
Analyzing Network Dynamics

through

Graph Partitioning

Shuo Zhang



The research for this doctoral dissertation has been carried out at the Faculty of
Mathematics and Natural Sciences, University of Groningen, the Netherlands, within
a collaboration between the Research Institute of Industrial Engineering and Management
and the Johann Bernoulli Institute for Mathematics and Computer Science.

The research reported in this dissertation is part of the research program of the Dutch
Institute of Systems and Control (DISC). The author has successfully completed the
educational program of the Graduate School DISC.

Printed by IPSKAMP Drukkers B.V.
Enschede, the Netherlands



Analyzing Network Dynamics
through Graph Partitioning

Proefschrift

ter verkrijging van de graad van doctor aan de
Rijksuniversiteit Groningen

op gezag van de
rector magnificus, prof. dr. E. Sterken

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 21 februari 2014 omm 11 uur

door

Shuo Zhang

geboren op 9 december 1981
te Changchun, China



Promotors
Prof. dr. M. K. Camlibel
Prof. dr. M. Cao
Prof. dr. ir. J. M. A. Scherpen

Beoordelingscommissie
Prof. dr. J. Lunze
Prof. dr. C. Hadjicostis
Prof. dr. H. L. Trentelman

ISBN (Book): 978-90-367-6804-7
ISBN (Ebook): 978-90-367-6803-0



Contents

Acknowledgements ix

1 Introduction 1
1.1 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Controllability of diffusively coupled networks 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Networks and controllability . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Diffusively coupled multi-agent networks . . . . . . . . . . . 8
2.2.2 Agent dynamics, network topology and controllability . . . . 10

2.3 A class of uncontrollable networks . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Two frameworks for studying controllability . . . . . . . . . . 12
2.3.2 Examples discussing sufficient conditions . . . . . . . . . . . . 13
2.3.3 A class of uncontrollable networks: multi-chain topologies . . 14

2.4 Controllability of networks and graph partitions . . . . . . . . . . . . 16
2.4.1 Graph partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Lower bounds by distance partitions . . . . . . . . . . . . . . . 17
2.4.3 Upper bounds by almost equitable partitions . . . . . . . . . . 18
2.4.4 Algorithm to compute π∗AEP(πL) . . . . . . . . . . . . . . . . . 21

2.5 Controllability of networks: distance regular topologies . . . . . . . . 23
2.5.1 Distance regular graphs and properties . . . . . . . . . . . . . 24
2.5.2 Single-leader cases . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3 How many leaders are necessary? . . . . . . . . . . . . . . . . 27
2.5.4 How many leaders are sufficient? . . . . . . . . . . . . . . . . 28
2.5.5 Leader selection: cycles and complete topologies . . . . . . . . 29

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



Contents

3 Controllability of diffusively coupled networks: switching topologies 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Review: controllability of switched linear systems . . . . . . . . . . . 31
3.3 Diffusively coupled networks: switching topologies . . . . . . . . . . 33
3.4 Graph partitions: extension for switching topologies . . . . . . . . . . 34
3.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Partial consensus of heterogeneous networks: double-integrator agents 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Partial consensus for double-integrator agents . . . . . . . . . 40
4.2.2 Consensus as an output stability problem . . . . . . . . . . . . 41

4.3 Conditions for partial consensus . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Algebraic conditions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Graph theoretical conditions . . . . . . . . . . . . . . . . . . . 48

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Disturbance decoupling problem of diffusively coupled networks 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Networks and disturbance decoupling problem (DDP) . . . . . . . . 54

5.2.1 Diffusively coupled networks with disturbance . . . . . . . . 54
5.2.2 Review: DDP for linear systems . . . . . . . . . . . . . . . . . 56
5.2.3 DDP of networks . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Graph partitions: extension for DDP . . . . . . . . . . . . . . . . . . . 58
5.3.1 Almost equitable partitions in directed graphs . . . . . . . . . 59
5.3.2 Almost equitable partitions with respect to a cell . . . . . . . . 61

5.4 Graph theoretical conditions for DDP . . . . . . . . . . . . . . . . . . 64
5.4.1 Open-loop cases . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Closed-loop cases . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions and further research 71
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Further research topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

Summary 81

vi



Contents

Samenvatting 83

vii





Acknowledgments

It is never simple to attribute a Ph.D thesis to a single person or even a certain group,
especially when mine is an output of a four-year experience studying abroad.

I first give thanks to my promotors. My professional skills are positively affected
by Prof. dr. M. Kanat Camlibel. In a short term, these skills are built up on the
knowledge inherited from Kanat of linear algebra and the geometric control approach,
which in turn produces this thesis. In a long term, I am gradually influenced by
Kanat’s respectful attitude towards scientific research, including his strong passion
in investigating problems, his tendancy to make every statement to be precise as
well as his concise way of mastering complex concepts. Prof. dr. Ming Cao strongly
supported me to win the Ubbo Emmius scholarship, without which I would have
not an opportunity to do my research. I also thank Ming for introducing me to the
topic of my thesis. As my team leader, Prof. dr. ir. Jacquelien Scherpen coordinates
the team efficiently so that I can work in a memorable environment.

Four years Ph.D life does not only mean to prove mathematical theorems. To study
abroad does not simply mean I only need to switch my working language to English
or to learn some Dutch. I also need friends in my daily life and fortunately I have.
Gunn Larsen and Ewoud Vos are such nice friends (and also my defense paranymphs)
that they often offer help even without being requested. Ewoud helps to translate
my summary to Dutch. Gunn contributes to my cover design. Nima Monshizadeh
often has coffee breaks with me (and also with Gunn and Ewoud). His optimism
towards life also makes me to keep positive. Moreover, Nima and I coauthor two
papers and I get much benefit from him. Hector Garcia de Marina Peinado, Mauricio
Munos Arias and James Riehl are also good friends to discuss technical problems
and to share daily life issues. As the secretary of the team, Frederika Fokkens usually
provides help with a warm heart. I thank all the aforementioned friends and others
whose names cannot be listed here due to the page limit (a pity indeed!). I take this
chance to say: thank you all for giving your souls to me.

I specially give my thanks to my parents. I know how lonely you feel when your

ix



unique son is so far away from you for four years. You always keep me in your hearts
and feel proud of your son. Your love gives me the confidence of overcoming all the
challenges in my life! Also thanks to you for painting traditional Chinese pictures for
my thesis cover.

I also appreciate the effort of the reading committee on improving the quality of
my thesis.

As a final word, the Chinese symbol indicating “human beings” has a structure
to support each other. The philosophy hidden behind this symbol becomes apparent
to me when I write this thesis for my degree of Doctor of Philosophy.

Shuo Zhang
Groningen

January 19, 2014



Chapter 1

Introduction

In this thesis, we refer to a multi-agent network as a group of dynamical agents that
are coupled together by exchanging local information between them. One source for
inspiration of the study of networks is the reported collective behaviors of biological
groups in nature. For instance, a flock of migrating birds form the well-known
V-shape that is advantageous to reduce the drag force on each individual bird while
guaranteeing sufficient visibility between them. Moreover, the V-shape is formed
by the bird group under the constraint that each individual bird only perceives
its local surrounding environment and that there is hardly any command from a
central coordinator. In fact, one of the most interesting phenomena in a network is
similar to the above observation: although each agent in a network has access to only
local information, some desired global behavior may surprisingly emerge. Network
scientists have made a concerted effort to investigate the mechanism behind the
above intriguing phenomena. To do so, they have proposed protocols and studied
the simulated behaviors of networks under such protocols. For instance, a protocol
based on a nearest neighbor rule has been employed for a group of self-propelled
particles, see e.g. [54]. As a result, all the particles move in the same direction by
knowing only the heading of their neighbors, although none of them follows a global
coordination rule and each of them is under the influence of noise.

From an engineering perspective, the ultimate goal of understanding mechanisms
behind desired network behaviors is to design controllers for networks such that
the networks have some desired properties. Unfortunately, the tools in classical
control theory are not readily applicable to some network problems for a couple of
reasons. Firstly, network models are usually high dimensional. It is inconvenient or
even impractical to apply some well-established techniques such as optimal control
strategies without any modification to such large-scale systems. Further, controllers
synthesized by classical control theory usually do not take into account explicitly
the network topologies that arise from the information exchange between agents.
The design of a controller can be simplified and more practical if it can utilize the
network topology information as well as the agents’ sensed local information.

To come up with effective network control methods, one can view network
synthesis problems from a system theoretical perspective. One pioneering paper in
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this research direction is [24]. By modeling the behavior of the network with the
nearest neighbor rule in [54] as a switched linear system, the paper [24] shows that
whether all the particles can move in the same direction is equivalent to whether a
switched linear system is stable. The network with the protocol based on the nearest
neighbor rule in [24] is in fact what we call a diffusively coupled network in this thesis.
The results in [24] have attracted growing interest in studying fascinating behaviors
of diffusively coupled networks from a system theoretical point of view such as
consensus [24], synchronization [1, 47] and clustering synchronization [30, 57, 58].
The observed phenomenon in [54] is in fact the consensus of the self-propelled
particle network on their moving direction. In general, a network is said to achieve
consensus if the states of all its agents finally agree on a common value, which is
usually dependent on the initial states of all the agents. As shown in [24], whether a
network achieves consensus is equivalent to whether some corresponding dynamical
system is output stable.

The study of system theoretical properties of diffusively coupled networks further
breaks new ground for the study at the interface of control theory and graph theory,
see e.g. [14]. Indeed, the network topology determined by diffusive couplings can
always be described by a graph: each vertex of the graph represents each agent
of the network and each edge indicates the information exchange between a pair
of agents. The results in [24] show that whether a network can reach consensus
depends on the connectivity of its underlying graph. Providing graph theoretical
conditions for system theoretical properties leads to distributed control strategies
which control networks to achieve desired behaviors. One class of desired behaviors
are to specify, achieve and maintain formations for a team of autonomous agents.
Various formation control strategies have been studied, see e.g. [6, 7, 18, 39].

Although we have witnessed encouraging progress on distributed control of
diffusively coupled networks, there are still fundamental issues that have not been
fully addressed. For instance, one intuitive idea to control a network is as follows:
a direct control action is applied to some agents and is propagated to the other
agents of the network through the couplings. The agents directly receiving control
inputs are usually called leaders and the others are called followers. This idea has been
successfully employed to develop pinning control methods, see e.g. [48]. Pinning
control methods are usually taken for networks to achieve synchronization by manip-
ulating leaders with given control laws. In order to synthesize a network under the
leader/follower framework, it is naturally interesting to know which agents should
be chosen to be the leaders such that all the other agents can be affected in a desirable
way directly or indirectly. This question can be answered by studying controllability
of networks. Intuitively, a network is said to be “controllable” if, by manipulating its
leaders, the overall network can be made to behave in some desirable way. Roughly
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speaking, there are three related concepts that have been made precise for networks.
Two of them are the so-called weak structural controllability [29] and strong structural
controllability [17], respectively. In studying weak/strong structural controllability
of networks, one is allowed to give weights to the couplings, which indicate the
strengths of couplings between agents. However, one is not allowed to add new
couplings, which is often expensive. If the network is “controllable” by manipulating
the leaders for at least one set of weights, then the network is said to be weakly
structurally controllable. In case the network is “controllable” for any possible set
of weights, then it is defined to be strongly structurally controllable. The results in
[17, 29] reveal that weak/strong structural controllability of diffusively coupled net-
works in fact have clear graph theoretical characterizations in terms of the so-called
maximum/constrained matchings, which in turn give indications on how to choose
as few leaders as possible. Another notion is the standard concept of controllability
in control theory for the network. To study whether a network is controllable, the
weights of the couplings are given a priori. Although the weak/strong structural
controllability of a network already has clear graph theoretical characterizations,
the graph theoretical characterization of controllability of networks is still an open
question, see e.g. [13, 31, 51]. As pointed out in [51], “the lack of a graph theoretical
characterization of the controllability property prevents us from building controllable
interconnection topologies” and cannot lead to network synthesis such as choosing
leaders (as few as possible) to guarantee the network to be controllable.

In this thesis, we mainly provide graph theoretical characterizations for three
system theoretical properties of diffusively coupled networks, namely controllability,
partial consensus and disturbance decoupling. Our study on controllability mainly fol-
lows and extends the existing results in [31]. To provide graph theoretical conditions
for controllability, we take the geometric approach in linear control theory, see e.g.
[2, 52, 55]. In particular, we set diffusively coupled networks in linear state spaces
and provide graph theoretical characterizations for controllable subspaces. At the same
time, we also address two other significant issues. One of them aims at revealing the
roles that agent dynamics and the network topology play in network controllability.
There have been results along this direction for higher-order-integrator agents, see
e.g. [22, 25]. However, we will focus on networks with general linear dynamical
agents. The other issue is a synthesis problem: how to choose leaders to guarantee
the network to be controllable. There have been existing results in this research
direction, see e.g. [5, 10, 35, 36, 40]. Instead, we focus on networks with distance
regular topologies and provide systematic ways of choosing agents to guarantee
network controllability. Our graph theoretical characterizations of controllability of
networks can be immediately extended to the scenarios where network topologies
are switching in time. The study on networks with switching topologies is motivated
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by various applications such as power networks, see e.g. [24, 33, 37, 46].
The partial consensus problem studies networks with double-integrator (posi-

tion/velocity) agents. Here, the word “partial” is used to emphasize the scenarios
where not necessarily all the positions and/or the velocities finally achieve some
common values. Compared to existing results on consensus of double-integrator
networks such as [43, 44, 61, 62], the topologies arising from position information
exchange and from velocity information exchange are different. The partial con-
sensus problem of heterogeneous networks with double-integrator agents has been
proposed by [21], where algebraic conditions for partial consensus have been pro-
vided. We are more interested in providing graph theoretical conditions after further
developing algebraic conditions.

The disturbance decoupling problem (DDP) of a diffusively coupled network
studies how to decouple some output of interest of the network from the effect of
external disturbances. The DDP of a linear system has been well studied in linear
control theory by the geometric approach, see e.g. [3, 52, 55, 56]. However, DDP has
not been studied for diffusively coupled networks.

1.1 Outline of this thesis

In Chapter 2, we study controllability of diffusively coupled networks with time-
independent topologies. We first reveal the effect of general linear (agent) dynamics
and of the network topology on overall network controllability. After commenting
on existing graph theoretical conditions, we mainly provide both the lower and
the upper bounds for the controllable subspace of the network by two classes of
graph partitions called distance partitions and almost equitable partitions. We further
illustrate that these bounds cannot be improved in terms of the characteristic matrices
of graph partitions. Finally, we provide a systematic way of choosing agents such
that networks with distance regular topologies can be controlled by manipulating
these agents. Chapter 2 is based on our papers [13, 15, 63, 64].

In Chapter 3, we provide graph theoretical conditions for controllability of diffu-
sively coupled networks with switching topologies. The conditions in Chapter 3 can
be extended from Chapter 2 immediately. Chapter 3 is based on our paper [65].

In Chapter 4, we study the partial consensus problem for heterogeneous networks
with double-integrator (position/velocity) agents. From a system theoretical per-
spective, we first formulate the partial consensus problem to be an output stability
problem. Then we provide both the algebraic and the graph theoretical conditions.
The graph theoretical conditions we develop are in terms of a class of graph partitions
that can be taken as a subclass of almost equitable partitions in Chapter 2. The results
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in Chapter 4 are from our published paper [12].
In Chapter 5, we aim at decoupling some given output of the network from

external disturbances injected into the network. In classical linear systems, the
solution of disturbance decoupling problem (DDP) is given in terms of controlled
invariant subspaces. To provide graph theoretical conditions to solve the DDP for
networks, we introduce and develop a class of generalized almost equitable partitions
that induce a class of controlled invariant subspaces in networks. Moreover, we see
how network synthesis benefits from graph theoretical conditions: the solution of
DDP (if it exists) only requires the relative information of network agents, which is a
more realistic solution in networks. The presentation in Chapter 5 is based on our
submitted paper [34].

In Chapter 6, we reemphasize the common thread of this thesis and summarize
our contributions. We also mention some topics that may become interesting in the
future.





Chapter 2

Controllability of diffusively coupled networks

2.1 Introduction

Recently, significant work has been done to study distributed and cooperative control
of multi-agent networks [9, 26]. It is of particular interest to study the case when the
agents are coupled together through linear diffusive couplings since rich collective
behaviors, such as synchronization [1] and clustering [30, 58], may arise as a result
of local interactions among agents without centralized coordination or control. To
reduce the complexity of controller design, one is especially interested in knowing
how to influence the behavior of the overall network by just controlling a small
fraction of the agents [48, 57]. We call such agents that are under the forcing of
external control inputs the leaders and correspondingly the rest of the agents followers.
Hence, to study whether any desired collective behavior can be achieved in finite
time by controlling the leaders is equivalent to the study of the controllability of
the overall networks consisting of all the leaders and followers. For example, the
controllability problem has been related to the problem of controlling a formation of
mobile robots by manipulating the trajectories of the leaders such that all the robots
can move from any initial positions to any desired final positions within finite time
[32].

The controllability of diffusively coupled multi-agent networks was first studied
in [51] and later in [5, 15, 19, 28, 31, 40, 41, 59]. However, most existing results deal
with networks where agents have single-integrator dynamics, except agents with
double-integrators [22] and agents with higher-order integrators [25]. In this chapter,
we first study diffusively coupled networks where agents have identical general
linear dynamics. We reveal in Theorem 2.2.1 the dependence of controllability of
such networks on agent dynamics and network topologies. Existing results on agents
with higher-order-integrator dynamics [22, 25] can be considered as special cases of
Theorem 2.2.1.

Later, we focus on inferring network controllability from its topology. To do this,
we consider diffusively coupled networks with single-integrator agents. We comment
on existing results [31, Prop. 2] and [31, Thm. 3] and provide counterexamples to
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show that these results are erroneous.
For diffusively coupled networks with single-integrator agents, we provide
i. a dimensional lower bound in terms of the distance partitions (Theorem 2.4.2),

and
ii. an upper bound in terms of the maximal almost equitable partitions (Theo-

rem 2.4.8)
for their controllable subspaces.

