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Chapter 1

Introduction

This thesis is concerned with distributed algorithms for interacting autonomous ag-

ents. In this thesis, we study several distributed algorithms that drive a group of

agents to reach an agreement on the value of a variable of common interest or to split

into two or more clusters. This chapter introduces some background information on

emergent collective behavior that arises in natural and man-made systems and dis-

tributed algorithms developed for complex multi-agent systems. The motivation for

the research in this thesis and the contributions are provided and the outline of the

thesis follows.

1.1 Background

In this section, we give an introduction on the research of collective behavior in

complex multi-agent systems and the design of distributed algorithms operating on

these systems.

1.1.1 Collective behavior in complex multi-agent systems

As a class of collective behavior of groups of interacting units, synchronization has

been discovered widely in natural, social and engineered networks and systems [93].

For example, fireflies flash in unison, audiences clap synchronously after an excel-

lent performance, and coupled metronomes oscillate in phase. The discovery of this

synchronization phenomenon can be traced back to as early as 1665, when a Dutch

physicist Christiaan Huygens observed the synchrony of two clocks hanged on two

planks which lied on top of two chairs [93]. The two pendulums gradually oscillat-

ed out of phase after some time and they kept swinging in this fashion from then

on. After conducting a number of experiments, Huygens found out the cause of the

synchrony of the clocks. The clocks were interacting through tiny vibrations of the

planks and the chairs, which were caused by the swing of the pendulums. Since then,

huge efforts have been devoted to the study of the synchronization phenomena from

diverse disciplines like mathematics, physics, sociology, engineering and so on [7].
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Besides the synchronization phenomena, various intriguing animal group behav-

iors have received considerable attention, such as schools of fish, flocks of birds, herds

of cattle and so on [93]. People are more and more getting fascinated by and also try

to unveil the mechanisms behind these collective behaviors in complex networks. A

common character of these emerging collective behaviors is that the individual unit

in the network does not have global information of all the units, instead, each one

only receives limited information from its neighbors or peers nearby. Each individual

unit in the network takes actions based on the local information she receives, while

in the group level, surprisingly some collective behavior appears. It is challenging

to investigate how the individual agent dynamics and the network structure interact

with each other and jointly lead to global emergent collective behavior, which has

been the central topic for network science.

In computer sciences, Reynolds developed programs to simulate the motion of

a flock of birds [83]. Each individual bird has local perception of its surrounding

environment and so has local information of where his peers are going, and reacts

independently. Three rules operating on each individual bird lead to the emergence of

flocking: (1) separation, avoid collisions with neighbors; (2) alignment, steer towards

the average heading of nearby flockmates; (3) cohesion, steer towards the average

position of nearby flockmates [83]. Mathematical models capturing these three rules

were later proposed to theoretically explain the emergence of flocking of birds [71].

These shed light on better understandings of animal group behaviors and also may

find potential applications in the formation flight of autonomous vehicles.

In [97], Vicsek et al. conducted experiments on self-propelled particles that move

with constant absolute speed but adapting their moving directions to the average

of those particles in their neighborhoods under some perturbations. This simple

nearest neighbor rule successfully drives all the agents to move in the same direction,

although there is no central station that broadcasts coordination commands and the

neighborhood of each agent may change with time. This has inspired researchers

from mathematics and engineering to explore the intrinsic mechanisms that induce

the cohesive behavior [47] and also inspired the research on distributed control of

multi-agent systems.

The last decades have witnessed major advances in the understanding of these

collective behaviors, especially the synchronization phenomena of coupled dynamical

systems [103, 102]. With the aid of supercomputers, people are enabled to handle

vast amount of data, which makes it possible to analyze large-scale complex networks

[24]. For a very long time, the theory of Erdös-Rényi random graphs has dominated

the research of graph theory, which is a key tool for networks study. However, most

of the real-world networks cannot be modeled as random networks. For example,

whether there is a flight between two cities, whether two persons are friends, are not
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completely random. Two seminal papers published a decade ago led to significant

advances in the field of networks studies. One proposed the well-known small-world

network models that can be highly clustered but still have small path lengths [99]

and the other revealed the fundamental feature of the scale-free property of various

complex networks [9]. A number of research efforts have been following this research

line and further investigating the collective behaviors that emerge in these networks.

In sociology, different mathematical models have been constructed to study the

evolution of the opinions of a group of interacting individuals. Some of the models

concerned are linear and people are more focused on the consensus problem and try

to find out how to reach it [29]. Recently, more and more nonlinear models have

been constructed to characterize the opinion dynamics in social communities. One

opinion dynamics model called Krause model that has attracted great attention,

considers that each agent in the network has a “confidence bound” [43]. When

updating the opinions, each agent only takes into account those agents’ opinions that

differ no more than the confidence bound from his own opinion. The neighborhood

of each agent thus changes with time and also depends on the state of the system.

This model finally shows that the agents’ states reach a consensus or polarize or

become fragmented. These observed simulations results in the Krause model have

been analyzed in different settings in [11, 12, 68].

In the study of social networks, structural balance theory that was proposed in

1950s plays an important role [22]. A structurally balanced network is a network that

can be divided into two opposing factions, in which all links inside each faction are

positive and all links between individuals in different factions are negative. Typical

examples include two-party political systems, Western Bloc and Eastern Bloc during

the Cold War and so on. Computations also have shown that lots of large-scale online

social networks are structurally balanced [35]. The theory of structural balance, from

which one can tell a given social network is balanced or not, is a static theory. How-

ever, the relationship between people and the structure of the network are changing

with time. People are also trying to find out how a network may dynamically evolve

into a structurally balanced state [64].

1.1.2 Distributed algorithms for multi-agent systems

Along with the growing interest in understanding the intriguing collective animal

group behaviors, in the control community, there is also an emerging interest in stu-

dying distributed algorithms for multi-agent systems. Control of a single system

has been well studied in the control society and various control theories have been

developed, such as proportional-integral-derivative control, adaptive control, robust

control and so on. Recently, there is an emerging trend to study distributed control
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of multiple interconnected systems. There are obvious advantages using several inter-

connected systems over a single complicated system in many practical applications,

such as scalability, robustness, and flexibility.

Another reason that the study on distributed control of multi-agent systems has

received considerable attention in recent years is due to their broad applications in

sensor networks, unmanned aerial vehicles (UAVs), robotic teams, and so on [82].

The main objective in these applications is to control these agents in a group to

accomplish some global task cooperatively by sharing only local information with

their neighbors. This distributed control methodology differs tremendously from the

traditional centralized control approach, in which a central station is required to con-

trol the agents in a network. Instead, no central station is available in a distributed

control system. However, this distributed fashion also brings great challenge to the

analysis of distributed control systems due to the fact that a number of systems are

involved and also due to practical constraints, such as limited sensing capabilities,

unreliable communication channels, asynchronous effects and so on. The global dy-

namical behavior of the interconnected system is thus highly nonlinear and difficult

to predict. It is tempting and challenging to carry out research on the interplay be-

tween the local interactions among the agents and the emergent collective behavior

of the integrated system.

The study on distributed control of multi-agent networks in control community

can be traced back at least to 1980s. Efficient load balancing algorithms in distributed

computation have been constructed successfully using ideas of distributed averaging

that can be modeled using stochastic matrices [10]. Recently, there has been a

resurgence of research interest in the study of distributed algorithms of multi-agent

systems [47, 73, 69, 81, 72]. In [47], simple nearest neighbor rules have been used to

successfully cause a group of agents to reach an agreement on their moving directions.

Some connectivity conditions, which require that the agents are connected to each

other throughout the network across each time interval, are constructed to guarantee

the convergence. Rigorous mathematical proof of the convergence of the headings of

all the agents to the same direction has been established by making use of matrix

theory, graph theory and dynamical system theory. This also explains the simulation

results conducted in [97], where the directions of the self-driven particles become the

same in the presence of perturbations. In [81, 69], the connectivity assumption has

been relaxed to the condition that the union graph across each time interval contains

a directed spanning tree. This condition means that there always exists an agent that

can influence all the other agents directly or indirectly in the network across each

time interval, which guarantees the convergence of the overall system. The notions

related to connectivity of a graph will be introduced in Chapter 2.

Following this research line, significant efforts have been devoted to the study
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of distributed algorithms along different research directions. Several active research

directions include distributed consensus/clustering algorithms, distributed optimiza-

tion, distributed formation control, distributed estimation and control, and so on

[82]. Distributed consensus problem has been a fundamental and benchmark prob-

lem in multi-agent coordination. This thesis starts from studying an asynchronous

implementation of a distributed averaging algorithm, and then continues investigating

clustering algorithms in multi-agent systems, which includes the previous averaging

algorithm as a special case. It is followed by determination of clock synchronization

errors in distributed networks.

1.2 Motivation and contributions

Matrix theory, graph theory and dynamical system theory are powerful tools in the

analysis of distributed coordination algorithms for multi-agent systems. Convergence

of products of stochastic matrices has proven to be critical in establishing the effec-

tiveness of distributed coordination algorithms. The study of the convergence of

products of non-negative matrices can be traced back at least to those work on the

convergence of non-homogeneous Markov chains [40]. Ever since then, various nec-

essary and/or sufficient conditions for the convergence have been constructed, and

several classical matrix theory books summarizing known results in this area have

been published [44, 90, 42]. In the classical results, the set of stochastic, indecompos-

able, aperiodic matrices, called SIA matrices, has attracted a lot of attention, and

the results on SIA matrices [101] have been used to prove that the agents can reach

an agreement on the value of a variable of common interest using distributed nearest

neighbor rules [47].

In many coordination algorithms, it is assumed that the agents in a network

can update their states synchronously. However, in practice, the clock installed

at each agent is often not synchronized with each other and the agents can only

update according to their own clocks. Consequently, even when the synchronous

coordination strategy converges, one still needs to check whether the same strategy

implemented asynchronously still converges. To this end, in Chapter 2, we first

reexamine a subclass of the SIA matices, the Sarymsakov class of stochastic matrices,

which is introduced by Sarymsakov in [86] and redefined by Seneta in [89]. The

Sarymsakov class is a semigroup under matrix multiplication and contains the set of

scrambling matrices [89] as a subclass. We show that by generalizing the definition

of the Sarymsakov class, we can make a connection to those much better understood

SIA matrices. We further develop a new necessary and sufficient condition for the

convergence of backward infinite products of stochastic matrices in terms of matrices

from the Sarymsakov class of stochastic matrices in Chapter 3. Then we consider
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the coordination task for multi-agent systems when the agents update their states

asynchronously. We prove that if the update matrix, when all the agents update

synchronously, is a scrambling matrix, one can guarantee the system’s convergence

when the agents update asynchronously.

Much of the work on distributed algorithms has assumed that all the agents in

a network are working cooperatively to reach an agreement, which implies that a

neighboring pair of agents always contribute to decrease the relative difference as

if they are attractive to each other. The cooperation between a pair of agents is

modeled by the positive coupling between them, which corresponds to an edge with

some positive weight in the interaction graph. However, typical coupled multi-agent

systems indicate that conflict between pairs of agents in a network is ubiquitous. In

neural networks, the coupling between neurons can be either excitatory or inhibitory

[100]; in robotic teams, the interaction between self-interested robots can be either

collaborative or competitive [13]; in social networks, the relationship between people

can be either friendly or antagonistic [98].

In social network theory, a network that characterizes the friendly and antagonis-

tic relationships among individuals is modeled by a signed graph. A signed graph is

structurally balanced if it can be split into two factions, where each faction contains

only friendly relationships while individuals from different factions are antagonistic

[98]. In a static structurally balanced network, the states of the agents asymptoti-

cally converge to two opposite values, where the individuals in the same faction hold

the same value, while the states of those from different factions are opposite [2, 3].

It is more challenging and interesting to investigate the dynamical behavior of the

system under dynamically changing network topologies, where the networks may not

be structurally balanced all the time or the bipartitions that divide the networks into

two opposing factions may change with time.

This motivates us to study distributed algorithms in the presence of both positive

and negative couplings. They generalize distributed algorithms in [47, 81, 16], where

the graphs characterizing the interactions among the agents only consist of positive

couplings and they are structurally balanced since one of the two factions is empty.

When the network topology is static, the states of the agents polarize in a structurally

balanced network, while in a structurally unbalanced network they converge to zero

asymptotically. In the case when the network topologies are time-varying, polariza-

tion of the states of the agents will appear under some connectivity conditions if all

the networks involved are structurally balanced and maintain a common bipartition

of two opposing factions; otherwise, polarization of the states of the agents will not

happen and instead, the states of all the agents asymptotically agree and converge

to zero.

In the literature, various algorithms have been successfully constructed to cause
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all the agents in a group to converge to the same value asymptotically [47, 81, 16]. At

the same time, there is an emerging trend to study how an interconnected group may

incorporate or evolve into different sub-groups, called clusters [106]. In nature, multi-

species foraging groups have been observed, such as flocks of bark foraging birds [32],

in which birds have to coordinate through interactions with peers in their own and

other species. In the study of social networks, the Krause model [43] describes how

the agents with bounded confidence levels evolve into different clusters, where the

agents in the same cluster hold the same opinion in the end. The clustering behavior

is also potentially useful for the formation control problem for teams of autonomous

agents [4]. In [4], one of the main research problems that have been surveyed is to

split a formation into sub-formations in order to accomplish covering tasks or avoid

obstacles.

Motivated by the reported clustering phenomena, in Chapter 5, we study the clus-

ter synchronization problem, in which a coupled multi-agent system is required to

split into several clusters, so that the agents synchronize with one another in the same

cluster, but differences exist between different clusters. We are interested in iden-

tifying the approaches that might lead to clustering behavior in diffusively coupled

networks that have mainly been used for synchronization study. We present three

different approaches to realize clustering behavior in connected diffusively-coupled

networks. When analyzing the three mechanisms, we also list related results that are

scattered in the literature and make comparison when possible.

Furthermore, we make a connection to the controllability problem of multi-agent

systems. A dynamical system is said to be controllable if under suitable control

actions as the system’s inputs, the system’s state can be driven from any initial

values to any desired final values within finite time [49]. For an interconnected multi-

agent system, it is of great importance to know whether collective behavior can be

achieved by controlling only a portion of the agents. This is fundamental to the

design of effective distributed control algorithms. Tools from graph theory have been

employed to attack this problem. Equitable partitions and almost equitable partitions

are utilized to provide bounds for the controllable subspace of a multi-agent system

[79, 63, 19, 113]. We generalize the notions to general directed weighted graphs and

provide upper and lower bounds for the system’s controllable subspace and show

that those diffusively coupled multi-agent networks that are not controllable tend to

realize cluster synchronization as time goes to infinity.

While physical devices, such as computational units, sensors and actuators, are

more and more frequently working together over distances, people are more and more

concerned with the problem of how to synchronize the clocks that are installed at

those physical devices and connected through wired and/or wireless data networks

[36]. The importance of clock synchronization can also be seen from examples of
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converging coordination algorithms that may not converge any more, when the clock

installed at each agent is not synchronized with each other and the agents can only

update according to their own clocks. Clock synchronization has been discussed

intensively in the area of theoretical computer science especially in the 1980’s [52, 92],

and various impossibility results and bounds for synchronization errors have been

reported [62, 61]. More recently, with the growing interest in the application of

large-scale networks, in particular ad hoc and sensor networks, clock synchronization

problems have attracted considerable attention [67, 8, 84, 76, 56, 57, 107].

Very recently, Freris, Graham and Kumar have shown that in an idealized setting

the clocks cannot be synchronized precisely in distributed networks when asymmetric

time delays are present [37]. This result is obtained by using tools from linear system

theory and consistent with the results obtained previously in theoretical computer

science. Such impossibility results point out insightfully the fundamental limit of dis-

tributed clock synchronization strategies and underscore the urgent need to carry out

in-depth theoretical analysis for various clock synchronization protocols. On the oth-

er hand, in engineering practice when clocks are adjusted repeatedly to compensate

the differences between their time displays, their displays can indeed get synchro-

nized within an acceptable level of accuracy in a distributed fashion. In [94], the

Time-Diffusion synchronization Protocol (TDP) has been proposed to enable sensor

networks to synchronize their clocks with bounded errors. In [53], both synchronous

and asynchronous versions of a rate-based diffusion protocol have been discussed, in

which clocks adjust their displays repeatedly by taking the weighted average of the

displays of themselves and their adjacent clocks. IEEE 1588 protocol [46] has been

applied widely to networked measurement and control systems.

This motivates us to study the clock synchronization errors in the presence of

asymmetric time delays in a network based on similar models for clocks as in [37].

By updating all clocks repeatedly, we are able to derive explicit expressions of the

synchronization errors in steady states, which are within an acceptable range even

when the time delays are asymmetric.

In short, the contributions of this thesis can be summarized as follows.

1. We reexamine the Sarymsakov class of stochastic matrices and make a connec-

tion to better understood SIA matrices.

2. We develop a new necessary and sufficient condition for the convergence of

backward products of stochastic matrices and apply the results to derive new

sufficient conditions that can guide the asynchronous implementation of coor-

dination algorithms for multi-agent systems.

3. We develop sufficient conditions for the agents in a network to polarize or to

reach an agreement for distributed algorithms in the presence of positive and



1.3. Outline of this thesis 9

negative couplings under dynamically changing interaction topologies.

4. We propose three different distributed algorithms that may lead to clustering

behavior of interacting agents in connected networks.

5. We provide an upper bound and a lower bound for the controllable subspace for

a general diffusively coupled multi-agent system and show that those diffusively

coupled multi-agent networks that are not controllable tend to realize cluster

synchronization as time goes to infinity.

6. We determine clock synchronization errors in distributed networks in the pres-

ence of asymmetric time delays and show that the synchronization errors can

be bounded within an acceptable level of accuracy that are determined by the

degree of asymmetry in time delays.

1.3 Outline of this thesis

This thesis is structured as follows. Chapter 2 introduces basic notation and defini-

tions that will be used throughout the thesis. It is followed by introductory termi-

nologies and results in graph theory and algebraic graph theory, and basic results on

nonnegative matrices and stochastic matrices. We also review some existing results

on the convergence of distributed coordination algorithms.

In Chapter 3, some classical results on products of stochastic matrices are re-

viewed and a new necessary and sufficient condition is constructed by making use of

the matrices in the Sarymsakov class. We then discuss a discrete-time averaging al-

gorithm, which is implemented asynchronously to cope with the practical constraint

that agents may not have access to a common clock. The set of scrambling stochastic

matrices, a subclass of the Sarymsakov class, is utilized to establish the convergence

of the agents’ states based on the convergence results on products of stochastic ma-

trices. The results presented in this chapter are extensions of those in [109].

In Chapter 4, we study distributed algorithms in the presence of positive and

negative couplings. We discuss both cases when the network topologies are static and

time-varying. In the case when the network topologies are time-varying, the states of

the agents polarize under some connectivity conditions if all the networks involved are

structurally balanced and maintain a common bipartition of two opposing factions. If

structurally unbalanced networks arise often enough as time evolves, then the states

of all the agents asymptotically agree and converge to zero.

Chapter 5 shows three different distributed algorithms that may lead to cluster-

ing behavior of coupled agents in connected networks. The first approach is that

agents have different self-dynamics, and those agents having the same self-dynamics
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may evolve into the same cluster. When the agents’ self-dynamics are identical, we

present two other approaches by which cluster synchronization might be achieved.

One is the presence of delays and the other is the existence of both positive and

negative couplings between the agents. Some sufficient and/or necessary conditions

are constructed to guarantee cluster synchronization. The results presented in this

chapter have been published in [105, 106].

Chapter 6 discloses the relationship between the controllability problem and the

cluster synchronization problem of complex multi-agent systems. We first define

generalized equitable partitions and almost equitable partitions for general directed

weighted graphs and then we are able to provide an upper bound and a lower bound

for the controllable subspace for a general diffusively coupled multi-agent system.

Furthermore, we show that those diffusively coupled multi-agent networks that are

not controllable are in general easier to realize cluster synchronization. The results

presented in this chapter are extensions of those in [108].

In Chapter 7, we determine clock synchronization errors in distributed networks in

the presence of communication time delays. We show that the synchronization errors

can be bounded within an acceptable level of accuracy that are determined by the

degree of asymmetry in time delays. After studying the basic case of synchronizing

two clocks in the two-way message passing process, we first analyze the directed

ring networks, in which neighboring clocks are likely to experience severe asymmetric

time delays. We then discuss connected undirected networks with two-way message

passing between each pair of adjacent nodes. In the end, we expand the discussions to

networks with directed topologies that are strongly connected. The results presented

in this chapter are extensions of those in [107].

Concluding remarks and recommendations for future research are given in Chap-

ter 8.



Chapter 2

Mathematical Preliminaries

In this chapter, we first introduce the general notation and definitions that will

be used throughout the thesis. Some fundamental knowledge of graph theory and

matrix theory is reviewed. This plays a crucial role in the convergence analysis

of distributed coordination algorithms for multi-agent systems. The last section in

this chapter reviews both discrete-time and continuous-time coordination algorithms

that are well-studied in the past decade and collects some fundamental convergence

results.

2.1 Basic notation and definitions

Let R denote the field of real numbers. Let N be a positive integer. RN denotes the

N -dimensional Euclidean space. IN and OMˆN denote the N ˆ N identity matrix

and the MˆN zero matrix, respectively. I and O denote the identity matrix and zero

matrix with compatible dimension, respectively. 1N and 0N represent N -dimensional

column vectors with all ones and all zeros, respectively. 1 denotes a column vector

with all ones with compatible dimension. 0 denotes a column vector with all zeros

with compatible dimension.

Let A P RMˆN be an M ˆ N matrix. rankpAq denotes the rank of A. kerpAq

denotes the kernel of A defined by tx P RN |Ax “ 0u and impAq denotes the image

of A defined by ty P RM |y “ Ax, @x P RNu. We write A ě 0 if aij ě 0, i “

1, . . . ,M, j “ 1, . . . , N , and we say A is a nonnegative matrix. We write A ą 0 if

aij ą 0, i “ 1, . . . ,M, j “ 1, . . . , N , and we say A is a positive matrix. If M “ N , A

is a square matrix. A positive definite matrix A is denoted by A ą 0 and a positive

semi-definite A is denoted by A ě 0. Correspondingly, a negative definite matrix and

a negative semi-definite matrix are denoted by A ă 0 and A ď 0, respectively.

For two arbitrary matricesA “ paijqmˆn andB “ pbijqpˆq, the Kronecker product
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of A and B is defined by

A b B “

»

—

—

—

–

a11B a12B ¨ ¨ ¨ a1nB

a21B a22B ¨ ¨ ¨ a2nB
...

...
. . .

...

am1B am2B ¨ ¨ ¨ amnB

fi

ffi

ffi

ffi

fl

.

For an NˆN matrix A, assume that λ1pAq, λ2pAq, . . . , λN pAq are the eigenvalues

of A and RepλipAqq denotes the real part of the eigenvalue λipAq. ρpAq denotes the

spectral radius of A, which is defined by ρpAq “ max1ďiďNt|λipAq|u. As is defined

by As “ 1
2 pA ` AT q.

dimp¨q denotes the dimension of a vector or a space. For a set S, let |S| be the

cardinality of S. Let x “ rx1, . . . , xN sT be an N -dimensional real vector. ||x||2 is

the Euclidean norm of x defined by ||x||2 “
?
xTx and ||x||8 “ maxt|x1|, . . . , |xN |u

is the max norm of x. diagpxq denotes the diagonal matrix with the vector x on its

diagonal.

2.2 Basics of graph theory

Graph theory serves as a fundamental and powerful tool in the study of network

science. Graphs can be conveniently used to describe the topologies of networks and

in later chapters we will frequently use them to visualize the interaction topologies

among the agents or the communication topologies among the clocks in a network.

This material can be found in many books on graph theory, for example [25, 30].

A graph consists of a vertex set and a set of edges connecting the vertices. Let

a graph consisting of N vertices be denoted by G “ pV, Eq, with the vertex set

V “ tv1, v2, . . . , vNu and the edge set E Ď V ˆ V. We will use node and vertex

interchangeably in later chapters. Conventionally, when we utilize a graph G to

represent the interaction topology among the agents, vertex vi in the graph represents

agent i in a multi-agent system. In an undirected graph, the edges in E are denoted

by unordered pairs of vertices. pvi, vjq P E if and only if there is an edge connecting

vi and vj . In contrast, a directed graph is defined by an edge set consisting of ordered

pairs of vertices; that is pvi, vjq P E does not necessarily imply pvj , viq P E (see Fig.

2.1(a) for an example). For an edge pvi, vjq P E in a directed graph, vi is called the

parent vertex and vj is called the child vertex. If not explicitly stated, throughout

this dissertation, we only consider graphs without self-loops, i.e. pvi, viq R E . An

undirected graph can be viewed as a directed graph if every undirected edge pvi, vjq

is represented by two directed edges pvi, vjq and pvj , viq. The union of a collection of



2.2. Basics of graph theory 13

graphs is a graph whose vertex and edge sets are the unions of the vertex and edge

sets of the graphs in the collection.

1

2

3

4

5

1

2

3

4

5

(a) (b)

Figure 2.1: (a) A directed strongly connected graph with five vertices; (b) an undirected

connected graph with five vertices.

