′, we have

V
(
x(
∑k′+1

i=0
Ti), y(

∑k′+1

i=0
Ti)
)
− V (x(0), y(0))

≤ −γ(δ′1)− k′γ(α−1
2 (α1(δ′1))),
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which implies, with (6.9),

α1
(
‖x(
∑k′+1

i=0
Ti)‖

)
≤ α2(δ1)− γ(δ′1)− k′γ(α−1

2 (α1(δ′1))).

Then, for sufficiently large finite k′, it follows that α2(δ1)−γ(δ′1)−k′γ(α−1
2 (α1(δ′1))) ≤

α1(δ1), and consequently ‖x(
∑k′+1
i=0 Ti)‖ ≤ δ1, which is a contradiction. The proof is

complete.

The following theorem provides a new Lyapunov criterion for partial exponential
stability of the system (6.1).

Theorem 6.2. Let V : D × Rm → R be a continuously differentiable function
satisfying

β1‖x‖p ≤ V (x, y) ≤ β2‖x‖p, (6.13)
V̇ (x, y) ≤ 0, (6.14)

for any (x, y) ∈ D × Rm. Furthermore, suppose that for any s(0) ∈ D′ × Rm with an
open set D′ ⊂ D, there exists T = T (s(0)) > 0 that is bounded from above so that∫ T

0
V̇ (x(τ), y(τ))dτ ≤ −β3‖x(0)‖p, (6.15)

where β1, β2, β3 > 0, then x = 0 of the system (6.1) is exponentially x-stable uniformly
in y.

Proof. Consider the ball B̄ε ⊂ D′. From the proof of stability in Theorem 6.1, it
can be guaranteed that s(t) ∈ Bε × Rm,∀t ≥ 0, if the initial condition satisfies
x(0) ∈ Bδ × Rm with δ = α−1

2 (α1(ε)). Then the inequality (6.15) is ensured for all
t ≥ 0 if x(0) ∈ Bδ × Rm. According to the inequality (6.15), there exists a sequence
{Ti, i ∈ N0}, (note that T0 = 0), such that for any k ∈ N0 it holds that

V
(
x
(∑k+1

i=0
Ti
)
, y
(∑k+1

i=0
Ti
))
−

V
(
x
(∑k

i=0
Ti
)
, y
(∑k

i=0
Ti
))
≤ −β3‖x(

∑k

i=0
Ti)‖p.

From the inequality (6.13), there holds that

‖x(
∑k

i=0
Ti)‖p ≥

1
β2
V

(
x(
∑k

i=0
Ti), y(

∑k

i=0
Ti)
)
.

It then follows that

V
(
x
(∑k+1

i=0
Ti
)
, y
(∑k+1

i=0
Ti
))

≤
(
1− β3

β2

)
V
(
x
(∑k

i=0
Ti
)
, y
(∑k

i=0
Ti
))
,
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for any k ∈ N0, where 0 ≤ 1− β3/β2 < 1. For any t ≥ 0, there is a k∗ ≥ 0 such that
t ∈ [

∑k∗

i=0 Ti,
∑k∗+1
i=0 Ti), then there holds that

V (x(t), y(t)) ≤ V
(
x
(∑k∗

i=0
Ti
)
, y
(∑k∗

i=0
Ti
))

≤
(
1− β3/β2

)k∗
V (x(0), y(0)),

where the inequality (6.14) has been used. From inequality (6.13), one knows that
V (x(t), y(t)) ≥ β1‖x(t)‖p and V (x(0), x(0)) ≤ β2‖x(0)‖p, which yields

‖x(t)‖ ≤ (β2/β1)1/p(1− β2/β1)k
∗/p‖x(0)‖. (6.16)

Let byc be the largest integer that is less than or equal to the scaler y. Let T̂ be
the upper bound of those T ’s in (6.15), i.e., Ti ≤ T̂ for any i, then there holds that
k∗ ≥ bt/T̂ c ≥ t/T̂ − 1. Substituting this inequality into (6.16) we have

‖x(t)‖ ≤ (β2/β1)1/p(1− β2/β1)(t/T̂−1)/p‖x(0)‖.

Let c1 = (β2/β1)1/p(1−β2/β1)−1/p, c2 = −1/(pT̂ ) · ln(1−β2/β1), the above inequality
can be rewritten as ‖x(t)‖ ≤ c1e

−c2t‖x(0)‖, which proves the partial exponential
stability of x = 0 uniformly in y.

In Theorems 6.1 and 6.2, we have made the assumption that the time derivative of
the Lyapunov function V̇ (x, y) is negative semi-definite. When a similar assumption
is made for full-state stability problems, Lassalle’s invariance principle is usually
used to prove asymptotic stability [157, Chap. 4]. Analogous conditions to (6.11)
can be found in [170, 171], where full-state asymptotic stability has been studied.
Using analogous ideas to those results, we have established some criteria for partial
asymptotic and exponential stability. Moreover, greatly inspired by the results on
full-state asymptotic and exponential stability in [120,172], we next show that this
negative semi-definite condition can be further relaxed, while still guaranteeing the
asymptotic or exponential x-stability uniformly in y. Before providing those results,
let us first make the following assumption.

Assumption 6.1. We assume that the map f1 satisfies the following conditions
(a) for any x ∈ D, y ∈ Rm, it holds that ‖f1(x′, y)− f1(x′′, y)‖ ≤ L1‖x′ − x′′‖ for

all x′, x′′ ∈ Br(x), where r = r(x) > 0, and L1 = L1(x) > 0 is finite.
(b) there exists K > 0 such that for any x ∈ D and y′, y′′ ∈ Rm, there holds that

‖f1(x, y′)− f1(x, y′′)‖ ≤ K‖x‖.

Note that Assumption 6.1 is similar to but a bit stronger than the locally Lipschitz
condition. One can check that (6.7) in Example 6.1 satisfies this assumption. We
show that the following two lemmas hold if Assumption 6.1 is satisfied.
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Lemma 6.2. Suppose that Assumption 6.1 is satisfied. Let U be any compact convex
set contained in D. Then there exist constants L > 0 and K > 0 such that for any
(x1, y1), (x2, y2) ∈ U × Rm, it holds that

‖f1(x1, y1)− f1(x2, y2)‖ ≤ L‖x1 − x2‖+K‖x1‖. (6.17)

Proof. We first show that if (a) of Assumption 6.1 is satisfied, for any x, y1 ∈ U and
y ∈ Rm, there holds that

‖f1(x1, y)− f1(x2, y)‖ ≤ L‖x1 − x2‖. (6.18)

Denote z = col(x1, y1) and z′ = col(x2, y2). Since U is compact, it can be covered by
a finite number of neighborhoods. In other words, there exist a finite integer k and
ai, ri, i = 1, . . . , k, such that

U ⊂ B̄r1(a1) ∪ B̄r2(a2) ∪ · · · ∪ B̄rk(ak). (6.19)

Draw a line that connects z and z′, denoted by l, and we know that all the points on l
belong to U×{y} since U is convex. Then there exists a subset of those neighborhoods
in (6.19), say B̄rkj (akj ), j = 1, . . . ,m, such that

l ⊂ N1 ∪ · · · ∪ Nm,

where Nj := B̄rkj (akj )×{y}. Without loss of generality, we assume that starting from
z the line l passes through N1,N2, . . . ,Nm in sequence. Let b(1), b(2), . . . , b(m−1) be a
sequence of points on the line l such that b(i) ∈ l∩Ni ∩Ni+1 for any i. If Assumption
6.1 is satisfied, it follows that

‖f1(z)− f1(b(1))‖ ≤ L′1‖x1 − b(1)
1 ‖,

‖f1(b(i))− f1(b(i+1))‖ ≤ L′i+1‖b(i) − b
(i+1)
1 ‖,

‖f1(b(m−1))− f1(z′)‖ ≤ L′m‖b
(m−1)
1 − x2‖,

where i = 1, . . . ,m− 2. The sum of the terms on the left hand side of the inequalities
is greater than or equal to ‖f1(z)− f1(z′)‖ by using the triangle inequality. The sum
of all the right hand side of the inequalities is

L
(
‖x− b(1)

1 ‖+
∑m−2

i=1
‖b(i)1 − b

(i+1)
1 ‖+ ‖b(m−1)

1 − y1‖
)

= L‖x1 − x2‖,

where L := max{L′i}, and the last inequality follows from the fact that x, b(1)
1 , . . . , b

(m−1)
1 , y1

are all on the line l.
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We next show the inequality (6.17). For any x, y ∈ D × Rm, there holds that

‖f1(x1, y1)− f1(x2, y2)‖
= ‖f1(x1, y1)− f1(x1, y2) + f1(x1, y2)− f1(x2, y2)‖
≤ ‖f1(x1, y1)− f1(x1, y2)‖+ ‖f1(x1, y2)− f1(x2, y2)‖.

If (b) of Assumption 6.1 is satisfied, one obtains that ‖f1(x1, y1) − f1(x2, y2)‖ ≤
L‖x1 − x2‖+K‖x1‖ by invoking the inequality (6.18).

Lemma 6.3. Under Assumption 6.1, for any ε > 0 and T > 0, there exists a
δ = δ(ε, T ) > 0 such that for any initial condition s(0) ∈ Bδ(0)× Rm, it holds that
s(t) ∈ Bε(0)× Rm for all t ∈ [0, T ].

Proof. Let U of Lemma 6.2 be Bδ(0), then one knows that for any (x1, y1), (x2, y2) ∈
U × Rm, there exist L′,K ′ > 0 such that

‖f1(x1, y1)− f1(x2, y2)‖ ≤ L′‖x1 − x2‖+K ′‖x1‖.

Let x2 = 0, we have ‖f1(x1, y1)‖ ≤ L‖x1‖ with L := L′ +K ′. Following similar steps
to those in Lemma 1 of [120], one can prove that for any ε > 0, one can ensure that
x(t) ∈ Bε(0) for any t ∈ [0, T ] by taking δ = εe−LT .

We are now ready to provide another result on partial asymptotic stability, where
the negative semi-definiteness of V̇ is no longer required.

Theorem 6.3. Suppose Assumption 6.1 is satisfied. Let V : D × Rm → R be a
continuously differentiable function satisfying

α1(‖x‖) ≤ V (x, y) ≤ α2(‖x‖), (6.20)

for any (x, y) ∈ D × Rm. Furthermore, suppose that for any s(0) ∈ D′ × Rm with an
open set D′ ⊂ D, there exists T = T (s(0)) > 0 that is bounded from above so that∫ T

0
V̇ (x(τ), y(τ))dt ≤ −γ(‖x(0)‖), (6.21)

where α1, α2 and γ are class K functions. Then x = 0 of the system (6.1) is asymp-
totically x-stable.

Proof. We first prove the stability of x = 0 uniformly in y. Consider a closed ball
B̄ε(0) ⊂ D′, and we show that there exists δ > 0 such that s(0) ∈ Bδ(0)×Rm implies
that s(t) ∈ Bε(0)× Rm for all t ≥ 0. According to Lemmas 6.2 and 6.3, there exists
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L > 0 such that ‖f1(x, y)‖ ≤ L‖x‖ for any (x, y) ∈ B̄ε(0)×Rm. The solution of (6.1)
satisfies that

‖x(t)‖ ≤ ‖x(t0)‖eL(t−t0)

for any t ≥ t0 such that x(t) ∈ B̄ε(0). Let T̂ be the upper bound of those T ’s in
(6.21). Following similar steps to those in Theorem 1 of [120], one can show that for
any ε > 0, ‖x(t)‖ < ε for any t ∈ [t0, t0 + T̂ ] if ‖x(t0)‖ < α−1

2 (α1(εe−LT̂ )). Consider
any initial condition satisfying ‖x(0)‖ < δ := α−1

2 (α1(εe−LT̂ )), from (6.21) there is
T1, 0 < T1 ≤ T̂ , such that ∫ T1

0
V̇ (x, y)dt ≤ −γ(‖x(0)‖).

It follows that

V (x(T1), y(T1)) < V (x(0), y(0)) ≤ α2(‖x(0)‖) < α2(δ) = α1(εe−LT̂ ).

Since V (x(T1), y(T1)) ≥ α1(‖x(T1)‖), one then obtains ‖x(T1)‖ < εe−LT̂ . Moreover,
there holds that x(t) < ε for any t ∈ [0, T1] since T1 ≤ T̂ . We use (6.21) again
by resetting the initial condition to x(T1), and then there also exists T2 > 0 such
that

∫ T1+T2
T1

V̇ (x, y)dt ≤ −γ(‖x(T1)‖). Likewise, one can see that x(t) < ε for all
t ∈ [T1, T1 + T2] and ‖x(T1 + T2)‖ < εe−LT̂ . By simply repeating the same process, it
holds that x(t) < ε for all t ∈ [Ti, Ti + Ti+1] for all nonnegative integer i (note that
T0 := 0). For any t ≥ 0, there exists a nonnegative integer m such that t ≤

∑m
i=0 Ti,

which implies that x(t) < ε for all t ≥ 0. In other words, for any ε > 0, one can ensure
that (i) of Definition 6.1 is satisfied by taking δ = α−1

2 (α1(εe−LT̂ )), which proves the
partial stability of x = 0 uniformly in y.

The asymptotic convergence of x to 0 uniformly in y can be proven following the
same lines as those in the proof of Theorem 6.1, which is omitted here. Then the
partial asymptotic stability of x = 0 is proven.

Furthermore, the next theorem provides a new criterion for partial exponential
stability of the system (6.1) without requiring the negative semi-definiteness of V̇ .

Theorem 6.4. Suppose Assumption 6.1 is satisfied. Let V : D × Rm → R be a
continuously differentiable function satisfying

β1‖x‖p ≤ V (x, y) ≤ β2‖x‖p, (6.22)

for any (x, y) ∈ D × Rm. Furthermore, suppose that for any s(0) ∈ D′ × Rm with an
open set D′ ⊂ D, there exists T = T (s(0)) > 0 that is bounded from above so that∫ T

0
V̇ (x(τ), y(τ))dτ ≤ −β3‖x(0)‖p, (6.23)
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where β1, β2 and β3 are positive scalers. Then x = 0 of the system (6.1) is exponentially
x-stable uniformly in y.

Proof. Consider a closed ball B̄ε(0) ⊂ D′. Let T̂ be the upper bound of those T ’s in
(6.23). From the proof of Theorem 6.3, s(t) ∈ Bε(0)× Rm for all t ≥ 0 if the initial
condition satisfies s(0) ∈ Bδ(0) × Rm with δ = α−1

2 (α1(εe−LT̂ )). We next consider
such an initial condition, ensuring that the inequality (6.23) holds for all t ≥ 0. We
show the exponential convergence subsequently.

Similar to the proof of Theorem 6.2, one knows that there exists a sequence
{Ti, i ∈ N0}, (note that T0 = 0), such that for any k ∈ N0,

V
(
x
(∑k+1

i=0
Ti
)
, y
(∑k+1

i=0
Ti
))

≤
(
1− β3

β2

)
V
(
x(
∑k

i=0
Ti),y(

∑k

i=0
Ti)
)
,

where 0 ≤ 1− β3/β2 < 1. By iteration and by using the inequality (6.22), we have

‖(x(
∑k

i=0
Ti)‖ ≤ (β2/β1)1/p(1− β2/β1)k/p‖x(0)‖, (6.24)

for any k ∈ N0. For any t ≥ 0, there is a k∗ ∈ N0 such that t ∈ [
∑k∗

i=1 Ti,
∑k∗+1
i=1 Ti).

From the analysis in the proof of Theorem 6.3, one knows that

‖x(t)‖ ≤ eLT̂
∥∥∥∥∥(x

(
k∗∑
i=0

Ti

)∥∥∥∥∥ .
It then follows from (6.24) that

‖x(t)‖ ≤ eLT̂ (β2/β1)1/p(1− β2/β1)k
∗/p‖x(0)‖.

Recall that k∗ ≥ bt/T̂ c ≥ t/T̂ − 1. Substituting it into the above inequality and
letting c1 = eLT̂ (β2/β1)1/p(1− β2/β1)−1/p, c2 = −1/(pT̂ ) · ln(1− β2/β1), one obtains
that ‖x(t)‖ ≤ c1‖x(0)‖e−c2t, which completes the proof.

6.2.3 Examples
In this subsection, we first look back at Example 6.1, and prove the partial exponential
stability of x = 0 uniformly in y with the help of the obtained results in the previous
section, which the existing criterion in Lemma 6.1 fails to show using the same
Lyapunov function candidate. We then perform a simulation to illustrate the idea
behind our results.
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Revisit Example 6.1

It is not hard to see that for any initial condition s(0) ∈ R2, the solution s(t) to the
system (6.7) and (6.8) exists for all t ≥ 0. Let φ(t, s(0)) = (φ1(t, s(0)), φ2(t, s(0)))>
be the solution to (6.7) and (6.8) that starts at x(0). Then we have

ẋ = −1
5x− ax sin(φ2(t, s(0))). (6.25)

Choose V (x, y) = x2/2 as a Lyapunov function candidate, and we next show the
existence of T = T (s(0)) > 0 for any s(0) ∈ R2 such that∫ T

0
V̇ (x(τ), y(τ))dτ ≤ −β3‖x‖2, β3 > 0, (6.26)

with the help of (6.25). Let A(t, s(0)) = −1/5− a sin(φ2(t, s(0))), then (6.25) can be
rewritten as ẋ = A(t, s(0))x. Let Φ(t, s(0)) be the state transition matrix from time 0
to t with initial condition s(0), then one knows that φ1(t, s(0)) = Φ(t, s(0))x(0). For
notational convenience, we denote A(t, s(0)) and Φ(t, s(0)) simply by A(t) and Φ(t),
respectively, without causing any ambiguity. Since A(t) is a scalar, the transition
matrix is given by Φ(t) = exp(

∫ t
0 A(τ)dτ), which, in turn, can be expressed in the

form of power series as follows:

Φ(t) = e

∫ t
0
A(τ)dτ = 1 +

∞∑
k=1

1
k!