The contribution of these results is two-fold. Firstly, the distance partitions in
Theorem 2.4.2 yield easily computable lower bounds. Secondly, the upper bounds
we provide are valid in the case of multi-leader scenarios unlike the existing upper
bounds in the literature [15, 31] which deal with only single-leader cases. Also, we
provide an algorithm for obtaining the maximal almost equitable partition for given
leaders.

The bounds mentioned above are developed without imposing any extra structure
on the underlying graph topologies. When the underlying graph has the so-called
distance regularity property, we show that the controllable subspace can be fully
characterized if there is a single leader. In the case of multiple leaders, we present
a necessary and a sufficient condition for controllability. Finally, we discuss how
to choose leaders among the agents in order to guarantee controllability when the
graphs have cycles and complete topologies.

This chapter is organized as follows. In Section 2.2, we first introduce the class of
diffusively coupled networks that is of our interest and later reveal the effect of agent
dynamics and network topologies on network controllability. Before our study on
inferring controllability from topologies, we provide counterexamples in Section 2.3
to comment on existing results in [31, Prop. 2] and [31, Thm. 3] that are in the same
research line. Section 2.4 is devoted to the study of the effect of the underlying
topology on the controllability. In this section, we provide a lower bound for the
controllable subspace of such a network in terms of distance partitions and an upper
bound in terms of the so-called almost equitable partitions. Section 2.4 also presents
an algorithm in order to compute the almost equitable partition which bounds the
controllable subspace from above. Following Section 2.4, we focus on networks with
distance regular topologies in Section 2.5.

2.2 Networks and controllability

2.2.1 Diffusively coupled multi-agent networks

Consider a diffusively coupled network consisting of n agents labeled by the set
V = {1, 2, . . . , n} where n is a positive integer. We assign the roles of leaders and
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followers to the agents and define VL = {v1, v2 . . . , vm} where m is a positive integer
with m 6 n and VF = V \ VL to denote the sets of indices of the leaders and followers,
respectively.

To each follower i ∈ VF, we associate a linear dynamical system

ẋi = Axi + Czi

and to each leader i ∈ VL with i = v` a linear dynamical system

ẋi = Axi + Czi +Bu`

where xi ∈ Rp denotes the state of agent i, u` ∈ Rq the external input to agent
i = v`, zi ∈ Rs the coupling variable for the agent i, and all matrices involved are of
appropriate dimensions.

Two distinct agents i and j are said to be neighbors if their states are known by
each other. Throughout this chapter, we assume that the neighboring relationships
are time-independent. Such neighboring relationships can be described by a simple
undirected graph G = (V, E) where V is the vertex set and E is the edge set such
that (i, j) ∈ E if agents i and j are neighbors. The coupling variable zi for each agent
i ∈ V is determined by the so-called diffusive coupling rule based on the neighboring
relations as follows:

zi = K
∑

(i,j)∈E

(xj − xi)

where K ∈ Rs×p is the matrix describing the coupling strengths.
By defining x = col(x1, x2, . . . , xn) and u = col(u1, u2, . . . , um), we can write the

above leader-follower linearly diffusively coupled multi-agent network associated
with the graph G into a compact form as

ẋ = L̂x+ M̂u (2.1)

where L̂ = In ⊗ A − L ⊗ CK with L being the Laplacian matrix of the graph G,
M̂ = M ⊗B with M ∈ Rn×m defined by

Mi` =

{
1 if i = v`
0 otherwise.

Here “⊗” denotes the Kronecker product [4]. Note that the matrix product CK
is sometimes called the inner coupling matrix in the study of the synchronization
behavior in complex networks [1]. In the next subsection, we study the controllability
of the network (2.1).
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2.2.2 Effects of agent dynamics and network topology on control-
lability

In the following theorem, we provide necessary and sufficient conditions for the
controllability of the network (2.1).

Theorem 2.2.1 The pair (L̂, M̂) is controllable if and only if the pair (L,M) is controllable
and for each eigenvalue λ of L, the pair (A− λCK,B) is controllable.

Proof. (Necessity) We only prove the necessity of the controllability of the pair
(L,M), and the necessity of the controllability of the pair (A − λCK,B) can be
proved in a similar manner. Suppose (L,M) is uncontrollable. Then there exists
some nonzero x ∈ Rn such that xTL = λxT and xTM = 0. Let (θ, y) ∈ C× Cp be a
left-eigenpair of the matrix A− λCK. Note that (θ, x⊗ y) is a left-eigenpair of L̂ and
(x⊗ y)HM̂ = (xTM)⊗ (yHB) = 0 where zH denotes the conguate transpose of the
vector z. This implies that the pair (L̂, M̂) is uncontrollable.

(Sufficiency) On the contrary, suppose that (L̂, M̂) is uncontrollable. Since L
is symmetric, one can always find an orthonormal matrix U such that UTLU =

diag(λ1, . . . , λn) where λi’s are eigenvalues of L. Now consider the following two
matrices L̃ and M̃ that are obtained from L̂ and M̂ respectively according to

L̃
∆
= (UT ⊗ Ip)L̂(U ⊗ Ip) = blockdiag(A− λ1CK, . . . , A− λnCK)

and

M̃
∆
= (UT ⊗ Ip)M̂ = (UT ⊗ Ip)M̂ = UTM ⊗B.

Since (L̂, M̂) is uncontrollable and UT ⊗ Ip is nonsingular, the pair (L̃, M̃) is also
uncontrollable. In view of the block diagonal structure of L̃, we know that there
must exist an index s with 1 6 s 6 n such that the corresponding matrix pair
(A − λsCK, (U

TM)s ⊗ B) is uncontrollable, where for a matrix M we use (M)s
to denote its sth row. This, however, implies that (L,M) is uncontrollable in case
(UTM)s = 0 or (A − λsCK,B) is uncontrollable in case (UTM)s 6= 0. Hence, we
arrive at a contradiction. �

The main results of [22, 25] on the controllability of networks of agents with
higher-order-integrator dynamics can be recovered from Theorem 2.2.1 as special
cases. In fact, the networks in [22, 25] correspond to a particular case of (2.1) by
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setting

A =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0

 , C = B =


0

0
...
0

1

 , K =
[
c1 c2 · · · cp−1 cp

]

where A ∈ Rp×p, B ∈ Rp, C ∈ Rp, and KT ∈ Rp with ci’s being the coupling
strengths for 1 6 i 6 p. From Theorem 2.2.1, one immediately concludes that the
network pair (L̂, M̂) is controllable if and only if (L,M) is controllable. This is
coincide with the results in [22, 25].

Theorem 2.2.1 also reduces the computational cost for checking controllability
because the dimensions of the controllability matrices of the pairs (L,M) and (A−
λCK,B) are much lower than that of the pair (L̂, M̂) when the number of agents n
is large or the dimension p of agent dynamics is high.

One can roughly interpret the two conditions stated in Theorem 2.2.1 to be the
effects of network topologies and agent dynamics on controllability. Next, we are
especially interested in inferring network controllability from its underlying topology.
To do this, we consider diffusively coupled networks with single-integrator agents as
follows:

ẋ = −Lx+Mu. (2.2)

Obviously, such single-integrator networks are special cases of the network (2.1) by
setting A = 0 and B = C = K = 1.

In the next section, we comment on existing results that characterizes network
controllability in terms of underlying graph topologies.

2.3 A class of uncontrollable networks

The paper [31] deals with diffusively coupled networks with single-integrator agents
and one of the agents, the leader, provides the control input. In order to study the
controllability problem for such networks, it introduces the so-called leader-invariant
relaxed equitable partition (LEP) of the underlying graph [31, Def. 5]. The LEP is
then employed in [31, Thm. 3] and in [31, Prop. 2]. The former result states that a
single leader network is controllable if and only if the LEP of the graph is the trivial
partition whereas the latter characterizes the controllable subspace of a single leader
leader-symmetric network [31, Def. 1] in terms of the characteristic vectors obtained
from the LEP. In this section, we provide counterexamples for these two results.
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The framework that [31] considers for controllability is different than ours in
(2.2). The following subsection shows that they are in fact equivalent for studying
controllability.

2.3.1 Two frameworks for studying controllability

In this subsection, we relabel the agents such that the first n−m agents are followers
and the last m agents are leaders. Then one can partition L into block submatrices

L =

[
Lf lfl
lTfl Ll

]
where Lf and Ll are (n−m)× (n−m) and m×m dimensional matrices respectively.
Let xl ∈ Rm denote the state of the leaders and xf ∈ Rn−m that of the followers.
Then in [31] the following model is studied

ẋf = −Lfxf + lflxl (2.3)

where xl is taken as the control input.
Now we compare the controllable subspaces K(L,M) of (2.2) and K(Lf , lfl) of

(2.3). In fact, with the new agent labels we can rewrite (2.2) into[
ẋf
ẋl

]
= −

[
Lf lfl
lTfl Ll

] [
xf
xl

]
+

[
0

I

]
u (2.4)

where I is the m×m identity matrix. Taking the control input to be the state feedback
u =

[
lTfl Ll

] [
xf xl

]T
+ v with the new control input v ∈ Rm, we have

[
ẋf
ẋl

]
= −

[
Lf lfl
0 0

] [
xf
xl

]
+

[
0

I

]
v.

This is equivalent to

ẋf = −Lfxf + lflxl and ẋl = v. (2.5)

Since controllable subspaces are invariant under state feedback, it holds that

K(L,M) = K(Lf , lfl)× Rm.

Therefore, the network (2.2) is controllable if and only if the network (2.3) is control-
lable.
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Figure 2.1: Counterexample for [31, Thm. 3]
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3 4 5 6

7

Figure 2.2: Counterexample for [31, Prop. 2]

2.3.2 Examples discussing sufficient conditions

Consider the graph depicted in Figure 2.1 where the sixth agent is the leader. By
following the footsteps of [31], one obtains the dynamics of the network (given by
[31, Eq. (3)]) as follows:

ẋ =


−1 0 1 0 0

0 −2 1 1 0

1 1 −3 0 0

0 1 0 −2 0

0 0 0 0 −1

x+


0

0

1

1

1

u. (2.6)

Straightforward calculations yield that the controllable subspace of the network (2.6)
is of dimension 4, i.e. the network is uncontrollable. However, one can verify that the
LEP is trivial. Hence, this example shows that the LEP being trivial is not a sufficient
condition for controllability as [31, Thm. 3] claims.

The fallacy in the proof of [31, Thm. 3] is that Eq. (35) ([31, p. 118]) implies only
the left hand side of Eq. (36) is included in the right hand side but not the reverse
inclusion.

Now, consider the graph depicted in Figure 2.2 where the seventh agent is the
leader. This leader-symmetric network leads to the dynamics (given by [31, Eq. (3)]):

ẋ =



−1 0 1 0 0 0

0 −2 1 1 0 0

1 1 −3 0 0 0

0 1 0 −2 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


x+



0

0

1

1

1

1


u. (2.7)

For this example, the controllable subspace is of dimension 4 and the LEP consists of
the cells {1}, {2}, {3}, {4}, {5, 6}, and {7}. As such, the controllable subspace is not
equal to the span of the characteristic vectors corresponding to the cells {1}, {2}, {3},
{4}, {5, 6} as [31, Prop. 2] claims.
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The fallacy in the proof of [31, Prop. 2] is similar to that of [31, Thm. 3]: The
equation (16) ([31, p. 118]) implies only the controllable subspace is included in the
span of the mentioned vectors but not the reverse inclusion. It should also be noted
that [31, Prop. 2] deals with the leader-symmetric networks but this property was
not used in the proof.

2.3.3 A class of uncontrollable networks: multi-chain topologies

In this subsection, we systematically construct a class of networks that act as further
counterexamples for the result [31, Thm. 3], which implies that counterexamples for
[31, Thm. 3] are not rare.

A simple undirected graph G = (V, E) with V = {1, 2, . . . , n} is called a path
graph if the edge set is E = {(i, i + 1) for i = 1, 2, . . . , n − 1}, see e.g. [32, Ch. 2].
In the following, the vertex n is assigned to be the leader whenever we consider a
network (2.3) with a topology described by a path graph G.

Lemma 2.3.1 Let G1 and G2 be two simple undirected path graphs with n1 and n2 vertices,
respectively. Let λ be an eigenvalue of Lf(G1). Then λ is an eigenvalue of Lf(G2) where
n2 = k(2n1 − 1) + n1 for any nonnegative integer k.

Proof. Let v =
[
v1 v2 . . . vn1

]T
be the eigenvector associated with the eigenvalue

λ of Lf(G1). Construct a vector v̄ ∈ Rk(2n1−1)+n1−1 as follows:

v̄j =



v1 if j mod 2(2n1 − 1) = 1 or 2n1 − 2

v2 if j mod 2(2n1 − 1) = 2 or 2n1 − 3
...

...
vn1 if j mod 2(2n1 − 1) = n1 − 1 or n1

0 if j mod (2n1 − 1) = 0

−v1 if j mod 2(2n1 − 1) = 2n1 or 4n1 − 3

−v2 if j mod 2(2n1 − 1) = 2n1 + 1 or 4n1 − 4
...

...
−vn1

if j mod 2(2n1 − 1) = 3n1 − 2 or 3n1 − 1

Then one can check that Lf(G2)v̄ = λv̄, i.e., λ is an eigenvalue of Lf(G2). �

For a positive integer l, a simple undirected graph G = (V, E) is said to be an
l-path graph if there exist integers 1 6 r1 < r2 < . . . < rl−1 < rl = n − 1 such
that E is the union of the edge sets {(ri, n) for all i = 1, 2, . . . , l} and {(j, j + 1), 1 <

j < n − 1 and j 6= r1, . . . , rl−1}. Intuitively, an l-path graph G consists of l paths
that share a common end vertex n. Denote by Gi the path containing vertex ri for
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Figure 2.3: A 3-path graph with 8 vertices

i = 1, 2, . . . , l. By definition, Gi has ri − ri−1 + 1 vertices where i ∈ {1, 2, . . . , l} and
r0 is defined to be 0. Moreover,

Lf(G) = blockdiag(Lf(G1), Lf(G2), . . . , Lf(Gl)). (2.8)

As an example, a 3-path graph is depicted in Figure 2.3 that has 8 vertices with r1 = 1,
r2 = 5 and r3 = 7.

Lemma 2.3.2 If G is an l-path graph where l0 of the l paths have 3ki + 2 vertices for some
nonnegative integer ki and i ∈ {1, 2, . . . ,m}, then −1 is one eigenvalue of the matrix Lf(G)

with its (geometric) multiplicity being at least l0.

Proof. Observe that −1 is the unique eigenvalue of Lf(P ) if P is a path graph with 2

vertices. By setting n1 = 2, it follows from Lemma 2.3.1 that −1 is an eigenvalue of
Lf(Gi) for each Gi that has 3ki + 2 vertices for some nonnegative integer ki. Then the
conclusion follows from the block diagonal structure (2.8) of Lf(G). �

Proposition 2.3.3 The network (2.3) with an l-path topology defined as in Lemma 2.3.2 is
not controllable with VL = {n} if l0 > 1.

The proof of this proposition makes use of the following result.

Lemma 2.3.4 [32, Prop. 10.3] The network (2.3) is uncontrollable ifLf(G) has an eigenvalue
whose geometric multiplicity is greater than one.

Proof of Proposition 2.3.3. The conclusion follows directly from Lemma 2.3.4 since
Lf(G) has an eigenvalue −1 whose geometric multiplicity is at least l as proven in
Lemma 2.3.2. �

If G is an l-path graph as in Lemma 2.3.2 with ki’s different from each other
for i = 1, 2, . . . , l, then an algorithm developed in [15] tells that all the cells of LEP
([31, Def. 5]) in G are singleton. As such, each network of the class provided in
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Proposition 2.3.3 acts as a counterexample of [31, Thm. 3]. For instance, the network
(2.3) with its topology described by the graph in Figure 2.3 is such a counterexample
where l0 = 2.

By means of counterexamples in subsections 2.3.2 and 2.3.3, we showed that the
results in [31, Prop. 2] and [31, Thm. 3] are erroneous. Also, we pointed out the
fallacies in the proofs of these results. The counterexamples suggest that the control-
lability properties of single leader networks studied by [31] cannot be completely
characterized by the LEP. As such, finding necessary and sufficient conditions for
the controllability of such networks in terms of graph is still an open problem. This
motivates our study in the next section.

2.4 Controllability of networks and graph partitions

In this section, we focus on networks where each agent has single-integrator dynam-
ics in order to infer network controllability from its topology. As in (2.2), dynamics
of such networks are as follows:

ẋ = −Lx+Mu.

Controllability of such networks is completely determined by the underlying topo-
logy given by the pair of matrices L and M . In what follows, we want to pro-
vide lower and upper bounds for the controllable subspace K = imM + L imM +

· · · + Ln−1 imM of the network (2.2). Towards this end, we quickly review graph
partitions.

2.4.1 Graph partitions

Let G be an undirected graph with the vertex set V . A subset C of V is called a cell. A
collection of cells {C1, C2, . . . , Ck} is called a partition if the cells are mutually disjoint
and

⋃
i Ci = V . We use π = {C1, C2, . . . , Ck} to denote the partition. The characteristic

matrix P (π) ∈ Rn×k of the partition π = {C1, C2, . . . , Ck} is defined by

Pij(π)
∆
=

{
1 if i ∈ Cj
0 otherwise.

Next, we introduce particular partitions and employ them in order to obtain
bounds for the controllable subspace of the network (2.2).
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2.4.2 Lower bounds by distance partitions

The distance between two vertices i, j ∈ V is the length of the shortest path from i

to j in G and will be denoted by dist(i, j). For convenience, we say dist(i, i) = 0 for
any i ∈ V . The diameter of G is defined by diam(G)

∆
= maxi,j∈V dist(i, j). Obviously,

when G is connected [32] and n > 1, it holds that 0 < diam(G) < n. Let G be a
connected graph and v ∈ V . The distance partition relative to v consists of the cells
Ci = {w ∈ V| dist(w, v) = i} for 0 6 i 6 diam(G). We denote the distance partition
relative to v by πD(v). The following lemma is a direct consequence of the definition
of πD(v).