In a directed graph G, a directed path of length k is a sequence of distinct vertices

vi1 , . . . , vik`1
such that pvis , vis`1q P E for s “ 1, . . . , k. An undirected path in an

undirected graph is defined analogously. The distance from vi to vj is the length of the

shortest path from vi to vj and is denoted by distpvi, vjq. We define distpvi, viq “ 0 for

any vi. Note that in directed graphs, distpvi, vjq is in general not equal to distpvj , viq.

In a directed graph, a cycle is a directed path that starts and ends at the same vertex.

A directed graph is said to be strongly connected if there is a directed path from

every vertex to every other vertex. An undirected graph is connected if there is an

undirected path from every vertex to every other vertex. The diameter of a graph

G is defined by diampGq “ maxvi,vjPV distpvi, vjq. Obviously, 1 ď diampGq ď N ´ 1

when G is strongly connected and N ą 1. A directed tree is a directed graph in which

every vertex has only one parent except for one vertex, called the root, which has no

parent and from which there is a directed path to every other vertex. For undirected

graphs, a tree is a graph in which every pair of vertices is connected by exactly one

undirected path.

A subgraph G1 “ pV1, E1q of G “ pV, Eq is a graph such that V1 Ď V and E1 Ď

EXpV1ˆV1q. A directed spanning tree pV, E1q of a directed graph pV, Eq is a subgraph

of pV, Eq such that pV, E1q is a directed tree. An undirected spanning tree of an

undirected graph is defined analogously. We say a directed graph contains a directed

spanning tree if a directed spanning tree is a subgraph of this graph. It is noted

that a directed graph contains a directed spanning tree if and only if it contains at

least one vertex from which there is a directed path to every other vertex. This is a

condition which is weaker than that a graph is strongly connected. In contrast, an

undirected graph contains a spanning tree if and only if it is connected.

The adjacency matrix A “ paijqNˆN of a directed graph G “ pV, Eq is defined
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such that aij is nonzero if pj, iq P E and aij “ 0 if pj, iq R E . It is noted that aii “ 0,

since there is no self-loop in a graph. The in-degree of vertex i is defined as dini “
řN

j“1, j‰i aij and the out-degree of vertex i is defined as douti “
řN

j“1, j‰i aji. The

in-degree and out-degree matrices of a graph are defined as Din “ diagtdin1 , . . . , dinN u

and Dout “ diagtdout1 , . . . , doutN u. A graph is called balanced if dini “ douti for all

i “ 1, . . . , N . For any undirected graph, the adjacency matrix A is symmetric, and

thus it is balanced. If the weights are irrelevant, then aij is equal to 1 for all pj, iq P E .
In this case, the in-degree and out-degree of each vertex reduce to the number of edges

pointing to and pointing out from this vertex, respectively.

The Laplacian matrix of a directed graph is defined as L “ Din ´ A; that is

lii “

N
ÿ

j“1, j‰i

aij , lij “ ´aij , i ‰ j. (2.1)

The spectral properties of the Laplacian matrix play an important role in the conver-

gence study of distributed coordination algorithms. Here we introduce some useful

properties on the spectrum of the Laplacian matrix.

The following result, often called the Gersgorin disc theorem, reveals that the

eigenvalues of a matrix lie in some easily computed discs centered at the diagonal

elements of the matrix.

2.2.1. Lemma. [44] Let A “ paijqNˆN and let RipAq “
řN

j“1,j‰i |aij |, 1 ď i ď N

denote the deleted absolute row sums of A. Then all the eigenvalues of A are located

in the union of N discs

N
ď

i“1

#

z P C : |z ´ aii| ď

N
ÿ

j“1,j‰i

|aij | “ RipAq

+

“ GpAq. (2.2)

The region GpAq in (2.2) is often called the Gersgorin region (for rows) of A; the

individual discs in GpAq are called Gersgorin discs, and the boundaries of these discs

are called Gersgorin circles.

Assume that the weights of all the edges in a directed graph are positive; that

is aij ą 0 for all pj, iq P E . Then lij “ ´aij ď 0, for i ‰ j, and
řN

j“1 lij “

dini ´
řN

j“1, j‰i aij “ 0, for all i “ 1, . . . , N . It follows that L has zero row sums

and 0 is an eigenvalue of L with an eigenvector 1N “ r1, . . . , 1sT . Note that L is

diagonally dominant and it has nonnegative diagonal elements. Applying Lemma

2.2.1, it is clear that the nonzero eigenvalues of L all have positive real parts.

2.2.2. Lemma. [81] Assume that the adjacency matrix A are nonnegative, that is

aij ě 0, i, j “ 1, . . . , N . 0 is a simple eigenvalue of the Laplacian matrix L of a

directed graph if and only if the graph contains a directed spanning tree. In addition,

all the other eigenvalues of L have positive real parts.
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For an undirected graph, the adjacency matrix A is symmetric and so is L. Let

λipLq be the eigenvalues of L and assume that they are arranged in an increasing

order λ1pLq ď λ2pLq ¨ ¨ ¨ ď λN pLq. Then λ1pLq “ 0 and λ2pLq is called the algebraic

connectivity of an undirected graph [65], which is strictly positive if and only if the

graph is connected.

If the weights of the edges in a graph we concern can take both positive and

negative values, then the graph becomes a signed graph. The adjacency matrix hence

may contain negative entries and is thus called a signed adjacency matrix. The

definition of the Laplacian matrix in (2.1) will render a matrix that still has an

eigenvalue 0 but may have eigenvalues with negative real parts. To overcome this,

we introduce the extended definition of the Laplacian matrix for a signed graph, and

called it the signed Laplacian matrix [45]. The signed Laplacian matrix is given by

lii “

N
ÿ

j“1, j‰i

|aij |, lij “ ´aij , i ‰ j. (2.3)

It is easy to see that the signed Laplacian matrix is diagonally dominant and thus

its nonzero eigenvalues all have positive real parts.

Given a matrix G “ pgijqNˆN , a directed weighted graph GpGq associated to G

can be defined to visualize the nonzero entries of G, which will be used extensively in

later chapters to describe the couplings among the agents in a network. For the sake

of convenience, we have slightly modified Definition 6.2.11 in [44] to get the following

one.

2.2.1. Definition. Given a matrix G “ pgijqNˆN , the directed weighted graph as-

sociated to G, denoted by GpGq “ pV, Eq, is a directed graph with the vertex set

V “ tv1, . . . , vNu such that pvi, vjq is an edge of GpGq if and only if i ‰ j and

gji ‰ 0, and the weight associated with pvi, vjq is gji.

Note that GpGq contains no self-loops, i.e., pvi, viq R E . There is one exception in

Section 3.2, where self-loops are allowed in the associated graph of a matrix.

2.3 Basics of matrix theory

The class of nonnegative matrices, especially its subclass of stochastic matrices, plays

an essential role in establishing the effectiveness of the distributed coordination al-

gorithms. Next we introduce several well-studied classes of matrices and a newly

defined class of matrices that will be used in the study of products of stochastic ma-

trices and an asynchronous implementation of a distributed coordination algorithm

in Chapter 3.
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2.3.1. Definition. [44] A matrix P “ tpijuNˆN is said to be reducible if either

(a) N “ 1 and P “ 0; or

(b) N ě 2, there is a permutation matrix U and there is some integer r with

1 ď r ď N ´ 1 such that

UTPU “

„

B C

O D

ȷ

,

where B P Rrˆr, C P RrˆN´r, D P RN´rˆN´r, and O is the zero matrix. P is said

to be irreducible if it is not reducible.

2.3.2. Definition. [44] A square matrix P “ tpijuNˆN is called stochastic if it is

nonnegative and
řN

j“1 pij “ 1 for all i “ 1, . . . , N .

Consider a stochastic matrix P . For a set A Ď t1, . . . , Nu, let FP pAq be the set of

one-stage consequent indices [89] of A defined by FP pAq “ tj : pij ą 0 for some i P

Au.

2.3.3. Definition. [101] A stochastic matrix P “ tpijuNˆN is indecomposable and

aperiodic and thus called an SIA matrix if limmÑ8 Pm “ 1cT , where c “ rc1, . . . , cN sT

is some column vector satisfying ci ě 0 and
řN

i“1 ci “ 1.

2.3.4. Definition. [90] A square matrix P “ tpijuNˆN belongs to the Sarymsakov

class K if for any two disjoint nonempty subsets A, Ã Ď t1, . . . , Nu, either

FP pAq X FP pÃq ‰ ∅ (2.4)

or

FP pAq X FP pÃq “ ∅ and |FP pAq Y FP pÃq| ą |A Y Ã|. (2.5)

2.3.5. Definition. [90] A square matrix P is called scrambling if for any pair of

distinct row indices i and j, there always exists a column index k such that both pik
and pjk are positive.

Obviously, from the definitions, a scrambling matrix belongs to the Sarymsakov

class K. It has been shown that any product of N ´ 1 matrices from K is scram-

bling and a stochastic scrambling matrix is SIA [89]. Hence, any stochastic matrix

belonging to the Sarymsakov class K must be an SIA matrix.

2.3.1. Example. Let

P1 “

»

–

1{2 0 1{2

1{2 1{2 0

0 1{2 1{2

fi

fl , P2 “

»

–

1 0 0

1{2 1{2 0

0 1{2 1{2

fi

fl .
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One can check that P1 is a stochastic scrambling matrix and P2 belongs to the

Sarymsakov class K. P2 is not a scrambling matrix, since there is no column index k

such that pP2qik and pP2qjk are both positive for i “ 1 and j “ 3. Furthermore,

lim
mÑ8

Pm
1 “

1

3

»

–

1 1 1

1 1 1

1 1 1

fi

fl , lim
mÑ8

Pm
2 “

»

–

1 0 0

1 0 0

1 0 0

fi

fl .

Hence P1 and P2 are both SIA matrices. l

2.3.6. Definition. [90] Let P “ tpijuNˆN be an arbitrary stochastic matrix. τpP q “
1
2 maxl,k

řN
s“1 |pls´pks| “ 1´minl,k

řN
s“1 mintpls, pksu is the coefficient of ergodicity

of P .

The following property of the coefficient of ergodicity is clear from its definition.

2.3.1. Lemma. [90] Let τpP q be the coefficient of ergodicity of a stochastic matrix

P .

(a) 0 ď τpP q ď 1;

(b) τpP q “ 0 if and only if P “ 1cT for some vector c satisfying c ě 0, cT1 “ 1;

(c) τpP q ă 1 if and only if P is a scrambling matrix.

In fact, the set of all the stochastic matrices in Sarymsakov class is the largest

known set of stochastic matrices, which is closed under matrix multiplication and

the products of whose elements under mild conditions always converge. However,

the definition of the Sarymsakov class is a bit obscure and thus it might seem diffi-

cult to place such matrices in relationship with some other categories of well-known

stochastic matrices. To deal with this challenge, we take a closer look at the definition

of the Sarymsakov class and explain its relationship to the SIA matrices.

From the definition of the Sarymsakov class K, to verify whether a matrix belongs

to K or not, one needs to check the set of one-stage consequent indices of any two

disjoint sets of its indices. Said differently, the definition of the Sarymsakov class is

tightly built upon the notion of one-stage consequent indices. Motivated by this, we

try to explore what happens when we further look at the set of “k-stage consequent

indices” of any two nonempty sets of its indices. Naturally, we will obtain a larger

matrix set, which contains the Sarymsakov class K. But surprisingly, as we will prove

later, this larger set is exactly the set of SIA matrices.

For a stochastic matrix P and a set A Ď t1, . . . , Nu, let F k
P pAq be the set of

k-stage consequent indices of any nonempty set A Ď t1, . . . , Nu, which is defined by

F 1
P pAq “ FP pAq and F k

P pAq “ FP pF k´1
P pAqq for k ě 2.
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2.3.7. Definition. A square matrix P “ tpijuNˆN belongs to the class W if for

any two disjoint nonempty subsets A, Ã Ď t1, . . . , Nu, there exists an integer k such

that either

F k
P pAq X F k

P pÃq ‰ ∅, (2.6)

or

F k
P pAq X F k

P pÃq “ ∅ and |F k
P pAq Y F k

P pÃq| ą |A Y Ã|. (2.7)

It is easy to see that K Ď W since k “ 1 in the definition of K. The relationship

between the newly defined class W and the class of SIA matrices can be summarized

as following.

2.3.1. Theorem. A stochastic matrix P is in W if and only if P is SIA.

The proof of Theorem 2.3.1 makes use of the following Lemma.

2.3.2. Lemma. [42] Let P be an N ˆ N stochastic matrix. Then F k
P pAq “ FPkpAq

for all subsets A Ď t1, . . . , Nu.

Proof of Theorem 2.3.1: (Sufficiency) Since P is SIA, there exists a positive integer

k such that P k has a column with only positive elements. From Lemma 2.3.2, one

has

F k
P pAq X F k

P pÃq “ FPkpAq X FPkpÃq ‰ ∅

for any two disjoint nonempty subsets A, Ã Ď t1, . . . , Nu. Thus P P W.

(Necessity) Let the number of all possible pairs of disjoint nonempty subsets be m

and k1, . . . , km be the corresponding positive integers such that either (2.6) or (2.7)

holds. Let s “ maxtk1, . . . , kmu and l “ pN ´1qs. We claim that for any two disjoint

nonempty subsets A1, Ã1 Ď t1, . . . , Nu, F l
P pA1q X F l

P pÃ1q ‰ ∅.

If this is not true, one has F i
P pA1q X F i

P pÃ1q “ ∅, for all i “ 1, . . . , l. Since

P P W, for A1 and Ã1, there exists a positive integer, without loss of generality, say

k1, such that

F k1

P pA1q X F k1

P pÃ1q “ ∅ and |F k1

P pA1q Y F k1

P pÃ1q| ą |A1 Y Ã1|.

Let F k1

P pA1q “ A2 and F k1

P pÃ1q “ Ã2. Then there exists a positive integer k2 such

that

F k2

P pA2q X F k2

P pÃ2q “ ∅ and |F k2

P pA2q Y F k2

P pÃ2q| ą |A2 Y Ã2| ą |A1 Y Ã1|.

Thus we can find a sequence of subsets A2, Ã2, . . . ,AN´1, ÃN´1 and a sequence of

positive integers k1, k2, . . . , kN´1, such that

F ki

P pAiq “ Ai`1 and F ki

P pÃiq “ Ãi`1
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for i “ 1, . . . , N ´ 2, and

F
kN´1

P pAN´1q X F
kN´1

P pÃN´1q “ ∅

and

|F
kN´1

P pAN´1qYF
kN´1

P pÃN´1q| ą |AN´1YÃN´1| ą ¨ ¨ ¨ ą |A2YÃ2| ą |A1YÃ1| ě 2.

It follows that

|F
kN´1

P pAN´1q Y F
kN´1

P pÃN´1q| ą N,

which contradicts the fact that the dimension of P is N .

From Lemma 2.3.2, one has that for any two disjoint nonempty subsets A1, Ã1 Ď

t1, . . . , Nu,

FP lpA1q X FP lpÃ1q “ F l
P pA1q X F l

P pÃ1q ‰ ∅.

So P l P K, which implies that P is SIA. l

2.3.2. Example. Let

P “

»

–

1 0 0

1 0 0

0 1 0

fi

fl .

P is a stochastic matrix but P does not belong to the Sarymsakov class K. To

see this, take A “ t1u and Ã “ t3u. One has that FP pAq X FP pÃq “ H and

|FP pAq Y FP pÃq| “ |A Y Ã| “ 2. If we take k “ 2, then we have F k
P pAq X F k

P pÃq “

t1u ‰ H. One can verify that P belongs to the class W. Furthermore,

lim
mÑ8

Pm “

»

–

1 0 0

1 0 0

1 0 0

fi

fl .

This verifies the effectiveness of Theorem 2.3.1. l

2.4 Distributed coordination algorithms

In this section, we review some well-studied distributed algorithms for multi-agent

systems with discrete-time and continuous-time dynamics. These algorithms are of-

ten used to coordinate a group of agents to reach a consensus. By consensus we mean

that all the agents in a network achieve a common value on some variable of interest

asymptotically. A more rigorous definition will be given later. We are interested in

systems that are described by first-order dynamics. The systems with second-order
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dynamics and general linear dynamics are not reviewed here, the interested read-

er is referred to [80, 87]. Various variations of these models have been developed to

deal with practical constraints, for example, communication time-delays [17, 15, 110],

asynchronous update events [17, 15, 110, 109], quantized measurements [50, 23, 21],

and so on [80, 82]. There are also some other important issues that concern the

convergence speed [74], distributed formation control [71], and so on.

For the discrete-time case, distributed averaging rules are often used to cause

all the agents to reach an agreement. To be more specific, each agent updates its

state to the weighted average of the states of all the other agents. Consider a system

consisting of N agents, labeled by 1, . . . , N . The dynamics of the state of agent i can

be described by

xipt ` 1q “

N
ÿ

j“1

pijptqxjptq, t “ 0, 1, . . . . (2.8)

where xiptq P R, and pijptq ě 0 is the nonnegative weight agent i assigned to agent

j at time t when agent i updates its state. Let xptq “ rx1ptq, . . . , xN ptqsT P RN and

P “ ppijptqqNˆN ě 0. We can write the system in a compact form

xpt ` 1q “ P ptqxptq, t “ 0, 1, . . . . (2.9)

The weights pijptq satisfy the following condition

N
ÿ

j“1

pijptq “ 1, piiptq ą 0, i “ 1, . . . , N. (2.10)

From the condition (2.10), the row sums of P ptq are all one and thus P ptq is a

stochastic matrix. When P ptq is time-invariant, simply denote it as P . Consensus is

reached asymptotically if for all initial values and all i, j “ 1, . . . , N , xiptq´xjptq Ñ 0,

as t Ñ 8.

2.4.1. Lemma. [80] Let A be a stochastic matrix. 1 is an eigenvalue of A and ρpAq “

1. 1 is a simple eigenvalue of A if and only if its associated graph GpAq defined in

Definition 2.2.1 has a directed spanning tree. Furthermore, if GpAq has a directed

spanning tree and aii ą 0, i “ 1, . . . , N , then 1 is the unique eigenvalue of maximum

modulus.

The following theorems establish the convergence results for discrete-time algo-

rithm (2.9) under time-invariant and time-varying interaction topologies.

2.4.1. Theorem. [80] Suppose that P ptq “ P for all t “ 0, 1, . . .. The discrete-time

system (2.9) with time-invariant interaction topology achieves consensus asymptoti-

cally if and only if the directed graph GpP q has a directed spanning tree. In particular,

xiptq Ñ
řN

i“1 vixip0q, where v “ rv1, . . . , vN sT ě 0 satisfies vTP “ v and 1T v “ 1.
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2.4.2. Theorem. [80] Suppose that the nonzero entries of the stochastic matrices

P ptq in system (2.9) are uniformly lower bounded, that is pijptq ě γ, for all pj, iq P

Eptq and all t, where 0 ă γ ă 1. The discrete-time system (2.9) achieves consensus

asymptotically if there exists an infinite sequence of contiguous, nonempty, uniformly

bounded time intervals rtk, tk`1q, k “ 0, 1, 2, . . . , starting at t0 “ 0, with the property

that the union of the directed graphs across each interval has a directed spanning tree.

For the continuous-time case, the consensus algorithm is given by

9xi “ ´

N
ÿ

j“1

aijptqpxi ´ xjq, i “ 1, . . . , N, (2.11)

where aijptq is the ijth entry of the adjacency matrix Aptq of the interaction graph

Gptq at time t. Note that aijptq ą 0 if pj, iq P Eptq and aijptq “ 0 otherwise, @j ‰ i.

Let Lptq be the Laplacian matrix at time t and let xptq “ rx1ptq, . . . , xN ptqsT . System

(2.11) can be written in a compact form

9x “ ´Lptqx. (2.12)

The definition lii “ ´
řN

j“1,j‰i lij guarantees that the inter-agent couplings are d-

iffusive, and hence such networks are also called diffusively coupled networks. Con-

sensus is reached asymptotically if for all initial values and all i, j “ 1, . . . , N ,

xiptq ´ xjptq Ñ 0, as t Ñ 8.

The following theorem gives a necessary and sufficient condition for consensus

with a time-invariant interaction topology and constant aij .

2.4.3. Theorem. [80] Suppose that Aptq “ A is constant for all t ě 0. The

continuous-time system (2.12) achieves consensus asymptotically if and only if the

directed graph GpAq has a directed spanning tree. In particular, xiptq Ñ
řN

i“1 vixip0q,

as t Ñ 8, where v “ rv1, . . . , vN sT ě 0 satisfies vTL “ 0 and 1T v “ 1.

When algorithm (2.12) is carried out under dynamically changing interaction

topologies, we assume that Aptq and Lptq are both piecewise continuous.

2.4.4. Theorem. [80] Suppose that Aptq is piecewise continuous and its positive

entries are uniformly lower and upper bounded, that is aijptq P ra, ās, for all t and

aijptq ‰ 0, where 0 ă a ă ā. Let t0, t1, . . . , be the time sequence corresponding to

the times at which Gptq switches, where it is assumed that tk`1 ´ tk ě tL, @k “

1, 2, . . . , with tL a positive constant. The continuous-time system (2.12) achieves

consensus asymptotically if there exists an infinite sequence of contiguous, nonempty,

uniformly bounded time intervals rtik , tik`1
q, k “ 0, 1, 2, . . . , starting at ti0 “ 0, with

the property that the union of the directed graphs across each interval has a directed

spanning tree.



22 2. Mathematical Preliminaries

The discrete-time and continuous-time algorithms introduced here include several

models like the Vicsek model [47, 97] as special cases, for more details please refer

to [80, 72]. Note that in systems (2.8) and (2.11), the weights pijptq and aijptq are

assumed to be nonnegative. This means that all the agents in a network always

contribute to decrease the relative difference in order to reach an agreement. As

pointed out in Chapter 1, it is meaningful to take negative couplings into account,

which characterize competitive or antagonistic relationships between the agents. In

Chapter 4, we generalize the discussions on systems (2.8) and (2.11) to the setting

when the weights pijptq and aijptq can be positive and negative. Instead of reaching

a consensus, polarization of the states of the agents arises in a structurally balanced

network that can be split into two antagonistic factions. In Chapter 5, algorithm

(2.11) is used to generate clustering behavior in a network by incorporating negative

couplings.



Chapter 3

Asynchronous implementation of a
distributed coordination algorithm

There are a number of results discussing how to use distributed averaging rules to

cause a group of agents to reach an agreement on the value of a variable of interest

as shown in the previous chapter. In most of the established results, the agents are

assumed to update their states synchronously. In practice, however, the agents may

not have access to a common clock and only update according to their own clocks.

Consequently, even when the synchronized coordination algorithm converges, one still

needs to check whether the same strategy implemented asynchronously converges. In

this chapter, we focus on an asynchronous implementation of a distributed coordi-

nation algorithm. Some classic results on the convergence of products of stochastic

matrices are reviewed and a new necessary and sufficient condition is constructed by

making use of the matrices in the Sarymsakov class. The set of scrambling stochastic

matrices, a subclass of the Sarymsakov class, is utilized to establish the convergence

of the agents’ states when there is no common clock for the agents to synchronize

their update actions.

3.1 Problem formulation

Consider a system consisting of N agents, labeled by 1, . . . , N . All agents are required

to reach an agreement on the value of a variable of interest and there have been rich

results on how to achieve this goal. To be more specific, we denote the state of agent

i, 1 ď i ď N , by xi P R. As in (2.8) with a time-invariant update matrix, agent i’s

state updates according to

xipt ` 1q “

N
ÿ

j“1

pijxjptq, t “ 0, 1, . . . , (3.1)

where pij ě 0 and
řN

j“1 pij “ 1. Hence, when all the agents’ update actions are

perfectly synchronized according to a common clock, the N -agent system’s dynamics

can be described by

xpt ` 1q “ Pxptq, t “ 0, 1, . . . , (3.2)
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where P is the N ˆ N stochastic matrix whose ijth element is pij , and xptq “

rx1ptq, . . . , xN ptqsT is the state of the system. Then it has been proved that when

the matrix P is SIA, the states xi of all the agents converge to a common value

asymptotically exponentially fast [81, 47].

In practice, the agents may not have access to a common clock and only update

according to their own clocks. Consequently, it is important to check whether the

converging coordination strategy (3.2) implemented asynchronously still converges.

Note that the analysis of the convergence of asynchronous algorithms is usually chal-

lenging, and it is in general difficult to define the state of the asynchronous system

even when its synchronous counterpart is well defined [10, 15].

Now we consider a possible asynchronous implementation of the distributed av-

eraging algorithm described by (3.2). We allow each agent to update its state inde-

pendently at times determined by its own clock. We will give a sufficient condition

on the matrix P to ensure the convergence of the asynchronous implementation of

the update scheme.

We assume that the agents’ clocks can be described by linear models and have

the same skew but different offsets [37, 107]. We first ignore the case that two or

more agents update exactly at the same time. So one can carry out the procedure

of analytic synchronization, at the end of which we obtain the set T “ t0, 1, 2, . . .u

by relabeling all the agents’ update event times. For more detailed description of

analytic synchronization, the interested reader is referred to [10, 54, 15]. In the

following, we consider the system that evolves according to the time sequence T . If

each agent chooses to update periodically, then the overall system becomes periodic

as well with period N .

