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Chapter 1

Introduction

This thesis is concerned with distributed algorithms for interacting autonomous ag-
ents. In this thesis, we study several distributed algorithms that drive a group of
agents to reach an agreement on the value of a variable of common interest or to split
into two or more clusters. This chapter introduces some background information on
emergent collective behavior that arises in natural and man-made systems and dis-
tributed algorithms developed for complex multi-agent systems. The motivation for
the research in this thesis and the contributions are provided and the outline of the
thesis follows.

1.1 Background

In this section, we give an introduction on the research of collective behavior in
complex multi-agent systems and the design of distributed algorithms operating on
these systems.

1.1.1 Collective behavior in complex multi-agent systems

As a class of collective behavior of groups of interacting units, synchronization has
been discovered widely in natural, social and engineered networks and systems [93].
For example, fireflies flash in unison, audiences clap synchronously after an excel-
lent performance, and coupled metronomes oscillate in phase. The discovery of this
synchronization phenomenon can be traced back to as early as 1665, when a Dutch
physicist Christiaan Huygens observed the synchrony of two clocks hanged on two
planks which lied on top of two chairs [93]. The two pendulums gradually oscillat-
ed out of phase after some time and they kept swinging in this fashion from then
on. After conducting a number of experiments, Huygens found out the cause of the
synchrony of the clocks. The clocks were interacting through tiny vibrations of the
planks and the chairs, which were caused by the swing of the pendulums. Since then,
huge efforts have been devoted to the study of the synchronization phenomena from
diverse disciplines like mathematics, physics, sociology, engineering and so on [7].
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Besides the synchronization phenomena, various intriguing animal group behav-
iors have received considerable attention, such as schools of fish, flocks of birds, herds
of cattle and so on [93]. People are more and more getting fascinated by and also try
to unveil the mechanisms behind these collective behaviors in complex networks. A
common character of these emerging collective behaviors is that the individual unit
in the network does not have global information of all the units, instead, each one
only receives limited information from its neighbors or peers nearby. Each individual
unit in the network takes actions based on the local information she receives, while
in the group level, surprisingly some collective behavior appears. It is challenging
to investigate how the individual agent dynamics and the network structure interact
with each other and jointly lead to global emergent collective behavior, which has
been the central topic for network science.

In computer sciences, Reynolds developed programs to simulate the motion of
a flock of birds [83]. Each individual bird has local perception of its surrounding
environment and so has local information of where his peers are going, and reacts
independently. Three rules operating on each individual bird lead to the emergence of
flocking: (1) separation, avoid collisions with neighbors; (2) alignment, steer towards
the average heading of nearby flockmates; (3) cohesion, steer towards the average
position of nearby flockmates [83]. Mathematical models capturing these three rules
were later proposed to theoretically explain the emergence of flocking of birds [71].
These shed light on better understandings of animal group behaviors and also may
find potential applications in the formation flight of autonomous vehicles.

In [97], Vicsek et al. conducted experiments on self-propelled particles that move
with constant absolute speed but adapting their moving directions to the average
of those particles in their neighborhoods under some perturbations. This simple
nearest neighbor rule successfully drives all the agents to move in the same direction,
although there is no central station that broadcasts coordination commands and the
neighborhood of each agent may change with time. This has inspired researchers
from mathematics and engineering to explore the intrinsic mechanisms that induce
the cohesive behavior [47] and also inspired the research on distributed control of
multi-agent systems.

The last decades have witnessed major advances in the understanding of these
collective behaviors, especially the synchronization phenomena of coupled dynamical
systems [103, 102]. With the aid of supercomputers, people are enabled to handle
vast amount of data, which makes it possible to analyze large-scale complex networks
[24]. For a very long time, the theory of Erdos-Rényi random graphs has dominated
the research of graph theory, which is a key tool for networks study. However, most
of the real-world networks cannot be modeled as random networks. For example,
whether there is a flight between two cities, whether two persons are friends, are not
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completely random. Two seminal papers published a decade ago led to significant
advances in the field of networks studies. One proposed the well-known small-world
network models that can be highly clustered but still have small path lengths [99]
and the other revealed the fundamental feature of the scale-free property of various
complex networks [9]. A number of research efforts have been following this research
line and further investigating the collective behaviors that emerge in these networks.

In sociology, different mathematical models have been constructed to study the
evolution of the opinions of a group of interacting individuals. Some of the models
concerned are linear and people are more focused on the consensus problem and try
to find out how to reach it [29]. Recently, more and more nonlinear models have
been constructed to characterize the opinion dynamics in social communities. One
opinion dynamics model called Krause model that has attracted great attention,
considers that each agent in the network has a “confidence bound” [43]. When
updating the opinions, each agent only takes into account those agents’ opinions that
differ no more than the confidence bound from his own opinion. The neighborhood
of each agent thus changes with time and also depends on the state of the system.
This model finally shows that the agents’ states reach a consensus or polarize or
become fragmented. These observed simulations results in the Krause model have
been analyzed in different settings in [11, 12, 68].

In the study of social networks, structural balance theory that was proposed in
1950s plays an important role [22]. A structurally balanced network is a network that
can be divided into two opposing factions, in which all links inside each faction are
positive and all links between individuals in different factions are negative. Typical
examples include two-party political systems, Western Bloc and Eastern Bloc during
the Cold War and so on. Computations also have shown that lots of large-scale online
social networks are structurally balanced [35]. The theory of structural balance, from
which one can tell a given social network is balanced or not, is a static theory. How-
ever, the relationship between people and the structure of the network are changing
with time. People are also trying to find out how a network may dynamically evolve
into a structurally balanced state [64].

1.1.2 Distributed algorithms for multi-agent systems

Along with the growing interest in understanding the intriguing collective animal
group behaviors, in the control community, there is also an emerging interest in stu-
dying distributed algorithms for multi-agent systems. Control of a single system
has been well studied in the control society and various control theories have been
developed, such as proportional-integral-derivative control, adaptive control, robust
control and so on. Recently, there is an emerging trend to study distributed control
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of multiple interconnected systems. There are obvious advantages using several inter-
connected systems over a single complicated system in many practical applications,
such as scalability, robustness, and flexibility.

Another reason that the study on distributed control of multi-agent systems has
received considerable attention in recent years is due to their broad applications in
sensor networks, unmanned aerial vehicles (UAVs), robotic teams, and so on [82].
The main objective in these applications is to control these agents in a group to
accomplish some global task cooperatively by sharing only local information with
their neighbors. This distributed control methodology differs tremendously from the
traditional centralized control approach, in which a central station is required to con-
trol the agents in a network. Instead, no central station is available in a distributed
control system. However, this distributed fashion also brings great challenge to the
analysis of distributed control systems due to the fact that a number of systems are
involved and also due to practical constraints, such as limited sensing capabilities,
unreliable communication channels, asynchronous effects and so on. The global dy-
namical behavior of the interconnected system is thus highly nonlinear and difficult
to predict. It is tempting and challenging to carry out research on the interplay be-
tween the local interactions among the agents and the emergent collective behavior
of the integrated system.

The study on distributed control of multi-agent networks in control community
can be traced back at least to 1980s. Efficient load balancing algorithms in distributed
computation have been constructed successfully using ideas of distributed averaging
that can be modeled using stochastic matrices [10]. Recently, there has been a
resurgence of research interest in the study of distributed algorithms of multi-agent
systems [47, 73, 69, 81, 72]. In [47], simple nearest neighbor rules have been used to
successfully cause a group of agents to reach an agreement on their moving directions.
Some connectivity conditions, which require that the agents are connected to each
other throughout the network across each time interval, are constructed to guarantee
the convergence. Rigorous mathematical proof of the convergence of the headings of
all the agents to the same direction has been established by making use of matrix
theory, graph theory and dynamical system theory. This also explains the simulation
results conducted in [97], where the directions of the self-driven particles become the
same in the presence of perturbations. In [81, 69], the connectivity assumption has
been relaxed to the condition that the union graph across each time interval contains
a directed spanning tree. This condition means that there always exists an agent that
can influence all the other agents directly or indirectly in the network across each
time interval, which guarantees the convergence of the overall system. The notions
related to connectivity of a graph will be introduced in Chapter 2.

Following this research line, significant efforts have been devoted to the study
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of distributed algorithms along different research directions. Several active research
directions include distributed consensus/clustering algorithms, distributed optimiza-
tion, distributed formation control, distributed estimation and control, and so on
[82]. Distributed consensus problem has been a fundamental and benchmark prob-
lem in multi-agent coordination. This thesis starts from studying an asynchronous
implementation of a distributed averaging algorithm, and then continues investigating
clustering algorithms in multi-agent systems, which includes the previous averaging
algorithm as a special case. It is followed by determination of clock synchronization
errors in distributed networks.

1.2 Motivation and contributions

Matrix theory, graph theory and dynamical system theory are powerful tools in the
analysis of distributed coordination algorithms for multi-agent systems. Convergence
of products of stochastic matrices has proven to be critical in establishing the effec-
tiveness of distributed coordination algorithms. The study of the convergence of
products of non-negative matrices can be traced back at least to those work on the
convergence of non-homogeneous Markov chains [40]. Ever since then, various nec-
essary and/or sufficient conditions for the convergence have been constructed, and
several classical matrix theory books summarizing known results in this area have
been published [44, 90, 42]. In the classical results, the set of stochastic, indecompos-
able, aperiodic matrices, called SIA matrices, has attracted a lot of attention, and
the results on STA matrices [101] have been used to prove that the agents can reach
an agreement on the value of a variable of common interest using distributed nearest
neighbor rules [47].

In many coordination algorithms, it is assumed that the agents in a network
can update their states synchronously. However, in practice, the clock installed
at each agent is often not synchronized with each other and the agents can only
update according to their own clocks. Consequently, even when the synchronous
coordination strategy converges, one still needs to check whether the same strategy
implemented asynchronously still converges. To this end, in Chapter 2, we first
reexamine a subclass of the SIA matices, the Sarymsakov class of stochastic matrices,
which is introduced by Sarymsakov in [86] and redefined by Seneta in [89]. The
Sarymsakov class is a semigroup under matrix multiplication and contains the set of
scrambling matrices [89] as a subclass. We show that by generalizing the definition
of the Sarymsakov class, we can make a connection to those much better understood
SIA matrices. We further develop a new necessary and sufficient condition for the
convergence of backward infinite products of stochastic matrices in terms of matrices
from the Sarymsakov class of stochastic matrices in Chapter 3. Then we consider
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the coordination task for multi-agent systems when the agents update their states
asynchronously. We prove that if the update matrix, when all the agents update
synchronously, is a scrambling matrix, one can guarantee the system’s convergence
when the agents update asynchronously.

Much of the work on distributed algorithms has assumed that all the agents in
a network are working cooperatively to reach an agreement, which implies that a
neighboring pair of agents always contribute to decrease the relative difference as
if they are attractive to each other. The cooperation between a pair of agents is
modeled by the positive coupling between them, which corresponds to an edge with
some positive weight in the interaction graph. However, typical coupled multi-agent
systems indicate that conflict between pairs of agents in a network is ubiquitous. In
neural networks, the coupling between neurons can be either excitatory or inhibitory
[100]; in robotic teams, the interaction between self-interested robots can be either
collaborative or competitive [13]; in social networks, the relationship between people
can be either friendly or antagonistic [98].

In social network theory, a network that characterizes the friendly and antagonis-
tic relationships among individuals is modeled by a signed graph. A signed graph is
structurally balanced if it can be split into two factions, where each faction contains
only friendly relationships while individuals from different factions are antagonistic
[98]. In a static structurally balanced network, the states of the agents asymptoti-
cally converge to two opposite values, where the individuals in the same faction hold
the same value, while the states of those from different factions are opposite [2, 3].
It is more challenging and interesting to investigate the dynamical behavior of the
system under dynamically changing network topologies, where the networks may not
be structurally balanced all the time or the bipartitions that divide the networks into
two opposing factions may change with time.

This motivates us to study distributed algorithms in the presence of both positive
and negative couplings. They generalize distributed algorithms in [47, 81, 16], where
the graphs characterizing the interactions among the agents only consist of positive
couplings and they are structurally balanced since one of the two factions is empty.
When the network topology is static, the states of the agents polarize in a structurally
balanced network, while in a structurally unbalanced network they converge to zero
asymptotically. In the case when the network topologies are time-varying, polariza-
tion of the states of the agents will appear under some connectivity conditions if all
the networks involved are structurally balanced and maintain a common bipartition
of two opposing factions; otherwise, polarization of the states of the agents will not
happen and instead, the states of all the agents asymptotically agree and converge
to zero.

In the literature, various algorithms have been successfully constructed to cause
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all the agents in a group to converge to the same value asymptotically [47, 81, 16]. At
the same time, there is an emerging trend to study how an interconnected group may
incorporate or evolve into different sub-groups, called clusters [106]. In nature, multi-
species foraging groups have been observed, such as flocks of bark foraging birds [32],
in which birds have to coordinate through interactions with peers in their own and
other species. In the study of social networks, the Krause model [43] describes how
the agents with bounded confidence levels evolve into different clusters, where the
agents in the same cluster hold the same opinion in the end. The clustering behavior
is also potentially useful for the formation control problem for teams of autonomous
agents [4]. In [4], one of the main research problems that have been surveyed is to
split a formation into sub-formations in order to accomplish covering tasks or avoid
obstacles.

Motivated by the reported clustering phenomena, in Chapter 5, we study the clus-
ter synchronization problem, in which a coupled multi-agent system is required to
split into several clusters, so that the agents synchronize with one another in the same
cluster, but differences exist between different clusters. We are interested in iden-
tifying the approaches that might lead to clustering behavior in diffusively coupled
networks that have mainly been used for synchronization study. We present three
different approaches to realize clustering behavior in connected diffusively-coupled
networks. When analyzing the three mechanisms, we also list related results that are
scattered in the literature and make comparison when possible.

Furthermore, we make a connection to the controllability problem of multi-agent
systems. A dynamical system is said to be controllable if under suitable control
actions as the system’s inputs, the system’s state can be driven from any initial
values to any desired final values within finite time [49]. For an interconnected multi-
agent system, it is of great importance to know whether collective behavior can be
achieved by controlling only a portion of the agents. This is fundamental to the
design of effective distributed control algorithms. Tools from graph theory have been
employed to attack this problem. Equitable partitions and almost equitable partitions
are utilized to provide bounds for the controllable subspace of a multi-agent system
[79, 63, 19, 113]. We generalize the notions to general directed weighted graphs and
provide upper and lower bounds for the system’s controllable subspace and show
that those diffusively coupled multi-agent networks that are not controllable tend to
realize cluster synchronization as time goes to infinity.

While physical devices, such as computational units, sensors and actuators, are
more and more frequently working together over distances, people are more and more
concerned with the problem of how to synchronize the clocks that are installed at
those physical devices and connected through wired and/or wireless data networks
[36]. The importance of clock synchronization can also be seen from examples of
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converging coordination algorithms that may not converge any more, when the clock
installed at each agent is not synchronized with each other and the agents can only
update according to their own clocks. Clock synchronization has been discussed
intensively in the area of theoretical computer science especially in the 1980’s [52, 92],
and various impossibility results and bounds for synchronization errors have been
reported [62, 61]. More recently, with the growing interest in the application of
large-scale networks, in particular ad hoc and sensor networks, clock synchronization
problems have attracted considerable attention [67, 8, 84, 76, 56, 57, 107].

Very recently, Freris, Graham and Kumar have shown that in an idealized setting
the clocks cannot be synchronized precisely in distributed networks when asymmetric
time delays are present [37]. This result is obtained by using tools from linear system
theory and consistent with the results obtained previously in theoretical computer
science. Such impossibility results point out insightfully the fundamental limit of dis-
tributed clock synchronization strategies and underscore the urgent need to carry out
in-depth theoretical analysis for various clock synchronization protocols. On the oth-
er hand, in engineering practice when clocks are adjusted repeatedly to compensate
the differences between their time displays, their displays can indeed get synchro-
nized within an acceptable level of accuracy in a distributed fashion. In [94], the
Time-Diffusion synchronization Protocol (TDP) has been proposed to enable sensor
networks to synchronize their clocks with bounded errors. In [53], both synchronous
and asynchronous versions of a rate-based diffusion protocol have been discussed, in
which clocks adjust their displays repeatedly by taking the weighted average of the
displays of themselves and their adjacent clocks. IEEE 1588 protocol [46] has been
applied widely to networked measurement and control systems.

This motivates us to study the clock synchronization errors in the presence of
asymmetric time delays in a network based on similar models for clocks as in [37].
By updating all clocks repeatedly, we are able to derive explicit expressions of the
synchronization errors in steady states, which are within an acceptable range even
when the time delays are asymmetric.

In short, the contributions of this thesis can be summarized as follows.

1. We reexamine the Sarymsakov class of stochastic matrices and make a connec-
tion to better understood SIA matrices.

2. We develop a new necessary and sufficient condition for the convergence of
backward products of stochastic matrices and apply the results to derive new
sufficient conditions that can guide the asynchronous implementation of coor-
dination algorithms for multi-agent systems.

3. We develop sufficient conditions for the agents in a network to polarize or to
reach an agreement for distributed algorithms in the presence of positive and
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negative couplings under dynamically changing interaction topologies.

4. We propose three different distributed algorithms that may lead to clustering
behavior of interacting agents in connected networks.

5. We provide an upper bound and a lower bound for the controllable subspace for
a general diffusively coupled multi-agent system and show that those diffusively
coupled multi-agent networks that are not controllable tend to realize cluster
synchronization as time goes to infinity.

6. We determine clock synchronization errors in distributed networks in the pres-
ence of asymmetric time delays and show that the synchronization errors can
be bounded within an acceptable level of accuracy that are determined by the
degree of asymmetry in time delays.

1.3 Outline of this thesis

This thesis is structured as follows. Chapter 2 introduces basic notation and defini-
tions that will be used throughout the thesis. It is followed by introductory termi-
nologies and results in graph theory and algebraic graph theory, and basic results on
nonnegative matrices and stochastic matrices. We also review some existing results
on the convergence of distributed coordination algorithms.

In Chapter 3, some classical results on products of stochastic matrices are re-
viewed and a new necessary and sufficient condition is constructed by making use of
the matrices in the Sarymsakov class. We then discuss a discrete-time averaging al-
gorithm, which is implemented asynchronously to cope with the practical constraint
that agents may not have access to a common clock. The set of scrambling stochastic
matrices, a subclass of the Sarymsakov class, is utilized to establish the convergence
of the agents’ states based on the convergence results on products of stochastic ma-
trices. The results presented in this chapter are extensions of those in [109].

In Chapter 4, we study distributed algorithms in the presence of positive and
negative couplings. We discuss both cases when the network topologies are static and
time-varying. In the case when the network topologies are time-varying, the states of
the agents polarize under some connectivity conditions if all the networks involved are
structurally balanced and maintain a common bipartition of two opposing factions. If
structurally unbalanced networks arise often enough as time evolves, then the states
of all the agents asymptotically agree and converge to zero.

Chapter 5 shows three different distributed algorithms that may lead to cluster-
ing behavior of coupled agents in connected networks. The first approach is that
agents have different self-dynamics, and those agents having the same self-dynamics
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may evolve into the same cluster. When the agents’ self-dynamics are identical, we
present two other approaches by which cluster synchronization might be achieved.
One is the presence of delays and the other is the existence of both positive and
negative couplings between the agents. Some sufficient and/or necessary conditions
are constructed to guarantee cluster synchronization. The results presented in this
chapter have been published in [105, 106].

Chapter 6 discloses the relationship between the controllability problem and the
cluster synchronization problem of complex multi-agent systems. We first define
generalized equitable partitions and almost equitable partitions for general directed
weighted graphs and then we are able to provide an upper bound and a lower bound
for the controllable subspace for a general diffusively coupled multi-agent system.
Furthermore, we show that those diffusively coupled multi-agent networks that are
not controllable are in general easier to realize cluster synchronization. The results
presented in this chapter are extensions of those in [108].

In Chapter 7, we determine clock synchronization errors in distributed networks in
the presence of communication time delays. We show that the synchronization errors
can be bounded within an acceptable level of accuracy that are determined by the
degree of asymmetry in time delays. After studying the basic case of synchronizing
two clocks in the two-way message passing process, we first analyze the directed
ring networks, in which neighboring clocks are likely to experience severe asymmetric
time delays. We then discuss connected undirected networks with two-way message
passing between each pair of adjacent nodes. In the end, we expand the discussions to
networks with directed topologies that are strongly connected. The results presented
in this chapter are extensions of those in [107].

Concluding remarks and recommendations for future research are given in Chap-
ter 8.



Chapter 2

Mathematical Preliminaries

In this chapter, we first introduce the general notation and definitions that will
be used throughout the thesis. Some fundamental knowledge of graph theory and
matrix theory is reviewed. This plays a crucial role in the convergence analysis
of distributed coordination algorithms for multi-agent systems. The last section in
this chapter reviews both discrete-time and continuous-time coordination algorithms
that are well-studied in the past decade and collects some fundamental convergence
results.

2.1 Basic notation and definitions

Let R denote the field of real numbers. Let N be a positive integer. RY denotes the
N-dimensional Euclidean space. Iy and Op;xn denote the N x N identity matrix
and the M x N zero matrix, respectively. I and O denote the identity matrix and zero
matrix with compatible dimension, respectively. 15 and 0y represent N-dimensional
column vectors with all ones and all zeros, respectively. 1 denotes a column vector
with all ones with compatible dimension. 0 denotes a column vector with all zeros
with compatible dimension.

Let A e RM*N be an M x N matrix. rank(A) denotes the rank of A. ker(A)
denotes the kernel of A defined by {x € RN|Az = 0} and im(A) denotes the image
of A defined by {y € RM|y = Az, Vo € RNV}, We write A > 0 if a;; = 0, i =
1,...,M, 7 =1,...,N, and we say A is a nonnegative matrix. We write A > 0 if
a;; >0,i=1,...,M, j=1,...,N, and we say A is a positive matrix. If M = N, A
is a square matrix. A positive definite matrix A is denoted by A > 0 and a positive
semi-definite A is denoted by A > 0. Correspondingly, a negative definite matrix and
a negative semi-definite matrix are denoted by A < 0 and A < 0, respectively.

For two arbitrary matrices A = (a;j)mxn and B = (b;;)pxq, the Kronecker product
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of A and B is defined by

anB  ai2B - a1, B

a1 B apB - a2,B
A®B = .

amlB am2B e amnB

For an N x N matrix A, assume that A\;(A4), A2(A), ..., An(A) are the eigenvalues
of A and Re(X;(A)) denotes the real part of the eigenvalue \;(A4). p(A) denotes the
spectral radius of A, which is defined by p(A) = max;<;i<n{|Ni(A)|}. A® is defined
by A® = 1(A+ AT).

dim(-) denotes the dimension of a vector or a space. For a set S, let |S| be the

cardinality of S. Let # = [z1,...,zx5]7 be an N-dimensional real vector. [|z||z is
the Euclidean norm of z defined by ||z||2 = vVaTx and ||z||x = max{|x1],..., |zn]|}

is the max norm of x. diag(x) denotes the diagonal matrix with the vector x on its
diagonal.

2.2 Basics of graph theory

Graph theory serves as a fundamental and powerful tool in the study of network
science. Graphs can be conveniently used to describe the topologies of networks and
in later chapters we will frequently use them to visualize the interaction topologies
among the agents or the communication topologies among the clocks in a network.
This material can be found in many books on graph theory, for example [25, 30].

A graph consists of a vertex set and a set of edges connecting the vertices. Let
a graph consisting of N vertices be denoted by G = (V,€), with the vertex set
V = {v1,va,...,un} and the edge set £ < V x V. We will use node and vertex
interchangeably in later chapters. Conventionally, when we utilize a graph G to
represent the interaction topology among the agents, vertex v; in the graph represents
agent ¢ in a multi-agent system. In an undirected graph, the edges in £ are denoted
by unordered pairs of vertices. (v;,v;) € € if and only if there is an edge connecting
v; and v;. In contrast, a directed graph is defined by an edge set consisting of ordered
pairs of vertices; that is (v;,v;) € € does not necessarily imply (vj,v;) € € (see Fig.
2.1(a) for an example). For an edge (v;,v;) € £ in a directed graph, v; is called the
parent verter and v; is called the child vertex. If not explicitly stated, throughout
this dissertation, we only consider graphs without self-loops, i.e. (v;,v;) ¢ £. An
undirected graph can be viewed as a directed graph if every undirected edge (v;, v;)
is represented by two directed edges (v;,v;) and (vj,v;). The union of a collection of
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graphs is a graph whose vertex and edge sets are the unions of the vertex and edge
sets of the graphs in the collection.

®/ ?
i;@>@ AN

Figure 2.1: (a) A directed strongly connected graph with five vertices; (b) an undirected

(b) ®

connected graph with five vertices.

In a directed graph G, a directed path of length k is a sequence of distinct vertices
Viys ..., 0iy,, such that (v;,,v; ) € € for s = 1,...,k. An undirected path in an
undirected graph is defined analogously. The distance from v; to v; is the length of the
shortest path from v; to v; and is denoted by dist(v;, v;). We define dist(v;, v;) = 0 for
any v;. Note that in directed graphs, dist(v;,v;) is in general not equal to dist(v;, v;).
In a directed graph, a cycle is a directed path that starts and ends at the same vertex.
A directed graph is said to be strongly connected if there is a directed path from
every vertex to every other vertex. An undirected graph is connected if there is an
undirected path from every vertex to every other vertex. The diameter of a graph
G is defined by diam(G) = max,, ey dist(v;,vj). Obviously, 1 < diam(G) < N —1
when G is strongly connected and N > 1. A directed tree is a directed graph in which
every vertex has only one parent except for one vertex, called the root, which has no
parent and from which there is a directed path to every other vertex. For undirected
graphs, a tree is a graph in which every pair of vertices is connected by exactly one
undirected path.

A subgraph Gy = (V1,&1) of G = (V,€) is a graph such that V; € V and & <
En (V1 xV1). A directed spanning tree (V, &) of a directed graph (V, £) is a subgraph
of (V,€) such that (V,&) is a directed tree. An undirected spanning tree of an
undirected graph is defined analogously. We say a directed graph contains a directed
spanning tree if a directed spanning tree is a subgraph of this graph. It is noted
that a directed graph contains a directed spanning tree if and only if it contains at
least one vertex from which there is a directed path to every other vertex. This is a
condition which is weaker than that a graph is strongly connected. In contrast, an
undirected graph contains a spanning tree if and only if it is connected.

The adjacency matriz A = (a;j)nxn of a directed graph G = (V,€) is defined
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such that a;; is nonzero if (j,¢) € £ and a;; = 0 if (j,7) ¢ £. It is noted that a;; = 0,
since there is no self-loop in a graph. The in-degree of vertex i is defined as di" =
Z;‘V=1, j»i @ij and the out-degree of vertex i is defined as d*! = Zjvzl ji 0ji- The
in-degree and out-degree matrices of a graph are defined as D' = diag{d}",...,d\}
and D° = diag{d$",...,d3*'}. A graph is called balanced if di" = d?* for all
1 =1,...,N. For any undirected graph, the adjacency matrix A is symmetric, and
thus it is balanced. If the weights are irrelevant, then a;; is equal to 1 for all (j,7) € £.
In this case, the in-degree and out-degree of each vertex reduce to the number of edges
pointing to and pointing out from this vertex, respectively.
The Laplacian matrix of a directed graph is defined as L = D™ — A; that is

N
Li= Y, @y, lj=—ay, i #j. (2.1)
=1, j#i

The spectral properties of the Laplacian matrix play an important role in the conver-
gence study of distributed coordination algorithms. Here we introduce some useful
properties on the spectrum of the Laplacian matrix.

The following result, often called the Gersgorin disc theorem, reveals that the
eigenvalues of a matrix lie in some easily computed discs centered at the diagonal
elements of the matrix.

2.2.1. LEMMA. /44/ Let A = (aij)NxN and let Rz(A) = Z;‘\Ll,j#i |G,ij|, 1<i< N

denote the deleted absolute row sums of A. Then all the eigenvalues of A are located
in the union of N discs

N N
U{zecwz—am D |aij|—Ri<A>}—G<A>. (2.2)
=1 Jj=1,7#1

The region G(A) in (2.2) is often called the Gersgorin region (for rows) of A; the
individual discs in G(A) are called Gersgorin discs, and the boundaries of these discs
are called Gersgorin circles.