(∫ t

0
A(τ)dτ

)k
. (6.27)

We observe that ‖A(t)‖ ≤ 1/5 + a := L. Following similar steps as Section III in [120],
we let Φ(t) = 1 + Γ with Γ denoting the summation term. Taking into account that
‖A(t)‖ ≤ L, it follows from (6.27) that

‖Φ(t)‖ ≤ 1 + ‖Γ‖ ≤ 1 +
∞∑
k=1

1
k! (Lt)

k.

It can be seen that the rightmost side of the above inequalities is the Taylor series for
the exponential function eLt at 0. Then one knows that ‖Φ(t)‖ ≤ 1 + ‖Γ(t)‖ ≤ eLt,
which implies that ‖Γ(t)‖ ≤ eLt − 1 for any t ≥ 0.

The time derivative of V is V̇ = ẋ · x. Integrating it from 0 to T along (6.25) can
be expressed by∫ T

0
V̇ (x(τ), y(τ))dτ =

∫ T

0
φ̇1(τ, s(0)) · φ1(τ, s(0))dτ.

Since φ̇1(τ, s(0)) = A(τ)φ1(τ, s(0)) and φ1(τ, s(0)) = Φ(τ)x(0), we have∫ T

0
V̇ (x(τ), y(τ))dτ = x2(0)

∫ T

0
Φ2(τ)A(τ)dτ. (6.28)
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We next estimate the integral on the right side by substituting Φ(τ) = 1 + Γ(τ) into
it. There then holds that∫ T

0
Φ2(τ)A(τ)dτ =

∫ T

0
(1 + Γ(τ))2A(τ)dτ

=
∫ T

0
A(τ)dτ︸ ︷︷ ︸
I1

+ 2
∫ T

0
Γ(τ)A(τ)dτ +

∫ T

0
Γ2(τ)A(τ)dτ︸ ︷︷ ︸

I2

.

We then show that there exists a finite T > 0, which is dependent of the initial
condition s(0), such that the above integral is negative. For the integral I1, we have

I1 = −
∫ T

0
1/5 + a sin(φ2(τ, s(0)))dτ.

Let T be such that φ2(T, s(0))− φ2(0, s(0)) = 2π for the considered initial condition
s(0). From (6.8), it is observed that 2b ≤ ẏ ≤ 4b, which implies that for any
s(0) ∈ R2, T is finite since it satisfies π/(2b) ≤ T ≤ π/b. Implementing this T , we
have I1 = −T/5. Substituting ‖Γ(τ)‖ ≤ eLτ − 1 and ‖A(τ)‖ ≤ L into I2 we have

‖I2‖ ≤ 2L
∫ T

0
(eLτ − 1)dτ + L

∫ T

0
(eLτ − 1)2dτ

= L

∫ T

0
(e2Lτ − 1)dτ = 1

2(e2LT − 1)− LT.

Consequently, we have∫ T

0
Φ2(τ)A(τ)dτ ≤ −1

5T − LT + 1
2(e2LT − 1) := p(T ).

Substituting it into (6.28) we arrive at∫ T

0
V̇ (x(τ), y(τ))dτ ≤ p(T )x2(0). (6.29)

It remains to show that there exists a positive solution to the inequality p(z) < 0.
The first and second derivatives of p are ṗ(z) = −1/5−L+Le2Lz and p̈(z) = 2L2e2Lz.
It can be seen that ṗ(z) = −1/5 when z = 0 and p̈(z) > 0 for all z. Thus there is
z′ > 0 such that p(z) is decreasing when z ∈ [0, z′] and increasing when z > z′. Since
p(z) = 0 when z = 0, one knows that there is z∗ > 0 such that p(z) < 0 for z ∈ (0, z∗)
and p(z) > 0 for z > z∗. In other words, there is T ∗ > 0 such that p(T ) < 0 if T < T ∗.
Since T ≤ π/b, one knows that the inequality T < T ∗ is ensured if

b >
π

2T ∗ . (6.30)
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For any given b such that (6.30) is satisfied, we know that π/(2b) ≤ T ≤ π/b for any
initial condition s(0) ∈ R2. Then there certainly exists a β3 > 0 such that p(T ) ≤ −β3.
Subsequently, the inequality (6.29) becomes

∫ T
0 V̇ (x(τ), y(τ))dτ ≤ −β3‖x(0)‖2, which

yields the partial exponential stability of x = 0 uniformly in y according to the
criterion in Theorem 6.4.

Remark 6.1. Note that the parameter a can be arbitrary (ẋ is allowed to be positive),
and the partial exponential stability of the system is still guaranteed if the parameter b
is sufficiently large. The key idea behind the analysis is that the considered Lyapunov
function can be increasing due to a large value of the parameter a, but a sufficiently
large parameter b ensures that it is always decreasing in average, which can give rise
to stability and convergence. Moreover, the term −ax sin(y) can also be regarded as
a fast time-varying perturbation for a large parameter b, thus averaging techniques
shown in [157, Chap. 10], [172] and [173] might be also applied to the analysis.

A Simulation

We consider a spring-mass-damper system shown in Fig. 6.1. Let x be the position
of the mass, and subsequently ẋ := y be the velocity. Instead of a constant damper,
we assume that the damping coefficient b is dependent of the velocity y in a way
described by the following dynamics of this system

ẋ = y,

ẏ = − 1
m
kx− 1

m
(a+ sin z)y,

ż = c− sin y,

where k, a > 0 and c > 1. Note that the damping coefficient b = a + sin z. Let
m = 2, k = 1, a = 0.2, and denote w = (x, y)>. Choose

V (x, y, z) = 1
2m(x2 + y2)

as a Lyapunov function candidate. After some simple calculation, its time derivative
is

V̇ = −(a+ sin z)y2.

Using existing results given in Lemma 6.1, one fails to prove the partial stability of
w = 0 since the matrix Q depends on z, and is thus not always negative definite. How-
ever, we are able to prove that w = 0 is asymptotically w-stable uniformly in z using
the new criterion we established in Theorem 6.3. Following similar steps to Section
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Figure 6.1: A spring-mass-damper system
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Figure 6.2: The trajectory of the Lyapunov function

6.2.3, one is able to show that for any initial condition s(0) = col(x(0), y(0), z(0)) ∈ R3,
there exists T = T (s(0)) satisfying 2π/(c+ 1) ≤ T ≤ 2π/(c− 1) such that the inequal-
ity (6.23) holds, provided that c is sufficiently large. One possible way to identify
such a T is just letting T be such that z(T )− z(0) = 2π. Let c = 8, and we simulate
the spring-mass-damper system. The trajectory of the Lyapunov function candidate
V (x, y, z) is plotted in Fig. 6.2. One observes that V is not monotonically decreasing.
However, if we sample it whenever z increases by 2π, the sample points are always
decreasing, which is illustrated by the red dots in Fig. 6.2. These observations show
that y = 0 is asymptotically stable, although z → ∞ as t → ∞, as long as the
Lyapunov function decreases after a finite time, which validates our obtained results.
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6.3 Partial Exponential Stability via Periodic Aver-
aging

As a further extension of the previous section, in this section, we study exponential
partial stability of a class of slow-fast systems, wherein the fast variable is a scalar.
Various practical systems can be modeled by this class of slow-fast systems, such as
semiconductor lasers [174], and mixed-mode oscillations in chemical systems [175],
where the fast scalar variables are the photon density and a chemical concentration,
respectively. In particular, fast time-varying systems can always be modeled in this
way since the time variable t can be taken as the fast scalar [166]. However, existing
criteria on partial stability [99–101] are not directly applicable to the analysis of these
systems. Therefore, we aim at further developing new criteria to study exponential
partial stability of the considered class of slow-fast systems.

In classic stability analysis of fast time-varying systems, averaging methods are
widely used to establish criteria for full-state exponential stability [157, Chap. 10] [172]
and also asymptotic stability [173]. Inspired by these works, we utilize the periodic
averaging techniques and establish some criteria for partial exponential stability of
the considered class of slow-fast systems. Unlike what is usually done in standard
averaging, we construct an averaged system by averaging the original one over the
fast scalar, which is in general different from the time variable. We show that partial
exponential stability of the averaged system implies partial exponential stability of
the original one. In contrast to the criteria we proposed in the previous section,
this one using averaging methods is easier to test. Compared to the existing criteria
for full-state exponential stability [157, 166, 173], the analysis in our case is much
more challenging since some state variables are unstable. To construct the proof,
we also develop a new converse Lyapunov theorem and some perturbation theories
for partially exponentially stable systems. Compared to the converse Lyapunov
theorem in [100, Theorem 4.4], we present two bounds for the partial derivatives of
the Lyapunov function with respect to the stable and unstable states, respectively.
Moreover, the obtained perturbation theories are the first-known ones for partial
exponential stability analysis, although their counterparts [100, Chap. 9 and 10] for
full-state stability have been widely used to analyze perturbed systems.

6.3.1 A Slow-Fast System

A wide range of systems exhibit multi-timescale dynamics, and among them many
have a fast changing variable that is scalar. This motivates us to study a class of
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slow-fast systems in this section, of which dynamics are described by

ẋ = f1(x, y, z), (6.31a)
ẏ = f2(x, y, z), (6.31b)
εż = f3(x, y, z), (6.31c)

where x ∈ Rn, y ∈ Rm, z ∈ R, and ε > 0 is a small constant. That is, x, y are
the states of slow dynamics, and z is the state of fast dynamics. All the maps,
f1 : Rn+m+1 → Rn, f2 : Rn+m+1 → Rm, f3 : Rn+m+1 → R, are continuously
differentiable, and T -periodic in z, i.e., fi(x, y, z + T ) = fi(x, y, z) for all i = 1, 2, 3.
Assume further that the solution to the system (6.31) exists for all t ≥ 0. Moreover,
x = 0 is a partial equilibrium point of the system (6.31), i.e., f1(0, y, z) = 0 for any
y ∈ Rn and z ∈ R. Also, f2(0, y, z) = 0 for any y and z. However, f3 is not required
to satisfy f3(0, y, z) = 0.

The variable z appears in various problems. For instance, it can be the photon
density of a semiconductor laser [174], the centroid position of rapidly flying UAVs
that execute formation tasks [23], and in particular, the time variable in a time-varying
system (where εż = 1). We are interested in studying the partial stability of the
system (6.31). Let us first define uniform partial exponential stability, which is similar
to that in Definition 6.1, but with an additional variable z.

Definition 6.2 ([100, Chap. 4]). A partial equilibrium point x = 0 of the system
(6.31) is exponentially x-stable uniformly in y and z if there exist c1, c2, δ > 0 such that
‖x(0)‖ < δ implies that ‖x(t)‖ ≤ c1‖x(0)‖e−c2t for any t ≥ 0 and (y0, z0) ∈ Rm × R.

Note that when we refer to this definition, we also say that x = 0 of the system
(6.31) is partially exponentially stable or the system (6.31) is partially exponentially
stable with respect to x. Some efforts have been made to study partial stability of
nonlinear systems, [99], [100, Chap. 4], [101]. Although these results do not explicitly
utilize the slow-fast structure, it is possible to apply them to slow-fast systems. Some
Lyapunov criteria have been established in [100, Chap. 4], which are presented in
Lemma 6.1. However, it is not always easy to verify partial stability by using such
criteria. As a motivating example, we consider the following academic but suggestive
model.

Example 6.2. Consider a nonlinear system whose dynamics are described by

ẋ = −x− 0.2x sin y − 2x cos z,
ẏ = 2x cos y + x sin z,
εż = 3− sin x+ cos y.
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As will be shown later, for sufficiently small ε > 0, it is possible to prove that the
partial equilibrium point x = 0 is exponentially stable uniformly in y and z. However,
it is difficult to construct an appropriate Lyapunov function using the criteria in
Lemma 6.1. For example, we choose V = x2 as a Lyapunov function candidate. Its
time derivative is V̇ = −2(1 + 0.2 sin y + 2 cos z)x2, which can be positive for some y
and z, while it is required by [100, Theorem 1] to be negative for any x 6= 0, y, and z
in order to show the partial exponential stability. 4

Motivated by the above example, in the next subsection we aim at further devel-
oping Lyapunov theory for partial stability analysis of slow-fast systems.

6.3.2 Partial Stability of Slow-Fast Dynamics
In this subsection, our goal is to provide a new Lyapunov criterion for partial stability
of slow-fast systems. Our analysis consists of several steps. We first construct
reduced slow dynamics. Under some practically reasonable assumptions, the partial
stability of the constructed slow dynamics and the original slow-fast system are shown
to be equivalent. That is, analysis reduces to the partial stability analysis of the
constructed slow dynamics. Moreover, since the original slow-fast system is periodic,
the constructed one is also periodic.

Next, in order to study the partial stability of the constructed slow dynamics, we
use an averaging method. For periodic systems, averaging methods have been widely
used to establish criteria for the standard full-state exponential stability [157, Chap.
10] [172] and also asymptotic stability [173]. Inspired by these works, we will develop
a new criterion for partial stability of the fast periodic dynamics via averaging.
According to our new criterion, if the averaged system is partially exponentially stable,
then the slow dynamics and consequently the original periodic slow-fast system is
partially exponentially stable for sufficiently small ε > 0. It is worth emphasizing
that compared with the case of full-state stability, partial stability analysis is much
more challenging since some states are not stable.

Slow Dynamics

As the first step, we construct a reduced slow dynamics studied in the following
subsections. One important fact is that the partial stability of the constructed slow
dynamics is equivalent to that of the original slow-fast system (6.31) under the
assumption blow.

Assume that for the fast subsystem:

f3(x, y, z) ≥ α, ∀x ∈ Rn, y ∈ Rm, z ∈ R, (6.32)
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or f3(x, y, z) ≤ −α, where α > 0. Note that we only consider the first inequality
since these two inequalities are essentially the same. This assumption (6.32) is
naturally satisfied for some practical problems such as vibration suppression of rotating
machinery where f3 is the angular velocity [176], spin stabilization of spacecrafts
where f3 describes the spin rate [177].

The assumption (6.32) implies that t 7→ z(t) can be interpreted as a change of
time (recall that z is a scalar). In fact, (6.32) implies that for any given initial state
(x(0), y(0), z(0)) of the slow-fast system (6.31), a part of the solution z(t) is a strictly
increasing function of t. That is, t 7→ z(t) is a global diffeomorphism from [0,∞) to
[0,∞). In the new time axis z(t), the slow-fast system becomes

dx(t)
dz(t) = dx(t)

dt

dt

dz(t) = ε
f1(x(t), y(t), z(t))
f3(x(t), y(t), z(t)) ,

dy(t)
dz(t) = dy(t)

dt

dt

dz(t) = ε
f2(x(t), y(t), z(t))
f3(x(t), y(t), z(t)) ,

dz(t)
dz(t) = 1,

The first two subsystems can be viewed as time-varying systems with the new time
variable z(t). Note that, since t 7→ z(t) is a global diffeomorphism, the partial stability
with respect to x of the first two time-varying subsystems in the new time axis is
equivalent to the partial stability with respect to x of the system (6.31) in the original
time axis. Therefore, hereafter we focus on the first two time-varying subsystems in
the new time axis. For the sake of simplicity of description, the first two time-varying
subsystems are described by

dx

dz
= εh1(x, y, z), (6.33a)

dy

dz
= εh2(x, y, z), (6.33b)

where h1 = f1/f3, and h2 = f2/f3. From the properties of f1, f2, and f3, it follows
that both h1(0, y, z) = 0 and h2(0, y, z) = 0 for any y ∈ Rm and z ∈ R, and the
solution to the system (6.33) exists for all z ≥ 0. Moreover, the constructed slow
dynamics (6.33) is again T -periodic in z.

Partial Stability Conditions via Averaging

In order to study partial stability with respect to x of the constructed periodic slow
dynamics (6.33), we use an averaging technique for periodic systems. The averaged
system obtained from the slow dynamics (6.33) can be used for the partial stability
analysis of the slow dynamics (6.33) before averaging. From the discussion in the
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previous subsection, the partial stability of the slow dynamics (6.33) is equivalent to
that of the original slow-fast system (6.31).

Since the slow dynamics (6.33) is T -periodic in z, it is possible to apply an
averaging method. Its partially averaged system is given by

dw

dz
= εhav(w, v), (6.34a)

dv

dz
= εh2(w, v, z), (6.34b)

where the function hav is defined by

hav(w, v) = 1
T

∫ T

0
h1(w, v, τ)dτ, (6.35)

where hav(0, v) = 0 for any v ∈ Rm from h1(0, v, z) = 0. Note that only the dynamics
of w is averaged with respect to z.

In fact, if the averaged system (6.34) is partially exponentially stable with respect
to w, then the periodic slow system (6.33) is partially exponentially stable with respect
to x for sufficiently small ε > 0. This implies that partial exponential stability of the
original slow-fast system (6.31) can be verified by using the averaged system (6.33).
This fact is stated formally as follows, which is one of the main results in this section.