Lemma 2.4.1 Let Ci and Cj be two cells of a distance partition relative to a certain vertex.
For any z ∈ Ci and w ∈ Cj , it holds that |i− j| 6 dist(z, w).

The following theorem provides a lower bound for the dimension of the control-
lable subspace K in terms of the distance partition relative to the leaders.

Theorem 2.4.2 If G is connected then dimK > maxvi∈VL card(πD(vi)).

Proof. We first prove that if VL = {v} then dimK > card(πD(v)). Without loss of
generality, we can take v = 1, πD(1) = {C0, C1, . . . , Cr}with r 6 diamG,

C0 = {1}, and

Cq = {iq + 1, iq + 2, . . . , iq+1}

where 1 6 q 6 r and 1 = i1 < i2 < · · · < ir+1 = n. In view of Lemma 2.4.1, we know
that no vertex in Ci has a neighbor in Cj if |i− j| > 1. This means that L is of the form

L =



deg(1) 1T 0 0 ··· 0 0 0
1 L11 L12 0 ··· 0 0 0
0 L21 L22 L23 ··· 0 0 0
0 0 L32 L33 ··· 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 ··· Lr−2,r−2 Lr−2,r−1 0
0 0 0 0 ··· Lr−1,r−2 Lr−1,r−1 Lr−1,r

0 0 0 0 ··· 0 Lr,r−1 Lr,r

 , (2.9)

where 1 is the all-one column vector of dimension card(C1) and Lkl are card(Ck)×
card(Cl) matrices for all 1 6 k, l 6 r. Since v = 1, M = e1 =

[
1 0 · · · 0

]T
. Let

E =
[
e1 Le1 · · · Lre1

]
. Then, we get

E =


1 deg(1) ∗ ∗ ··· ∗ ∗
0 1 ∗ ∗ ··· ∗ ∗
0 0 L211 ∗ ··· ∗ ∗
0 0 0 L32L211 ··· ∗ ∗
...

...
...

...
. . .

...
...

0 0 0 0 ··· Lr−1,r−2...L211 ∗
0 0 0 0 ··· 0 Lr,r−1...L211

 ,
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where ‘*’ denotes the corresponding elements of less interest. Since the graph G is
connected, each diagonal block must be nonzero. Then rankE = card(πD(1)) = r+ 1.
Therefore, by further using the fact that r 6 diamG 6 n− 1, we have

card(πD(v)) = rankE 6 rank
[
e1 Le1 · · · Ln−1e1

]
= dimK.

Now we consider the case when VL = {v1, v2, . . . , vm}. Clearly, we have dimK >
card(πD(vi)) for any vi ∈ VL. Therefore, dimK > maxvi∈VL card(πD(vi)). �

Next, we introduce almost equitable partitions in order to provide an upper
bound for the controllable subspace.

2.4.3 Upper bounds by almost equitable partitions

For a graph G, a partition π = {C1, C2, . . . , Ck} is said to be an almost equitable partition
if for any distinct cells Ci and Cj , every vertex in Ci has the same number of neighbors
in Cj [16]. We denote the set of all the almost equitable partitions of G by ΠAEP.
Almost equitable partitions have the following key property that is related to the
Laplacian matrices of the corresponding graphs. In the sequel, we say that a subspace
X ⊆ Rn is T -invariant if TX ⊆ X where T : Rn → Rn.

Lemma 2.4.3 [16, Prop. 1] A partition π is almost equitable if and only if imP (π) is
L-invariant.

To come up with an upper bound for the controllable subspace, we need to
compare different partitions. We say that a partition π1 is finer than another partition
π2 if each cell of π1 is a subset of some cell of π2 and we write π1 6 π2. It is a direct
consequence of the definition that

π1 6 π2 ⇐⇒ imP (π2) ⊆ imP (π1). (2.10)

Let πL = {{v1}, {v2}, . . . , {vm},V \ VL}. Note that imM ⊆ imP (πL). Define

ΠAEP(πL) = {π | π ∈ ΠAEP and π 6 πL}. (2.11)

The following theorem shows that each partition belonging to ΠAEP(πL) provides
an upper bound for the controllable subspace K.

Theorem 2.4.4 For any π ∈ ΠAEP(πL), K ⊆ imP (π).

Proof. It follows from Lemma 2.4.3 that imP (π) is L-invariant for each π ∈ ΠAEP(πL).
As noted before, imM ⊆ imP (πL). In view of (2.10), this means that imM ⊆ imP (π)
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for each π with π 6 πL. In particular, we have imM ⊆ imP (π) for each π ∈
ΠAEP(πL). Therefore, the subspace imP (π) is L-invariant and contains imM . Since
the controllable subspace K is the smallest subspace with these properties, we get
K ⊆ imP (π) for each π ∈ ΠAEP(πL). �

Remark 2.4.5 Theorem 2.4.4 applies when there are multiple leaders. As such, it
extends the similar result of [31, Prop. 2] (see also [13]) which deals with the single
leader case.

A natural question to ask is how to sharpen the upper bounds provided by
Theorem 2.4.4. Obviously, the tightest bound which can be obtained by this theorem
is given by

K ⊆
⋂

π∈ΠAEP(πL)

imP (π).

However, this bound is not very practical as it requires the computation of all
almost equitable partitions which are finer than the partition πL. The relation (2.10)
suggests that one can provide an upper bound in terms of a partition which is
maximal in a certain sense. More precisely, if one can show that there exists a
partition π∗ ∈ ΠAEP such that π 6 π∗ for each π ∈ ΠAEP(πL) then one can conclude
that

K ⊆ imP (π∗).

In [31] (see also [13]), such a bound is provided for the single leader case without
formally proving the existence of such a partition. In what follows, we investigate
the structure of the set ΠAEP in detail and show that such a maximal partition exists
and is unique. Furthermore, we will present an algorithm in order to compute this
maximal partition. To do so, we need to introduce some nomenclature.

Let Π denote the set of all the partitions of G. With the partial order “6”, the set
Π becomes a complete lattice (see e.g. [11]) which means that every subset of Π has
both its greatest lower bound and least upper bound within Π. We use ∨Π′ to denote
the least upper bound of a subset Π′. By definition, the least upper bound ∨Π′ has
the following property:

π 6 π̃ for all π ∈ Π′ =⇒ ∨Π′ 6 π̃. (2.12)

The complete lattice structure of Π readily implies that the set ΠAEP(πL) admits
a unique least upper bound π∗AEP(πL) = ∨ΠAEP(πL) such that π 6 π∗AEP(πL) for each
π ∈ ΠAEP(πL). However, the least upper bound of a subset of Π does not need to
belong to the subset in general. As such, one needs to further show that π∗AEP(πL)

belongs to ΠAEP(πL) in order to conclude that K ⊆ imP (π∗AEP(πL)). To do so, we first
state the following auxiliary lemma.
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Lemma 2.4.6 [63, Lem. 1] For any subset Π′ of Π, it holds that⋂
π∈Π′

imP (π) = imP (
∨

Π′).

Based on this lemma, we are in a position to prove that the maximal partition
π∗AEP(πL) belongs to the set ΠAEP(πL).

Lemma 2.4.7 It holds that π∗AEP(πL) ∈ ΠAEP(πL).

Proof. It follows from (2.11) and (2.12) that π∗AEP(πL) 6 πL. Therefore, it remains to
show that π∗AEP(πL) is an almost equitable partition. To see this, note that

imP (π∗AEP(πL)) = imP (
∨

ΠAEP(πL)) =
⋂

π∈ΠAEP(πL)

imP (π) (2.13)

due to Lemma 2.4.6. In view of Lemma 2.4.3, imP (π) is L-invariant for each π ∈
ΠAEP(πL). Since intersection of L-invariant subspaces must be L-invariant too, it
follows from (2.13) that imP (π∗AEP(πL)) is L-invariant. As such, one can conclude
from Lemma 2.4.3 that π∗AEP(πL) is an almost equitable partition. �

Combining Theorem 2.4.4 with Lemma 2.4.7, we can state the following tightened
bound for the controllable subspace.

Theorem 2.4.8 It holds that K ⊆ imP (π∗AEP(πL)).

Remark 2.4.9 The bounds presented in Theorem 2.4.2 and Theorem 2.4.8 are tight
for general graphs in the sense that one can construct graphs such that those bounds
hold with equality. Consider the network (2.2) associated with the graph depicted on
the left of Figure 2.4. If agents 1 and 4 are chosen as leaders, then the lower bound
holds with equality which is strictly less than the upper bound. If agents 1 and 3 are
chosen as leaders, then the upper bound holds with equality which is strictly greater
than the lower bound. For the network associated with the graph shown on the right
of Figure 2.4, if we choose agent 1 to be the single leader, neither of the two bounds
is achieved. Moreover, one can check that there is no partition for which the image of
its characteristic matrix is equal to the controllable subspace.

The bounds in Theorems 2.4.2 and 2.4.8 coincide for some specific graphs, for
instance distance regular graphs with a single leader as shown in [63].

The lower bound in Theorem 2.4.2 is easy to check since distance partitions can be
obtained rather straightforwardly. However, the computation for the upper bound
presented in Theorem 2.4.8 is not so straightforward since there are no algorithms to
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Figure 2.4: Examples illustrating the tightness of the lower/upper bounds

obtain almost equitable partitions with the constraint that multiple cells (correspond-
ing to the leaders in our setting) have been strictly specified. In the next section,
we develop an algorithm through which the least upper bound π∗AEP(πL) of the set
ΠAEP(πL) can be computed starting from a given partition πL.

2.4.4 Algorithm to compute π∗
AEP(πL)

To present the algorithm, we need to define a few concepts first. Let Rn×• denote all
matrices with n rows. Let ψ : Rn×• → Π be the mapping such that for any matrix
X ∈ Rn×• it holds that i and j are in the same cell of ψ(X) if and only if the ith and
jth rows of the matrix X are the same. Note that

π = ψ(P (π)) (2.14)

for any partition π ∈ Π.
Now we present an algorithm that computes π∗AEP(πL) starting from partition πL.

Theorem 2.4.10 Define the sequence {pik} of partitions by

π0 = πL

πk+1 = ψ(
[
P (πk) LP (πk)

]
)

(2.15)

where k > 0. Then, there exists an integer q with 0 6 q 6 n−m such that πq = π∗AEP(πL) =

πq+` for all ` > 0.

To prove this theorem, we will use the following auxiliary lemma.

Lemma 2.4.11 Let X,Y ∈ Rn×•. The following statements hold.

1. imX ⊆ imP (ψ(X)).

2. imX ⊆ imY implies that imP (ψ(X)) ⊆ imP (ψ(Y )).
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Proof. 1): It follows from the definition of ψ that for each matrix X ∈ Rn×• there
exists a matrix ZX such that X = P (ψ(X))ZX . Consequently, imX ⊆ imP (ψ(X)).

2): In view of (2.10), it suffices to prove that ψ(Y ) 6 ψ(X). To do so, let i and j

be such that the ith and jth rows of the matrix Y are the same. Since imX ⊆ imY ,
there exists a matrix Z such that X = Y Z. Then, the ith and jth rows of the matrix
X must the same. Therefore, it follows from the definition of ψ that any cell of ψ(Y )

is a subset of a cell of ψ(X). In other words, ψ(Y ) 6 ψ(X). �

Now we are ready to prove Theorem 2.4.10.
Proof of Theorem 2.4.10. Note that

imP (πk) ⊆ im
[
P (πk) LP (πk)

]
.

Then, it follows from Lemma 2.4.11.2, (2.10) and (2.14) that

πk+1 = ψ(
[
P (πk) LP (πk)

]
) 6 ψ(P (πk)) = πk.

Therefore, we obtain
πk+1 6 πk (2.16)

for all k > 0. Now, we claim that the implication

πr+1 = πr for some r =⇒ πr = πr+` for all ` > 0 (2.17)

holds. To show this, note that πr = ψ(
[
P (πr) LP (πr)

]
) if πr+1 = πr. Then, it

follows from Lemma 2.4.11.1 and (2.14) that im
[
P (πr) LP (πr)

]
⊆ imP (πr). This

means that
imLP (πr) ⊆ imP (πr). (2.18)

Since πr+1 = πr, (2.18) implies that πr+` = πr for all ` > 0. Since card(πL) = m + 1

when m < n and card(πL) = m when m = n, we get card(π0) > m. Then, (2.16) and
the implication (2.17) imply that there exists an integer q with 0 6 q 6 n−m+ 1 such
that πq = πq+` for all ` > 0. What remains to prove is that

πq = π∗AEP(π0). (2.19)

From (2.18), we know that P (πq) is L-invariant. Then, πq is an almost equitable
partition due to Lemma 2.4.3. We also know from (2.16) that πq 6 π0. Therefore,
πq ∈ ΠAEP(π0). This implies that

πq 6 π
∗
AEP(π0). (2.20)
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Now, we claim that
π∗AEP(π0) 6 πk (2.21)

for each k > 0. We prove this claim by induction on k. When k = 0, (2.21) follows
from the definition of π∗AEP(π0) that π∗AEP(π0) 6 π0. Now, assume that π∗AEP(π0) 6 πk
holds for some k > 0. It follows from (2.10) that imP (πk) ⊆ imP (π∗AEP(π0)) and
from Lemma 2.4.3 that L imP (πk) ⊆ imP (π∗AEP(π0)), both of which imply that
im
[
P (πk) LP (πk)

]
⊆ imP (π∗AEP(π0)). Then, we obtain from Lemma 2.4.11.2 and

(2.14) that imP (πk+1) ⊆ imP (π∗AEP(π0)). Hence, (2.10) yields that π∗AEP(π0) 6 πk+1.
Consequently, (2.21) is proven. In particular, we can conclude that

π∗AEP(π0) 6 πq.

Together with (2.20), this implies that (2.19) holds. �

To illustrate the algorithm by means of examples, we consider the diffusively
coupled network (2.2) corresponding to the graph depicted in Figure 2.5. Note that
the Laplacian matrix is given by

L =



2 −1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

−1 −1 6 −1 −1 0 −1 −1 0

0 0 −1 3 −1 0 0 0 −1

0 0 −1 −1 4 −1 0 0 −1

0 0 0 0 −1 2 −1 0 0

0 0 −1 0 0 −1 4 −1 −1

0 0 −1 0 0 0 −1 3 −1

0 0 0 −1 −1 0 −1 −1 4


for this graph. We employ the algorithm for three different leader sets. Figures 2.6,
2.7, and 2.8 depict, respectively, the partitions obtained by the recursion (2.15) for the
leader sets VL = {1}, VL = {4}, and VL = {1, 4}. In all these cases, the last partition
correspond to the maximal almost equitable partition π∗AEP(πL).

2.5 Controllability of networks: distance regular topo-
logies

As discussed in Remark 2.4.9, the lower and upper bounds do not coincide in general.
In this section, we focus on a particular class of graphs, namely distance regular
graphs. For such graphs, we will first show that the lower and upper bounds coincide
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Figure 2.5: Example for the algorithm
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π0 = {{1}, V \ {1}}
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3

4 5 6 7 8

9

π1 = {{1}, {2, 3}, {4, . . . , 9}}
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π2 = {{1}, {2}, {3}, {4, 5, 7, 8}, {6, 9}}
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π3 = {{1}, {2}, {3}, {4, 8}, {5, 7}, {6}, {9}}

Figure 2.6: Execution of the algorithm for VL = {1}

if there is a single leader. For multi-leader scenarios, we will provide a systematic
way of choosing leaders in order to render the network to be controllable by further
exploiting the distance regularity property.

We begin with a brief review of the properties of distance regular graphs. For
more details, readers can refer to [8].

2.5.1 Distance regular graphs and properties

A graphG is said to be regular if deg(i) = deg(j) for all i, j ∈ V , where deg(i) denotes
the number of neighbors of vertex i in G. It is called distance-regular if it is regular



2.5. Controllability of networks: distance regular topologies 25

1 2

3

4 5 6 7 8

9

π0 = {{4}, V \ {4}}
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π1 = {{1, 2, 6, 7, 8}, {3, 5, 9}, {4}}
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π2 = {{1, 2, 6}, {3}, {4}, {5}, {7, 8}, {9}}
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π3 = {{1, 2}, {3}, . . . , {9}}

Figure 2.7: Execution of the algorithm for VL = {4}

and for any pair of vertices u, v ∈ V with dist(u, v) = i, 0 < i < diam(G), there exist
numbers ci and bi such that there are ci neighbors of v that are of distance i− 1 from
u and bi neighbors of v that are of distance i+ 1 from u [8].

Consider a distance regular graph G. Let d = diam(G). The sequence

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

is called the intersection array of G. For a pair of vertices u, v ∈ V with dist(u, v) = h,
we define the numbers phij

∆
= card({w ∈ V|dist(u,w) = i and dist(v, w) = j}) for all

0 6 i, j, h 6 d. Then we have

Lemma 2.5.1 [8] For a distance regular graph, it holds that

bi−1 > 0, ci > 0 for all 1 6 i 6 d

pi−hih =
bi−1 · · · bi−h
c1 · · · ch

for all 0 6 h 6 i 6 d.

Define the i distance regular graph ofG for i = 0, 1, . . . , d, denoted byGi = (V, Ei),
such that for u, v ∈ V , (u, v) ∈ Ei if and only if dist(u, v) = i in G. Denote the
adjacency matrix of Gi by Ai. Note that A0 = I and A1 = A where A denotes the
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π0 = {{1}, {4}, V \ {1, 4}}
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π1 = {{1}, . . . , {4}, {5, 9}, {6, 7, 8}}
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π2 = {{1}, . . . , {6}, {7, 8}, {9}}
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π3 = {{1}, . . . , {9}}

Figure 2.8: Execution of the algorithm for VL = {1, 4}

adjacency matrix of G. These matrices satisfy

I +A1 + · · ·+Ad = J (2.22)

where J is the matrix of all 1’s. Further, there exist ith degree matrix polynomials vi
such that

Ai = vi(A). (2.23)

Moreover, the matrices {I, A1, . . . , Ad} are linearly independent.

2.5.2 Single-leader cases

Consider the network (2.2) with a distance regular graph G and a single leader.
When VL = {v} with v ∈ V , we denote its controllable subspace by K(v). Then the
dimension of K(v) can be completely characterized in terms of graph partitions as
follows.