Assume that the weights of all the edges in a directed graph are positive; that

is aj; > 0 for all (j,i) € £& Then l;; = —a;; < 0, for ¢ # j, and Z;.V:llij =
din — Zévzl jei@ij = 0, forall i =1,...,N. It follows that L has zero row sums
and 0 is an eigenvalue of L with an eigenvector 15 = [1,...,1]7. Note that L is

diagonally dominant and it has nonnegative diagonal elements. Applying Lemma
2.2.1, it is clear that the nonzero eigenvalues of L all have positive real parts.

2.2.2. LEMMA. [81] Assume that the adjacency matriz A are nonnegative, that is
ai; =0, i, =1,...,N. 0 is a simple eigenvalue of the Laplacian matriz L of a
directed graph if and only if the graph contains a directed spanning tree. In addition,
all the other eigenvalues of L have positive real parts.
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For an undirected graph, the adjacency matrix A is symmetric and so is L. Let
Ai(L) be the eigenvalues of L and assume that they are arranged in an increasing
order A\1(L) < Ao(L)--- < An(L). Then A;(L) = 0 and Ay(L) is called the algebraic
connectivity of an undirected graph [65], which is strictly positive if and only if the
graph is connected.

If the weights of the edges in a graph we concern can take both positive and
negative values, then the graph becomes a signed graph. The adjacency matrix hence
may contain negative entries and is thus called a signed adjacency matriz. The
definition of the Laplacian matrix in (2.1) will render a matrix that still has an
eigenvalue 0 but may have eigenvalues with negative real parts. To overcome this,
we introduce the extended definition of the Laplacian matrix for a signed graph, and
called it the signed Laplacian matriz [45]. The signed Laplacian matrix is given by

N

lii = Z laij|, lij = —aij, i #j. (2.3)
J=1, j#i

It is easy to see that the signed Laplacian matrix is diagonally dominant and thus
its nonzero eigenvalues all have positive real parts.

Given a matrix G = (g;;)nxn, & directed weighted graph G(G) associated to G
can be defined to visualize the nonzero entries of G, which will be used extensively in
later chapters to describe the couplings among the agents in a network. For the sake
of convenience, we have slightly modified Definition 6.2.11 in [44] to get the following
one.

2.2.1. DEFINITION. Given a matrizx G = (g;j)NxN, the directed weighted graph as-
sociated to G, denoted by G(G) = (V,€), is a directed graph with the vertex set
V = {v1,...,on} such that (v;,v;) is an edge of G(G) if and only if ¢ # j and
gji # 0, and the weight associated with (v;,v;) is gj;.

Note that G(G) contains no self-loops, i.e., (v;,v;) ¢ £. There is one exception in
Section 3.2, where self-loops are allowed in the associated graph of a matrix.

2.3 Basics of matrix theory

The class of nonnegative matrices, especially its subclass of stochastic matrices, plays
an essential role in establishing the effectiveness of the distributed coordination al-
gorithms. Next we introduce several well-studied classes of matrices and a newly
defined class of matrices that will be used in the study of products of stochastic ma-
trices and an asynchronous implementation of a distributed coordination algorithm
in Chapter 3.
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2.3.1. DEFINITION. [44] A matriz P = {p;j}nxnN is said to be reducible if either
(a) N =1 and P = 0; or

(b) N = 2, there is a permutation matrix U and there is some integer r with
1<r<N—1 such that

O D

where BeR™ ", C e R™N=" DeRN-"*N=" and O is the zero matriz. P is said

to be irreducible if it is not reducible.

UrpU = [B C]

2.3.2. DEFINITION. [44] A square matriz P = {p;;j}nxn is called stochastic if it is
nonnegative and Z?lepij =1foralli=1,...,N.

Consider a stochastic matrix P. For aset A < {1,..., N}, let Fp(A) be the set of
one-stage consequent indices [89] of A defined by Fp(A) = {j: p;; > 0 for some i €
A}

2.3.3. DEFINITION. [101] A stochastic matriz P = {p;;}nxn is indecomposable and
aperiodic and thus called an SIA matriz if lim,, o, P™ = 1c*, where c = [c1,...,en]T
is some column vector satisfying c; = 0 and Zf\il c; = 1.

2.3.4. DEFINITION. [90] A square matriz P = {p;;}nxn belongs to the Sarymsakov
class IC if for any two disjoint nonempty subsets A, A< {1,..., N}, either

FP(A) N FP(A) * J (2.4)

or

Fp(A) n Fp(A) = @ and |Fp(A) U Fp(A)| > |A U Al (2.5)

2.3.5. DEFINITION. [90] A square matriz P is called scrambling if for any pair of
distinct row indices © and j, there always exists a column index k such that both p;y
and pji, are positive.

Obviously, from the definitions, a scrambling matrix belongs to the Sarymsakov
class K. It has been shown that any product of N — 1 matrices from K is scram-
bling and a stochastic scrambling matrix is SIA [89]. Hence, any stochastic matrix
belonging to the Sarymsakov class L must be an SIA matrix.

2.3.1. EXAMPLE. Let
/2 0 1/2 1 0 0
Pr=|1/2 172 0|, P=|1/2 1/2 0
0 1/2 1/2 0 1/2 1/2
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One can check that P; is a stochastic scrambling matrix and P, belongs to the
Sarymsakov class K. P, is not a scrambling matrix, since there is no column index k
such that (Py);; and (P,);k are both positive for ¢ = 1 and j = 3. Furthermore,

m—00

1 1 1 1 1 0 0
lim P"= |1 1 1|, lim P"=|1 0 0
1 1 1 1 0 0

Hence P; and P, are both SIA matrices. O

2.3.6. DEFINITION. [90] Let P = {p;;}nxn~ be an arbitrary stochastic matriz. 7(P) =
% maxy j Zivzl |p1s —prs| = 1—ming fo:l min{p;s, prs} is the coefficient of ergodicity

of P.
The following property of the coefficient of ergodicity is clear from its definition.

2.3.1. LEMMA. [90] Let 7(P) be the coefficient of ergodicity of a stochastic matriz
P.

(a) 0 < 7(P)<1;

(b) T(P) = 0 if and only if P = 1c* for some vector c satisfying ¢ =0, ¢I'1=1;
(¢) T(P) < 1 if and only if P is a scrambling matriz.

In fact, the set of all the stochastic matrices in Sarymsakov class is the largest
known set of stochastic matrices, which is closed under matrix multiplication and
the products of whose elements under mild conditions always converge. However,
the definition of the Sarymsakov class is a bit obscure and thus it might seem diffi-
cult to place such matrices in relationship with some other categories of well-known
stochastic matrices. To deal with this challenge, we take a closer look at the definition
of the Sarymsakov class and explain its relationship to the SIA matrices.

From the definition of the Sarymsakov class /C, to verify whether a matrix belongs
to I or not, one needs to check the set of one-stage consequent indices of any two
disjoint sets of its indices. Said differently, the definition of the Sarymsakov class is
tightly built upon the notion of one-stage consequent indices. Motivated by this, we
try to explore what happens when we further look at the set of “k-stage consequent
indices” of any two nonempty sets of its indices. Naturally, we will obtain a larger
matrix set, which contains the Sarymsakov class K. But surprisingly, as we will prove
later, this larger set is exactly the set of SIA matrices.

For a stochastic matrix P and a set A < {1,...,N}, let FE(A) be the set of
k-stage consequent indices of any nonempty set A < {1,..., N}, which is defined by

FE(A) = Fp(A) and FE(A) = Fp(FETY(A)) for k > 2.
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2.3.7. DEFINITION. A square matrix P = {p;;}nxn belongs to the class W if for
any two disjoint nonempty subsets A, Ac {1,..., N}, there exists an integer k such
that either

FE(A) N FE(A) + @, (2.6)

or
FE(A) n FE(A) = @ and |FE(A) U FE(A)| > |A U Al (2.7)

It is easy to see that K € W since k = 1 in the definition of IC. The relationship
between the newly defined class W and the class of SIA matrices can be summarized
as following.

2.3.1. THEOREM. A stochastic matriz P is in W if and only if P is SIA.
The proof of Theorem 2.3.1 makes use of the following Lemma.

2.3.2. LEMMA. [42] Let P be an N x N stochastic matriz. Then FE(A) = Fpr(A)
for all subsets A< {1,...,N}.

Proof of Theorem 2.3.1: (Sufficiency) Since P is STA, there exists a positive integer
k such that P* has a column with only positive elements. From Lemma 2.3.2, one
has

FE(A) N FE(A) = Fpi(A) 0 Fpi(A) # @

for any two disjoint nonempty subsets A, A< {1,... ,N}. Thus P e W.
(Necessity) Let the number of all possible pairs of disjoint nonempty subsets be m
and ki, ..., kL, be the corresponding positive integers such that either (2.6) or (2.7)
holds. Let s = max{ky,...,kn}and [ = (N —1)s. We claim that for any two disjoint
nonempty subsets Ay, A; € {1,..., N}, Fh(A;) n FL(A)) # 2.

If this is not true, one has Fh(A;) n Fh(A;) = @, for all 4 = 1,...,1. Since
PeW, for A; and Aj, there exists a positive integer, without loss of generality, say
k1, such that

FE(AD) n FE(A) = @ and |FRH(A) U FEH(AD| > Ao Ay

Let Fllil (A1) = A and FI]? (/h) = A,. Then there exists a positive integer ks such
that

FF2(Ag) n Fr2(Ag) = @ and |FE2(Ag) U FE2(Ag)| > |Ag U Ag| > |A; U Ay

Thus we can find a sequence of subsets Ay, Ao, ..., Ay_1, Ay_1 and a sequence of
positive integers k1, ks,...,kn_1, such that

Fp(A) = A1 and F(A;) = A
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fori=1,...,N —2, and
kn—1 kn-1/ 7
Fp"  (An-1) n Fp"  (An-1) = @
and
PR (An-1) U FR  (Ay-1)| > [An—1 AN > > [As U Ay| > [A U Ay | > 2.
It follows that
PR (An—1) U FR¥ 7 (Av 1) > N,

which contradicts the fact that the dimension of P is N.
From Lemma 2.3.2, one has that for any two disjoint nonempty subsets A;, A; <
{1,...,N},
Fpi(A1) n Fpi(Ar) = Fp(A) 0 Fp(Ay) # 2.

So P! € K, which implies that P is SIA. O
2.3.2. EXAMPLE. Let
1 00
P=1]1 0 0
0 1 0

P is a stochastic matrix but P does not belong to the Sarymsakov class K. To
see this, take A = {1} and A = {3}. One has that Fp(A) n Fp(A) = & and
|Fp(A) U Fp(A)| = |AU A| = 2. Tf we take k = 2, then we have FE(A) n FE(A) =
{1} # . One can verify that P belongs to the class WW. Furthermore,

m—0o0

1 0 0
lim P" =11 0 O
1 0 0
This verifies the effectiveness of Theorem 2.3.1. O

2.4 Distributed coordination algorithms

In this section, we review some well-studied distributed algorithms for multi-agent
systems with discrete-time and continuous-time dynamics. These algorithms are of-
ten used to coordinate a group of agents to reach a consensus. By consensus we mean
that all the agents in a network achieve a common value on some variable of interest
asymptotically. A more rigorous definition will be given later. We are interested in
systems that are described by first-order dynamics. The systems with second-order
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dynamics and general linear dynamics are not reviewed here, the interested read-
er is referred to [80, 87]. Various variations of these models have been developed to
deal with practical constraints, for example, communication time-delays [17, 15, 110],
asynchronous update events [17, 15, 110, 109], quantized measurements [50, 23, 21],
and so on [80, 82]. There are also some other important issues that concern the
convergence speed [74], distributed formation control [71], and so on.

For the discrete-time case, distributed averaging rules are often used to cause
all the agents to reach an agreement. To be more specific, each agent updates its
state to the weighted average of the states of all the other agents. Consider a system
consisting of N agents, labeled by 1,..., N. The dynamics of the state of agent ¢ can
be described by

N
zi(t+1) = > pi(Hz;(t),  t=0.1,.... (2.8)
j=1

where z;(t) € R, and p;;(t) = 0 is the nonnegative weight agent 7 assigned to agent
j at time ¢ when agent i updates its state. Let z(t) = [21(t),...,zn(t)]T € RY and
P = (pij(t))Nxn = 0. We can write the system in a compact form

z(t+1) = P(t)z(t), t=0,1,.... (2.9)

The weights p;;(t) satisfy the following condition
N
Dipii(t) =1, pu(t) >0, i=1,...,N. (2.10)
j=1

From the condition (2.10), the row sums of P(t) are all one and thus P(t) is a
stochastic matrix. When P(t) is time-invariant, simply denote it as P. Consensus is
reached asymptotically if for all initial values and all 4,5 = 1,..., N, z;(t)—z;(t) — 0,
as t — 0.

2.4.1. LEMMA. [80] Let A be a stochastic matriz. 11is an eigenvalue of A and p(A) =
1. 1 is a simple eigenvalue of A if and only if its associated graph G(A) defined in
Definition 2.2.1 has a directed spanning tree. Furthermore, if G(A) has a directed
spanning tree and a;; > 0, i =1,..., N, then 1 is the unique eigenvalue of maximum
modulus.

The following theorems establish the convergence results for discrete-time algo-
rithm (2.9) under time-invariant and time-varying interaction topologies.

2.4.1. THEOREM. [80] Suppose that P(t) = P for allt =0,1,.... The discrete-time
system (2.9) with time-invariant interaction topology achieves consensus asymptoti-
cally if and only if the directed graph G(P) has a directed spanning tree. In particular,
x;(t) — Zf\[:l v;2;(0), where v = [v1,...,un]T = 0 satisfies vI P = v and 1Tv = 1.
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2.4.2. THEOREM. [80] Suppose that the nonzero entries of the stochastic matrices
P(t) in system (2.9) are uniformly lower bounded, that is p;;(t) = v, for all (j,i) €
E(t) and all t, where 0 < v < 1. The discrete-time system (2.9) achieves consensus
asymptotically if there exists an infinite sequence of contiguous, nonempty, uniformly
bounded time intervals [tg,tg+1), k =0,1,2,..., starting at to = 0, with the property
that the union of the directed graphs across each interval has a directed spanning tree.

For the continuous-time case, the consensus algorithm is given by
N
@ =— Y ai(t)(zi —z;), i=1,...,N, (2.11)
j=1

where a;;(t) is the ijth entry of the adjacency matrix A(t) of the interaction graph
G(t) at time t. Note that a;;(t) > 0 if (j,7) € £(t) and a;;(t) = 0 otherwise, Vj # i.
Let L(t) be the Laplacian matrix at time ¢ and let z(t) = [z1(t),...,2zx(t)]7. System
(2.11) can be written in a compact form

&= —L(t). (2.12)

The definition [; = —Z;V:L i l;; guarantees that the inter-agent couplings are d-
iffusive, and hence such networks are also called diffusively coupled networks. Con-
sensus is reached asymptotically if for all initial values and all 4,5 = 1,... N,
Z'Z(t) — SCj(t) d 0, as t — oo.

The following theorem gives a necessary and sufficient condition for consensus
with a time-invariant interaction topology and constant a;;.

2.4.3. THEOREM. [80] Suppose that A(t) = A is constant for all t > 0. The
continuous-time system (2.12) achieves consensus asymptotically if and only if the
directed graph G(A) has a directed spanning tree. In particular, x;(t) — Zivzl v;2:(0),
ast — 0, where v = [vy,...,vn]T = 0 satisfies vT L =0 and 17v = 1.

When algorithm (2.12) is carried out under dynamically changing interaction
topologies, we assume that A(t) and L(t) are both piecewise continuous.

2.4.4. THEOREM. [80] Suppose that A(t) is piecewise continuous and its positive
entries are uniformly lower and upper bounded, that is a;;(t) € [a,a], for all t and
a;;(t) # 0, where 0 < a < a. Let to,t1,..., be the time sequence corresponding to
the times at which G(t) switches, where it is assumed that tyy1 — t > tr, Vk =
1,2,..., with t, a positive constant. The continuous-time system (2.12) achieves
consensus asymptotically if there exists an infinite sequence of contiguous, nonempty,
inia)s B =0,1,2,..., starting at t;; = 0, with
the property that the union of the directed graphs across each interval has a directed
spanning tree.

uniformly bounded time intervals [t;, ,t
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The discrete-time and continuous-time algorithms introduced here include several
models like the Viesek model [47, 97] as special cases, for more details please refer
to [80, 72]. Note that in systems (2.8) and (2.11), the weights p;;(¢) and a;;(t) are
assumed to be nonnegative. This means that all the agents in a network always
contribute to decrease the relative difference in order to reach an agreement. As
pointed out in Chapter 1, it is meaningful to take negative couplings into account,
which characterize competitive or antagonistic relationships between the agents. In
Chapter 4, we generalize the discussions on systems (2.8) and (2.11) to the setting
when the weights p;;(t) and a;;(t) can be positive and negative. Instead of reaching
a consensus, polarization of the states of the agents arises in a structurally balanced
network that can be split into two antagonistic factions. In Chapter 5, algorithm
(2.11) is used to generate clustering behavior in a network by incorporating negative
couplings.



Chapter 3

Asynchronous implementation of a
distributed coordination algorithm

There are a number of results discussing how to use distributed averaging rules to
cause a group of agents to reach an agreement on the value of a variable of interest
as shown in the previous chapter. In most of the established results, the agents are
assumed to update their states synchronously. In practice, however, the agents may
not have access to a common clock and only update according to their own clocks.
Consequently, even when the synchronized coordination algorithm converges, one still
needs to check whether the same strategy implemented asynchronously converges. In
this chapter, we focus on an asynchronous implementation of a distributed coordi-
nation algorithm. Some classic results on the convergence of products of stochastic
matrices are reviewed and a new necessary and sufficient condition is constructed by
making use of the matrices in the Sarymsakov class. The set of scrambling stochastic
matrices, a subclass of the Sarymsakov class, is utilized to establish the convergence
of the agents’ states when there is no common clock for the agents to synchronize
their update actions.

3.1 Problem formulation

Consider a system consisting of IV agents, labeled by 1,..., N. All agents are required
to reach an agreement on the value of a variable of interest and there have been rich
results on how to achieve this goal. To be more specific, we denote the state of agent
i, 1 <i< N, by x; € R. Asin (2.8) with a time-invariant update matrix, agent ¢’s
state updates according to

N
zi(t+1) = . pija;(t), t=0,1,..., (3.1)
j=1

where p;; > 0 and Z;-V:;L pij = 1. Hence, when all the agents’ update actions are
perfectly synchronized according to a common clock, the N-agent system’s dynamics
can be described by

x(t+1) = Px(t), t=0,1,..., (3.2)
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where P is the N x N stochastic matrix whose ijth element is p;;, and z(t) =
[21(),...,2n(t)]T is the state of the system. Then it has been proved that when
the matrix P is SIA, the states x; of all the agents converge to a common value
asymptotically exponentially fast [81, 47].

In practice, the agents may not have access to a common clock and only update
according to their own clocks. Consequently, it is important to check whether the
converging coordination strategy (3.2) implemented asynchronously still converges.
Note that the analysis of the convergence of asynchronous algorithms is usually chal-
lenging, and it is in general difficult to define the state of the asynchronous system
even when its synchronous counterpart is well defined [10, 15].

Now we consider a possible asynchronous implementation of the distributed av-
eraging algorithm described by (3.2). We allow each agent to update its state inde-
pendently at times determined by its own clock. We will give a sufficient condition
on the matrix P to ensure the convergence of the asynchronous implementation of
the update scheme.

We assume that the agents’ clocks can be described by linear models and have
the same skew but different offsets [37, 107]. We first ignore the case that two or
more agents update exactly at the same time. So one can carry out the procedure
of analytic synchronization, at the end of which we obtain the set 7 = {0,1,2,...}
by relabeling all the agents’ update event times. For more detailed description of
analytic synchronization, the interested reader is referred to [10, 54, 15]. In the
following, we consider the system that evolves according to the time sequence T. If
each agent chooses to update periodically, then the overall system becomes periodic
as well with period N.

Now consider at time ¢, agent ¢;, 1 < ¢; < N updates. Then its state satisfies
N
Te,(t+1) = . pejas(t), t=0,1,2,..., (3.3)
j=1

and correspondingly for all the other agents, we have
zj(t+1)=a;(t), j#c, j=1,...,N, t=0,1,2,.... (3.4)

Then again with the definition of the system’s state to be z(t) = [z1(t),...,zn(t)]7,
one can rewrite (3.3) and (3.4) in a compact form

z(t+1) = Pa(t), t=0,1,2,..., (3.5)
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where ~ _
1 0 0 0
=" ’ ’ (3.6)
pctl et pct,ctfl pctct tee pctN
0 0 0 0 1 |

The solution to the system (3.5) can be written as

x(t+1)=P,P., , P Peyx(0). (3.7)

The asymptotic behavior of the solution depends on the property of the infinite
backward product - - P, - - P, P,,. Each P, in the product is a stochastic matrix.
The convergence study of products of stochastic matrices has proven to be crucial in
establishing the effectiveness of distributed coordination algorithms for multi-agent
systems. In the next section we review some classic and recent results on products
of stochastic matrices and then use them to establish a sufficient condition on P to
ensure the convergence of asynchronous system (3.5).

3.2 Products of stochastic matrices

Consider a compact set P of N x N stochastic matrices. The following conditions
have been constructed in [101] and [6] to guarantee the convergence of the backward
product of matrices from P, which involve STA matrices and scrambling matrices
defined in Definitions 2.3.3 and 2.3.5.

C1. For each integer k > 1 and any P(i) € P, 1 < i < k, the stochastic matrix
P(k)--- P(1) is SIA.

C2. There is an integer v > 1 such that for each k¥ > v and any P(i) € P, 1 <
i < k, the matrix P(k)--- P(1) is scrambling.

C3. There is an integer p > 1 such that for each k > p and any P(i) € P, 1 <
i < k, the matrix P(k)--- P(1) has a column with only positive elements.

In [6], the relationships between these three conditions have been discussed.

3.2.1. PROPOSITION. [6] Conditions C1, C2 and C3 are equivalent.

Then these three conditions are shown to be necessary and sufficient for the
convergence of products of stochastic matrices from a finite set.

3.2.1. THEOREM. [6] Let P be a finite set of stochastic matrices. For each sequence
of matrices P(1), P(2), P(3),... from P, P(k)---P(1) converges to a rank-one
matriz 1c’ as k — o0 if and only if any of the three conditions C1, C2 or C3 holds.
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Instead of finite sets of stochastic matrices, in [26] compact sets of stochastic
matrices are studied and conditions C1 to C3 are shown to be sufficient for the
convergence of products of stochastic matrices.

3.2.2. PROPOSITION. Let P be a compact set of stochastic matrices. For each se-
quence of matrices P(1), P(2), P(3),... from P, P(k)---P(1) converges to a rank-
one matriz 1cT as k — oo if any of the three conditions C1, C2 or C3 holds.

In what follows, we first show that conditions C1 to C3 are also necessary for the
convergence and then further construct an additional equivalent condition using the
notion of the Sarymsakov class defined in Definition 2.3.4.

3.2.3. PROPOSITION. Let P be a compact set of stochastic matrices. For each se-
quence of matrices P(1), P(2), P(3),... from P, P(k)--- P(1) converges to a rank-
one matriz 1c” as k — oo only if any of the three conditions C1, C2 or C3 holds.

Proof. Since C1, C2 and C3 are equivalent, it suffices to show that C1 is necessary. For
each integer [ > 1, we define B = P(l)--- P(1) and consider the following converging
matrix product - -- B - -- BB, which implies the fact that B™ converges to a rank-one
matrix as the integer m goes to infinity. In view of the definition for SIA matrices,
we know that B must be SIA for each [ > 1. O

Now we consider the following condition.

C4. There is an integer @ > 1 such that for each k > a and any P(i) € P, 1 <
i < k, the matrix P(k)--- P(1) belongs to the Sarymsakov class K.

One can further prove the following relationship between C4 and the other three
conditions.

3.2.4. PROPOSITION. C} is equivalent to C1, C2 and C3.

Proof. Tt suffices to show that C4 is equivalent to C2. Suppose C4 holds. Since the
product of N — 1 matrices from the Sarymsakov class is scrambling [89], if we take
v = (N — 1)a, then P(k)---P(1) is scrambling for k¥ > v. So C4=C2. On the
other hand, since a scrambling matrix always belongs to the Sarymsakov class, we
have C2==C4. Hence, combining the two facts, we know C2<=C4. O

In view of Propositions 3.2.2, 3.2.3 and 3.2.4, we have in fact proved the following
theorem.

3.2.2. THEOREM. Let P be a compact set of stochastic matrices. For each sequence
of matrices P(1), P(2), P(3),... from P, P(k)---P(1) converges to a rank-one
matriz 1c” as k — oo if and only if any of the four conditions C1, C2, C3 or C4
holds.
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We want to further comment that, using the technique in [101], one can prove the
same conclusion in Theorem 3.2.2 holds when the positive elements of the matrices
in P have a positive lower bound. In other words, instead of requiring the set P to be
compact, one may require that there is a uniform lower bound v > 0 for all nonzero
elements p;;(k) of P(k), i.e., p;j(k) =~ >0 for all k> 1.

The condition C3 is closely related to the notion of “sequential connectivity”,
which is defined in [5] to study the convergence rate of consensus algorithms. Given
a graph G = (V,€) with N vertices, assume that self-loops are allowed here. For
aset A SN ={1,...,N}, we use N(A,G) = {j : Fie A (v,v;) € &} to
denote the set of indices of the neighbors of vertices in A. We say a sequence of
graphs G;, ¢ = 1,...,T, with a common vertex set V = {vy,...,vn} is sequentially
connected if there exists a vertex v; € V and a sequence of sets A; € N such that
A1 = {5}, Aps1 SN (A, Gg) forall 1 <k <T —1and Ar = N.

We associate a directed, weighted graph G(P) to the stochastic matrix P, which
is defined in Definition 2.2.1 except that self-loops are allowed in the graph G; that is
there is an edge (v;,v;) € € if and only if p; # 0. Denote the graphs associated with
the stochastic matrix P(i) by G;. From the definition, one can easily see that the
matrix product P(k)--- P(1) has a positive column if and only if the corresponding
sequence of graphs G1, Go,..., Gy is sequentially connected.

In this section, we have reviewed the most important results on the convergence
of products of stochastic matrices. In addition, we have focused on the Sarymsakov
class to construct a new necessary and sufficient condition for the convergence. In
the next section, we will look at how to apply these matrix theoretic ideas to the
study of asynchronous system (3.5).

3.3 Coordinating multi-agent systems with asyn-
chronous updates

We first provide an example to show that when implementing a converging syn-
chronous algorithm in (3.2) asynchronously, the resulting asynchronous algorithm
may not converge any more.

3.3.1. ExaMPLE. Consider a converging synchronous algorithm in the form of (3.2)
that is characterized by the matrix

0 0 0 05 05
1 o 0 0 O
P=105 05 0 0 O
0 05 05 0 O
0 0 05 05 O

(3.8)
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One can check that P belongs to the Sarymsakov class I defined in Definition 2.3.4.
Now we check the case when the agents update periodically with the update sequence
of {2,3,1,4,5} in each update period. Then one has

0 0 0 05 05

100 O 0
PsPyPiPsP,=|1 0 0 O 0,

1 0 0 O 0

1 0 0 O 0

for which —1 is an eigenvalue, and this implies that PsP,P; P3P, ¢ K and it is not
even SIA anymore. So in this example, if all the agents update periodically, even
given P € K, the system (3.2) after asynchronous implementation does not converge
any more. O

The above example highlights the difference between synchronous and asyn-
chronous systems. Thus it will be of great interest if one can identify those classes of
synchronous algorithms that can still converge and achieve the algorithms’ design ob-
jectives even after they are implemented asynchronously. Towards this end, we now
turn our attention to a subclass of the Sarymsakov class K, the set of scrambling
matrices, and show that if the stochastic matrix P is scrambling, then the states
of all the agents still become the same asymptotically if the algorithm described by
(3.2) is implemented asynchronously. The following theorem summarizes our main
result in this section.