Theorem 6.5. Suppose that w = 0 of the averaged system (6.34) is partially expo-
nentially stable uniformly in v, i.e., there exists δ > 0 such that for any z0 ∈ R and
w(0) ∈ Bδ,

‖w(z)‖ ≤ k‖w(0)‖e−λ(z−z0), k, λ > 0,∀z ≥ z0. (6.36)

Assume that there are L1, L2 > 0 such that for any x ∈ Bδ, y ∈ Rm, z ∈ R, the
functions h1 and h2 in (6.33) satisfy∥∥∥∥∂h1

∂x
(x, y, z)

∥∥∥∥ ≤ L1,

∥∥∥∥∂h2

∂x
(x, y, z)

∥∥∥∥ ≤ L2. (6.37)

Then, there exists ε1 > 0 such that, for any ε < ε1, a partial equilibrium point
x = 0 of the system (6.33) is exponentially stable uniformly in y. As a consequence,
for any ε < ε1, a partial equilibrium point x = 0 of the system (6.31) is exponentially
stable uniformly in y and z. 4

The following subsections are dedicated to proving this theorem. Before providing
the proof, we illustrate its utility. First, let us look back at Example 6.2, and see how
the obtained results can be applied.
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Continuation of Example 6.2: As 3 − sin x + cos y ≥ 1 for any x, y, the prop-
erty (6.32) holds. Then, one can construct the averaged system (6.34) of the system
in Example 6.2 as

dw

dz
= ε
−w − 0.2w sin v
3− sinw + cos v ,

dv

dz
= ε

2w cos v + w sin z
3− sinw + cos v .

Choose a Lyapunov function candidate as V (w, v, z) = w2. Then, it holds that
dV

dz
= −2ε · 1 + 0.2 sin v

3− sinw + cos vw
2 ≤ − 8

15εw
2.

According to [100, Theorem 1], w = 0 of the averaged system is partially exponentially
stable. From Theorem 6.5, one can conclude that x = 0 of the original system in
Example 6.2 is partially exponentially stable if ε > 0 is sufficiently small. 4

By using averaging techniques, Theorem 6.5 provides a new way to study partially
stability of slow-fast systems for which the existing criteria is difficult to apply. As its
another application, we can cover the conventional criteria [157, Chap. 10] and [172]
for exponential stability of fast time-varying systems. Consider the following system
with respect to x,

ẋ = f1(x, z), (6.38)
εż = f3(x, z), (6.39)

where f1 and f3 satisfy all the assumption made for system (6.31). The difference
from (6.31) is that there is no variable y. To study partial stability with respect to x,
we apply the change of time-axis, t→ z. Then, we have

dx

dz
= εh1(x, z). (6.40)

Next, compute the averaged system of the fast subsystem
dw

dz
= εĥav(w), (6.41)

where the function ĥav is defined by

ĥav(w) = 1
T

∫ T

0
ĥ1(w, τ)dτ, ĥ1(w, z) = f1(w, z)

f3(w, z) (6.42)

As expected, if the averaged system (6.41) is exponentially stable, then the partial
stability of (6.38) is ensured as long as ε > 0 is sufficiently small, which is formally
stated in the following corollary. If f3(x, z) = 1 for all x ∈ Rn and z ∈ R, this corollary
reduces to the criteria in [157, Chap. 10] and [172] for exponential stability of fast
time-varying systems.
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Corollary 6.1. Suppose that w = 0 is exponentially stable for the averaged system
(6.41). Assume that there is L > 0 such that for any x ∈ Bδ, z ∈ R the function h1 in
(6.42) satisfies ∥∥∥∥∂h1

∂x
(x, z)

∥∥∥∥ ≤ L. (6.43)

Then, there exists ε1 > 0 such that, for any ε < ε1, a partial equilibrium x = 0 of the
system (6.38) is partially exponentially stable uniformly in z. 4

In next section, we show how our results on partial exponential stability can be
applied to remote synchronization in a simple network of Kuramoto oscillators. Before
that in the following subsections, we construct the proof of Theorem 6.5.

6.3.3 A converse Lyapunov Theorem and Some Perturbation
Theorems

In the following subsections, our objective is to prove Theorem 6.5, that is to show
the partial exponential stability of the averaged system (6.34) implies that of the
periodic slow system (6.33). Recall that partial stability of the slow system (6.33) is
equivalent to that of the original slow-fast system (6.31) under (6.32).

For conventional full-state exponential stability analysis, the original system is
regarded as a perturbed system of the averaged one. As long as the perturbation
characterized by ε is sufficiently small, the exponential stability of the original system
is ensured [172], [157, Chap. 10]. Similar ideas are used in this section for partial
exponential stability analysis. Instead of full-state stability, we only require the
averaged system (6.34) to be partially exponentially stable.

A New Converse Lyapunov Theorem

In order to show the partial exponential stability of the periodic slow system (6.33),
we use Lyapunov theory. First, we construct a Lyapunov function for a partially
exponentially stable averaged system. Then, by using this Lyapunov function, we
show the partial exponential stability of the periodic slow system if the perturbation
is sufficiently small. This subsubsection is dedicated to constructing a Lyapunov
function. That is, we provide a new converse Lyapunov theorems for partial stability.

As a generalized form of (6.34), we consider the following time-varying systems in
this section

dw

dz
= ϕ1(w, v, z), (6.44a)

dv

dz
= ϕ2(w, v, z), (6.44b)
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where w ∈ Rn, v ∈ Rm, z ∈ R, and the functions, ϕ1 : Rn+m+1 → Rn, ϕ2 :
Rn+m+1 → Rm are continuously differentiable. Moreover, it holds that ϕ1(0, v, z) = 0
and ϕ2(0, v, z) = 0 for any v ∈ Rm. We further assume that for any z0 the solution
to the system (6.44) exists for all z ≥ z0.

Now, we provide a converse theorem for exponential partial stability of the
system (6.44), which is directly applicable to the averaged system (6.34).

Theorem 6.6. Suppose that w = 0 is partially exponentially stable uniformly in v
for the system (6.44), i.e., there exists δ > 0 such that for any z0 ∈ R and w(0) ∈ Bδ,

‖w(z)‖ ≤ k‖w(0)‖e−λ(z−z0), k, λ > 0,∀z ≥ z0. (6.45)

Also, assume that there are L1, L2 > 0 such that∥∥∥∥∂ϕ1

∂w
(w, v, z)

∥∥∥∥ ≤ L1,

∥∥∥∥∂ϕ2

∂w
(w, v, z)

∥∥∥∥ ≤ L2, (6.46)

for any w ∈ Bδ, v ∈ Rm, z ∈ R. Then, there exists a function V : Bδ × Rm × R→ R
that satisfies the following inequalities:

c1‖w‖2 ≤ V (w, v, z) ≤ c2‖w‖2, (6.47)
∂V

∂z
+ ∂V

∂w
ϕ1(w, v, z) + ∂V

∂v
ϕ2(w, v, z) ≤ −c3‖w‖2, (6.48)∥∥∥∥∂V∂w

∥∥∥∥ ≤ c4‖w‖, (6.49)∥∥∥∥∂V∂v
∥∥∥∥ ≤ c5‖w‖, (6.50)

for some positive constants c1, c2, c3, c4 and c5. 4

The same uniform boundedness assumptions on the partial derivatives of the
functions ϕ1 and ϕ2 are actually made in Theorem 6.6 and Theorem 4.4 of [100].
Unlike the theorem in [100], we work on time-varying systems. Moreover, we obtain
additional two bounds for the partial derivative of V , namely (6.49) and (6.50) by
assuming ϕ2(0, v, z) = 0 for any v and z. Thus, our proof is more involved, which can
be found as follows. Before proving Theorem 6.6, we first present an intermediate
result.

Proposition 6.1. Consider a continuously differentiable function h : Rn×Rm → Rn,
which satisfies h(0, v) = 0 for any v ∈ Rm. Suppose that there exists a connected set
D ⊂ Rn containing the origin x = 0 such that∥∥∥∥ ∂h∂w (w, v)

∥∥∥∥ ≤ l1, ∀w ∈ D, v ∈ Rm,
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for a positive constant l1. Then, there exists l2 > 0 such that∥∥∥∥∂h∂v (w, v)
∥∥∥∥ ≤ l2‖w‖, ∀w ∈ D, v ∈ Rm.

Proof. Due to the continuous differentiability of h, it follows from the mean value
theorem that for any w ∈ D, and v, δ ∈ Rm, there exists 0 ≤ λ ≤ 1 such that

hi(w, v + δ)− hi(w, v) = ∂hi
∂v

(w, v + λδ) · δ.

Since ‖∂h/∂w‖ ≤ l1 and h(0, v) = 0, we have

‖hi(w, v + δ)− hi(w, v)‖
≤ ‖hi(w, v + δ)− hi(0, v + δ)‖+ ‖hi(w, v)− hi(0, v)‖
≤ 2l1‖w‖, (6.51)

where the last inequality has used the fact that ‖∂hi/∂w‖ ≤ ‖∂h/∂v‖ ≤ l1. We then
observe that the inequality∥∥∥∥∂hi∂v

(w, v + λδ) · δ
∥∥∥∥ ≤ 2l1‖w‖

holds for any w ∈ D, and v, δ ∈ Rm, which implies that for any i there exists
l′1 > 0 such that ‖∂hi/∂v‖ ≤ l′1‖w‖. As a consequence, there is l2 > 0 so that
‖∂h/∂v‖ ≤ l2‖w‖.

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. Let φ1(τ ;w, v, z) and φ2(τ ;w, v, z) denote the solution to the
system (6.44a) and (6.44b) that starts at (w, v, z), respectively; note that φ1(z;w, v, z) =
x and φ2(z;w, v, z) = y. Let

V (w, v, z) =
∫ z+δ

z

‖φ1(τ ;w, v, z)‖22dτ. (6.52)

Following similar steps as those in Theorem 4.14 of [157] and Theorem 4.4 of [100],
one can show that

1
2L1

(1− e−2L1δ)‖w‖22 ≤ V (w, v, z) ≤ k2

2λ (1− e−2λδ)‖w‖22,

and V̇ (w, v) = −(1− k2e−2λδ)‖w‖22, which proves the inequalities (6.47) and (6.48).
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We next prove the inequalities (6.49) and (6.50). Let φ = col(φ1, φ2), ϕ =
col(ϕ1, ϕ2), and for k = 1, 2, denote

φk,w(τ ;w, v, z) = ∂

∂w
φk(τ ;w, v, z).

and φ′w = ∂φ/∂w. Note that φ1(τ ;w, v, z) and φ2(τ ;w, v, z) satisfy

φ1(τ ;w, v, z) = x+
∫ τ

z

ϕ1(φ1(s;w, v, z), φ2(s;w, v, z))ds,

φ2(τ ;w, v, z) = y +
∫ τ

z

ϕ2(φ2(s;w, v, z), φ2(s;w, v, z))ds.

Then, the partial derivative φ′w is

φ′w(τ ;w, v, z) =
[
I 0
0 0

]
+
∫ τ

z

∂ϕ

∂φ
φ′x(s;w, v, z)ds. (6.53)

Recall that ϕ1 and ϕ2 are continuously differentiable, and satisfy ϕ1(0, v, z) = 0 and
ϕ2(0, v, z) = 0 for any v and z, and ‖∂ϕ1/∂w‖2 ≤ L1 and ‖∂ϕ2/∂w‖2 ≤ L2 for any
w ∈ Bδ and v ∈ Rm, t ∈ R. It then follows from Proposition 6.1 that ‖∂ϕ1/∂v‖2 ≤ L′1
and ‖∂ϕ2/∂v‖2 ≤ L′2 for some positive constants L′1 and L′2, since ‖w‖ is upper
bounded by some constant in a compact set Bδ. Equivalently, there exists L > 0 such
that ∥∥∥∥ ∂ϕ∂X

∥∥∥∥
2
≤ L, ∀X ∈ Bδ × Rm, (6.54)

where X = col(w, v). Consequently, ‖∂ϕ/∂φ‖2 ≤ L, and it then follows from (6.53)
that

‖φ′w(τ ;w, v, z)‖2 ≤ 1 + L

∫ τ

z

‖φ′w(s; , w, v, z)‖2ds,

which implies that ‖φ′w(τ ;w, v, z)‖2 ≤ eL(τ−z) by Grönwall’s lemma [100, Lemma 2.2].
Since ‖φ1,w‖2 ≤ ‖φ1,w, φ2,w‖2 = ‖φ′w(τ ;w, v, z)‖2, it holds that

‖φ1,w(τ ;w, v, z)‖2 ≤ eL(τ−z). (6.55)

From (6.45), it holds that ‖φ1(τ ;w, v, z)‖ ≤ K‖w‖2e−λ(τ−z). Then, the partial
derivative ∂V/∂w satisfies∥∥∥∥∂V∂w

∥∥∥∥
2

=

∥∥∥∥∥
∫ z+δ

z

2φ>1 (τ ;w, v, z)φ1,w(τ ;w, v, z)dτ

∥∥∥∥∥
2

≤
∫ z+δ

z

2 ‖φ1(τ ;w, v, z)‖ · ‖φ1,w(τ ;w, v, z)‖2dτ

≤
∫ z+δ

z

2k‖w‖2e−λ(τ−z)eL(τ−z)dτ = c4‖w‖2,
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with c4 = 2k(1− e−(λ−L)δ)/(λ− L), which proves the inequality (6.49).
Following the similar line, one can show there exists c5 > 0 such that (6.50) are

satisfied, which completes the proof.

Some Perturbation Theorems

In the previous subsubsection, we have constructed a converse Lyapunov theorem.
By applying this to a partially exponentially stable averaged system (6.34), one can
construct a Lyapunov function satisfying all conditions in Theorem 6.6. By using
this Lyapunov function, we consider to study the partial exponential stability of the
periodic slow dynamics (6.33). As typically done in averaging methods, we consider
periodic slow dynamics (6.33) as a perturbed system of its averaged system (6.34).
Then, we conclude the partial exponential stability of the periodic slow dynamics (6.33)
by using the Lyapunov function for its averaged system (6.34).

To this end, we study the following perturbed system of the system (6.44) in the
previous subsubsection:

dwp
dz

= ϕ1(wp, vp, z) + g1(wp, vp, z), (6.56a)

dvp
dz

= ϕ2(wp, vp, z) + g2(wp, vp, z), (6.56b)

where g1 : Rn+m+1 → Rn and g2 : Rn+m+1 → Rm are piecewise continuous in z and
locally Lipschitz in (wp, vp). Particularly, we assume that the perturbation terms
satisfy the bounds

‖g1(wp, vp, z)‖ ≤ γ1(z)‖wp‖+ ψ1(z), (6.57)
‖g2(wp, vp, z)‖ ≤ γ2(z)‖wp‖+ ψ2(z), (6.58)

where γ1, γ2 : R→ R are nonnegative and continuous for all z ∈ R, and ψ1, ψ2 : R→ R
are nonnegative, continuous and bounded for all z ∈ R.

The following theorem presents some results on the asymptotic behavior of the per-
turbed system (6.56) when the the nominal system (6.44) has a partially exponentially
stable equilibrium point wp = 0.

Theorem 6.7. Suppose that the nominal system (6.44) satisfies all the assumptions in
Theorem 6.6. Also, assume that the perturbation terms g1(wp, vp, z) and g2(wp, vp, z)
are respectively bounds as in (6.57) and (6.58) for γ1, γ2 and ψ1, ψ2 satisfying the
following inequalities

c4

∫ z

z0

γ1(τ)dτ + c5

∫ z

z0

γ2(τ)dτ ≤ κ(z − z0) + η, (6.59)
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where

0 ≤ κ < c1c3
c2

, η ≥ 0; (6.60)

and

c4ψ1(z) + c5ψ2(z) < 2c1k1δ

k2
, ∀z ≥ z0, (6.61)

where

k1 = c3
2c2
− κ

2c1
, k2 = exp

(
η

2c1

)
. (6.62)

Then, the solution to the perturbed (6.56) satisfies

‖wp(z)‖ ≤ k2

√
c2
c1
‖wp(z0)‖e−k1(z−z0)

+ k2

2c1

∫ z

z0

e−k1(z−τ)ψ(τ)dτ, ∀z ≥ z0.

for any initial time z0 ∈ R and any initial state wp(z0) ∈ Rn and vp(z0) ∈ Rm such
that

‖wp(z0)‖ < δ

k2

√
c1
c2
. (6.63)

4

A similar result is found in [157, Lemma 9.4], where the nominal system is assumed
to be exponentially stable. With some perturbation, the asymptotic behavior of the
full state is reported there. In contrast, the nominal system is only assumed to be
partially exponentially stable in Theorem 6.7, and we show that the asymptotic
behavior of a part of the states wp for the perturbed system follows some specific rule,
without concerning how the other part of states, vp, is evolving. The proof is based on
the constructed Lyapunov function in Theorem 6.6; for more details, see as follows.

Proof. From the assumption for the nominal system (6.44), there is a Lyapunov
function V satisfying all conditions in Theorem 6.6. Here, we use this V to estimate
the convergence speed of the perturbed system (6.56).