Now consider at time t, agent ct, 1 ď ct ď N updates. Then its state satisfies

xctpt ` 1q “

N
ÿ

j“1

pctjxjptq, t “ 0, 1, 2, . . . , (3.3)

and correspondingly for all the other agents, we have

xjpt ` 1q “ xjptq, j ‰ ct, j “ 1, . . . , N, t “ 0, 1, 2, . . . . (3.4)

Then again with the definition of the system’s state to be xptq “ rx1ptq, . . . , xN ptqsT ,

one can rewrite (3.3) and (3.4) in a compact form

xpt ` 1q “ Pctxptq, t “ 0, 1, 2, . . . , (3.5)
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where

Pct “

»

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

. . .
...

... ¨ ¨ ¨
...

0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

pct1 ¨ ¨ ¨ pct,ct´1 pctct ¨ ¨ ¨ pctN
... ¨ ¨ ¨ ¨ ¨ ¨

...
. . .

...

0 ¨ ¨ ¨ 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.6)

The solution to the system (3.5) can be written as

xpt ` 1q “ PctPct´1 ¨ ¨ ¨Pc1Pc0xp0q. (3.7)

The asymptotic behavior of the solution depends on the property of the infinite

backward product ¨ ¨ ¨Pct ¨ ¨ ¨Pc1Pc0 . Each Pct in the product is a stochastic matrix.

The convergence study of products of stochastic matrices has proven to be crucial in

establishing the effectiveness of distributed coordination algorithms for multi-agent

systems. In the next section we review some classic and recent results on products

of stochastic matrices and then use them to establish a sufficient condition on P to

ensure the convergence of asynchronous system (3.5).

3.2 Products of stochastic matrices

Consider a compact set P of N ˆ N stochastic matrices. The following conditions

have been constructed in [101] and [6] to guarantee the convergence of the backward

product of matrices from P, which involve SIA matrices and scrambling matrices

defined in Definitions 2.3.3 and 2.3.5.

C1. For each integer k ě 1 and any P piq P P, 1 ď i ď k, the stochastic matrix

P pkq ¨ ¨ ¨P p1q is SIA.

C2. There is an integer ν ě 1 such that for each k ě ν and any P piq P P, 1 ď

i ď k, the matrix P pkq ¨ ¨ ¨P p1q is scrambling.

C3. There is an integer µ ě 1 such that for each k ě µ and any P piq P P, 1 ď

i ď k, the matrix P pkq ¨ ¨ ¨P p1q has a column with only positive elements.

In [6], the relationships between these three conditions have been discussed.

3.2.1. Proposition. [6] Conditions C1, C2 and C3 are equivalent.

Then these three conditions are shown to be necessary and sufficient for the

convergence of products of stochastic matrices from a finite set.

3.2.1. Theorem. [6] Let P be a finite set of stochastic matrices. For each sequence

of matrices P p1q, P p2q, P p3q, . . . from P, P pkq ¨ ¨ ¨P p1q converges to a rank-one

matrix 1cT as k Ñ 8 if and only if any of the three conditions C1, C2 or C3 holds.
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Instead of finite sets of stochastic matrices, in [26] compact sets of stochastic

matrices are studied and conditions C1 to C3 are shown to be sufficient for the

convergence of products of stochastic matrices.

3.2.2. Proposition. Let P be a compact set of stochastic matrices. For each se-

quence of matrices P p1q, P p2q, P p3q, . . . from P, P pkq ¨ ¨ ¨P p1q converges to a rank-

one matrix 1cT as k Ñ 8 if any of the three conditions C1, C2 or C3 holds.

In what follows, we first show that conditions C1 to C3 are also necessary for the

convergence and then further construct an additional equivalent condition using the

notion of the Sarymsakov class defined in Definition 2.3.4.

3.2.3. Proposition. Let P be a compact set of stochastic matrices. For each se-

quence of matrices P p1q, P p2q, P p3q, . . . from P, P pkq ¨ ¨ ¨P p1q converges to a rank-

one matrix 1cT as k Ñ 8 only if any of the three conditions C1, C2 or C3 holds.

Proof. Since C1, C2 and C3 are equivalent, it suffices to show that C1 is necessary. For

each integer l ě 1, we define B “ P plq ¨ ¨ ¨P p1q and consider the following converging

matrix product ¨ ¨ ¨B ¨ ¨ ¨BB, which implies the fact that Bm converges to a rank-one

matrix as the integer m goes to infinity. In view of the definition for SIA matrices,

we know that B must be SIA for each l ě 1. l

Now we consider the following condition.

C4. There is an integer α ě 1 such that for each k ě α and any P piq P P, 1 ď

i ď k, the matrix P pkq ¨ ¨ ¨P p1q belongs to the Sarymsakov class K.

One can further prove the following relationship between C4 and the other three

conditions.

3.2.4. Proposition. C4 is equivalent to C1, C2 and C3.

Proof. It suffices to show that C4 is equivalent to C2. Suppose C4 holds. Since the

product of N ´ 1 matrices from the Sarymsakov class is scrambling [89], if we take

ν “ pN ´ 1qα, then P pkq ¨ ¨ ¨P p1q is scrambling for k ě ν. So C4ùñC2. On the

other hand, since a scrambling matrix always belongs to the Sarymsakov class, we

have C2ùñC4. Hence, combining the two facts, we know C2ðñC4. l

In view of Propositions 3.2.2, 3.2.3 and 3.2.4, we have in fact proved the following

theorem.

3.2.2. Theorem. Let P be a compact set of stochastic matrices. For each sequence

of matrices P p1q, P p2q, P p3q, . . . from P, P pkq ¨ ¨ ¨P p1q converges to a rank-one

matrix 1cT as k Ñ 8 if and only if any of the four conditions C1, C2, C3 or C4

holds.
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We want to further comment that, using the technique in [101], one can prove the

same conclusion in Theorem 3.2.2 holds when the positive elements of the matrices

in P have a positive lower bound. In other words, instead of requiring the set P to be

compact, one may require that there is a uniform lower bound γ ą 0 for all nonzero

elements pijpkq of P pkq, i.e., pijpkq ě γ ą 0 for all k ě 1.

The condition C3 is closely related to the notion of “sequential connectivity”,

which is defined in [5] to study the convergence rate of consensus algorithms. Given

a graph G “ pV, Eq with N vertices, assume that self-loops are allowed here. For

a set A Ď N “ t1, . . . , Nu, we use N pA,Gq “ tj : D i P A, pvi, vjq P Eu to

denote the set of indices of the neighbors of vertices in A. We say a sequence of

graphs Gi, i “ 1, . . . , T , with a common vertex set V “ tv1, . . . , vNu is sequentially

connected if there exists a vertex vj P V and a sequence of sets Ai Ď N such that

A1 “ tju, Ak`1 Ď N pAk,Gkq for all 1 ď k ď T ´ 1 and AT “ N .

We associate a directed, weighted graph GpP q to the stochastic matrix P , which

is defined in Definition 2.2.1 except that self-loops are allowed in the graph G; that is

there is an edge pvi, viq P E if and only if pii ‰ 0. Denote the graphs associated with

the stochastic matrix P piq by Gi. From the definition, one can easily see that the

matrix product P pkq ¨ ¨ ¨P p1q has a positive column if and only if the corresponding

sequence of graphs G1, G2, . . . ,Gk is sequentially connected.

In this section, we have reviewed the most important results on the convergence

of products of stochastic matrices. In addition, we have focused on the Sarymsakov

class to construct a new necessary and sufficient condition for the convergence. In

the next section, we will look at how to apply these matrix theoretic ideas to the

study of asynchronous system (3.5).

3.3 Coordinating multi-agent systems with asyn-

chronous updates

We first provide an example to show that when implementing a converging syn-

chronous algorithm in (3.2) asynchronously, the resulting asynchronous algorithm

may not converge any more.

3.3.1. Example. Consider a converging synchronous algorithm in the form of (3.2)

that is characterized by the matrix

P “

»

—

—

—

—

—

–

0 0 0 0.5 0.5

1 0 0 0 0

0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.8)
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One can check that P belongs to the Sarymsakov class K defined in Definition 2.3.4.

Now we check the case when the agents update periodically with the update sequence

of t2, 3, 1, 4, 5u in each update period. Then one has

P5P4P1P3P2 “

»

—

—

—

—

—

–

0 0 0 0.5 0.5

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

for which ´1 is an eigenvalue, and this implies that P5P4P1P3P2 R K and it is not

even SIA anymore. So in this example, if all the agents update periodically, even

given P P K, the system (3.2) after asynchronous implementation does not converge

any more. l

The above example highlights the difference between synchronous and asyn-

chronous systems. Thus it will be of great interest if one can identify those classes of

synchronous algorithms that can still converge and achieve the algorithms’ design ob-

jectives even after they are implemented asynchronously. Towards this end, we now

turn our attention to a subclass of the Sarymsakov class K, the set of scrambling

matrices, and show that if the stochastic matrix P is scrambling, then the states

of all the agents still become the same asymptotically if the algorithm described by

(3.2) is implemented asynchronously. The following theorem summarizes our main

result in this section.

3.3.1. Theorem. If the stochastic matrix P in (3.2) is scrambling and there ex-

ists an infinite sequence of contiguous, nonempty, uniformly bounded time-intervals

rti, ti`1q, starting at t0 “ 0 with ti P T , i ě 0 and the property that across each such

interval every agent updates at least once, then with asynchronous implementation

the states of all the agents in system (3.5) become the same asymptotically.

The proof of the theorem makes use of the following lemmas. For an arbitrary

vector x “ rx1, x2, . . . , xN sT , define x̄ “ max1ďiďN xi and x “ min1ďiďN xi.

3.3.1. Lemma. Let P “ tpijuNˆN be an arbitrary stochastic matrix.

(a) [90] Let x “ rx1, x2, . . . , xN sT be an arbitrary vector. If z “ Px, then

z̄ ´ z ď τpP qpx̄ ´ xq, (3.9)

where τpP q “ 1
2 maxl,k

řN
s“1 |pls ´ pks| is the coefficient of ergodicity of P defined in

Definition 2.3.6.

(b) There exists a vector x˚ satisfying x̄˚ ą x˚ such that if z˚ “ Px˚, then

z̄˚ ´ z˚ “ τpP qpx̄˚ ´ x˚q. (3.10)
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Proof: (a) is Theorem 3.1 in [90].

(b) Without loss of generality, assume τpP q “ 1
2

řN
s“1 |pis ´ pjs|. Let ul “ pil ´ pjl,

1 ď l ď N , let L1 denote the set of indices for which ul ą 0 if l P L1, and let L2

denote the set of indices for which ul ă 0 if l P L2. Note that
řN

l“1 ul “ 0 and τpP q “
1
2 p

ř

lPL1 ul ´
ř

lPL2 ulq “
ř

lPL1 ul. Since L1 is empty only if u “ ru1, . . . , unsT “ 0,

one has τpP q “ 0 in this case. (3.10) holds for any vector x˚ satisfying x̄˚ ą x˚.

Assume L1 is not empty. Pick x˚ such that

x˚
l “

$

’

’

&

’

’

%

1, l P L1

´1, l P L2

0, otherwise.

One has

z˚
i ´ z˚

j “

N
ÿ

l“1

ulx
˚
l “

ÿ

lPL1

ul ´
ÿ

lPL2

ul “ 2
ÿ

lPL1

ul “ 2τpP q “ τpP qpx̄˚ ´ x˚q.

Combining with (3.9), (3.10) holds. l

3.3.2. Lemma. Let P “ tpijuNˆN be an arbitrary stochastic matrix. If for any

vector x P RN satisfying x̄ ą x and z “ Px, z̄ ´ z ă x̄ ´ x, then P is scrambling.

Proof: From Lemma 3.3.1(b), there exists a vector x˚ satisfying x̄˚ ą x˚ such that

z˚ “ Px˚ and z̄˚ ´ z˚ “ τpP qpx̄˚ ´ x˚q. Thus one has τpP qpx̄˚ ´ x˚q ă x̄˚ ´ x˚,

which implies τpP q ă 1. One can conclude that P is scrambling from Lemma 2.3.1.

l

3.3.3. Lemma. Let P “ tpijuNˆN be a stochastic scrambling matrix and let c1, c2, . . . ,

cs be a finite sequence of indices from t1, 2, . . . , Nu satisfying that for any j P

t1, 2, . . . , Nu, there exists an index l, 1 ď l ď s such that cl “ j.

(a) Let x P RN be an arbitrary vector satisfying x̄ ą x and z “ Pcs ¨ ¨ ¨Pc2Pc1x with

Pcl defined in (3.6) for 1 ď l ď s. z̄ ´ z ă x̄ ´ x.

(b) Pcs ¨ ¨ ¨Pc2Pc1 is scrambling.

Proof: (a) For an arbitrary vector x “ rx1, . . . , xN sT , assume that xa1 “ ¨ ¨ ¨ “

xar “ x, xb1 “ ¨ ¨ ¨ “ xbm “ x̄, where a1, . . . , ar, b1, . . . , bm P t1, . . . , Nu and define

A “ ta1, a2 . . . , aru, B “ tb1, b2, . . . , bmu. Define

xp1q “ x,

xpt ` 1q “ Pctxptq “ Pctrx1ptq, . . . , xN ptqsT , 1 ď t ď s.
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Thus z “ xps ` 1q “ Pcs ¨ ¨ ¨Pc2Pc1x. Since the set t1, 2, . . . , Nu has N elements, we

associate x1ptq, x2ptq, . . . , xN ptq with N agents and accordingly call them the states

of agents 1, 2, . . . , N at step t. In view of the fact that xpt ` 1q “ Pctxptq and the

structure of the stochastic matrix Pct defined in (3.6), we know that only one element

of xpt ` 1q could be possibly different from that of xptq and

x̄pt ` 1q ď x̄ptq ď x̄, xpt ` 1q ě xptq ě x. (3.11)

Assume that there exists an index w, 1 ď w ď s ` 1 such that cw “ i, xipw ` 1q

is equal to x̄ or x, and for all 1 ď t ă w and ct “ k, x ă xkpt ` 1q ă x̄.

Without loss of generality, assume cw “ i R A Y B and xipw ` 1q “ x. Since

x ă xjptq ď x̄ for j R A, 1 ď t ď w, one has piu “ 0, u R A, and there exist indices

u1, . . . , ul P A such that piuk
ą 0 for 1 ď k ď l. From Definition 2.3.5 of scrambling

matrices, we know that for any j ‰ i, there exists an index vj P tu1, . . . , ulu such that

pjvj ą 0. Thus for any j P t1, . . . , Nu, there always exists an index vj P tu1, . . . , ulu P

A such that pjvj ą 0.

We now prove xjptq ă x̄ for j R B and 1 ď t ď s ` 1. Since this is true for

1 ď t ď w, one has

xipw ` 1q “ pivixvipwq `
ÿ

k‰vi

pikxkpwq ă pivi x̄ `
ÿ

k‰vi

pikx̄ “ x̄,

xjpw ` 1q “ xjpwq ă x̄, j ‰ i, j R B.

By induction, xjptq ă x̄ holds for j R B and 1 ď t ď s ` 1.

From the assumption of the lemma, one knows that for any j P B, there always

exists an index l, 1 ď l ď q such that ctl “ j. In addition

xjptl ` 1q “ pjvjxvj ptlq `
ÿ

k‰vj

pjkxkptlq ă x̄.

Thus xjptq ă x̄ for t ě tl ` 1, implying xjps ` 1q ă x̄, j P B. So x̄ps ` 1q ă x̄.

Similarly, we can also arrive at the conclusion that x̄ps ` 1q ă x̄ when i P A Y B,
which implies z̄´z ă x̄´x. If xipw`1q “ x̄, similar arguments show that xps`1q ă x,

which also implies z̄ ´ z ă x̄ ´ x.

If such an index w does not exist, then we have that for all 1 ď t ď s and ct “ j,

x ă xjpt ` 1q ă x̄. Since for any j P t1, 2, . . . , Nu, there exists an index l, 1 ď l ď q

satisfying ctl “ j, one knows that x ă xjps ` 1q ă x̄ for all 1 ď j ď N . Thus

z̄ ´ z ă x̄ ´ x, which completes the proof.

(b) It is a direct consequence of (a) and Lemma 3.3.2. l

Proof of Theorem 3.3.1: We denote the agent which updates at time ti by cti . The

sequence cti , cti`1, . . . , cti`1´1 is a finite sequence of indices satisfying the condition
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in Lemma 3.3.3. One has Pcti`1´1 ¨ ¨ ¨Pcti`1Pcti
is scrambling for all i ě 0. In view

of the uniformly boundedness of the intervals rti, ti`1q and the fact that if one or

more matrices in a product of matrices is scrambling, so is the product [40], we know

that the product of the system’s matrices with asynchronous implementation can

be written as products of scrambling matrices from a finite set. Thus by applying

Theorem 3.2.2, we arrive at the conclusion. l

The preceding discussions assume that no two or more agents update at the same

time. In fact if there are two or more agents updating exactly at the same time, the

conclusion in Theorem 3.3.1 still holds. To see this, we consider at time t, agents

c1, c2, . . . , ck update, where 1 ď ci ď N . Similar to Eqs. (3.3) and (3.4), the states

of these agents satisfy

xclpt ` 1q “

N
ÿ

j“1

pcljxjptq, l “ 1, . . . , k, (3.12)

and correspondingly for all the other agents, we have

xjpt ` 1q “ xjptq, j P t1, . . . , Nuztc1, . . . , cku. (3.13)

Rewrite (3.12) and (3.13) in a compact form

xpt ` 1q “ PCxptq,

where

PC “

»

—

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

. . .
...

... ¨ ¨ ¨
...

0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

pc11 ¨ ¨ ¨ pc1,c1´1 pc1c1 ¨ ¨ ¨ pc1N
... ¨ ¨ ¨ ¨ ¨ ¨

...
. . .

...

pck1 ¨ ¨ ¨ pck,c1´1 pckc1 ¨ ¨ ¨ pckN
0 ¨ ¨ ¨ 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.14)

For a set C “ tc1, . . . , cku Ď t1, 2, . . . , Nu, we define the matrix PC as in (3.14). We

have a similar result to Lemma 3.3.3, based on which the correctness of Theorem

3.3.1 can be shown when two or more agents could possibly update at the same time.

3.3.4. Lemma. If P “ tpijuNˆN is a stochastic scrambling matrix and C1 “ tc11, . . . ,

c1k1u, C2 “ tc21, . . . , c2k2u, . . . , Cs “ tcs1, . . . , csksu is a finite sequence of subsets of

t1, 2, . . . , Nu satisfying that for any j P t1, 2, . . . , Nu, there exists an index l, 1 ď l ď

s such that j P Cl, then PCs ¨ ¨ ¨PC2PC1 is scrambling with PCi defined in (3.14).
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The idea of the proof of this lemma is exactly the same as that of Lemma 3.3.3.

Hence we omit it here.

Although the synchronous coordination algorithm specified in Theorem 3.3.1 still

converges after asynchronous implementation, the convergence rate changes. In the

next section, we look into the performances of asynchronous coordination algorithms

through simulations.

3.4 Illustrative example

In this section, we perform simulation studies. We consider the case when the matrix

P is a scrambling stochastic matrix. Let

P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
4

1
4 0 1

4 0 1
4 0 0 0 0

1
4 0 1

4 0 0 0 1
4 0 0 1

4

0 1
4 0 1

4 0 1
4

1
4 0 0 0

0 1
4

1
4

1
4

1
4 0 0 0 0 0

0 1
3 0 0 0 1

3
1
3 0 0 0

0 0 0 1
3

1
3 0 1

3 0 0 0
1
4

1
4 0 1

4 0 0 0 0 1
4 0

0 0 1
4 0 1

4
1
4 0 0 1

4 0

0 0 0 0 1
4

1
4 0 0 1

4
1
4

0 0 0 1
3 0 0 1

3 0 1
3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

According to Theorem 3.3.1, the algorithm after asynchronous implementation

still converges since P is scrambling. We then carry out simulations to compare the

performances of the algorithm that runs synchronously and asynchronously. Take the

initial values of the ten agents to be xip0q “ i, i “ 1, . . . , 10. When we implement

the algorithm synchronously, the converging process is shown in Fig. 3.1. Now

consider the case when the algorithm runs asynchronously. Assume at every time

instant a node i is chosen randomly among the ten agents with probability 1
10 . Then

agent i updates its state according to Eq. (3.3) and the rest agents keep the states

unchanged. The evolution of the states of all the agents is illustrated in Fig. 3.2,

from which it is easy to see that the convergence process slows down compared to

that in Fig. 3.1.

3.5 Conclusion

In this chapter, we have reviewed some classic and recent results on backward pro-

ducts of stochastic matrices and developed some new necessary and sufficient con-

ditions for convergence using the Sarymsakov class. A sufficient condition has been
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Figure 3.1: The evolution of the agents’ states when the agents update synchronously.
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Figure 3.2: The evolution of the agents’ states when the agents update asynchronously.

constructed to guarantee that a coordination algorithm, which converges when imple-

mented synchronously, still converges when it is implemented asynchronously. The
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condition is stipulated using the notion of scrambling stochastic matrices, which all

belong to the Sarymsakov class.

There are still open questions in order to understand better the asynchronous

implementation of distributed coordination algorithms. It is even more challenging

to study the case when each agent cannot update their states instantaneously, in

which case the process of analytic synchronization [54, 15] is extremely difficult to

carry out. Tools from the analysis of hybrid systems may turn out to be helpful.



Chapter 4

Distributed algorithms with positive and
negative couplings

Much of the work on distributed algorithms has assumed that all the agents in a

network are working cooperatively to reach an agreement. However, as pointed out

in Chapter 1, several typical networks suggest that it is more reasonable to assume

that the interaction between a pair of agents in a network can be either cooperative

or competitive. Very recent results [2, 3] have shown that polarization of the states of

the agents may arise in this case by employing the notion of structural balance from

social network theory. In this chapter, we study distributed algorithms in the presence

of positive and negative couplings with an emphasis on the case when the network

topologies are time-varying. It is shown that the states of the agents polarize under

some connectivity conditions if all the networks involved are structurally balanced

and they maintain a common bipartition of two opposing factions. If structurally

unbalanced networks arise often enough as time evolves, then the states of all the

agents asymptotically agree and converge to zero.

4.1 Problem formulation

In Section 2.4, we have reviewed several well-studied distributed algorithms, in which

the weights pijptq in system (2.8) or aijptq in system (2.11) are assumed to be nonneg-

ative. In this chapter, we generalize the models (2.8) and (2.11) by taking negative

couplings between the agents into account. Consider a multi-agent system consisting

of N agents and each agent i, i “ 1, . . . , N , has a real value xi. In the discrete-time

setting, the values of the agents are updated according to

xipt ` 1q “

N
ÿ

j“1

pijptqxjptq, t “ 0, 1, . . . . (4.1)

or in a compact form

xpt ` 1q “ P ptqxptq, t “ 0, 1, . . . . (4.2)
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where xiptq P R, xptq “ rx1ptq, . . . , xN ptqsT , P ptq “ ppijptqqNˆN P RNˆN and pijptq

is the weight agent i assigned to agent j when agent i updates its state at time t.

In contrast to system (2.8), in which pijptq are assumed to be nonnegative, here the

weights pijptq can also be negative, which characterize the antagonistic relationship

between individuals in a social network. Signed graphs are used to model networks

with positive and negative couplings among the agents. The weights pijptq in system

(4.1) satisfy the following condition

N
ÿ

j“1

|pijptq| “ 1, piiptq ą 0, i “ 1, . . . , N. (4.3)

This is an extension of the assumption (2.10) in Chapter 2 on the weights in dis-

tributed averaging algorithm (2.8), where pijptq are assumed to be nonnegative and
řN

j“1 pijptq “ 1, i “ 1, . . . , N.

The continuous-time counterpart of the distributed algorithm (4.1) is given by

9xi “ ´

N
ÿ

j“1

|aijptq|pxi ´ sgnpaijptqqxjq, i “ 1, . . . , N, (4.4)

where aijptq P R is the ijth entry of Aptq, Aptq is the signed adjacency matrix of the

signed graph Gptq representing the interaction topology at time t, and sgnp¨q is the

sign function. Let the signed Laplacian matrix Lptq “ plijptqqNˆN be given by (2.3).

System (4.4) can be written in a compact form

9x “ ´Lptqx. (4.5)

In contrast to system (2.11), where aijptq are assumed to be nonnegative, here the

weights aijptq can also be negative.

4.1.1. Definition. System (4.2) or system (4.5) admits a polarization if for all

initial value, limtÑ8 |xiptq| “ α, i “ 1, . . . , N , and there exists an initial value xp0q

such that limtÑ8 |xiptq| “ α ą 0, i “ 1, . . . , N .

When system (4.2) or system (4.5) admits a polarization, it often happens that the

agents in the network split into two clusters and the agents in the same cluster hold

the same asymptotic value while the agents in different clusters hold opposite values.

We have seen that for distributed averaging algorithms in [47, 81, 16], the states

of the agents asymptotically converge to a common value under some connectivity

conditions. Definition 4.1.1 includes this phenomenon as a special case.

To study the dynamical behavior of system (4.5) under fixed interaction topology,

the notion of structural balance in social network theory has been employed in [3],
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which will be introduced in the next section. It is shown that in a structurally

balanced network that can be partitioned into two opposing factions, the states of the

agents in the same faction converge to the same value, while the states of the agents

in different factions converge to two opposite values asymptotically; in a structurally

unbalanced network, the states of all the agents asymptotically agree and converge

to zero. What is more intriguing is to investigate the dynamical behaviors of system

(4.2) and system (4.5) under time-varying interaction topologies, since in practical

situations the relationship between agents may change with time. This also brings

great challenge to the theoretical analysis. We are interested in finding out whether

polarization will arise or agreement can be reached in system (4.2) and system (4.5)

under dynamically changing interaction topologies.