3.3.1. THEOREM. If the stochastic matriz P in (3.2) is scrambling and there ex-
ists an infinite sequence of contiguous, nonempty, uniformly bounded time-intervals
[ti,tiv1), starting at to = 0 with t; € T, i > 0 and the property that across each such
interval every agent updates at least once, then with asynchronous implementation
the states of all the agents in system (3.5) become the same asymptotically.

The proof of the theorem makes use of the following lemmas. For an arbitrary
vector x = [z1, X9, ...,on]T, define Z = max;<;<y 2; and 2 = min;<;<y ;.

3.3.1. LEMMA. Let P = {pij}NxN be an arbitrary stochastic matrix.
(a) [90] Let x = [x1,%a,...,2Nx]T be an arbitrary vector. If z = Px, then

F-z<r(P)E—2), (3.9)

where 7(P) = 3 max Zivzl |pis — prs| s the coefficient of ergodicity of P defined in
Definition 2.3.6.
(b) There exists a vector x* satisfying T* > x* such that if z* = Px*, then

z* —2* = 7(P)(z* — z*). (3.10)
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Proof: (a) is Theorem 3.1 in [90].
(b) Without loss of generality, assume 7(P) = %Zivzl |pis — pjs|- Let wi = pi — pji,
1 <1< N, let L' denote the set of indices for which w; > 0if [ € L', and let L”
denote the set of indices for which u; < 0if [ € L”. Note that Zf\il u; =0and 7(P) =

L e W — Yepr w) = e w- Since L' is empty only if u = [uy,...,u,]" =0,
one has 7(P) = 0 in this case. (3.10) holds for any vector z* satisfying z* > z*.
Assume L’ is not empty. Pick =* such that
1, lel
zf =< -1, lel”
0, otherwise.
One has
N
zf =2 = Zule = Z u — Z u =2 Z uy = 27(P) = 7(P)(z* — z™).
=1 leL! leL” leLl’
Combining with (3.9), (3.10) holds. O

3.3.2. LEMMA. Let P = {p;;j}nxn be an arbitrary stochastic matriz. If for any
vector x € RN satisfying Z > x and z = Px, Z— 2 < T — x, then P is scrambling.

Proof: From Lemma 3.3.1(b), there exists a vector a* satisfying Z* > z* such that
z¥ = Px* and z* — z* = 7(P)(Z* — z*). Thus one has 7(P)(z* — z*) < z* — z¥,
which implies 7(P) < 1. One can conclude that P is scrambling from Lemma 2.3.1.

O

3.3.3. LEMMA. Let P = {p;;}nxn be a stochastic scrambling matriz and let c1, ca, . . .,
cs be a finite sequence of indices from {1,2,...,N} satisfying that for any j €
{1,2,..., N}, there exists an index ], 1 <1 < s such that ¢; = j.

(a) Let x € RN be an arbitrary vector satisfying > x and z = P,_- -+ P., P, x with
P., defined in (3.6) for 1 <1<s. Z—2<T—zx.

(b) P, -+ P, P., is scrambling.

Proof: (a) For an arbitrary vector = [xz1,...,2x5]7, assume that z,, = --- =
Xa, =T, Ty, = -+ = Xp, = T, Where a1,...,ap,b1,...,b;n € {1,..., N} and defin
A= {al,ag...,ar}, B = {bl,bg,...,bm}. Define

z(1) =z,
z(t+1) = P.,x(t) = P.,[x1(t),...,an()]", 1 <t <s.
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Thus z = 2(s+ 1) = P._--- P, P, x. Since the set {1,2,..., N} has N elements, we
associate x1(t), x2(t),...,zy(t) with N agents and accordingly call them the states
of agents 1,2,..., N at step t. In view of the fact that z(t + 1) = P.,x(t) and the
structure of the stochastic matrix P,, defined in (3.6), we know that only one element
of z(t + 1) could be possibly different from that of z(t) and

Tt+1)<zlt) <z, zlt+1)=z(t) >z (3.11)

Assume that there exists an index w, 1 < w < s+ 1 such that ¢, = i, z;(w + 1)
isequal toZ or z, and forall 1 <t <wand ¢; =k, z < zi(t + 1) < Z.

Without loss of generality, assume ¢,, = i ¢ Au B and z;(w + 1) = x. Since
z<uz;(t)<zforj¢ A 1<t<w,onehasp;, =0, u¢ A, and there exist indices

u1,...,u; € A such that p;,, > 0 for 1 <k < ![. From Definition 2.3.5 of scrambling
matrices, we know that for any j # ¢, there exists an index v; € {uy, ..., u;} such that
Pjv; > 0. Thus for any j € {1,..., N}, there always exists an index v; € {u1,...,u} €

A such that pj,, > 0.
We now prove z;(t) < Z for j ¢ Band 1 <t < s+ 1. Since this is true for
1 <t < w, one has

zi(w+1) = pize,(w) + Z PikTr(W) < Pin, T + Z PikT = T,
k#v; k#v;
zj(w+1) = z;(w)<Z, j#i, j¢B.

By induction, z;(t) < Z holds for j ¢ Band 1 <t <s+ 1.
From the assumption of the lemma, one knows that for any j € B, there always
exists an index [, 1 <! < ¢ such that ¢;, = 5. In addition

a:j(tl + 1) = Pjv; Tu, (tl) + Z pjkxk(tl) < .
k#v;

Thus z;(t) < Z for t > ¢; + 1, implying z;(s + 1) < Z, je B. SoZ(s+1) < Z.

Similarly, we can also arrive at the conclusion that Z(s + 1) < Z when i € A U B,
which implies Z—z < Z—z. If z;(w+1) = Z, similar arguments show that z(s+1) < z,
which also implies Z — 2z < T — .

If such an index w does not exist, then we have that for all 1 <t < s and ¢; = 7,
z <z;(t+1) <Z. Since for any j € {1,2,..., N}, there exists an index {, 1 < <g¢
satisfying ¢;, = j, one knows that z < z;(s +1) < z for all 1 < j < N. Thus
Z — z < T — x, which completes the proof.

(b) Tt is a direct consequence of (a) and Lemma 3.3.2. O

Proof of Theorem 3.3.1: We denote the agent which updates at time ¢; by ¢;,. The
sequence Ct,, Ce,+1,---,Ct,,,—1 is a finite sequence of indices satisfying the condition
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- P,

in Lemma 3.3.3. One has P, | et 11 e, 18 scrambling for all ¢ > 0. In view

of the uniformly boundedness of the intervals [t;, ;1) and the fact that if one or

PR

more matrices in a product of matrices is scrambling, so is the product [40], we know
that the product of the system’s matrices with asynchronous implementation can
be written as products of scrambling matrices from a finite set. Thus by applying
Theorem 3.2.2, we arrive at the conclusion. |

The preceding discussions assume that no two or more agents update at the same
time. In fact if there are two or more agents updating exactly at the same time, the
conclusion in Theorem 3.3.1 still holds. To see this, we consider at time ¢, agents
c1,¢2, ..., ¢, update, where 1 < ¢; < N. Similar to Egs. (3.3) and (3.4), the states
of these agents satisfy

2

Ze (t+1) chuxj =1,...,k, (3.12)

and correspondingly for all the other agents, we have
zj(t+1)=x;(t), je{l,....N\{e1,... ek} (3.13)
Rewrite (3.12) and (3.13) in a compact form

z(t+1) = Pox(t),

where B -
1 0 0 0
0 ... 1 0o ... 0
Pc = Pci1 ° Peiyer—1 Peier 00 PerN |- (314)
pckl e pck,clfl pckcl e kaN
0 - 0 0 0 1

For aset C = {c1,...,cx} € {1,2,..., N}, we define the matrix Po as in (3.14). We
have a similar result to Lemma 3.3.3, based on which the correctness of Theorem
3.3.1 can be shown when two or more agents could possibly update at the same time.

3.3.4. LEMMA. IfP = {p;;} nxn is a stochastic scrambling matriz and Cy = {c11,. ..,
Cik, 1, C2 = {ca1, ..., Cakyty ooy Cs = {Cs1,. .., Csk.} 1S a finite sequence of subsets of
{1,2,..., N} satisfying that for any j € {1,2,..., N}, there exists an indexl, 1 <1 <
s such that j € Cy, then Pg, - -+ Po, Pe, is scrambling with P, defined in (3.14).
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The idea of the proof of this lemma is exactly the same as that of Lemma 3.3.3.
Hence we omit it here.

Although the synchronous coordination algorithm specified in Theorem 3.3.1 still
converges after asynchronous implementation, the convergence rate changes. In the
next section, we look into the performances of asynchronous coordination algorithms
through simulations.

3.4 Illustrative example

In this section, we perform simulation studies. We consider the case when the matrix
P is a scrambling stochastic matrix. Let

13041 012 0000
01 000 o001
0 0 5 0 % 2 00 0
0+ 4+ 12 1 0000 0
p_|0 3000 3 3000
- 1 1 1
i 20200001310
00 5 0 % % 00 % 0
0000431 ool
(0 00 £ 00 5 0 5 0

According to Theorem 3.3.1, the algorithm after asynchronous implementation
still converges since P is scrambling. We then carry out simulations to compare the
performances of the algorithm that runs synchronously and asynchronously. Take the
initial values of the ten agents to be x;(0) =4, ¢ = 1,...,10. When we implement
the algorithm synchronously, the converging process is shown in Fig. 3.1. Now
consider the case when the algorithm runs asynchronously. Assume at every time
instant a node ¢ is chosen randomly among the ten agents with probability 1—10. Then
agent ¢ updates its state according to Eq. (3.3) and the rest agents keep the states
unchanged. The evolution of the states of all the agents is illustrated in Fig. 3.2,
from which it is easy to see that the convergence process slows down compared to
that in Fig. 3.1.

3.5 Conclusion

In this chapter, we have reviewed some classic and recent results on backward pro-
ducts of stochastic matrices and developed some new necessary and sufficient con-
ditions for convergence using the Sarymsakov class. A sufficient condition has been
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Figure 3.1: The evolution of the agents’ states when the agents update synchronously.
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Figure 3.2: The evolution of the agents’ states when the agents update asynchronously.

constructed to guarantee that a coordination algorithm, which converges when imple-
mented synchronously, still converges when it is implemented asynchronously. The
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condition is stipulated using the notion of scrambling stochastic matrices, which all
belong to the Sarymsakov class.

There are still open questions in order to understand better the asynchronous
implementation of distributed coordination algorithms. It is even more challenging
to study the case when each agent cannot update their states instantaneously, in
which case the process of analytic synchronization [54, 15] is extremely difficult to
carry out. Tools from the analysis of hybrid systems may turn out to be helpful.



Chapter 4

Distributed algorithms with positive and
negative couplings

Much of the work on distributed algorithms has assumed that all the agents in a
network are working cooperatively to reach an agreement. However, as pointed out
in Chapter 1, several typical networks suggest that it is more reasonable to assume
that the interaction between a pair of agents in a network can be either cooperative
or competitive. Very recent results [2, 3] have shown that polarization of the states of
the agents may arise in this case by employing the notion of structural balance from
social network theory. In this chapter, we study distributed algorithms in the presence
of positive and negative couplings with an emphasis on the case when the network
topologies are time-varying. It is shown that the states of the agents polarize under
some connectivity conditions if all the networks involved are structurally balanced
and they maintain a common bipartition of two opposing factions. If structurally
unbalanced networks arise often enough as time evolves, then the states of all the
agents asymptotically agree and converge to zero.

4.1 Problem formulation

In Section 2.4, we have reviewed several well-studied distributed algorithms, in which
the weights p;;(t) in system (2.8) or a;;(t) in system (2.11) are assumed to be nonneg-
ative. In this chapter, we generalize the models (2.8) and (2.11) by taking negative
couplings between the agents into account. Consider a multi-agent system consisting
of N agents and each agent i, ¢ = 1,..., N, has a real value z;. In the discrete-time
setting, the values of the agents are updated according to

N
zi(t+1) = Zpij(t)xj(t), t=0,1,.... (4.1)

or in a compact form
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where z;(t) € R, z(t) = [z1(t),...,2n(t)]T, P(t) = (i) nxn € RY*N and p;; (1)
is the weight agent ¢ assigned to agent j when agent ¢ updates its state at time t.
In contrast to system (2.8), in which p;;(t) are assumed to be nonnegative, here the
weights p;;(t) can also be negative, which characterize the antagonistic relationship
between individuals in a social network. Signed graphs are used to model networks
with positive and negative couplings among the agents. The weights p;;(t) in system
(4.1) satisfy the following condition

N
DllpiiMl =1, pi(t)>0,i=1,...,N. (4.3)
j=1

This is an extension of the assumption (2.10) in Chapter 2 on the weights in dis-
tributed averaging algorithm (2.8), where p;;(t) are assumed to be nonnegative and
N .
Zj:lpij(t> = 1, 1= 1,...,N.
The continuous-time counterpart of the distributed algorithm (4.1) is given by

N
b= = 3 g (O] (i — sgnag(D)a;). =1, (4.4)
j=1

where a;;(t) € R is the ijth entry of A(t), A(t) is the signed adjacency matrix of the
signed graph G(t) representing the interaction topology at time ¢, and sgn(-) is the
sign function. Let the signed Laplacian matrix L(t) = ({;;(t)) nxn be given by (2.3).
System (4.4) can be written in a compact form

&= —L(t). (4.5)

In contrast to system (2.11), where a;;(t) are assumed to be nonnegative, here the
weights a,;(t) can also be negative.

4.1.1. DEFINITION. System (4.2) or system (4.5) admits a polarization if for all
initial value, imy_, o0 |2;(t)| = a, i =1,..., N, and there exists an initial value x(0)
such that lim; o |2;(t)] =a >0, i=1,...,N.

When system (4.2) or system (4.5) admits a polarization, it often happens that the
agents in the network split into two clusters and the agents in the same cluster hold
the same asymptotic value while the agents in different clusters hold opposite values.
We have seen that for distributed averaging algorithms in [47, 81, 16], the states
of the agents asymptotically converge to a common value under some connectivity
conditions. Definition 4.1.1 includes this phenomenon as a special case.

To study the dynamical behavior of system (4.5) under fixed interaction topology,
the notion of structural balance in social network theory has been employed in [3],
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which will be introduced in the next section. It is shown that in a structurally
balanced network that can be partitioned into two opposing factions, the states of the
agents in the same faction converge to the same value, while the states of the agents
in different factions converge to two opposite values asymptotically; in a structurally
unbalanced network, the states of all the agents asymptotically agree and converge
to zero. What is more intriguing is to investigate the dynamical behaviors of system
(4.2) and system (4.5) under time-varying interaction topologies, since in practical
situations the relationship between agents may change with time. This also brings
great challenge to the theoretical analysis. We are interested in finding out whether
polarization will arise or agreement can be reached in system (4.2) and system (4.5)
under dynamically changing interaction topologies.

4.2 Distributed discrete-time algorithms

4.2.1 Discrete-time updates under fixed topologies

In this section, we consider the case when the interaction topology is time-invariant,
that is p;;(t) is time-invariant and simply denoted by p;;. Systems (4.1) and (4.2)
become

N
zi(t+1) = Y pia;(t),  t=0,1,..., (4.6)
j=1
and
z(t+1)=Pz(t), t=0,1,.... (4.7)

Assumption (4.3) becomes
N
dilpijl =1, pi>0i=1,...,N. (4.8)
j=1

Let G(P) be the signed graph associated with P representing the interaction
topology. A cycle in G is said to be positive if it contains an even number of negative
weights; a negative cycle is not positive. We first introduce the notion of structural
balance [41, 22] in signed graphs.

4.2.1. DEFINITION. A signed graph G(P) = (V, &) is structurally balanced if there is
a bipartition {V1,Va} of V, Vi u Vo =V, Vi nVy = J such that p;; = 0, Yv;,v;5 €
Vi, ke {1,2} and p;; <0, Yv; € Vi,v; € V;, k # 1, k,l e {1,2}; it is structurally
unbalanced otherwise.
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G(P)

-1/2 1/2

>(3
@ 1/2

Figure 4.1: Signed graphs G(P1) and G(P2) associated with P, and P>. G(P) is struc-
turally balanced and G(P2) is structurally unbalanced.

4.2.1. EXAMPLE. Let

12 0 -1/2 12 0 —1/2
P =|-1/2 12 0 |,P={1/2 1/2 0
0 1/2 1/2 0 1/2 1/2

Signed graphs G(P;) and G(FPz) associated with P; and P, are illustrated in Fig.
4.1. It is obvious from Definition 4.2.1 that G(P) is structurally balanced, while
G(Pz) is structurally unbalanced. The only cycle in G(P;) is positive and the one in
G(Pz) is negative. The eigenvalues of Py are 1, 0.25 + 0.4330z, and those of P, are
0, 0.75 + 0.4330:z, where ¢ is the imaginary unit. Note that 1 is an eigenvalue of P,
while all the eigenvalues of P, are located inside the unit disc. |

We also say that the matrix P is structurally balanced if its associated graph G(P)
is structurally balanced. For convenience, in this chapter, we use ||z|| to denote the
max norm ||z|| of a vector z € RY. For an arbitrary matrix A = (a;;)nxn, let
|A| = (la;j|) nx v For a matrix P satisfying (4.8), |P| is a stochastic matrix and 1 is
always an eigenvalue of |P|. The Gersgorin discs G(P) are all contained in the unit
disc, 1 is on the boundary of G(P) and —1 is not inside the Gersgorin region. Thus
in view of Lemma 2.2.1, —1 is not an eigenvalue of P. The following result can be
further used to determine whether a boundary point is an eigenvalue.

4.2.1. LEMMA. [{4] Let A = (a;;)Nxn and suppose that A is an eigenvalue of A that
is a boundary point of G(A), or, more generally, satisfies the inequalities

N
N—aul> > layl, i=1,...,N, (4.9)

j=1.j#i
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If A is irreducible, then
(a) every Gersgorin circle passes through A; and
(b) if Ax = Az and x = [x1,...,2n]T #0, then |x;| = |z;| for alli,j=1,...,N.

For two arbitrary matrices A, B € RV*N  the following holds

N N
| Y5 aibisl < Y lail[bry]. (4.10)
k=1 k=1

This implies that |[AB| < |A||B|. This result naturally extends to the case when
more than two matrices are involved.

4.2.2. LEMMA. Let Az GRNXN, 1= 17...,TL. Then |AnA1‘ < |An| ‘AQ”Al‘

The following two lemmas establish the relationship between the spectral radii of
two matrices.

4.2.3. LEMMA. [44] Let A, Be RN*N_ [f|A| < B, then p(A) < p(|A]) < p(B).

4.2.4. LEMMA. [44] Let A be an irreducible nonnegative matriz. If B > 0 and B # 0
then p(A + B) > p(A).

Now we are ready to study the asymptotic behavior of system (4.7).

4.2.5. LEMMA. Let P be an irreducible matriz satisfying the condition (4.8). Its
associated graph G(P) is structurally balanced if and only if one of the following
equivalent conditions holds:

(a) All cycles of G(P) are positive;

(b) There exists a diagonal matriz U satisfying U% = I such that U PU is nonnegative;
U is unique in the sense that if there exist two diagonal matrices Uy, Ua, satisfying
U12 =1, U22 = I such that Uy PU1,U3PUy = 0, then Uy = Uy or Up = —Us;

(c) 1 is an eigenvalue of P.

Proof. (i-ii). Note that if G(P) is structurally balanced, then p;;p;; >0, i # j, ¢,j =
1,..., N. Mimicking the proof of Lemma 2 in [3], we can show that (a) and (b) are
equivalent conditions to structural balance.

(iii). (b)==(c): Since UPU and P have the same eigenvalues and U PU is a stochastic
matrix, 1 is an eigenvalue of P.

(¢)= G(P) is structurally balanced: Since P is irreducible, it follows from Lemma
4.2.1 that there exists an eigenvector x of 1 satisfying |z;| = |z;| >0, 4,5 = 1,..., N.
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Let Vi = {v;] #; >0, i =1,...,N} and Vo = {v;| @; <0, i = 1,...,N}. Then
ViuVa=V, VinVy = since |z;| >0i=1,...,N. From = Px, one has

N N

N
< sl = > Ipijllas] = Jal. (4.11)
j=1

=1

|zi| =

PijTj
j=1
This implies that z;p;;z; = 0 for all j = 1,...,N. Assume that (vy,v;) € £ and
vg € Vi, vy € Vo. Taking i = kin (4.11), we have that xypy;x; = Oforallj =1,..., N.
Since z > 0 and z; < 0, hence pg; < 0. Similarly, one can show that if (vg,v;) € €
and vg,v; € Vs, s = 1,2, then p;; > 0. We conclude that G(P) is structurally
balanced. |

From Lemma 4.2.5, we immediately have the following corollary.

4.2.1. COROLLARY. Let P be an irreducible matriz satisfying the condition (4.8). Its
associated graph G(P) is structurally unbalanced if and only if one of the following
equivalent conditions holds:

(a) G(P) has at least one negative cycle;

(b) There does not exist a diagonal matriz U satisfying U> = I such that UPU is
nonnegative;

(¢) AP < 1.

The following theorem is a consequence of Lemma 4.2.5, Corollary 4.2.1 and
Theorem 2.4.1.

4.2.1. THEOREM. Let P be an irreducible matriz satisfying the condition (4.8). Sys-
tem (4.7) admits a polarization if and only if the graph G(P) is structurally balanced.
Furthermore, if U is a diagonal matriz satisfying U?> = I such that UPU is non-
negative, then the state of system (4.7) asymptotically converges to lim;_,o x(t) =
vIUx(0)U 1, where v is a left normalized eigenvector of UPU corresponding to 1
such that vI'1 = 1. If G(P) is structurally unbalanced, then lim; . z(t) = 0 for
every initial value.

Proof. Define y = Uzx. In view of Lemma 4.2.5, the transformation induces a system
y(t + 1) = UPUy(t) with nonnegative UPU, when P is structurally balanced. The
asymptotic state of the system can be obtained from Theorem 2.4.1. O

4.2.2 Discrete-time updates under time-varying topologies

In this section, we consider the case when the interaction graph topologies are dy-
namically changing. Let P = {P, Pa,...,P,} be a finite set of matrices, where
P;, i =1,...,n, satisfy the condition (4.8).
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4.2.2. THEOREM. Assume that P(t) € P and there is a diagonal matriz U satisfying
U? = I such that UP(t)U > 0 for all t = 0,1,2,.... Assume that there exists an
infinite sequence of contiguous, nonempty, uniformly bounded time intervals [t;, tiv1),
i = 0, starting at to = 0 with the property that across each time interval [t;,t;11),
the union of the graphs G(P(t)) are strongly connected. Then system (4.2) admits a
polarization and lim_,o x(t) = aU 1, where o is some constant.

Proof. A transformation y = Uz transforms system (4.2) to y(t + 1) = UP(¢t)Uy(t)
with nonnegative matrices UP(¢)U. Theorem 2.4.2 verifies the correctness of the
theorem. |

If P, i« =1,...,n, in P are all strongly connected and structurally balanced
and further the unique bipartitions of V satisfying Lemma 4.2.5 are identical for
G(P;), i = 1,...,n, then the assumptions in Theorem 4.2.2 are satisfied and the
states of the agents will converge to two opposite values. In system (2.8), the weight-
s are nonnegative and trivially P(t) is structurally balanced. Theorem 4.2.2 is a
generalization of previous results in [47, 81, 69].

4.2.3. THEOREM. Let P(t) € P, t = 0,1,2,.... There exists an infinite sequence
of contiguous, nonempty, uniformly bounded time intervals [t;,t;+1), i = 0, starting
at tg = 0 with the property that across each time interval [t;,t;+1), the union of the
graphs are strongly connected and there does not exist a diagonal matriz U satisfying
U? = I such that UP(t)U > 0, t; <t < t;11. Then system (4.2) converges to zero
asymptotically.

If for each time interval [t;,t;41), there always exists some t € [t;,;4+1), such
that P(t) is strongly connected and structurally unbalanced, then the conditions
in Theorem 4.2.3 are satisfied and thus the state of the system converges to zero.
Said differently, if structural unbalance arises in the network often enough, then
polarization of the states of the agents will not happen and instead the agents in the
network reach an agreement finally.

Before proving Theorem 4.2.3, we first prove several lemmas that will be useful
in the proof for Theorem 4.2.3.

4.2.6. LEMMA. Assume that P,Q satisfy the condition (4.8) and G(P) v G(Q) is
strongly connected. If there does not exist a diagonal matriz U satisfying U? = I
such that UPU,UQU = 0, then p(PQ) < 1.

Proof. Let R = PQ and W = |P||Q|. Then W is stochastic and irreducible, since
G(P) u G(Q) is strongly connected. Thus 1 is a simple eigenvalue of W and all the
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other eigenvalues lie inside the unit disc [81]. Since

N N N
rig = Y Pty < | D pikrg| = [rig| < D pikllans| = wig, (4.12)
k=1 k=1 k=1
it follows that R < |R| < W. In view of Lemma 4.2.3, p(R) < p(|R]) < p(W) = 1.
If W — |R| # 0, the matrix |R| + ¢(W — |R|) is nonnegative and irreducible for
some positive scalar 0 < e < 1, since W —|R| is nonnegative and W = W + (W — | R))
is irreducible. It follows from Lemma 4.2.4 that

p(R) < p(|R]) < p(|R] + (W —[R])) < p(W) = L.

If W — |R| = 0, then it is easy to see from the inequality (4.12) that p;rqx; = 0
for all kK = 1,...,N, or pirqr; < 0 for all & = 1,...,N. Since p;;, ¢ > 0 and
Tii = Zi\;lpiqui, one has r;; >0 for all i = 1,..., N. From (4.12),

N
D Irijl <
Jj=1 J

The Gersgorin region G(R) of R is contained in the unit disc and the boundary
points of G(R) are all inside the unit disc except 1. We have to show that 1 is not
an eigenvalue of R. Observing that for any p;; < 0, one has that r;; < 0 since
pijq;; < 0. Similarly, for any p;; > 0, r;; > 0. For any ¢;; < 0, one has that
rij < 0, and for any ¢;; > 0, r;; > 0. Suppose on the contrary 1 is an eigenvalue
of R. R is thus structurally balanced from Lemma 4.2.5 and there exists a diagonal
matrix U satisfying U? = I such that URU > 0. Furthermore, since a subgraph
of a structurally balanced graph is also balanced, it follows that P and @) are both
structurally balanced and UPU,UQU = 0. This contradicts the assumption of this
lemma, completing the proof. O

N
Wij = 1.
1

4.2.7. LEMMA. Assume that P, ..., P, satisfy (4.8) and UI_G(F;) is strongly con-
nected. If there does not exist a diagonal matriz U satisfying U?> = I such that
UPU =20, i=1,...,n, then p(P,--- P,Py) < 1.

Proof. Denote the ijth element of Py by (Pg)i;, let R = P,--- P,P; and let W =
|P,| -« | P2||P1]- In view of the fact that

rij| = > (P)ikn_y = (P2) kot (P1)kyj
Fvvookim1=1,...N
< > [P )it (P2 )koter [[(P1) | = wiz,  (4.13)
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and mimicking the proof of Lemma 4.2.6, one can prove the lemma. O

The following result is an immediate consequence of Lemma 4.2.7.

4.2.2. COROLLARY. Assume that Pi,..., P, satisfy (4.8) and O G(P;) is strongly
connected. 1 is an eigenvalue of P, --- P, Py if and only if there exists a diagonal
matriz U satisfying U? = I such that UB,U >0, i =1,...,n.

4.2.8. LEMMA. Let P, Q € RN*N and let W, S € RV*N be two positive stochastic
matrices. Assume that p(P) < 1, p(Q) < 1, |P| < W, and |Q| < S. Assume that
if |P| = W, then p;; > 0 for alli = 1,...,N and if |Q| = S, then q;; > 0 for
alli = 1,...,N. There erists a constant 0 < 7 < 1 such that for any x € RY, if
z = QPx, then ||z|| < 7]|z]].