For any wp ∈ Bδ and vp ∈ Rm, t ∈ R, the time derivative of the Lyapunov function
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V (x, y, t) along the trajectories of the perturbed system (6.56) satisfies

dV

dz
=∂V

∂z
+ ∂V

∂wp
(ϕ1(wp, vp, z) + g1(wp, vp, z))

+ ∂V

∂vp
(ϕ2(wp, vp, z) + g2(wp, vp, z))

≤− c3‖wp‖2 + (c4γ1(z) + c5γ2(z)) ‖wp‖2

+ (c4ψ1(z) + c5ψ2(z)) ‖wp‖,

where the last inequality follows from the inequalities (6.48), (6.49), and (6.50). For
simplicity, denote γ(z) = c4γ1(z) + c5γ2(z) and ψ(z) = c4ψ1(z) + c5ψ2(z). By the
inequality (6.47) one can obtain an upper bound for V̇ given by

dV

dz
≤ −

[
c3
c2
− 1
c1
γ(z)

]
V + 1

√
c1
ψ(z)
√
V .

Let W (wp, vp, z) =
√
V (wp, vp, z), and when V 6= 0 its time derivative satisfies

dW

dz
= dV/dz

2
√
V
≤ −1

2

[
c3
c2
− 1
c1
γ(z)

]
W + 1

2√c1
ψ(z). (6.64)

When V = 0, following the same idea as the proof of Lemma 9.4 in [157] one can
show that the Dini derivative of W satisfies

D+W ≤ 1
2√c1

ψ(z),

which implies that D+W satisfies (6.64) for all values of V . Using the comparison
lemma [157, Lemma 3.4], one can show that W (z) satisfies the following inequality

W (z) ≤ Φ(z, z0)W (z0) + 1
2√c1

∫ z

z0

Φ(z, τ)ψ(τ)dτ, (6.65)

where the transition function is

Φ(z, z0) = exp
(
− c3

2c2
(z − z0) + 1

2c1

∫ z

z0

γ(τ)dτ
)
. (6.66)

Substituting (6.59) and (6.60) into (6.66), we have

Φ(z, z0) ≤ k2e
−k1(z−z0), (6.67)

with k1 and k2 given by (6.62).
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From the inequality (6.47), we obtain √c1‖wp‖ ≤W ≤
√
c2‖wp‖. Then, for any

z ≥ z0 such that ‖wp(z)‖ ∈ Bδ, it follows from the inequalities (6.65) and (6.67) that

‖wp(z)‖ ≤ k2

√
c2
c1
‖wp(z0)‖e−k1(z−z0)

+ k2

2c1

∫ z

z0

e−k1(z−τ)ψ(τ)dτ, (6.68)

for any z ≥ z0 such that ‖wp(z)‖ ∈ Bδ. Under the assumption (6.61), if the initial
condition satisfies (6.63), it then holds that

‖wp(z)‖ < δe−k1(z−z0) + δ(1− e−k1(z−z0)) = δ, ∀z ≥ z0,

which ensures that the inequality (6.68) holds for any z ≥ z0. The proof is complete.

We next consider a particular case where g1 and g2 in (6.56) are vanishing
perturbations, i.e., ψ1(z) and ψ2(z) in (6.57) satisfy ψ1(z) = ψ2(z) = 0, and obtain
the next corollary. In fact, this corollary is used to prove Theorem 6.5.

Corollary 6.2. Suppose that the nominal system (6.44) satisfies all the assumptions
in Theorem 6.6. Also, assume that the perturbation terms g1(wp, vp, z) and g2(wp, vp, z)
are respectively bounded by ‖g1(wp, vp, z)‖ ≤ γ1(z)‖wp‖ and ‖g2(wp, vp, z)‖ ≤ γ2(z)‖wp‖
for γ1 and γ2 satisfying (6.59) and (6.60), i.e. ψ1(·) = 0 and ψ2(·) = 0. Then, wp = 0
is partially exponentially stable uniformly in vp for the system (6.56). Moreover, the
solution to (6.56) satisfies

‖wp(z)‖ ≤ k2

√
c2
c1
‖wp(z0)‖e−k1(z−z0), ∀z ≥ z0.

for any initial time z0 ∈ R and any initial condition wp(z0) ∈ Rn and vp(z0) ∈ Rm

satisfying (6.63).

In the next subsection, we show how the results obtained in the previous and this
subsubsections enable us to use averaging techniques to study the partial stability of
a periodic slow dynamics (6.33) from its averaged system (6.34).

6.3.4 Proof of Theorem 6.5
We first present an intermediate result.

Proposition 6.2. Consider function u(wp, vp, z) defined in (6.72). For any wp ∈
Bδ, vp ∈ Rm, z ∈ R, ‖u(wp, vp, z)‖, ‖∂u/∂wp‖, and ‖∂u/∂vp‖ are all bounded.
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Proof. First, we prove that ‖u(wp, vp, z)‖ is bounded. One can observe that u(wp, vp, z)
is T -periodic in z since ∆(wp, vp, z) is. For any z ≥ 0, there exists a nonnegative
integer N1 and z′ satisfying 0 ≤ z′ < T . such that z = N1T + z′. Then, using (6.73)
we have ∫ z

0
∆(wp, vp, τ)dτ =

∫ N1T

0
∆(wp, vp, τ)dτ +

∫ z′

0
∆(wp, vp, τ)dτ,

=
∫ z′

0
∆(wp, vp, τ)dτ.

Next, the partial derivative of ∆ with respect to w satisfies∥∥∥∥ ∂∆
∂wp

(wp, vp, z)
∥∥∥∥

=

∥∥∥∥∥ ∂h1

∂wp
(wp, vp, z)−

1
T

∫ T

0

∂h1

∂wp
(wp, vp, τ)dτ

∥∥∥∥∥ ≤ 2L1,

where the triangle inequality and (6.37) have been used. Using this inequality and
∆(0, vp, z) = 0 to (6.72) yields

‖u(wp, vp, z)‖ ≤
∫ z′

0
‖∆(wp, vp, τ)−∆(0, vp, τ)‖dτ

≤ 2z′L1‖wp‖ ≤ 2TL1‖wp‖. (6.69)

For any wp ∈ Bδ and vp ∈ Rm, z ∈ R, it is clear that ‖u(wp, vp, z)‖ ≤ 2TL1δ.
Second, we prove ‖∂u/∂wp‖ is bounded. Since ∂u/∂wp is T -periodic in z and

satisfies
∫ T

0
∂u
∂wp

(wp, vp, τ)dτ = 0, for any z ≥ 0, there exists a nonnegative integer N2
and z′′ satisfying 0 ≤ z′′ ≤ T such that z = N2T + z′′ such that

∂u

∂wp
(wp, vp, z) =

∫ z′′

0

∂∆
∂wp

(wp, vp, τ)dτ,

which implies that for any wp ∈ Bδ, vp ∈ Rm, and z ∈ R,∥∥∥∥ ∂u∂wp (wp, vp, z)
∥∥∥∥ ≤ ∫ z′′

0

∥∥∥∥ ∂∆
∂wp

(wp, vp, τ)
∥∥∥∥ dτ

≤ 2z′′L1 ≤ 2TL1.

Finally, we prove ‖∂u/∂vp‖ is bounded. Since h1(0, vp, z) = 0 for any vp and z, from
Proposition 6.1, there exists L′1 > 0 such that for any wp ∈ Bδ, and vp ∈ Rm, z ∈ R,∥∥∥∥∂h1

∂vp
(wp, vp, z)

∥∥∥∥ ≤ L′1‖wp‖. (6.70)
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Then, the partial derivative of ∆ with respect to vp satisfies∥∥∥∥ ∂∆
∂vp

(wp, vp, z)
∥∥∥∥

=

∥∥∥∥∥∂h1

∂vp
(wp, vp, z)−

1
T

∫ T

0

∂h1

∂vp
(wp, vp, τ)dτ

∥∥∥∥∥
≤ 2L′1‖wp‖,

which implies that
∥∥∥ ∂u∂vp (wp, vp, z)

∥∥∥ ≤ 2TL′1‖wp‖ ≤ 2TL′1δ for any wp ∈ Bδ.

Now, we are ready to provide the proof of Theorem 6.5.

Proof of Theorem 6.5. First, in order to describe the original slow system (6.33) as a
perturbation of the averaged system (6.34), we substitute the following into (x, y) of
the original slow system (6.33):

x = wp + εu(wp, vp, z), (6.71a)
y = vp, (6.71b)

where

u(wp, vp, z) =
∫ z

0
∆(wp, vp, τ)dτ, (6.72)

with ∆(wp, vp, z) = h1(wp, vp, z)− hav(wp, vp). From the definition of hav in (6.35),
it holds that ∫ T

0
∆(wp, vp, τ)dτ = 0. (6.73)

After substituting (6.71) into (6.33), we obtain the following

dx

dz
= dwp

dz
+ ε

∂u

∂z
+ ε

∂u

∂wp

dwp
dz

+ ε
∂u

∂vp

dvp
dz

,

dy

dz
= dvp

dz
.

Substituting (6.33) and (6.71a) into the above equations yields

P (ε)
[

dwp
dz
dvp
dz

]
=[

εh1(wp + εu, vp, z)− εh1 (wp, vp, z) + εhav (wp, vp)
εh2(wp + εu, vp, z)

]
, (6.74)
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where

P (ε) =
[
I + ε ∂u

∂wp
ε∂u∂y

0 I

]
.

In the following, we show that the obtained dynamics (6.74) can be viewed as a
perturbation of the averaged system (6.34). Therefore, Corollary 6.2 can be used in
order to show the partial stability of the obtained dynamics from that of the averaged
system. Note that (6.71) is not necessarily invertible. Our goal is, however, to show
that the partial stability of the obtained dynamics (6.74) implies that of the original
slow system (6.33).

Let us represent the obtained dynamics (6.74) by a perturbation of the averaged
system (6.34). For k = 1, 2, let hik be the ith component of hk. From mean value
theorem, for each k = 1, 2 there exists λik = λik(wp, vp, z, ε) > 0 such that

hik(wp + εu, vp, z)− hik (wp, vp, z)

= ∂hik
∂wp

(wp + ελiku, vp, z) · εu.

Let us denote

H1(wp, vp, z, εu)

=
[
∂h1

1
∂wp

(wp + ελ1
1u, vp, z), . . . ,

∂hn1
∂wp

(wp + ελn1u, vp, z)
]>

H2(wp, vp, z, εu)

=
[
∂h1

2
∂wp

(wp + ελ1
2u, vp, z), . . . ,

∂hn2
∂wp

(wp + ελn2u, vp, z)
]>

.

Then we have

h1(wp + εu, vp, z)− h1 (wp, vp, z) = H1(wp, vp, z, εu) · εu, (6.75)
h2(wp + εu, vp, z)− h2 (wp, vp, z) = H2(wp, vp, z, εu) · εu, (6.76)

where both H1(wp, vp, z, εu) and H2(wp, vp, z, εu) are bounded since from (6.37) each
∂hik/∂w is. Due to the boundedness of ‖∂u/∂z‖, ‖∂u/∂wp‖, and ‖∂u/∂vp‖ from
Proposition 6.2, it is clear that the matrix P (ε) is nonsingular for sufficiently small
ε > 0, and its inverse can be described as P−1(ε) = I + O(ε) with some O(ε).
Applying this fact together with the equalities (6.75) and (6.76) to (6.74), one can
show that there are bounded H ′1(wp, vp, z, εu) and H ′2(wp, vp, z, εu) such that

dwp
dz

= εhav (wp, vp) + ε2H ′1(wp, vp, z, εu)u, (6.77a)

dvp
dz

= εh2(wp, vp, z) + ε2H ′2(wp, vp, z, εu)u. (6.77b)
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This is a perturbation of the averaged system (6.34).
Next, we apply Corollary 6.2 to show the partial exponential stability of the

averaged system (6.34) implies that of its perturbation (6.77) for sufficiently small ε >
0. From the definition of hav, we have∥∥∥∥∂hav

∂wp
(wp, vp)

∥∥∥∥ =

∥∥∥∥∥ 1
T

∫ T

0

∂h1

∂wp
(wp, vp, τ)dτ

∥∥∥∥∥ ≤ L1 (6.78)

for any wp ∈ Bδ, v ∈ Rm. Therefore, the perturbation (6.77) satisfies all the as-
sumptions in Theorem 6.6. To apply Corollary 6.2, it remains to show that the
perturbation terms are bounded. Let b1 > 0 and b2 > 0 be constants such that
‖H ′1(w, v, z, εu)‖ ≤ b1 and ‖H ′2(wp, vp, z, εu)‖ ≤ b2. From (6.69) in Appendix, it
holds that ‖u(wp, vp, s)‖ ≤ 2TL1‖w‖, and then the perturbation terms satisfy

‖ε2H ′1(wp, vp, z, εu)u‖ ≤ 2ε2b1TL1‖wp‖,
‖ε2H ′2(wp, vp, z, εu)u‖ ≤ 2ε2b2TL1‖wp‖.

Moreover, for sufficiently small ε1 > 0, one notices that any ε < ε1 satisfies both
inequalitie (6.59) and (6.60). Therefore, Corollary 6.2 implies that wp = 0 is partially
exponentially stable of the perturbation (6.77), i.e., (6.74). In other words, there are
δ′ > 0 and k′, λ′ > 0 such that wp(z0) ∈ Bδ′ implies ‖wp(z)‖ ≤ k′‖wp(z0)‖e−λ′(z−z0),
for all z ≥ z0.

Finally, we show that the partial exponential stability of the system (6.74) implies
that of the slow dynamics (6.33). From (6.71a) and (6.69), one obtains

|1− 2εTL1| · ‖wp(z)‖ ≤ ‖x(z)‖ ≤ |1 + 2εTL1| · ‖wp(z)‖,

for all z ≥ z0. Then, it follows that

‖x(z)‖ ≤ k′ |1 + 2εTL1|
|1− 2εTL1|

‖x(z0)‖e−λ
′(z−z0), ∀z ≥ z0,

proving the partial exponential stability of x = 0 for the system (6.33) for sufficiently
small ε > 0. Finally, one can conclude that x = 0 is also partially exponentially stable
for the original slow-fast system (6.31) uniformly in y and z under asssumption (6.32).
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6.4 Concluding Remarks
As a type of partial synchronization, remote synchronization has been widely observed
in a healthy brain. One often encounters to prove the partial stability of a nonlinear
system when studying remote synchronization. Motivated by this, we have developed
some new criteria in this chapter. These new criteria for partial stability analysis are
used to prove the stability of remote synchronization in star networks, a task that it
is quite difficult, if not possible, to accomplish using the existing criteria.

In Section 6.2, we have shown that asymptotic or exponential stability is ensured
if the constructed Lyapunov function decreases after a finite time, without requiring
its time derivative to be negative definite. Our obtained criteria enlarge the range of
choices of function candidates in analyzing partial stability. As a drawback of these
results, it is not always easy to check whether the value of a candidate decreases after
a finite time or not. We have further developed some new criteria that are easier to
verify for partial exponential stability using periodic techniques in Section 6.3, where
a particular class of slow-fast systems with a fast scalar variable is considered. Unlike
classic averaging methods, we construct an averaged system by averaging over this
fast scalar variable, which is usually different from the time variable. We then show
that partial exponential stability of the averaged system implies partial exponential
stability of the original one. As some intermediate results, we have also obtained: 1)
a converse Lyapunov theorem; and 2) some perturbation theorems that are the first
known ones for partially exponentially stable systems.





7 Remote Synchronization in
Star Networks of Kuramoto

Oscillators

As another type of partial synchronization, remote synchronization describes the
phenomenon arising in coupled networks of oscillators when two oscillators without a
direct connection become synchronized without requiring the intermediate ones on
a path linking the two oscillators to also be synchronized with them [164]. In this
chapter, we study remote synchronization in a type of characteristic networks, i.e.,
star networks. The criteria for partial stability of nonlinear systems in the previous
chapter will be used for the analysis.

7.1 Introduction
It has been observed that distant cortical regions in the human brain without direct
neural links also experience functional correlations [92]. This motivates researchers
to study an interesting behavior dubbed remote synchronization. Unlike what has
been pointed out in most findings that the coupling strengths in a network are critical
for synchronization of coupled oscillators [104,144,149], a recent article reveals that
morphological symmetry is crucial for remote synchronization [96]. Some nodes
located distantly in a network can mirror their functionality between each other. In
other words, theoretically, swapping the positions of these nodes will not change the
functioning of the overall system.

A star network is a simple paradigm for such networks with morphologically
symmetric properties. The peripheral nodes have no direct connection, but obviously
play similar roles in the whole network. The node at the center acts as a relay or
mediator. As an example, the thalamus is such a relay in neural networks, and it
is believed to enable separated cortical areas to be completely synchronized [94,95].
This observation of robust correlated behavior taking place in distant cortical regions
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through relaying motivates us to study the stability of remote synchronization in
star networks in this chapter. A star network is simple in structure, but capable
of characterizing some basic features of remote synchronization, and also provides
some idea to understand this phenomenon in more complex networks. Different
from [178], we use Kuramoto-Sakaguchi model [63] to describe the dynamics of
coupled oscillators in this chapter, and analytically study the stability of remote
synchronization. Different from classic the Kuramoto model, there is an additional
phase shift term in Kuramoto-Sakaguchi one. This phase shift is usually used to
model time delays [89], e.g., synaptic connection delays [93].