Proposition 2.5.2 For any v ∈ V ,

dim(K(v)) = card(πD(v)) = d+ 1

where d = diam(G).
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Proof. It follows from the definition of distance regularity that the distance partition
πD(v) is an almost equitable partition. Hence, we have πD(v) 6 π∗AEP(v) and thus,
card(π∗AEP(v)) 6 card(πD(v)). Therefore, it follows from Theorems 2.4.2 and 2.4.8
that dimK(v) = card(πD(v)). Moreover, it follows from Lemma 2.5.1 that p0

dd > 0.
This implies that for each vertex v, there exists at least one other vertex u such that
dist(v, u) = d, which in turn implies the claim. �

Proposition 2.5.2 implies that the network (2.2) with a distance regular graph
cannot be controllable with a single leader unless n = d+1. This condition is satisfied
if and only if the graph consists of two vertices and one edge. This observation
motivates a further interest in studying networks with multiple leaders.

2.5.3 How many leaders are necessary?

Consider the network (2.2) with a distance regular graph G and multiple leaders. Let

N =
[
AdM Ad−1M · · · A1M A0M

]
. (2.24)

where A`’s (0 6 ` 6 d) are defined earlier. Then we have the following result.

Proposition 2.5.3 It holds that
imN = K. (2.25)

Proof. For a subspaceW ⊆ Rn, we denote its orthogonal complement byW⊥. Let
z ∈ Rn.

zT ∈ K⊥ ⇐⇒ zTLkM = 0 for all k = 0, 1, . . . , n− 1

⇐⇒ zTAkM = 0 for all k = 0, 1, . . . , n− 1

(2.22)⇐⇒ zTA`M = 0 for all ` = 0, 1, . . . , d

(2.23)⇐⇒ z ∈ kerNT .

The second relation follows from the regularity of the graph, i.e. L = aI −A where
a = deg(i) for an i ∈ V . �

Theorem 2.5.4 The network (2.2) with a distance regular graph G is controllable only if the
number of inputs m satisfies

dm > n− 1 (2.26)

where d = diam(G).
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Proof. Since the network is controllable, we have dim(K) = n. Then, we get

n = dim(K)

(2.25)
= rankN

(2.22)
= rank

[
JM Ad−1M · · · A1M M

]
= rank

[
1 Ad−1M · · · A1M M

]
where 1 is the column vector of 1’s with the dimension of n. It follows from linear
independence of {I,A1, . . . , Ad} and (2.22) that

rank
[
Ad−1M · · · A1M M

]
> n− 1.

Note that the matrix on the left has n rows and dm columns. Hence, we get dm >
n− 1. �

2.5.4 How many leaders are sufficient?

We begin with a procedure of choosing leaders and later we will show that this
procedure guarantees controllability. Consider w ∈ V . Denote the distance partition
relative to w by πD(w) = {C0, C1, . . . , Cd}. For each 1 6 ` 6 d, choose w` ∈ C`. Define
V∗F to be the set of all such w`. Let V ′ = V \ V∗F. Then w ∈ V ′ and card(V ′) = n− d.

The main result of the subsection is stated as follows.

Theorem 2.5.5 When G is distance regular, the network (2.2) is controllable if VL = V ′.

Proof. Let z ∈ K⊥. Then we have z ∈ kerNT due to Proposition 2.5.3. This means
that

zTA`M = 0

for all ` = 0, 1, . . . , d. In particular, we have

zTM = 0.

If v ∈ VL then the vth standard basis vector must be a column of M . This leads to

zv = 0 (2.27)

where zv is the vth element of z and v ∈ VL. We claim that the other components of z
are zero too. To see this, we consider the relation

zTA`M = 0
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with ` ∈ {1, 2, . . . , d}. Let q be the wth column of A`M . Note that the jth element of
q, 1 6 j 6 n, is

qj =

{
1 if j ∈ C`
0 otherwise.

Since all elements of C` except w` belong to VL, it follows from (2.27) that

0 = zT q = zw` .

This means that z = 0 and hence K = Rn. �

We have the following result as a direct consequence of Theorem 2.5.5.

Corollary 2.5.6 Every distance regular graph can be rendered controllable with n−d leaders.

In the next section, we will discuss how to choose leaders for two well-known
classes of distance regular graphs: cycles and complete graphs.

2.5.5 Leader selection: cycles and complete topologies

Cycle and complete graphs are two classes of distance regular graphs. A graph G
is a cycle if deg(i) = 2 for all i ∈ V and is complete if deg(i) = n − 1 for all i. In the
following, Cn andKn are used to denote a cycle and a complete graph with n vertices
respectively. Note that n > 3 for any Cn.

Consider the network (2.2) with G being Cn. Let d = diam(Cn). Note that n = 2d

or n = 2d + 1. From Proposition 2.5.2, we know that such a network can never be
controllable by a single leader. Moreover, from Theorem 2.5.5, we know that it is
controllable by d leaders when n is even and d+ 1 leaders when n is odd. In addition,
we have the following result.

Theorem 2.5.7 The network (2.2) with Cn and two leaders is controllable if the two vertices
corresponding to the leaders are adjacent.

Proof. The two adjacent leaders are denoted by v1 and v2 and their controllable sub-
spaces K(v1) and K(v2) respectively. We use K(v1, v2) to denote the joint controllable
subspace of v1 and v2.

From Proposition 2.5.2, dimK(v1) = dimK(v2) = d+ 1. When dist(v1, v2) = 1 in
Cn, we have

dim(K(v1) ∩ K(v2)) =

{
2 if n is even

1 if n is odd.
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The conclusion follows from the fact that dimK(v1, v2) = dimK(v1) + dimK(v2) −
dim(K(v1) ∩ K(v2)). �

As Theorem 2.5.7 suggests, the controllability of the network with two leaders
associated with Cn depends on the distance between the two leaders. We illustrate
this point by an example of C6. We label the vertices of the graph clockwise by 1 to 6

and choose vertices 1 and 4 to be the two leaders. Then dim(K(u1) +K(u2)) = 4 < 6,
which implies that the network is uncontrollable when the distance between the two
leaders is 3.

When G is Kn, we have the following result.

Theorem 2.5.8 The network (2.2) with Kn is controllable if and only if at least n− 1 agents
are leaders.

Proof. Since diam(Kn) = 1, the necessity and the sufficiency directly follow from
Theorems 2.5.4 and 2.5.5, respectively. �

2.6 Concluding Remarks

We have studied controllability of networks of agents with general linear dynamics.
After investigating the effect of network topologies on controllability, we focused
on network with agents having single-integrator dynamics. For this case, we have
presented a lower bound for controllable subspace in terms of the distance partitions
and an upper bound in terms of the maximal almost equitable partitions. To compute
the upper bound, we have provided an algorithm that finds the maximal almost
equitable partition for given leaders. In particular, if the graphs are distance regular,
this characterization is complete when there is a single leader, and a necessary
condition and a sufficient condition have been provided when multiple leaders are
present. For networks associated with cycles and complete graphs, we have shown
how to choose leaders to guarantee their controllability.

As future research directions, we are interested in studying controllability of
multi-agent networks when their associated graphs are directed or time-varying.
Also, we are interested in systematic ways of choosing leaders for other classes of
distance regular graphs. Moreover, we envision that the use of ideas and notions of
geometric control theory in the context of multi-agent networks would lead to graph
topological interpretation of many other fundamental control theoretic problems.



Chapter 3

Controllability of diffusively coupled networks:
switching topologies

3.1 Introduction

In Chapter 2, we studied controllability of diffusively coupled networks when their
underlying graphs are undirected and time-independent. In particular, we employed
two classes of graph partitions together with notions of geometric control theory
to provide lower and upper bounds for controllable subspaces. In this chapter, we
investigate controllability of networks with switching topologies. As will be shown
in this chapter, the ideas employed in Chapter 2 that combines graph partitions
and geometric control theory can be extended directly to networks with switching
topologies. As a result, this extension leads to graph theoretical conditions for
controllability.

In the next section, we begin with reviewing results on controllability of switched
linear systems. The controllability of diffusively coupled networks with switching
topologies is defined in the same way as that of switched linear systems. In Section 3.3,
we introduce diffusively coupled networks with switching topologies and general
linear dynamical agents. Moreover, we show the role that the switching topology
plays in controllability of the overall network. Then we focus on inferring network
controllability from its topology in terms of graph partitions. In Section 3.4, the
partitions used in Chapter 2 are extended to networks with switching topologies.
The main results are presented in Section 3.5.

3.2 Review: controllability of switched linear systems

Let (Ai, Bi) ∈ Rn×n × Rn×m with i ∈ {1, 2, . . . , p} be given matrices. Let S be the
set of switching signals defined as the set of right-continuous, piecewise constant
functions σ : R+ → {1, 2, . . . , p}which have finitely many discontinuities on every
finite interval.
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Consider the switched linear system

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (3.1)

where x ∈ Rn is the state, u ∈ Rm is the input, and σ ∈ S is a switching signal. Let
xξ,σ,u denote the unique state trajectory of the system (3.1) for the initial state ξ (i.e.
xξ,σ,u(0) = ξ), the switching signal σ, and the input u.

We say that a state η ∈ Rn is

• reachable if there exist σ ∈ S, locally-integrable u, and a positive number T such
that x0,σ,u(T ) = η,

• controllable if there exist σ ∈ S, locally-integrable u, and a positive number T
such that xη,σ,u(T ) = 0.

Let R and C denote the sets of all reachable and controllable states, respectively.
We say that the system (3.1) is

• reachable if R = Rn,

• controllable if C = Rn,

• completely controllable if R = C = Rn.

As it is shown in [50], the sets of reachable and controllable states coincide
and are subspaces. To elaborate more, let 〈A | B〉 denote the smallest A-invariant
subspace that contains imB. Similarly, let 〈{A1, A2, . . . , Ap} | {B1, B2, . . . , Bp}〉
denote the smallest subspace that is invariant under Ai and contains imBi for all
i = {1, 2, . . . , p}. Then, it has been shown in [49] that

R = C = 〈{A1, A2, . . . , Ap} | {B1, B2, . . . , Bp}〉.

Moreover, the following result is well-known in switched linear systems, see e.g.
[49].

Lemma 3.2.1 Let V be a subspace of Rn. The system (3.1) is controllable if and only if the
following implication holds:

ATi V ⊆ V and V ⊆ kerBTi for all i ∈ {1, 2, . . . , p} =⇒ V = {0}.

In the sequel, we are interested in a particular kind of switched linear systems for
which each subsystem is a diffusively coupled multi-agent networks.
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3.3 Diffusively coupled networks: switching topologies

LetGi = (V,Ei) where i ∈ {1, 2, . . . , p} be p simple undirected graphs with a common
vertex set V = {1, 2, . . . , n}. For each graph Gi, consider two subsets of V : V iL =

{vi1, vi2, . . . , vimi} and V iF = V \V iL . With each vertex j of Gi, we associate the (general)
linear dynamics as follows:

ẋj(t) = Axj(t) + Czij(t) +Bu`(t) if j = vi` ∈ V iL (3.2a)

ẋj(t) = Axj(t) + Czij(t) if j ∈ V iF (3.2b)

where xj ∈ RN represents the state of the agent (vertex) i, u` ∈ Rs indicates the input
to the agent j = vi`, z

i
j ∈ Rq is the diffusive coupling term for the agent j in Gi and

all the matrices are of compatible dimensions. Here, the diffusive coupling term zij is
given by

zij(t) = −K
∑

(j,k)∈Ei

(xj(t)− xk(t)). (3.2c)

where K ∈ Rq×N indicates the coupling strengths. As in Chapter 2, the vertices in
the set V iL are called leaders in Gi and those in V iF are followers.

Define x = col
(
x1 x2 . . . xn

)
and u = col

(
u1 u2 . . . um

)
where m =

max∀i∈{1,2,...,q}mi. With this definition, (3.2) can be re-written as

ẋ(t) = −L̂ix(t) + M̂iu(t) (3.3)

where L̂i = I ⊗ A − Li ⊗ CK with I ∈ Rn×n being identity matrix, Li being the
Laplacian matrix of Gi and M̂i = Mi ⊗B with Mi ∈ Rn×m defined as follows:

[Mi]j` =

{
1 if j = vi` ∈ V iL
0 otherwise.

For i ∈ {1, 2, . . . , p}, the leader/follower diffusively coupled network with a
switching topology among Gi’s is described by

ẋ(t) = −L̂σ(t)x(t) + M̂σ(t)u(t) (3.4)

where σ : [0,∞) → {1, 2, . . . , p} is a right-continuous, piecewise constant function
with finitely many of discontinuities on any finite time interval.

In case each agent of the network has single-integrator dynamics, the network
dynamics can be obtained by setting A = 0, B = C = K = 1 and N = 1 in (3.4) as
follows:

ẋ(t) = −Lσ(t)x(t) +Mσ(t)u(t). (3.5)

The following result reveals the relationship between controllability of (3.5) and
that of (3.4).
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Theorem 3.3.1 The network (3.4) is controllable only if both the network (3.5) and the pair
(A,
[
C B

]
) are controllable.

Proof. Let V ⊆ Rn be a subspace such that

LiV ⊆ V and V ⊆ kerMT
i (3.6)

for any i ∈ {1, 2, . . . , p}. Let {w1, w2, . . . , wr} and {y1, y2, . . . , yN} be bases of V and
RN , respectively. Consider the subspace W = span{wk ⊗ yj | 1 6 k 6 r and 1 6
j 6 N}. Then it follows from (3.6) that L̂Ti W ⊆ W and W ⊆ ker M̂T

i . Since the
network (3.4) is controllable, it follows from Lemma 3.2.1 thatW = {0}. This means
that V = {0} and hence, it concludes from Lemma 3.2.1 that the network (3.5) is
controllable.

Let y ∈ RN be such that AT y = µw for some µ ∈ C and yH
[
C B

]
= 0. Consider

z = w ⊗ y where w ∈ Rn and w 6= 0. Then it follows that L̂Ti z = µz and zT M̂i = 0.
Since the network (3.4) is controllable, we get z = 0 by Lemma 3.2.1. As w 6= 0, this
results in y = 0. Hence, the pair (A,

[
C B

]
) is controllable. �

Next, we focus on inferring controllability of the network (3.5) from its switching
topology. As in Chapter 2, we employ graph partitions to provide bounds for the
controllable subspace of (3.5).

3.4 Graph partitions: extension for switching topo-
logies

Graph partitions have been introduced in Chapter 2. Here, we review the termin-
ologies briefly and extend almost equitable partitions to be applicable to switching
cases.

Any nonempty subset of the vertex set V is called a cell. A collection of mutually
disjoint cells π = {C1, . . . , Cr} is said to be a partition of V if

⋃r
j=1 Cj = V . Let

Π denote the set of all the partitions of V . A partition π1 is said to be finer than a
partition π2, denoted by π1 6 π2, if each cell of π1 is a subset of some cell of π2.

Let ΠAEP(G) denote the set of all almost equitable partitions of a given graph
G = (V,E). For the collection of graphs {G1, . . . , Gp}, define

ΠAEP(π1, . . . , πp) = {π | π ∈ ΠAEP(Gi) and π 6 πi for all i} (3.7)

where πi is a given partition of Gi. Denote by π∗AEP(π1, . . . , πp) the least upper bound
of the set (3.7). Then it can be proven similarly to Lemma 2.4.7 that

π∗AEP(π1, . . . , πp) ∈ ΠAEP(π1, . . . , πp). (3.8)
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3.5 Main results

The main results of this chapter are lower and upper bounds for the controllable
subspace of network (3.5). Let K denote the controllable subspace of (3.5), i.e.,

K = 〈{L1, L2, . . . , Lp} | {M1,M2, . . . ,Mp}〉.

For the lower bound of dimK, the following result is straightforwardly extended
from Theorem 2.4.2.

Theorem 3.5.1 Suppose that graph Gi is connected for each i ∈ {1, 2, . . . , p}. Then it holds
that

dimK > max
k ∈ {1, 2, . . . ,mi}
i ∈ {1, 2, . . . , p}

card(πD(`ik;Gi))

where πD(`ik;Gi) is the distance partition relative to the vertex `ik in graph Gi.

Proof. Let Ki denote the controllable subspace of the network pair (Li,Mi) for each
i ∈ {1, 2, . . . , p}. From Theorem 2.4.2, it follows that

dimKi > max
k∈{1,2,...,mi}

card(πD(`ik;Gi)).

Then the result is concluded from the fact that dimK > maxi∈{1,2,...,p} dimKi. �

Next, a similar result as Theorem 2.4.4 is obtained as follows.

Theorem 3.5.2 It holds that K ⊆ imP (π) for any π ∈ ΠAEP(π1
L , . . . , π

p
L), where πiL is the

partition {{li1}, . . . , {limi}, V
i

F } and P (π) denotes the characteristic matrix of the partition
π.

Proof. By definition, the subspace imP (π) is Li-invariant and contains imMi for
each i ∈ {1, . . . , p} and any π ∈ ΠAEP(π1

L, . . . , π
p
L). Then the conclusion follows from

the fact that K is the smallest Li-invariant subspace that contains imMi for each i. �

Theorem 3.5.2, together with (3.8), leads to the following tighter upper bound,
which is similar to Theorem 2.4.8:

Theorem 3.5.3 It holds that K ⊆ imP (π∗AEP(π1
L , . . . , π

p
L)).

The two bounds provided in Theorems 3.5.3 and 3.5.1 are tight in the sense
that we can construct examples where one bound is achieved while the other holds
strictly. Consider the network (3.5) with its topology switching between the two
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Figure 3.1: Upper bound achieved
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Figure 3.2: Lower bound achieved

graphs depicted in Figure 3.1 and the set of leaders V iL = {1} for i = 1, 2. It can be
checked that the upper bound in Theorem 3.5.3 holds with equality and is strictly
greater than the lower bound in Theorem 3.5.1. If the network (3.5) switches between
the two topologies in Figure 3.2 and the leader set is still the same, the lower bound
in Theorem 3.5.1 is achieved which is strictly less than the upper bound.

For the computation of the upper bound in Theorem 3.5.3, we provide an algo-
rithm in the following. Since the algorithm provided is quite similar to the one in
Theorem 2.4.10, we skip the proof.