Proof. Let x be a nonzero vector and y = Px. One has that z = Qy and

N N N
vi= )Pt < pijes| < ) pij;] (4.14)
Jj=1 j=1 j=1
N N
< D wiglagl < ) wigllel] = [l (4.15)
j=1 j=1

Thus ||y|] < ||z|| and it follows that ||z|| < ||y]| < ||=]]-

It follows from (4.14) and (4.15) that |y;| = ||y|| = ||=|| for some ¢ = 1,..., N if
and only if |z;| = ||z||, |pij| = wi;, j=1,...,N, and pjja; =0forall j=1,...,N
or pjjz; <0 forall j =1,...,N. Thus if for some k, |z| # ||z||, then ||y|| < ||z||
and ||2I] < [lyl] < llal.

Next we consider the vector z with |z;| = ||z|| for all ¢ = 1,..., N. If |P| # W,
then there exists some py; such that |pg;| < wg;. The first inequality in (4.15) is
strict for i = k, and thus |yx| < ||z||. If |yx] = ||yl|, then ||z]| < ||y|| < ||=||; if
lye] < ||y]], then in view of the fact that z = Qy and @ is in the same position as P
in y = Pz, one has that ||z|| < ||y|| < ||z]].

If |P| = W, we prove that there exists some k such that |yx| < ||z||, from which
we can arrive at the conclusion that ||z|| < ||z||. Suppose on the contrary that
lysl = |ly|]| = ||z|| for all ¢ = 1,..., N. It follows that for a given ¢, ¢ = 1,..., N,
pijr; =0forall j=1,...,N or p;jz; <0forall j=1,...,N. Define two sets N} =
{Z| x; >0, 1= 1,...,N} and/\/'g = {Z| r;, <0, 1= 1,...,N}. Then {Nl, NQ} is a
bipartition of {1,..., N}. For any i € N1, if j € Ny, then p;; > 0, since p;; > 0, x; > 0;
if j € N, then p;; < 0. Similarly, if 4, € Na, then p;; > 0; if i € Ny, j € N, then
pij < 0. P is thus structurally balanced. Since |P| = W and p; >0, i =1,..., N,
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P satisfies the condition (4.8). From Lemma 4.2.5, 1 is an eigenvalue of P, which
contradicts the fact that p(P) < 1.

We have proved that for any nonzero z, ||QPz|| < ||x||, that is Hﬁfﬁ”” <1. In
addition, one has that
QP lQPel| _ ([P
p = sup = max .
wr0 |2l aremr l2ll eTe=1 2]
[|QP=||

The last equality holds since the set {z|xTx = 1} is compact. Letting 7 = max S
zlx=1

it is true that 7 < 1. We complete the proof. O

)

It is known that if A € RV*¥ is nonnegative and irreducible and all the diagonal
entries of A are positive, then AN~! > 0 [44]. The following lemma from [16] is a
generalization of this fact.

4.2.9. LEMMA. [16] Let A; e RN*N i =1,... n, be n nonnegative irreducible ma-
trices with positive diagonal entries. If k = N —1 and 1 < i1,...,i < n, then
Aik s AiQAil > 0.

4.2.10. LEMMA. Let P = {Py,..., Py} be a finite set of matrices and let W =
{Wh,..., Wy} be a set of stochastic irreducible matrices with positive diagonal entries.
Assume that p(P;) < 1, |P;| < W;, i =1,...,n, and if |P;| = W;, then the diagonal
entries of P; are all positive. Then for each sequence of matrices P(1), P(2), P(3),...
from P, the product P(k)--- P(2)P(1) converges to zero as k goes to infinity.

Proof. Consider a sequence of matrices P(1), P(2), P(3),... from P. Let Q = P(N —
1)--- P(2)P(1). Lemma 4.2.2 implies that

Q= [P(N=1)- - P@)P(1)] < [P(N=1)| -+ [P@)|[P(1)] < W(N-1) .- W(2)W (1),

(4.16)
where |P(i)] < W(i) and W(i) € W. Let S = W(N —1)---W(2)W(1). Since
W(i), ¢ = 1,...,N — 1, are irreducible and they have positive diagonal entries, it
follows from Lemma 4.2.9 that S > 0. If |Q| # S, then mimicking the proof in
Lemma 4.2.6, one can show that p(Q) < p(S) = 1.

If |Q] = S, then it should hold that W(N — 1)---W(i)---W (1) = W(N —
1) |P@)|---W(@A)=|P(N=1)|---|P2)||P(1)| forall i = 1,..., N —1 from (4.16).
If for some i, |P(7)| # W (i), then there exists some element, say the kjth element, of
W (i) — | P(¢)] is nonzero. Since the diagonal elements of W (l), I =1,...,N — 1, are
all positive, the ijth element of W(N —1)--- (W (i) —|P(2)]) - - - W(1) is also nonzero,
which cannot happen. Thus one has that |P(#)| = W (i), forall i = 1,...,N — 1.
From the assumption of the lemma, the diagonal elements of P(i) are all positive.
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P(i) satisfy the condition (4.8). Combining with the fact that p(P (7)) < 1 and P(%)
are irreducible, one has that P(¢) is structurally unbalanced. Thus there does not
exist a diagonal matrix U satisfying U2 = I such that UP(i)U > 0. The conditions
in Lemma 4.2.7 are satisfied and thus p(Q) < 1.

Since

|qii| = Z (P(N - 1>)ik1v72 e (P(Q))kal (P(l))kll
= Z |(P(N - 1))2'ka2 T (P(2))k2k1 (P(l))k'IZ’ )

it is true that (P(N — 1))ikn_o - (P(2))koky (P(1))kys = 0 for all ky,... . ky_o =

SHNor (P(N=1))ikn_s - (P(2)koky (P(1))ys < Oforallky,...,ky—o=1,...,N.
Since (P(N —1))i; -+ (P(2)):i(P(1))s > 0, we have that ¢;; >0, i =1,...,N.

Similarly, p(P(2N — 2)---P(N + 1)P(N)) < 1 and if |[P(2N — 2)--- P(N +
1)P(N)| = W(2N —2)---W(N + 1)W(N), then the diagonal elements of P(2N —
2)---P(N + 1)P(N) are all positive. Let x(1) € RY be an arbitrary vector and
x(i+1) = P(i)x(i), i = 1,2,.... From Lemma 4.2.8, there exists a constant 0 < 7 < 1
such that

lz2N = D[ = [[P2N = 2)--- P(N)P(N = 1) --- P(1)z(1)[| < 7[z(1)]].

Note that the above arguments are valid for any matrix product P(2N—2) - -- P(2)
P(1) with P(i) e P, i = , N — 2. Since the number of the matrices obtained by
multiplying 2N —2 matrlces from ‘P together is finite, there exists a uniform constant,
still denoted by 7, 0 < 7 < 1, such that for any vector x(1), ||z(2N — 1)|| < 7]|z(1)]],
where 2(2N — 1) = P(2N — 2)--- P(2)P(1)z(1) and P(i)e P, i = 1,...,N — 2.

Consider again a specific sequence of matrices P(1), P(2), P(3),... from P. For
k>1,let k=a(N —1)+b, where a, b are integers satisfying a >0, 0 <b< N — 1.
We have that

o)l < lla(a(N — 1) + V]| < 7*[=()]] (4.17)

Thus limy o ||z(k)|| = 0 for any vector x(1). This is equivalent to the conclusion
that
lim P(k)---P(2)P(1) =0.

k—o0

O

It is known that for a general time-varying system (4.2), the condition p(P(t)) <
1 cannot guarantee the asymptotic stability of system (4.2). Lemma 4.2.10 has
constructed a sufficient condition to guarantee the asymptotic stability of system
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(4.2), when P(t) are picked from a finite set. The condition that if |P;| = W;, then
the diagonal elements of P; are positive is critical, and it cannot be removed. We
provide an example to show that if it is not satisfied, the system can be unstable.

4.2.2. EXAMPLE. Let

1 1 -1 -1 1 1 -1 1
P(t) = 3 -1 1 1|, iftisodd; P(t) = 3 -1 1 -1, iftis even.

1 -1 -1 -1 1 -1

|P(t)| are stochastic irreducible matrices and p(P(t)) = 5. The conditions in Lemma
4.2.10 are satisfied except that some diagonal elements of P(t) are negative. It is
easy to check that

1 -1 -1
-1 1 1 |, kiseven,
P(k)---P(2)P(1) = L ) (4.18)

P(1), k is odd.

W=

The matrix product P(k)--- P(2)P(1) does not converge as k goes to infinity and
thus the system is unstable. O]

Proof of Theorem 4.2.3. Pick an integer T such that T is a uniform bound for
the length of time intervals [t;,t;+1), ¢ = 0,1,2,.... Since P(t) € P, |P(ti+1 —
1)] -+ |P(t; +1)||P(t;)| are stochastic matrices with positive diagonal elements. Since
Utelt, ti01) G(P()) are strongly connected, the stochastic matrices [P(t;11 — 1)~

|P(t; + 1)||P(t;)| are all irreducible [47]. Combining with the condition that there
does not exist a diagonal matrix U such that UP(¢)U = 0, t; < t < t;41, it follows
from Lemma 4.2.7 that p(P(t;x1—1)--- P(t; +1)P(t;)) < 1. If |P(tj01—1)--- P(t; +
1)P(t;)] = |P(tix1 — 1)| -+ |P(t; + 1)||P(t;)|, then the diagonal elements of P(t;41 —
1)--- P(t;+1)P(t;) are all positive, since the diagonal elements of P(t) are all positive.
The number of the matrices obtained by multiplying no more than 7" matrices from
a finite set is also finite. Thus P(¢t;11—1)-- P(t;+1)P(¢;), ¢ = 0,1,... is a sequence
of matrices from a finite set. The conditions in Lemma 4.2.10 are satisfied and we
conclude that lim; o, P(t)--- P(2)P(1) = 0, which completes the proof. O

A common Lyapunov function can be found for the time-varying system (4.2)
to show its asymptotic convergence in the spirit of Lemmas 4.2.8 and 4.2.10. Let
V(z(t)) = ||z(¢)|]. Then [|z(t+1)|| < ||z(t)|| and V(z(t)) is a non-increasing function
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along the solution of system (4.2). Further
la((k + 1)2N = 2))[| < 7" Hz(0)]], k=0,1,2,...,

for some constant 0 < 7 < 1, meaning that V(z(t)) will decrease strictly after
updating at most 2N — 2 steps. This establishes the strictly decreasing property of
V(x(t)), proving the asymptotic convergence of system (4.2). The convergence speed
can also be characterized.

4.3 Distributed continuous-time algorithms

4.3.1 Continuous-time updates under fixed topologies

We first consider the continuous-time algorithm (4.4) under fixed topologies. Let G
be a signed graph representing the interaction graph topology, let A € RV*N be the
signed adjacency matrix, and let L = (l;;) nxn be the signed Laplacian matrix given
by (2.3). System (4.4) and system (4.5) become

N
.’i?i = — Z |aij|(aci — sgn(aij)xj)7 1= 1, . ,N, (419)
j=1

and
T =—Luz. (4.20)

4.3.1. LEMMA. A strongly connected signed graph G with the signed adjacency matriz
A is structurally balanced if and only if one of the following equivalent conditions
holds:

(a) All cycles of G are positive;

(b) There exists a unique diagonal matriz U satisfying U? = I such that UAU is
nonnegative;

(c) 0 is an eigenvalue of the signed Laplacian matriz L.

Proof. Note that if G is structurally balanced, then a;;a;; =0, 4,5 =1,...,N. (a)
and (b) follow from Lemma 2 in [3] and (b)==(c) is clear. We only prove (¢)= G
is structurally balanced.

Assume that 0 is an eigenvalue of L. Since l; = Z;.V:L#i la;j|, from Lemma
2.2.1, it follows that 0 is a boundary point of the Gersgorin region G(L). Com-
bining with the fact that L is irreducible, from Lemma 4.2.1, there exists an eigen-

vector x of 0 satisfying |x;| = |z;| > 0, 4,7 = 1,...,N. From Lz = 0, one has
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N . oN N .
liTi + 2551 jpi lijry = 0, that is 3057, S lagvs = 255, 4, aijzj. In addition, the
following inequality holds

N N N N
D oagry<| Y agm| <Y agagl = Y agllwl. (4.21)
i=Tj#i i=Lj#i J=Tj#i i=Tj#i

This implies that z;a;;z; = 0 for all j # 4, 4,5 = 1,..., N. Mimicking the proof in
Lemma 4.2.5(c), one can prove that G is structurally balanced. O

Note that in [3], it is assumed that the weights in the graph satisfy the digon
sign-symmetric assumption, which requires that a;;a; = 0, 4,5 = 1,...,N. This
assumption obviously holds if G is structurally balanced. Under this assumption,
the equivalent conditions (a) (b) (¢) to structural balance have been established in
[3]. The condition (c) is derived by exploring the property of the graph G(Af).
Here without looking at the property of the graph G(A?®), we are enabled to remove
this assumption and directly show the equivalence between (c¢) and the structural
balance of G. Note that Lemma 2(1) in [3], which states that G(A®) is structurally
balanced, does not hold without the digon sign-symmetric assumption. Only one
part of the necessary and sufficient condition is valid. The correct part is that G(A®)
is structurally balanced if G(A) is structurally balanced. The converse is not valid,
which can be illustrated by a counterexample. Let

0 1 1 0 1 0

A=|1 o0 1|,4=[1 0 1

-1 1 0 1 0
G(A?) is structurally balanced, while G(A) is not.

4.3.1. COROLLARY. A strongly connected signed graph G with the signed adjacency
matriz A is structurally unbalanced if and only if one of the following equivalent
conditions holds:

(a) G has at least one negative cycle;

(b) There does not exist a diagonal matriz U satisfying U? = I such that UAU is
nonnegative;

(¢) Re(N\;(L)) <0, i=1,...,N.

The following result can be straightforwardly derived by making a transformation
to the system state of (4.20).

4.3.1. THEOREM. Let G be a strongly connected signed graph. System (4.20) admits
a polarization if and only if G is structurally balanced. Furthermore, if U is a di-
agonal matriz satisfying U2 = I such that UAU is nonnegative, then the state of
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system (4.20) asymptotically converges to limy o x(t) = vTUz(0)U1, where v is a
left normalized eigenvector of ULU corresponding to 0 such that vT1 = 1. If G s
structurally unbalanced, then lim;_,o x(t) = 0 for every initial value.

4.3.2 Continuous-time updates under time-varying topologies

In this section, we consider the case when the interaction graph topologies are dy-
namically changing. Assume that at time ¢ the signed adjacency matrix is A(t) and
the signed Laplacian matrix is L(t). Assume that A(t) and L(t) are piecewise con-
stant functions and the interaction graph topologies change at time instants t1, ts, . . ..
System (4.5) can be rewritten as

&(t) = —L(t;)x(t), te[titi+7), (4.22)

where ty = 0 is the initial time, and 7, = ¢;41 — ¢;, ¢ = 0,1,... are the dwell time.
Assume that 7, = 7 for all 1 =0,1,....

Given a signed adjacency matrix A, if there is a diagonal matrix U satisfying
U? = I such that UAU is nonnegative, then L = ULU is a Laplacian matrix that

has nonnegative off-diagonal elements. Let 7 be a positive number, let P = e L7
and let P = e L7, One has
P=eIm = ULUT _ e~ L7y = UPU. (4.23)

P = e~L7 is a stochastic matrix with positive diagonal entries [81]. We conclude that
pii > 0 and Z;‘V=1 lpij| =1, i=1,...,N. P satisfies the condition (4.8). If a strongly
connected signed graph G(A) is structurally balanced, then there is a diagonal matrix
U satisfying U? = I such that UAU is nonnegative. Thus P = e~ L7 satisfies the
condition (4.8), P is irreducible, and it is structurally balanced.

Let A= {A1,As,...,A,} be a finite set of signed adjacency matrices.

4.3.2. THEOREM. Assume that A(t) € A is piecewise constant, and there is a di-
agonal matriz U such that UA()U = 0 for all t = 0,1,2,.... Assume that there
exists an infinite sequence of contiguous, nonempty, uniformly bounded time inter-
vals [t ti,,),
interval [t;,,t;,,,), the union of the graphs are strongly connected. Then system

k = 0, starting at t;, = 0 with the property that across each time

(4.22) admits a polarization and lim;_,., x(t) = aU 1, where o is some constant.

4.3.3. THEOREM. Assume that the signed adjacency matrices in A are all irreducible
and A(t) € A is piecewise constant. There exists an infinite sequence of contiguous,
ini1)s k=0, starting at t;, = 0 with
the property that there does not exist a diagonal matriz U satisfying U? = I such that
UAU =0, t;, <t <ty,,,. Then system (4.22) converges to zero asymptotically.

nonempty, uniformly bounded time intervals [t;, ,t
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Proof. The solution to (4.22) is given by
x(t) — e—L(tk)(t—tk) - e_L(tl)Tle_L(tO)TOx(0)7

where k is the largest nonnegative integer satisfying ¢, < t. Let P; = e L7 —
0,1,.... P; satisfy the condition (4.8), and P; are irreducible and structurally bal-

anced. The rest of the proof is similar to the argument used in Theorem 4.2.3.  []

4.4 Illustrative example

In this section, we perform simulation studies on discrete-time model (4.2). Let
P, P, and P3 be given by

0 0 0,0 0 0 0 -}
1 % % (1) 0,0 0 0 -3 0
o o 1 i o1 -1 01 0 0
= = | = =
P — "0"’0”Q"4”’%*’#”?”’4”0”70” 7
0 0 0 01 33 3 (1) 0 0
0o 0 o0 -3 01‘ ioq o d (1) 0
0 -3 0 0 0,0 0 & L 0
| -3 00 0 0'0 0 0 0 3 |
[+ L 0o 0 0,0 0 0 0 0 |
1 1 1 1 1
5 5 5 0 5,0 0 0 0 -3
o+ X 2 0./-2 0 0 0 o0
0 0 I 0 0 -1 0 0 0
X B S L A S S
0o 0 -3 01 0 33 (1) 0 0
o 0o o -3 01‘ ioq o d (1) 0
oo 0 0 —%,0 0 & 1 0
0 -3 0 0 0'O0O 0 0 0 3 |
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6 5

Figure 4.2: The graph G(P,) associated to Figure 4.3: The graph G(P,) associated to

Pl. P2~
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o 0o o + 111 0 -2 00
Py=|-2------—"-- D T e N + s
0o 0 0 0 —-32,% L+ 0 0,0

0 0 0 —3 0% 1 1 0.0

0 0 0 © —%\ 0 % i i\O

0 -5 0.0 0,0 0 5 35,0
| 3 0 0 0 0'0 0O 0 0 '3

The graphs associated to Py, P2, and Ps are denoted by G(P;), G(P2), and G(Ps)
and they are illustrated in Figs 4.2-4.4. The edges with negative weights are labeled
by “—” signs and the rest edges are with positive weights. It is easy to see that
G(P1),G(Pz), and G(P3) are all structurally balanced. The bipartitions of the node
set {v1,...,v10} for G(P1) and G(P,) satisfying Lemma 4.2.5(a) are the same, which
is {{v1,...,vs},{vs,...,v10}}, and hence U = diag{1,1,1,1,1,-1,—-1,—1,—1,—1} is
a diagonal matrix satisfying that U? = I and UP,U > 0, UP,U > 0. G(P3) has a dif-
ferent bipartition satisfying Lemma 4.2.5(a), which is {{v1, ..., vs,v10}, {vs, U7, Vs, Vo }},
and hence U = diag{1,1,1,1,1,—1,—1,—1,—1,1} is a diagonal matrix satisfying that

U? = I and UP3U > 0. In the simulations, take the initial values of the ten agents
to be z(0) = [4,-2,3,-3,5,-2,-3,-2,1,0]%.
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10 + 1

Figure 4.4: The graph G(Ps) associated to Ps.

/

10 20 30 40 50 0 50 100 150 200 250 300
t t

Figure 4.5: The evolution of the agents’ s- Figure 4.6: The evolution of the agents’ s-
tates when the graph topologies switch be- tates when the graph topologies switch be-
tween G(P1) with G(P). tween G(P1) with G(Ps).

First consider the switched system (4.2) with

P, oti
P(t) 1, t1is even, (4.24)
Py, tis odd.

Then the states of all the agents evolve to two opposite values since G(P;) and G(P2)
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share the same bipartition of the node set, which is illustrated in Fig. 4.5. If

Py, tis even,

P(t) = 4.25
®) {Pg, t is odd, ( )

the conditions in Theorem 4.2.3 are satisfied. We can conclude that the states of
all the agents asymptotically converge to zero, which is also verified by Fig. 4.6.
Since G(P) is structurally balanced, for system (4.2) with static interaction topology
P(t)= Py, t =0,1,..., the states of the agents will converge to two opposite values.
When we compare G(P;) with G(Ps), it is observed that only the weight of the edge
between v; and vy changes the sign. However, small variations of the interaction
graph topology has led to significant changes in the dynamical behavior of the system.

4.5 Conclusion

In this chapter, we have generalized the distributed algorithms introduced in Chapter
2 to more general settings where the couplings between pairs of agents in a network
could be positive or negative. Both discrete-time and continuous-time algorithms
have been discussed under dynamically changing interaction topologies. By making
use of the notion of structural balance, sufficient conditions have been constructed to
guarantee that the states of the agents converge to two opposite values or converge
to zero.

We have considered the setting that the interaction graph topologies are dynam-
ically changing with time but not affected by the states of the agents. In realistic
social networks, the relationship between two persons is likely to be affected by the
variations of their opinions about a subject. It is of great interest to consider the case
when the network topologies are time-varying and also dependent on the system’s
state.






Chapter 5
Distributed Clustering Algorithms

Various algorithms have been successfully constructed to cause all the agents in a
group to converge to the same value asymptotically [47, 81, 16]. At the same time,
there is a growing interest to study how an interconnected group may incorporate
or evolve into different sub-groups called clusters. In contrast to the widely stud-
ied synchronization processes, in the cluster synchronization problem studied in this
chapter, we require all the interconnected agents to evolve into several clusters and
each agent only to synchronize within its cluster. We focus on the n-cluster syn-
chronization problem to be defined in the next section. We present in this chapter
three approaches that may lead to clustering behavior in connected networks con-
sisting of locally interacting agents. The first approach is that agents have different
self-dynamics, and those agents having the same self-dynamics may evolve into the
same cluster. When the agents’ self-dynamics are identical, we present two other ap-
proaches by which cluster synchronization might be achieved. One is the presence of
delays and the other is the existence of both positive and negative couplings between
the agents.

5.1 Problem formulation

In this chapter we aim to study n-cluster synchronization problem, in which a coupled
multi-agent system is required to split into n clusters, so that the agents synchronize
with one another in the same cluster, but differences exist between different clusters
[105]. We first give a formal definition of n-cluster synchronization. As in previous
chapters, directed weighted graphs are used to describe the couplings among the ag-
ents. Let G be a directed weighted graph representing the interaction topology among
the agents and let A and L be the corresponding adjacency matrix and Laplacian
matrix of G. Consider the following extensively studied model in the synchronization
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study for a complex network [77, 51] that consists of N coupled agents

N
i(t) = fi(t,zi(t)) +c Z ai;I'(z;(t) — zi(t))
J=1,j#i
N
= filt,zi(t)) — e Y] L;Ta(t), (5.1)
j=1

where z; € R™ denotes the state of agent i, ¢ = 1,..., N, f; : [0,00) x R™ — R™ is
continuous and globally Lipschitzian with Lipschitz constant K;, namely

[fi(t, 1) — fi(t, §2)ll2 < Kil|€1 — |2, (5.2)

for all (¢,&1), (t,&2) € [0,00) x R™, ¢ > 0 is the coupling strength, a,; is the ijth ele-
ment of A, l;; is the ijth element of L, and the diagonal matrix I = diag{y1,...,Vm}
denotes the inner coupling with v, = 0 for kK = 1,...,m. System (5.1) has a unique
solution which exists for all ¢ = 0 [33].

We say that {C1,C5,...,Cy}, n > 1, is a partition of the set NV = {1,2,..., N} if
C; # &, CiNCj = & and |JI_, C; = N; furthermore, we use i to denote the index
of that subset of the partition in which the number i lies, ie., ¢ € C;. Obviously,
1<i<n We say that agents ¢ and j are in the same cluster if 7 = j. Now we are
ready to define what we mean by cluster synchronization.

5.1.1. DEFINITION. For a given initial condition x(0) = [T (0),...,2%(0)]T, where
z;(0) e R™, 1 < ¢ < N, system (5.1) is said to realize n-cluster synchronization
with the partition {Cy,Ca,...,Cp} if limy o |[zi(t) — z;(t)|| = 0 for i = j and
lim sup, .., ||z;(t) — x;(t)|| > 0 fori # j.

5.1.1. REMARK. In [112], a similar concept called the “group consensus” of a multi-
agent system is defined, which is weaker than the cluster synchronization defined here
because we require in addition that the differences between different clusters do not go
to 0 as time goes to infinity. A different type of clustering behavior is considered in
[1, 91], where the differences between agents in the same cluster are bounded, while
the differences between agents in different clusters grow unbounded as time goes to
nfinity.

In the synchronization study literature, the f; in (5.1) are often referred to as the
self-dynamics of agent i. In what follows, we discuss clustering approaches according
to whether the agents’ self-dynamics are identical.
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5.2 Clustering with different self-dynamics

We first illustrate how agents governed by different linear dynamics might evolve into
different clusters. We consider the case when some agents are under constant forcings
and the others are not. The dynamics of the former are

N
xl(t) = —S(,'Z‘(t) + b; — Z lijl'j(t) (53)

where [;; is the ijth element of the Laplacian matrix L satisfying l;; < 0, for i # 7,
and b; are constants with b; # bj- for 7 # j. The dynamics of the latter are

N
2i(t) = — Y. Lija;(t). (5.4)
j=1

Comparing (5.3) and (5.4) with (5.1), we have taken f; to be affine functions, I" an
identity matrix, ¢ = 1, and m = 1. The results derived in this section can be easily
extended to the more general case when ¢ > 0 and m > 1. Since the constant forcing
terms sometimes come from the agents’ knowledge about their preferred values, the
agents described by (5.3) are called informed agents and naturally the agents de-
scribed by (5.4) are called naive agents since they do not have prior knowledge and
have to rely on the interactions with their peers to evolve. In the next two subsec-
tions, we provide some sufficient and/or necessary conditions for systems of informed
and naive agents to converge to n clusters.

5.2.1 Systems of informed agents

In this subsection, we consider the case when the system only consists of N informed
agents described by (5.3) for 1 < i < N. Assume that we have labeled the agents in
such a way that the first [; agents are under the forcing b1, the next I, agents are
under bs, and so on. Then the system can be written in a compact form

@(t) = —x(t) + b— La(t) = —La(t) + b, (5.5)

where z = [z1,22,...,on]T e RN, L=L+1,and b = [bllz, e ,bn_lla_l,bnla]T
with Iy +---+1, = N.
We further write the Laplacian matrix L in the following block matrix form:

Ly Ly -+ Ly,

Loy Loy -+ Loy
L= ) ) .

Lnl Ln2 e Lnn
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where L;; € Rl*l 1 < 4,5 < n. Since the row sums of L are zero, we know the
row sums of —L are —1. In addition, —L has nonnegative off-diagonal elements.
Hence, —L is invertible and the eigenvalues of —L are all located in the open left-half
plane. The equilibrium of system (5.5) is #* = L~'b. Define y(t) = z(t) — =*; then
y(t) = —Ly(t). Tt is obvious that y(t) — 0 as t — c0. Thus z* is a globally stable
equilibrium of system (5.5). In fact, we can say more about the structures of z* as
follows.

5.2.1. THEOREM. For any initial condition, system (5.5) of informed agents achieves
n-cluster synchronization for almost all (in the sense of Lebesque measure) b;, 1 <
i < n, with b; # b; for i # j, if the block matrices L;;, 1 <i,j <n and i # j, have
constant row sums.

The proof of this theorem makes use of the following lemma.