4.2 Distributed discrete-time algorithms

4.2.1 Discrete-time updates under fixed topologies

In this section, we consider the case when the interaction topology is time-invariant,

that is pijptq is time-invariant and simply denoted by pij . Systems (4.1) and (4.2)

become

xipt ` 1q “

N
ÿ

j“1

pijxjptq, t “ 0, 1, . . . , (4.6)

and

xpt ` 1q “ Pxptq, t “ 0, 1, . . . . (4.7)

Assumption (4.3) becomes

N
ÿ

j“1

|pij | “ 1, pii ą 0, i “ 1, . . . , N. (4.8)

Let GpP q be the signed graph associated with P representing the interaction

topology. A cycle in G is said to be positive if it contains an even number of negative

weights; a negative cycle is not positive. We first introduce the notion of structural

balance [41, 22] in signed graphs.

4.2.1. Definition. A signed graph GpP q “ pV, Eq is structurally balanced if there is

a bipartition tV1,V2u of V, V1 Y V2 “ V, V1 X V2 “ H such that pij ě 0, @vi, vj P

Vk, k P t1, 2u and pij ď 0, @vi P Vk, vj P Vl, k ‰ l, k, l P t1, 2u; it is structurally

unbalanced otherwise.
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Figure 4.1: Signed graphs GpP1q and GpP2q associated with P1 and P2. GpP1q is struc-

turally balanced and GpP2q is structurally unbalanced.

4.2.1. Example. Let

P1 “

»

–

1{2 0 ´1{2

´1{2 1{2 0

0 1{2 1{2

fi

fl , P2 “

»

–

1{2 0 ´1{2

1{2 1{2 0

0 1{2 1{2

fi

fl .

Signed graphs GpP1q and GpP2q associated with P1 and P2 are illustrated in Fig.

4.1. It is obvious from Definition 4.2.1 that GpP1q is structurally balanced, while

GpP2q is structurally unbalanced. The only cycle in GpP1q is positive and the one in

GpP2q is negative. The eigenvalues of P1 are 1, 0.25 ˘ 0.4330ı, and those of P2 are

0, 0.75 ˘ 0.4330ı, where ı is the imaginary unit. Note that 1 is an eigenvalue of P1,

while all the eigenvalues of P2 are located inside the unit disc. l

We also say that the matrix P is structurally balanced if its associated graph GpP q

is structurally balanced. For convenience, in this chapter, we use ||x|| to denote the

max norm ||x||8 of a vector x P RN . For an arbitrary matrix A “ paijqNˆN , let

|A| “ p|aij |qNˆN . For a matrix P satisfying (4.8), |P | is a stochastic matrix and 1 is

always an eigenvalue of |P |. The Gersgorin discs GpP q are all contained in the unit

disc, 1 is on the boundary of GpP q and ´1 is not inside the Gersgorin region. Thus

in view of Lemma 2.2.1, ´1 is not an eigenvalue of P . The following result can be

further used to determine whether a boundary point is an eigenvalue.

4.2.1. Lemma. [44] Let A “ paijqNˆN and suppose that λ is an eigenvalue of A that

is a boundary point of GpAq, or, more generally, satisfies the inequalities

|λ ´ aii| ě

N
ÿ

j“1,j‰i

|aij |, i “ 1, . . . , N, (4.9)
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If A is irreducible, then

(a) every Gersgorin circle passes through λ; and

(b) if Ax “ λx and x “ rx1, . . . , xN sT ‰ 0, then |xi| “ |xj | for all i, j “ 1, . . . , N.

For two arbitrary matrices A, B P RNˆN , the following holds

|

N
ÿ

k“1

aikbkj | ď

N
ÿ

k“1

|aik||bkj |. (4.10)

This implies that |AB| ď |A||B|. This result naturally extends to the case when

more than two matrices are involved.

4.2.2. Lemma. Let Ai P RNˆN , i “ 1, . . . , n. Then |An ¨ ¨ ¨A1| ď |An| ¨ ¨ ¨ |A2||A1|.

The following two lemmas establish the relationship between the spectral radii of

two matrices.

4.2.3. Lemma. [44] Let A, B P RNˆN . If |A| ď B, then ρpAq ď ρp|A|q ď ρpBq.

4.2.4. Lemma. [44] Let A be an irreducible nonnegative matrix. If B ě 0 and B ‰ 0

then ρpA ` Bq ą ρpAq.

Now we are ready to study the asymptotic behavior of system (4.7).

4.2.5. Lemma. Let P be an irreducible matrix satisfying the condition (4.8). Its

associated graph GpP q is structurally balanced if and only if one of the following

equivalent conditions holds:

(a) All cycles of GpP q are positive;

(b) There exists a diagonal matrix U satisfying U2 “ I such that UPU is nonnegative;

U is unique in the sense that if there exist two diagonal matrices U1, U2, satisfying

U2
1 “ I, U2

2 “ I such that U1PU1, U2PU2 ě 0, then U1 “ U2 or U1 “ ´U2;

(c) 1 is an eigenvalue of P .

Proof. (i-ii). Note that if GpP q is structurally balanced, then pijpji ě 0, i ‰ j, i, j “

1, . . . , N . Mimicking the proof of Lemma 2 in [3], we can show that (a) and (b) are

equivalent conditions to structural balance.

(iii). (b)ùñ(c): Since UPU and P have the same eigenvalues and UPU is a stochastic

matrix, 1 is an eigenvalue of P .

(c)ùñ GpP q is structurally balanced: Since P is irreducible, it follows from Lemma

4.2.1 that there exists an eigenvector x of 1 satisfying |xi| “ |xj | ą 0, i, j “ 1, . . . , N .
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Let V1 “ tvi| xi ą 0, i “ 1, . . . , Nu and V2 “ tvi| xi ă 0, i “ 1, . . . , Nu. Then

V1 Y V2 “ V, V1 X V2 “ H, since |xi| ą 0 i “ 1, . . . , N . From x “ Px, one has

|xi| “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

pijxj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1

|pijxj | “

N
ÿ

j“1

|pij ||xj | “ |xi|. (4.11)

This implies that xipijxj ě 0 for all j “ 1, . . . , N . Assume that pvk, vlq P E and

vk P V1, vl P V2. Taking i “ k in (4.11), we have that xkpkjxj ě 0 for all j “ 1, . . . , N .

Since xk ą 0 and xl ă 0, hence pkl ă 0. Similarly, one can show that if pvk, vlq P E
and vk, vl P Vs, s “ 1, 2, then pij ą 0. We conclude that GpP q is structurally

balanced. l

From Lemma 4.2.5, we immediately have the following corollary.

4.2.1. Corollary. Let P be an irreducible matrix satisfying the condition (4.8). Its

associated graph GpP q is structurally unbalanced if and only if one of the following

equivalent conditions holds:

(a) GpP q has at least one negative cycle;

(b) There does not exist a diagonal matrix U satisfying U2 “ I such that UPU is

nonnegative;

(c) |λpP q| ă 1.

The following theorem is a consequence of Lemma 4.2.5, Corollary 4.2.1 and

Theorem 2.4.1.

4.2.1. Theorem. Let P be an irreducible matrix satisfying the condition (4.8). Sys-

tem (4.7) admits a polarization if and only if the graph GpP q is structurally balanced.

Furthermore, if U is a diagonal matrix satisfying U2 “ I such that UPU is non-

negative, then the state of system (4.7) asymptotically converges to limtÑ8 xptq “

vTUxp0qU1, where v is a left normalized eigenvector of UPU corresponding to 1

such that vT1 “ 1. If GpP q is structurally unbalanced, then limtÑ8 xptq “ 0 for

every initial value.

Proof. Define y “ Ux. In view of Lemma 4.2.5, the transformation induces a system

ypt ` 1q “ UPUyptq with nonnegative UPU , when P is structurally balanced. The

asymptotic state of the system can be obtained from Theorem 2.4.1. l

4.2.2 Discrete-time updates under time-varying topologies

In this section, we consider the case when the interaction graph topologies are dy-

namically changing. Let P “ tP1, P2, . . . , Pnu be a finite set of matrices, where

Pi, i “ 1, . . . , n, satisfy the condition (4.8).
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4.2.2. Theorem. Assume that P ptq P P and there is a diagonal matrix U satisfying

U2 “ I such that UP ptqU ě 0 for all t “ 0, 1, 2, . . .. Assume that there exists an

infinite sequence of contiguous, nonempty, uniformly bounded time intervals rti, ti`1q,

i ě 0, starting at t0 “ 0 with the property that across each time interval rti, ti`1q,

the union of the graphs GpP ptqq are strongly connected. Then system (4.2) admits a

polarization and limtÑ8 xptq “ αU1, where α is some constant.

Proof. A transformation y “ Ux transforms system (4.2) to ypt ` 1q “ UP ptqUyptq

with nonnegative matrices UP ptqU . Theorem 2.4.2 verifies the correctness of the

theorem. l

If Pi, i “ 1, . . . , n, in P are all strongly connected and structurally balanced

and further the unique bipartitions of V satisfying Lemma 4.2.5 are identical for

GpPiq, i “ 1, . . . , n, then the assumptions in Theorem 4.2.2 are satisfied and the

states of the agents will converge to two opposite values. In system (2.8), the weight-

s are nonnegative and trivially P ptq is structurally balanced. Theorem 4.2.2 is a

generalization of previous results in [47, 81, 69].

4.2.3. Theorem. Let P ptq P P, t “ 0, 1, 2, . . .. There exists an infinite sequence

of contiguous, nonempty, uniformly bounded time intervals rti, ti`1q, i ě 0, starting

at t0 “ 0 with the property that across each time interval rti, ti`1q, the union of the

graphs are strongly connected and there does not exist a diagonal matrix U satisfying

U2 “ I such that UP ptqU ě 0, ti ď t ă ti`1. Then system (4.2) converges to zero

asymptotically.

If for each time interval rti, ti`1q, there always exists some t P rti, ti`1q, such

that P ptq is strongly connected and structurally unbalanced, then the conditions

in Theorem 4.2.3 are satisfied and thus the state of the system converges to zero.

Said differently, if structural unbalance arises in the network often enough, then

polarization of the states of the agents will not happen and instead the agents in the

network reach an agreement finally.

Before proving Theorem 4.2.3, we first prove several lemmas that will be useful

in the proof for Theorem 4.2.3.

4.2.6. Lemma. Assume that P,Q satisfy the condition (4.8) and GpP q Y GpQq is

strongly connected. If there does not exist a diagonal matrix U satisfying U2 “ I

such that UPU,UQU ě 0, then ρpPQq ă 1.

Proof. Let R “ PQ and W “ |P ||Q|. Then W is stochastic and irreducible, since

GpP q Y GpQq is strongly connected. Thus 1 is a simple eigenvalue of W and all the
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other eigenvalues lie inside the unit disc [81]. Since

rij “

N
ÿ

k“1

pikqkj ď |

N
ÿ

k“1

pikqkj | “ |rij | ď

N
ÿ

k“1

|pik||qkj | “ wij , (4.12)

it follows that R ď |R| ď W . In view of Lemma 4.2.3, ρpRq ď ρp|R|q ď ρpW q “ 1.

If W ´ |R| ‰ 0, the matrix |R| ` ϵpW ´ |R|q is nonnegative and irreducible for

some positive scalar 0 ă ϵ ă 1, since W ´|R| is nonnegative and W “ W `pW ´|R|q

is irreducible. It follows from Lemma 4.2.4 that

ρpRq ď ρp|R|q ď ρp|R| ` ϵpW ´ |R|qq ă ρpW q “ 1.

If W ´ |R| “ 0, then it is easy to see from the inequality (4.12) that pikqkj ě 0

for all k “ 1, . . . , N , or pikqkj ď 0 for all k “ 1, . . . , N . Since pii, qii ą 0 and

rii “
řN

k“1 pikqki, one has rii ą 0 for all i “ 1, . . . , N . From (4.12),

N
ÿ

j“1

|rij | ď

N
ÿ

j“1

wij “ 1.

The Gersgorin region GpRq of R is contained in the unit disc and the boundary

points of GpRq are all inside the unit disc except 1. We have to show that 1 is not

an eigenvalue of R. Observing that for any pij ă 0, one has that rij ă 0 since

pijqjj ă 0. Similarly, for any pij ą 0, rij ą 0. For any qij ă 0, one has that

rij ă 0, and for any qij ą 0, rij ą 0. Suppose on the contrary 1 is an eigenvalue

of R. R is thus structurally balanced from Lemma 4.2.5 and there exists a diagonal

matrix U satisfying U2 “ I such that URU ě 0. Furthermore, since a subgraph

of a structurally balanced graph is also balanced, it follows that P and Q are both

structurally balanced and UPU,UQU ě 0. This contradicts the assumption of this

lemma, completing the proof. l

4.2.7. Lemma. Assume that P1, . . . , Pn satisfy (4.8) and Yn
i“1GpPiq is strongly con-

nected. If there does not exist a diagonal matrix U satisfying U2 “ I such that

UPiU ě 0, i “ 1, . . . , n, then ρpPn ¨ ¨ ¨P2P1q ă 1.

Proof. Denote the ijth element of Pk by pPkqij , let R “ Pn ¨ ¨ ¨P2P1 and let W “

|Pn| ¨ ¨ ¨ |P2||P1|. In view of the fact that

|rij | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k1,...,kn´1“1,...,N

pPnqikn´1 ¨ ¨ ¨ pP2qk2k1pP1qk1j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

k1,...,kn´1“1,...,N

|pPnqikn´1 | ¨ ¨ ¨ |pP2qk2k1 ||pP1qk1j | “ wij , (4.13)
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and mimicking the proof of Lemma 4.2.6, one can prove the lemma. l

The following result is an immediate consequence of Lemma 4.2.7.

4.2.2. Corollary. Assume that P1, . . . , Pn satisfy (4.8) and Yn
i“1GpPiq is strongly

connected. 1 is an eigenvalue of Pn ¨ ¨ ¨P2P1 if and only if there exists a diagonal

matrix U satisfying U2 “ I such that UPiU ě 0, i “ 1, . . . , n.

4.2.8. Lemma. Let P, Q P RNˆN and let W, S P RNˆN be two positive stochastic

matrices. Assume that ρpP q ă 1, ρpQq ă 1, |P | ď W, and |Q| ď S. Assume that

if |P | “ W , then pii ą 0 for all i “ 1, . . . , N and if |Q| “ S, then qii ą 0 for

all i “ 1, . . . , N . There exists a constant 0 ď τ ă 1 such that for any x P RN , if

z “ QPx, then ||z|| ď τ ||x||.

Proof. Let x be a nonzero vector and y “ Px. One has that z “ Qy and

yi “

N
ÿ

j“1

pijxj ď

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

pijxj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1

|pijxj | (4.14)

ď

N
ÿ

j“1

wij |xj | ď

N
ÿ

j“1

wij ||x|| “ ||x||. (4.15)

Thus ||y|| ď ||x|| and it follows that ||z|| ď ||y|| ď ||x||.

It follows from (4.14) and (4.15) that |yi| “ ||y|| “ ||x|| for some i “ 1, . . . , N if

and only if |xj | “ ||x||, |pij | “ wij , j “ 1, . . . , N , and pijxj ě 0 for all j “ 1, . . . , N

or pijxj ď 0 for all j “ 1, . . . , N . Thus if for some k, |xk| ‰ ||x||, then ||y|| ă ||x||

and ||z|| ď ||y|| ă ||x||.

Next we consider the vector x with |xi| “ ||x|| for all i “ 1, . . . , N . If |P | ‰ W ,

then there exists some pkj such that |pkj | ă wkj . The first inequality in (4.15) is

strict for i “ k, and thus |yk| ă ||x||. If |yk| “ ||y||, then ||z|| ď ||y|| ă ||x||; if

|yk| ă ||y||, then in view of the fact that z “ Qy and Q is in the same position as P

in y “ Px, one has that ||z|| ă ||y|| ď ||x||.

If |P | “ W , we prove that there exists some k such that |yk| ă ||x||, from which

we can arrive at the conclusion that ||z|| ă ||x||. Suppose on the contrary that

|yi| “ ||y|| “ ||x|| for all i “ 1, . . . , N . It follows that for a given i, i “ 1, . . . , N ,

pijxj ě 0 for all j “ 1, . . . , N or pijxj ď 0 for all j “ 1, . . . , N . Define two sets N1 “

ti| xi ą 0, i “ 1, . . . , Nu and N2 “ ti| xi ă 0, i “ 1, . . . , Nu. Then tN1, N2u is a

bipartition of t1, . . . , Nu. For any i P N1, if j P N1, then pij ą 0, since pii ą 0, xi ą 0;

if j P N2, then pij ă 0. Similarly, if i, j P N2, then pij ą 0; if i P N2, j P N1, then

pij ă 0. P is thus structurally balanced. Since |P | “ W and pii ą 0, i “ 1, . . . , N ,
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P satisfies the condition (4.8). From Lemma 4.2.5, 1 is an eigenvalue of P , which

contradicts the fact that ρpP q ă 1.

We have proved that for any nonzero x, ||QPx|| ă ||x||, that is ||QPx||

||x||
ă 1. In

addition, one has that

sup
x‰0

||QPx||

||x||
“ sup

xT x“1

||QPx||

||x||
“ max

xT x“1

||QPx||

||x||
.

The last equality holds since the set tx|xTx “ 1u is compact. Letting τ “ max
xT x“1

||QPx||

||x||
,

it is true that τ ă 1. We complete the proof. l

It is known that if A P RNˆN is nonnegative and irreducible and all the diagonal

entries of A are positive, then AN´1 ą 0 [44]. The following lemma from [16] is a

generalization of this fact.

4.2.9. Lemma. [16] Let Ai P RNˆN , i “ 1, . . . , n, be n nonnegative irreducible ma-

trices with positive diagonal entries. If k ě N ´ 1 and 1 ď i1, . . . , ik ď n, then

Aik ¨ ¨ ¨Ai2Ai1 ą 0.

4.2.10. Lemma. Let P “ tP1, . . . , Pnu be a finite set of matrices and let W “

tW1, . . . ,Wnu be a set of stochastic irreducible matrices with positive diagonal entries.

Assume that ρpPiq ă 1, |Pi| ď Wi, i “ 1, . . . , n, and if |Pi| “ Wi, then the diagonal

entries of Pi are all positive. Then for each sequence of matrices P p1q, P p2q, P p3q, . . .

from P, the product P pkq ¨ ¨ ¨P p2qP p1q converges to zero as k goes to infinity.

Proof. Consider a sequence of matrices P p1q, P p2q, P p3q, . . . from P. Let Q “ P pN ´

1q ¨ ¨ ¨P p2qP p1q. Lemma 4.2.2 implies that

|Q| “ |P pN´1q ¨ ¨ ¨P p2qP p1q| ď |P pN´1q| ¨ ¨ ¨ |P p2q||P p1q| ď W pN´1q ¨ ¨ ¨W p2qW p1q,

(4.16)

where |P piq| ď W piq and W piq P W. Let S “ W pN ´ 1q ¨ ¨ ¨W p2qW p1q. Since

W piq, i “ 1, . . . , N ´ 1, are irreducible and they have positive diagonal entries, it

follows from Lemma 4.2.9 that S ą 0. If |Q| ‰ S, then mimicking the proof in

Lemma 4.2.6, one can show that ρpQq ă ρpSq “ 1.

If |Q| “ S, then it should hold that W pN ´ 1q ¨ ¨ ¨W piq ¨ ¨ ¨W p1q “ W pN ´

1q ¨ ¨ ¨ |P piq| ¨ ¨ ¨W p1q “ |P pN ´1q| ¨ ¨ ¨ |P p2q||P p1q| for all i “ 1, . . . , N ´1 from (4.16).

If for some i, |P piq| ‰ W piq, then there exists some element, say the kjth element, of

W piq ´ |P piq| is nonzero. Since the diagonal elements of W plq, l “ 1, . . . , N ´ 1, are

all positive, the ijth element of W pN ´1q ¨ ¨ ¨ pW piq ´ |P piq|q ¨ ¨ ¨W p1q is also nonzero,

which cannot happen. Thus one has that |P piq| “ W piq, for all i “ 1, . . . , N ´ 1.

From the assumption of the lemma, the diagonal elements of P piq are all positive.
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P piq satisfy the condition (4.8). Combining with the fact that ρpP piqq ă 1 and P piq

are irreducible, one has that P piq is structurally unbalanced. Thus there does not

exist a diagonal matrix U satisfying U2 “ I such that UP piqU ě 0. The conditions

in Lemma 4.2.7 are satisfied and thus ρpQq ă 1.

Since

|qii| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k1,...,kN´2“1,...,N

pP pN ´ 1qqikN´2
¨ ¨ ¨ pP p2qqk2k1pP p1qqk1i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

k1,...,kN´2“1,...,N

ˇ

ˇpP pN ´ 1qqikN´2
¨ ¨ ¨ pP p2qqk2k1pP p1qqk1i

ˇ

ˇ ,

it is true that pP pN ´ 1qqikN´2 ¨ ¨ ¨ pP p2qqk2k1pP p1qqk1i ě 0 for all k1, . . . , kN´2 “

1, . . . , N or pP pN´1qqikN´2 ¨ ¨ ¨ pP p2qqk2k1pP p1qqk1i ď 0 for all k1, . . . , kN´2 “ 1, . . . , N .

Since pP pN ´ 1qqii ¨ ¨ ¨ pP p2qqiipP p1qqii ą 0, we have that qii ą 0, i “ 1, . . . , N .

Similarly, ρpP p2N ´ 2q ¨ ¨ ¨P pN ` 1qP pNqq ă 1 and if |P p2N ´ 2q ¨ ¨ ¨P pN `

1qP pNq| “ W p2N ´ 2q ¨ ¨ ¨W pN ` 1qW pNq, then the diagonal elements of P p2N ´

2q ¨ ¨ ¨P pN ` 1qP pNq are all positive. Let xp1q P RN be an arbitrary vector and

xpi`1q “ P piqxpiq, i “ 1, 2, . . . . From Lemma 4.2.8, there exists a constant 0 ď τ ă 1

such that

||xp2N ´ 1q|| “ ||P p2N ´ 2q ¨ ¨ ¨P pNqP pN ´ 1q ¨ ¨ ¨P p1qxp1q|| ď τ ||xp1q||.

Note that the above arguments are valid for any matrix product P p2N´2q ¨ ¨ ¨P p2q

P p1q with P piq P P, i “ 1, . . . , N ´ 2. Since the number of the matrices obtained by

multiplying 2N´2 matrices from P together is finite, there exists a uniform constant,

still denoted by τ , 0 ď τ ă 1, such that for any vector xp1q, ||xp2N ´ 1q|| ď τ ||xp1q||,

where xp2N ´ 1q “ P p2N ´ 2q ¨ ¨ ¨P p2qP p1qxp1q and P piq P P, i “ 1, . . . , N ´ 2.

Consider again a specific sequence of matrices P p1q, P p2q, P p3q, . . . from P. For

k ě 1, let k “ apN ´ 1q ` b, where a, b are integers satisfying a ě 0, 0 ď b ă N ´ 1.

We have that

||xpkq|| ď ||xpapN ´ 1q ` 1q|| ď τa||xp1q||. (4.17)

Thus limkÑ8 ||xpkq|| “ 0 for any vector xp1q. This is equivalent to the conclusion

that

lim
kÑ8

P pkq ¨ ¨ ¨P p2qP p1q “ 0.

l

It is known that for a general time-varying system (4.2), the condition ρpP ptqq ă

1 cannot guarantee the asymptotic stability of system (4.2). Lemma 4.2.10 has

constructed a sufficient condition to guarantee the asymptotic stability of system
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(4.2), when P ptq are picked from a finite set. The condition that if |Pi| “ Wi, then

the diagonal elements of Pi are positive is critical, and it cannot be removed. We

provide an example to show that if it is not satisfied, the system can be unstable.

4.2.2. Example. Let

P ptq “
1

3

»

–

1 ´1 ´1

´1 1 1

1 ´1 ´1

fi

fl , if t is odd; P ptq “
1

3

»

–

1 ´1 1

´1 1 ´1

´1 1 ´1

fi

fl , if t is even.

|P ptq| are stochastic irreducible matrices and ρpP ptqq “ 1
3 . The conditions in Lemma

4.2.10 are satisfied except that some diagonal elements of P ptq are negative. It is

easy to check that

P pkq ¨ ¨ ¨P p2qP p1q “

$

’

’

’

’

&

’

’

’

’

%

1
3

»

—

—

–

1 ´1 ´1

´1 1 1

´1 1 1

fi

ffi

ffi

fl

, k is even,

P p1q, k is odd.