Below, we write ∧Π′ to denote the greatest lower bound of the set of partitions Π′.

Theorem 3.5.4 Let ψ be the same as that in Theorem 2.4.10. Define the sequence πk as
follows

π0 = ∧{π1
L , π

2
L , . . . , π

p
L}

πk+1 = ψ(
[
P (πk) L1P (πk) L2P (πk) · · · LpP (πk)

]
); k = 0, 1, 2, . . . .

Then we have

πk+1 6 πk

for any integer k. Moreover, there exists an integer q with 0 6 q 6 n − m such that
πq = π∗AEP(π1

L , . . . , π
p
L) = πq+` for all ` > 0.
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3.6 Concluding remarks

In this chapter, we have studied controllability of diffusively coupled networks with
switching topologies. All the results can be obtained by extending relevant results
in Chapter 2, which investigated controllability of networks with time-independent
topologies. For controllability of networks with switching topologies, we have
revealed the relationship between networks with single-integrator agents and those
with general linear dynamical agents. In order to infer controllability from switching
topologies, we have extended distance and almost equitable partitions to switched
graphs. By using geometric control theory, we have obtained lower and upper
bounds of controllable subspaces of networks with switching topologies.





Chapter 4

Partial consensus of heterogeneous diffusively
coupled networks: double-integrator agents

4.1 Introduction

A network achieves consensus when all the states of the agents come to a global
agreement, only through interaction with their neighbors. During the last decades,
much research effort has been put into the consensus problem, see e.g. [45] and [38].
It received so much attention partly due to its wide variety of applications such as
flocking of birds and groups of autonomous mobile robots.

The last decades also witnesses the effect of algebraic graph theory on the consen-
sus problem, see e.g. [20] and [14]. When each agent has single integrator dynamics,
the condition for achieving consensus has been completely highlighted in terms of
graph topologies associated with networks. For instance, it has been shown that
consensus is achieved for a time-varying graph topology if and only if the graph
topology contains a spanning tree frequently enough when it evolves with time, see
e.g. [24, 37, 46].

It is more realistic to have an insight into networks with double-integrator dynam-
ics. For instance, some mobile robots can be feedback linearized and then described
by double-integrator dynamics. The consensus problem for double-integrator net-
works has been of interest in the literature, see e.g. [42, 43, 44, 60, 61, 62]. For instance,
it has been shown in [44] that consensus may fail for double-integrator networks
even if their graph topologies contain a spanning tree. Also, some necessary and
sufficient conditions have been derived for achieving consensus, see e.g. [62].

In double-integrator networks, each agent has two states that are often called
position and velocity. All of the above literature assumes that the graph topology of
position interaction and that of velocity interaction are identical. This assumption is
not always (if sometimes) realistic. For instance, it is probable that not all velocities
of mobile robots in a group can be measured due to expensive velocity sensors.
Therefore, some agents can interact through both their positions and velocities with
their neighbors while the other ones can only share their positions. In view of this,
consensus conditions of double-integrator networks with different position and
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velocity graph topologies are studied in [21].
This chapter restudies this problem since the main result in [21] is not entirely

correct. A counterexample will be provided in Section 4.3. As in [21], we assume that
both position and velocity graphs are undirected. By taking the consensus problem as
an output stability problem, we derive algebraic necessary and sufficient conditions
for consensus with the help of geometric control theory, see e.g. [52]. Later, we make
an effort to translate these algebraic conditions to graph theoretical conditions in
terms of graph partitions.

This chapter is organized as follows. In Section 4.2, we begin with introducing
the diffusively coupled networks with double-integrator dynamics as well as partial
consensus problem. Then, we formulate the partial consensus problem as an output
stability problem of an appropriately chosen linear system based on the dynamics of
the network under investigation. In Section 4.3, we provide algebraic necessary and
sufficient conditions for partial consensus problem based on the well-known solution
of the output stability problem for linear systems. Also, we give a counter example
to the main result of the paper [21] which studied velocity consensus for the same
class of networks. Later, we give the graph theoretical interpretation of the presented
algebraic necessary and sufficient conditions and provide necessary conditions in
terms of almost equitable graph partitions.

4.2 Preliminaries

4.2.1 Partial consensus for double-integrator agents

Consider N agents labeled by the set V = {1, 2, . . . , N}, each of which has double-
integrator dynamics given by

ẋi = vi (4.1a)

v̇i = ui (4.1b)

where xi ∈ R is the position of the i-th agent, vi ∈ R is its velocity, and ui is the
diffusive coupling term defined as

ui =
∑

(i,j)∈Ex

(xi − xj) +
∑

(i,j)∈Ev

(vi − vj) (4.1c)

for the two undirected graphs Gx = (V,Ex) and Gv = (V,Ev) capturing the commu-
nication structure for positions and velocities, respectively.

Let G̃x = (V, Ẽx) and G̃v = (V, Ẽv) be two other undirected graphs. We say that
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the network (4.1) reaches consensus with respect to the pair (G̃x, G̃v) if

lim
t→∞

xi(t)− xj(t) = 0 for all (i, j) ∈ G̃x, and (4.2)

lim
t→∞

vi(t)− vj(t) = 0 for all (i, j) ∈ G̃v (4.3)

for all trajectories (x, v) of the network (4.1). In particular, we say that the network
(4.1) reaches velocity consensus if Ẽx = ∅ and Ẽv = V × V , i.e. the position com-
munication graph is an empty graph and the velocity communication graph is the
complete graph corresponding to the vertex set V .

4.2.2 Consensus as an output stability problem

In the reminder of the chapter, we will treat the consensus problem as an output
stability problem. First, we recall the output stability problem for linear system in
what follows.

Consider a linear system

ẋ = Ax (4.4a)

y = Cx (4.4b)

where x ∈ Rn is the state, y ∈ Rp is the output, and (C,A) is a pair of matrices with
appropriate dimensions. The linear system (4.4) is output stable if limt→∞ y(t) = 0 for
all output trajectories y.

Let p denote the characteristic polynomial of the matrix A, that is p(λ) = det(λI −
A). Also, let p = p−p+ where all roots of p− lie in the open left half plane of C and
those of p+ lie in the closed right half plane of C. Define X−(A) = ker p−(A) and
X+(A) = ker p+(A).

The following result can be derived from [52, Ex. 4.10].

Proposition 4.2.1 The linear system (4.4) is output stable if and only if X+(A) ⊆ kerC.

To formulate the consensus problem as an output stability problem, we first
define x = col(x1, x2, . . . , xN ) and v = col(v1, v2, . . . , vN ). With these definitions, the
network (4.1) can be written as[

ẋ

v̇

]
=

[
0 I

−Lx −Lv

] [
x

v

]
(4.5a)

where Lx and Lv are the Laplacians of the undirected graphs Gx = (V,Ex) and
Gv = (V,Ev), respectively. Let z be defined as

z =

[
Hx 0

0 Hv

] [
x

v

]
(4.5b)
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where HT
x and HT

v are the incidence matrices of the graphs G̃x and G̃v , respectively.
Define

L̂ =

[
0 I

−Lx −Lv

]
and Ĥ =

[
Hx 0

0 Hv

]
. (4.6)

With all these preparation, Proposition 4.2.1 readily implies the following result
which reduces the consensus problem of the network (4.1) to the output stability
problem of the linear system (4.5).

Corollary 4.2.2 The network (4.1) reaches consensus with respect to the pair (G̃x, G̃y) if
and only if the linear system (Ĥ, L̂) is output stable, i.e. X+(L̂) ⊆ ker Ĥ .

In order to verify the condition given in Corollary 4.2.2, we have to compute
two subspaces of R2N . In the next subsection, we aim at deriving another algebraic
necessary and sufficient condition for consensus with respect to the pair (G̃x, G̃y),
which only requires to verify the inclusion relationships between subspaces of RN .
To do that, we will analyze the spectrum of the matrix L̂ by exploiting its structure.

4.3 Conditions for partial consensus

4.3.1 Algebraic necessary and sufficient conditions

Next, we present a number of auxiliary results which exploit the special structure
of the matrix L̂ in order to give a compact characterization of the subspace X+(L̂).
To do so, we first note the following well-known properties of the Laplacian L of a
graph G = (V,E):

L = LT > 0

im1 ⊆ kerL

where 1 denote the vector whose entries are all 1.
We first prove that all eigenvalues of L̂ lie in the closed left half plane of C. This

result is stated in the following lemma.

Lemma 4.3.1 The real part of any eigenvalue of L̂ is nonpositive.

To prove Lemma 4.3.1, we notice the following result whose proof is straightforward.

Lemma 4.3.2 Let A, K, and Q be n× n matrices with K = KT > 0, Q = QT > 0, and
ATK +KA = −Q. If (λ, x) is an eigenpair of A where the real part of λ is positive, then
x ∈ kerK ∩ kerQ.
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Proof of Lemma 4.3.1. Define K̂ =

[
Lx 0

0 I

]
. Note that

L̂T K̂ + K̂L̂ =

[
0 0

0 −2Lv

]
=: −Q̂ (4.7)

and

ker K̂ ∩ ker Q̂ = (kerLx × {0}) ∩ (Rn × kerLv)

= (kerLx × {0}) = ker L̂. (4.8)

Suppose that L̂ has an eigenpair (λ, ξ) where the real part of λ is positive. It follows
from Lemma 4.3.2 that ξ ∈ ker K̂ ∩ ker Q̂. Hence, we get L̂ξ = 0 from (4.8). This,
however, implies that λ = 0. Contradiction! �

It follows from Lemma 4.3.1 that the characteristic polynomial of L̂, say p, can
be factorized as p(λ) = λkpimag(λ)pneg(λ) where k is a nonnegative integer, pimag

and pneg are polynomials having only nonzero and purely imaginary roots and
only roots with negative real part, respectively. As such, we obtain the following
characterization for the subspace X+(L̂)

X+(L̂) = ker L̂k ⊕ ker pimag(L̂). (4.9)

In order to obtain a more explicit characterization of this subspace, we utilize a
number of auxiliary results.

The following lemma immediately follows from the special structure of L̂.

Lemma 4.3.3 The pair (λ, ξ) is an eigenpair of L̂ if and only if ξ = col(x, λx) for some
x 6= 0 with (λ2I + λLv + Lx)x = 0.

Next, we characterize the eigenvectors of L̂ corresponding to purely imaginary
eigenvalues.

Lemma 4.3.4 The pair (iω, ξ) is an eigenpair of L̂ with 0 6= ω ∈ R if and only if ξ =

col(x, iωx) with x ∈ kerLv and Lxx = ω2x. Moreover, the algebraic multiplicity of any
nonzero purely imaginary eigenvalue of L̂ is equal to its geometric multiplicity.

Proof. Let (iω, ξ) be an eigenpair of L̂ with 0 6= ω ∈ R. By pre-multiplying (4.7) by ξ∗

and post-multiplying by ξ, we get 0 = 2 Re(iω)ξ∗K̂ξ = −ξ∗Q̂ξ. Since Q̂ is positive
semi-definite, this yields Q̂ξ = 0. Let ξ = col(x, v). Then, we get v ∈ kerLv . It follows
from Lemma 4.3.3 that x ∈ kerLv and from Lemma 4.3.4 that (−ω2I+Lx)x = 0. This
proves the first statement.
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To show that the algebraic and geometric multiplicities coincide, it is sufficient to
prove that the following implication holds:

L̂ξ1 = iωξ1 and L̂ξ2 = iωξ2 + ξ1 =⇒ ξ1 = 0. (4.10)

Let ξ1 and ξ2 satisfy the left hand side of this implication. From the previous
discussion, we know that ξ = col(x1, iωx1) for some x1 ∈ kerLv ∩ ker(Lx − ω2I). By
letting ξ2 = col(x2, v2), we get

v2 = iωx2 + x1 (4.11)

−Lxx2 − Lvv2 = iωv2 + iωx1. (4.12)

Note that (L̂− iωI)2ξ2 = 0. Since

(L̂− iωI)2 = −
[
I 0

−Lv I

] [
Lx + ω2I Lv + 2iωI

ω2Lv − 2iωLx Lx + ω2I

]
, (4.13)

we get

0 = (Lx + ω2I)x2 + (Lv + 2iωI)v2 (4.14)

0 = (ω2Lv − 2iωLx)x2 + (Lx + ω2I)v2. (4.15)

Since x1 ∈ kerLv , we get
Lvv2 = iωLvx2 (4.16)

from (4.11). Then, (4.14) can be written as

(ω2I + iωLv + Lx)x2 + 2iωv2 = 0. (4.17)

By using (4.11), we can write (4.15) as

−2iωLxx2 + (ω2I − iωLv + Lx)v2 = 0. (4.18)

By solving v2 from (4.17) and substituting in (4.18), we obtain

[(Lx − ω2I)2 + ω2Lv]x2 = 0. (4.19)

Further, (4.16) yields
(Lx − ω2I)2x2 = iωLvv2. (4.20)

By multiplying (4.14) by iω and using (4.20) and (4.11), we obtain

iω(Lx + ω2I)x2 + (Lx − ω2I)2x2 − 2iω3x2 = 2ω2x1. (4.21)



4.3. Conditions for partial consensus 45

Finally, we can rewrite the last equality as

2ω2x1 = [L2
x − (2ω2 − iω)Lx + (ω4 − iω3)I]x2 (4.22)

= (Lx − ω2I)(Lx − (ω2 − iω)I)x2. (4.23)

Hence, we get x1 ∈ ker(Lx − ω2I) ∩ im(Lx − ω2I). Note that ker(Lx − ω2I) ∩
im(Lx − ω2I) = {0} as (Lx − ω2I) is symmetric. Thus, we can conclude that ξ1 =

col(x1, iωx1) = 0. �

Remark 4.3.5 Theorem 1 in [21] claims that all nonzero eigenvalues of L̂ have strictly
negative real parts if Lv 6= 0. This is not true in general as illustrated by the following
example. The network in Figure 4.1 consists of three agents. The left and right graphs
indicate position and velocity interactions respectively. For this network, we have

Lx =

 1 −1 0

−1 2 −1

0 −1 1

 and Lv =

 1 0 −1

0 0 0

−1 0 1

 . (4.24)

Then it can be checked that λ = ±
√

3i is a purely imaginary eigenvalue of L̂.

1 2 3 1 23

Figure 4.1: Counter example

Now, we turn our attention to the eigenvectors of L̂ corresponding to the zero
eigenvalue.

Lemma 4.3.6 The following statements hold:

1. ker L̂ = kerLx × {0},

2. ker L̂2 = ker

[
Lx Lv
0 Lx

]
= kerLx × (kerLx ∩ kerLv),

3. ker L̂3 = ker L̂2.

Proof. 1: Note that kerLx × {0} ⊆ ker L̂. Then, it remains to prove that ker L̂ ⊆
kerLx × {0}. Let ξ = col(x, v) ∈ ker L̂. Then,

0 = L̂ξ = L̂

[
x

v

]
=

[
v

−Lxx− Lvv

]
.
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Clearly, v = 0 and x ∈ kerLx. Hence, ξ = col(x, v) ∈ kerLx × {0}.

2: The first equality immediately follows from the following identity:

L̂2 =

[
−Lx −Lv
LvLx −Lx + L2

v

]
= −

[
I 0

−Lv I

] [
Lx Lv
0 Lx

]
. (4.25)

To show the second, it remains to prove

ker

[
Lx Lv
0 Lx

]
⊆ kerLx × (kerLx ∩ kerLv)

as the reverse inclusion is obvious. Let col(x, v) belong to the right hand side. Then,
we get

0 = Lxx+ Lvv (4.26)

v ∈ kerLx (4.27)

By pre-multiplying the latter by vT , we get 0 = vTLxx + vTLvv = vTLvv since
v ∈ kerLx and Lx is symmetric. It follows from the positive semi-definiteness
of Lv that v ∈ kerLv and from (4.26) that x ∈ kerLx. Hence, we get col(x, v) ∈
kerLx × (kerLx ∩ kerLv).

3: Note that

ker L̂3 = L̂−1(ker L̂2) = L̂−1(kerLx × (kerLx ∩ kerLv)). (4.28)

Let ξ = col(x, v) ∈ ker L̂3. Note that

L̂ξ = L̂ col(x, v) =

[
v

−Lxx− Lvv

]
∈ kerLx × (kerLx ∩ kerLv). (4.29)

This means that v ∈ kerLx and Lxx + Lvv ∈ kerLx ∩ kerLv. The latter, however,
implies that Lxx + Lvv = 0 as im

[
Lx Lv

]
∩ (kerLx ∩ kerLv) = {0}. Therefore,

we get L̂ξ = L̂ col(x, v) ∈ kerLx ∩ {0} = ker L̂. Hence, ξ ∈ ker L̂2. This proves
ker L̂3 ⊆ ker L̂2 and hence ker L̂3 = ker L̂2 as we already have ker L̂2 ⊆ ker L̂3. �

Lemmas 4.3.4 and 4.3.6 yield that

X+(L̂) = ker L̂2 ⊕
( ⊕

06=ω∈R,iω∈σ(L̂)

ker(L̂− iωI)
)

(4.30)

where σ(L̂) denotes the spectrum of the matrix L̂. With all these preparations, we are
ready to present the first main result of the chapter.
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Theorem 4.3.7 The network (4.1) reaches consensus with respect to the pair (G̃x, G̃y) if
and only if

kerLx ⊆ kerHx

kerLx ∩ kerLv ⊆ kerHv

〈kerLv | Lx〉 ⊆ kerHx ∩ kerHv.

Proof. ‘if’: In view of Lemma 4.3.6, the first two conditions guarantee that

ker L̂2 ⊆ ker Ĥ. (4.31)

Let ξ ∈ ker(L̂− iωI) for some 0 6= ω ∈ Rwith iω ∈ σ(L̂). It follows from Lemma 4.3.3
that ξ = col(x, iωx) for some x, and from Lemma 4.3.4 that x ∈ kerLv and Lxx = ω2x.
Then, the subspace spanx is Lx-invariant and contained in kerLv . Since 〈kerLv | Lx〉
is the largest Lx-invariant subspace that is contained in kerLv, we get x ∈ 〈kerLv |
Lx〉. As such, the third condition yields x ∈ kerHx ∩ kerHv. This implies that
ξ ∈ ker Ĥ since ξ = col(x, iωx). Therefore, we get

ker(L̂− iωI) ⊆ ker Ĥ (4.32)

for all 0 6= ω ∈ R with iω ∈ σ(L̂). In view of (4.30), the inclusions (4.31) and (4.32)
imply that

X+(L̂) ⊆ ker Ĥ. (4.33)

Then, it follows from Corollary 4.2.2 that the network (4.5) reaches consensus with
respect to the pair (G̃x, G̃y).