5.2.1. LEMMA. Consider the matriz P = (P;j)Nxn where Py; € Rli*li 1 <id,j <n.
Suppose that P is invertible and that its inverse is Q@ = (Qij)Nxn, where @ is
partitioned in the same way as P. If the matrices P;; have constant row sums for
1 <4, < n, then the matrices Qi also have constant row sums for 1 <i,j <n. In
addition, let r;; denote the row sum of P;; and s;; denote that of Q;;; then RS =
Inxn, where R = (Tij)nxn and S = (Sij)nxn-

Proof: From QP = I, one has

1Prj = )
k=1 0, j+#1,

Since Pj; have constant row sums 7;, summing up the elements in each row of Pj;

gives
11 T2l Tpl Q11 1
T2 Te2 ot Tp2 Q121 0
®1 =1 (5.6)
Tin T2n o Thn anl 0

Since P is invertible, so is R. Combining with (5.6), we know that Q1; have constant
row sums for 1 < j < n. In addition, the row sums s1; of Q1; satisfy

[511, 8125+, Sln]T = (RT)il[l,(), e ,O]T.

Using a similar calculation, it is easy to check that all ();; have constant row sums
for 1 <4,5 <n,and ST = R~TI; that is SR = I. O



5.2. Clustering with different self-dynamics 59

Now we are ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1: Let Q = (Qi;)nxn be the inverse of —L. Since L;;, i # j,
have constant row sums and the row sums of —L are —1, it follows from Lemma 5.2.1
that @Q;; have constant row sums for 1 < i, j < n. Denote the row sum of —L;; by
r;; and that of Q;; by s;;. Then again from Lemma 5.2.1, we know that S = R,
where R = (7ij)nxn, and S = (8;5)nxn. S0 all the agents in the i¢th cluster have the
same asymptotic value — Z;'l=1 845b;.

Next we show that all the b; that do not lead to n-cluster synchronization come
from a set which has zero Lebesgue measure. Let S = {x = [71,...,7,]T e R" : z; =
x; for some i # j with 1 < i,j < n}, and let the smooth linear map g : R® — R be
defined by g(z) = Rz. Then it is easy to check that S has zero Lebesgue measure;
so does ¢g(S). Let

U=1{b=T[br,....bo]" eR™: b #bj fori#j;
(R7'b); = (R™'b); for some i # j and 1 <i,j < n}.

One has U < ¢(S), which implies that ¢ has zero Lebesgue measure. If b ¢ U, system
(5.5) realizes n-cluster synchronization, which completes the proof. O

The condition given in Theorem 5.2.1 is a sufficient condition and it may not be
necessary when n > 2. However, for the special case when n = 2, the condition is
also necessary as shown in the following result.

5.2.2. THEOREM. System (5.5) under any pair of distinct forcings by # ba achieves
2-cluster synchronization for any initial condition if and only if the block matrices
L;ij,1<14,j <2 andi# j, have constant row sums.

Qu le]
Qa1 Q22 |y, v

from the fact that —f/ij have constant row sums r;; and Lemma 5.2.1 that );; have

Proof: (Sufficiency) Let @ = [ be the inverse of —L. It follows

constant row sums s;; and

T _ ri2
S = rig+r21+1 r12+7r21+1
_ T21 ___Tia+l :
ri2+re1+1 T12+7r21+1

Thus solutions of system (5.5) converge to

B [(blsn + b2812)111]
(b1S21 + basaa)1y,

It is easy to check that —bys11 — bas12 # —b1S21 — baSas since by # by. Thus 2-cluster
synchronization has been realized.
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(Necessity) Suppose that system (5.5) realizes 2-cluster synchronization with final
values 71 and Zy. Let N7 = {k € \; the final value of z(¢) is Z1}. We first show that
every agent under the same constant forcing is in the same cluster. Suppose on the
contrary that the ith and jth agents both under constant forcing b; have different
final values Z; and Z»; then one has

0 = —Z1+b — Z Lig(Z2 — Z1),
kE./\[/Nhk#i

0 = —Zo+b — Z ljk(jf1 - i‘g).
kE./\/’l,k‘;ﬁj

It follows that (Zz — 21)(1 — Xpepr/nn kg lik — 2keny ke lik) = 0, which contradicts

To—T1 #0and 1 — Zke/\f//\/hk;ﬁi lik — Zke]\/},k;ﬁj ljk > 0.
From the proof of sufficiency, we find that the equilibrium of system (5.5) is

o — [ b1Q111y, + b2Q121y, ]
b1Q211y, + b2Q221y, |-

Let the ith row sums of Q17 and @12 be t;; and t;o respectively. Then, for any
1<4,5 < l1 and by # by, we have —byt;1 — batio = —bltjl — bgtjg. It follows that
ti1 = tj1 and tp =t for 1 < 4,7 < [y. Thus, Q11 and Q2 have constant row sums.
Applying similar arguments to Q21 and QQ22, one can conclude that Lo and Lo; have
constant row sums in view of Lemma 5.2.1. ]

In the next subsection, we consider the systems that consist of not only informed
agents, but also naive agents.

5.2.2 Systems of informed and naive agents

Now consider the system consisting of n — 1 clusters of informed agents and one
cluster of naive agents, whose dynamics are described respectively by

N
l‘l(t) = —l‘i(t) + b; - Z lijl'j(t), 1< < N — ln, (57)
j=1
and
N
@i(t) = — Y lijai(t), N—l, +1<i<N. (5.8)
j=1

The system dynamics can be written in a compact form

i(t) = —La(t) + b, (5.9)
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where
Lyy+1 - Lyp_1 Ly,
7— : . : : ’
Ln—l,l e Ln—l,n—l +1 Ln—l,n
Lnl e Ln,nfl Lnn

and b = [bllljl, ceey bnfl]-lq:L_l?O,lZ;]T'

5.2.2. LEMMA. L is invertible if and only if for any naive agent, there is a directed
path from some informed agent.

Proof: (Sufficiency) Assume that |L| = 0. Then Lz = 0 has a non-trivial solution
Z1,...,xn. Let r be one of the indices for which |z;|, ¢ = 1,..., N, is maximum.
Then |z;| < |z,|, for 1 < i<l +---+1,-1. Suppose that the contrary is true. Then
consider the ith row of Lz. One has

(l” + 1)|l‘7~| = (lm + 1)|J)1| < — Z ll]|x]| < — Z lij|xr|~
J#i J#i
It follows that |z,| < 0, which contradicts the fact that |z,| > 0. We conclude that
r>lh4 4 .
For any k satisfying |z,| > |zk|, one has ., = 0. Otherwise, consider the rth row
of Lz; one has

|y < — Z lrj|xj| <= Z lrj|x7“| = lpr|@r],
s s

which is a contradiction.

Let s be the number of indices j for which |z;| = |z,|. Then the rth row contains
N — s zeros and [, =0, for 1 <k <ly +---+1,_1. All the s corresponding rows
contain N — s zeros in the same places. So by the same permutations of the rows
and columns, matrix L can be transformed to

Ui Up
Nl
[ : U] (5.10)

where Uss € R**® is a square matrix and Uy; contains

Lyy+1 - Lin

Ln—l,l T Ln—l,n—l + 1



62 5. Distributed Clustering Algorithms

as a sub-matrix in the upper left corner. Thus there is no directed path from any
informed agent to the naive agent in the block Uss.

(Necessity) If for s naive agents, there are no directed paths from any informed
agent, then L can be transformed to (5.10) by the same permutations of the rows
and columns such that Uss only contains s naive agents. Uss having zero row sum
implies that |L| = 0, which is a contradiction. O

In what follows, we assume that for any naive agent there is always a directed
path from some informed agent. Similar to the system consisting of only informed
agents, since L is invertible, the equilibrium z* of system (5.9) is * = L~'b. Let
y(t) = 2(t) — x*; then one has y(t) = —Ly(t). It is obvious that y(t) — 0 as t — 0.
Thus z* is a globally stable equilibrium of system (5.9).

In order to ensure that agents in the same cluster have the same final values,
we require the following. Suppose that —L;; have constant row sums r;; for i =
1,...,n—=1, 5 = 1,...,n, and that the ith row sums of —L,,...,—Ly 1 are
m;hy,...,mih,_1 for 1 < i < [,, where m; are positive constants. We require that
there is at least one h; # 0, 1 < i < n — 1. Without loss of generality, suppose that
hi,....,htz #0, 1 <k <n-—1,and hgy; = --- = h,—1 = 0; it is easy to see that
the ith row sums of —L,, are —m; Z;:ll h;. Expanding the equation —QL = I,
following a similar argument as in the proof of Lemma 5.2.1, one has

i1t Tp—11 hi Q11 1
T2t Tho1,2 ho Q121 0
n—1
Tin **° Thn—1m — Zj:l h‘j anm 0
A T
where m = [mq,...,my |'. Let
horii — hirig -+ horp_11 — hiTn—1,2
M= | hrun—hiru o hgrpoin — Rk :
T1,n—1 Tn—1,n-1
-1 -1
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then we have

]
Q11 :

Q121
aen | | =M
Q1,n-11 0
717

M is invertible since —L is. Then we can conclude that Q@1; have constant row sums
for 1 < j <n —1. In addition, the row sums sy, of Q1; satisfy

M[811,812, .. .,Sl’nfl]T = [hg7 . .,hk, .. .,0, ].]T

It is easy to check that Q;;, 1 <i<n, 1 <j<n—1, have constant row sums s;;,

S11 St S1p—1 ho -+ hp 07 1
S = : : = —hyI o 1 |MT,
Spn—1,1 " Sp—1,n—1 0 1 1

and [Sp1,...,8nn-1] =[0,...,0, M-,

So S is invertible. For 1 < i < n — 1, Z;L 1Tij = —1, it is easy to show that
Z;:ll sij = —1, for 1 <4 < n. Moreover, for 1 <i<n—1and 1<k <I,, one can
derive from —LQ = I that

n—1
myhisi; + -+ mphp_18p-1,; — My 2 hjsni = 0.
j=1
1
It follows that s,; = %
Suppose that Zi,...,Z, are the final values of the n clusters; then each cluster
converges to T; = —Z;’ 11 sijb;. It follows that [Z1,...,Zn—1]" = =S[b1,...,by_1]7.

Since S is invertible, using a similar argument as in the proof of Theorem 5.2.1, one
can conclude that for almost all b; with b; # b; for ¢ # j, the final values of the
informed agents in different clusters are distinct from one another. In addition

n—1 n—1n—1
_ hkSkt
Tno =y swbe= = ) et

n—1 n—1

= _fwTr
= Z Zn 1 Z ktbt Z 272_11 hj, (511)

k=1 t=1 k=1

]
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which implies that the final values of the naive agents have to be a linear combination
of the final values of the informed agents. The coefficients hy/ Z;’;ll h; are determined
by the row sums of Ly1,..., Ly ,—1. Note that these final values only depend on the
row sums of the sub-matrices of L, but not on the number of agents and the proportion
of the informed agents in the system. Hence, we have proved the following theorem.

5.2.3. THEOREM. For system (5.9), if for any naive agent there is a directed path
from some informed agent, —L;; have constant row sums r;j fori=1,...,n—1, j =
1,...,n, and the ith row sums of —Ln1,...,—Ly n—1 are m;hq,...,mih,_1 for some
m; >0, 1 <i < l,, then for any initial condition, the final values of the clusters
of the informed agents are distinct from one another for almost all (in the sense of
Lebesgue measure) b; for 1 < i <n—1 with b; # b; fori # j, and the final values
of the naive agents converge to a linear combination of the asymptotic values of the
informed agents as defined in (5.11).

5.2.1. REMARK. In [60], more general agent dynamics are considered. Consequently
besides the condition of constant row sums stipulated in Theorem 5.2.8, additional
conditions have to be imposed to guarantee clustering. Since more restricted agent
dynamics are considered here, the agents’ final values can be predicted whereas it is
difficult to do so for the model considered in [60].

In this section, we have considered the clustering behavior when the agents have
different linear dynamics. In the next section, we consider more challenging scenarios,
in which agents are governed by the same self-dynamics.

5.3 Clustering with identical self-dynamics

Now we consider the case when all the agents have the same self-dynamics:
N
i(t) = f(ti(t) — ¢ Y Li;Ta;(t), 1<i<N, (5.12)
j=1

where the notation is the same as in (5.1), and f is a continuous map that is globally
Lipschitzian in x; with Lipschitz constant K and [;; < 0 for ¢ # j. There are existing
results discussing when clustering might appear in (5.12) [60, 78]. We first compare
these results.

Let X denote the manifold {z = [T (¢),..., 2L ()] : 1(¢) = - -+ = 2, (t), 1, +1(¢)
= =x45,(t),..., TN_1,+1(t) = -+ = zn(t)} corresponding to the n-cluster syn-
chronization. The following result is from [60].
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5.3.1. THEOREM. [60] The manifold X is invariant if and only if the block matrices
L;; achieved by partitioning L into submatrices corresponding to the clusters have
constant row sums.

A sufficient condition for the same n-cluster synchronization manifold to be in-
variant is given in [78]; it can be stated as follows.

5.3.2. THEOREM. [78] The manifold X is invariant if there is a solution X to the
linear equations

(In —II)L = X(Iy —1I), (5.13)
where I is a permutation matriz such that X = ker(Iyp,ny —1I® I,).

We now prove that the conditions given in Theorem 5.3.1 and Theorem 5.3.2 are
in fact equivalent.

5.3.1. PROPOSITION. The block matrices L;j of L have constant row sums if and only
if there exists a solution X to the linear equations (5.13), where I is a permutation
matriz satisfying X = ker Iy — U ® Iy,).

Proof: (Necessity) Since X = ker(Ip,ny —II® I,), I = diag{Il;,...,II,}, where II,
are permutation matrices with the same dimensions of L;;. From (5.13), we have

(I — Hl)LZ] = Xij(I — I_Ij)7 1< Z,j <n. (514)

Since L;; have constant row sums, the row sums of (I —1II;)L;; are zero. Suppose that
X;j is a u x v matrix. Let LZE(I —IL)T = [B1, B2, - - -, Bu] and Xi:’; = [ag,..., ],
where a; and f;, 1 <4 < u, are column vectors. Then (5.14) is equivalent to

(I -1y, = By, 1<k<u. (5.15)

Since rank(I — II;)T = rank([(Z — II;)7 Bx]) = v — 1, there exist solutions to (5.15).
Then there exists a solution X to (5.13).

(Sufficiency) Without loss of generality, suppose that the permutation matrix
I can be written as II = diag{Il,...,II;,1,...,1}, where I, 1 < k < ¢, are

;—\/__/
n—q

permutation matrices with the diagonal elements being zero. Then we can partition
the matrix L into n x n blocks with the dimensions of Ly, ¢ + 1 < k < n, all being
one. Thus we only need to prove that L;;, 1 <1,j < g, have constant row sums. Let

Lij = [01,...,0,]", where 0; are column vectors. From (5.14), it follows that

(I —1L)Lij = [61— 0iyy ..., 00 — 0;,]7 = Xi5 (I —11,),
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where {iy,...,1,} is a permutation of {1,...,u} determined by II;. The row sums of
X;;(I—1I;) are zero because of the zero row sums of I —II;. In addition, the diagonal
entries of II; are zero, so the row sums of 7, 1 < i < u, are the same; namely L;;
have constant row sums. 0

We have just compared different conditions on when X is invariant. To further
guarantee clustering to take place, we now introduce coupling delay into the system.
There are also other mechanisms that give rise to clustering behavior of the system,
such as the pinning control strategy, the interested reader is referred to [104].

5.3.1 Delay-induced cluster synchronization

In view of Theorem 5.3.1, in this subsection we assume that —L;; have constant row
sums 755, 1 <i,j < n. We introduce a coupling delay to (5.12) as follows [59, 70]:

N
#i(t) = fw®)—c Y LTzt —7) —a(t)
j=1,j#i
N o
= f(t,x;(t))—c Z lijTa;(t —7) + cd]"T(x;(t — 7) — x:(t)), (5.16)

where the notation is the same as in (5.12), and in addition di* = [;; = Z;\;L#i ai;
is the in-degree of the ith agent, and 7 > 0 denotes the time delay. The initial
condition for (5.16) is given by z;(0) = ¢;(6), for 1 < ¢ < N, 0 € [—7,0], where
@i(0) € C([—7,0],R™). Since f is a continuous map that is globally Lipschitzian in
x;, and the couplings among agents are linear, system (5.16) has a unique solution
which exists for all ¢t > 0 [33].

When the N coupled agents achieve complete synchronization, ie. zi(t) =
x2(t) = -+ = xn(t) = s(t), we have the following synchronized state equation:

5(t) = f(t,s(t)) + cdi"T(s(t — 1) — s(t)),5 =1,..., N. (5.17)

When s(t — 7) # s(t), a necessary condition for the synchronization manifold to be
invariant is that di" = d4" = --- = d%}. When the N coupled agents achieve n-cluster
synchronization, i.e., z;(t) = z;(t) = s;(t) for i = j, and s;(t) # s;(t) for 1 # j, we
have

50 = ftsi(0)) —c D) Wit —7) = si8) +e Do ryLsa(t — 1) = 53(1)),

J#i,j€C; k=1,k#1

Then a necessary condition for the cluster synchronization manifold to be invariant
is that dj" = d" for i =j and di* # i for @ # .
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Let D' = diag{di",...,d%}. Assume that the graph G representing the in-
teraction topology among the agents is strongly connected; then L is irreducible.
Hence, zero is a simple eigenvalue of L associated with a positive left eigenvector

52[61,62,...,§N]T. DeﬁneE:diag{ﬁl,...,ﬁN}. .
Now consider the ith agent. Define the average of the ith cluster to be

f;( ZZEC & Z gz 7

1€C;

and the difference between agent i’s state and this average to be e;(t) = x;(t) — z;(t).
Then

&i(t) = di(t) —a;(t)

N
& Z lljFI](t — 7')
Jj=1

ted!"T (x;(t —7) —xi(t)) — 23, i =1,...,N. (5.18)
Let e;(t) = [en(t),eia(t),...,eim®)]T € R™, e(t) = [el(t),...,e®)]T, &) =
[e1i(t), e2i(t), ..., eni(t)]T € RN and &(t) = [éT(¢),...,&L (t)]T. Then one can check
that
Z&ei:Zfﬂ’iZfz( §>2§ixi:0-
i€C; ieC; ieC ZEC v/ ieC;
Hence,
1€C; i€C;
Z &ie! (cd’”F (t — T) — a:;(t))) =0, Z fzezT (i Z lijka(t)> = 0.
ieC; ieC; k=1 jeC

Since f(t,z) satisfies the Lipschitz condition (5.2), there must exist a diagonal
matrix A = diag{i,...,n} such that

(@ =" (f(t.2) = f(t,y) — Ale —y)) < —a(z — )" (v —y) (5.19)

holds for some « > 0, all z,y € R™ and all ¢ > 0. A simple choice of A is (K + «a)I,
while for a specific f(¢,z) of interest, less conservative A can be found. Now we
present the main result in this subsection.

5.3.3. THEOREM. Suppose that —L;; have constant row SUMS Tij, fori,j=1,...,n,
that the in-degree di™ of each agent satisfies di" = d"‘ fori =7 and din # dm for
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i # 7, and that A is a diagonal matriz satisfying (5.19). If there exist positive definite
matrices QQ; > 0 such that the linear matriz inequalities

20, E — 2¢y;ED™ + Q; ¢y, E(D™ — L) <0
ey (D™ — LTE —Q;

hold for all j =1,...,m, then e¢;(t) > 0 ast — oo fori=1,..., N.

(5.20)

Proof: Since the matrix inequalities (5.20) are valid, there exists a positive constant
€ such that —2a + € < 0 and
A — 20;FE — 2cvjEDi" +QjeT ¢y E(D™ - L) <0
J 0y, (D" — LT)E -,
hold for all j =1,...,m. Let

Vi

S0 - 3 3 eef w0,

=1 i=11€C;
v - Zj (5)Q585()e+ds.

Consider the candidate Lyapunov function V' (t) = Vi(t) 4+ Va(t). Then, for W;(t) =
Yicc. Siel (t)ei(t)e, its derivative along the solutions to (5.18) is

W, = 2¢ ) gel (1) (f(t,xi(t)) — f(t,7;(1) + f(E, (1) — Aei(t)

i€C;

+Ae;(t —ch”ijt—T —x (t—1) _CZ Z i TZp(t — )
k=1 jeC}

+cd§"F(mi(t —71) —x;(t)) — cdﬁ"l“(x;(t —7) —x;(t))

+edi"T(Z;(t — 7) — 7;(t)) — ) + eet Z gel (H)ei(

i€C;

- 26“2&6?@)(]“(&%@))f(t,zl( ) = Aei(t) + Aey(t)

i€C;
N .
—c Y lijlej(t = 7) + cd"T(es(t — 7) — et ) +eet ) &iel (t)ei
J=1 i€C;
< (20t et ) Gel (teilt)

1€C;

et 3 gl (Aez Z 1;;Te;(t —7) + cd™T(e;(t — ) — ez(t))>

i€C;
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Then, it follows that

V(t)
< (20 +€)e Z D &iel (e
i=11€C;
+2¢e¢t Z Z §l <AeZ —c Z li;Te;(t —7) + cde(el(t —7)— ez(t))>
i=11€C; j=1
st Z (t)Q;¢é;(t) Z (t —7)Qjé;(t —7)
< (—2a+ €)e Z Z fiezr(t) e;( Z T)Q;€;(t —7)
i=11€C; j=1
+ect Z f( )((25 B — 2C’YJED”L QjeT)e;(t) + ZnyjE(Dm —L)é;(t — T))
j=1
= (—2a+e)e” Z:l i;i Gel (t)ei(t) + e 2 Tt - T)JA, [éjif (_t)T)]
< 0.

Therefore, V (t) < V(0) which implies that V; (¢) is bounded. In view of the definition
of V1, this further implies that ||e(t)||2 is bounded from above by an exponentially
decaying signal that converges to zero. This completes the proof. |

Theorem 5.3.3 has shown that the differences among the states of the agents in
the same cluster will converge to zero as time goes to infinity. However, it is in general
difficult to prove that the differences between clusters do not converge to zero. Next
we prove 2-cluster synchronization when f is periodic. Consider

f(tai(t)) = Bai(t) + h(za(t)) + B(D), (5.21)

where B = diag{bs,...,b,} with negative constants b; < 0, 8 : [0,00) —> R™ is a
continuous, periodic function with period w > 0, i.e., 5(t + w) = B(¢), and h : R™ —
R™ is a bounded function which satisfies ||h(&1) — h(&2)||2 < H||&1 — &a|l2. We first
present the following result.

5.3.1. LEMMA. If there exist positive definite matrices P; such that the linear matriz
inequalities

[2(bj + H)I —2cy;D™ + P; ¢y (D™ — L)] <0 (5.22)

ey (D — L7) -P,



70 5. Distributed Clustering Algorithms

hold for all j = 1,...,m, then the coupled system (5.16) with f in the form of
(5.21) has exactly one periodic solution with period w to which all the other solutions
converge exponentially fast as t — o0.

Proof: Let C = C([—7,0],R™). For any ¢; € C we define ||¢;] |- = sup_. o< ||0i(6)]]2-
For any ¢ = [¢T,...,¢%]7, where ¢; € C, 1 < i < N, we denote the solution of (5. 16)
through (0, ¢) as z(t, ¢) = [ T, 0),... ,m%(t, gi))] , and define x¢(¢) = z(t+6, ¢), 0
[—7,0], t = 0; then z;(¢) € C for all £ > 0.

Now consider two solutions x(t, ) and z(t, ) of (5.16). Define w;(t ) x;(t, @) —
zi(t, ), w(t) = [wi(t),...,wy O], wi(t) = [wi(t),...,wyi()]", and W(t) =
ol (t),..., oL (t)]*. Tt follows from (5.16) and (5.21) that

wit) = Buwi(t) + h(zi(t, ¢)) — h(zi(t, ¢))
N
—c Y 1iTw;(t — ) + ed"T (w;(t — 7) — w;(t)).
j=1

Since the matrix inequalities (5.22) are valid, there exists a positive constant € such
that | |
O, = [Z(bj + H)I + €I — 2¢7y; D™ + Pje™ ¢y (D™ — L)]
’ ey (D — LT) —F;

are negative definite for all j = 1,...,m. Consider the candidate Lyapunov function

N m o
UORDICHOIUEEDY f @; () Py;(s)e Vs,
i=1 j=1Jt-7

By similar calculations to the proof of Theorem 5.3.3, we obtain

<eft2 t—T)]QJ[ (1) ]go.

w;(t—7)
Therefore, V(t) < V(0), from which it follows that
lz(t, ) — 2(t, @)ll2 < Me™ (|6 — ||, t >0,
where M > 1 is a constant. Then, it is easy to see that

llee(9) = xe(@)llr < Me 2 "D|g — ol (5.23)

Comparing (5.23) and equation (5) in [14], it is easy to see that using similar argu-
ments to that in [14], one can conclude that system (5.16) has exactly one periodic
solution with period w and all the other solutions converge exponentially to it as
t — 0. U

With Lemma 5.3.1, we now prove 2-cluster synchronization.
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5.3.4. THEOREM. Suppose that —L;; have constant row sums r;;, fori,j =1,...,n,
T # kw, for k > 0, and di" = d;" fori =] and din # d;" for i # j. If there exist
positive definite matrices P; and Q; such that (5.22) and (5.20) hold with 6; = b;+H
for g =1,...,m, then for any initial condition, the coupled system (5.16) with f in
the form of (5.21) realizes 2-cluster synchronization.

Proof: In view of Theorem 5.3.3, we only need to show that complete synchronization
cannot be achieved. Suppose that the contrary is true. Then (5.17) holds for all
i =1,...,N. It follows from Lemma 5.3.1 that s(¢) is a periodic function with
period w. Since T # kw for k = 0, it follows that s(t — 7) cannot be equal to s(t) for
all . Thus we have di" = d%}, which contradicts the fact that di" # d% since agents
1 and N do not belong to the same cluster. |

However, we are unable to prove n-cluster synchronization for n > 3 using the idea
of Theorem 5.3.4 due to difficulties in showing that the difference between the states
of any two different clusters will not converge to 0. To prove this, we need to show
that k-cluster synchronization cannot happen for all £ = 1,...,n— 1, which becomes
involved when n is large. In the 2-cluster synchronization case, this reduces to show
that complete synchronization cannot be achieved in the system, which simplifies the
analysis. We show through simulations in Section 5.4 that n-cluster synchronization
can be achieved if (5.20) and (5.22) are satisfied for n > 3.

In the next subsection, we discuss a different approach to realize cluster synchro-
nization when the agents’ self-dynamics are identical.

5.3.2 Clustering with negative couplings

In this subsection, we study how clustering may appear as a pure effect of structured
diffusive couplings. We assume that the agents’ dynamics are completely determined
by their couplings:

.’L‘l(t) = — Z lijl‘j (t), (524)

or in a compact form
%(t) = —Lx(t), (5.25)

Comparing to (5.1), we have taken I' to be an identity matrix, ¢ = 1, and m = 1.
The results derived below can be easily extended to the general case when ¢ > 0 and
m > 1. From Theorem 2.4.1 we know that, if the weights of the edges in G are all
positive, i.e., a;; = —l;; = 0, i # j, and G contains a directed spanning tree, then
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the system achieves consensus. In this subsection, we assume that there might be
negative couplings in the graph G, and as a result G is a signed graph. The adjacency
matrix A becomes a signed adjacency matrix, but the Laplacian matrix L is still
defined as in (2.1) here. The approach that system (5.24) models negative couplings
is different from that in (4.19), which consequently gives rise to different dynamical
behavior. Since the signed Laplacian matrix considered in (4.20) is a diagonally
dominant matrix, its eigenvalues all have nonnegative real parts which guarantees the
convergence of system (4.20). Furthermore, the system states polarize if zero is an
eigenvalue of the signed Laplacian matrix and converge to zero otherwise. However,
the convergence of system (5.25) is not guaranteed since the Laplacian matrix in
(5.25) may have eigenvalues with negative real parts. Zero is always an eigenvalue.
In addition, the geometric multiplicity of the eigenvalue zero and thus the dimension
of the null space of the Laplacian matrix, can be larger than one. This allows the
possibility of the occurrence of clustering in the system as we will see later.

Let ;1 = [1?:’07]\}—11]T7 n = [Olj;’ 1£50%—l1—l2]T7 s lin = [Oﬁ—lmllq;]T’ and
let aq,...,aq, be n independent vectors satisfying niTozj =1,if i =5 and niTaj =0,
if i # j. Since the solution to (5.25) is z(t) = e~ %*x(0), it is obvious that if

n
s Lt _ T
tligoloe = Z:ln,az , (5.26)
then n-cluster synchronization might be achieved. We provide the following necessary
and sufficient condition under which (5.26) holds.