(4.18)

The matrix product P pkq ¨ ¨ ¨P p2qP p1q does not converge as k goes to infinity and

thus the system is unstable. l

Proof of Theorem 4.2.3. Pick an integer T such that T is a uniform bound for

the length of time intervals rti, ti`1q, i “ 0, 1, 2, . . .. Since P ptq P P, |P pti`1 ´

1q| ¨ ¨ ¨ |P pti `1q||P ptiq| are stochastic matrices with positive diagonal elements. Since

YtPrti,ti`1qGpP ptqq are strongly connected, the stochastic matrices |P pti`1 ´ 1q| ¨ ¨ ¨

|P pti ` 1q||P ptiq| are all irreducible [47]. Combining with the condition that there

does not exist a diagonal matrix U such that UP ptqU ě 0, ti ď t ă ti`1, it follows

from Lemma 4.2.7 that ρpP pti`1 ´1q ¨ ¨ ¨P pti `1qP ptiqq ă 1. If |P pti`1 ´1q ¨ ¨ ¨P pti `

1qP ptiq| “ |P pti`1 ´ 1q| ¨ ¨ ¨ |P pti ` 1q||P ptiq|, then the diagonal elements of P pti`1 ´

1q ¨ ¨ ¨P pti`1qP ptiq are all positive, since the diagonal elements of P ptq are all positive.

The number of the matrices obtained by multiplying no more than T matrices from

a finite set is also finite. Thus P pti`1 ´1q ¨ ¨ ¨P pti `1qP ptiq, i “ 0, 1, . . . is a sequence

of matrices from a finite set. The conditions in Lemma 4.2.10 are satisfied and we

conclude that limtÑ8 P ptq ¨ ¨ ¨P p2qP p1q “ 0, which completes the proof. l

A common Lyapunov function can be found for the time-varying system (4.2)

to show its asymptotic convergence in the spirit of Lemmas 4.2.8 and 4.2.10. Let

V pxptqq “ ||xptq||. Then ||xpt`1q|| ď ||xptq|| and V pxptqq is a non-increasing function
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along the solution of system (4.2). Further

||xppk ` 1qp2N ´ 2qq|| ď τk`1||xp0q||, k “ 0, 1, 2, . . . ,

for some constant 0 ď τ ă 1, meaning that V pxptqq will decrease strictly after

updating at most 2N ´ 2 steps. This establishes the strictly decreasing property of

V pxptqq, proving the asymptotic convergence of system (4.2). The convergence speed

can also be characterized.

4.3 Distributed continuous-time algorithms

4.3.1 Continuous-time updates under fixed topologies

We first consider the continuous-time algorithm (4.4) under fixed topologies. Let G
be a signed graph representing the interaction graph topology, let A P RNˆN be the

signed adjacency matrix, and let L “ plijqNˆN be the signed Laplacian matrix given

by (2.3). System (4.4) and system (4.5) become

9xi “ ´

N
ÿ

j“1

|aij |pxi ´ sgnpaijqxjq, i “ 1, . . . , N, (4.19)

and

9x “ ´Lx. (4.20)

4.3.1. Lemma. A strongly connected signed graph G with the signed adjacency matrix

A is structurally balanced if and only if one of the following equivalent conditions

holds:

(a) All cycles of G are positive;

(b) There exists a unique diagonal matrix U satisfying U2 “ I such that UAU is

nonnegative;

(c) 0 is an eigenvalue of the signed Laplacian matrix L.

Proof. Note that if G is structurally balanced, then aijaji ě 0, i, j “ 1, . . . , N . (a)

and (b) follow from Lemma 2 in [3] and (b)ùñ(c) is clear. We only prove (c)ùñ G
is structurally balanced.

Assume that 0 is an eigenvalue of L. Since lii “
řN

j“1,j‰i |aij |, from Lemma

2.2.1, it follows that 0 is a boundary point of the Gersgorin region GpLq. Com-

bining with the fact that L is irreducible, from Lemma 4.2.1, there exists an eigen-

vector x of 0 satisfying |xi| “ |xj | ą 0, i, j “ 1, . . . , N . From Lx “ 0, one has
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liixi `
řN

j“1,j‰i lijxj “ 0, that is
řN

j“1,j‰i |aij |xi “
řN

j“1,j‰i aijxj . In addition, the

following inequality holds

N
ÿ

j“1,j‰i

aijxj ď

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1,j‰i

aijxj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1,j‰i

|aijxj | “

N
ÿ

j“1,j‰i

|aij ||xi|. (4.21)

This implies that xiaijxj ě 0 for all j ‰ i, i, j “ 1, . . . , N . Mimicking the proof in

Lemma 4.2.5(c), one can prove that G is structurally balanced. l

Note that in [3], it is assumed that the weights in the graph satisfy the digon

sign-symmetric assumption, which requires that aijaji ě 0, i, j “ 1, . . . , N . This

assumption obviously holds if G is structurally balanced. Under this assumption,

the equivalent conditions (a) (b) (c) to structural balance have been established in

[3]. The condition (c) is derived by exploring the property of the graph GpAsq.

Here without looking at the property of the graph GpAsq, we are enabled to remove

this assumption and directly show the equivalence between (c) and the structural

balance of G. Note that Lemma 2(1) in [3], which states that GpAsq is structurally

balanced, does not hold without the digon sign-symmetric assumption. Only one

part of the necessary and sufficient condition is valid. The correct part is that GpAsq

is structurally balanced if GpAq is structurally balanced. The converse is not valid,

which can be illustrated by a counterexample. Let

A “

»

–

0 1 1

1 0 1

´1 1 0

fi

fl , As “

»

–

0 1 0

1 0 1

0 1 0

fi

fl .

GpAsq is structurally balanced, while GpAq is not.

4.3.1. Corollary. A strongly connected signed graph G with the signed adjacency

matrix A is structurally unbalanced if and only if one of the following equivalent

conditions holds:

(a) G has at least one negative cycle;

(b) There does not exist a diagonal matrix U satisfying U2 “ I such that UAU is

nonnegative;

(c) RepλipLqq ă 0, i “ 1, . . . , N .

The following result can be straightforwardly derived by making a transformation

to the system state of (4.20).

4.3.1. Theorem. Let G be a strongly connected signed graph. System (4.20) admits

a polarization if and only if G is structurally balanced. Furthermore, if U is a di-

agonal matrix satisfying U2 “ I such that UAU is nonnegative, then the state of
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system (4.20) asymptotically converges to limtÑ8 xptq “ vTUxp0qU1, where v is a

left normalized eigenvector of ULU corresponding to 0 such that vT1 “ 1. If G is

structurally unbalanced, then limtÑ8 xptq “ 0 for every initial value.

4.3.2 Continuous-time updates under time-varying topologies

In this section, we consider the case when the interaction graph topologies are dy-

namically changing. Assume that at time t the signed adjacency matrix is Aptq and

the signed Laplacian matrix is Lptq. Assume that Aptq and Lptq are piecewise con-

stant functions and the interaction graph topologies change at time instants t1, t2, . . ..

System (4.5) can be rewritten as

9xptq “ ´Lptiqxptq, t P rti, ti ` τiq, (4.22)

where t0 “ 0 is the initial time, and τi “ ti`1 ´ ti, i “ 0, 1, . . . are the dwell time.

Assume that τi ě τT for all i “ 0, 1, . . . .

Given a signed adjacency matrix A, if there is a diagonal matrix U satisfying

U2 “ I such that UAU is nonnegative, then L̄ “ ULU is a Laplacian matrix that

has nonnegative off-diagonal elements. Let τ be a positive number, let P “ e´Lτ

and let P̄ “ e´L̄τ . One has

P̄ “ e´L̄τ “ e´ULUτ “ Ue´LτU “ UPU. (4.23)

P̄ “ e´L̄τ is a stochastic matrix with positive diagonal entries [81]. We conclude that

pii ą 0 and
řN

j“1 |pij | “ 1, i “ 1, . . . , N . P satisfies the condition (4.8). If a strongly

connected signed graph GpAq is structurally balanced, then there is a diagonal matrix

U satisfying U2 “ I such that UAU is nonnegative. Thus P “ e´Lτ satisfies the

condition (4.8), P is irreducible, and it is structurally balanced.

Let A “ tA1, A2, . . . , Anu be a finite set of signed adjacency matrices.

4.3.2. Theorem. Assume that Aptq P A is piecewise constant, and there is a di-

agonal matrix U such that UAptqU ě 0 for all t “ 0, 1, 2, . . .. Assume that there

exists an infinite sequence of contiguous, nonempty, uniformly bounded time inter-

vals rtik , tik`1
q, k ě 0, starting at ti0 “ 0 with the property that across each time

interval rtik , tik`1
q, the union of the graphs are strongly connected. Then system

(4.22) admits a polarization and limtÑ8 xptq “ αU1, where α is some constant.

4.3.3. Theorem. Assume that the signed adjacency matrices in A are all irreducible

and Aptq P A is piecewise constant. There exists an infinite sequence of contiguous,

nonempty, uniformly bounded time intervals rtik , tik`1
q, k ě 0, starting at ti0 “ 0 with

the property that there does not exist a diagonal matrix U satisfying U2 “ I such that

UAptqU ě 0, tik ď t ă tik`1
. Then system (4.22) converges to zero asymptotically.
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Proof. The solution to (4.22) is given by

xptq “ e´Lptkqpt´tkq ¨ ¨ ¨ e´Lpt1qτ1e´Lpt0qτ0xp0q,

where k is the largest nonnegative integer satisfying tk ă t. Let Pi “ e´Lptiqτi , i “

0, 1, . . . . Pi satisfy the condition (4.8), and Pi are irreducible and structurally bal-

anced. The rest of the proof is similar to the argument used in Theorem 4.2.3. l

4.4 Illustrative example

In this section, we perform simulation studies on discrete-time model (4.2). Let

P1, P2, and P3 be given by

P1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
3

1
3 0 0 0 0 0 0 0 ´ 1

3
1
4

1
4

1
4 0 0 0 0 0 ´ 1

4 0

0 1
3

1
3

1
3 0 0 0 0 0 0

0 0 1
4

1
4

1
4 0 ´ 1

4 0 0 0

0 0 0 1
4

1
4 ´ 1

4 0 ´ 1
4 0 0

0 0 0 0 ´ 1
3

1
3

1
3 0 0 0

0 0 0 ´ 1
4 0 1

4
1
4

1
4 0 0

0 0 0 0 ´ 1
4 0 1

4
1
4

1
4 0

0 ´ 1
3 0 0 0 0 0 1

3
1
3 0

´ 1
2 0 0 0 0 0 0 0 0 1

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

P2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
2

1
2 0 0 0 0 0 0 0 0

1
5

1
5

1
5 0 1

5 0 0 0 0 ´ 1
5

0 1
4

1
4

1
4 0 ´ 1

4 0 0 0 0

0 0 1
3

1
3 0 0 ´ 1

3 0 0 0

0 1
4 0 0 1

4 0 0 ´ 1
4 ´ 1

4 0

0 0 ´ 1
3 0 0 1

3
1
3 0 0 0

0 0 0 ´ 1
4 0 1

4
1
4

1
4 0 0

0 0 0 0 ´ 1
4 0 1

4
1
4

1
4 0

0 0 0 0 ´ 1
3 0 0 1

3
1
3 0

0 ´ 1
2 0 0 0 0 0 0 0 1

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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Figure 4.2: The graph GpP1q associated to

P1.
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Figure 4.3: The graph GpP2q associated to

P2.

P3 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
3

1
3 0 0 0 0 0 0 0 1

3
1
4

1
4

1
4 0 0 0 0 0 ´ 1

4 0

0 1
3

1
3

1
3 0 0 0 0 0 0

0 0 1
4

1
4

1
4 0 ´ 1

4 0 0 0

0 0 0 1
4

1
4 ´ 1

4 0 ´ 1
4 0 0

0 0 0 0 ´ 1
3

1
3

1
3 0 0 0

0 0 0 ´ 1
4 0 1

4
1
4

1
4 0 0

0 0 0 0 ´ 1
4 0 1

4
1
4

1
4 0

0 ´ 1
3 0 0 0 0 0 1

3
1
3 0

1
2 0 0 0 0 0 0 0 0 1

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The graphs associated to P1, P2, and P3 are denoted by GpP1q,GpP2q, and GpP3q

and they are illustrated in Figs 4.2-4.4. The edges with negative weights are labeled

by “´” signs and the rest edges are with positive weights. It is easy to see that

GpP1q,GpP2q, and GpP3q are all structurally balanced. The bipartitions of the node

set tv1, . . . , v10u for GpP1q and GpP2q satisfying Lemma 4.2.5(a) are the same, which

is ttv1, . . . , v5u, tv6, . . . , v10uu, and hence U “ diagt1, 1, 1, 1, 1,´1,´1,´1,´1,´1u is

a diagonal matrix satisfying that U2 “ I and UP1U ě 0, UP2U ě 0. GpP3q has a dif-

ferent bipartition satisfying Lemma 4.2.5(a), which is ttv1, . . . , v5, v10u, tv6, v7, v8, v9uu,

and hence Ū “ diagt1, 1, 1, 1, 1,´1,´1,´1,´1, 1u is a diagonal matrix satisfying that

Ū2 “ I and ŪP3Ū ě 0. In the simulations, take the initial values of the ten agents

to be xp0q “ r4,´2, 3,´3, 5,´2,´3,´2, 1, 0sT .
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Figure 4.4: The graph GpP3q associated to P3.
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Figure 4.5: The evolution of the agents’ s-

tates when the graph topologies switch be-

tween GpP1q with GpP2q.
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Figure 4.6: The evolution of the agents’ s-

tates when the graph topologies switch be-

tween GpP1q with GpP3q.

First consider the switched system (4.2) with

P ptq “

#

P1, t is even,

P2, t is odd.
(4.24)

Then the states of all the agents evolve to two opposite values since GpP1q and GpP2q
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share the same bipartition of the node set, which is illustrated in Fig. 4.5. If

P ptq “

#

P1, t is even,

P3, t is odd,
(4.25)

the conditions in Theorem 4.2.3 are satisfied. We can conclude that the states of

all the agents asymptotically converge to zero, which is also verified by Fig. 4.6.

Since GpP1q is structurally balanced, for system (4.2) with static interaction topology

P ptq “ P1, t “ 0, 1, . . ., the states of the agents will converge to two opposite values.

When we compare GpP1q with GpP3q, it is observed that only the weight of the edge

between v1 and v10 changes the sign. However, small variations of the interaction

graph topology has led to significant changes in the dynamical behavior of the system.

4.5 Conclusion

In this chapter, we have generalized the distributed algorithms introduced in Chapter

2 to more general settings where the couplings between pairs of agents in a network

could be positive or negative. Both discrete-time and continuous-time algorithms

have been discussed under dynamically changing interaction topologies. By making

use of the notion of structural balance, sufficient conditions have been constructed to

guarantee that the states of the agents converge to two opposite values or converge

to zero.

We have considered the setting that the interaction graph topologies are dynam-

ically changing with time but not affected by the states of the agents. In realistic

social networks, the relationship between two persons is likely to be affected by the

variations of their opinions about a subject. It is of great interest to consider the case

when the network topologies are time-varying and also dependent on the system’s

state.





Chapter 5

Distributed Clustering Algorithms

Various algorithms have been successfully constructed to cause all the agents in a

group to converge to the same value asymptotically [47, 81, 16]. At the same time,

there is a growing interest to study how an interconnected group may incorporate

or evolve into different sub-groups called clusters. In contrast to the widely stud-

ied synchronization processes, in the cluster synchronization problem studied in this

chapter, we require all the interconnected agents to evolve into several clusters and

each agent only to synchronize within its cluster. We focus on the n-cluster syn-

chronization problem to be defined in the next section. We present in this chapter

three approaches that may lead to clustering behavior in connected networks con-

sisting of locally interacting agents. The first approach is that agents have different

self-dynamics, and those agents having the same self-dynamics may evolve into the

same cluster. When the agents’ self-dynamics are identical, we present two other ap-

proaches by which cluster synchronization might be achieved. One is the presence of

delays and the other is the existence of both positive and negative couplings between

the agents.

5.1 Problem formulation

In this chapter we aim to study n-cluster synchronization problem, in which a coupled

multi-agent system is required to split into n clusters, so that the agents synchronize

with one another in the same cluster, but differences exist between different clusters

[105]. We first give a formal definition of n-cluster synchronization. As in previous

chapters, directed weighted graphs are used to describe the couplings among the ag-

ents. Let G be a directed weighted graph representing the interaction topology among

the agents and let A and L be the corresponding adjacency matrix and Laplacian

matrix of G. Consider the following extensively studied model in the synchronization



56 5. Distributed Clustering Algorithms

study for a complex network [77, 51] that consists of N coupled agents

9xiptq “ fipt, xiptqq ` c
N
ÿ

j“1,j‰i

aijΓpxjptq ´ xiptqq

“ fipt, xiptqq ´ c
N
ÿ

j“1

lijΓxjptq, (5.1)

where xi P Rm denotes the state of agent i, i “ 1, . . . , N , fi : r0,8q ˆ Rm Ñ Rm is

continuous and globally Lipschitzian with Lipschitz constant Ki, namely

||fipt, ξ1q ´ fipt, ξ2q||2 ď Ki||ξ1 ´ ξ2||2, (5.2)

for all pt, ξ1q, pt, ξ2q P r0,8q ˆ Rm, c ą 0 is the coupling strength, aij is the ijth ele-

ment of A, lij is the ijth element of L, and the diagonal matrix Γ “ diagtγ1, . . . , γmu

denotes the inner coupling with γk ě 0 for k “ 1, . . . ,m. System (5.1) has a unique

solution which exists for all t ě 0 [33].

We say that tC1, C2, . . . , Cnu, n ą 1, is a partition of the set N “ t1, 2, . . . , Nu if

Ci ‰ H, Ci

Ş

Cj “ H and
Ťn

i“1 Ci “ N ; furthermore, we use î to denote the index

of that subset of the partition in which the number i lies, i.e., i P Cî. Obviously,

1 ď î ď n. We say that agents i and j are in the same cluster if î “ ĵ. Now we are

ready to define what we mean by cluster synchronization.

5.1.1. Definition. For a given initial condition xp0q “ rxT
1 p0q, . . . , xT

N p0qsT , where

xip0q P Rm, 1 ď i ď N , system (5.1) is said to realize n-cluster synchronization

with the partition tC1, C2, . . . , Cnu if limtÑ8 ||xiptq ´ xjptq|| “ 0 for î “ ĵ and

lim suptÑ8 ||xiptq ´ xjptq|| ą 0 for î ‰ ĵ.

5.1.1. Remark. In [112], a similar concept called the “group consensus” of a multi-

agent system is defined, which is weaker than the cluster synchronization defined here

because we require in addition that the differences between different clusters do not go

to 0 as time goes to infinity. A different type of clustering behavior is considered in

[1, 91], where the differences between agents in the same cluster are bounded, while

the differences between agents in different clusters grow unbounded as time goes to

infinity.

In the synchronization study literature, the fi in (5.1) are often referred to as the

self-dynamics of agent i. In what follows, we discuss clustering approaches according

to whether the agents’ self-dynamics are identical.
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5.2 Clustering with different self-dynamics

We first illustrate how agents governed by different linear dynamics might evolve into

different clusters. We consider the case when some agents are under constant forcings

and the others are not. The dynamics of the former are

9xiptq “ ´xiptq ` bî ´

N
ÿ

j“1

lijxjptq (5.3)

where lij is the ijth element of the Laplacian matrix L satisfying lij ď 0, for i ‰ j,

and bî are constants with bî ‰ bĵ for î ‰ ĵ. The dynamics of the latter are

9xiptq “ ´

N
ÿ

j“1

lijxjptq. (5.4)

Comparing (5.3) and (5.4) with (5.1), we have taken fi to be affine functions, Γ an

identity matrix, c “ 1, and m “ 1. The results derived in this section can be easily

extended to the more general case when c ą 0 and m ě 1. Since the constant forcing

terms sometimes come from the agents’ knowledge about their preferred values, the

agents described by (5.3) are called informed agents and naturally the agents de-

scribed by (5.4) are called naive agents since they do not have prior knowledge and

have to rely on the interactions with their peers to evolve. In the next two subsec-

tions, we provide some sufficient and/or necessary conditions for systems of informed

and naive agents to converge to n clusters.

5.2.1 Systems of informed agents

In this subsection, we consider the case when the system only consists of N informed

agents described by (5.3) for 1 ď i ď N. Assume that we have labeled the agents in

such a way that the first l1 agents are under the forcing b1, the next l2 agents are

under b2, and so on. Then the system can be written in a compact form

9xptq “ ´xptq ` b̄ ´ Lxptq “ ´L̄xptq ` b̄, (5.5)

where x “ rx1, x2, . . . , xN sT P RN , L̄ “ L ` I, and b̄ “ rb11
T
l1 , . . . , bn´11

T
ln´1

, bn1
T
lnsT

with l1 ` ¨ ¨ ¨ ` ln “ N .

We further write the Laplacian matrix L in the following block matrix form:

L “

»

—

—

—

–

L11 L12 ¨ ¨ ¨ L1n

L21 L22 ¨ ¨ ¨ L2n

...
...

. . .
...

Ln1 Ln2 ¨ ¨ ¨ Lnn

fi

ffi

ffi

ffi

fl

,
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where Lij P Rliˆlj , 1 ď i, j ď n. Since the row sums of L are zero, we know the

row sums of ´L̄ are ´1. In addition, ´L̄ has nonnegative off-diagonal elements.

Hence, ´L̄ is invertible and the eigenvalues of ´L̄ are all located in the open left-half

plane. The equilibrium of system (5.5) is x˚ “ L̄´1b̄. Define yptq “ xptq ´ x˚; then

9yptq “ ´L̄yptq. It is obvious that yptq Ñ 0 as t Ñ 8. Thus x˚ is a globally stable

equilibrium of system (5.5). In fact, we can say more about the structures of x˚ as

follows.

5.2.1. Theorem. For any initial condition, system (5.5) of informed agents achieves

n-cluster synchronization for almost all (in the sense of Lebesgue measure) bi, 1 ď

i ď n, with bi ‰ bj for i ‰ j, if the block matrices Lij, 1 ď i, j ď n and i ‰ j, have

constant row sums.

The proof of this theorem makes use of the following lemma.

5.2.1. Lemma. Consider the matrix P “ pPijqNˆN where Pij P Rliˆlj , 1 ď i, j ď n.

Suppose that P is invertible and that its inverse is Q “ pQijqNˆN , where Q is

partitioned in the same way as P . If the matrices Pij have constant row sums for

1 ď i, j ď n, then the matrices Qij also have constant row sums for 1 ď i, j ď n. In

addition, let rij denote the row sum of Pij and sij denote that of Qij; then RS “

Inˆn, where R “ prijqnˆn and S “ psijqnˆn.

Proof : From QP “ I, one has

n
ÿ

k“1

Q1kPkj “

#

I, j “ 1,

O, j ‰ 1,

Since Pkj have constant row sums rkj , summing up the elements in each row of Pkj

gives
¨

˚

˚

˚

˝

»

—

—

—

–

r11 r21 ¨ ¨ ¨ rn1
r12 r22 ¨ ¨ ¨ rn2
...

...
. . .

...

r1n r2n ¨ ¨ ¨ rnn

fi

ffi

ffi

ffi

fl

b I

˛

‹

‹

‹

‚

»

—

—

—

–

Q111

Q121
...

Q1n1

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1

0
...

0

fi

ffi

ffi

ffi

fl

. (5.6)

Since P is invertible, so is R. Combining with (5.6), we know that Q1j have constant

row sums for 1 ď j ď n. In addition, the row sums s1j of Q1j satisfy

rs11, s12, . . . , s1nsT “ pRT q´1r1, 0, . . . , 0sT .

Using a similar calculation, it is easy to check that all Qij have constant row sums

for 1 ď i, j ď n, and ST “ R´T I; that is SR “ I. l
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Now we are ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1: Let Q “ pQijqNˆN be the inverse of ´L̄. Since L̄ij , i ‰ j,

have constant row sums and the row sums of ´L̄ are ´1, it follows from Lemma 5.2.1

that Qij have constant row sums for 1 ď i, j ď n. Denote the row sum of ´L̄ij by

rij and that of Qij by sij . Then again from Lemma 5.2.1, we know that S “ R´1,

where R “ prijqnˆn, and S “ psijqnˆn. So all the agents in the ith cluster have the

same asymptotic value ´
řn

j“1 sijbj .

Next we show that all the bi that do not lead to n-cluster synchronization come

from a set which has zero Lebesgue measure. Let S “ tx “ rx1, . . . , xnsT P Rn : xi “

xj for some i ‰ j with 1 ď i, j ď nu, and let the smooth linear map g : Rn Ñ Rn be

defined by gpxq “ Rx. Then it is easy to check that S has zero Lebesgue measure;

so does gpSq. Let

U “ tb “ rb1, . . . , bnsT P Rn : bi ‰ bj for i ‰ j;

pR´1bqi “ pR´1bqj for some i ‰ j and 1 ď i, j ď nu.

One has U Ă gpSq, which implies that U has zero Lebesgue measure. If b R U , system
(5.5) realizes n-cluster synchronization, which completes the proof. l

The condition given in Theorem 5.2.1 is a sufficient condition and it may not be

necessary when n ą 2. However, for the special case when n “ 2, the condition is

also necessary as shown in the following result.

5.2.2. Theorem. System (5.5) under any pair of distinct forcings b1 ‰ b2 achieves

2-cluster synchronization for any initial condition if and only if the block matrices

Lij , 1 ď i, j ď 2 and i ‰ j, have constant row sums.

Proof : (Sufficiency) Let Q “

„

Q11 Q12

Q21 Q22

ȷ

NˆN

be the inverse of ´L̄. It follows

from the fact that ´L̄ij have constant row sums rij and Lemma 5.2.1 that Qij have

constant row sums sij and

S “

«

´ r21`1
r12`r21`1 ´ r12

r12`r21`1

´ r21
r12`r21`1 ´ r12`1

r12`r21`1

ff

.