‘only if’: It follows from Corollary 4.2.2 that

X+(L̂) ⊆ ker Ĥ. (4.34)

From (4.30), we get
ker L̂2 ⊆ ker Ĥ (4.35)

and
ker(L̂− iωI) ⊆ ker Ĥ (4.36)

for all 0 6= ω ∈ R with iω ∈ σ(L̂). The former immediately implies that the first
two conditions must hold in view of Lemma 4.3.6. To conclude the proof, it remains
to show that the third condition holds. Note that one can always find a basis for
〈kerLv | Lx〉 such that every basis vector is an eigenvector of Lx since 〈kerLv |
Lx〉 is Lx-invariant and Lx is diagonalizable. Then, it is enough to show that the
eigenvectors of Lx belonging to 〈kerLv | Lx〉 must also belong to ker Ĥ . Let x 6= 0
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be such that x ∈ 〈kerLv | Lx〉 and Lxx = λx for some λ ∈ σ(Lx). Suppose, first,
that λ = 0. Then x ∈ kerLx ∩ kerLv. Hence, we get x ∈ kerHx ∩ kerHv from the
first two conditions. Now, suppose that λ 6= 0. Since Lx is positive semi-definite,
λ > 0. Let ω be such that ω2 = λ. It follows from Lemma 4.3.3 and Lemma 4.3.4 that
col(x, iωx) ∈ ker(L̂− iωI). Then, we get x ∈ kerHx ∩ kerHv from (4.36). �

Corollary 4.3.8 The network (4.1) reaches velocity consensus if and only if

kerLx ∩ kerLv = im1 = 〈kerLv | Lx〉.

Proof. Note that velocity consensus is reached if and only if the network (4.1) reaches
consensus with respect to (G̃x, G̃v) with G̃x is the empty graph and G̃v is the complete
graph. In this particular case, the necessary and sufficient conditions presented in
Theorem 4.3.7 boil down to

kerLx ∩ kerLv ⊆ im1

〈kerLv | Lx〉 ⊆ im1

since kerHx = RN and kerHv = im1. The proof is completed by the observations
that im1 ⊆ kerLx ∩ kerLv and im1 ⊆ 〈kerLv | Lx〉. �

As mentioned before, in order to verify the conditions in Theorem 4.3.7 and
Corollary 4.3.8, we only need to compute subspaces of RN rather than those of R2N .
Moreover, as will be seen in the next subsection, one can provide necessary graph
topological conditions for the algebraic conditions of Theorem 4.3.7.

4.3.2 Graph theoretical conditions

Our next goal is to give graph theoretical interpretations of these necessary and
sufficient conditions. To do so, we need to introduce some nomenclature on graph
partitions.

Let G = (V,E) be an undirected graph with V = {1, 2, . . . , N}. A cell of G is a
non-empty subset of V . We say that a collection of cells {C1, C2, . . . , Ck} is a partition
of G if Ci ∩ Cj = ∅ if i 6= j and ∪ki=1Ci = V .

Let π = {C1, C2, . . . , Ck} be a partition. The characteristic matrix P (π) ∈ RN×k of
π is defined by

Pij(π) =

{
1 if i ∈ Cj
0 otherwise

1 6 i 6 N, 1 6 j 6 k. (4.37)
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For any two partitions π1 and π2, we say that π1 is finer than π2, denoted by
π1 6 π2, if each cell of π1 is a subset of some cell of π2. It can be easily verified that

π1 6 π2 ⇐⇒ imP (π2) ⊆ imP (π1). (4.38)

Let Π be the set of all partitions of G. With the order “6”, Π becomes a partially
ordered set. Furthermore, it is also a complete lattice (see e.g. [11]), i.e. every subset
of Π has both its greatest lower bound and the least upper bound within Π. For a
subset Π′ of Π, let ∧Π

′
and ∨Π

′
denote these two bounds respectively. In particular,

π1 ∧ π2 and π1 ∨ π2 are used to denote ∧{π1, π2} and ∨{π1, π2}, respectively. Note
that

π1 6 π1 ∨ π2 and π2 6 π1 ∨ π2 (4.39)

π1 ∧ π2 6 π1 and π1 ∧ π2 6 π2 (4.40)

and

π1 6 π and π2 6 π =⇒ π1 ∨ π2 6 π (4.41)

π 6 π1 and π 6 π2 =⇒ π 6 π1 ∧ π2. (4.42)

A partition π = {C1, C2, . . . , Ck} of G is said to be almost equitable if for any pair
(i, j) with 1 6 i 6= j 6 k, there exists a number bij such that any vertex v ∈ Ci has bij
neighbors in Cj [16].

Almost equitable partitions can be characterized in terms of the invariant sub-
spaces of the Laplacian matrix L of G as in the following lemma.

Lemma 4.3.9 [16, Lemma 9.3.2] A partition π ofG is almost equitable if and only if imP (π)

is L-invariant.

A partition π = {C1, C2, . . . , Ck} of G is said to be a connectedness partition if for
any pair (i, j) with 1 6 i 6= j 6 k there are no neighbors of any vertex v ∈ Ci within
Cj . Note that the trivial partition {V } is a connectedness partition for any graph G.
Also note that any connectedness partition is also almost equitable (with bij = 0). Let
ΠC denote the set of all connectedness partitions for the graph G. For later use, we
define

πC(G) =
∧

ΠC .

The following lemma shows that the set ΠC is closed under the binary operation ∧.

Lemma 4.3.10 If π1 and π2 are two connectedness partitions for a graph G, then so is
π1 ∧ π2.
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Proof. Let C and C ′ be two different cells of π1 ∧ π2. In view of (4.40), there exist two
cells, say C1 and C ′1, of π1 and two cells, say C2 and C ′2, of π2 such that

C ⊆ C1 and C ⊆ C2 (4.43)

C ′ ⊆ C ′1 and C ′ ⊆ C ′2. (4.44)

First, we claim that the case C1 = C ′1 and C2 = C ′2 is impossible. On the contrary,
suppose that C1 = C ′1 and C2 = C ′2. Let π1 ∧ π2 = {C,C ′, D1, D2, . . . , Dk}. Define
π12 = {C ∪ C ′, D1, D2, . . . , Dk}. Note that

π12 6 π1 and π12 6 π2. (4.45)

Then, we get
π12 6 π1 ∧ π2 (4.46)

from (4.42). This, however, contradicts with C 6= C ′. As such, we proved that either
C1 6= C ′1 or C2 6= C ′2. In either case, there are no vertices in the cell C which has
a neighbor within C ′ since both π1 and π2 are connectedness partitions. Therefore,
π1 ∧ π2 is a connectedness partition. �

It follows from Lemma 4.3.10 that πC(G) is a connectedness partition. Moreover,
it can be verified that

kerL = imP (πC(G)) (4.47)

where L is the Laplacian matrix of the graph G.
For each π0 ∈ Π, define

ΠC(π0) , {π | π ∈ ΠC and π0 6 π}. (4.48)

Note that the trivial partition {V } ∈ ΠC(π0) for any π0. Therefore, ΠC(π0) is
always non-empty. Let π∗(π0;G) be the greatest lower bound of the set ΠC(π0), that
is

π∗(π0;G) =
∧

ΠC(π0). (4.49)

Since the binary operation ∧ is commutative and ΠC(π0) is a finite set, it follows from
Lemma 4.3.10 that π∗(π0) is a connectedness partition of the graph G. The following
lemma provides another characterization of this partition. Such a characterization
will play a key role in giving a graph theoretical interpretation of the conditions of
Theorem 4.3.7.

Lemma 4.3.11 imP (π∗(π0;G)) ⊆ 〈imP (π0) | L〉.
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Proof. For brevity, we define π∗(π0) = π∗(π0;G). By definition π0 6 π∗(π0). It
follows from (4.38) that

imP (π∗(π0)) ⊆ imP (π0). (4.50)

Since π∗(π0) is almost equitable, we know from Lemma 4.3.9 that imP (π∗(π0)) is
L-invariant. As 〈imP (π0) | L〉 is the largest L-invariant subspace that is contained in
imP (π0), we get imP (π∗(π0)) ⊆ 〈imP (π0) | L〉. �

With all these preparations, we can present the following necessary conditions
for partial consensus. Note that the union graph is defined as G1 ∪G2 = (V,E1 ∪E2)

for two graphs G1 = (V,E1) and G2 = (V,E2).

Theorem 4.3.12 The network (4.1) reaches consensus with respect to the pair (G̃x, G̃v) only
if

1. πC(G̃x) 6 πC(Gx),

2. πC(G̃x ∪ G̃v) 6 πC(Gx ∪Gv),

3. πC(G̃x ∪ G̃v) 6 π∗(πC(Gv);Gx).

Proof. The necessity of the first two conditions follow from the first two conditions
presented in Theorem 4.3.7, (4.47), and (4.38). To prove the necessity of the last
condition, first note that

imP (π∗(πC(Gv);Gx)) ⊆ 〈imP (πC(Gv)) | Lx〉 (4.51)

due to Lemma 4.3.11. Then, it follows from (4.47) that

imP (π∗(πC(Gv);Gx)) ⊆ 〈kerLv | Lx〉. (4.52)

It follows from Theorem 4.3.7 that 〈kerLv | Lx〉 ⊆ kerHx ∩ kerHv and from (4.47)
kerHx ∩ kerHv = imP (πC(G̃x ∪ G̃v)). Therefore, we have

imP (π∗(πC(Gv);Gx)) ⊆ imP (πC(G̃x ∪ G̃v)).

Thus, πC(G̃x ∪ G̃v) 6 π∗(πC(Gv);Gx) follows from (4.38). �

In Theorem 4.3.12, we provide necessary conditions on the network topology for
achieving consensus with respect to given (G̃x, G̃v). For instance, the first condition
says that a pair of agents can reach position consensus only if they can be connected
by a path in graph Gx, whereas the second condition implies that a pair of agents
can reach velocity consensus only if they can be connected by a path in the graph
Gx ∪ Gv. In particular, Theorem 4.3.12 provides necessary conditions for velocity
consensus as follows.
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Corollary 4.3.13 The network (4.1) reaches velocity consensus only if

1. Gx ∪Gv is connected,

2. π∗(πC(Gv);Gx) = {V }.

Proof. The velocity consensus is a special case of Theorem 4.3.12 where G̃x is the
empty graph and G̃v is the complete graph. In this case, πC(G̃x) = {1, 2, . . . , N} and
πC(G̃v) = πC(G̃x ∩ G̃v) = {V }. Then, the first condition of Theorem 4.3.12 is already
satisfied and the last two become πC(Gx ∪ Gv) = {V } and π∗(πC(Gv);Gx) = {V }.
Note that the former is equivalent to the union graph Gx ∪Gv being connected. �

4.4 Concluding remarks

In this chapter, we have studied the partial consensus problem for diffusively coupled
networks with double-integrator (position/velocity) dynamics. In our set up, the
agents share positions and velocities via (possibly) different communication networks.
By looking at the partial consensus problem as an output stability problem, we
derived algebraic necessary and sufficient conditions in terms of the eigenspaces of
the Laplacians corresponding to position and velocity communication graphs. These
algebraic conditions were translated to graph topological necessary conditions in
terms of the so-called almost equitable partitions of a given graph.

Generalization of the presented results to networks with arbitrary dynamics could
be a future research direction. Another line for further research is to identify classes of
graphs for which the algebraic necessary and sufficient conditions can be translated
to necessary and sufficient graph topological conditions.



Chapter 5

Disturbance decoupling problem of diffusively
coupled networks

5.1 Introduction

Analysis and synthesis of diffusively coupled multi-agent networks have become
a very popular research area in the last decade, see e.g. [24, 27, 38, 43, 47, 53].
An important issue in studying networks is to deduce dynamical properties from
network topologies, which are described by the underlying graphs of the networks.
For instance, it is well-known that connectivity of the underlying graphs plays a
crucial role in the consensus problem, see e.g. [38]. Recently, studying other network
properties from a graph theoretical perspective has attracted much attention, see e.g.
[14, 19, 32, 41]. A notable instance is controllability analysis, see e.g. Chapter 2. There,
graph partitions, and in particular almost equitable partitions, have been proven to be
useful tools to analyze network controllability. Roughly speaking, almost equitable
partitions can be taken as graph theoretical translations of L-invariant subspaces,
with L denoting the Laplacian matrix of the underlying graph, see e.g. [16, 64].

In this chapter, we study the disturbance decoupling problem (DDP) of diffusively
coupled networks, where each agent has single-integrator dynamics and some agents
are directly affected by disturbance signals. The DDP of a network is defined in
the same way as that of a linear system. For a classical linear system with inputs
and outputs, the DDP amounts to finding a state feedback (if possible) such that the
chosen output of the closed-loop system is not affected by disturbance signals acting
on some states of the system, see e.g. [52]. If such a feedback exists, then we say the
DDP for the system is solvable.

The solution of DDP for linear systems was derived from the geometric approach,
which was inaugurated by the recognition of so-called controlled invariant subspaces,
due independently to Basile and Marro [3] and to Wohnam and Morse [56]. Solving
DDP for linear systems is in fact an immediate application of controlled invariant
subspaces, see e.g. [2, 23]. Our study in this chapter inherits from but goes beyond
the solution for linear systems.

We first develop almost equitable partitions with respect to a cell, which can be taken
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as generalized almost equitable partitions. This class of generalized almost equitable
partitions can be taken as graph theoretical translations of a class of controlled
invariant subspaces of networks. Then we establish both necessary and sufficient
graph theoretical conditions for the DDP for networks. To do that, we consider
both open-loop and closed-loop networks. In particular, the sufficient conditions
we establish are in terms of generalized almost equitable partitions. Such graph
theoretical conditions provide insight into distributed control of a network, where
it is interesting and realistic to synthesize a state feedback that only requires the
relative (local) information between the states of the agents rather than absolute
(global) information of the states. To the authors’ best knowledge, this chapter is the
first attempt to study DDP for networks from a graph theoretical perspective.

The structure of this chapter is as follows. In Section 5.2, some preliminary mate-
rials are provided. Also, both the open-loop and closed-loop DDP’s for diffusively
coupled networks are formulated. In Section 5.3, almost equitable partitions with
respect to a cell are proposed and used to characterize a class of controlled invariant
subspaces. In Section 5.4, we establish graph theoretical sufficient conditions both
for open-loop and closed-loop DDP’s for networks. To illustrate the proposed results,
a numerical example is provided in Section 5.5. The chapter ends with concluding
remarks in Section 5.6.

5.2 Networks and disturbance decoupling problem

5.2.1 Diffusively coupled networks with disturbance

In this chapter, we consider a multi-agent network consisting of n > 1 agents
labeled by the set V = {1, 2, . . . , n}. We assign three subsets of V as follows:
VL = {`1, `2, . . . , `m} where m 6 n, VF = V \ VL and VD = {w1, w2, . . . , wr} where
r 6 n.

We associate the dynamics

ẋi(t) =

{
zi(t) + uk(t) + dl(t) if i = wl ∈ VD

zi(t) + uk(t) otherwise
(5.1a)

to each agent i = `k ∈ VL, and

ẋi(t) =

{
zi(t) + dl(t) if i = wl ∈ VD

zi(t) otherwise
(5.1b)

to each agent i ∈ VF, where xi ∈ R represents the state of agent i ∈ V , zi indicates the
coupling variable of agent i ∈ V , uk ∈ R is an external control input signal received
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by agent i = `k ∈ VL, and dl ∈ R is taken as an external disturbance signal influencing
agent i = wl ∈ VD.

Considering the roles of the defined subsets of V , we refer to VL as the leader set,
VF as the follower set, and VD as the disturbance set. Correspondingly, we say i is a
leader if i ∈ VL, and i is a follower if i ∈ VF .

We consider a simple (unweighted) directed graph G = (V,E), where V is the
vertex set and E ⊆ V × V is the arc set of G. For two distinct vertices i, j ∈ V , we
have (i, j) ∈ E if there is an arc from i to j with i being the tail and j being the head
of the arc. Then i is said to be a neighbor of j. The coupling variable zi admits the
following diffusive coupling rule:

zi(t) = −
∑

(j,i)∈E

(xi(t)− xj(t)). (5.1c)

By defining x(t) = col(x1(t), x2(t), · · · , xn(t)), u(t) = col(u1(t), u2(t), · · · , um(t))

and d(t) = col(d1(t), d2(t), · · · , dr(t)), we write network (5.1) into a compact form as
follows:

ẋ(t) = −Lx(t) +Mu(t) + Sd(t) (5.2)

where L is the in-degree Laplacian of the simple directed graph G (see e.g. [32, p.26]),
the matrix M ∈ Rn×m is defined by

Mik =

{
1 if i = `k
0 otherwise

and the matrix S ∈ Rn×r is defined by

Sil =

{
1 if i = wl
0 otherwise.

Next we consider another simple directed graph G̃ = (V, Ẽ) and define the output
y(t) of the network (5.2) as follows:

y(t) = R>x(t) (5.3)

where R is the incidence matrix of G̃ [32, p.23]. The output variables (5.3) capture the
differences between the state components of certain pairs of agents determined by
the arc set Ẽ of G̃. In particular, an arc from i to j in G̃ corresponds to the output
variable xi − xj in (5.3).

In this chapter, we study the so-called disturbance decoupling problem (DDP) for
network (5.2) by establishing graph topological conditions. Roughly speaking, our
aim is to investigate the effect of the disturbance signal d on the output y, given by
(5.3). For a formal description of the problem and discussing the proposed results,
we first review the DDP and its solution for general linear systems.
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5.2.2 Review: disturbance decoupling problem for linear systems

Consider the linear system

ẋ(t) = Ax(t) + Ed(t) (5.4a)

y(t) = Cx(t) (5.4b)

where x ∈ Rn is the state, d ∈ Rr is the disturbance, y ∈ Rq is the output, and all
matrices involved are of appropriate dimensions. We denote the state trajectory of
the system (5.4) for the initial state x(0) = x0 and the disturbance d by xx0,d and the
corresponding output trajectory by yx0,d.