5.3.2. LEMMA. Equation (5.26) holds if and only if
Ln; =0, al L =0, i=1,...,n, (5.27)

where —L has exactly n zero eigenvalues and all the other eigenvalues have negative
real parts.

Proof: We give the proof for the case when n = 2. The proof for the general case
n = 2 can be proved following similar steps.

(Sufficiency) This has been proved as Lemma 6 in [112].

(Necessity) Let J = diag{J1,...,Js} be the Jordan form of —L, i.e., there exists
a nonsingular matrix P such that —L = PJP~!. Then

lim e = P lim diag{e”!,... e’s'}P71.
t—0o0 t—00
lim;_,, e~ exists if and only if J; are zero matrices or the eigenvalues of J; have

negative real parts. Let u1, ..., uy be the columns of P and let vf . .. ,v% be the rows
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of P~1. Then the fact that (5.26) holds implies that J has the form J = diag{Oy, Z},
where the eigenvalues of Z have negative real parts. We have

k
lime ¥ =p L Pt = Z wjvl
t—0o0 0 O ) v

Since rank(u;vl) = 1 and rank(zi]\il uvl =1) =N, Zle u;v] must have rank k.
Combined with (5.26), one has k = 2 and uv] +ugvd = mal +mad, which implies
that —L has exactly two zero eigenvalues and all the other eigenvalues have negative
real parts. In addition, one has

T T T T T T
U11V] + U215 = a7, see U, V] T U2, V5 = a7,

which implies that (u1; — u1;)v] + (u2; — uzj)vd = 0. Then uy; = ug; and ug; = ug;
for 1 <i,j5 <. Using similar arguments we have

UL = 0 = Uy, Ul 41 = = UIN,
Ul =+ = Uy, U2 41 = *** = U2N.

Ifu;; = 0, then [0/, 1717 is a right eigenvector associated with 0, and so is [1/,0]]7".
If uyp # 0, [Og7 Wli? is a right eigenvector associated with 0. So
[0f,1L]7 and [1],07]7 are right eigenvectors associated with 0.

Without loss of generality, choose u; = n; = [1},01]7 and us = 12 = [0}, 11]7;
then 7, (vy — a1)T + n2(ve — a)? = 0, which implies that v; = a; and vy = .

Hence, one has of L = ol L = 0. O

From Lemma 5.3.2, it is clear that in order to realize n-cluster synchronization,
L;; have to have zero row sums. In the following discussion, assume that L satisfies
the condition that the row sums of L;;, 1 <1,j < n, are zero, then L has zero as an
eigenvalue whose geometric multiplicity is at least n. Let n; = [1;"; , Oﬁ_ll]T, e
[Oﬁ_ln, llj;]T, be n right eigenvectors associated with 0, and let a;,...,a, be the
corresponding left eigenvectors satisfying nl a; = 1, if i = j, and nl a; = 0, if i # j.
The following result is a slightly modified version of the main result of [112].

5.3.5. THEOREM. Suppose that the initial values of system (5.25) satisfy that ol z(0)
with 1 < i < n are not equal to each other; then n-cluster synchronization can be
achieved if and only if —L has exactly n zero eigenvalues and all the other eigenvalues
have negative real parts.

The conditions stipulated in Theorem 5.3.5 for achieving n-cluster synchronization
is an algebraic condition, which is difficult to check in application. Now we develop
algorithms to construct appropriate coupling topologies which satisfy the conditions
in Theorem 5.3.5.



74 5. Distributed Clustering Algorithms

5.3.3. LEMMA. [44] Let A and B be N x N Hermitian matrices and let the eigen-
values A;(A), X\i(B), and X\(A + B) be arranged in decreasing order as An(-) <
Anv—1(:) < -+ < M\ (). Foreach k=1,2,--- ,N, we have

)\k(A) + )\N(B) < Me(A+ B) < )\k(A) + )\1(3).

Intuitively, if the inner couplings within the clusters are strong enough, system
(5.25) can achieve cluster synchronization. This is verified by the following results.

5.3.2. PROPOSITION. Let

0 Lip - L
Ly 0 o Ly,
L= diag{C1L117 cee 7CnLnn} + .
Lnl Ln2 e 0
be a symmetric Laplacian matriz, Ly = diag{c1Li1,...,cnLpn}, and Ly = L — L.

Suppose that L;; have zero row sums, matrices L;; are irreducible and the off-diagonal

T ; ) p(L2)
elements of —L;; are nonnegative. If ¢; > Y — v

zero eigenvalues and all the other eigenvalues are negative.

L then —L has exactly n

Proof: Since L;; have zero row sums, L has at least n zero eigenvalues. Using Lemma
5.3.3, one has

AN (=Lo) < Mi(—=L) — X\i(=Ly) < M (—Lo),

which leads to |\;(—L) — \j(—L1)| < p(—L2) = p(Ls). It follows from ¢; > p(L2)/

(— maxy<ij<n A2(—Ly;)) that maxigien cida(—Li;) + p(L2) < 0. Since L;; are ir-
reducible and the off-diagonal elements of —L;; are nonnegative, it follows that
/\1(—L1) = = /\n(_Ll) = O7 and /\n+1(—L1) = maXigi<n Ci/\g(—Lii). Thus
one concludes that A\, y1(—L) < Jnax cida(—Lii) + p(L2) < 0. O

5.3.3. PROPOSITION. Suppose that the graphs Gy, ...,G,, are balanced and strongly
connected and the weights of the edges in these graphs are positive. Assume that
Lq,..., L, are the corresponding Laplacian matrices. For any positive definite matriz
S with proper dimension, zero is an eigenvalue of —Sdiag{L1,..., Ly} of algebraic
and geometric multiplicity n, and all the other eigenvalues of —Sdiag{L,...,L,}
have negative real parts.

Proposition 5.3.3 can be proved using a similar argument to that in the proof of
Theorem 4.5 in [55].
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Proposition 5.3.3 provides a way to construct a graph satisfying the condition in
Theorem 5.3.5. Let G’ be a strongly connected and balanced graph with n discon-
nected components and the weights of the edges in the graph are positive. Let L’ be
its Laplacian matrix. Multiplying from the left a positive definite matrix S gives us
a Laplacian matrix L = SL’ satisfying the condition in Theorem 5.3.5 .

5.4 Illustrative examples

In this section, several examples are given to illustrate the theoretical analysis results.

5.4.1. EXAMPLE. (Clustering with different self-dynamics) Consider the network
consisting of two clusters of informed agents and one cluster of naive agents with
ly =1l =1I3=2and by =1, by = 7. The Laplacian matrix is given by

2 0.,-1 -1,0 0
0 2,2 0,00
1 01 010 0
G =
0 -1 0 1,00
-1 0 ,-1 -1,3 0
0 -21—4 010 6 |

Since the final values of the first and second clusters are 4 and 5.5, respectively, the
values of the naive agents converge to 4 x %—i— 5.5 x % = 5. Fig. 5.1 shows the evolution
of the three clusters.

5.4.2. EXAMPLE. (Delay-induced cluster synchronization) Let

4 -2, 0 -1,0 -1
3 2,0 -1 -2 4 -1 0 -1 0
-2 3 1-1 0 -1 0 '3 —1'—-1 0
L1=|--=----1--—-—-—- Ly =
! I o e I R I R
0 -1'-1 2 0 -1,-1 0,2 0
| -1 010 -110 2

All the agents in the coupled network (5.16) have the same self-dynamics, which are

[114]
s =[98 0[] [

15 =05 [3(lza(t) + 1] = |za — 1)
+[—2~1 1-8][§(|miz(t)+1—|:vi2—1|)]' (5.28)

1We are indebted to I. Shames for pointing out this reformulation of some of our earlier results.
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Figure 5.1: The evolution of a system consisting of three clusters.

(a) When 7 = 1, the agents evolve into 2- (b) When 7 = 0, the agents achieve complete
clusters. synchronization.

Figure 5.2: The evolution of the states x;(t) fori =1,...,4.

When a = 1.6 and v = 2.6, system (5.28) has a unique and globally exponentially
stable periodic solution.

Consider the coupled network associated with the coupling matrix Ly. Let 7 = 1,
c¢=0.5 and I' = diag{1, 1}. Using Matlab, we get solutions @); and P; to (5.20) and
(5.22) as Q; = P; = diag{0.5550,0.5550,0.4717,0.4717}, j = 1,...,m. Assume that
every agent takes the same initial value z;(6) = [0.1,0.2]7, i = 1,...,4, 0 € [-1,0].
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Figure 5.4: The topology of a network.

The states of the agents finally evolve into two clusters, as shown in Fig. 5.2(a).
When 7 = 0, the states of the agents achieve complete synchronization as shown in
Fig. 5.2(b). So the delay indeed has induced the clustering behavior in this example.

When the coupled network corresponds to the Laplacian matrix Lo, and 7 = 1,
from Fig. 5.3 it can be seen that the agents finally evolve into three clusters.

5.4.3. EXAMPLE. (Clustering with negative couplings) A network that realizes 2-
cluster synchronization has the topology shown in Fig. 5.4. The Laplacian matrix L
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35F

251

15 f\¥

05F

is

2 -2 0 0,1 -1

2.2 0 0'0 0

0 0 2 —2,-1 1

0o 0 -2 210 o0 |’
0 TZ1 0 1,2 =
0 1 0 -1'-2 2 |

which has two zero eigenvalues and the other eigenvalues have positive real parts.
Let groups 1, 2, 3 be {1,2}, {3,4}, {5,6}, respectively. It is easy to see from Fig. 5.4
and Fig. 5.5 that, although there is no direct connection between groups 1 and 2,
the states of the agents in these two groups finally achieve the same value via the
interconnection with agents in group 3, which have a different final value.

5.5 Conclusion

This chapter has investigated three different algorithms that lead to m-cluster syn-
chronization in multi-agent systems. Some sufficient conditions and/or necessary
conditions have been constructed for systems with different agent self-dynamics, with
delay or having negative couplings. Numerical examples are given to verify the ef-
fectiveness of the analysis. The three approaches presented here are just examples
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of different approaches towards cluster synchronization. It is envisioned that after
gaining insights into the clustering behavior in natural, social or engineered systems,
more approaches can be revealed and thus different cluster synchronization models
can be constructed whose advantages and disadvantages can be compared.






Chapter 6

Controllability and cluster synchronization
of multi-agent systems

Controllability is an essential property of a dynamical system that plays a critical
role in control design problems. Synchronization phenomena have been widely ob-
served in natural and man-made systems and have attracted significant attention
from researchers in several disciplines, including statistical physics, computer sci-
ence, network science as well as electrical engineering. There are of course differences
between the controllability problem and the cluster synchronization problem for com-
plex multi-agent systems. For example, cluster synchronization, or synchronization in
general, is concerned with a complex network’s collective asymptotic behavior when
time approaches infinity; in comparison, controllability is concerned with a system’s
dynamic behavior within finite time. However, in this chapter, by positioning the
two problems together, deeper insight can be gained into both of the two topics.
Towards this end, we first define generalized equitable partitions and almost equi-
table partitions for general directed weighted graphs. Then we are able to provide
an upper bound and a lower bound for the controllable subspace for a general diffu-
sively coupled multi-agent system. We point out the close relationship between the
generalized almost equitable partition of a graph and the constant-row-sums proper-
ty of the block sub-matrices of the graph’s Laplacian matrix. Furthermore, we show
that diffusively coupled multi-agent networks that are not controllable tend to realize
cluster synchronization.

6.1 Controllability of multi-agent systems

We consider a multi-agent system consisting of N agents and we use N’ = {1,..., N}
to denote the set of indices of all the agents. Let x; € R, i € A/, denote the state
of agent i. We assign the roles of the leaders and followers to the agents and use
N, Nr € N to denote the sets of indices of the leaders and followers, respectively.
Assume that there are altogether 0 < s = |[N| < N control inputs u; e R, 1 <i<'s
and each leader is influenced by only one input. For a leader i € N, let [i] €
{1,..., s} denote the index of the control input acting on it. Let G = (V, &) with
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the vertex set V = {v1,va,...,un} be a directed weighted graph that represents the
interaction topology among the agents. Let A and L be the corresponding adjacency
matrix and Laplacian matrix of G and let di® be the in-degree of node i and D" =
diag{d?",...,d%}. Then the dynamics of the leaders are determined by

N
;= Y ag(xy — @) +upy, €N, (6.1)
j=1

and the followers’ dynamics are governed by linear diffusive couplings

N

T; = Z aij(xj - xi)) ieNp, (6'2)

Jj=1

where a;; is the ijth element of A satisfying a;; > 0, for j # 1.
Let 2 = [21,...,2x]T and u = [uy,...,us]". Then (6.1) and (6.2) can be written
in a compact form
& =—Lx + Mu, (6.3)

where the elements of M are defined by

1 ity =[]
i = { 0 otherwise,

forl<i<Nand1l<j<s.

Controllability is a classical notion in control theory and a dynamical system is
said to be controllable if under suitable control actions as the system’s inputs, the
system’s state can be driven from any initial values to any desired final values within
finite time [49]. The controllability problem of system (6.3) has attracted great
attention from the area of systems and control [66, 113]. Denote the controllable
subspace of system (6.3) by R. Note that R is the smallest L-invariant subspace
that contains the subspace spanned by the columns of M, denoted by im(M) [113].
In order to characterize the controllable subspace, we need some more notions from
graph theory.

6.2 Controllability through generalized almost eq-

uitable partitions
Given a partition 7 = {C1,Co,...,Cy} of the node set V = {v1,...,vn} of a graph

G = (V,&), we call C;’s the cells and n the size of the partition. Let |C;| = I;. We
can always relabel the nodes such that the first [; nodes lie in C7, the next ls nodes
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lie in C5, and so on. Then we can write the adjacency matrix A and the Laplacian
matrix L in the following block matrix form according to the partition

[ All A12 e Aln
A21 A22 e A2n
B Anl An2 T Ann
[ L1 L2 -+ Lin
L21 L22 T L2n
L Lnl Ln2 T Lnn

where A;j, L;; € Ri*b 1 <, j <n. The characteristic matriz P(r) € RN*™ of the
partition is defined by
Pyi(r) = { 1 if vy e.C]-
0 otherwise,
forl<i<Nand1l<j<n.

First consider the case when the graph G = (V, £) is unweighted and undirected
as in [66, 113], meaning that for any distinct pair of nodes v; and vy, if (v;,v;) € €,
then (vj,v;) € € and the weights a,;; = a;; = 1. We say agent j is a neighbor of agent
i, if a;; = 1. A partition 7 is said to be an equitable partition if each node in C; has
the same number of neighbors in C; for all 1 < 4,j < n. If one only cares about the
number of neighbors in adjacent cells, while ignoring the structure inside a cell, one
can define the notion of almost equitable partition. A partition 7 is said to be an
almost equitable partition if each node in C; has the same number of neighbors in C;
forall 1 <i,5 <nandi#j.

However, when we consider general directed weighted graphs, the weights a;; can
have any nonnegative value. Thus we cannot employ the notion of the number of
neighbors any more. Now we generalize the notions of equitable partitions and almost
equitable partitions [39] in a natural way.

6.2.1. DEFINITION. A partition 7 is said to be a generalized equitable partition if for

any vg,v € Ci, 4,7 =1,...,n,
Z Afr = Z Qpp- (66)

v,€C} v,.€C}

6.2.2. DEFINITION. A partition 7 is said to be a generalized almost equitable parti-
tion if for any v, v € Ci, 1 # 4, i, =1,...,n,

Z Ay = Z Q- (67)

’L)TECj ’L)TECj



84 6. Controllability and cluster synchronization of multi-agent systems

From the above two definitions, we can see the close relationships between the
generalized equitable partitions (resp. almost equitable partitions) of a graph and
the constant-row-sums property of block matrices A;; (resp. L;;) of the associated
adjacency matrix A (resp. Laplacian matrix L).

6.2.1. PROPOSITION. For a partition 7 of a graph G, we always label the nodes such
that the first Iy nodes lie in Cq, the next Iy nodes lie in Cy, and so on. A partition
s a generalized equitable partition of a graph G if and only if the row sums of each
block A;; of the associated adjacency matric A written in form (6.4) are equal. A
partition w is a generalized almost equitable partition if and only if the row sums of
each block L;; of the associated Laplacian matriz L written in form (6.5) are equal.

The quotient graph of G with respect to a generalized almost equitable partition
7, denoted by G/, is a directed weighted graph whose node set is V(G/7) = , the
edge set is the set of ordered pairs such that (C;, C}) is an edge of G/7 if and only if
i # j and there exist v; in C; and v; in C; such that (v;,v;) € £(G) and the weight
associated with each edge (C;, Cj) of G/mis af;, = 3. o, aji. Let A™ and L™ be the
adjacency and Laplacian matrices of G/7, respectively.

G G/

0.1
©
5 L
0.2 0.1
—® G ¢, G

Figure 6.1: A directed weighted graph G and its quotient graph G/m.

6.2.1. EXAMPLE. Let the adjacency matrix A and the Laplacian matrix L associated
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with a graph G shown in Fig. 6.1 be given by

0 2,01 01,0
01 00 0270
A = (Aj)sxz=1|05 010 05101 [,

22 -2 ,-01 -01, 0
01 03 | 0 02, 0
L = (Ly)axs=| —05 0 1 1.1 —051-0.1

It is easy to see that L;;, 7,5 = 1,2,3, have constant row sums, which corresponds
to a nontrivial generalized almost equitable partition 7 = {C; = {v1,v2},Cs =
{vs,v4},C3 = {v5}} of G. Note that 7 is not a generalized equitable partition since
the row sums of Aj; are not equal. Then the characteristic matrix P(w) of the
partition  is

P(r) =

O O = =
_ = O O
_ o O O O

o
o

The quotient graph G/m of G with respect to 7 is also shown in Fig. 6.1 and its
adjacency and Laplacian matrices are

0 02 O 02 —0.2 0
A"=105 0 0.1, L"=]|-05 06 —0.1
02 0 0 —-0.2 0 0.2

O

For given nodes vy,...,vs € V, 7 is said to be a generalized almost equitable
partition relative to vy, ...,vs if it is a generalized almost equitable partition and
{v1},...,{vs} are its cells. Let llgrp, Hgapp and llgagp(vi,...,vs) denote the
sets of all generalized equitable, generalized almost equitable and generalized almost
equitable partitions relative to vy, . .., v, respectively. Moreover, we say that a gener-
alized almost equitable partition relative to vy, ..., vs is maximal, which is denoted by
T&app(V1, ..., vs) if it has the smallest size; that is, if it contains the fewest possible
cells. It can be shown that given a graph G and nodes v1,...,vs, 754 pp(Vi,. .., V)
always exists uniquely.
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Another class of partitions depends on the distance between two vertices and
the graph diameter. Given a strongly connected graph G, a partition 7 = {{u €
V|dist(v,u) =i}, i =0,1,...,diam(G)} is called the distance partition relative to v.
The distance partition relative to a vertex v is unique and denoted by 7p(v). Let
Cit+1 be the cell {u € V|dist(v,u) =i} in 7p(v), where 0 < i < diam(G).

6.3 Controllability and cluster synchronization of
multi-agent systems

Now we are ready to use the graph notions introduced in the previous section to
derive lower and upper bounds for the controllable subspace of system (6.3). The
following result is proved in [20] for undirected unweighted graphs and the necessary
part is restated in [38] for undirected weighted graphs. It is also valid for directed
weighted graphs with respect to generalized almost equitable partitions.

6.3.1. LEMMA. Let G = (V,€) be a directed weighted graph, let L be its Laplacian
matriz, let T = {C1,...,Cn} be a partition of V, and let P(w) be the characteristic
matriz of m. Then w is a generalized almost equitable partition whose cardinality
equals n if and only if there is an n x n matriz B such that

LP(r) = P(m)B. (6.8)
If 7 is a generalized almost equitable partition, then B is the Laplacian matriz L™ of
the quotient graph G/x.

An immediate consequence of this Lemma is that we can characterize the gener-
alized almost equitable partitions using terms of invariant subspaces of the Laplacian
matrix L of G as follows.

6.3.2. LEMMA. A partition © of G is a generalized almost equitable partition, if and
only if im(P(x)) is L-invariant.

An upper bound for the controllable subspace is given in [113] for system (6.3)
with multiple leaders when the graph is undirected and unweighted. We provide an
upper bound in terms of generalized almost equitable partitions for the general case
when the graph is directed and weighted.

6.3.1. PROPOSITION. Let Vy, = {vy,...,vs}, and w € gapp(v1,...,vs). Then
R < im(P(x)),

and
dim(R) < |[7&agp(v1, -, vs)].
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Proof. It follows from Lemma 6.3.2 that im(P(w)) is L-invariant. Since Vi =
{vi,...,vs}, and © € Tlgapp(v1,...,vs), we have im(M) < im(P(w)); that is
im(P (7)) is an L-invariant subspace containing im(M). In view of the fact that
R is the smallest L-invariant subspace that contains the subspace spanned by the
columns of M, it follows that R < im(P(x)). Thus

dim(R) < dim(im(P(rfapp (01, vs))) = [Whapp 1, ., v,)]-

O

From this proposition, we immediately have the following result.

6.3.2. PROPOSITION. Assume that G is strongly connected. System (6.3) with multi-
ple leaders Vi, = {v1,...,vs}, is controllable only if 7k 4 pp(v1,...,vs) is trivial; that
is, {vi} € T pp(V1, ..., vs) for allv; e V.

For system (6.3) with a single leader, we have the following lower bound in terms
of the distance partitions.

6.3.3. PROPOSITION. If Vy = {v}, then
|7p(v)| < dim(R).

Proof. Without loss of generality, assume v = vy, 7p(v1) = {C1,...,Cp} and |C;| =
li, where 1 < n < diam(G) +1, Cy = {v1}, and Cip1 = {V1, 4o dli 1 - - o> Uty booetlign )
1 <i<n—1. The Laplacian matrix L can be written in the following form.

[ dli” ® ® . * *
L21 L22 * s * *
0 Lz L3z - * *
L=1| . : : ;
0 O O T Ln—l,n—l *
| 0 O O -+ Lpn1  Lnn|
where “s” represents the entry in the matrix which is irrelevant to the present
discussion. Since V; = {v}, the matrix M is an N-dimensional column vector
er = [1,0,...,0]T.
Let E = [e; Le; ---L" 'e;]. Some calculations give that
1 % * cee *
0 L21 * s *

E = 0 O LzLy --- *
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Since the graph G is strongly connected and C;11 = {u € V|dist(v,u) = i}, there
exists a directed path of length ¢ from vy to every node in C;41, 1 <i<mn—1. This
implies that the matrix product L;y1,;---L21, 1 < ¢ < n — 1, contains a positive
entry in each row. Then rank(FE) = |7p(v)| = n. Thus we can conclude that

|7p(v)| = rank(E) < rank([e; Ley --- LN "tei]) = dim(R).

[

Combining Propositions 6.3.1 and 6.3.3, we can obtain the following lower and

upper bounds for the dimension of the controllable subspace of system (6.3) with a
single leader.

6.3.4. PROPOSITION. If Vy = {v}, then
[7p(v)| < dim(R) < [7&app(v)]-

Note that the bounds given here are tight and cannot be improved further, which
can be seen from examples in [113].

Let Vp = {v1,...,vs}, let {C1,Cs,...,C,} be a partition of V and {v;} are cells
of the partition {Cy,Cs,...,Cy} for all : = 1,...,s. Define the manifold

X ={x=[21,...,an]"| @i, (t) = 24, (), for all v;,,v;, € Ci, i=1,...,n}, (6.9)

which corresponds to the m-cluster synchronization defined in Chapter 5. The fol-
lowing result reveals the relationship between the invariance of the cluster synchro-
nization manifold and the existence of generalized almost equitable partitions.

6.3.1. THEOREM. The n-cluster synchronization manifold X of system (6.3) is in-
variant for any input u(t) if and only if the partition {Cy,Cs,...,Cy} is a general-
ized almost equitable partition. In addition, if the graph G is strongly connected and
{Cy,C4,...,Ch} is a generalized almost equitable partition, then the manifold X is
asymptotically stable, i.e., lims o x4, (t) — x4, () = 0, for all v, v, € C;, 1 < i < n.

Proof. The necessary and sufficient condition can be proved by using similar argu-
ments to the proof of Theorem 3.11 in [58]. Next we prove the asymptotic stability
of the manifold X. The solution to system (6.3) is given by

t
z(t) = e T2 (0) + f e L= Mou(s)ds.
0
Since {C4,Cs,...,C,} is a generalized almost equitable partition, the corresponding
block matrices L;; have constant row sums. If we partition the matrix e L(t=3) to
n x n blocks for any ¢t > s > 0 with respect to the partition {Cy,Cs,...,Cy} as
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in (6.5), then each block matrix (e~2(*=%));; also has constant row sum. Therefore,
S(t) e Ft=9) Mu(s)ds € X for all t > 0. Since the graph G is strongly connected, 0 is a
simple eigenvalue of the matrix —L and all the other eigenvalues of — L have negative
real parts. It follows from Lemma 5.3.2 that
lim e™ = nraf,
where 77 and oy are the right and left eigenvectors corresponding to the eigenvalue
0 of —L satisfying that afn; = 1. 7y can be simply taken as 7 = 1x. Thus naf
is a matrix with all rows the same. Suppose that v;,,v;, € C;, 1 < i < n. Then one
can obtain that
Tim 2, (1) — 3, (1) = lim (e~ 2(0));, — (e X2(0));, = 0,

t—00

which proves the asymptotic stability of the manifold X. O

6.3.1. REMARK. In view of the definition of cluster synchronization given in Defini-
tion 5.1.1, Theorem 6.3.1 has proved that the agents will finally form n clusters and
synchronize within the clusters, while the differences between clusters may or may
not converge to zero. This is exactly the “group consensus” we discussed in Remark
5.1.1, which is weaker than the cluster synchronization defined in Definition 5.1.1.

Combining Proposition 6.3.2 and Theorem 6.3.1, we have the following result.

6.3.2. THEOREM. Let Vy = {v1,...,vs}. Assume that the graph G is strongly con-
nected and it has a nontrwvial ©¥ 4 pp(vi,...,vs). System (6.3) is not controllable
and it realizes group consensus with respect to the partition 78 4 pp(Vi,. .., 0s).

In this section, by comparing the conditions for realizing cluster synchronization
and checking controllability, we have gained the insight that those multi-agent net-
works that are uncontrollable in finite time tend to realize cluster synchronization as
time goes to infinity.

6.4 Illustrative example

We take the graph G and the associated Laplacian matrix L in Example 6.2.1 as
an example. If we take node 5 as a leader, then the maximal generalized almost
equitable partition relative to node 5 is #*(5) = {{1,2},{3,4},{5}}. System (6.3)
with this Laplacian matrix is uncontrollable since the partition 7*(5) is nontrivial.
Assume that the initial values of the agents are chosen randomly from [0, 10] and the
control input u(t) = cos(2nt). From Theorem 6.3.1, we know that system (6.3) will
finally evolve into three clusters with respect to the partition 7*(5) as shown in Fig.
6.2.
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Figure 6.2: The five agents evolve into three clusters.

6.5 Conclusion

We have looked at jointly the controllability problem and the cluster synchronization
problem for multi-agent systems. Using the notions of generalized graph partitioning,
we have provided upper and lower bounds for the controllable subspace of a diffu-
sively coupled multi-agent system. We have also gained insight that the multi-agent
networks that are uncontrollable in finite time tend to realize cluster synchroniza-
tion as time goes to infinity. Illustrative example has verified the effectiveness of the
theoretical results.