The remainder of this chapter is structured as follows. We first consider that the
oscillators are coupled by a general directed star graph in Section 7.2. We reveal
that the symmetry of outgoing connections from the central oscillator is crucial to
shaping different clusters of remote synchronization. On the other hand, the coupling
strengths of incoming links to the central oscillator are not required to be symmetric.
In Section 7.3, we obtain some sufficient conditions for remote synchronization in star
networks with/without the presence of a phase shift. By comparing these conditions,
we find that the presence of a phase shift raises the requirement for the coupling
strengths to ensure stable remote synchronization. In Section 7.4, we consider a
simpler network motif, i.e., a star network with 2 peripheral nodes. This network has
been shown to give rise to isochronous synchronization in delay-coupled semiconductor
lasers [179], zero-lag synchronization in remote cortical regions of the brain [94]. We
introduce a natural frequency detuning to the central oscillator, and investigate how
it can actually enhance remote synchronization, making it robust against phase shifts.

7.2 Problem Formulation

Synchronization of distant cortical regions having no direct links has been observed in
the human brain. The emergence of this phenomenon is sometimes due to a mediator
or relay that connecting separated regions, e.g., the thalamus [95]. Motivated by this,
we study remote synchronization by considering n + 1, n ≥ 2, oscillators, coupled
by a star network, which are labeled by 0, 1, . . . , n. Let N = {1, . . . , n} be the set
of indices of the peripheral oscillators. The central mediator is labeled by 0. The
dynamics of each oscillator are described by

θ̇0 = ω0 +
n∑
i=1

Ki sin(θi − θ0 − α), (7.1a)

θ̇i = ω +Ai sin(θ0 − θi − α), i = 1, 2, . . . , n, (7.1b)
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where θi ∈ S1 is the phase of the ith oscillator, and ω0 and ω are the natural frequencies
of the central and peripheral oscillators, respectively. Here Ki > 0 is the coupling
strength from the peripheral node i to the central node 0 (for which we refer to as
incoming (with respect to 0) coupling strengths), and Ai > 0 presents the directed
coupling strength from the central node 0 and the peripheral node i (for which we
refer to as outgoing (with respect to 0) coupling strengths). It is worth mentioning
that incoming and outgoing couplings are allowed to be different, which means that
the underlying star network, denoted by G, is directed. The term α is the phase
shift satisfying α ∈ [0, π/2). In the star network considered in this chapter, remote
synchronization is the situation where some of the peripheral oscillators are phase
synchronized, while the phase of the central mediator 0 connecting them is different.
We define remote synchronization formally as follows.

Definition 7.1. Let θ(t) = [θ0(t), . . . , θn(t)]> ∈ Sn+1 be a solution to the system
dynamics (7.1). Let R be a subset of N, whose cardinality satisfies 2 ≤ |R| ≤ n. We
say that the solution θ(t) is remotely synchronized with respect to R if for every pair
of indices i, j ∈ R it holds that θi(t) = θj(t) for all t ≥ 0, but it is not required that
θi(t) = θ0(t).

When R ⊂ N, we say that θ(t) is partially remotely synchronized; in particular,
when R = N, we say that θ(t) is completely remotely synchronized, for which situation
we refer to as remote synchronization for brevity in what follows. A particular case of
partially remotely synchronized solution is remote cluster synchronization, which is
defined as follows.

Definition 7.2. Let C = {C1, . . . , Cm}, 2 ≤ m < n be a partition of N. The sets
C1, . . . , Cm are non-overlapping and satisfy 1 ≤ |Cp| < n for all p and ∪mp=1Cp = N. A
partially remotely synchronized solution θ(t) to the system dynamics (7.1) is said to
be remotely clustered with respect to C if: for any given Cp and every pair i, j ∈ Cp
there holds that θi(t) = θj(t),∀t ≥ 0; on the other hand, for any given i ∈ Cp, j ∈ Cq
where p 6= q, θi(t) 6= θj(t).

Note that the trivial case when a cluster has only one oscillator is allowed. In
fact, remote synchronization behavior for the network (7.1) can be categorized into
two depending on being phase locked or not. Phase locking is a phenomenon where
every pairwise phase difference is a constant, θi − θj = ci,j , ∀i, j (the phenomenon
when ci,j = 0, ∀i, j is especially called phase synchronization). Phase locking is also
called frequency synchronization because this is equivalent to that the frequencies
of all oscillators are synchronized, θ̇1 = · · · = θ̇n. In remote synchronization, the
frequency of the central oscillator, θ̇0, is allowed to be different from the peripheral
ones, θ̇1, . . . , θ̇n.
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In Section 7.3, we exclusively study (partial) remote synchronization when the
frequencies of all the oscillators in the network are synchronized, i.e., θ̇0(t) = θ̇1(t) =
· · · = θ̇n(t) = ωsyn for some ωsyn ∈ R. For a given r ∈ S1 and an angle γ ∈ [0, 2π], let
rotγ(r) be the rotation of r counter-clockwise by the angle γ. For θ ∈ Sn, we define
an equivalence class Rot(θ) := {[rotγ(θ1), . . . , rotγ(θn)]> : γ ∈ [0, 2π]}. Let θ∗ be a
solution to the equations

ω0 − ωi −
n∑
j=1

Ki sin(θj − θ0 − α)−Ai sin(θ0 − θi − α) = 0, (7.2)

for i = 1, 2, . . . , n, which is a solution such that phase synchronization is reached. It is
not hard to see that [rotγ(θ∗1), . . . , rotγ(θ∗n)]> for any γ ∈ [0, 2π] is also a solution to
the equations. Consequently, the set Rot(θ∗) is said to be a synchronization manifold
for the dynamics (7.1) [78]. As an extension of the definition of the synchronization
manifold in [152], we call Rot(θ∗) (partial) phase locked remote synchronization
manifold if there exists a set (R ⊂ N) R = N such that θ∗i = θ∗j for any pair i, j ∈ R.
In order to study the stability of the (partial) phase locked remote synchronization
manifold, it suffices to study the stability of θ∗.

In the next section, we investigate how the phase shift affects phase locked
remote synchronization in star networks. We start with the assumption that there
is no phase shift in Section 7.3.1. The local stability of the remote and cluster
synchronization manifolds is studied. In Section 7.3.2, we consider there is a phase
shift α and investigate the influence of this phase shift on the stability of the remote
synchronization manifold.

7.3 Effects of Phase Shifts on Remote Synchroniza-
tion

7.3.1 Without a Phase Shift
In this subsection, we consider the case when there is no phase shift, i.e., α = 0.
We investigate how partial and complete remote synchronization in star networks
are formed. We show the important roles that the symmetric outgoing couplings
quantified by Ai play in enabling synchronization among oscillators that are not
directly connected.

To proceed, define xi = θ0 − θi for i = 1, 2 . . . , n. Then the time derivative of xi
is given by

ẋi = ω0 − ω −
n∑
j=1

Ki sin(θ0 − θj)−Ai sin(θ0 − θi). (7.3)
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Let x = [x1, x2, . . . , xn]> ∈ Sn,ω = (ω0−ω)1n, and sinx = [sin x1, . . . , sin xn]>, then
the dynamics (7.3) can be represented in a compact form as follows

ẋ = ω − T sinx := f(x), (7.4)

where f(x) = [f1(x), . . . , fn(x)]> and

T =


A1 +K1 K2 · · · Kn

K1 A2 +K2 · · · Kn

...
...

. . .
...

K1 K2 · · · An +Kn

 . (7.5)

Let x∗ be an equilibrium of (7.4), if it exists, i.e., f(x∗) = 0. From the definition of x,
we observe that x∗ corresponds to a (partial) remote synchronization manifold if there
exists a set (R ⊂ N) R = N such that for any i, j ∈ R, x∗i = x∗j . In what follows, we
show under what conditions on the coupling strengths the equilibrium x∗ exists and
some (all) of its elements are identical, which gives rise to the corresponding (partial)
phase locked remote synchronization of the model (7.1). Towards this end, let us first
make an assumption.

Assumption 7.1. We assume that the coupling strengths satisfy the following in-
equality

Ai ≥ (n− 1)Ki, ∀i ∈ N, (7.6)

and the corresponding matrix T , given by (7.5), satisfies

‖T−1ω‖∞ < 1. (7.7)

Assumption 7.1 suggests that the strengths of outgoing couplings are much greater
than that of incoming ones. By observing that for any i it holds that

Ai +Ki − (n− 1)Ki ≥ (n− 1)Ki +Ki − (n− 1)Ki = Ki > 0,

we know that the matrix T is column diagonally dominant. By Gershgorin circle
theorem [180, Sec. 6.2], one knows all the eigenvalues of T> have positive real parts,
which also means that all the eigenvalues of T lie on the right half plane. Thus T is
invertible. We are now at a position to present our main result in this section.

Theorem 7.1. Under Assumption 7.1, there exists a unique locally asymptotically
stable equilibrium x∗ satisfying |x∗i | ∈ [0, π/2) for all i ∈ N for the dynamics (7.3),
which is

x∗ = arcsin(T−1ω). (7.8)
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In addition, if there is a pair of distinct i, j ∈ N such that Ai = Aj, then x∗i = x∗j .
This x∗ corresponds to a partial phase locked remote synchronization manifold, denoted
by Rot(θ∗), for the dynamics (7.1), which implies oscillators i and j are remotely
synchronized.

Proof. We first show the existence of the equilibrium point x∗ satisfying |x∗i | ∈ [0, π/2]
for all i ∈ N. To obtain the equilibrium point x∗, we then solve ω − T sinx = 0,
i.e., sinx = T−1ω. From the hypothesis (7.7), one knows that there exists a unique
solution to this equation in [0, π/2), which is x∗ = arcsin(T−1ω).

We next show the stability of this equilibrium by linearization. Towards this end,
we calculate the Jacobian matrix

J (x∗) = −


∂
∂x1

f1 · · · ∂
∂xn

f1
...

. . .
...

∂
∂x1

fn · · · ∂
∂xn

fn


∣∣∣∣∣∣∣
x=x∗

= −T diag (cosx∗1, . . . , cosx∗n) . (7.9)

Since x∗ satisfies |x∗i | ∈ [0, π/2) for all i ∈ N, cosx∗i > 0 for all i ∈ N. Recalling
that the matrix T is column diagonally dominant, by post-multiplying the positive
diagonal matrix D := diag (cosx∗1, . . . , cosx∗n) on T , the matrix TD is also column
diagonally dominant since every column is just scaled by a positive number. It follows
from Gershgorin circle theorem that all the eigenvalues of TD have positive real
parts, which means all the eigenvalues of J(x∗) have negative real parts. Then the
equilibrium x∗i is locally asymptotically stable.

Finally, we show x∗i = x∗j if the hypothesis Ai = Aj is satisfied. It is sufficient to
show sin x∗i = sin x∗j , since |x∗i | < π/2 for all i. Let ei be the ith column of the identity
matrix In of order n. It is equivalent to show (e>i − e>j )sinx∗ = 0. We observe that

(e>i − e>j )T = Aie
>
i −Aje>j .

If Ai = Aj , it follows straightforwardly that (e>i − e>j )T = Ai(e>i − e>j ). By post-
multiplying T−1 on both sides of this equation, we obtain (e>i −e>j )T−1 = (e>i −e>j )/Ai.
From (7.8) we know sinx∗ = T−1(ω0 − ω)1n. It then follows that

(e>i − e>j )sinx∗ = (e>i − e>j )T−1(ω0 − ω)1n

= ω0 − ω
Ai

(e>i − e>j )1n = 0.

Then one can conclude that if Assumption 7.1 and the hypothesis Ai = Aj are
satisfied, the partial phase locked remote synchronization manifold Rot(θ∗), in which
θ∗i = θ∗j , is locally asymptotically stable.
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Theorem 7.1 shows that the outgoing couplings Ai play essential roles in facilitating
remote synchronization. Oscillators that are not directed connected can get phase
synchronized just because the directed connections from the central mediator towards
them are identical. Authors in [96] show that symmetries in undirected networks are
important for remote synchronization. In contrast, we take directions of the couplings
into consideration, and show that only the outgoing couplings matter. In order to make
two oscillators, say i and j, synchronized, it is not required that the incoming couplings
Ki and Kj to be identical. It can be intuitively paraphrased that the mediator at the
central position is able to render the oscillators around it synchronized by imposing a
common input to them, without requiring the feedback coming back to be identical.
This finding shares some similarities with the common-noise-induced synchronization
investigated by researchers in physics [181–183]. However, we study network-coupled,
not isolated, oscillators and derive conditions on the network to enable synchronization
between separated oscillators.

What is worth mentioning, by carefully manipulating the symmetry of the cou-
plings originated from the central node 0, not only synchronization among distant
oscillators can be facilitated, but also unnecessary synchronization can be easily
prevented. Moreover, interesting patterns of remote synchronization, such as cluster
synchronization, can occur. The following corollary provides some sufficient conditions
for the existence and stability of remote and cluster synchronization manifold, which
follows from Theorem 7.1 straightforwardly.

Corollary 7.1. Under Assumption 7.1, there is a locally asymptotically stable remote
synchronization manifold for the dynamics (7.1), i.e., in which the solution θ(t) is
completely remotely synchronized, if Ai = Aj for every pair i, j ∈ N; there is a locally
asymptotically stable partial remote synchronization manifold for the dynamics (7.1),
in which the solution θ(t) is remotely clustered with respect to C, if there is a partition
of N, denote by C = {C1, . . . , Cm}, satisfying |Cp| ≥ 2 and ∪mp=1Cp = N such that: for
any given Cp and every pair i, j ∈ Cp it holds that Ai = Aj; on the other hand, for
any given i ∈ Cp, j ∈ Cq where p 6= q, Ai 6= Aj.

In the next subsection, we consider the case where there is a phase shift (or
phase lag) term α. The model with the presence of a phase shift is known as the
Kuramoto-Sakaguchi model [63].

7.3.2 With a Phase Shift

In this section, we consider that there is a phase shift α ∈ (0, π/2). By introducing a
phase shift term, it allows the oscillators to get synchronized at a frequency that differs
from the simple average of their natural frequencies [184]. This phenomenon has
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always been observed in many biological systems such as the mammalian intestine and
heart cells [185]. Moreover, in neural networks the phase shift α is often used to model
delays concerning synaptic connections [93]. To study the remote synchronization
of our interest, we simplified the problem by assuming that Ai = A and Ki = A/n

for all i. Note that this simplification ensures that the direction of the network is
preserved and the condition (7.6) is satisfied, which guarantees the property that the
outgoing couplings are much stronger than the incoming ones. Consequently, the
dynamics (7.1) become

θ̇0 = ω0 + A

n

n∑
i=1

sin(θi − θ0 − α);

θ̇i = ω +A sin(θ0 − θi − α), i = 1, 2, . . . , n, (7.10)

Conditions on the coupling strength A are subsequently obtained to ensure that
the dynamics (7.10) admit a locally asymptotically stable remote synchronization
manifold. We investigate how these conditions depend on the phase shift α. As
frequency synchronization is the footstone for the analysis that follows, let us provide
the necessary condition for the existence of a frequency synchronized solution to (7.10)
and see how it depends on the phase shift α.

Proposition 7.1. There is a frequency synchronized solution to the dynamics (7.10)
only if

A ≥ 1
2 cosα |ω0 − ω|.

Proof. We prove this necessary condition by contradiction. We assume that A <

|ω0 − ω|/2 cosα and there is a frequency synchronized solution θ∗ ∈ Sn. The time
derivative of θ0 −

∑n
i=1 θi/n is given by

θ̇0 −
1
n

n∑
i=1

θ̇i = ω0 − ω + A

n

n∑
i=1

sin(θi − θ0 − α)− A

n

n∑
i=1

sin(θ0 − θi − α)

= ω0 − ω + 2A
n

n∑
i=1

sin (θi − θ0) cosα.

Recalling the hypothesis that there is a frequency synchronized solution θ∗, the
right-hand side of this equation satisfies

ω0 − ω + 2A
n

n∑
i=1

sin (θ∗i − θ0) cosα = 0.

It follows that |
∑n
i=1 sin (θ∗i − θ∗0)| = n|ω0−ω|/2A cosα > n since A < |ω0−ω|/2 cosα.

As | sin x| ≤ 1 for any x ∈ S1, one knows such a θ∗ does not exist, which is a
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contradiction. Then it can be concluded that there is a frequency synchronized
solution to the dynamics (7.10) only if A ≥ |ω0 − ω|/2 cosα, which completes the
proof.

We observe that when α = 0, this necessary condition reduces to A ≥ |ω0 − ω|/2.
Obviously, the existence of the phase shift raises the requirement for the coupling
strength A. Next, we show the sufficient conditions on A such that there is a locally
asymptotically stable remote synchronization manifold for (7.10). Towards this end,
let yi = (θ0 − θi)/2, yi ∈ S1 for i = 1, 2 . . . , n. The time derivative of yi is

ẏi =1
2(ω0 − ω) + A

2n

n∑
j=1

sin(θj − θ0 − α)− 1
2A sin(θ0 − θi − α)

=1
2(ω0 − ω)− A

2n

n∑
j=1

sin(2yj + α)− 1
2A sin(2yi − α) := gi(y), i = 1, 2, . . . , n.

(7.11)

where y = [y1, . . . , yn]> and g(y) = [g1(y), . . . , gn(y)]>. Let us provide the main result
in this section.

Theorem 7.2. There is a unique locally asymptotically stable equilibrium y∗ for the
dynamics (7.11) satisfying |y∗i | < π/4 for all i, which is

y∗ = 1
2 arcsin

(
ω0 − ω

2A cosα

)
1n, (7.12)

if the following conditions are satisfied, respectively:

i) when ω0 > ω, the coupling strength A satisfies

A >
ω0 − ω
2 cosα ; (7.13)

ii) when ω0 < ω, the coupling strength A satisfies

A >
ω − ω0

2 cos2 α
. (7.14)

This locally asymptotically stable equilibrium y∗ for the dynamics (7.11) corresponds
to the locally asymptotically stable remote synchronization manifold for (7.10).