We say that system (5.4) is disturbance decoupled if yx0,d1(t) = yx0,d2(t) for all
x0 ∈ Rn, all locally-integrable disturbances d1, d2, and all t ∈ R. Due to linearity, this
is equivalent to the condition y0,d1(t) = y0,d2(t) for all locally-integrable disturbances
d1, d2, and all t ∈ R.

In what follows, we quickly review the geometric approach for the DDP. For more
details, we refer to [55] and [52].

Let 〈A | imE〉 denote the controllable subspace corresponding to the matrix pair
(A,E), i.e., 〈A | imE〉 = imE + A imE + · · · + An−1 imE. As is well-known, the
subspace 〈A | imE〉 is the smallest A-invariant subspace that contains imE. Note
that we call a subspace V ⊆ Rn A-invariant if AV ⊆ V where A : Rn → Rn. For
the matrix pair (A,C), the unobservable subspace is denoted by 〈kerC | A〉, i.e.,
〈kerC | A〉 = kerC ∩ A−1 kerC ∩ · · · ∩ A−n+1 kerC. Here, for a given subspace X ,
A−1X denotes the subspace {x : Ax ∈ X}. It is well-known that the unobservable
subspace 〈kerC | A〉 is the largest A-invariant subspace that is contained in kerC.

Necessary and sufficient conditions for the system (5.4) to be disturbance decou-
pled is well-known and are recapped in the following lemma.

Lemma 5.2.1 The following conditions are equivalent.

1. System (5.4) is disturbance decoupled.

2. There exists an A-invariant subspace V such that imE ⊆ V ⊆ kerC.

3. The inclusion imE ⊆ 〈kerC | A〉 holds.

4. The inclusion 〈A | imE〉 ⊆ kerC holds

Note that the equivalence between the first three statements is quite standard and
can be found in [52, Ch. 4]. The fourth statement immediately follows from the first
two and will be employed in the context of networks later.

Now, suppose that the linear system (5.4) is not disturbance decoupled. Then,
one may think of applying control inputs to manipulate the system dynamics such
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that the closed-loop system will be disturbance decoupled. To do that, consider the
linear system

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (5.5a)

y(t) = Cx(t) (5.5b)

where u ∈ Rm is the input and B ∈ Rn×m. The disturbance decoupling problem (DDP)
by state feedback for the system (5.5) amounts to finding a state feedback of the form
u = Kx such that the resulting closed-loop system

ẋ(t) = (A+BK)x(t) + Ed(t) (5.6a)

y(t) = Cx(t) (5.6b)

is disturbance decoupled. Moreover, if such a state feedback exists, then we say the
DDP for system (5.5) is solvable.

Necessary and sufficient conditions for solvability of the DDP are among the
classical results of the geometric approach. In order to state these classical results,
we need to review a few more notions from the geometric approach. We say that a
subspace V ⊆ Rn is controlled invariant for the pair (A,B) if there exists a matrix K
such that (A+BK)V ⊆ V . Moreover, we have

V is controlled invariant for (A,B)⇔ AV ⊆ V + imB.

For the pair (A,B), we denote the set of all controlled invariant subspaces which are
contained in kerC by V (A,B,C). Let V∗(A,B,C) denote the maximal element of the
set V (A,B,C) with respect to the partial order induced by the subspace inclusion,
that is V ⊆ V∗(A,B,C) for all V ∈ V (A,B,C). The existence and uniqueness of such
an element immediately follow from finite-dimensionality. It is well-known that
V∗(A,B,C) ∈ V (A,B,C). Now, the following lemma states necessary and sufficient
conditions for the solvability of the disturbance decoupling problem for system (5.5).

Lemma 5.2.2 Considering system (5.5), the following statements are equivalent:

1. The disturbance decoupling problem for system (5.5) is solvable.

2. There exists a controlled invariant subspace V for the pair (A,B) such that imE ⊆
V ⊆ kerC.

3. The inclusion imE ⊆ V∗(A,B,C) holds.
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5.2.3 Disturbance decoupling problem of networks

In this subsection, we formally state the DDP for diffusively coupled networks. Recall
the network (5.2) together with the output (5.3). Similar to Subsection 5.2.2, we first
consider the open-loop case where no external control input is applied to the agents.
In such a case, we consider the network and its output given by

ẋ(t) = −Lx(t) + Sd(t) (5.7a)

y(t) = R>x(t) (5.7b)

where the matrices L, S, and R are defined as before. We are interested in investi-
gating graph theoretical conditions under which the network (5.7) is disturbance
decoupled. Such conditions will be given in Subsection 5.4.1.

In case the network (5.7) is not disturbance decoupled, similar to the idea in Sub-
section 5.2.2, we are interested in rendering the network to be disturbance decoupled
by choosing some agents as leaders and apply appropriate inputs to these agents. In
such a case, we consider the network and its output given by

ẋ(t) = −Lx(t) +Mu(t) + Sd(t) (5.8a)

y(t) = R>x(t) (5.8b)

where the matrices L, M , S, and R are defined as before. For the network (5.8), we
study graph theoretical conditions under which the disturbance decoupling problem
is solvable. Such conditions will be presented in Subsection 5.4.2.

5.3 Graph partitions: extension for disturbance decou-
pling problem

To provide graph theoretical conditions for DDP of networks, we employ and develop
graph partitions. In this section, we first review some notions of graph partitions
in simple directed graphs. Recall that the graph partitions were employed only for
simple undirected graphs in previous chapters. Then, we study in details so-called
almost equitable partitions with respect to a cell to provide graph theoretical solutions of
DDP.

Let G = (V,E) be a simple (unweighted) directed graph where V = {1, 2, . . . , n},
E ⊆ V × V , and (i, i) /∈ E. By L(G), we denote the in-degree Laplacian of G [32, p.
26]. We simply use L to denote the Laplacian matrix when the underlying graph is
clear from the context.
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We call any subset of V a cell of V . We call a collection of cells, given by ρ =

{C1, C2, . . . , Ck}, a partial partition of V if Ci ∩ Cj = ∅whenever i 6= j. In addition,
we call ρ a partition of V if it is a partial partition and ∪iCi = V . At some occasions, to
clarify the underlying graph we say ρ is a (partial) partition of G = (V,E), or shortly
G, meaning that ρ is a (partial) partition of V .

For a cell C ⊆ V , we define the characteristic vector of C as

pi(C) =

{
1 if i ∈ C
0 otherwise.

For a (partial) partition ρ = {C1, C2, . . . , Ck}, we define the characteristic matrix of ρ
as

P (ρ) =
[
p(C1) p(C2) · · · p(Ck)

]
.

Finally, the notion of partial ordering for partitions is defined as follows. We say
that a partition π1 is finer than another partition π2, or alternatively π2 is coarser than
π1, if each cell of π1 is a subset of some cell of π2 and we write π1 6 π2. Also we
write as π1 � π2 meaning that π1 is not finer than π2. It is a direct consequence of the
definition that

π1 6 π2 ⇐⇒ imP (π2) ⊆ imP (π1).

5.3.1 Almost equitable partitions in directed graphs

Here, we adopt the notion of almost equitability (see e.g. [16]) for directed graphs.
For a given cell C ⊆ V , we write

N(j, C) = {i ∈ C : (i, j) ∈ E}.

We call a partition π = {C1, C2, . . . , Ck} an almost equitable partition (AEP) of G if for
each i, j ∈ {1, 2, · · · , k}with i 6= j there exists an integer dij such that |N(v, Cj)| = dij
for all v ∈ Ci.

Example 5.3.1 Consider the graph H depicted in Figure 5.1. It is easy to verify that
the partition π given by

π = {{1, 2}, {7, 8}, {4, 6}, {3}, {5}} (5.9)

is an almost equitable partition of H .

For a given matrix A, we denote its (i, j)-th element by Aij . Then, associated to
an almost equitable partition π = {C1, C2, . . . , Ck}, we define the matrix Lπ as:

(Lπ)ij =

{
−dij if i 6= j

si otherwise
(5.10)
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Figure 5.1: A simple directed graph H

where si =
∑
j 6=i dij .

For undirected graphs, characterization of almost equitable partitions in terms
of invariant subspaces has been provided in [63]. In particular, it is shown that a
partition is almost equitable if and only if the image of its characteristic matrix is
L-invariant. This result can be extended to the case of directed graphs as stated in
the following lemma.

Lemma 5.3.2 A partition π = {C1, C2, . . . , Ck} is an AEP of G if and only if imP (π) is
L-invariant.

Proof. First, we prove the “only if” part. Assume that π is an AEP of G, and let Lπ
be defined as in (5.10). We claim that

LP (π) = P (π)Lπ, (5.11)

and, hence imP (π) is L-invariant. First, we show that

(LP (π))rj = (P (π)Lπ)rj (5.12)

for r = {1, 2, . . . , n}, j = {1, 2, . . . , k}, and r /∈ Cj . Clearly, the left hand side is equal
to −|N(r, Cj)|. Now, since π is an AEP, we have −|N(r, Cj)| = −dij where i is such
that r ∈ Ci. The right hand side of (5.12) is equal to (Lπ)ij which is again equal to
−dij by definition. Hence, it remains to show that the equality (5.12) also holds for
the remaining n elements indicated by r ∈ Cj . To show this, obviously, it suffices
to prove that the row sums of the matrix LP (π) is equal to that of P (π)Lπ. Let 11k
denote the vector of ones with the length k. Then by multiplying the left hand side of
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(5.11) by 11k, we obtain that LP (π)11k = L11n = 0. Similarly, for the right hand side
we have P (π)Lπ11k = 0 as the row sums of Lπ is zero. Therefore, (5.11) holds, and
thus imP (π) is L-invariant.

Conversely, assume that imP (π) is L-invariant. Then, for each j = 1, 2, . . . , k, we
have

Lp(Cj) ∈ imP (π) (5.13)

as p(Cj) is contained in the image of P (π). Observe that the qth element of Lp(Cj)
is equal to |N(q, Cj)| for each q /∈ Cj . Hence, based on (5.13), for any q1, q2 ∈ Ci, we
have |N(q1, Cj)| = |N(q2, Cj)| for all j 6= i. Consequently, π is an AEP of G. �

Note that, if π is an AEP, then based on the proof of Lemma 5.3.2 we have

LP (π) = P (π)X (5.14)

for X = Lπ where Lπ is given by (5.10). Moreover, Lπ is the unique solution of (5.14)
as P (π) has full column rank.

5.3.2 Almost equitable partitions with respect to a cell

Given a cell C and a partition π = {C1, C2, . . . , Ck} in a directed graph G, we call
π an AEP with respect to C if for each i, j ∈ {1, 2, · · · , k} with i 6= j there exists an
integer dij such that |N(v, cj)| = dij for all v ∈ Ci\C.

Observe that if π is an AEP, then the number of neighbors that a vertex in Ci
has in Cj is independent of the choice of the vertex in Ci, for all i, j ∈ {1, 2, · · · , k}
with i 6= j. The notion of almost equatability with respect to a cell C is obtained by
exempting the nodes in C from satisfying neighborhood constraints of the ordinary
almost equitability. Clearly, π is an AEP of G if and only if it is an AEP with respect
to the empty cell. Moreover, if π is an AEP of G, then it is an AEP with respect to any
arbitrary cell of V .

Example 5.3.3 Consider the graph G given by Figure 5.2, and let the partition π be
given by (5.9). Then it is easy to observe that π is an almost equitable partition of G
with respect to C = {2}.

Note that if π is an almost equitable partition with respect to C, then, similar to
ordinary almost equitable partitions, we can define the matrix Lπ as in (5.10). In
this case we use the notation LCπ to distinguish from the case of ordinary almost
equitability.

Our aim, here, is to characterize the property of almost equitability with respect to
a cell. To state this characterization, we need some additional notation and auxiliary
results.
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Figure 5.2: A simple directed graph G

For a given matrix M ∈ Rm×m, let Mα with α ⊆ {1, 2, · · · ,m} denote the subma-
trix of M obtained by collecting the rows of M indexed by α. Then, the following
result holds.

Lemma 5.3.4 A partition π is an AEP with respect to cell C if and only if

Lα imP (π) ⊆ imPα(π) (5.15)

where α = V \C.

Proof. The proof is analogous to that of Lemma 5.3.2 by restricting the rows of L and
P to those which are indexed by α. �

Note that, if π is an AEP with respect to C, we have

LαP (π) = Pα(π)LCπ (5.16)

where α = V \C, and LCπ is given by (5.10) with dijs obtained from the definition of
almost equitability with respect to C. Now, we have the following characterization
for almost equitability with respect to a cell.

Theorem 5.3.5 Let C = {`1, `2, . . . , `m} be a cell of V and π = {C1, C2, . . . , Ck} be a
partition of G. Then the following statements are equivalent:

1. The partition π is an AEP of G with respect to C.
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2. L imP (π) ⊆ imP (π) + imP (ρ) where ρ = {{`1}, {`2}, . . . , {`m}}.

3. There exists a simple (unweighted) directed graph H = (V, F ) obtained from G =

(V,E) by adding some non-existing or removing some existing arcs from a vertex in V
to a vertex in C such that π is an almost equitable partition of H .

Proof. First we show that the first two statements are equivalent. It is easy to observe
that the second statement is equivalent to:[

Lᾱ
Lα

]
imP (π) ⊆ im

[
P ᾱ(π)

Pα(π)

]
+ im

[
Im
0

]
, (5.17)

where α = V \C and ᾱ = C. This holds if and only if

Lα imP (π) ⊆ imPα(π)

which is equivalent to almost equitability of π with respect to C by Lemma 5.3.4.
Now, by assuming that the first two statements hold, we prove the third statement

as follows. Since π is an AEP with respect to C, the equality (5.16) holds. Let the
matrices X and Y be defined as X = LCπ and Y = LᾱP (π)− P ᾱ(π)LCπ . Then, clearly,
we have [

Lᾱ

Lα

]
P (π) =

[
P ᾱ(π)

Pα(π)

]
X +

[
Im
0

]
Y.

Now, for each i = {1, 2, · · · ,m}, let ri be an integer such that `i ∈ Cri . Then, it is
easy to observe that the matrix Y is obtained as

Yij = −|N(`i, Cj)| − (LCπ )rij (5.18)

for each i ∈ {1, 2, . . . ,m}, j = {1, 2, . . . , k}, and j 6= ri. The remaining m elements of
Y are such that Y 11 = 0. By (5.10), the equality (5.18) can be rewritten as

Yij = −|N(`i, Cj)|+ drij (5.19)

where drij are obtained from the definition of almost equitability with respect to C.
Now, we construct the graph H = (V, F ) by adding some non-existing arcs

or removing some existing arcs of G as follows. For each i ∈ {1, 2, · · · ,m} and
j = {1, 2, · · · , k}, we add a total number of Yij arcs from some available nodes in Cj
to `i if Yij > 0. Note that multiple arcs between two vertices is not allowed. This
is always possible since drij 6 |Cj |, and hence Yij 6 |Cj | − |N(`i, Cj)|. Similarly, if
Yij < 0, we remove a total number of |Yij | existing arcs which are from some nodes
in Cj to `i. This is also always implementable, as −Yij 6 |N(`, Cj)|. Denoting the arc
set obtained in this way by F , it is easy to observe that the partition π is an AEP of
H = (V, F ) by construction.
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It remains to show that the third statement implies either of the other two. Assume
that there exists a simple graph H = (V, F ) obtained from G = (V,E) by adding
some non-existing or removing some existing arcs from some vertices in V to vertices
in C such that π is an almost equitable partition of H . Let L(H) denote the Laplacian
matrix of H . Then, by Lemma 5.3.2, we have

L(H)P (π) = P (π)X (5.20)

for some matrixX . Hence, Lα(H)P (π) = Pα(π)X for α = V \C. Now, since the head
of all arcs which are added or removed from G are all in C, we have Lα(H) = Lα(G).
Consequently, π is an AEP of G with respect to C by Lemma 5.3.4. �

Example 5.3.6 As mentioned in Example 5.3.3, the partition π given by (5.9) is an
almost equitable partition of G with respect to C, where C = {2} and the graph G
is given by Figure 5.2. Moreover, as pointed out in Example 5.3.1, π is an AEP of
the graph H given by Figure 5.2. Now, observe that graph H is obtained from G

by removing the arc from vertex 8 to 2, and adding an arc from vertex 3 to 2. This
indeed corresponds to the equivalence between the first and the third statement of
Theorem 5.3.5.

5.4 Graph theoretical conditions for the disturbance de-
coupling problem

Recall that VD = {w1, w2, . . . , wr}. We assume without loss of generality that leaders
are not affected by the disturbance signals, i.e. VL∩VD = ∅. Indeed, it is easy to show
that if VL∩VD is nonempty then one can redefine the leader set as V ′L = VL\(VL∩VD),
and solve the DDP with respect to the leader set V ′L. Now, let the partition πS of V be
defined as

πS = {{w1}, {w2}, . . . , {wr}, V \ VD}. (5.21)

Obviously, we have
imS ⊆ imP (πS). (5.22)

Moreover, it is easy to observe that there exists a partition of G, say πR such that

imP (πR) = kerR>. (5.23)

Then, the following result holds.

Lemma 5.4.1 The network (5.7) is disturbance decoupled only if πR 6 πS . Similarly, the
disturbance decoupling problem for the network (5.8) is solvable only if πR 6 πS holds.
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Proof. Suppose that the network (5.7) is disturbance decoupled, or the DDP for
the network (5.8) is solvable. Then it follows from Lemmas 5.2.1 and 5.2.2 that
imS ⊆ kerR> = imP (πR). Hence, by considering (5.21) and the structure of S, we
conclude that πR 6 πS . �

Next, we provide graph theoretical sufficient conditions for the open-loop and
the closed-loop DDP, respectively.

5.4.1 Open-loop cases

The following theorem gives a sufficient graph theoretical condition for the network
(5.7) to be disturbance decoupled.