Chapter 7

Determination of clock synchronization
errors in distributed networks

As physical devices, such as computational units, sensors and actuators, are more
and more frequently working together over distances, people are more and more con-
cerned with the problem of how to synchronize the clocks that are installed at those
physical devices and connected through wired and/or wireless data networks [36].
The convergence analysis of a synchronous algorithm in Chapter 3 has also illus-
trated the importance of clock synchronization in a network, where the converging
algorithm may not converge any more when the clock installed at each agent is not
synchronized with each other and the agents can only update according to their own
clocks. Recently, it has been shown by Freris, Graham and Kumar [37] that clocks in
distributed networks cannot be synchronized precisely in the presence of asymmetric
time delays even in idealized situations. Motivated by that impossibility result, we
test under similar settings the performance of some existing clock synchronization
protocols and show that the synchronization errors can be bounded within an ac-
ceptable level of accuracy that are determined by the degree of asymmetry in time
delays. After studying the basic case of synchronizing two clocks in the two-way mes-
sage passing process, we analyze directed ring networks, in which neighboring clocks
are likely to experience severe asymmetric time delays. We then discuss connected
undirected networks with two-way message passing between each pair of adjacent
nodes. In the end, we expand the discussions to networks with directed topologies
that are strongly connected.

7.1 Models for clocks in networks

As in [37], we consider affine models for clocks. Let ¢ > 0 be the label of a clock in a
network, and denote its display by x;. Then the evolution of x; can be described by

.’I?l(t) = a;t + b;, (71)

where t is the time of a standard reference clock, a; > 0 is called the skew that is
the ratio of the speed of clock i with respect to the reference clock, and b; is called
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the offset that is the difference between the display of clock 7 and the reference clock
at time t = 0. Here we consider the idealized case when the skews of the clocks are
fixed, e.g. not affected by the changes in the environmental temperature, and the
communications within the network are noiseless and fault-free.

Assume that the clocks are installed at nodes in a distributed network. We use
the label of the clock to denote the node where the clock is installed. It is assumed
in [37] that when a message is sent from node ¢ to another node j, the latter can only
receive it after a fixed but unknown time delay d;; > 0. In addition, the time delays
are not necessarily symmetric, and in fact for a pair of distinct nodes ¢ and j, d;; is
in general not equal to d;;. In order to describe the message passing process between
clocks more conveniently, in this chapter, we use i instead of v; to denote a node and
use V = {1,..., N} instead of V = {v1,...,vn} to denote the node set, which differ
from the notation used in previous chapters. In what follows, we will use a graph G
with the node set V = {1,..., N} and the edge set £ < {(¢,7) : 4,j € V} to describe
the topology of a network consisting of NV nodes. In G, there is a directed edge from
node i to j if i can send messages to j; correspondingly, there is an undirected edge
between ¢ and j if both ¢ and j can send messages to each other.

7.2 Synchronizing two clocks

In this section, we consider two clock synchronization. For analysis purposes, we can
always describe the message passing process with respect to the standard reference
clock. In the sequel, we use the sequence {tx}, kK = 0, to denote the set of time
instants embedded in the reference time axis ¢, at which a clock sends or receives
messages. Then the message exchange process for two clocks 1 and 2 trying to get
synchronized is illustrated in Figure 7.1. At time ¢y, node 1 sends a message of its
current value of x;(tp) to node 2. We say node 1 has sent a message time stamped
by its clock just before the transmission. Node 2 records the time zo(t1) when it
receives the message x1(tg) and after a constant time wy, it sends the message x2(t;)
at the time t5 back to node 1 with the time-stamp x2(t2). Correspondingly, node 1
receives this message at time t3 and records the time x1(¢3). It then sends a message
after a constant time ws. In this manner the messages are sent back and forth.
Without loss of generality, take the skew of clock 1 to be 1, i.e. a; = 1. As shown

in [37], the skew as of clock 2 and the round-trip delay dis + d2; can be calculated
precisely by

Ta(ts) — wa(t1)

z1(ta) — 21(to)’

dig +dy1 = x1(t3) — 21(to) — aiQ(xz(tz) — xa(t1)). (7.3)
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Node 1 X, (1)

Node 2 :

%, (t)

Figure 7.1: Message exchanges between two clocks.

However, the individual time delays di2 and do; can never be determined precisely
when they are asymmetric and this is part of the synchronization impossibility result
for a pair of clocks shown in [37], which as argued in the same paper leads to syn-
chronization errors that cannot be eliminated. We also refer the interested reader to
[48] for more information about phase and skew estimators.

Now we try to synchronize the two clocks by repeatedly updating their displays.
Consider first the simple case when as = 1 as well; in other words, the skews of the
two clocks are the same. We use D to denote the round-trip time delay dys + do1 =
x1(ts) — z1(to) — (x2(t2) — x2(t1)). When the two clocks update their displays, they
use the average delay D = % as the nominal delay to compensate the time-stamped
messages they receive about the most recent values of the other clock’s display. For
example, when clock 1 receives a message of x5(ty) from clock 2, it takes x5 (t)+ D as
the estimated current value of the display of clock 2. The same estimation strategy is
adopted by both of the two clocks. To get synchronized, after a clock receives a new
message from the other, it always updates its display to the average of its current
display and the latest estimation of the other clock’s current display. We assume
the updates take place instantaneously and the message exchanges are carried out

repeatedly.

The embedding technique to write down a distributed system’s dynamics with
respect to a common reference time axis for analysis purposes has been used before
when studying distributed and parallel computations and asynchronous systems [10,
15]. Following this approach, we use the sequence {tx}, ¥ = 0, embedded in the
reference time axis ¢, to write the system equations. Although the two clocks update
periodically according to their own clocks, since the clocks have the same skew, we
know that for any time 7 > 0, there always exists k > 0 such that ¢, < 7 < {41
and x1(7) — x2(7) = x1(tx) — z2(tr). For the sake of conciseness, in this chapter we
use the notation x;(k) instead of z;(t;). Then the system equations of the updating
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process of the two clocks after embedding can be written as

{x1(4k +1) = 21 (4k) + dis

w2 (dk + 1) = 5((x1(4k) + D) + (w2(4k) + di2))

$1(4k + 2) = $1(4k + 1) + l1d12

1L'2(4k + 2) = 1‘2(4]6 + 1) + l1dqo (7 4)
21(4k +3) = L((@2(4k + 2) + D) + (z1(4k + 2) + day)) '
£U2(4k + 3) $2(4k + 2) + d21

I1(4(k + 1)) = 1‘1(4]€ + 3) + lgdlg

x2(4(k + 1)) = x2(4k + 3) + lady2,

where k > 0 and I; = 7+, i =1,2.

We first show that durlng the above updating process (7.4), the synchronization
error converges to a constant determined by the difference between the delays dio
and d21.

7.2.1. THEOREM. Ast goes to infinity, the difference x1(t) — x2(t) between the two
clocks converges to %(dlg —da).

Proof: Let e(k) 2 x1(k) — z2(k) for k = 0. Then from (7.4), one has

6(4/€ + 1) = %6(4]6) + i(dlg - d21)
e(dk+2) = e(dk+1)
e(dk +3) = %e(4k +2) + i(du — da1)
e(4(k +1)) = e(4k+3). (7.5)

Substituting the first three equations of (7.5) into the last equation of (7.5), we obtain

ek +1) = <§>2e<4k>+§<d12—d21>

_ 1 2(k+1) 0 d —d s 1
= (5) e(0) + 12 21) E

Since the geometric series Y- + converges, we know

. 3(dig — da1) < 1 dip—dn
kll_)IIolo e(4(k +1)) = 78 -7 (7.6)
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Combining equation (7.6) with (7.5), one can check that

1
lim 6(4]17 + Z) = *(dlg — dQl), 1<1<4. (77)
k—o0 2

From (7.7), we know that for any ¢ > 0, there exists a positive integer M, such

that for any N > M, |e(4N + i) — 3(d12 — d21)] < €, 1 < i < 4. Hence, for any
k > 4(M + 1), it always holds that |e(k) — 1(di2 — d21)| < €, which is equivalent to

lirn e(k) = %(dlg - d21). (78)

k—o0

This completes the proof. O

Note that when applying the Network Time Protocol (NTP) [67], it is assumed
that most of the time delays are symmetric between a pair of distinct nodes in a
network, namely d;; = dj; for i # j. In fact, in view of Theorem 7.2.1, when
di2 = ds1, the two clocks can indeed get synchronized precisely.

7.2.1. COROLLARY. When di3 = da1, the synchronization error x1(t)—xo(t) between
the two clocks goes to zero asymptotically.

Now consider the general case when as is different from 1. We first interpret
Theorem 7.2.1 in a different way motivated by the approach proposed in [88]. Note
that the models of the two clocks with the same skew are

.’I,'l(t) =1+ bl, xg(t) = t+b2.

Since the two clocks are with the same skew, to get them synchronized can be regarded
as to synchronize the two clocks with respect to a virtual clock

x(t)=t+b
with b undetermined. Suppose that each clock has an estimate of the virtual clock
j?l(t) =t+ bl + Ol(t)7 Ii‘Q(t) =t+ b2 + OQ(t).

Thus the update of the displays of the two clocks in equation (7.4) is equivalent to
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the update of 0;(t) as follows

01 4k + 1
02 4]<i+
{01 4k +2

( = 01 4]{7)
(
(
02(4/43 +2
(
(
(

(

2(4k5) ((331(4]6) + D) (£2(4k) + dlg))

1(4k+ 1)

= 0o(4k + 1)
01(4k + 3) = 01(4k + 2) + 3 ((&2(4k + 2) + D) — (&1 (4k + 2) + d21))
02(4k + 3) = 0y(4k + 2)
01 4k + 4) = 01(4]€+3)
02(4]€ + 4) = 02(4]{7 + 3)7

—_ ~— = ~— ~— \./\_/

where we use the notation o;(k) instead of 0;(tx), 01(0) = 02(0) = 0, and 0,(t) = 0;(k)
for t € [tg,tg+1). In fact, during the update process, the transmitted time-stamped
messages are &1 (tx) and Z2(tx). Then Theorem 7.2.1 says that the difference between
the estimates &1 (t) — 22(t) = b1 + 01(t) — (b2 + 02(t)) converges to 3(di2 — d21) as t
goes to infinity.

When the skews of the two clocks are different, consider the models

l’l(t) =1+ bl, .’EQ(t) = GQt + bQ,

where as is close to 1. Since the skew ay of clock 2 can be estimated through message
passing as shown in (7.2), a transformation of the model of clock 2 leads to the
same-skew case

Let the estimates of a virtual clock be

N . b

#1(t) =t + by + 01(t), Bo(t) =t + ai + 0a(1).

2
From Theorem 7.2.1, one has that & (¢) — Z2(t) = by + 01(¢) — (% + 05(t)) converges
to %(dlg — d91) as t goes to infinity. In other words, the result stated in Theorem
7.2.1 applies also to the general case when ay # 1.
In the next section, we will study how the main idea of compensation with nominal

delays can be applied to larger networks by utilizing the message passing mechanism
just described.

7.3 Synchronizing clocks in networks

Now we consider a network of NV clocks that are described by (7.1) withi=1,..., N,
a; = 1, and a; close to 1 for i = 2,..., N. Since the skews a;, i = 2,..., N, of the
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clocks can be estimated through message passing, similar to the discussion at the end
of Section 7.2, a transformation will lead to the same-skew case

- 1 1 .

$i(t)—;$i(t)—t+abi, 1=2,...,N.
Hence, in what follows, we will only consider the case when the skews of the clocks
are the same, namely a; = 1 for all 4.

Since among the networks with the same number of nodes, the network with a
directed ring topology can lead to the greatest difference in the delays of d;; and
d;; for a given pair of adjacent nodes 7 and j, we first study synchronizing clocks in
networks with directed ring topologies.

7.3.1 Synchronizing clocks in directed ring networks

A. Synchronizing three clocks in a directed ring network

We fist consider a ring network of three nodes 1, 2 and 3 and three directed edges
(1,2), (2,3) and (3,1). Similar to the message passing process for the 2-clock case
discussed in the previous section, we illustrate the message passing process among
the three clocks in Fig. 7.2, where di2, da23, d31 and w;, @ = 1,2, 3, are the time delays
and idling times respectively.

Node 1 — — (1)
I I I I | | I
I I I I | | I
I I I I | | I

Node2 ——}— T % (0
I I I I | | I
I I I I | | I
I I I I | | I

Node 3 L Op W dy W, Oy 1+ W3 Oy W dy %, (1)

3

ot ot t, ot t, bt t,

Figure 7.2: Message exchanges among three clocks with directed connections.

Although the delays dy2, dos and d3; cannot be determined from the time-stamped
messages, the round-trip delay D = di3 + d23 + d31 can be determined precisely by

D= 1'1(5) — 153(4) + $3(3) — LEQ(Q) + .’EQ(].) — $1(0)

We take D = % as the nominal delay for the three clocks when they update their
displays. To be more specific, we take time ¢, when node 2 receives a message from
node 1, as an example. At t; clock 2 updates its display to the average of its current
display and the current estimate of clock 1’s display x1(0) + D. And w; time units
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later, clock 2 sends the message x2(2) to clock 3, which in turn updates its display
following the same averaging rule. This procedure repeats periodically. As one can

see from Fig. 7.2, every link is used exactly once in each period from tgx to tg(41)
for k > 0.

Now we write down the system equations. Define

z(k) = [z1(k), z2(k), z5(k)]", v = [di2,d2s, dz1]".
Then for k > 0,

331(6]6 + 1) Il(ﬁk) + d12
x2(6k+ 1) = ;((ml(Gk) + D) + (z2(6k) + d12)>
$3(6k+ 1) | 1‘3(6]6) +d12
[1 0 0 151(6117) 1 0 0 d12
= |3 5 O |x2(6k) [+ |2 & &||des
70 0 1 .’133(61{3) 1 0 0 d31

Through a similar procedure, one can obtain

x(6k + 1) = Ajx(6k +i—1) + Bjv, 1

N
7
\.Q
=
=

where
[1 0 0 1 00 3 0 3
Ai=1[3 4§ 0],A43=1]0 1 0]|,4=]0 1 0],
[0 0 1 0 % 3 00 1
1 0 0 01 0 : 3 2
Bi=|2 %+ +|.Bs=|0 1 0|,Bs=|0 0 1],
[1 0 0 iz 1 0 0 1
Ay =Ay=Ag =13, By =1;[135 Osx2], j=1,2,3.

Here, I; = %%, We can further obtain the following system equation in an iterative
J d12 g y
form

6
2(6(k +1)) = AgAs - Ayz(6k) + > Ag -+ Aiy1 Biv.
i=1

Define A £ AgAs -+ Ay = AsAsAy and B2 Y | Ag--- A; 1 B;, then we have

k
2(6(k + 1)) = A""2(0) + Y. A'Bv, k>0 (7.10)
=0

We first prove the following convergence result.
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7.3.1. PROPOSITION. As k goes to infinity, x;(6(k + 1)) — x;(6(k + 1)) converge to
some constants for i,j =1,2,3, i # j.

For an arbitrary vector z = [x1,22,...,2x5]", define Z = max;<;j<y x; and z =
min;<;<n ;. For any matrix Q = [y ag -+ )T € R™*™ where a; € R™, i =
1,...,m, are column vectors, we use

>

Uij(Q) = azT - %T

to denote the difference between the ith and jth rows of @), where 1 < 4,5 < m, © # j.
The following result will be useful in the proof for Proposition 7.3.1.

7.3.1. LEMMA. Let P € R™*™ be a scrambling matriz. Then o;; (Zgc o P!) converge
to some constant row vectors as k goes to infinity for 1 <i,j <m, i # j.

Proof: Since the convergence to be proved is meant in the element-wise sense, without
loss of generality, we only need to prove the convergence of the first element of
k
012(Xi=o P)- ' L
Let (012(P*))1 be the first element of o12(P*) for ¢ = 0 and let (012(>;_o P*))1
be the first element of alg(Zfzo P?). Tt is easy to check that the operator o12(+) has
the property that
k
(012 Z PY) Z o12(P
=0 =0

Thus it suffices to prove that >~ ,(d12(P?))1 converges. Towards this end, let u; =
(0'12(P1))1 and

P ],
(i) (i) e}

where 1, ..., are m column vectors of the matrix P®. Denote ;) = M > 0,
then one can prove by induction using Lemma 3.3.1(a) that

m <r(P)TIM, i

\%

L

where 7(P) is the coefficient of ergodicity of P.
Let so = 1 and s; = 7(P)*"1M, i > 1, then in view of the definitions of o2(-),
one has

il = [(@12(P| < nt? < s
for i > 1. It is obvious that ug = 1 because P° = I,,,. Then we know |u;| < s; for all
> 0. Since P is a scrambling matrix, 0 < 7(P) < 1, which implies the convergence
of the series

e} e} M
i=1 Py M =1+ —-—-—.
i;)s +i2217'( ) +1—T(P)
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Hence, > |u;| converges, and so does Y.~ u;. This completes the proof. O

Now we are ready to prove Proposition 7.3.1.
Proof of Proposition 7.3.1: Since Ay, As, and As are all stochastic matrices and the
class of all stochastic matrices with the same dimension is closed under multiplication,
we know A = A5 A3A; is also a stochastic matrix. In addition, because of the special
structures of these matrices, one can check that A is scrambling and irreducible [44].
Then we know that limg ., A% = limy,_, o (A5A4341)F = 13¢7 [44], where ( is some
constant column vector. Hence, one immediately gets
khf;oaij(Ak) =0, 1<i,j<3,i4#j

In view of (7.10), one has

.’EZ(G(]C + ].)) — .’E](G(k + 1)) = O'ij(AkJrl

k
2(0) + 035> A")Bu.
=0

)
As k — oo, it follows from Lemma 7.3.1 that z;(6(k + 1)) — 2;(6(k + 1)) converge to
some constants. l

If we take ty or t4 in Fig. 7.2 as the starting time of the system evolution,
following similar arguments as shown above, one can get that z;(6k +2) — z,;(6k + 2)
and z;(6k + 4) — x;(6k + 4) both converge to some constants for 1 <i,j <3, i # j,
as k — o0. Since

z;(6k +1) —x;(6k+7) = z;(6k +r —1) —x,;(6k +r —1),
hold for r = 2,4, 6, one can get the following conclusion.

7.3.2. PROPOSITION. As k goes to infinity, x;(6k + 1) —x,;(6k + 1) converge to some
constants for allr =1,...,6, and i,5 =1,2,3, i # j.

From Proposition 7.3.2, we know that we can define
ei; (6k + 1) = z;(6k + 1) —x;(6k + 1),
e(6k + 1) 2 [e12(6k + 1), ea3(6k + )] 7,

and the constants
A L. A
e;; = lim e;;(6k + 1), " = [e]y, ebs] ",
k—o0

where i,j = 1,2,3, i # j, and r = 1,...,6. From the system equations (7.9), one can
get a set of equations

e(6k +1) = Aje(6k +i—1) + Bjv, 1 <i <6, (7.11)
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where

O ol
O ol
=
Wl
| S

By iteration, one has

e(6(k + 1))

Il
>
2
S
Q
=)
=
+
P
p N

[=2]
i
:
pqz
4

where A £ fl6f~15 Ay = /15/131211 and B = Z?Zl /~16 e /LHBZ-. Taking £ to infinity,
one has
k

lim e(6(k + 1)) = lim A¥*le(0) + li A'Bu, k= 0.

g e(6(k + 1)) = Jim A¥*7e(0) + lim ), A'Be,
Since the limit limg_,, e(6(k+ 1)) exists for any initial condition and any time delays
from Proposition 7.3.2, it must be true that both limy_,., A¥*1 and limj_, Zf:o Al
converge, from which we conclude that p(A) < 1, namely, the spectral radius of A is
strictly less than 1.

In view of the fact that "™ = e, r = 1,3, 5, we define

Then we get the equation of the asymptotic synchronization errors between clocks
by taking k& on both sides of (7.11) to infinity:

e=Ae + Bv,
where _ _
O O A1 Bl
A=|4A3 O O|,B=|B;
0 4 O B;

If the matrix I — A is invertible, the error e can be calculated as e = (I — A)~! Bu.

7.3.2. LEMMA. The matriz I — A is invertible.
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Proof: We prove this Lemma by showing that (I — A)y = 0 has a unique solution
y = 0. From
1 O —Al Y1
I-Ay=|-4 I o y2 | =0,
one has
Y1 = ;112/3, Y2 = /~13y1, Ys = 1215927 (7.12)

Substituting the first two equations of (7.12) into the last one of (7.12), we obtain
Yys = 145143/11(7;3 = Ayg
Since p([l) <1,ys3 = flyg has a unique solution y3 = 0. Substituting y3 = 0 into the

equations (7.12), one has y = 0. 0

Thus, by calculating e = (I — A)~!Bwv, one has

elg =dia— D, es3 =doz — D, r=1,...,6.
Hence, we have proved the following.

7.3.1. THEOREM. As time goes to infinity, the synchronization errors between clocks
i the three-clock directed ring network converge and

lim (z(t) — (7 (t) = dig — D, i =1,2,3,

t—0o0
where [i] =i+ 14fi=1,2 and [i] =1 ifi = 3.
The following result is a direct consequence of Theorem 7.3.1.

7.3.1. COROLLARY. For the three clocks in the directed ring network, if the delays
are all equal, namely dyo = doz = d31, the clocks can get synchronized asymptotically.

In the next subsection, we extend the results that we have obtained for the three-
clock directed ring network to general directed ring networks with n > 3 nodes.

B. Synchronizing more clocks in a directed ring network

Now we consider a directed ring network of N > 3 nodes. The message passing
procedure in the network with unidirectional communications is illustrated in Fig.
7.3, where d; ;) and w;, i = 1,...,n, are time delays and idling times respectively.
Here, [i] is defined to be i + 1 when ¢ =1,...,N —1 and 1 when i = N.
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Node 1 T T T T x,(7)
| | | | | | |
| | | | | | |
| | | | | | |

Node 2 — ] I : : : | X, (1)
RN /o

Node 3 —————— T (0

: [ I I I | I I :

| | | | | | |

Node N Ldy, t w1 dy dy, 1wy 1 d, | Xy (1)
Iy L 5 Iy Liva Lyva Ly bLya

Figure 7.3: Message exchanges among N > 3 clocks with directed connections.

Although the time delays d; [, @ = 1,..., N, between clocks cannot be deter-
mined precisely no matter how many time-stamped messages are exchanged, the
round-trip delay D = Zivzl d; ;] can be calculated after sufficiently many messages
are delivered

—1

=0

(x[m] (2 +1) — xi+1(2i)).

Similar to the three-clock case in Subsection 7.3.1A, we use D = % as the nominal

delay for all the clocks when they update their displays.

Define
l‘(k‘) = [331(]{3), 332(]{3), T ,LL’N(k)]T, v = [d127d23, e 7le]T.
Then we have the system equations in state space

2(2Nk + i) = Ajz(2Nk + i — 1) + B;v, (7.13)



104 7. Determination of clock synchronization errors in distributed networks

for 1 <i < 2N and k > 0, where

1 0 0 -0 1 0 1

1 1

1o 0 0 1 0 0
A1: 0 0 1 0 7...,AQN,l: 0 0 1 0 s

0 0 0 1] 0 0 0 1

i y M1 1 1 N+1

L0 oo ok

2N 2N 2N ' 2N 0 0 0 1
By = 1 0 0 01],..., Bon-1=10 0 0 1 ,

| 1 0 o - 0_ _0 0 o --- 1 |
Ay =Ay = =Ayn =1In, Byj=1j[Iy Onxn-1). i=1.....N,
andljzsv—l{'z.

We can write down the iterative equations

2N
$(2N(l€+1)) = AQNAQN_l"'Alx(QNk) + (Z A2N"'A/L'+1Bi)’l]
i=1

k
AR L2 (0) + Z A'Bu.
i=0

where A = Aoy Asn_1---Ay and B = 21251 Aoy -+ A;j11B;. This equation is in the
same form as Eq. (7.10). Then using similar arguments to that in Subsection 7.3.1A,
one can prove the following result.

7.3.2. THEOREM. As time goes to infinity, the synchronization errors between clocks
in the N-clock ring network, N = 3, converge and

gﬂ%(iz(t) —1‘[1](15)) = dz,[z] —l)7 1= 1,...,N.

Since undirected graphs can be viewed as a special class of directed graphs, the
2-clock synchronization discussed in Section 7.2 can be viewed as a special case of
the N-clock synchronization in a directed ring network when N = 2. In view of this,
Theorem 7.2.1 is consistent with Theorem 7.3.2.

In the next subsection, we discuss how to synchronize clocks in connected undi-
rected networks.
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7.3.2 Synchronizing clocks in connected undirected networks

A. Synchronizing three clocks in a connected undirected network

We fist consider a network of three nodes with undirected edges (1,2), (2,3) and
(1,3). Similar to the message passing process for the 2-clock case discussed before,

we illustrate the message passing process among the three clocks in Fig. 7.4.
x,(t)

Node 1 T T T T T
| | | [ - | | I
| | | [ - | | I
\ | / | | \ / \

Nodez ——N /1| | - )

o :\ / | \ /

| |

: dy :Wzl Oy \Wy/dyy | WA: di \ w, dy

8 L

b 4 ot Lot Lt t ot

I I
| |
| |
| |
W I I

1 WB

Node 3

|

:

|

' X,(t)
ty, o t

Figure 7.4: Message exchanges among three clocks with undirected connections.

Although the delays d;j, 1 < 4,5 < 3, cannot be determined from the time-
stamped messages, the round-trip delay between each pair of connected clocks can
be calculated precisely. For example, the round-trip delay D5 between clocks 1 and
2 is

D1 = dig + do1 = x1(3) — 22(2) + x2(1) — 21(0).

We take Dij = DQ“ as the nominal delay for a pair of adjacent clocks ¢ and j when

they update their displays, where D;; = d;; + dj; is the round-trip delay between
clocks 7 and j. As before the clocks update following the same average rule and this

procedure repeats periodically. It can be seen from Fig. 7.4 that, in each update
period from ti2; to t15(k41) for £ = 0, a pair of adjacent nodes exchange messages
exactly once.

Define l‘(k) = [1‘1(k)7$2(k)7$3(k)]T and v = [dlg,dgl,d237d327d13,d31]T. Then
we obtain the system equations

z(12k + i) = A;x(12k +i — 1) + Byv, (7.14)
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for 1 <i< 12 and k = 0, where

(1 0 0] (2 1 0] 1 00
Ai=1[3 5 0], A3=[0 1 0|, A4 =0 1 0f,
[0 0 1) [0 0 1] 0o i 1
[1 0 0] (1 0 0] 1o 2
Ar=10 3 3],4=[0 1 0f,An={0 1 0],
|0 0 1] 2 0 1] 0 0 1
[ 1 0 i3 001 000
By = % 7 Osxal,Bs=| 0 1 Osa|,B=[00 1 0 0 0f,
[ 1 0 0 1 002 1oo
[0 0 0 1 00 1 0 L3
Br=10 0 % % 0 Of, By=|O3x4 1 0 |, Bin=|03x4 0 1|,
(000 1 00 3 1 0 1
Ay = =Ap =13, Byj=1;[13 Osxs5], 1<j<6

U

Here [; = di. By iteration, we have
2

1

k
2(12(k + 1)) = A 2(0) + Y A'Bv, k>0,
1=0

where A = A19A11--- Ay and B = leil Aqs -+ - A1 B;. Following similar arguments
to that in Subsection 7.3.1A, one can prove the following result.

7.3.3. PROPOSITION. As k goes to infinity, =;(12k + r) — x;(12k + r) converge to
some constants for allr =1,...,12, and i,j =1,2,3, i # j.

Define

6”(12]6 + 7‘) é xz(12k + ’I") - x](12k + T)u
e(12k + 1) 2 [e1a(12k + 1), ea3(12k + 7)]7,

and the constants

rag

A .
e:j = hm 6”(12]’(? + 7”), (& 6”1‘2,6’5‘3]71,
k—o0

where i,j = 1,2,3, i # j, and r = 1,...,12. From the system equations (7.14), one
gets a set of equations

e(12k + i) = Aje(12k +i— 1) + Bv, 1 <i <12, (7.15)
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where
1 1
- 5 0 ~ 5 0 ~ 10
A1=|:2 :|7A3:|:2 :|7A5=|: :|a
i1 0 1 0 1
- 1 1 - 1 0 - 1 _1
A7_|: 2:|7A9_|: :|7A11_|:2 2]7
o iy 0 1
~ 1/ 1 -1 ~ 111 -1
Bl—z 1 1 02><4]7BS 4[0 0 02><4:|a
~ 1[0 0 0 0 0| 5 110 0 =1 1 0 0
By = - By = -
54001100]’74[001100]’
- 1] 0 0 ~ 1 1 -1
39:1_02“ 1 _1:|7Bll_4|:02><4 0 0],
Ay=--=A1p=1, By="+ =Bz = Oaye.
Since e"! = e, r =1,3,...,11, we conclude from Proposition 7.3.3 that as k —

o0, the synchronization errors between a pair of distinct nodes approach permanent
oscillations among at most 6 values. One can further calculate these values easily.