Proof. We first show the existence of the equilibrium y∗. We observe that

A

2n

n∑
j=1

sin(2yj + α)+1
2A sin(2yi − α) =

A

n

n∑
j=1

sin(yj + yi) cos(yj − yi + α).
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It is equivalent to check whether there is a solution y, which satisfies yi = yj for all
i, j, to the equation g(y) = 0. To do this, we have

1
2(ω0 − ω)−A sin 2yi cosα = 0. (7.15)

Recalling the hypotheses (7.13) and (7.14) both suggesting that A > (ω0 − ω)/2 cosα,
it is obvious that this equation has a unique solution in [0, π/4), which is

y∗i = 1
2 arcsin

(
ω0 − ω

2A cosα

)
,

then (7.12) follows.
Next, we prove the stability of y∗. To do this, we lineariz the model (7.11) at this

equilibrium. Let J(y) = [Jij ] ∈ Rn×n be the Jacobian Matrix, whose elements are
expressed by

Jii = ∂gi
∂yi

= −A
n

cos(2yi + α)−A cos(2yi − α),

Jij = ∂gi
∂yj

= −A
n

cos(2yi + α).

We then show the Jacobian Matrix J(y) evaluated at the equilibrium y∗ is row
diagonally dominant in both cases of i) and ii) if the conditions (7.13) and (7.14) are
satisfied, respectively. We first study the case when ω0 > ω. If condition (7.13) is
satisfied, it follows that 0 < 2y∗n < π/2, which implies that −π/2 < 2y∗n − α < π/2.
Then it holds that cos(2y∗i − α) > 0. We calculate

|Jii| −

∣∣∣∣∣∣
n∑

j=1,j 6=i
Jij

∣∣∣∣∣∣ =A cos(2y∗i − α) + A

n
|cos(2y∗i + α)|

− (n− 1)A
n

|cos(2y∗i + α)|

= 2A
n

cos(2y∗i − α) + (n− 2)A
n

(cos(2y∗i − α)− |cos(2y∗i + α)|) . (7.16)

If cos(2y∗i + α) > 0, then

cos(2y∗i − α)− |cos(2y∗i + α)|
= cos(2y∗i − α)− cos(2y∗i + α) = 2 sin 2y∗ sinα > 0.

On the other hand, if cos(2y∗i + α) < 0, then

cos(2y∗i − α)− |cos(2y∗i + α)|
= cos(2y∗i − α) + cos(2y∗i + α) = 2 cos 2y∗i cosα > 0.
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Consequently, from (7.16) it is easy to see |Jii| −
∣∣∣∑n

j=1,j 6=i Jij

∣∣∣ > 0. Then the
Jacobian matrix J(y∗) is row diagonally dominant. Since the diagonal elements
Jii < 0, one knows that all the eigenvalues of J(y∗) have negative real parts. The
equilibrium of y∗ is locally asymptotically stable. Finally, we consider the case when
ω0 < ω. Recalling that if condition (7.14) is satisfied, it holds that

ω0 − ω
2A cosα > cosα = − sin(−π/2 + α). (7.17)

Since −1 < − sin(π/2 − α) < 0, (ω0 − ω)/2A cosα < 0 and arcsin is monotonically
increasing in [−1, 0], it follows that

arcsin(−π/2 + α) < arcsin
(
ω0 − ω

2A cosα

)
< 0.

Then it is obvious that −π/2 + α < 2y∗i < 0, which implies that π/2 < 2y∗i − α < 0.
It is easy to see that cos(2y∗i − α) > 0. Following the same steps as the case when
ω0 > ω, one can show that the Jacobian matrix J(y∗) is diagonally dominant, which
implies that the equilibrium of y∗ is locally asymptotically stable.

Theorem 7.2 provides some sufficient conditions for the existence and local stability
of the equilibrium of dynamics (7.11), or equivalently, for the existence and local
stability of remote synchronization manifold of (7.10). With the presence of the phase
shift α, the requirement of coupling strengths is increased. In fact, the larger the
phase shift is, the stronger the coupling is raised, which can be observed from (7.13)
and (7.14). Interestingly, comparing (7.14) with (7.13) we observe that the phase
shift has a different impact on the coupling strength in the two cases when ω0 > ω

and ω0 < ω. The latter case is more vulnerable to the phase shift.

7.3.3 Numerical Examples
To validate the results we obtained in Subsection 7.3.1 and 7.3.2, we perform some
numerical studies in this section. We consider 7 oscillators coupled by a directed star
network illustrated in Fig. 7.1. To measure the levels of synchronization we introduce
the two useful functions as follows,

h1(θ(t)) = max
i,j∈N

|θi(t)− θj(t)|,

h2(θ(t)) = max
i∈N
|θ0(t)− θi(t)|,

If h2 = 0, the phase difference between any peripheral oscillator and the central one is
zero, which implies complete synchronization in the whole network. In particular, if
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Figure 7.1: The considered star network: central node 0 and peripheral ones
{1, 2, 3, 4, 5, 6}.
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Figure 7.2: Trajectories of the maximum absolute values of the phase differences when
α = 0: blue represents h1 = maxi,j∈N |θi−θj | and red represents h2 = maxi∈N |θ0−θi|.

h1 = 0, h2 6= 0, all the phases of peripheral oscillators are identical remaining central
one different, which yields remote synchronization.

We first testify the results obtain in Theorem 7.1. To distinguish the frequencies,
let the frequency of each peripheral oscillator be ω = 0.8π, and the natural frequency
of the central one be ω0 = 1.5π. In order to make complete remote synchronization
occur, we let Ai = 1.4 for all i = 1, 2, . . . , 6, and let K1 = 0.3,K2 = 0.25,K3 =
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(a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 2

(e) t = 4 (f) t = 8

Figure 7.3: The phases on S1 at six time instants when α = 0: black represents the
central oscillator 0; blue represents oscillators 1 and 4; green represents 2 and 5; red
represents 3 and 6.

0.4,K4 = 0.18,K5 = 0.2,K6 = 0.25. Then the matrix T becomes

T =



1.55 0.12 0.2 0.18 0.2 0.14
0.15 1.52 0.2 0.18 0.2 0.14
0.15 0.12 1.6 0.18 0.2 0.14
0.15 0.12 0.2 1.58 0.2 0.14
0.15 0.12 0.2 0.18 1.6 0.14
0.15 0.12 0.2 0.18 0.2 1.54


.

It can be verified that T is diagonal dominated and |T−1ω| = 0.9201 < 1, i.e. condi-
tions in Assumption 7.1 are satisfied. Let the initial phases be θ(0) = [1.3π, 1.2π, 1.15π,
0.9π, 1.2π, 1.0π, 1.11π]>, and then the trajectories of h1(θ(t)) and h2(θ(t)) are pre-
sented in Fig. 7.2. It can be observed that h1(θ(t)) converges to zero, while h2(θ(t))
converges to a constant, suggesting that the peripheral oscillators which are not directly
connected achieve phase synchronization, but the ones that have direct connections (the
central one with each peripheral one) do not. Next, we show that cluster synchroniza-
tion is formed if the conditions in Corollary 7.1 are satisfied. Let the outgoing coupling
strengths be A1 = A4 = 2.1, A2 = A5 = 2.8, A3 = A6 = 4.2, and let the incoming cou-
pling strength be the same as considered above. One can also check Assumption 7.1 is
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(a) ω0 < ω,A = 1.6π
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(b) ω0 < ω,A = π
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(c) ω0 > ω,A = 0.8π
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(d) ω0 > ω,A = 0.4π

Figure 7.4: Trajectories of the maximum absolute values of the phase differences
when α = π/3: blue represents h1 = maxi,j∈N |θi − θj | and red represents h2 =
maxi∈N |θ0 − θi|.

satisfied since |T−1ω| = 0.7743 < 1. Let θ(0) = [1.3π, 0.2π, 0.6π, 1π, 1.4π, 1.8π, 2π]>,
and the phases of the oscillators are plotted on the unit circle S1 at a sequence of time
instants (see Fig. 7.3). One can observe that the peripheral oscillators with the same
outgoing strength Ai get phase synchronized, forming three clusters (in each of which
phases are different from the central one’s). This suggests that the symmetry of the
outgoing couplings of the peripheral oscillators plays an essential role in facilitating
remote synchronization.

Next, we validate the results in Subsection 7.3.2, where there is a phase shift α.
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Without loss of generality, let α = π/3. First, we consider the case when ω0 < ω. Let
the frequency of each peripheral oscillator be ω = 0.8π, and the natural frequency of
the central one be ω0 = 0.1π. From the condition (7.14), we calculate the threshold of
the coupling strength A, which is (ω−ω0)/2 cos2 α = 1.4π. Let A = 1.6π > 1.4π, and
we plot the absolution value of phase differences h1(θ(t)) and h2(θ(t)) in Fig 7.4(a),
from which we observe that remote synchronization is achieved. On the contrary, if we
let A = π, it can be seen from Fig. 7.4(b) that remote synchronization does not occur.
Finally, we consider the case ω0 > ω by letting ω0 = 1.5π, ω = 0.8π. The threshold
given in (7.13) becomes (ω − ω0)/2 cosα = 0.7π. The trajectories of h1(t) and h2(t)
when A = 0.8π and A = 0.4π are presented in Fig. 7.4(c) and 7.4(d), respectively.
Shown is Fig. 7.4(c), remote synchronization is achieved. Surprisingly, one can observe
from Fig. 7.4(d) that the phase differences among peripheral oscillators approach zero,
although the phase differences between the peripheral and the central oscillators are
increasing. This implies remote synchronization can also take place without requiring
that all the frequencies get synchronized.

7.4 How Natural Frequency Detuning Enhances Re-
mote Synchronization

In this section, we apply the results on partial stability analysis to studying remote
synchronization of oscillators. We restrict our attention to remote synchronization in
a simpler network motif shown in Fig. 7.5. Unlike the previous section, we further
assume that this network is undirected. This network is simple, but has been shown to
surprisingly account for the emergence of zero-lag synchronization in remote cortical
regions of the brain, even in the presence of large synaptic conduction delays [94].
Experiments have also evidenced that the same network can give rise to isochronous
synchronization of delay-coupled semiconductor lasers [179]. The central element 0
in this network plays a critical role in meditating or relaying the dynamics of the
peripheral 1 and 2. A recent study reveals that detuning the parameters of the central
element from those of the peripheral ones can actually enhance remote synchronization
[97]. To study this interesting finding analytically, we employ Kuramoto-Sakaguchi
model [63] and detune the natural frequency of the central oscillator.

To investigate the role of natural frequency detuning might play, we make some
slight changes on the model (7.1). We assume that the natural frequency of the
central oscillator is equal to that of the peripheral ones, i.e., ω0 = ω, and introduce a
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0

1

2

Figure 7.5: A simple network motif: central node 0 and peripherals 1 and 2.

detuning to the central oscillator. Then, the dynamics of the oscillators become

θ̇i = ω +Ai sin(θ0 − θi − α), i = 1, 2; (7.18a)

θ̇0 = ω +
2∑
j=1

Aj sin(θj − θ0 − α) + u, (7.18b)

where θi ∈ S1 is the phase of the ith oscillator; ω > 0 is the uniform natural frequency
of each oscillator; Ai > 0 is the coupling strength between the central node 0 and the
peripheral node i; α ∈ (0, π/2) is the phase shift; and u > 0 is the natural frequency
detuning. Let θ = (θ0, θ1, θ2)> ∈ S3. To study the remote synchronization in our
considered network, we define a remote synchronization manifold as follows.

Definition 7.3 (Remote Synchronization Manifold). The remote synchronization
manifold is defined by

M :=
{
θ ∈ S3 : θ1 = θ2

}
.

A solution θ(t) to (7.18) is said to be remotely synchronized if it holds that
θ(t) ∈ M for all t ≥ 0. It is shown in [96] that network symmetries are critical to
give rise to remote synchronization. In our considered network in Fig. 7.5, we say
oscillators 1 and 2 are symmetric if A1 = A2. It can be observed that the requirement
A1 = A2 is necessary for the system (7.18) to have a remote synchronized solution
since the equation

θ̇1 − θ̇2 = A1 sin(θ0 − θ1 − α)−A2 sin(θ0 − θ2 − α) = 0

has a solution θ1 = θ2 only if A1 = A2. Therefore, we assume that the coupling
strengths satisfy

A1 = A2 = A. (7.19)

Therefore, the network in Fig. 7.5 is the simplest symmetric network. In what follows,
we study the exponential stability of the remote synchronization manifoldM under
assumption (7.19).
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Define a δ-neighborhood ofM by Uδ = {θ ∈ S3 : dist(θ,M) < δ}, where dist(θ,M)
is the minimum distance from θ to a point onM, that is, dist(θ,M) = infy∈M ‖θ−y‖.
Let us define the exponential stability of the remote synchronization manifoldM.

Definition 7.4. For the system (7.18), the remote synchronization manifoldM is
said to be exponentially stable along the system (7.18) if there is δ > 0 such that for
any initial phase θ(0) ∈ S3 satisfying θ(0) ∈ Uδ it holds that

dist(θ(t),M) = k · dist(θ(0),M) · e−λt, ∀t ≥ 0,

where k > 0 and λ > 0.

Recall that remote synchronization behavior can be categorized into two depending
on being phase locked or not. The frequency of the central oscillator, θ̇0, is allowed to
be different from the peripheral ones, θ̇1, θ̇2. It is clear that for the system (7.18), if
the network is phase locked, it is remotely synchronized. However, the converse is
not always true. We will study these two categories of remote synchronization in the
next two subsections, where we assume u = 0 and u 6= 0, respectively, to reveal the
role that the natural frequency detuning u plays. The phase locked case is relatively
easy to analyze as demonstrated in the next subsection. In contrast, the analysis of
the other case is technically involved, but is possible thanks to our results on partial
stability established in the previous section.

7.4.1 Natural frequency detuning u = 0
In this subsection, we assume that the natural frequency detuning u = 0. As we
will see later, only the phase locked remote synchronization can appear stably. The
Linearization method is sufficient to show the stability of the remote synchronization
manifold M. For any α ∈ (0, π/2), there always exists a remotely synchronized
solution to (7.18) that is phase locked. To show this, let xi := θ0 − θi for i = 1, 2.
The time derivative of xi is

ẋi =
2∑
j=1

A sin(−xj − α)−A sin(xi − α). (7.20)

Any remotely synchronized solution satisfies x1 = x2. Solving the equation ẋi = 0
with x1 = x2 we obtain two isolated equilibrium points of the system (7.20) in the
interval [0, 2π]: 1) x∗1 = x∗2 = c(α); 2) x∗1 = x∗2 = c′(α), where

c(α) = − arctan
(

sinα
3 cosα

)
, c′(α) = π + c(α). (7.21)
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Note that other equilibrium points outside of [0, 2π] are equivalent to these two,
and it is thus sufficient to only consider them. Any solution satisfies θ1(t) = θ2(t)
and θ0(t) − θ1(t) = c′(α) (or θ0(t) − θ1(t) = c(α)) is a phase locked and remotely
synchronized solution. To capture this type of remote synchronization, we define
M1 := {θ ∈ M : θ0 − θ1 = c(α)}, M′1 := {θ ∈ M : θ0 − θ1 = c′(α)}, and refer to
them as the phase locked remote synchronization manifolds. It is not hard to see
that they are two positively invariant manifolds of the system (7.18). We show in
the following theorem that M′1 is always unstable, and the phase shift α plays an
essential role in determining the stability ofM1.

Theorem 7.3. Assume that (7.19) is satisfied. For any A, the following statements
hold:

1. if α < arctan
(√

3
)
, there exists a unique exponentially stable remote synchro-

nization manifold inM, that isM1;

2. if α > arctan
(√

3
)
, there does not exist an exponentially stable remote synchro-

nization manifold inM .

Proof. We prove this theorem by two steps. We first demonstrate that M1 and
M′1 are the only two positively invariant manifolds inM for any α by proving that
starting from any point in M/M′1, the solution to (7.18), θ(t), converges to M1
asymptotically. Then, we investigate the stability of M1 and M′1 under different
assumptions of α.

We start with the first step. When θ ∈M, there holds that x1 = x2. Then, the
dynamics of x1 and x2 are described by

ẋi = −2A sin(xi + α)−A sin(xi − α). (7.22)

Note that x2 has the same dynamics of x1, and it is thus sufficient to only investigate
the asymptotic behavior of x1. For any initial condition θ(0) ∈M/M′1, there hold
that θ1(0) = θ2(0) and θ0(0)− θ1(0) ∈ (−π, π + c(α)) ∪ (π + c(α), π), which means
x1(0) = x2(0) and x1(0) ∈ (−π, π+c(α))∪(π+c(α), π). When x1(0) ∈ (−π, π+c(α)),
we choose V1 = 1

2 (x1 − c(α))2 as a Lyapunov candidate. Its time derivative is
V̇1 = −A(x1 − c(α))

(
2 sin(xi + α) + sin(xi − α)

)
, which satisfies V̇ < 0 for any

x1 ∈ (−π, π + c(α)) and V̇ = 0 if x1 = c(α). Thus, starting from (−π, π + c(α)),
x1(t) converges to c(α) asymptotically. When x1(0) ∈ (π + c(α), π), we choose
V1 = 1

2 (x1 − 2π − c(α))2 as a Lyapunov candidate. Likewise, one can show starting
from (π+c(α), π), x1(t) converges to 2π+c(α) asymptotically. Since c(α) and 2π+c(α)
represent the same point on S1, the two equilibrium points of (7.22), x1 = x2 = c(α)
and x1 = x2 = 2π+ c(α), correspond to the same manifoldM1 of θ ∈ S3. Then, there
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is no positively invariant manifolds inM other thanM1 andM′1, since starting from
any point inM/M′1, θ(t) converges toM1.