Thus solutions of system (5.5) converge to

x˚ “ L̄´1b̄ “ ´

„

pb1s11 ` b2s12q1l1

pb1s21 ` b2s22q1l2

ȷ

.

It is easy to check that ´b1s11 ´ b2s12 ‰ ´b1s21 ´ b2s22 since b1 ‰ b2. Thus 2-cluster

synchronization has been realized.
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(Necessity) Suppose that system (5.5) realizes 2-cluster synchronization with final

values x̄1 and x̄2. Let N1 “ tk P N ; the final value of xkptq is x̄1u. We first show that

every agent under the same constant forcing is in the same cluster. Suppose on the

contrary that the ith and jth agents both under constant forcing b1 have different

final values x̄1 and x̄2; then one has

0 “ ´x̄1 ` b1 ´
ÿ

kPN {N1,k‰i

likpx̄2 ´ x̄1q,

0 “ ´x̄2 ` b1 ´
ÿ

kPN1,k‰j

ljkpx̄1 ´ x̄2q.

It follows that px̄2 ´ x̄1qp1 ´
ř

kPN {N1,k‰i lik ´
ř

kPN1,k‰j ljkq “ 0, which contradicts

x̄2 ´ x̄1 ‰ 0 and 1 ´
ř

kPN {N1,k‰i lik ´
ř

kPN1,k‰j ljk ą 0.

From the proof of sufficiency, we find that the equilibrium of system (5.5) is

x˚ “ ´

„

b1Q111l1 ` b2Q121l2

b1Q211l1 ` b2Q221l2

ȷ

.

Let the ith row sums of Q11 and Q12 be ti1 and ti2 respectively. Then, for any

1 ď i, j ď l1 and b1 ‰ b2, we have ´b1ti1 ´ b2ti2 “ ´b1tj1 ´ b2tj2. It follows that

ti1 “ tj1 and ti2 “ tj2 for 1 ď i, j ď l1. Thus, Q11 and Q12 have constant row sums.

Applying similar arguments to Q21 and Q22, one can conclude that L12 and L21 have

constant row sums in view of Lemma 5.2.1. l

In the next subsection, we consider the systems that consist of not only informed

agents, but also naive agents.

5.2.2 Systems of informed and naive agents

Now consider the system consisting of n ´ 1 clusters of informed agents and one

cluster of naive agents, whose dynamics are described respectively by

9xiptq “ ´xiptq ` bî ´

N
ÿ

j“1

lijxjptq, 1 ď i ď N ´ ln, (5.7)

and

9xiptq “ ´

N
ÿ

j“1

lijxjptq, N ´ ln ` 1 ď i ď N. (5.8)

The system dynamics can be written in a compact form

9xptq “ ´L̄xptq ` b̄, (5.9)
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where

L̄ “

»

—

—

—

–

L11 ` I ¨ ¨ ¨ L1,n´1 L1n

...
. . .

...
...

Ln´1,1 ¨ ¨ ¨ Ln´1,n´1 ` I Ln´1,n

Ln1 ¨ ¨ ¨ Ln,n´1 Lnn

fi

ffi

ffi

ffi

fl

,

and b̄ “ rb11
T
l1 , . . . , bn´11

T
ln´1

,0T
lnsT .

5.2.2. Lemma. L̄ is invertible if and only if for any naive agent, there is a directed

path from some informed agent.

Proof : (Sufficiency) Assume that |L̄| “ 0. Then L̄x “ 0 has a non-trivial solution

x1, . . . , xN . Let r be one of the indices for which |xi|, i “ 1, . . . , N , is maximum.

Then |xi| ă |xr|, for 1 ď i ď l1 ` ¨ ¨ ¨ ` ln´1. Suppose that the contrary is true. Then

consider the ith row of L̄x. One has

plii ` 1q|xr| “ plii ` 1q|xi| ď ´
ÿ

j‰i

lij |xj | ď ´
ÿ

j‰i

lij |xr|.

It follows that |xr| ď 0, which contradicts the fact that |xr| ą 0. We conclude that

r ą l1 ` ¨ ¨ ¨ ` ln´1.

For any k satisfying |xr| ą |xk|, one has lrk “ 0. Otherwise, consider the rth row

of L̄x; one has

lrr|xr| ď ´
ÿ

j‰r

lrj |xj | ă ´
ÿ

j‰r

lrj |xr| “ lrr|xr|,

which is a contradiction.

Let s be the number of indices j for which |xj | “ |xr|. Then the rth row contains

N ´ s zeros and lrk “ 0, for 1 ď k ď l1 ` ¨ ¨ ¨ ` ln´1. All the s corresponding rows

contain N ´ s zeros in the same places. So by the same permutations of the rows

and columns, matrix L̄ can be transformed to

„

U11 U12

0 U22

ȷ

, (5.10)

where U22 P Rsˆs is a square matrix and U11 contains

»

—

–

L11 ` I ¨ ¨ ¨ L1,n´1

...
. . .

...

Ln´1,1 ¨ ¨ ¨ Ln´1,n´1 ` I

fi

ffi

fl
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as a sub-matrix in the upper left corner. Thus there is no directed path from any

informed agent to the naive agent in the block U22.

(Necessity) If for s naive agents, there are no directed paths from any informed

agent, then L̄ can be transformed to (5.10) by the same permutations of the rows

and columns such that U22 only contains s naive agents. U22 having zero row sum

implies that |L̄| “ 0, which is a contradiction. l

In what follows, we assume that for any naive agent there is always a directed

path from some informed agent. Similar to the system consisting of only informed

agents, since L̄ is invertible, the equilibrium x˚ of system (5.9) is x˚ “ L̄´1b̄. Let

yptq “ xptq ´ x˚; then one has 9yptq “ ´L̄yptq. It is obvious that yptq Ñ 0 as t Ñ 8.

Thus x˚ is a globally stable equilibrium of system (5.9).

In order to ensure that agents in the same cluster have the same final values,

we require the following. Suppose that ´L̄ij have constant row sums rij for i “

1, . . . , n ´ 1, j “ 1, . . . , n, and that the ith row sums of ´Ln1, . . . ,´Ln,n´1 are

mih1, . . . ,mihn´1 for 1 ď i ď ln, where mi are positive constants. We require that

there is at least one hi ‰ 0, 1 ď i ď n ´ 1. Without loss of generality, suppose that

h1, . . . , hk ‰ 0, 1 ď k ď n ´ 1, and hk`1 “ ¨ ¨ ¨ “ hn´1 “ 0; it is easy to see that

the ith row sums of ´Lnn are ´mi

řn´1
j“1 hj . Expanding the equation ´QL̄ “ I,

following a similar argument as in the proof of Lemma 5.2.1, one has

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

r11 ¨ ¨ ¨ rn´1,1 h1

r12 ¨ ¨ ¨ rn´1,2 h2

...
...

. . .
...

r1n ¨ ¨ ¨ rn´1,n ´
řn´1

j“1 hj

fi

ffi

ffi

ffi

ffi

fl

b I

˛

‹

‹

‹

‹

‚

»

—

—

—

–

Q111

Q121
...

Q1nm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1

0
...

0

fi

ffi

ffi

ffi

fl

,

where m
∆
“ rm1, . . . ,mlnsT . Let

M “

»

—

—

—

—

—

—

—

—

—

—

–

h2r11 ´ h1r12 ¨ ¨ ¨ h2rn´1,1 ´ h1rn´1,2

... ¨ ¨ ¨
...

hkr11 ´ h1r1k
. . . hkrn´1,1 ´ h1rn´1,k

...
. . .

...

r1,n´1 ¨ ¨ ¨ rn´1,n´1

´1 ¨ ¨ ¨ ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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then we have

pM b Iq

»

—

—

—

–

Q111

Q121
...

Q1,n´11

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

h21
...

hk1
...

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

M is invertible since ´L̄ is. Then we can conclude that Q1j have constant row sums

for 1 ď j ď n ´ 1. In addition, the row sums s1j of Q1j satisfy

M rs11, s12, . . . , s1,n´1sT “ rh2, . . . , hk, . . . , 0, 1sT .

It is easy to check that Qij , 1 ď i ď n, 1 ď j ď n ´ 1, have constant row sums sij ,

S̃ “

»

—

–

s11 ¨ ¨ ¨ s1,n´1

...
. . .

...

sn´1,1 ¨ ¨ ¨ sn´1,n´1

fi

ffi

fl

“

»

–

h2 ¨ ¨ ¨ hk 0T 1

´h1I O 1

O I 1

fi

flM´T ,

and rsn1, . . . , sn,n´1s “ r0, . . . , 0, 1sM´T .

So S̃ is invertible. For 1 ď i ď n ´ 1,
řn

j“1 rij “ ´1, it is easy to show that
řn´1

j“1 sij “ ´1, for 1 ď i ď n. Moreover, for 1 ď i ď n ´ 1 and 1 ď k ď ln, one can

derive from ´L̄Q “ I that

mkh1s1i ` ¨ ¨ ¨ ` mkhn´1sn´1,i ´ mk

n´1
ÿ

j“1

hjsni “ 0.

It follows that sni “
řn´1

k“1 hkski
řn´1

j“1 hj
.

Suppose that x̄1, . . . , x̄n are the final values of the n clusters; then each cluster

converges to x̄i “ ´
řn´1

j“1 sijbj . It follows that rx̄1, . . . , x̄n´1sT “ ´S̃rb1, . . . , bn´1sT .

Since S̃ is invertible, using a similar argument as in the proof of Theorem 5.2.1, one

can conclude that for almost all bi with bi ‰ bj for i ‰ j, the final values of the

informed agents in different clusters are distinct from one another. In addition

x̄n “ ´

n´1
ÿ

t“1

sntbt “ ´

n´1
ÿ

t“1

n´1
ÿ

k“1

hkskt
řn´1

j“1 hj

bt

“

n´1
ÿ

k“1

hk
řn´1

j“1 hj

p´

n´1
ÿ

t“1

sktbtq “

n´1
ÿ

k“1

hkx̄k
řn´1

j“1 hj

, (5.11)
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which implies that the final values of the naive agents have to be a linear combination

of the final values of the informed agents. The coefficients hk{
řn´1

j“1 hj are determined

by the row sums of Ln1, . . . , Ln,n´1. Note that these final values only depend on the

row sums of the sub-matrices of L̄, but not on the number of agents and the proportion

of the informed agents in the system. Hence, we have proved the following theorem.

5.2.3. Theorem. For system (5.9), if for any naive agent there is a directed path

from some informed agent, ´Lij have constant row sums rij for i “ 1, . . . , n´1, j “

1, . . . , n, and the ith row sums of ´Ln1, . . . ,´Ln,n´1 are mih1, . . . ,mihn´1 for some

mi ą 0, 1 ď i ď ln, then for any initial condition, the final values of the clusters

of the informed agents are distinct from one another for almost all (in the sense of

Lebesgue measure) bi for 1 ď i ď n ´ 1 with bi ‰ bj for i ‰ j, and the final values

of the naive agents converge to a linear combination of the asymptotic values of the

informed agents as defined in (5.11).

5.2.1. Remark. In [60], more general agent dynamics are considered. Consequently

besides the condition of constant row sums stipulated in Theorem 5.2.3, additional

conditions have to be imposed to guarantee clustering. Since more restricted agent

dynamics are considered here, the agents’ final values can be predicted whereas it is

difficult to do so for the model considered in [60].

In this section, we have considered the clustering behavior when the agents have

different linear dynamics. In the next section, we consider more challenging scenarios,

in which agents are governed by the same self-dynamics.

5.3 Clustering with identical self-dynamics

Now we consider the case when all the agents have the same self-dynamics:

9xiptq “ fpt, xiptqq ´ c
N
ÿ

j“1

lijΓxjptq, 1 ď i ď N, (5.12)

where the notation is the same as in (5.1), and f is a continuous map that is globally

Lipschitzian in xi with Lipschitz constant K and lij ď 0 for i ‰ j. There are existing

results discussing when clustering might appear in (5.12) [60, 78]. We first compare

these results.

Let X denote the manifold tx “ rxT
1 ptq, . . . , xT

N ptqsT : x1ptq “ ¨ ¨ ¨ “ xl1ptq, xl1`1ptq

“ ¨ ¨ ¨ “ xl1`l2ptq, . . . , xN´ln`1ptq “ ¨ ¨ ¨ “ xN ptqu corresponding to the n-cluster syn-

chronization. The following result is from [60].
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5.3.1. Theorem. [60] The manifold X is invariant if and only if the block matrices

Lij achieved by partitioning L into submatrices corresponding to the clusters have

constant row sums.

A sufficient condition for the same n-cluster synchronization manifold to be in-

variant is given in [78]; it can be stated as follows.

5.3.2. Theorem. [78] The manifold X is invariant if there is a solution X to the

linear equations

pIN ´ ΠqL “ XpIN ´ Πq, (5.13)

where Π is a permutation matrix such that X “ kerpImN ´ Π b Imq.

We now prove that the conditions given in Theorem 5.3.1 and Theorem 5.3.2 are

in fact equivalent.

5.3.1. Proposition. The block matrices Lij of L have constant row sums if and only

if there exists a solution X to the linear equations (5.13), where Π is a permutation

matrix satisfying X “ kerpImN ´ Π b Imq.

Proof : (Necessity) Since X “ kerpImN ´ Π b Imq, Π “ diagtΠ1, . . . ,Πnu, where Πi

are permutation matrices with the same dimensions of Lii. From (5.13), we have

pI ´ ΠiqLij “ XijpI ´ Πjq, 1 ď i, j ď n. (5.14)

Since Lij have constant row sums, the row sums of pI´ΠiqLij are zero. Suppose that

Xij is a u ˆ v matrix. Let LT
ijpI ´ Πiq

T “ rβ1, β2, . . . , βus and XT
ij “ rα1, . . . , αus,

where αi and βi, 1 ď i ď u, are column vectors. Then (5.14) is equivalent to

pI ´ ΠjqTαk “ βk, 1 ď k ď u. (5.15)

Since rankpI ´ ΠjqT “ rankprpI ´ ΠjqT βksq “ v ´ 1, there exist solutions to (5.15).

Then there exists a solution X to (5.13).

(Sufficiency) Without loss of generality, suppose that the permutation matrix

Π can be written as Π “ diagtΠ1, . . . ,Πq, 1, . . . , 1
loomoon

n´q

u, where Πk, 1 ď k ď q, are

permutation matrices with the diagonal elements being zero. Then we can partition

the matrix L into n ˆ n blocks with the dimensions of Lkk, q ` 1 ď k ď n, all being

one. Thus we only need to prove that Lij , 1 ď i, j ď q, have constant row sums. Let

Lij “ rθ1, . . . , θusT , where θi are column vectors. From (5.14), it follows that

pI ´ ΠiqLij “ rθ1 ´ θi1 , . . . , θu ´ θiusT “ XijpI ´ Πjq,
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where ti1, . . . , iuu is a permutation of t1, . . . , uu determined by Πi. The row sums of

XijpI´Πjq are zero because of the zero row sums of I´Πj . In addition, the diagonal

entries of Πi are zero, so the row sums of θTi , 1 ď i ď u, are the same; namely Lij

have constant row sums. l

We have just compared different conditions on when X is invariant. To further

guarantee clustering to take place, we now introduce coupling delay into the system.

There are also other mechanisms that give rise to clustering behavior of the system,

such as the pinning control strategy, the interested reader is referred to [104].

5.3.1 Delay-induced cluster synchronization

In view of Theorem 5.3.1, in this subsection we assume that ´Lij have constant row

sums rij , 1 ď i, j ď n. We introduce a coupling delay to (5.12) as follows [59, 70]:

9xiptq “ fpt, xiptqq ´ c
N
ÿ

j“1,j‰i

lijΓpxjpt ´ τq ´ xiptqq

“ fpt, xiptqq ´ c
N
ÿ

j“1

lijΓxjpt ´ τq ` cdini Γpxipt ´ τq ´ xiptqq, (5.16)

where the notation is the same as in (5.12), and in addition dini “ lii “
řN

j“1,j‰i aij
is the in-degree of the ith agent, and τ ą 0 denotes the time delay. The initial

condition for (5.16) is given by xipθq “ ϕipθq, for 1 ď i ď N, θ P r´τ, 0s, where

ϕipθq P Cpr´τ, 0s,Rmq. Since f is a continuous map that is globally Lipschitzian in

xi, and the couplings among agents are linear, system (5.16) has a unique solution

which exists for all t ě 0 [33].

When the N coupled agents achieve complete synchronization, i.e. x1ptq “

x2ptq “ ¨ ¨ ¨ “ xN ptq “ sptq, we have the following synchronized state equation:

9sptq “ fpt, sptqq ` cdini Γpspt ´ τq ´ sptqq, i “ 1, . . . , N. (5.17)

When spt ´ τq ‰ sptq, a necessary condition for the synchronization manifold to be

invariant is that din1 “ din2 “ ¨ ¨ ¨ “ dinN . When the N coupled agents achieve n-cluster

synchronization, i.e., xiptq “ xjptq “ sîptq for î “ ĵ, and siptq ‰ sjptq for î ‰ ĵ, we

have

9sîptq “ fpt, sîptqq ´ c
ÿ

j‰i,jPCî

lijΓpsîpt ´ τq ´ sîptqq ` c
n

ÿ

k“1,k‰î

rîkΓpskpt ´ τq ´ sîptqq,

Then a necessary condition for the cluster synchronization manifold to be invariant

is that dini “ dinj for î “ ĵ and dini ‰ dinj for î ‰ ĵ.
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Let Din “ diagtdin1 , . . . , dinN u. Assume that the graph G representing the in-

teraction topology among the agents is strongly connected; then L is irreducible.

Hence, zero is a simple eigenvalue of L associated with a positive left eigenvector

ξ “ rξ1, ξ2, . . . , ξN sT . Define E “ diagtξ1, . . . , ξNu.

Now consider the ith agent. Define the average of the îth cluster to be

x̄îptq “
1

ř

iPCî
ξi

ÿ

iPCî

ξixiptq,

and the difference between agent i’s state and this average to be eiptq “ xiptq ´ x̄îptq.

Then

9eiptq “ 9xiptq ´ 9̄xîptq

“ fpxiptqq ´ c
N
ÿ

j“1

lijΓxjpt ´ τq

`cdini Γpxipt ´ τq ´ xiptqq ´ 9̄xî, i “ 1, . . . , N. (5.18)

Let eiptq “ rei1ptq, ei2ptq, . . . , eimptqsT P Rm, eptq “ reT1 ptq, . . . , eTN ptqsT , ẽiptq “

re1iptq, e2iptq, . . . , eNiptqsT P RN and ẽptq “ rẽT1 ptq, . . . , ẽTmptqsT . Then one can check

that
ÿ

iPCî

ξiei “
ÿ

iPCî

ξixi ´
ÿ

iPCî

ξi

˜

1
ř

iPCî
ξi

¸

ÿ

iPCî

ξixi “ 0.

Hence,

ÿ

iPCî

ξie
T
i

9̄xîptq “ 0,
ÿ

iPCî

ξie
T
i fpt, x̄îptqq “ 0,

ÿ

iPCî

ξie
T
i

ˆ

cdini Γpx̄îpt ´ τq ´ x̄îptqq

˙

“ 0,
ÿ

iPCî

ξie
T
i

˜

n
ÿ

k“1

ÿ

jPCk

lijΓx̄kptq

¸

“ 0.

Since fpt, xq satisfies the Lipschitz condition (5.2), there must exist a diagonal

matrix ∆ “ diagtδ1, . . . , δmu such that

px ´ yqT pfpt, xq ´ fpt, yq ´ ∆px ´ yqq ď ´αpx ´ yqT px ´ yq (5.19)

holds for some α ą 0, all x, y P Rm and all t ě 0. A simple choice of ∆ is pK ` αqI,

while for a specific fpt, xq of interest, less conservative ∆ can be found. Now we

present the main result in this subsection.

5.3.3. Theorem. Suppose that ´Lij have constant row sums rij , for i, j “ 1, . . . , n,

that the in-degree dini of each agent satisfies dini “ dinj for î “ ĵ and dini ‰ dinj for
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î ‰ ĵ, and that ∆ is a diagonal matrix satisfying (5.19). If there exist positive definite

matrices Qj ą 0 such that the linear matrix inequalities
„

2δjE ´ 2cγjEDin ` Qj cγjEpDin ´ Lq

cγjpDin ´ LT qE ´Qj

ȷ

ă 0 (5.20)

hold for all j “ 1, . . . ,m, then eiptq Ñ 0 as t Ñ 8 for i “ 1, . . . , N .

Proof : Since the matrix inequalities (5.20) are valid, there exists a positive constant

ϵ such that ´2α ` ϵ ă 0 and

Λj “

„

2δjE ´ 2cγjEDin ` Qje
ϵτ cγjEpDin ´ Lq

cγjpDin ´ LT qE ´Qj

ȷ

ă 0

hold for all j “ 1, . . . ,m. Let

V1 “

n
ÿ

î“1

Wîptq “

n
ÿ

î“1

ÿ

iPCî

ξie
T
i ptqeiptqe

ϵt,

V2 “

m
ÿ

j“1

ż t

t´τ

ẽTj psqQj ẽjpsqeϵps`τqds.

Consider the candidate Lyapunov function V ptq “ V1ptq ` V2ptq. Then, for Wîptq “
ř

iPCî
ξie

T
i ptqeiptqe

ϵt, its derivative along the solutions to (5.18) is

9Wî “ 2eϵt
ÿ

iPCî

ξie
T
i ptq

ˆ

fpt, xiptqq ´ fpt, x̄îptqq ` fpt, x̄îptqq ´ ∆eiptq

`∆eiptq ´ c
N
ÿ

j“1

lijΓpxjpt ´ τq ´ x̄ĵpt ´ τqq ´ c
n

ÿ

k“1

ÿ

jPCk

lijΓx̄kpt ´ τq

`cdini Γpxipt ´ τq ´ xiptqq ´ cdini Γpx̄îpt ´ τq ´ x̄îptqq

`cdini Γpx̄îpt ´ τq ´ x̄îptqq ´ 9̄xîptq

˙

` ϵeϵt
ÿ

iPCî

ξie
T
i ptqeiptq

“ 2eϵt
ÿ

iPCî

ξie
T
i ptq

ˆ

fpt, xiptqq ´ fpt, x̄îptqq ´ ∆eiptq ` ∆eiptq

´c
N
ÿ

j“1

lijΓejpt ´ τq ` cdini Γpeipt ´ τq ´ eiptqq

˙

` ϵeϵt
ÿ

iPCî

ξie
T
i ptqeiptq

ď p´2α ` ϵqeϵt
ÿ

iPCî

ξie
T
i ptqeiptq

`2eϵt
ÿ

iPCî

ξie
T
i ptq

ˆ

∆eiptq ´ c
N
ÿ

j“1

lijΓejpt ´ τq ` cdini Γpeipt ´ τq ´ eiptqq

˙

.
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Then, it follows that

9V ptq

ď p´2α ` ϵqeϵt
n

ÿ

î“1

ÿ

iPCî

ξie
T
i ptqeiptq

`2eϵt
n

ÿ

î“1

ÿ

iPCî

ξie
T
i ptq

ˆ

∆eiptq ´ c
N
ÿ

j“1

lijΓejpt ´ τq ` cdini Γpeipt ´ τq ´ eiptqq

˙

`eϵpt`τq
m
ÿ

j“1

ẽTj ptqQj ẽjptq ´ eϵt
m
ÿ

j“1

ẽTj pt ´ τqQj ẽjpt ´ τq

ď p´2α ` ϵqeϵt
n

ÿ

î“1

ÿ

iPCî

ξie
T
i ptqeiptq ´ eϵt

m
ÿ

j“1

ẽTj pt ´ τqQj ẽjpt ´ τq

`eϵt
m
ÿ

j“1

ẽTj ptq

ˆ

p2δjE ´ 2cγjEDin ` Qje
ϵτ qẽjptq ` 2cγjEpDin ´ Lqẽjpt ´ τq

˙

“ p´2α ` ϵqeϵt
n

ÿ

î“1

ÿ

iPCî

ξie
T
i ptqeiptq ` eϵt

m
ÿ

j“1

rẽTj ptq, ẽTj pt ´ τqsΛj

„

ẽjptq

ẽjpt ´ τq

ȷ

ď 0.

Therefore, V ptq ď V p0q which implies that V1ptq is bounded. In view of the definition

of V1, this further implies that ||eptq||2 is bounded from above by an exponentially

decaying signal that converges to zero. This completes the proof. l

Theorem 5.3.3 has shown that the differences among the states of the agents in

the same cluster will converge to zero as time goes to infinity. However, it is in general

difficult to prove that the differences between clusters do not converge to zero. Next

we prove 2-cluster synchronization when f is periodic. Consider

fpt, xiptqq “ Bxiptq ` hpxiptqq ` βptq, (5.21)

where B “ diagtb1, . . . , bmu with negative constants bi ă 0, β : r0,8q Ñ Rm is a

continuous, periodic function with period ω ą 0, i.e., βpt ` ωq “ βptq, and h : Rm Ñ

Rm is a bounded function which satisfies ||hpξ1q ´ hpξ2q||2 ď H||ξ1 ´ ξ2||2. We first

present the following result.