Let e 2 [(e1)7T, (e3)T,.. ., (e!))T]T. By taking k on both sides of (7.15) to infinity,
we can get the equation for the synchronization errors between clocks

e = Ae + B, (7.16)
where - ~
O 0 - 0 4 le
Ay O -+ O O By
A= |, B=]:
O O . o 0 NBQ
_O 0] All O_ Bll

Since (I — A) is invertible, which can be proved using similar arguments to that in
Lemma 7.3.2, the error e can be calculated by e = (I — A)~! Bv. Thus we have proved
the following result.

7.3.3. THEOREM. As time goes to infinity, the synchronization errors between each
pair of distinct clocks in the three-clock connected undirected network will approach
permanent oscillations among at most 6 values, which are determined by

e=(I—A)"'Bo.



108 7. Determination of clock synchronization errors in distributed networks

7.3.1. REMARK. In the three-clock directed ring network, the synchronization errors
between clocks converge to some constants; for example, lim; o (21 (t) — 22(¢)) =
dig — D = e}, for all r = 1,...,6. However, in the three-clock connected undirected
network, the synchronization errors between a pair of distinct clocks may not con-
verge, which in general will oscillate; for example, lim; o (21 (f) — 22(f)) may not
exist because e}y may not be equal to e3 for some r1, o, 1 <rp,re < 12

Although the synchronization errors between a pair of distinct clocks in general
will oscillate, it is easy to see that if

et =e", Vry,re =1,3,...,11, (7.17)

then the errors converge to some constant values. Substituting (7.17) into (7.16), one
has
efp = diz — D12, €53 = doz — D23, ey + €53 = diz — D13,

where 7 = 1,3,...,11. Since (7.16) has a unique solution e = (I — A)~!Bv, we can
conclude that if dio — Dig + doz — Doz = dis — D3, namely, dia + dog + dg1 =
di3 + dso + do1, then €7y = dig — Dya, €hy = dog — Da3, 7 = 1,3,...,11, is indeed the
solution to (7.16). We summarize.

7.3.2. COROLLARY. Ifdys + dog + d31 = di3 + d3o + do1, then as time goes to infin-
ity, the synchronization errors between clocks in the three-clock undirected network
converge and

Jim (z5(t) = 2(t)) = dij = Dij, i # j.

Specifically, if the time delays are symmetric, namely d;; = d;; © # j, then the three
clocks can get synchronized asymptotically.

In the next subsection, we extend the results that we have obtained for the three-
clock connected network to general connected networks with bidirectional links.

B. Synchronizing more clocks in a connected undirected network

We consider a connected network consisting of N nodes and m undirected edges.
For the ease of describing the message passing process, we assume that the edges
have been labeled and in each update period, a pair of connected nodes exchange
messages exactly once. The indices of the edges determine the ordering of the pair
of nodes that are activated to exchange messages. For the two nodes associated with
an edge, the one with the smaller index starts the message exchange process. For
the sth edge of the graph, let s; < so denote the indices of the associated two nodes.
Then s; always sends a message to s, first, and then sy replies. Taking the three
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clocks in Subsection 7.3.2A as an example, we label the edges (1,2), (2,3) and (1, 3)
by @, @ and @), respectively. For the 2nd edge (2,3), node @); = 2 always sends a
message to node @), = 3 first, and after waiting for some idling time, node 3 sends

back a message to node 2. Thus the message passing process is illustrated more in
detail in Fig. 7.4.

Define z(k) = [z1(k),...,zn(k)]T, and v = [d1, 15, d1s.155 - -+ » Diny mns Dy ] L -
Then we can derive the system equations through a similar procedure to that in
Subsection 7.3.1A.

x(dmk + 1) = Ajz(dmk +i— 1)+ Bv, 1 <i<4m, k>0, (7.18)

where
Ay =+ =Ayn =In, Boj =1l [In Onxm-1)],
and [; = 7*—, w; are idling times for 1 < j < 2m, and when i = 4(s — 1) + 1, for
11,12

1 <s<m,

Ai = diag{lsl—lvA;a IN—sz}a B; = [ONX(25—2) B'Z ONX(?m—2s)] )

with
1 0 0 15,1 051
1 0
1
=" “loe=]
: 3 1
2 0 2 1N—52 ON—527

When i =4(s —1) + 3, for 1 < s <m,

A; = diag{I,_1, A}, In_s,}, Bi = [Onx@s—2) B Onx(@m—29)]:

with
1 1 0s,— 1,,—
10 - “ 1 : 1
4 4
0 1 0 .
A;’ = . ) Bz,' = :
: 0 1
0 0 1

ON—82 1N—827

We can further obtain
k
z(4m(k + 1)) = AFFlz(0) + Z A'Bv, k=0,
i=0

where A = Ay Asp—1--+-A; and B = Z;inl Ay -+ Aj1B;. Following similar ar-
guments to that in Subsection 7.3.1A, we can conclude that as k& goes to infinity,
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zi(4mk + r) — x;(4mk + r) converge to some constants for all r = 1,...,4m, and
i,j=1,....,N, i#7.

Then define e;; (4mk +r) = x;(dmk +r) —x;(dmk + 1), e(dmk + 1) = [e12(dmk +
1), e23(dmk+r), ... en—1 n(4mk+7r)]T, and the constants el 2 limyop ei; (dmk+r),
1

T

A .o . .
e :[67{2,653,...,6%71’]\[ ,where i, =1,...,N, i # j,and r = 1,...,4m. From

the system equations (7.18), one can get a set of equations
e(dmk + 1) = Aje(4mk + i —1) + Byv, 1 <i < 4m, (7.19)

where

Ay = = Ay =In_1, By =+ = Bam = O(n_1)x2m:

and when i =4(s — 1) + 1, for 1 < s < m,

Ay = diag{I, -1, AL, In_1-5,}, Bi = [On_1)x@s—2 B Ov_1)x@m—29)] >

with
1 0O 0 0
. . 092—2 0?2—2

. N 1 1

/ !

Ai=1| o 1 0 ol Bi=| A I
_1 _1 1 4 4
2 2 2 Onv-_1-s, On—1-s,
r .., 1 1 4
2 2 2

when ¢ =4(s—1)+ 3, for 1 < s <m,

Ai = diag{[sl_g,jl;, IN—82}7 BZ = [O(N—I)X(QS—Z) Bé O(N—l)x(27n—2$):| )

with
1 1 1 1
2 2 2
1 1 1 0, _ 0, _
0 3 —3 —32 e 1
A =10 0 1 0 73{: _11 Zl
: : 4 T4
i ON—sl—l ON—31—1
0 0 O 1
Let
e A [(61)T7 (63)T"”’(e4m—1)T]T.

Then the equation of the synchronization errors can be written as

e=fle+Bv,
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where ~ ~
Q (0] O Ay B,
A3 O O O Bs
A= : , B= :
o o0 . 0] 0] f:34m—3
o o .- Apynr O | Bim-—1

Since the matrix I — A is invertible, the errors can be calculated by e = (I — A)~!Bw.

7.3.4. THEOREM. As time goes to infinity, the synchronization errors between each
pair of distinct clocks in the N-clock undirected connected network will approach
permanent oscillations among at most 2m values, which are determined by

e=(I—A)"'Bo.

Networks with tree topologies are preferred when applying network clock syn-
chronization protocols [34], the following corollary suggests the reason behind it.

7.3.3. COROLLARY. If the communication graph G is an undirected tree, the syn-
chronization errors between clocks in the network converge and

lim (J?l(t) — J)j(t)) = dij — Dij, 1 # J,

t—00
where (i,5) € € and Dy; = 3(dij + dj;).

In the next section, we discuss how to synchronize clocks in networks with strongly
connected directed topologies.

7.3.3 Expansion to strongly connected directed networks

In order to synchronize N clocks in a network with strongly connected directed
topology, we may use only some of the edges in the network. To better explain this
idea, we need to introduce some more notions.

For a strongly connected graph G = (V, £), we can find subgraphs G; = (V;, &;), @
1,...,p, of G such that U¥_;V; = V and each G, is a directed ring graph. Those
edges in U?_,&; are to be utilized in the message passing process. We divide each

update period of the overall network into p stages. Each stage corresponds to a di-
rected ring subgraph G;, in which the message passing process is the same as that
in Subsection 7.3.1B. Note that G; might share common edges and the nodes as-
sociated with these edges will carry out message passing more than once in each
period. We take the message passing process in Subsection 7.3.2A as an example
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since connected undirected graphs can always be viewed as strongly connected di-
rected graphs. The graph corresponds to Fig. 7.4 is G = (V,€) with V = {1,2, 3}
and £ = {(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)}. Define G; = (V;,&;), i = 1,2,3, with
V) = {172}7 & = {(172)’(251)}a Vo = {273}a & = {(233)7(372)}7 and Vs = {1’3}7
& = {(1,3),(3,1)}. Tt is easy to check that U?_;V; = V and G, are directed ring
graphs for ¢ = 1,2,3. Thus each update period can be divided into 3 stages, and
each stage corresponds to a subgraph G;. The message passing process in each stage
is the same as that in Subsection 7.3.1B.

One can obtain the following result which is similar to that in the previous section.

7.3.5. THEOREM. As time goes to infinity, the synchronization errors between each
pair of distinct clocks in the N-clock strongly connected network will approach per-
manent oscillations among at most > %_ |&;| values.

The synchronization errors between clocks, which in general will oscillate, are
determined by the choices of the subgraphs and the time delays. A proper choice of
the subgraphs can lead to the convergence of synchronization errors. One example
is that if we only choose the subgraphs G1, Gs of G defined in the previous example
for message passing, the synchronization errors will converge to some constants in
view of Corollary 7.3.3.

7.4 Illustrative examples

7.4.1. EXAMPLE. (Directed ring networks) We first consider three clocks with the
same skew in a directed ring network, whose message passing procedure is shown in
Fig. 7.2. The three time delays, not known by the clocks, are dis = 0.2, dog = 0.4,
and d3; = 0.9. Then the round-trip delay D = 1.5 and the nominal delay D = 0.5.
Every clock waits for one time unit after receiving a message before sending its
own message, namely w; = 1, ¢ = 1,2,3. We set the initial time displays of the
three clocks to be [z1(0),22(0),23(0)]7 = [10,40,20]7. The simulation results of
the evolution of the displays of the three clocks are shown in Fig. 7.5. One can see
that the three clocks do not synchronize, but the asymptotic synchronization error
between clocks 1 and 2 is —0.3 and that between clocks 2 and 3 is —0.1, which agrees
with our theoretical analysis. If we set all the three time delays to be equal, namely
dio = dsg = d31 = 0.5, then from Theorem 7.3.1 it follows that the three clocks are
synchronized asymptotically as shown in Fig. 7.6.

Since the time delays are random variables in real distributed networks, we re-
run the simulation for the case when the delays take random values in the intervals
dy2 € [0.15, 0.25], das € [0.3, 0.5], and d3; € [0.8, 1.0]. The expected round-trip
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Figure 7.7: Time displays of three clocks with time-varying delays in a directed ring

network.

delay is still D = 1.5, and thus D is still 0.5. The simulation results are shown in
Fig. 7.7, from which one can tell the clock synchronization errors are bounded in a

small range.

7.4.2. EXAMPLE. (Connected undirected networks) We consider three clocks with
the same skew in an undirected network, whose message passing procedure is shown
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40 68.85

Figure 7.8: Time displays of three clocks Figure 7.9: Time displays of three clocks
with asymmetric delays in an undirected net- with time-varying delays in an undirected net-

work. work.

in Fig. 7.4. The time delays are dis = 0.2, do; = 0.3, do3 = 0.3, d32 = 0.4, d13 = 0.4,
and dg; = 0.3. Thus the nominal delays for the three pair of clocks (1,2), (2,3), and
(1,3) are Dis = 0.25, Doz = 0.35, and D;3 = 0.35 respectively. We set the idling
times to be w; = 0.5, ¢ = 1,...,6, and the initial time displays of the three clocks
to be [21(0), 22(0), 23(0)]7 = [10,40,20]7. The simulation results of the evolution of
the displays of the three clocks are shown in Fig. 7.8, from which one can find that
the synchronization errors are bounded in a small range without converging to some
constants.

When we rerun the simulations for the case when the delays take random values in
the intervals d12 € [015, 025], d21 (S [02704], d23 € [02,04], d32 € [03, 05], d13 €
[0.3,0.5], and d3; € [0.2,0.4]. The expected nominal delays are still the same as
above. From Fig. 7.9 one can find that the clock synchronization errors are still
bounded in a small range.

7.4.3. EXAMPLE. (Strongly connected networks) We consider four clocks with the
same skew in a strongly connected graph G = {V, £} with V = {1,2,3,4} and &£ =
{(1,2),(2,3),(3,1),(2,4), (4,1)} as shown in Fig. 7.10. Let G; = {V; = {1,2,3},&, =
{(1,2),(2,3),(3,1)}} and Gy = {V» = {1,2,4},& = {(1,2),(2,4),(4,1)}}. Then
Gy and Gs are both directed ring graphs and V; U Vo = V. The time delays are
dig = dog = dg1 = 0.2, dogz = 0.3, and d3; = 0.4. The nominal delay for the directed
ring graph G is D; = %(dm + da3 + d31) = 0.3 and the nominal delay for G, is
Dy = %(dyz + da4 + dy1) = 0.2. We set the idling times to be w; = 0.5 and the initial
time displays of the four clocks to be [z1(0),z2(0),z3(0), z4(0)]T = [10, 40, 20, 30]7.
The simulation results of the evolution of the displays of the four clocks are shown
in Fig. 7.11, from which one can find that the synchronization errors oscillate among
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several values.

7.5 Conclusion

We have presented explicit expressions for the asymptotic synchronization errors be-
tween two interconnected clocks, and expanded the results to larger networks with
directed ring topologies, connected undirected topologies, and general strongly con-
nected directed topologies respectively. The obtained synchronization errors comple-
ment the impossibility results for clock synchronization in the literature. Determinis-
tic time delays have been considered in this chapter. Questions on the determination
of clock synchronization errors in realistic data networks are still open, where the
time delays are random.






Chapter 8

Conclusions and future research

In this chapter, we summarize our work in this thesis and give recommendations for
future research.

8.1 Concluding remarks

This thesis has investigated distributed algorithms for multi-agent systems and clock
synchronization in distributed networks. To aid the analysis of the convergence of
these distributed algorithms, we have reviewed some classical and recent results on
the convergence of backward products of stochastic matrices. A new necessary and
sufficient condition has been given by making use of the Sarymsakov class of stochastic
matrices, which we have reexamined and made a connection to those well-understood
STA matrices.

The set of scrambling stochastic matrices has been used to construct a sufficient
condition to guarantee the convergence of an asynchronous coordination algorithm
based on the convergence results on products of stochastic matrices in Chapter 3.

We have generalized discussions on distributed algorithms to settings where the
couplings between pairs of agents in a network could be positive or negative in Chap-
ter 4. By making use of the notion of structural balance, sufficient conditions have
been constructed to guarantee that the states of the agents polarize or reach an a-
greement of zero value. The systems studied here can be used to model the opinion
dynamics in social networks, which are often structurally balanced and can be divided
into two opposing factions.

Chapter 5 has investigated three different algorithms that lead to n-cluster syn-
chronization in multi-agent systems. Some sufficient conditions and/or necessary
conditions have been constructed for systems with different agent self-dynamics, with
delay or having negative couplings. The three models presented here are just exam-
ples of different approaches towards cluster synchronization and much richer cluster
synchronization behaviors in natural and man-made systems require further identi-
fication of more such models. More insights have been gained by jointly studying
the controllability problem and the cluster synchronization problem of multi-agent
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systems. Those multi-agent networks that are uncontrollable in finite time tend to
realize cluster synchronization as time goes to infinity.

We have explored clock synchronization problem in distributed networks and
presented explicit expressions for the asymptotic synchronization errors between two
interconnected clocks, and expanded the results to larger networks with directed ring
topologies, connected undirected topologies, and general strongly connected directed
topologies respectively. The obtained synchronization errors complement the impos-
sibility results for clock synchronization in the literature.

8.2 Recommendations for future research

We have seen that the theory on products of stochastic matrices is fundamental in
establishing the effectiveness of distributed coordination algorithms. This is closely
related to the theory on ergodicity of non-homogeneous Markov chains. (See [40]
for detailed information.) Omne possible way to study the ergodicity of a chain of
stochastic matrices is to check the total information flow between two disjoint sets
of agents in a network over time, where the notions of infinity flow and absolute
infinite flow are used to attack this problem [96, 95]. It has been shown that the
absolute infinite flow property of a chain of stochastic matrices is necessary, but not
sufficient for the ergodicity of this chain. People are still making efforts to find out
what additional conditions are needed to make a chain of stochastic matrices ergodic.

Chapter 3 has studied the asynchronous implementation of a distributed coordi-
nation algorithm. It is also interesting to consider the case when the agents update
asynchronously in distributed algorithms in the presence of positive and negative
couplings and also in clustering algorithms. Besides the asynchronous events that
may arise in practical situations, other constraints such as time delays, quantized in-
formation, noisy measurements and so on, are also important issues that one should
take into account when dealing with realistic systems. Another active research area in
coordination algorithms is the analysis of the convergence speed of these algorithms
[74], which is an important characterization of the performance of these algorithm-
s. Some authors have proposed algorithms that achieve finite-time convergence in a
network [27] and some have proposed distributed algorithms that make use of the
states of the agents in previous steps to accelerate the convergence process [18, 75].
We have obtained some preliminary results on accelerating consensus by removing
specific edges in a network from simulations and further work will follow this line
and seek to provide theoretical proofs.

We have generalized distributed algorithms for multi-agent systems by incorporat-
ing negative couplings between agents in the interaction graph topologies in Chapter
4 and proposed an algorithm that might lead to clustering phenomena by making use
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of negative couplings in Chapter 5. Negative coupling, that represents competitive
or conflicting relationships between a pair of agents in a network and modeled by
an edge with negative weight in a graph, definitely deserves further investigation.
Numerical computation has found out that in some cases, when some pairs of agents
are conflicting, consensus in a network can be reached with a much faster speed [111].
Said differently, conflict sometimes accelerates the reaching of an agreement among
agents. However, there is almost no rigorous mathematical analysis on how an agree-
ment is reached in the presence of both positive and negative couplings. Note that
in Chapter 4, agreement can be reached when two opposing factions exist, but the
agreed value is trivially zero. It is interesting to find out when a nontrivial agreed
value can be achieved in the presence of negative couplings. Preliminary work in this
direction has been given in [31]. The results there include the matrix-tree theorem
as a special case, which may have great potential to be further developed to carry
out the analysis for the dynamical behavior of the system concerned. This may lead
to some necessary and sufficient conditions for reaching an agreement in the pres-
ence of negative couplings and serve as the first step of explaining how conflicts may
sometimes accelerate the process of reaching agreement.

Another issue that deserves consideration is the case when the interaction graph
topologies are not only purely dependent on time but also on the system state, since
in practical situations, whether a link between a pair of agents exists or not probably
depends on the relative differences between the two agents [85, 43]. For example, in
social networks, if the state of an agent denotes the opinion of an individual towards
a subject, then a link between a pair of individuals could vanish or establish as the
difference between their opinions varies, which induces state-dependent interaction
topologies [43]. Thus the dynamics of the agents and the interaction graph topologies
are interacting with each other and it brings great challenges to analyze the dynamical
behavior of the system. The convergence results on reaching an agreement or splitting
into clusters in a network in the present thesis and also in most of the literature, are
derived under proper connectivity assumptions on the graph topologies. However, in
general, it is difficult to check whether the connectivity assumptions can be met as
the system evolves given an initial condition of the system, when the graph topologies
are depending on the state of the system. Recent work on opinion dynamics models
has been devoted to this research direction [11, 12, 68]. There are still a number of
open problems in these opinion dynamics models with state-dependent interaction
graphs especially in the models with asymmetric confidence bound [68].

It has been seen in Chapter 4 that the states of the agents in a network evolve into
two opposite values in a structurally balanced network. Structural balance theory
is a static theory, and people are also trying to find out how structural balance
dynamically arises in a social network. Establishing a satisfactory dynamical model
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describing the emergence of structural balance is challenging. Present models are
focused on networks with all-to-all connections [64] and models for other network
topologies are not available. An extension of structural balance of a network is the
clustering structure, in which the network can be split into more than two clusters
such that each positive connection links two agents of the same cluster and each
negative connection links agents from different clusters [28]. A proper dynamical
model that can describe the emergence of clustering in social networks is still not
available. Another interesting problem is to find out how the opinions evolve in a
network that has a clustering structure and to see whether they will finally evolve
into several clusters.
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Summary

In the control community, the study on distributed control of multi-agent systems
has received considerable attention in recent years due to their broad applications
in sensor networks, robotic teams, and so on. This is also motivated by the grow-
ing interest in understanding the collective group behaviors in natural, social and
engineered networks. The architecture of these complex networks is distributed or
decentralized in character. Each individual agent in the complex multi-agent system
does not have global information of all the agents; instead, each agent only interacts
with its neighbors, receives limited information from them, and takes actions based
on the local information. Huge efforts have been devoted to investigate the inter-
play between the individual agent dynamics and the network structure in order to
understand the emergence of collective behaviors. This thesis is concerned with dis-
tributed algorithms for interacting autonomous agents. We study several distributed
algorithms that drive a group of agents to reach an agreement on the value of a
variable of common interest or to split into two or more clusters. The clock syn-
chronization problem in distributed networks with communication time delays is also
discussed.

We reexamine a subclass of stochastic matrices, the Sarymsakov class of stochas-
tic matrices and explore its relationship with other well-studied classes of stochastic
matrices. The classical conditions scattered in the literature for the convergence
of products of stochastic matrices are reviewed and a new necessary and sufficient
condition is then proposed by making use of the Sarymsakov matrices. These conver-
gence results serve as fundamental tools for the analysis of distributed coordination
algorithms for multi-agent systems. They are applied to solve an asynchronous im-
plementation problem of a distributed coordination algorithm that causes a group of
agents to reach an agreement.

By employing the structural balance theory from social networks study, we study
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distributed algorithms in the presence of positive and negative couplings. These
models differ from most of those investigated in the literature, which only consider
positive couplings in networks. Sufficient conditions are constructed to show when
the state of the system polarizes or converges to an agreed value of zero.

To better understand the clustering behavior emerging in natural and man-made
systems, three different mechanisms that may lead to the clustering behavior are
proposed and analyzed. Some sufficient conditions and/ or necessary conditions are
constructed for systems with different agent self-dynamics, with delay or having neg-
ative couplings. These clustering mechanisms are examples of different mechanisms
leading to clustering phenomena. More mechanisms may be identified after gaining
insight into the clustering behavior in natural and man-made systems. Furthermore,
by jointly studying the controllability problem and the cluster synchronization prob-
lem of multi-agent systems, it is shown that those multi-agent networks that are
uncontrollable in finite time tend to realize cluster synchronization as time goes to
infinity.

Another issue that is addressed in the thesis is the clock synchronization prob-
lem in distributed networks with communication time delays. Recently, there have
been studies showing the impossibility of clock synchronization in distributed net-
works with asymmetric time delays. Based on similar models for clocks, we derive
explicit expressions for the asymptotic synchronization errors between two intercon-
nected clocks and expand the results to larger networks with directed ring topologies,
connected undirected topologies, and general strongly connected directed topologies,
respectively.



Samenvatting

In de systeemtheorie en regeltechniek heeft het onderzoek naar gedistribueerde aans-
turing van multi-agent systemen de afgelopen jaren veel aandacht gekregen door hun
brede toepassing in sensor netwerken, robot teams, enzovoort. De motivatie voor
dit onderzoek komt ook voort uit de groeiende interesse om het collectieve gedrag
van groepen in natuurlijke, sociale en geconstrueerde netwerken beter te begrijpen.
De architectuur van dergelijke complexe netwerken heeft een gedistribueerd of gede-
centraliseerd karakter. Geen van de individuele agenten heeft kennis van de globale
informatie aangaande alle agenten; in plaats daarvan kan elke agent alleen met zijn
buren samenwerken, gelimiteerde informatie van hen ontvangen en actie ondernemen
op basis van deze lokale informatie. Veel arbeid is geleverd om de wisselwerking
tussen de dynamica van de individuele agenten en de structuur van het netwerk
te onderzoeken met het doel het ontstaan van collectief gedrag beter te begrijpen.
Dit proefschrift behandelt gedistribueerde algoritmes voor samenwerkende autonome
agenten. We bestuderen verschillende gedistribueerde algoritmes voor een groep a-
genten die een overeenkomst willen bereiken over een variabele van gezamenlijke
interesse of de groep splitst in twee of meer clusters. Het kloksynchronisatie prob-
leem in gedistribueerde netwerken met tijdsvertragingen als gevolg van communicatie
wordt ook behandeld.

We heroverwegen een subklasse van stochastische matrices, de zogenoemde Sarym-
sakov klasse van stochastische matrices, en verkennen de relatie met andere bekende
klassen van stochastische matrices. Klassieke voorwaarden uit de literatuur aan-
gaande de convergentie van producten van stochastische matrices zijn heroverwogen
en een nieuwe noodzakelijke en voldoende voorwaarde zijn voorgesteld door gebruik
te maken van de Sarymsakov matrices. Deze convergentie resultaten worden gebruikt
voor de analyse van gedistribueerde algoritmes voor multi-agent systemen. De voor-
waarden zijn toegepast voor de oplossing van een asynchroon implementatieprobleem
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voor een gedistribueerd codrdinatie algoritme, wat ervoor zorgt dat een groep agenten
overeenstemming bereikt.

Gebruik makend van de theorie van structurele balans, welke zijn oorsprong vindt
in de studie van sociale netwerken, onderzoeken we gedistribueerde algoritmes in de
aanwezigheid van positieve en negatieve koppelingen. Deze modellen verschillen van
reeds onderzochte modellen, welke alleen positieve koppelingen beschouwen. Vol-
doende voorwaarden zijn opgesteld, welke laten zien wanneer de toestand van het
systeem polariseert, dan wel convergeert naar een afgesproken waarde van nul.

Om het clustering gedrag, wat verschijnt in natuurlijke en kunstmatige systemen,
beter te begrijpen zijn drie verschillende mechanismes die tot clustering gedrag kun-
nen leiden voorgesteld en geanalyseerd. Een aantal voldoende voorwaarden en/of
noodzakelijke voorwaarden zijn geconstrueerd voor systemen met; verschillende zelf-
dynamica van de agenten, tijdsvertragingen, of negatieve koppelingen. Deze clus-
tering mechanismes zijn voorbeelden van verschillende mechanismes die leiden tot
clustering verschijnselen. Meer mechanismes kunnen worden onderscheiden nadat
meer inzicht is verkregen in het clustering gedrag in natuurlijke en kunstmatige sys-
temen. Bovendien, door het beheersbaarheid probleem en het cluster synchronisatie
probleem gezamenlijk te bestuderen, is aangetoond dat die meerdere-agent systemen
die niet beheersbaar zijn in eindige tijd, cluster synchronisatie realiseren wanneer de
tijd naar oneindig gaat.

Een ander onderwerp in dit proefschrift is het klok synchronisatie probleem in
gedistribueerde netwerken met communicatie tijdsvertragingen. Recentelijk zijn er
onderzoeken geweest die aantonen dat klok synchronisatie in gedistribueerde netwerken
met asymmetrische tijdsvertragingen onmogelijk is. Op basis van vergelijkbare mod-
ellen voor klokken, leiden wij expliciete uitdrukkingen af voor de asynchrone syn-
chronisatiefouten tussen twee verbonden klokken en breiden deze resultaten uit naar
grotere netwerken met respectievelijk gerichte ring topologién, verbonden niet-gerichte
topologién, en algemene sterk verbonden gerichte topologién.