Theorem 5.4.2 Let πS and πR be given by (5.21) and (5.23), respectively. Then the network
(5.7) is disturbance decoupled if there exists a partition π such that both of the following
conditions hold

1. π is an AEP of G

2. πR 6 π 6 πS

Proof. Suppose that both conditions hold. Then, by Lemma 5.3.2, we obtain that
imP (π) is L-invariant and imS ⊆ imP (π) ⊆ kerR>. Hence, it follows from Lemma
5.2.1 that (5.7) is disturbance decoupled. �

Remark 5.4.3 The second condition of Theorem 5.4.2 can be checked as follows.
Given the partition πS , consider the set

ΠAEP(πS) = {π is almost equitable | π 6 πS}. (5.24)

One can employ the algorithm given in Theorem 2.4.10 to find the least upper bound
π∗AEP(πS) of the set (5.24). Then one can easily verify whether the partial order
relationship πR 6 π∗AEP(πS) holds.

5.4.2 Closed-loop cases

In case DDP is not solvable for the network (5.7), one may try to make (5.7) distur-
bance decoupled by using a control input.

Recall the notion of controlled invariant subspaces in Subsection 5.2.2. As we
are dealing with graph topological conditions, we are not interested in all subspaces
but only those which can be written as an image of a partition. As observed in the
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previous subsection, almost equitable partitions correspond to L-invariant subspaces.
Now, the following Lemma establishes the relationship between almost equitable
partitions with respect to a cell and controlled invariance of the pair (L,M).

Lemma 5.4.4 For a given graphG, let VL,M , and L be defined as before. Let π be a partition
of G. Then imP (π) is controlled invariant for the pair (L,M) if and only if π is an almost
equitable partition with respect to VL.

Proof. Note that imM = imP (ρ) where ρ = {{`1}, {`2}, . . . , {`m}}. The claim
follows immediately from Theorem 5.3.5. �

Now we are in the position to apply the results of Section 5.3.2 to DDP of the
network (5.8). This is discussed in the following theorem.

Theorem 5.4.5 Let VL, πR, and πS be defined as before. Then the DDP for the network (5.8)
is solvable if there exists a partition π of G such that both of the following conditions hold

1. π is almost equitable with respect to VL

2. πR 6 π 6 πS

Proof. Suppose that both conditions hold. Then, by Lemma 5.4.4, imP (π) is con-
trolled invariant for the pair (L,M). Moreover, we have imP (πS) ⊆ imP (π) ⊆
imP (πR). Hence, by (5.22) and (5.23), we obtain that imS ⊆ imP (π) ⊆ kerR>.
Consequently, the DDP for the network (5.8) is solvable by Lemma 5.2.2. �

Suppose that the conditions of Theorem 5.4.5 hold, and hence the DDP for the
network (5.8) is solvable. This means that there exists a state feedback u(t) = Kx(t)

such that the resulting closed-loop network is disturbance decoupled. To see the
structure of the controller, note that π is an AEP of G = (V,E) with respect to the
leader set VL. Hence, π is an AEP of H = (V, F ) where H is obtained from G by
adding or removing arcs from vertices in V to vertices in VL, as discussed in the proof
of Theorem 5.3.5. These adding and removing of the arcs are indeed associated with
the state feedback controller which makes the network (5.8) disturbance decoupled.
In particular, it is easy to observe that adding an arc from a vertex in V , say i, to a
vertex in VL, say `k, corresponds to the control signal xi(t) − x`k(t) which is to be
applied to the leader vertex `k. Similarly, removing an arc from i to `k corresponds
to the term x`k(t) − xi(t) in the control signal. Consequently, the controller can be
expressed as

uk(t) =
∑

(j,`k)∈F\E

(xj(t)− x`k(t))−
∑

(j,`k)∈E\F

(xj(t)− x`k(t)) (5.25)
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for each k = {1, 2, . . . ,m}. This shows that, as demanded in the context of distributed
control, the controller only uses the relative information of the states of the agents
to achieve disturbance decoupling for network (5.8). Observe that, by applying
the controller (5.25) to network (5.8), we obtain the following input/state/output
network:

ẋ(t) = −L(H)x(t) + Sd(t) (5.26a)

y(t) = R>x(t), (5.26b)

where L(H) denotes the Laplacian matrix of the graph H = (V, F ). The network
(5.26) is indeed disturbance decoupled by Theorem 5.4.2, as π is an AEP of H and
πR 6 π 6 πS . This is in accordance with the fact that the DDP for network (5.8) is
solvable.

Remark 5.4.6 The sufficient conditions in Theorem 5.4.5 are more involved to check
than those in Theorem 5.4.2. For given πS and VL, we consider the set

ΠGAEP(πS) = {π is almost equitable with respect to VL | π 6 πS}. (5.27)

In general, we cannot guarantee that the least upper bound of the set (5.27) still
belongs to this set. As such, conditions of Theorem 5.4.2 cannot be verified in the
same way as those in Theorem 5.4.2.

Remark 5.4.7 It is worth mentioning that, in general, one should not expect necessary
and sufficient conditions in terms of graph partitions either for the network (5.7) to
be disturbance decoupled or for the DDP of (5.8) to be solvable. The reason is that
not all the subspaces can be written in terms of the image of the characteristic matrix
of a partition. In fact, the lack of necessary and sufficient conditions here, are mainly
associated with the gap between the image of the characteristic matrices of partitions
and arbitrary subspaces.

5.5 A numerical example

To illustrate the proposed results, consider the network (5.2) with the communication
graph G as shown in Figure 5.3 (left). For this network, let black vertices denote the
leaders, i.e. VL = {2}. Also let the square vertices correspond to the agents affected
by disturbance signals, i.e. VD = {3, 5}. We are interested in decoupling the outputs
x1(t)− x2(t) and x4(t)− x6(t) from the disturbance. Hence, the output variables in
this case is given by y = R>x where

R> =

[
1 −1 0 0 0 0 0 0

0 0 0 1 0 −1 0 0

]
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and x ∈ R8. Then πR and πS are given by:

1

4

6

7

8

1

4

6

7

8

22

3 3

5 5

Figure 5.3: The simple directed graph G (left) and H (right) of a diffusively coupled multi-
agent network

πR = {{1, 2}, {3}, {4, 6}, {5}, {7}, {8}}
πS = {{1, 2, 4, 6, 7, 8}, {3}, {5}}

By applying the algorithm given in Theorem 2.4.10, we obtain that

π∗AEP(πs) = {{1}, {2}, {3}, {4, 6}, {5}, {7, 8}}.

Then we easily conclude from Theorem 5.4.2 that the open-loop network (5.7) is not
disturbance decoupled. However, given VL, we can find an almost equitable partition
with respect to VL as follows

π = {{1, 2}, {3}, {4, 6}, {5}, {7, 8}}. (5.28)

Then we conclude from Theorem 5.4.5 that DDP of the network (5.2) is solvable by a
state feedback.

To construct a state feedback, note that the partition π in (5.28) becomes almost
equitable in a graph H as shown in Figure 5.3 (right). The graph H is obtained from
graph G by removing the arc from vertex 8 to 2, and adding an arc from 3 to 2. As
a result, by (5.25), the state feedback which solves the DDP of the network (5.2) is
given by

u(t) = (x3(t)− x2(t))− (x8(t)− x2(t)) = x3(t)− x8(t).
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5.6 Concluding remarks

We have studied the disturbance decoupling problem (DDP) for diffusively coupled
networks for both the open-loop and the closed-loop case. For both cases, we have
developed graph theoretical sufficient conditions to solve DDP in terms of almost
equitable partitions with respect to a cell. Such a class of graph partitions can be
taken as generalizations of almost equitable partitions in Chapter 2 and as a graph
theoretical translation of a class of controlled invariant subspaces of networks. In
case the DDP is solvable, a solution state feedback has been synthesized, which is
based on only the relative information of the states of the agents.





Chapter 6

Conclusions and further research

6.1 Conclusion

In this thesis, we have studied three system theoretical properties of diffusively cou-
pled networks, namely controllability, partial consensus and disturbance decoupling.
As a common thread of this thesis, we have provided graph theoretical characteriza-
tions for these system theoretical properties of diffusively coupled networks in terms
of graph partitions and their characteristic matrices. The main contribution of this
thesis can be summarized as follows:

• In Chapter 2, we have revealed the role that general linear dynamics of agents
and the network topology play in controllability of diffusively coupled net-
works. Then we have provided both a lower and an upper bound for the
controllable subspace of single-integrator networks in terms of distance parti-
tions and almost equitable partitions respectively, by employing a combination of
ideas from linear geometric control theory and graph theory. To the author’s
best knowledge, there was no general lower bound that appeared in the lit-
erature whereas an upper bound (see e.g. [31]) has been provided only for
single-leader cases. Moreover, the geometric approach we take in deriving the
upper bound in terms of almost equitable partitions provides a much stronger
insight than those approaches in [31] or other work in which similar approaches
have been adopted. Also, we have developed an algorithm that computes the
maximal almost equitable partition involved in the upper bound. Further, we
have shown that the bounds we have provided are tight, i.e., the bounds cannot
be improved in terms of characteristic matrices of graph partitions. When
the network topology has the so-called distance regularity property, we have
provided a lower as well as an upper bound for the number of leaders one
should choose for controllability of diffusively coupled networks.

• In Chapter 3, we have developed conditions for controllability of networks with
switching topologies by extending the results in Chapter 2. We have clarified
the role that linear dynamics of agents and the switching network topology
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play in controllability. Then we have constructed both the lower and the upper
bounds for the controllable subspace and illustrated that the bounds are tight.
Also, we have provided an algorithm to compute the upper bound.

• In Chapter 4, we have first derived necessary and sufficient algebraic con-
ditions in terms of Laplacian matrices of both position and velocity graphs
as well as output matrices for partial consensus of heterogeneous networks
with double-integrator (position/velocity) agents. Then we have developed
graph theoretical necessary conditions in terms of a class of almost equitable
partitions.

• In Chapter 5, we have obtained graph theoretical conditions for disturbance
decoupling problem (DDP) of both open-loop and closed-loop networks. To
provide sufficient conditions for close-loop networks, we have introduced
and developed a class of generalized almost equitable partitions called almost
equitable partitions with respect to a cell, which provide graph theoretical charac-
terizations of controlled invariant subspaces and also a strategy of synthesizing
a solution for DDP of networks.

6.2 Further research topics

We have developed graph theoretical conditions for system theoretical properties
of diffusively coupled networks. To do that, we mainly focus on those subspaces
that are induced by the images of characteristic matrices of partitions. Unfortunately,
not all the subspaces can be described in terms of partitions. As such, one may not
find a partition that induces exactly the controllable subspace in general. As a result,
although the controllability of a network is fully characterized by the controllable
subspace, it cannot be fully characterized by any partition of the graph in general
cases. An interesting open question is whether one can generalize the concept of
partition (for instance by allowing a vertex to belong to more than one different cell)
in order to capture all possible subspaces that can appear as controllable subspaces
for given graphs and leader sets.

As we have developed a systematic way of choosing leaders for networks with
distance regular topologies, we are further interested in determining a way that leads
to the minimal number of leaders. Moreover, one can investigate systematic ways of
choosing leaders for networks with general topologies.

The partial consensus problem we have studied is for networks with double-
integrator agents. It is interesting to consider this problem for networks with general
second-order agents. For instance, each agent has mass-damper-spring dynamics.
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Moreover, the conditions we have developed are based on an assumption that all
underlying graphs are undirected. One can try to extend the results for undirected
graphs to directed ones.

When solving DDP of networks, we have not required the closed-loop network to
be stable. Investigation of DDP with stability is yet another open problem for future
research.
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Summary

This thesis addresses three problems for distributed control of diffusively coupled networks:
controllability, partial consensus and disturbance decoupling. In particular, graph theoreti-
cal characterizations for the solvability of these problems are provided through partitioning
network agents in certain ways. The three problems studied and the graph theoretical charac-
terizations can be summarized as follows.

Controllability of a diffusively coupled network indicates whether all the agents (or the
overall network) can be made to behave in some desirable way by suitably manipulating only
some of the agents (leaders). The role that general linear dynamics of agents and the network
topology play in controllability of diffusively coupled networks is clarified. If the dynamics
of each agent is single-integrator, then controllability of a diffusively coupled network can
be characterized in terms of the so-called distance partitions and almost equitable partitions.
By taking a geometric approach, the characterization in terms of almost equitable partitions
become much easier to conclude and to compute for more complex cases than in existing
results. The study in this thesis also shows that there is no single partition of which the
characteristic matrix can completely reveal controllability of diffusively coupled networks
except that the network topology is known as a priori. Moreover, when the network topology
is described by distance regular graphs, a strategy of choosing leaders is provided so that
the network becomes controllable with the chosen leaders. Most of the above results can be
extended without much difficulty to controllability of diffusively coupled networks when the
network topology is switching arbitrarily within a finite set of admissible topologies.

The consensus problem of diffusively coupled networks has been well-known in the litera-
ture. One chapter of this thesis addresses a different version for the consensus problem: partial
consensus of heterogeneous networks with double-integrator (position/velocity) agents. By
“heterogeneous”, we mean the topologies arising from the communication between positions
and velocities of agents are not necessarily the same. Here, “Partial consensus” indicates that
a pre-specified set of positions and velocities reach an agreement in contrast to the consensus
problem for which all positions and velocities are required to reach an agreement. Necessary
and sufficient algebraic conditions are concluded. Moreover, by employing the geometric
control theory, we also conclude graph theoretical necessary conditions in terms of a class of
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almost equitable partitions.
In the presence of disturbance signals, it is natural to investigate whether a certain output

of the network is not affected by the disturbance. This motivates the study of disturbance
decoupling problem (DDP) of diffusively coupled networks. The graph theoretical conditions
to solve DDP of diffusively coupled networks are provided for both open- and closed-loop
cases. With the aid of geometric control theory, a graph theoretical sufficient condition to solve
DDP is presented in terms of a class of generalized almost equitable partitions called almost
equitable partitions with respect to a cell. This class of generalized almost equitable partitions can
be considered as graph theoretical characterizations of the well-known controlled invariant
subspaces of linear control theory and provide a strategy to synthesize a solution (if possible)
for DDP of networks.



Samenvatting

Dit proefschrift richt zich op drie problemen voor de gedistribueerde aansturing van diffuus
gekoppelde netwerken: regelbaarheid, partiële consensus en storingsontkoppeling. Er worden
grafentheoretische karakteriseringen verstrekt voor de oplosbaarheid van deze problemen
door de agenten in het netwerk op een bepaalde manier te verdelen. De drie bestudeerde
problemen en de grafentheoretische karakteriseringen kunnen als volgt worden samengevat.

Regelbaarheid van een diffuus gekoppeld netwerk geeft aan of het mogelijk is om het
gedrag van alle agenten (of het gehele netwerk) aan te sturen door slechts een aantal agenten
(leiders) te beı̈nvloeden. Daarbij is de rol die de algemene lineaire dynamica van de agenten
speelt in de regelbaarheid van diffuus gekoppelde netwerken verduidelijkt. Als de dynamica
van elke agent een enkele integrator is, dan kan de regelbaarheid van een diffuus gekoppeld
netwerk worden gekarakteriseerd in termen van de zogenoemde afstand partities en bijna
billijke partities. Door een geometrische aanpak is de karakterisering in termen van bijna
billijke partities veel eenvoudiger voor complexere gevallen te bepalen en te berekenen dan
in bestaande resultaten. De studie in dit proefschrift laat ook zien dat er geen enkele partitie
bestaat waarvoor de karakteristieke matrix de regelbaarheid van de diffuus gekoppelde
netwerken volledig kan openbaren, behalve wanneer de netwerktopologie van tevoren bekend
is. Bovendien wordt voor afstandsreguliere grafen een strategie voor het kiezen van leiders
gegeven, zodanig dat het netwerk regelbaar wordt met de gekozen leiders. Het merendeel
van bovenstaande resultaten kan moeiteloos worden gegeneraliseerd naar de regelbaarheid
van diffuus gekoppelde netwerken, waarvan de netwerk topologie arbitrair schakelt binnen
een eindige verzameling van toegestane topologiën.

Het consensusprobleem van diffuus gekoppelde netwerken is welbekend in de literatuur.
Één hoofdstuk in dit proefschrift richt zich op een andere versie van het consensus probleem:
partiële consensus van heterogene netwerken met dubbele integrator (positie/snelheid) agen-
ten. Met “heterogeen” bedoelen we dat de topologiën die voortkomen uit de communicatie
aangaande posities en snelheden van de agenten niet persé hetzelfde zijn. Met “partiële con-
sensus” geven we aan dat een vooraf gespecificeerde verzameling van posities en snelheden
overeenstemming bereiken, in tegenstelling tot het consensus probleem waarvoor alle posities
en snelheden overeenstemming dienen te bereiken. Noodzakelijke en voldoende algebraı̈sche
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voorwaarden zijn hiervoor opgesteld. Bovendien stellen we ook noodzakelijke grafentheoretis-
che condities op in termen van een klasse van bijna billijke partities, door gebruik te maken
van geometrische regeltechniek.

Wanneer storingssignalen aanwezig zijn, is het natuurlijk om te onderzoeken of een
bepaalde uitgang van het netwerk niet beı̈nvloed wordt door de verstoring. Dit is de aan-
leiding voor de studie van het storingsontkoppeling probleem (SOP) voor diffuus gekop-
pelde netwerken. De grafentheoretische voorwaarden om het SOP voor diffuus gekoppelde
netwerken op te lossen zijn gegeven voor zowel het open als het gesloten lus systeem. Met
behulp van geometrische regeltechniek is een voldoende grafentheoretische voorwaarde
opgesteld om het SOP op te lossen in termen van een klasse van gegeneraliseerde bijna bil-
lijke partities, de zogenaamde bijna billijke partities ten opzichte van een cel. Deze klasse van
gegeneraliseerde bijna billijke partities kan worden beschouwd als een graaf theoretische
karakterisering van de welbekende regelbare invariante deelverzamelingen uit de lineaire
regeltechniek. Ze verschaffen een strategie om (indien mogelijk) een oplossing op te stellen
voor SOP van netwerken.