5.3.1. Lemma. If there exist positive definite matrices Pj such that the linear matrix

inequalities

„

2pbj ` HqI ´ 2cγjD
in ` Pj cγjpDin ´ Lq

cγjpDin ´ LT q ´Pj

ȷ

ă 0 (5.22)
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hold for all j “ 1, . . . ,m, then the coupled system (5.16) with f in the form of

(5.21) has exactly one periodic solution with period ω to which all the other solutions

converge exponentially fast as t Ñ 8.

Proof : Let C “ Cpr´τ, 0s,Rmq. For any ϕi P C, we define ||ϕi||τ “ sup´τďθď0 ||ϕipθq||2.

For any ϕ “ rϕT
1 , . . . , ϕ

T
N sT , where ϕi P C, 1 ď i ď N , we denote the solution of (5.16)

through p0, ϕq as xpt, ϕq “ rxT
1 pt, ϕq, . . . , xT

N pt, ϕqsT , and define xtpϕq “ xpt`θ, ϕq, θ P

r´τ, 0s, t ě 0; then xtpϕq P C for all t ě 0.

Now consider two solutions xpt, ϕq and xpt, φq of (5.16). Define wiptq “ xipt, ϕq ´

xipt, φq, wptq “ rwT
1 ptq, . . . , wT

N ptqsT , w̃iptq “ rw1iptq, . . . , wNiptqsT , and w̃ptq “

rw̃T
1 ptq, . . . , w̃T

mptqsT . It follows from (5.16) and (5.21) that

9wiptq “ Bwiptq ` hpxipt, ϕqq ´ hpxipt, φqq

´c
N
ÿ

j“1

lijΓwjpt ´ τq ` cdini Γpwipt ´ τq ´ wiptqq.

Since the matrix inequalities (5.22) are valid, there exists a positive constant ϵ such

that

Ωj “

„

2pbj ` HqI ` ϵI ´ 2cγjD
in ` Pje

ϵτ cγjpDin ´ Lq

cγjpDin ´ LT q ´Pj

ȷ

are negative definite for all j “ 1, . . . ,m. Consider the candidate Lyapunov function

V ptq “

N
ÿ

i“1

wT
i ptqwiptqe

ϵt `

m
ÿ

j“1

ż t

t´τ

w̃T
j psqPjw̃jpsqeϵps`τqds.

By similar calculations to the proof of Theorem 5.3.3, we obtain

9V ptq ď eϵt
m
ÿ

j“1

rw̃T
j ptq, w̃T

j pt ´ τqsΩj

„

w̃jptq

w̃jpt ´ τq

ȷ

ď 0.

Therefore, V ptq ď V p0q, from which it follows that

||xpt, ϕq ´ xpt, φq||2 ď Me´ ϵ
2 t||ϕ ´ φ||τ , t ě 0,

where M ě 1 is a constant. Then, it is easy to see that

||xtpϕq ´ xtpφq||τ ď Me´ ϵ
2 pt´τq||ϕ ´ φ||τ . (5.23)

Comparing (5.23) and equation (5) in [14], it is easy to see that using similar argu-

ments to that in [14], one can conclude that system (5.16) has exactly one periodic

solution with period ω and all the other solutions converge exponentially to it as

t Ñ 8. l

With Lemma 5.3.1, we now prove 2-cluster synchronization.
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5.3.4. Theorem. Suppose that ´Lij have constant row sums rij , for i, j “ 1, . . . , n,

τ ‰ kω, for k ě 0, and dini “ dinj for î “ ĵ and dini ‰ dinj for î ‰ ĵ. If there exist

positive definite matrices Pj and Qj such that (5.22) and (5.20) hold with δj “ bj `H

for j “ 1, . . . ,m, then for any initial condition, the coupled system (5.16) with f in

the form of (5.21) realizes 2-cluster synchronization.

Proof : In view of Theorem 5.3.3, we only need to show that complete synchronization

cannot be achieved. Suppose that the contrary is true. Then (5.17) holds for all

i “ 1, . . . , N . It follows from Lemma 5.3.1 that sptq is a periodic function with

period ω. Since τ ‰ kω for k ě 0, it follows that spt ´ τq cannot be equal to sptq for

all t. Thus we have din1 “ dinN , which contradicts the fact that din1 ‰ dinN since agents

1 and N do not belong to the same cluster. l

However, we are unable to prove n-cluster synchronization for n ě 3 using the idea

of Theorem 5.3.4 due to difficulties in showing that the difference between the states

of any two different clusters will not converge to 0. To prove this, we need to show

that k-cluster synchronization cannot happen for all k “ 1, . . . , n´1, which becomes

involved when n is large. In the 2-cluster synchronization case, this reduces to show

that complete synchronization cannot be achieved in the system, which simplifies the

analysis. We show through simulations in Section 5.4 that n-cluster synchronization

can be achieved if (5.20) and (5.22) are satisfied for n ě 3.

In the next subsection, we discuss a different approach to realize cluster synchro-

nization when the agents’ self-dynamics are identical.

5.3.2 Clustering with negative couplings

In this subsection, we study how clustering may appear as a pure effect of structured

diffusive couplings. We assume that the agents’ dynamics are completely determined

by their couplings:

9xiptq “ ´

N
ÿ

j“1

lijxjptq, (5.24)

or in a compact form

9xptq “ ´Lxptq, (5.25)

Comparing to (5.1), we have taken Γ to be an identity matrix, c “ 1, and m “ 1.

The results derived below can be easily extended to the general case when c ą 0 and

m ě 1. From Theorem 2.4.1 we know that, if the weights of the edges in G are all

positive, i.e., aij “ ´lij ě 0, i ‰ j, and G contains a directed spanning tree, then
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the system achieves consensus. In this subsection, we assume that there might be

negative couplings in the graph G, and as a result G is a signed graph. The adjacency

matrix A becomes a signed adjacency matrix, but the Laplacian matrix L is still

defined as in (2.1) here. The approach that system (5.24) models negative couplings

is different from that in (4.19), which consequently gives rise to different dynamical

behavior. Since the signed Laplacian matrix considered in (4.20) is a diagonally

dominant matrix, its eigenvalues all have nonnegative real parts which guarantees the

convergence of system (4.20). Furthermore, the system states polarize if zero is an

eigenvalue of the signed Laplacian matrix and converge to zero otherwise. However,

the convergence of system (5.25) is not guaranteed since the Laplacian matrix in

(5.25) may have eigenvalues with negative real parts. Zero is always an eigenvalue.

In addition, the geometric multiplicity of the eigenvalue zero and thus the dimension

of the null space of the Laplacian matrix, can be larger than one. This allows the

possibility of the occurrence of clustering in the system as we will see later.

Let η1 “ r1T
l1 ,0

T
N´l1sT , η2 “ r0T

l1 ,1
T
l2 ,0

T
N´l1´l2sT , . . . , ηn “ r0T

N´ln ,1
T
lnsT , and

let α1, . . . , αn be n independent vectors satisfying ηTi αj “ 1, if i “ j and ηTi αj “ 0,

if i ‰ j. Since the solution to (5.25) is xptq “ e´Ltxp0q, it is obvious that if

lim
tÑ8

e´Lt “

n
ÿ

i“1

ηiα
T
i , (5.26)

then n-cluster synchronization might be achieved. We provide the following necessary

and sufficient condition under which (5.26) holds.

5.3.2. Lemma. Equation (5.26) holds if and only if

Lηi “ 0, αT
i L “ 0, i “ 1, . . . , n, (5.27)

where ´L has exactly n zero eigenvalues and all the other eigenvalues have negative

real parts.

Proof : We give the proof for the case when n “ 2. The proof for the general case

n ě 2 can be proved following similar steps.

(Sufficiency) This has been proved as Lemma 6 in [112].

(Necessity) Let J “ diagtJ1, . . . , Jsu be the Jordan form of ´L, i.e., there exists

a nonsingular matrix P such that ´L “ PJP´1. Then

lim
tÑ8

e´Lt “ P lim
tÑ8

diagteJ1t, . . . , eJstuP´1.

limtÑ8 e´Lt exists if and only if Ji are zero matrices or the eigenvalues of Ji have

negative real parts. Let u1, . . . , uN be the columns of P and let vT1 , . . . , v
T
N be the rows
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of P´1. Then the fact that (5.26) holds implies that J has the form J “ diagtOk, Zu,

where the eigenvalues of Z have negative real parts. We have

lim
tÑ8

e´Lt “ P

„

Ik 0

0 0

ȷ

P´1 “

k
ÿ

i“1

uiv
T
i .

Since rankpuiv
T
i q “ 1 and rankp

řN
i“1 uiv

T
i “ Iq “ N ,

řk
i“1 uiv

T
i must have rank k.

Combined with (5.26), one has k “ 2 and u1v
T
1 `u2v

T
2 “ η1α

T
1 `η2α

T
2 , which implies

that ´L has exactly two zero eigenvalues and all the other eigenvalues have negative

real parts. In addition, one has

u11v
T
1 ` u21v

T
2 “ αT

1 , ¨ ¨ ¨ , u1l1v
T
1 ` u2l1v

T
2 “ αT

1 ,

which implies that pu1i ´ u1jqvT1 ` pu2i ´ u2jqvT2 “ 0. Then u1i “ u1j and u2i “ u2j

for 1 ď i, j ď l1. Using similar arguments we have

u11 “ ¨ ¨ ¨ “ u1l1 , u1l1`1 “ ¨ ¨ ¨ “ u1N ,

u21 “ ¨ ¨ ¨ “ u2l1 , u2l1`1 “ ¨ ¨ ¨ “ u2N .

If u11 “ 0, then r0T
l1 ,1

T
l2sT is a right eigenvector associated with 0, and so is r1T

l1 ,0
T
l2sT .

If u11 ‰ 0, r0T
l1 ,

u2Nu11´u1Nu21

u11
1T
l2sT is a right eigenvector associated with 0. So

r0T
l1 ,1

T
l2sT and r1T

l1 ,0
T
l2sT are right eigenvectors associated with 0.

Without loss of generality, choose u1 “ η1 “ r1T
l1 ,0

T
l2sT and u2 “ η2 “ r0T

l1 ,1
T
l2sT ;

then η1pv1 ´ α1qT ` η2pv2 ´ α2qT “ 0, which implies that v1 “ α1 and v2 “ α2.

Hence, one has αT
1 L “ αT

2 L “ 0. l

From Lemma 5.3.2, it is clear that in order to realize n-cluster synchronization,

Lij have to have zero row sums. In the following discussion, assume that L satisfies

the condition that the row sums of Lij , 1 ď i, j ď n, are zero, then L has zero as an

eigenvalue whose geometric multiplicity is at least n. Let η1 “ r1T
l1 ,0

T
N´l1sT , . . . , ηn “

r0T
N´ln ,1

T
lnsT , be n right eigenvectors associated with 0, and let α1, . . . , αn be the

corresponding left eigenvectors satisfying ηTi αj “ 1, if i “ j, and ηTi αj “ 0, if i ‰ j.

The following result is a slightly modified version of the main result of [112].

5.3.5. Theorem. Suppose that the initial values of system (5.25) satisfy that αT
i xp0q

with 1 ď i ď n are not equal to each other; then n-cluster synchronization can be

achieved if and only if ´L has exactly n zero eigenvalues and all the other eigenvalues

have negative real parts.

The conditions stipulated in Theorem 5.3.5 for achieving n-cluster synchronization

is an algebraic condition, which is difficult to check in application. Now we develop

algorithms to construct appropriate coupling topologies which satisfy the conditions

in Theorem 5.3.5.
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5.3.3. Lemma. [44] Let A and B be N ˆ N Hermitian matrices and let the eigen-

values λipAq, λipBq, and λipA ` Bq be arranged in decreasing order as λN p¨q ď

λN´1p¨q ď ¨ ¨ ¨ ď λ1p¨q. For each k “ 1, 2, ¨ ¨ ¨ , N , we have

λkpAq ` λN pBq ď λkpA ` Bq ď λkpAq ` λ1pBq.

Intuitively, if the inner couplings within the clusters are strong enough, system

(5.25) can achieve cluster synchronization. This is verified by the following results.

5.3.2. Proposition. Let

L “ diagtc1L11, . . . , cnLnnu `

»

—

—

—

–

0 L12 ¨ ¨ ¨ L1n

L21 0 ¨ ¨ ¨ L2n

...
...

. . .
...

Ln1 Ln2 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

be a symmetric Laplacian matrix, L1 “ diagtc1L11, . . . , cnLnnu, and L2 “ L ´ L1.

Suppose that Lij have zero row sums, matrices Lii are irreducible and the off-diagonal

elements of ´Lii are nonnegative. If ci ą
ρpL2q

´ max1ďiďn λ2p´Liiq
, then ´L has exactly n

zero eigenvalues and all the other eigenvalues are negative.

Proof : Since Lij have zero row sums, L has at least n zero eigenvalues. Using Lemma

5.3.3, one has

λN p´L2q ď λip´Lq ´ λip´L1q ď λ1p´L2q,

which leads to |λip´Lq ´ λip´L1q| ď ρp´L2q “ ρpL2q. It follows from ci ą ρpL2q{

p´max1ďiďn λ2p´Liiqq that max1ďiďn ciλ2p´Liiq ` ρpL2q ă 0. Since Lii are ir-

reducible and the off-diagonal elements of ´Lii are nonnegative, it follows that

λ1p´L1q “ ¨ ¨ ¨ “ λnp´L1q “ 0, and λn`1p´L1q “ max1ďiďn ciλ2p´Liiq. Thus

one concludes that λn`1p´Lq ď max
1ďiďn

ciλ2p´Liiq ` ρpL2q ă 0. l

5.3.3. Proposition. Suppose that the graphs G1, . . . ,Gn are balanced and strongly

connected and the weights of the edges in these graphs are positive. Assume that

L1, . . . , Ln are the corresponding Laplacian matrices. For any positive definite matrix

S with proper dimension, zero is an eigenvalue of ´SdiagtL1, . . . , Lnu of algebraic

and geometric multiplicity n, and all the other eigenvalues of ´SdiagtL1, . . . , Lnu

have negative real parts.

Proposition 5.3.3 can be proved using a similar argument to that in the proof of

Theorem 4.5 in [55].
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Proposition 5.3.3 provides a way to construct a graph satisfying the condition in

Theorem 5.3.5. Let G1 be a strongly connected and balanced graph with n discon-

nected components and the weights of the edges in the graph are positive. Let L1 be

its Laplacian matrix. Multiplying from the left a positive definite matrix S gives us

a Laplacian matrix L “ SL1 satisfying the condition in Theorem 5.3.5 1.

5.4 Illustrative examples

In this section, several examples are given to illustrate the theoretical analysis results.

5.4.1. Example. (Clustering with different self-dynamics) Consider the network

consisting of two clusters of informed agents and one cluster of naive agents with

l1 “ l2 “ l3 “ 2 and b1 “ 1, b2 “ 7. The Laplacian matrix is given by

G “

»

—

—

—

—

—

—

—

–

2 0 ´1 ´1 0 0

0 2 ´2 0 0 0

´1 0 1 0 0 0

0 ´1 0 1 0 0

´1 0 ´1 ´1 3 0

0 ´2 ´4 0 0 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since the final values of the first and second clusters are 4 and 5.5, respectively, the

values of the naive agents converge to 4ˆ 1
3 `5.5ˆ 2

3 “ 5. Fig. 5.1 shows the evolution

of the three clusters.

5.4.2. Example. (Delay-induced cluster synchronization) Let

L1 “

»

—

—

—

–

3 ´2 0 ´1

´2 3 ´1 0

´1 0 2 ´1

0 ´1 ´1 2

fi

ffi

ffi

ffi

fl

, L2 “

»

—

—

—

—

—

—

—

–

4 ´2 0 ´1 0 ´1

´2 4 ´1 0 ´1 0

´1 0 3 ´1 ´1 0

0 ´1 ´1 3 0 ´1

0 ´1 ´1 0 2 0

´1 0 0 ´1 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

All the agents in the coupled network (5.16) have the same self-dynamics, which are

[114]

9xiptq “

„

´3.6 0

0 ´4.2

ȷ „

xi1ptq

xi2ptq

ȷ

`

„

a cospνtq

0

ȷ

`

„

1.5 ´0.5

´2.1 1.8

ȷ „

1
2 p|xi1ptq ` 1| ´ |xi1 ´ 1|q
1
2 p|xi2ptq ` 1| ´ |xi2 ´ 1|q

ȷ

. (5.28)

1We are indebted to I. Shames for pointing out this reformulation of some of our earlier results.
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Figure 5.1: The evolution of a system consisting of three clusters.
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(a) When τ “ 1, the agents evolve into 2-

clusters.
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(b) When τ “ 0, the agents achieve complete

synchronization.

Figure 5.2: The evolution of the states xiptq for i “ 1, . . . , 4.

When a “ 1.6 and ν “ 2.6, system (5.28) has a unique and globally exponentially

stable periodic solution.

Consider the coupled network associated with the coupling matrix L1. Let τ “ 1,

c “ 0.5 and Γ “ diagt1, 1u. Using Matlab, we get solutions Qj and Pj to (5.20) and

(5.22) as Qj “ Pj “ diagt0.5550, 0.5550, 0.4717, 0.4717u, j “ 1, . . . ,m. Assume that

every agent takes the same initial value xipθq “ r0.1, 0.2sT , i “ 1, . . . , 4, θ P r´1, 0s.
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Figure 5.3: The agents evolve into 3-clusters with L2 when τ “ 1.
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Figure 5.4: The topology of a network.

The states of the agents finally evolve into two clusters, as shown in Fig. 5.2(a).

When τ “ 0, the states of the agents achieve complete synchronization as shown in

Fig. 5.2(b). So the delay indeed has induced the clustering behavior in this example.

When the coupled network corresponds to the Laplacian matrix L2, and τ “ 1,

from Fig. 5.3 it can be seen that the agents finally evolve into three clusters.

5.4.3. Example. (Clustering with negative couplings) A network that realizes 2-

cluster synchronization has the topology shown in Fig. 5.4. The Laplacian matrix L
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Figure 5.5: State trajectories. (Agents 1,2,3,4 are in the same cluster)

is
»

—

—

—

—

—

—

—

–

2 ´2 0 0 1 ´1

´2 2 0 0 0 0

0 0 2 ´2 ´1 1

0 0 ´2 2 0 0

0 ´1 0 1 2 ´2

0 1 0 ´1 ´2 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

which has two zero eigenvalues and the other eigenvalues have positive real parts.

Let groups 1, 2, 3 be t1, 2u, t3, 4u, t5, 6u, respectively. It is easy to see from Fig. 5.4

and Fig. 5.5 that, although there is no direct connection between groups 1 and 2,

the states of the agents in these two groups finally achieve the same value via the

interconnection with agents in group 3, which have a different final value.

5.5 Conclusion

This chapter has investigated three different algorithms that lead to n-cluster syn-

chronization in multi-agent systems. Some sufficient conditions and/or necessary

conditions have been constructed for systems with different agent self-dynamics, with

delay or having negative couplings. Numerical examples are given to verify the ef-

fectiveness of the analysis. The three approaches presented here are just examples
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of different approaches towards cluster synchronization. It is envisioned that after

gaining insights into the clustering behavior in natural, social or engineered systems,

more approaches can be revealed and thus different cluster synchronization models

can be constructed whose advantages and disadvantages can be compared.





Chapter 6

Controllability and cluster synchronization
of multi-agent systems

Controllability is an essential property of a dynamical system that plays a critical

role in control design problems. Synchronization phenomena have been widely ob-

served in natural and man-made systems and have attracted significant attention

from researchers in several disciplines, including statistical physics, computer sci-

ence, network science as well as electrical engineering. There are of course differences

between the controllability problem and the cluster synchronization problem for com-

plex multi-agent systems. For example, cluster synchronization, or synchronization in

general, is concerned with a complex network’s collective asymptotic behavior when

time approaches infinity; in comparison, controllability is concerned with a system’s

dynamic behavior within finite time. However, in this chapter, by positioning the

two problems together, deeper insight can be gained into both of the two topics.

Towards this end, we first define generalized equitable partitions and almost equi-

table partitions for general directed weighted graphs. Then we are able to provide

an upper bound and a lower bound for the controllable subspace for a general diffu-

sively coupled multi-agent system. We point out the close relationship between the

generalized almost equitable partition of a graph and the constant-row-sums proper-

ty of the block sub-matrices of the graph’s Laplacian matrix. Furthermore, we show

that diffusively coupled multi-agent networks that are not controllable tend to realize

cluster synchronization.

6.1 Controllability of multi-agent systems

We consider a multi-agent system consisting of N agents and we use N “ t1, . . . , Nu

to denote the set of indices of all the agents. Let xi P R, i P N , denote the state

of agent i. We assign the roles of the leaders and followers to the agents and use

NL, NF Ď N to denote the sets of indices of the leaders and followers, respectively.

Assume that there are altogether 0 ă s “ |NL| ă N control inputs ui P R, 1 ď i ď s

and each leader is influenced by only one input. For a leader i P NL, let ris P

t1, . . . , su denote the index of the control input acting on it. Let G “ pV, Eq with
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the vertex set V “ tv1, v2, . . . , vNu be a directed weighted graph that represents the

interaction topology among the agents. Let A and L be the corresponding adjacency

matrix and Laplacian matrix of G and let dini be the in-degree of node i and Din “

diagtdin1 , . . . , dinN u. Then the dynamics of the leaders are determined by

9xi “

N
ÿ

j“1

aijpxj ´ xiq ` uris, i P NL, (6.1)

and the followers’ dynamics are governed by linear diffusive couplings

9xi “

N
ÿ

j“1

aijpxj ´ xiq, i P NF , (6.2)

where aij is the ijth element of A satisfying aij ě 0, for j ‰ i.

Let x “ rx1, . . . , xN sT and u “ ru1, . . . , ussT . Then (6.1) and (6.2) can be written

in a compact form

9x “ ´Lx ` Mu, (6.3)

where the elements of M are defined by

mij “

"

1 if j “ ris

0 otherwise,

for 1 ď i ď N and 1 ď j ď s.

Controllability is a classical notion in control theory and a dynamical system is

said to be controllable if under suitable control actions as the system’s inputs, the

system’s state can be driven from any initial values to any desired final values within

finite time [49]. The controllability problem of system (6.3) has attracted great

attention from the area of systems and control [66, 113]. Denote the controllable

subspace of system (6.3) by R. Note that R is the smallest L-invariant subspace

that contains the subspace spanned by the columns of M , denoted by impMq [113].

In order to characterize the controllable subspace, we need some more notions from

graph theory.

6.2 Controllability through generalized almost eq-

uitable partitions

Given a partition π “ tC1, C2, . . . , Cnu of the node set V “ tv1, . . . , vNu of a graph

G “ pV, Eq, we call Ci’s the cells and n the size of the partition. Let |Ci| “ li. We

can always relabel the nodes such that the first l1 nodes lie in C1, the next l2 nodes



6.2. Controllability through generalized almost equitable partitions 83

lie in C2, and so on. Then we can write the adjacency matrix A and the Laplacian

matrix L in the following block matrix form according to the partition

A “

»

—

—

—

–

A11 A12 ¨ ¨ ¨ A1n

A21 A22 ¨ ¨ ¨ A2n

...
...

. . .
...

An1 An2 ¨ ¨ ¨ Ann

fi

ffi

ffi

ffi

fl

, (6.4)

L “

»

—

—

—

–

L11 L12 ¨ ¨ ¨ L1n

L21 L22 ¨ ¨ ¨ L2n

...
...

. . .
...

Ln1 Ln2 ¨ ¨ ¨ Lnn

fi

ffi

ffi

ffi

fl

, (6.5)

where Aij , Lij P Rliˆlj , 1 ď i, j ď n. The characteristic matrix P pπq P RNˆn of the

partition is defined by

Pijpπq “

"

1 if vi P Cj

0 otherwise,

for 1 ď i ď N and 1 ď j ď n.

First consider the case when the graph G “ pV, Eq is unweighted and undirected

as in [66, 113], meaning that for any distinct pair of nodes vi and vj , if pvi, vjq P E ,
then pvj , viq P E and the weights aij “ aji “ 1. We say agent j is a neighbor of agent

i, if aij “ 1. A partition π is said to be an equitable partition if each node in Cj has

the same number of neighbors in Ci for all 1 ď i, j ď n. If one only cares about the

number of neighbors in adjacent cells, while ignoring the structure inside a cell, one

can define the notion of almost equitable partition. A partition π is said to be an

almost equitable partition if each node in Cj has the same number of neighbors in Ci

for all 1 ď i, j ď n and i ‰ j.

However, when we consider general directed weighted graphs, the weights aij can

have any nonnegative value. Thus we cannot employ the notion of the number of

neighbors any more. Now we generalize the notions of equitable partitions and almost

equitable partitions [39] in a natural way.

6.2.1. Definition. A partition π is said to be a generalized equitable partition if for

any vk, vl P Ci, i, j “ 1, . . . , n,
ÿ

vrPCj

akr “
ÿ

vrPCj

alr. (6.6)

6.2.2. Definition. A partition π is said to be a generalized almost equitable parti-

tion if for any vk, vl P Ci, i ‰ j, i, j “ 1, . . . , n,
ÿ

vrPCj

akr “
ÿ

vrPCj

alr. (6.7)
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From the above two definitions, we can see the close relationships between the

generalized equitable partitions (resp. almost equitable partitions) of a graph and

the constant-row-sums property of block matrices Aij (resp. Lij) of the associated

adjacency matrix A (resp. Laplacian matrix L).