Second, it remains to study the stability ofM1 andM′1 for different values of α
since they are the only positively invariant manifold inM. The Jacobian matrix of
(7.20) evaluated at the x = (x1, x2)> is

J(x) = −A
[

cos (x1 + α) + cos (x1 − α) cos (x2 + α)
cos (x1 + α) cos (x2 + α) + cos (x2 − α)

]
.

If α < arctan(
√

3), all the eigenvalues of J(c(α)) is negative, which proves thatM1
is exponentially stable; on the other hand, J(π + c(α)) has a positive eigenvalue,
which means M′1 unstable. Then, there is a unique exponentially stable remote
synchronization manifold, that isM1. Following similar lines, one can show bothM1
andM′1 are unstable if α < arctan(

√
3), which proves 2). This implies the remote

synchronization manifoldM is unstable if α > arctan(
√

3).

Consistent with the findings in [94] and [179], remote synchronization emerges
thanks to the central mediating oscillator, and it is exponentially stable for a wide
range of phase shift, i.e., α ∈ (0, arctan(

√
3)). Nevertheless, an even larger phase shift

α out of this range can destabilize the remote synchronization. In the next subsection,
we detune the natural frequency of the central oscillator by letting u 6= 0, which is
similar to the introduction of parameter impurity in [97], and show how a sufficiently
large natural frequency detuning can lead to robust remote synchronization that is
exponential stable for any phase shift α ∈ (0, π/2).

7.4.2 Natural frequency detuning u 6= 0
In this subsection, we consider the case when the natural frequency detuning u > 0,
and show how it can give rise to robust remote synchronization.

Note that if u > 3A, there does not exist a phase locked solution to (7.18). This is
because the equations ẋi = u+

∑2
j=1A sin(−xj − α)−A sin(xi − α) = 0, i = 1, 2, do

not have a solution. Nevertheless, the remote synchronization can still be exponentially
stable for a sufficiently large control input u. In other words, the natural frequency
detuning can actually stabilize the remote synchronization, although it makes phase
locking impossible. In fact, the remote synchronization manifold M as a whole
becomes exponentially stable for any α with this control input. The following is the
main result of this section.

Theorem 7.4. There is a positive constant ρ > 3A such that for any u satisfying
u > ρ, the remote synchronization manifoldM is exponentially stable for the system
(7.18) for any phase shift α ∈ (0, π/2).
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The proof is technically involved and is based on the results on partial stability
established in the previous section. Before providing the proof, we first define some
variables, and associate the remote synchronization manifoldM with an equivalent
set defined on the new variables. We then prove that this set is exponentially stable.
Let us define z1 and z2 by

z1 := 1
2

2∑
j=1

cos(θ0 − θj), (7.23a)

z2 := 1
2

2∑
j=1

sin(θ0 − θj). (7.23b)

Then, it is clear to see z1, z2 ∈ R satisfy |z1| ≤ 1 and |z2| ≤ 1. Note that for any
initial condition θ(0) ∈ S3, the unique solution θ(t) to (7.18) exists for all t ≥ 0. As
a consequence, z1(t) and z2(t) exist for all t ≥ 0. We then define the following unit
circle by using z1 and z2:

L :=
{
z ∈ R2 : z2

1 + z2
2 = 1

}
, (7.24)

where z = (z1, z2)>. In fact, this set L has a strong relation with remote synchroniza-
tion as follows.

Proposition 7.2. LetM and L be defined in Definition 7.3 and (7.24), respectively.
The following two statements are equivalent:

1. θ belongs to the remote synchronization manifoldM.

2. z = (z1, z2)> belongs to the set L.

Proof. From (7.23), the quadratic sum of z1 and z2 is

z2
1 + z2

2 = 1
4

( 2∑
j=1

cos(θ0 − θj)
)2

+ 1
4

( 2∑
j=1

sin(θ0 − θj)
)2
. (7.25)

The right hand side of the equality (7.25) can be simplified to

1
4

( 2∑
j=1

cos(θ0 − θj)
)2

+ 1
4

( 2∑
j=1

sin(θ0 − θj)
)2

= 1
4

2∑
j=1

(
cos2(θ0 − θj) + sin2(θ0 − θj)

)
+ 2

4 cos(θ0 − θ1) cos(θ0 − θ2) + 2
4 sin(θ0 − θ1) sin(θ0 − θ2)

= 1
2 + 1

2 cos(θ1 − θ2), (7.26)
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where the last equality has used the trigonometric identity cos a cos b+ sin a sin b =
cos(a− b). We first prove that 1) implies 2). If θ ∈M, one obtains θ1 = θ2 from the
definition of the remote synchronization manifoldM. It follows from (7.26) that the
right-hand side of (7.25) equals 1. We then prove that 2) implies 1). If z ∈ L, from
(7.26) we obtain 1/2 + 1/2 cos(θ1 − θ2) = 1, which means that cos(θ1 − θ2) = 1. This,
in turn, proves that θ ∈M. The proof is complete.

Proposition 7.2 provides us an alternative way to study remote synchronization.
Any pair of (z1, z2) belongs to L if and only if the corresponding θ ∈ R3 is included in
the remote synchronization manifoldM. If θ1(0) = θ2(0), it can be seen from (7.18)
that θ1(t) = θ2(t) for all t ≥ 0. In other words, z(0) ∈ L implies that z(t) ∈ L for all
t ≥ 0, which means that the set L is a positively invariant set of the system (7.18).
To show the exponential stability of the remote synchronization manifold, it suffices
to show the positively invariant set L is exponentially stable along the system (7.18)
using the distance dist(z,L) = infy∈L ‖z − y‖.

To proceed with the analysis, we represent z1 and z2 in the polar coordinates

z1 = r cos ζ, (7.27)
z2 = r sin ζ, (7.28)

where with (7.23),

r := 1
2

√√√√( 2∑
j=1

cos(θ0 − θj)
)2

+
( 2∑
j=1

sin(θ0 − θj)
)2
, (7.29)

ζ := arctan
(∑2

j=1 sin(θ0 − θj)∑2
j=1 cos(θ0 − θj)

)
. (7.30)

It follows from (7.27) and (7.28) that z2
1(t) + z2

2(t) = r2. Thus, the distance from z(t)
to the circle L, denoted by µ(t) is

µ(t) := dist(z(t),L) = 1− r(t). (7.31)

We first prove a dynamics of µ(t) in (7.31) and ζ(t). Then, remote synchronization
analysis reduced to partial stability analysis of µ(t)

Proposition 7.3. The dynamics of µ(t) in (7.31) and ζ(t) are given by

dµ(t)
dt

= −2A(1− (1− µ)2) cos(ζ − α), (7.32a)

dζ(t)
dt

= u−A(1− µ)
(
2 sin(ζ + α) + sin(ζ − α)

)
, (7.32b)

where µ(t) ∈ [0, 1] and ζ(t) ∈ R.
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Proof. The expression of r in (7.29) can be simplified as

r = 1
2
√

2 + 2 cos(θ1 − θ2) =
√

cos2 θ1 − θ2

2 , (7.33)

and then the time derivative of µ(t) satisfies

dµ(t)
dt

= −dr(t)
dt

= − 1
4r sin(θ1 − θ2)(θ̇1 − θ̇2). (7.34)

It follows from (7.18a) that

θ̇1 − θ̇2 = A sin(θ0 − θ1 − α)−A sin(θ0 − θ2 − α)

= −2A sin
(
θ1 − θ2

2

)
cos
(
θ0 −

θ1 + θ2

2 − α
)
.

Substituting this expression of θ̇1 − θ̇2 into (7.34) yields

dµ(t)
dt

=−A sin2
(
θ1 − θ2

2

)
× cos

(
θ1 − θ2

2

)
cos
(
θ0 −

θ1 + θ2

2 − α
)

=−A sin2
(
θ1 − θ2

2

) 2∑
j=1

cos(θ0 − θj − α). (7.35)

We further observe that
2∑
j=1

cos(θ0 − θj − α)

= cosα
2∑
j=1

cos(θ0 − θj) + sinα
2∑
j=1

sin(θ0 − θj)

= 2 cosα cos ζ + 2 sinα sin ζ = 2 cos(ζ − α), (7.36)

where the second last equality follows from (7.27) and (7.28). Substituting (7.33) and
(7.36) into (7.35) one obtains

dµ(t)
dt

= −2A(1− (1− µ)2) cos(ζ − α),

which is nothing but (7.31).
We next derive the time derivative of ζ(t) given in (7.30). It holds that ζ =

arctan(z2/z1), and then the time derivative of ζ satisfies

dζ(t)
dt

= 1
z2

1 + z2
2

(z1ż2 − z2ż1). (7.37)
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It follows from (7.27) and (7.28) that

z1ż2 − z2ż1

= 1
4

2∑
j=1

cos(θ0 − θj)
( 2∑
j=1

cos(θ0 − θj) · (θ̇0 − θ̇j)
)

+ 1
4

2∑
j=1

sin(θ0 − θj)
( 2∑
j=1

sin(θ0 − θj) · (θ̇0 − θ̇j)
)

= 1
4

2∑
j=1

(θ̇0 − θ̇j) + 1
4

2∑
j=1

(
cos(θ0 − θj) cos(θ0 − θ−j)

+ sin(θ0 − θj) sin(θ0 − θ−j)
)
· (θ̇0 − θ̇−j),

where −j is defined in a way so that −j = 2 if j = 1, and −j = 1 otherwise. By using
the trigonometric identity cosβ1 cosβ2 + sin β1 sin β2 = cos(β1 − β2), we have

z1ż2 − z2ż1 = 1
4

2∑
j=1

(θ̇0 − θ̇j) + 1
4 cos(θ1 − θ2)

2∑
j=1

(θ̇0 − θ̇j)

= 1
2 cos2 θ1 − θ2

2

2∑
j=1

(θ̇0 − θ̇j)

= 1
2r

2
2∑
j=1

(θ̇0 − θ̇j).

It follows from the system (7.18) that

θ̇0 −
1
2(θ̇1 + θ̇2)

= u+A

2∑
j=1

sin(θj − θ0 − α)− A

2

2∑
j=1

sin(θ0 − θj − α)

= u+A cosα
2∑
j=1

sin(θj − θ0)−A sinα
2∑
j=1

cos(θj − θ0)

− A

2 cosα
2∑
j=1

sin(θj − θ0) + A

2 sinα
2∑
j=1

cos(θj − θ0).

Substituting (7.23) into the above equation, we obtain

θ̇0 −
1
2(θ̇1 + θ̇2) = u− 2Ar sin(ζ + α)−Ar sin(ζ − α).
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As a consequence, z1ż2 − z2ż1 = r2(u− 2Ar sin(ζ + α)− Ar sin(ζ − α)). Using this
inequality and the fact z2

1 + z2
2 = r2 in (7.37), we obtain

dζ(t)
dt

= u−A(1− µ)
(
2 sin(ζ + α) + sin(ζ − α)

)
,

which is nothing but (7.32b).

We are now ready to provide the proof of Theorem 7.4 based on the results of
partial stability obtained in the previous section.

Proof of Theorem 7.4. As we have shown, in order to prove the exponential stability
of M, it is sufficient to prove the set L is exponentially stable along the system
(7.18). In other words, we show that µ = 0 of the system (7.32) is exponentially
stable uniformly in ζ based on Corollary 6.1. To this end, we confirm that the system
satisfies conditions in Corollary 6.1.

First, we confirm the requirements for the system (6.38) as µ = x1 and ζ = z. One
can check µ = 0 is a partial equilibrium of (7.32a), and the system is 2π-periodic in
ζ. Also, from the assumption u > ρ > 3A, it holds that dζ(t)/dt 6= 0 for any µ and ζ,
i.e. assumption (6.32) holds.

Next, we compute (6.40) by applying the change of time-axis, t 7→ ζ, and then its
averaged system (6.41). The derivative of µ with respect to ζ can be computed as

dµ

dζ
= dr

dt
/
dζ

dt
= εf(µ, ζ) (7.38)

where

f(µ, ζ) = −2A(2− µ)µ cos(ζ − α)
1− A

u (1− µ)
(

2 sin(ζ + α)− sin(ζ − α)
) ,

and ε = 1/u. Note that for any given u, there is L > 0 such that (6.43) holds. Then,
its averaged system is

˙̂µ = fav(µ) :=
∫ 2π

0
f(µ̂, τ)dτ, (7.39)

where

fav(µ̂) =
∫ 2π

0
f(µ̂, τ)dτ = 8π(2− µ̂)µ̂

(1− µ̂)(5 + 4 cos 2α) · g(µ̂),

g(µ̂) =
(

1
u
− 1√

u2 − 5A2(1− µ̂)2 − 4A2(1− µ̂)2 cos 2α

)
.
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According to Corollary 6.1, it remains to check the exponential stability of the
averaged system. By the assumption u > 3A, it follows that g(µ̂) < 0 and thus
fav(µ̂) < 0 for any 0 < µ̂ < 1. Moreover, for any µ̂ satisfies 0 < µ̂ < ξ < 1, it holds
that

fav(µ̂) < −cµ̂, (7.40)

where the constant c is given by

c = 8π
9

(
1√

u2 − 9A2(1− ξ)2
− 1
u

)
.

Choose V (µ̂) = µ̂2 as a Lyapunov candidate, and it is easy to see V̇≤− cµ̂2, which
implies that µ̂ = 0 is exponentially stable along the averaged system (7.39) for any
u > 3A. According to Corollary 1, there exists ε∗ > 0 such that if ε < ε∗, the system
(7.32) is partially exponentially stable with respect to µ. As ε = 1/u, it is equivalent
to say that there exists ρ > 3A such that if the input u > ρ, the system (7.32) is
partially exponentially stable respect to µ. Thus, the remote synchronization manifold
M is exponential stable for any phase shift α.

Similar to the findings in [97,98], Theorem 7.4 analytically shows that by detuning
the natural frequency one is able to stabilize the remote synchronization manifold
even when the phase shift is quite large. Interestingly, the central oscillator has a
different frequency θ̇0 from the peripheral ones θ̇1 and θ̇2 when remote synchronization
occurs under the assumption u > ρ > 3A.

In fact, what we have proven in Theorem 7.4 is that L is an exponentially
stable limit cycle. Any remotely synchronized solution θ(t), t ≥ 0, to (7.18) satisfies
θ1(t) = θ2(t), i.e. r(t) = 1 (µ(t) = 0) for all t ≥ 0. By substituting µ(t) = 0 into
(7.32b), we have

ζ̇ = u−A
(
2 sin(ζ + α) + sin(ζ − α)

)
.

Let S(t, ζ(0)) denote the solution at time t to the above equation that starts from
ζ(0), and then it satisfies

S(t, ζ(0)) =

ζ(0) +
∫ t

0
u−A

(
2 sin(ζ(τ) + α) + sin(ζ(τ)− α)

)
dτ,

Since u > 3A, there is a finite T = T (ζ(0)) > 0 such that S(t+NT, ζ(0)) = S(t, ζ(0))+
2Nπ for any nonnegative integer N . Submitting r(t) = 1 and ζ(t) = S(t, ζ(0)) into
(7.27) and (7.28) we have

z1(t) = cos (S(t, ζ(0))) , z2(t) = sin (S(t, ζ(0))) ,
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which implies z(t) := (z1(t), z2(t))> is T -periodic. Consequently, the set L in (7.24)
satisfies L = {z ∈ R2 : z(t), 0 ≤ t ≤ T}, which means L is a periodic orbit. Since we
have proven in Theorem 7.4 that L is exponentially stable, the set L is an exponentially
stable limit cycle defined on R2.

Let v1 = θ̇1 + θ̇2 and v2 = θ̇0, and then we can rewrite the set (7.24) into

C : =
{

(v1, v2)> ∈ R2 : (v1 + v2 − 3ω − u)2

16A2 sin2 α
+ (v1 − v2 − ω + u)2

16A2 cos2 α
= 1
}
, (7.41)

which is also a limit cycle for the variables v1 and v2. Note that v1 is the sum of the
peripheral oscillators’ frequencies. One can say the remote synchronization is reached
if and only if the frequencies v1 and v2 reach the limit cycle C. What we have proven
in Theorem 7.4 also implies the exponential stability of the limit cycle C.

7.4.3 Numerical Examples
In this subsection, we perform some simulations to demonstrate our results in Subsec-
tions 7.4.1 and 7.4.2.

Let the parameters in the model (7.18) be: the natural frequency is ω = 0.5π; the
coupling strength A = 1; the phase shift α = arctan

(√
3
)
. From Theorem 7.3, one

knows that phase locked remote synchronization is not stable. Then, we introduce a
natural frequency detuning to the central oscillator by letting u = 4. The simulation
results are shown in Fig. 7.6.

We observe from Fig. 7.6(a) that the phase difference between the oscillators 1
and 2 eventually converges to 0 despite some fluctuations, implying the exponential
stability of the remote synchronization. Interestingly, from Fig. 7.6(b) we see that the
central oscillators always has a different frequency from the peripheral ones, even when
remote synchronization occurs. This means that remote synchronization can take
place without requiring frequency synchronization throughout the network. Moreover,
we find the frequencies θ̇0 and θ̇1 + θ̇2 converges to the limit cycle given by (7.41)
asymptotically, consistent with our findings in the previous section.

It is worth mentioning that the natural frequency detuning is not even very large
(u = 4), but still able to stabilize the remote synchronization given a considerable
phase shift. We believe our result in Theorem 7.4 is still conservative. It is interesting
to seek for less conservative results in the future.
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Figure 7.6: Simulation results with a natural frequency detuning u = 4: (a) Phase
difference between peripheral oscillators 1 and 2; (b) the frequencies of all the three
oscillators; (c) the convergence to the limit cycle.

7.5 Concluding Remarks

Motivated by synchronization observed in distant cortical regions in the human brain,
especially neuronal synchrony of unconnected areas through relaying, we have studied
remote synchronization of Kuramoto oscillators coupled by star networks. We have
shown that the symmetry of outgoing connections from the central oscillator plays a
critical role in facilitating phase synchronization between peripheral oscillators. By
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carefully adjusting the strengths of these couplings, interesting patterns of stable
remote synchronization, such as cluster synchronization, can be achieved. We have
also studied the case when there is a phase shift. Sufficient conditions have been
obtained to ensure the stability of remote synchronization. To analytically study some
empirical findings in the literature [97,98], we have further considered an even simpler
network motif. We have proven that the introduction of natural frequency detuning to
the central oscillator can enhance remote synchronization. The new criteria obtained
in Chapter 6 are used to construct the proof.

Simulations have been performed to validate our results. Some results suggest
that the sufficient condition for remote synchronization are still conservative. We are
interested in obtaining less conservative results in the future. Moreover, it is also
interesting to study stability of remote synchronization in more complex networks.



8 Conclusion and Outlook

Conclusion

In this thesis, we have studied distributed coordination algorithms and partial syn-
chronization in complex networks in Part I and Part II, respectively.

In Part I, we focus on distributed coordination algorithms in stochastic settings.
Inspired by coordinating behaviors observed in nature, distributed coordination
algorithms serve as a foundation for a number of network algorithms for various
purposes such as information fusion, load balancing, placement of mobile sensors,
etc. When implementing those network algorithms, the stochastic influence such as
random changes of network structures and communication delays and noise cannot
be ignored. Besides, randomness is sometimes also deliberately introduced to improve
global performance. Such stochastic network algorithms can be modeled by stochastic
systems, which are often analyzed by stochastic Lyapunov theory. However, existing
Lyapunov criteria are often not directly applicable especially when the stochastic
processes are not confined to some certain ones such as i.i.d. Motivated by this, we
have developed some new Lyapunov criteria for discrete-time stochastic systems in
Chapter 3. In contrast to the existing Lyapunov theory for discrete-time stochastic
systems, a constructed Lyapunov function is not required to decrease after every time
step anymore. Instead, stability can be guaranteed if it decreases after finite time
steps. We then use them in Chapter 4 to study the following distributed coordination
algorithms: 1) the products of random stochastic matrices, 2) asynchrony-induced
agreement problems in periodic networks, and 3) distributed linear equation solving.
Sharper results compared to those in the literature have been obtained.

In Part II, we have uncovered some possible underlying mechanisms that could give
rise to partial synchronization in complex networks. We have investigated in Chapter
5 how partial synchronization can take place among directly connected regions. We
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have found that strong regional (or local) connection is a possible mechanism. If
some oscillators in a network are connected tightly, they can evolve in unison, while
the rest that are weakly coupled remain incoherence. The Lyapunov functions based
on the incremental 2-norm and the incremental ∞-norm are used to construct the
proof. In addition, we have studied how partial synchronization is possible to occur
among units that have no direct connections, an interesting phenomenon termed
remote synchronization. This phenomenon has also been widely detected in the
human brain, where distant cortical regions without direct neural links also experience
functional correlations. In order to study remote synchronization, we have developed
some new criteria for partial stability of nonlinear systems in Chapter 6. These
criteria enable us to study the partial stability of some nonlinear systems that are
not easy to analyze using existing results. Then, we study remote synchronization in
simple network structures, i.e., star networks, in Chapter 7. We have found that the
symmetry of outgoing connections from the central oscillator is crucial to shaping
remote synchronization, and is possible to induce several clusters for the peripheral
oscillators. We have further investigated how detuning the natural frequency of the
central oscillator in a star network with two peripheral nodes can strengthen remote
synchronization. Finally, we use the obtained Lyapunov criteria on partial stability
to prove that natural frequency detuning of the central oscillator actually makes the
remote synchronization more robust against the phase shifts.

Outlook

The Lyapunov theory plays a fundamental role in the control field. We are interested
in further developing control Lyapunov criteria for both discrete-time and continuous-
time stochastic systems since they can be applied to many practical problems including
distributed optimization.

As it has been observed in the human brain, partial synchronization is perhaps more
common than global synchronization. It is certainly more interesting to study partial
synchronization further since it would help us to better understand the sophisticated
mechanisms behind the synchrony patterns in the brain. Particularly, we are even
more interested in studying remote synchronization in more complex networks than
star networks. We believe that network symmetries would still play a crucial role in
rendering remote synchronization. Before considering general networks, We plan to
start with some simpler ones such as line works and bipartite networks. Instead of
considering an identical phase shift for all oscillators, we plan to study the case when
phase shifts are heterogeneous. Phase shifts are usually used to model small time
delays in the Kuramoto model. When the delays are large, the Kuramoto-Sakaguchi
model is not accurate anymore. In this case, it is better to employ a time-delayed
Kuramoto model and investigate the role that delays play in remote synchronization.
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The analysis will be quite challenging. The partial stability theory can be very helpful
for the analysis. It is quite interesting to further develop partial stability theory and
applied it to the study of remote synchronization. We also plan to test our theoretical
findings via experiments of the brain by cooperating with neuroscientists.

We believe theoretical study using appropriate mathematical models of the brain
will be very important to explain and predict brain behaviors, and also contribute to
the treatment of various brain diseases in the future.
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Summary

Coordinating behaviors in populations of interacting units have been widely observed in
many natural systems. Many attempts have been made to understand these behaviors,
which have also inspired a lot of applications. This thesis is devoted to: 1) the study
of distributed coordination algorithms, which is one of those applications, and 2)
the investigation on the underlying mechanisms of a particular type of coordinating
behaviors, i.e., partial synchronization.

Part I of this thesis focuses on the study of distributed coordination algorithms.
When implementing distributed coordination algorithms, the computational processes
are inevitably influenced by some random factors, which can be random changes in
network structures or stochastic communication delays. Besides, some randomness
may also be introduced deliberately to improve global performance. Taking the
randomness into account, distributed coordination algorithms can be modeled by
stochastic systems. However, traditional methods cannot be directly used for stochastic
stability analysis of these systems in many circumstances. There is a great need for
developing new results to study the stability of stochastic systems. This is exactly the
aim of Chapter 3. In Chapter 3, we develop a new Lyapunov criterion, termed the
finite-step Lyapunov criterion, for discrete-time stochastic systems. From the existing
Lyapunov criterion, a constructed Lyapunov function needs to decrease at every time
step to ensure stability. In sharp contrast, we relax this requirement by allowing it
to decrease after some finite time steps. This relaxation provides a larger range of
choices when constructing a Lyapunov function. In Chapter 4, we then show how
the obtained Lyapunov criteria can be utilized to solve the problems we encountered
in dealing with several distributed coordination algorithms including 1) convergence
of products of random sequences of stochastic matrices, 2) asynchronous-updating-
induced agreement of agents coupled by periodic networks, and 3) algebraic equation
solving via distributed averaging algorithms in a randomly changing network.

Global synchronization across the entire brain is always a sign of certain brain
diseases, while partial synchronization usually takes place in the healthy brain. This
motivates us to study partial synchronization in Part II, trying to uncover the
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underlying mechanisms that could give rise to this special type of coordinating
behavior. Towards this end, we employ the Kuramoto model and its variation, i.e.,
Kuramoto-Sakaguchi model, to describe the dynamics of oscillators. Two classes of
partial synchronization are studied in this part: 1) synchronization among a set of
oscillators that have direct connections; 2) synchronization among a set of oscillators
that have no direct link, termed remote synchronization. We have studied the first
class in Chapter 5. Inspired by the organization of cortical neurons in the brain, a
two-level network structure is considered. The oscillators are all-to-all connected,
forming local communities at the lower level; at the higher level, the communities are
interconnected by a sparse network. We show that strong coupling strengths among
the set of directly connected oscillators can lead to partial synchronization. Remote
synchronization in star networks is investigated in Chapters 6 and 7. To prove the
stability of remote synchronization, one often needs to show the partial stability of
a nonlinear system. However, existing criteria for partial stability are not directly
applicable in our case, which motivates us to develop some new criteria for partial
stability analysis of nonlinear systems in Chapter 6. We first prove that a constructed
Lyapunov function does not need to have a negative-definite time derivative. If it
decreases after a finite time, asymptotic (or exponential) stability can be ensured. We
then show that the exponential stability of a class of slow-fast systems can be studied
by analyzing the averaged systems obtained by periodic averaging. In Chapter 7, we
first consider directed star networks and show the important role that the symmetries
of the connections going out from the central oscillator play in rendering remote
synchronization among peripheral oscillators. Finally, we focus on an undirected star
network of two peripheral oscillators. Using the new criteria developed in Chapter 6,
we prove that the natural frequency detuning of the central oscillator can actually
enhance remote synchronization.



Samenvatting

Coördinerend gedrag in populaties van interactieve units wordt veel geobserveerd in
natuurlijke systemen. Veel pogingen zijn gemaakt om dit gedrag begrijpen, dat ook
dient als een inspiratie voor veel toepassingen. Deze thesis wijdt zich toe aan: 1)
de studie van gedistribueerde coördinatie algoritmen, dat een van die toepassingen
is, en 2) het onderzoeken van de onderliggende mechanismen van een bepaalde type
coördinatie, i.e., partiele synchronisatie.

Deel I van de thesis focust op de studie van gedistribueerde coördinatie algoritmen.
Bij het implementeren van dergelijke systemen worden de rekenkundige processen
onoverkomelijk beïnvloed door willekeurige factoren die kunnen voortkomen uit spon-
tane veranderingen in netwerk structuren of communicatie vertragingen. Daarnaast
kan een bepaalde mate van willekeurigheid met intentie worden ingebracht om de
globale prestaties van de algoritmen te verbeteren. Rekening houdend met deze
willekeurigheid worden gedistribueerde coördinatie algoritmen gemodelleerd door
stochastische systemen. Echter, in veel gevallen kunnen traditionele methoden niet
direct worden toegepast voor de stochastische stabiliteit analyse. Daarom is er een
grote behoefte aan de ontwikkeling van nieuwe resultaten voor de stabiliteit van
stochastische systemen. Dit is exact het doel van hoofdstuk 3. In dit hoofdstuk
ontwikkelen we een nieuw Lyapunov criterium, genaamd het eindige-stap Lyapunov
criterium, voor stochastische systemen in discrete tijd. Voor het bestaande Lyapunov
criterium moet een geconstrueerde Lyapunov functie op elke tijdstap afnemen om
stabiliteit te garanderen. Hierin verzwakken we deze eis uitzonderlijk door toe te staan
dat de functie afneemt na een bepaald eindig aantal tijdstappen. Deze verzwakte eis
geeft een groter aantal mogelijkheden bij de constructie van een Lyapunov functie. In
hoofdstuk 4 tonen we vervolgens aan hoe het nieuwe criterium kan worden gebruikt
bij het oplossen van problemen in gedistribueerde coördinatie algoritmen zoals: 1)
de convergentie van producten van willekeurige reeksen van stochastische matrices,
2) door asynchrone updating geïnduceerde overeenkomst van agenten gekoppeld
door een periodiek netwerk, en 3) oplossingen van algebraïsche vergelijkingen via
gedistribueerde middeling algoritmen in willekeurig veranderende netwerken.
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Globale synchronisatie in het brein is vaak een teken van een bepaalde brein
ziekte, maar partiele synchronisatie komt juist voor in een gezond brein. Dit gegeven
motiveert ons om partiele synchronisatie te bestuderen in deel II van de thesis, waarin
getracht wordt het onderliggende mechanisme te ontdekken die tot een dergelijk
type coördinatie kan leiden. Hiervoor gebruiken we het Kuramoto model en het
Kuramoto-Sakaguchi model om de dynamica van oscillatoren te beschrijven. Twee
klasse van partiele synchronisatie worden bestudeerd: 1) synchronisatie tussen een set
oscillatoren met directe connecties; 2) synchronisatie tussen oscillatoren zonder directe
connectie, genoemd afgezonderde synchronisatie. De eerste klasse wordt bestudeerd
in hoofdstuk 5. Geïnspireerd door de organisatie van corticale neuronen in het brein,
wordt een twee-laags netwerk structuur beschouwd. The oscillatoren zijn volledig
verboden, waardoor lokale gemeenschappen worden gevormd op een lager niveau; op
het hogere niveau zijn de gemeenschappen verbonden met een verspreid netwerk. We
tonen aan dat een hoge koppel sterkte tussen de set van direct gekoppelde oscillatoren
tot partiele synchronisatie kan leiden.

Afgezonderde synchronisatie in ster netwerken wordt bestudeerd in de hoofdstukken
6 en 7. Om de stabiliteit van de partiele synchronisatie te bewijzen, moet vaak de
partiele stabiliteit van een niet-lineair systeem worden aangetoond. Echter, in ons
geval zijn de bestaande criteria voor partiele stabiliteit niet direct toepasbaar, hetgeen
ons motiveert om nieuwe criteria voor partiele stabiliteit af te leiden in hoofdstuk
6. We bewijzen eerst dat een geconstrueerde Lyapunov functie niet noodzakelijk
een strikt negatieve tijd afgeleide hoeft te hebben. Als de tijd afgeleide afneemt
na een eindige hoeveelheid tijd, dan kan asymptotische (of exponentiele) stabiliteit
gegarandeerd worden. Vervolgens tonen we aan dat exponentiele stabiliteit van
een klasse van slow-fast systemen kan worden bestudeerd aan de hand van van een
gemiddeld systeem dat kan worden verkregen door periodieke middeling. In hoofdstuk
7, bestuderen we een gericht ster netwerk en tonen we de belangrijke rol aan van
de symmetrie in de uitgaande connecties van de centrale oscillator in het ontstaan
van afgezonderde synchronisatie tussen de perifere oscillatoren. Tot slot focussen
we op een niet gericht ster netwerk met twee perifere oscillatoren. Door gebruik te
maken van de criteria ontwikkeld in hoofdstuk 6 bewijzen we dat het ontstemmen
van de natuurlijke frequentie van de centrale oscillator afgezonderde synchronisatie
kan bevorderen.


	Acknowledgements
	Introduction
	Background
	Distributed Coordination Algorithms
	Synchronization and Brain Communication

	Contributions
	Thesis Outline
	List of Publications
	Notation

	Preliminaries
	Probability Theory
	Graph Theory
	Stochastic Matrices

	I Stochastic Distributed Coordination Algorithms: Stochastic Lyapunov Methods
	New Lyapunov Criteria for Discrete-Time Stochastic Systems
	Introduction
	Problem Formulation
	Finite-Step Stochastic Lyapunov Criteria
	Concluding Remarks
	Appendix: Proof of Lemma 3.4

	Stochastic Distributed Coordination Algorithms
	Introduction
	Products of Random Sequences of Stochastic Matrices
	Convergence Results
	Estimate of Convergence Rate
	Connections to Markov Chains

	Agreement Induced by Stochastic Asynchronous Events 
	Asynchronous Agreement over Strongly Connected Periodic Networks
	A Necessary and Sufficient Condition for Asynchronous Agreement
	Numerical Examples

	A Linear Algebraic Equation Solving Algorithm
	Concluding Remarks
	Appendix: An Alternative Proof of Corollary 4.2


	II Partial Synchronization of Kuramoto Oscillators: Partial Stability Methods
	Partial Phase Cohesiveness in Networks of Kuramoto Oscillator Networks
	Introduction
	Problem Formulation
	Incremental 2-Norm
	Incremental -Norm
	Main Results
	Comparisons with Existing results

	Numerical Examples
	Concluding Remarks

	New Criteria for Partial Stability of Nonlinear Systems
	Introduction
	New Lyapunov Criteria for Partial Stability
	System Dynamics
	Partial Asymptotic and Exponential Stability
	Examples

	Partial Exponential Stability via Periodic Averaging
	A Slow-Fast System
	Partial Stability of Slow-Fast Dynamics
	A converse Lyapunov Theorem and Some Perturbation Theorems
	Proof of Theorem 6.5

	Concluding Remarks

	Remote Synchronization in Star Networks of Kuramoto Oscillators
	Introduction
	Problem Formulation
	Effects of Phase Shifts on Remote Synchronization
	Without a Phase Shift
	With a Phase Shift
	Numerical Examples

	How Natural Frequency Detuning Enhances Remote Synchronization
	Natural frequency detuning u=0
	Natural frequency detuning u=0
	Numerical Examples

	Concluding Remarks

	Conclusion and Outlook
	Bibliography
	Summary
	Samenvatting