6.2.1. Proposition. For a partition π of a graph G, we always label the nodes such

that the first l1 nodes lie in C1, the next l2 nodes lie in C2, and so on. A partition π

is a generalized equitable partition of a graph G if and only if the row sums of each

block Aij of the associated adjacency matrix A written in form (6.4) are equal. A

partition π is a generalized almost equitable partition if and only if the row sums of

each block Lij of the associated Laplacian matrix L written in form (6.5) are equal.

The quotient graph of G with respect to a generalized almost equitable partition

π, denoted by G{π, is a directed weighted graph whose node set is VpG{πq “ π, the

edge set is the set of ordered pairs such that pCi, Cjq is an edge of G{π if and only if

i ‰ j and there exist vi in Ci and vj in Cj such that pvi, vjq P EpGq and the weight

associated with each edge pCi, Cjq of G{π is aπji “
ř

vkPCi
ajk. Let A

π and Lπ be the

adjacency and Laplacian matrices of G{π, respectively.
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Figure 6.1: A directed weighted graph G and its quotient graph G{π.

6.2.1. Example. Let the adjacency matrix A and the Laplacian matrix L associated
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with a graph G shown in Fig. 6.1 be given by

A “ pAijq3ˆ3 “

»

—

—

—

—

—

–

0 2 0.1 0.1 0

0.1 0 0 0.2 0

0.5 0 0 0.5 0.1

0 0.5 0.5 0 0.1

0.1 0.1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

L “ pLijq3ˆ3 “

»

—

—

—

—

—

–

2.2 ´2 ´0.1 ´0.1 0

´0.1 0.3 0 ´0.2 0

´0.5 0 1.1 ´0.5 ´0.1

0 ´0.5 ´0.5 1.1 ´0.1

´0.1 ´0.1 0 0 0.2

fi

ffi

ffi

ffi

ffi

ffi

fl

.

It is easy to see that Lij , i, j “ 1, 2, 3, have constant row sums, which corresponds

to a nontrivial generalized almost equitable partition π “ tC1 “ tv1, v2u, C2 “

tv3, v4u, C3 “ tv5uu of G. Note that π is not a generalized equitable partition since

the row sums of A11 are not equal. Then the characteristic matrix P pπq of the

partition π is

P pπq “

»

—

—

—

—

—

–

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The quotient graph G{π of G with respect to π is also shown in Fig. 6.1 and its

adjacency and Laplacian matrices are

Aπ “

»

–

0 0.2 0

0.5 0 0.1

0.2 0 0

fi

fl , Lπ “

»

–

0.2 ´0.2 0

´0.5 0.6 ´0.1

´0.2 0 0.2

fi

fl .

l

For given nodes v1, . . . , vs P V, π is said to be a generalized almost equitable

partition relative to v1, . . . , vs if it is a generalized almost equitable partition and

tv1u, . . . , tvsu are its cells. Let ΠGEP , ΠGAEP and ΠGAEP pv1, . . . , vsq denote the

sets of all generalized equitable, generalized almost equitable and generalized almost

equitable partitions relative to v1, . . . , vs, respectively. Moreover, we say that a gener-

alized almost equitable partition relative to v1, . . . , vs is maximal, which is denoted by

π˚
GAEP pv1, . . . , vsq if it has the smallest size; that is, if it contains the fewest possible

cells. It can be shown that given a graph G and nodes v1, . . . , vs, π
˚
GAEP pv1, . . . , vsq

always exists uniquely.
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Another class of partitions depends on the distance between two vertices and

the graph diameter. Given a strongly connected graph G, a partition π “ ttu P

V|distpv, uq “ iu, i “ 0, 1, . . . , diampGqu is called the distance partition relative to v.

The distance partition relative to a vertex v is unique and denoted by πDpvq. Let

Ci`1 be the cell tu P V|distpv, uq “ iu in πDpvq, where 0 ď i ď diampGq.

6.3 Controllability and cluster synchronization of

multi-agent systems

Now we are ready to use the graph notions introduced in the previous section to

derive lower and upper bounds for the controllable subspace of system (6.3). The

following result is proved in [20] for undirected unweighted graphs and the necessary

part is restated in [38] for undirected weighted graphs. It is also valid for directed

weighted graphs with respect to generalized almost equitable partitions.

6.3.1. Lemma. Let G “ pV, Eq be a directed weighted graph, let L be its Laplacian

matrix, let π “ tC1, . . . , Cnu be a partition of V, and let P pπq be the characteristic

matrix of π. Then π is a generalized almost equitable partition whose cardinality

equals n if and only if there is an n ˆ n matrix B such that

LP pπq “ P pπqB. (6.8)

If π is a generalized almost equitable partition, then B is the Laplacian matrix Lπ of

the quotient graph G{π.

An immediate consequence of this Lemma is that we can characterize the gener-

alized almost equitable partitions using terms of invariant subspaces of the Laplacian

matrix L of G as follows.

6.3.2. Lemma. A partition π of G is a generalized almost equitable partition, if and

only if impP pπqq is L-invariant.

An upper bound for the controllable subspace is given in [113] for system (6.3)

with multiple leaders when the graph is undirected and unweighted. We provide an

upper bound in terms of generalized almost equitable partitions for the general case

when the graph is directed and weighted.

6.3.1. Proposition. Let VL “ tv1, . . . , vsu, and π P ΠGAEP pv1, . . . , vsq. Then

R Ď impP pπqq,

and

dimpRq ď |π˚
GAEP pv1, . . . , vsq|.
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Proof. It follows from Lemma 6.3.2 that impP pπqq is L-invariant. Since VL “

tv1, . . . , vsu, and π P ΠGAEP pv1, . . . , vsq, we have impMq Ď impP pπqq; that is

impP pπqq is an L-invariant subspace containing impMq. In view of the fact that

R is the smallest L-invariant subspace that contains the subspace spanned by the

columns of M , it follows that R Ď impP pπqq. Thus

dimpRq ď dimpimpP pπ˚
GAEP pv1, . . . , vsqqqq “ |π˚

GAEP pv1, . . . , vsq|.

l

From this proposition, we immediately have the following result.

6.3.2. Proposition. Assume that G is strongly connected. System (6.3) with multi-

ple leaders VL “ tv1, . . . , vsu, is controllable only if π˚
GAEP pv1, . . . , vsq is trivial; that

is, tviu P π˚
GAEP pv1, . . . , vsq for all vi P V.

For system (6.3) with a single leader, we have the following lower bound in terms

of the distance partitions.

6.3.3. Proposition. If VL “ tvu, then

|πDpvq| ď dimpRq.

Proof. Without loss of generality, assume v “ v1, πDpv1q “ tC1, . . . , Cnu and |Ci| “

li, where 1 ď n ď diampGq ` 1, C1 “ tv1u, and Ci`1 “ tvl1`¨¨¨`li`1, . . . , vl1`¨¨¨`li`1
u,

1 ď i ď n ´ 1. The Laplacian matrix L can be written in the following form.

L “

»

—

—

—

—

—

—

—

—

–

din1 ˚ ˚ ¨ ¨ ¨ ˚ ˚

L21 L22 ˚ ¨ ¨ ¨ ˚ ˚

0 L32 L33 ¨ ¨ ¨ ˚ ˚

...
...

...
. . .

...
...

0 O O ¨ ¨ ¨ Ln´1,n´1 ˚

0 O O ¨ ¨ ¨ Ln,n´1 Lnn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where “˚” represents the entry in the matrix which is irrelevant to the present

discussion. Since VL “ tvu, the matrix M is an N -dimensional column vector

e1 “ r1, 0, . . . , 0sT .

Let E “ re1 Le1 ¨ ¨ ¨Ln´1e1s. Some calculations give that

E “

»

—

—

—

—

—

—

–

1 ˚ ˚ ¨ ¨ ¨ ˚

0 L21 ˚ ¨ ¨ ¨ ˚

0 O L32L21 ¨ ¨ ¨ ˚

...
...

...
. . .

...

0 O O ¨ ¨ ¨ Ln,n´1 ¨ ¨ ¨L21

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Since the graph G is strongly connected and Ci`1 “ tu P V|distpv, uq “ iu, there

exists a directed path of length i from v1 to every node in Ci`1, 1 ď i ď n ´ 1. This

implies that the matrix product Li`1,i ¨ ¨ ¨L21, 1 ď i ď n ´ 1, contains a positive

entry in each row. Then rankpEq “ |πDpvq| “ n. Thus we can conclude that

|πDpvq| “ rankpEq ď rankpre1 Le1 ¨ ¨ ¨LN´1e1sq “ dimpRq.

l

Combining Propositions 6.3.1 and 6.3.3, we can obtain the following lower and

upper bounds for the dimension of the controllable subspace of system (6.3) with a

single leader.

6.3.4. Proposition. If VL “ tvu, then

|πDpvq| ď dimpRq ď |π˚
GAEP pvq|.

Note that the bounds given here are tight and cannot be improved further, which

can be seen from examples in [113].

Let VL “ tv1, . . . , vsu, let tC1, C2, . . . , Cnu be a partition of V and tviu are cells

of the partition tC1, C2, . . . , Cnu for all i “ 1, . . . , s. Define the manifold

X “ tx “ rx1, . . . , xN sT | xi1ptq “ xi2ptq, for all vi1 , vi2 P Ci, i “ 1, . . . , nu, (6.9)

which corresponds to the n-cluster synchronization defined in Chapter 5. The fol-

lowing result reveals the relationship between the invariance of the cluster synchro-

nization manifold and the existence of generalized almost equitable partitions.

6.3.1. Theorem. The n-cluster synchronization manifold X of system (6.3) is in-

variant for any input uptq if and only if the partition tC1, C2, . . . , Cnu is a general-

ized almost equitable partition. In addition, if the graph G is strongly connected and

tC1, C2, . . . , Cnu is a generalized almost equitable partition, then the manifold X is

asymptotically stable, i.e., limtÑ8 xi1ptq ´ xi2ptq “ 0, for all vi1 , vi2 P Ci, 1 ď i ď n.

Proof. The necessary and sufficient condition can be proved by using similar argu-

ments to the proof of Theorem 3.11 in [58]. Next we prove the asymptotic stability

of the manifold X . The solution to system (6.3) is given by

xptq “ e´Ltxp0q `

ż t

0

e´Lpt´sqMupsqds.

Since tC1, C2, . . . , Cnu is a generalized almost equitable partition, the corresponding

block matrices Lij have constant row sums. If we partition the matrix e´Lpt´sq to

n ˆ n blocks for any t ě s ě 0 with respect to the partition tC1, C2, . . . , Cnu as
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in (6.5), then each block matrix pe´Lpt´sqqij also has constant row sum. Therefore,
şt

0
e´Lpt´sqMupsqds P X for all t ě 0. Since the graph G is strongly connected, 0 is a

simple eigenvalue of the matrix ´L and all the other eigenvalues of ´L have negative

real parts. It follows from Lemma 5.3.2 that

lim
tÑ8

e´Lt “ η1α
T
1 ,

where η1 and α1 are the right and left eigenvectors corresponding to the eigenvalue

0 of ´L satisfying that αT
1 η1 “ 1. η1 can be simply taken as η1 “ 1N . Thus η1α

T
1

is a matrix with all rows the same. Suppose that vi1 , vi2 P Ci, 1 ď i ď n. Then one

can obtain that

lim
tÑ8

xi1ptq ´ xi2ptq “ lim
tÑ8

pe´Ltxp0qqi1 ´ pe´Ltxp0qqi2 “ 0,

which proves the asymptotic stability of the manifold X . l

6.3.1. Remark. In view of the definition of cluster synchronization given in Defini-

tion 5.1.1, Theorem 6.3.1 has proved that the agents will finally form n clusters and

synchronize within the clusters, while the differences between clusters may or may

not converge to zero. This is exactly the “group consensus” we discussed in Remark

5.1.1, which is weaker than the cluster synchronization defined in Definition 5.1.1.

Combining Proposition 6.3.2 and Theorem 6.3.1, we have the following result.

6.3.2. Theorem. Let VL “ tv1, . . . , vsu. Assume that the graph G is strongly con-

nected and it has a nontrivial π˚
GAEP pv1, . . . , vsq. System (6.3) is not controllable

and it realizes group consensus with respect to the partition π˚
GAEP pv1, . . . , vsq.

In this section, by comparing the conditions for realizing cluster synchronization

and checking controllability, we have gained the insight that those multi-agent net-

works that are uncontrollable in finite time tend to realize cluster synchronization as

time goes to infinity.

6.4 Illustrative example

We take the graph G and the associated Laplacian matrix L in Example 6.2.1 as

an example. If we take node 5 as a leader, then the maximal generalized almost

equitable partition relative to node 5 is π˚p5q “ tt1, 2u, t3, 4u, t5uu. System (6.3)

with this Laplacian matrix is uncontrollable since the partition π˚p5q is nontrivial.

Assume that the initial values of the agents are chosen randomly from r0, 10s and the

control input uptq “ cosp2πtq. From Theorem 6.3.1, we know that system (6.3) will

finally evolve into three clusters with respect to the partition π˚p5q as shown in Fig.

6.2.
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Figure 6.2: The five agents evolve into three clusters.

6.5 Conclusion

We have looked at jointly the controllability problem and the cluster synchronization

problem for multi-agent systems. Using the notions of generalized graph partitioning,

we have provided upper and lower bounds for the controllable subspace of a diffu-

sively coupled multi-agent system. We have also gained insight that the multi-agent

networks that are uncontrollable in finite time tend to realize cluster synchroniza-

tion as time goes to infinity. Illustrative example has verified the effectiveness of the

theoretical results.



Chapter 7

Determination of clock synchronization
errors in distributed networks

As physical devices, such as computational units, sensors and actuators, are more

and more frequently working together over distances, people are more and more con-

cerned with the problem of how to synchronize the clocks that are installed at those

physical devices and connected through wired and/or wireless data networks [36].

The convergence analysis of a synchronous algorithm in Chapter 3 has also illus-

trated the importance of clock synchronization in a network, where the converging

algorithm may not converge any more when the clock installed at each agent is not

synchronized with each other and the agents can only update according to their own

clocks. Recently, it has been shown by Freris, Graham and Kumar [37] that clocks in

distributed networks cannot be synchronized precisely in the presence of asymmetric

time delays even in idealized situations. Motivated by that impossibility result, we

test under similar settings the performance of some existing clock synchronization

protocols and show that the synchronization errors can be bounded within an ac-

ceptable level of accuracy that are determined by the degree of asymmetry in time

delays. After studying the basic case of synchronizing two clocks in the two-way mes-

sage passing process, we analyze directed ring networks, in which neighboring clocks

are likely to experience severe asymmetric time delays. We then discuss connected

undirected networks with two-way message passing between each pair of adjacent

nodes. In the end, we expand the discussions to networks with directed topologies

that are strongly connected.

7.1 Models for clocks in networks

As in [37], we consider affine models for clocks. Let i ą 0 be the label of a clock in a

network, and denote its display by xi. Then the evolution of xi can be described by

xiptq “ ait ` bi, (7.1)

where t is the time of a standard reference clock, ai ą 0 is called the skew that is

the ratio of the speed of clock i with respect to the reference clock, and bi is called
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the offset that is the difference between the display of clock i and the reference clock

at time t “ 0. Here we consider the idealized case when the skews of the clocks are

fixed, e.g. not affected by the changes in the environmental temperature, and the

communications within the network are noiseless and fault-free.

Assume that the clocks are installed at nodes in a distributed network. We use

the label of the clock to denote the node where the clock is installed. It is assumed

in [37] that when a message is sent from node i to another node j, the latter can only

receive it after a fixed but unknown time delay dij ą 0. In addition, the time delays

are not necessarily symmetric, and in fact for a pair of distinct nodes i and j, dij is

in general not equal to dji. In order to describe the message passing process between

clocks more conveniently, in this chapter, we use i instead of vi to denote a node and

use V “ t1, . . . , Nu instead of V “ tv1, . . . , vNu to denote the node set, which differ

from the notation used in previous chapters. In what follows, we will use a graph G
with the node set V “ t1, . . . , Nu and the edge set E Ă tpi, jq : i, j P Vu to describe

the topology of a network consisting of N nodes. In G, there is a directed edge from

node i to j if i can send messages to j; correspondingly, there is an undirected edge

between i and j if both i and j can send messages to each other.

7.2 Synchronizing two clocks

In this section, we consider two clock synchronization. For analysis purposes, we can

always describe the message passing process with respect to the standard reference

clock. In the sequel, we use the sequence ttku, k ě 0, to denote the set of time

instants embedded in the reference time axis t, at which a clock sends or receives

messages. Then the message exchange process for two clocks 1 and 2 trying to get

synchronized is illustrated in Figure 7.1. At time t0, node 1 sends a message of its

current value of x1pt0q to node 2. We say node 1 has sent a message time stamped

by its clock just before the transmission. Node 2 records the time x2pt1q when it

receives the message x1pt0q and after a constant time w1, it sends the message x2pt1q

at the time t2 back to node 1 with the time-stamp x2pt2q. Correspondingly, node 1

receives this message at time t3 and records the time x1pt3q. It then sends a message

after a constant time w2. In this manner the messages are sent back and forth.

Without loss of generality, take the skew of clock 1 to be 1, i.e. a1 “ 1. As shown

in [37], the skew a2 of clock 2 and the round-trip delay d12 ` d21 can be calculated

precisely by

a2 “
x2pt5q ´ x2pt1q

x1pt4q ´ x1pt0q
, (7.2)

d12 ` d21 “ x1pt3q ´ x1pt0q ´
1

a2
px2pt2q ´ x2pt1qq. (7.3)
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Node 1

Node 2

t0 t1 t2 t3 t4 t5 t6 t7

d12 d12d21 d21w1 w1w2

x t1( )

x t2 ( )

Figure 7.1: Message exchanges between two clocks.

However, the individual time delays d12 and d21 can never be determined precisely

when they are asymmetric and this is part of the synchronization impossibility result

for a pair of clocks shown in [37], which as argued in the same paper leads to syn-

chronization errors that cannot be eliminated. We also refer the interested reader to

[48] for more information about phase and skew estimators.

Now we try to synchronize the two clocks by repeatedly updating their displays.

Consider first the simple case when a2 “ 1 as well; in other words, the skews of the

two clocks are the same. We use D to denote the round-trip time delay d12 ` d21 “

x1pt3q ´ x1pt0q ´ px2pt2q ´ x2pt1qq. When the two clocks update their displays, they

use the average delay D̄ “ D
2 as the nominal delay to compensate the time-stamped

messages they receive about the most recent values of the other clock’s display. For

example, when clock 1 receives a message of x2ptkq from clock 2, it takes x2ptkq`D̄ as

the estimated current value of the display of clock 2. The same estimation strategy is

adopted by both of the two clocks. To get synchronized, after a clock receives a new

message from the other, it always updates its display to the average of its current

display and the latest estimation of the other clock’s current display. We assume

the updates take place instantaneously and the message exchanges are carried out

repeatedly.

The embedding technique to write down a distributed system’s dynamics with

respect to a common reference time axis for analysis purposes has been used before

when studying distributed and parallel computations and asynchronous systems [10,

15]. Following this approach, we use the sequence ttku, k ě 0, embedded in the

reference time axis t, to write the system equations. Although the two clocks update

periodically according to their own clocks, since the clocks have the same skew, we

know that for any time τ ą 0, there always exists k ě 0 such that tk ď τ ă tk`1

and x1pτq ´ x2pτq “ x1ptkq ´ x2ptkq. For the sake of conciseness, in this chapter we

use the notation xipkq instead of xiptkq. Then the system equations of the updating
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process of the two clocks after embedding can be written as

#

x1p4k ` 1q “ x1p4kq ` d12

x2p4k ` 1q “ 1
2 ppx1p4kq ` D̄q ` px2p4kq ` d12qq

#

x1p4k ` 2q “ x1p4k ` 1q ` l1d12

x2p4k ` 2q “ x2p4k ` 1q ` l1d12
#

x1p4k ` 3q “ 1
2 ppx2p4k ` 2q ` D̄q ` px1p4k ` 2q ` d21qq

x2p4k ` 3q “ x2p4k ` 2q ` d21
#

x1p4pk ` 1qq “ x1p4k ` 3q ` l2d12

x2p4pk ` 1qq “ x2p4k ` 3q ` l2d12,

(7.4)

where k ě 0 and li “ wi

d12
, i “ 1, 2.

We first show that during the above updating process (7.4), the synchronization

error converges to a constant determined by the difference between the delays d12
and d21.

7.2.1. Theorem. As t goes to infinity, the difference x1ptq ´ x2ptq between the two

clocks converges to 1
2 pd12 ´ d21q.

Proof : Let epkq
∆
“ x1pkq ´ x2pkq for k ě 0. Then from (7.4), one has

ep4k ` 1q “
1

2
ep4kq `

1

4
pd12 ´ d21q

ep4k ` 2q “ ep4k ` 1q

ep4k ` 3q “
1

2
ep4k ` 2q `

1

4
pd12 ´ d21q

ep4pk ` 1qq “ ep4k ` 3q. (7.5)

Substituting the first three equations of (7.5) into the last equation of (7.5), we obtain

ep4pk ` 1qq “ p
1

2
q2ep4kq `

3

8
pd12 ´ d21q

“ p
1

2
q2pk`1qep0q `

3

8
pd12 ´ d21q

k`1
ÿ

i“0

1

4i
.

Since the geometric series
ř8

i“0
1
4i converges, we know

lim
kÑ8

ep4pk ` 1qq “
3pd12 ´ d21q

8

8
ÿ

i“0

1

4i
“

d12 ´ d21
2

. (7.6)
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Combining equation (7.6) with (7.5), one can check that

lim
kÑ8

ep4k ` iq “
1

2
pd12 ´ d21q, 1 ď i ď 4. (7.7)

From (7.7), we know that for any ϵ ą 0, there exists a positive integer M , such

that for any N ą M , |ep4N ` iq ´ 1
2 pd12 ´ d21q| ă ϵ, 1 ď i ď 4. Hence, for any

k ą 4pM ` 1q, it always holds that |epkq ´ 1
2 pd12 ´ d21q| ă ϵ, which is equivalent to

lim
kÑ8

epkq “
1

2
pd12 ´ d21q. (7.8)

This completes the proof. l

Note that when applying the Network Time Protocol (NTP) [67], it is assumed

that most of the time delays are symmetric between a pair of distinct nodes in a

network, namely dij “ dji for i ‰ j. In fact, in view of Theorem 7.2.1, when

d12 “ d21, the two clocks can indeed get synchronized precisely.

7.2.1. Corollary. When d12 “ d21, the synchronization error x1ptq´x2ptq between

the two clocks goes to zero asymptotically.

Now consider the general case when a2 is different from 1. We first interpret

Theorem 7.2.1 in a different way motivated by the approach proposed in [88]. Note

that the models of the two clocks with the same skew are

x1ptq “ t ` b1, x2ptq “ t ` b2.

Since the two clocks are with the same skew, to get them synchronized can be regarded

as to synchronize the two clocks with respect to a virtual clock

xptq “ t ` b

with b undetermined. Suppose that each clock has an estimate of the virtual clock

x̂1ptq “ t ` b1 ` o1ptq, x̂2ptq “ t ` b2 ` o2ptq.

Thus the update of the displays of the two clocks in equation (7.4) is equivalent to
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the update of oiptq as follows
#

o1p4k ` 1q “ o1p4kq

o2p4k ` 1q “ o2p4kq ` 1
2 ppx̂1p4kq ` D̄q ´ px̂2p4kq ` d12qq

#

o1p4k ` 2q “ o1p4k ` 1q

o2p4k ` 2q “ o2p4k ` 1q
#

o1p4k ` 3q “ o1p4k ` 2q ` 1
2 ppx̂2p4k ` 2q ` D̄q ´ px̂1p4k ` 2q ` d21qq

o2p4k ` 3q “ o2p4k ` 2q
#

o1p4k ` 4q “ o1p4k ` 3q

o2p4k ` 4q “ o2p4k ` 3q,

where we use the notation oipkq instead of oiptkq, o1p0q “ o2p0q “ 0, and oiptq “ oipkq

for t P rtk, tk`1q. In fact, during the update process, the transmitted time-stamped

messages are x̂1ptkq and x̂2ptkq. Then Theorem 7.2.1 says that the difference between

the estimates x̂1ptq ´ x̂2ptq “ b1 ` o1ptq ´ pb2 ` o2ptqq converges to 1
2 pd12 ´ d21q as t

goes to infinity.

When the skews of the two clocks are different, consider the models

x1ptq “ t ` b1, x2ptq “ a2t ` b2,

where a2 is close to 1. Since the skew a2 of clock 2 can be estimated through message

passing as shown in (7.2), a transformation of the model of clock 2 leads to the

same-skew case

x̃2ptq “
1

a2
x2ptq “ t `

1

a2
b2.

Let the estimates of a virtual clock be

x̂1ptq “ t ` b1 ` o1ptq, x̂2ptq “ t `
b2
a2

` o2ptq.

From Theorem 7.2.1, one has that x̂1ptq ´ x̂2ptq “ b1 ` o1ptq ´ p b2
a2

` o2ptqq converges

to 1
2 pd12 ´ d21q as t goes to infinity. In other words, the result stated in Theorem

7.2.1 applies also to the general case when a2 ‰ 1.

In the next section, we will study how the main idea of compensation with nominal

delays can be applied to larger networks by utilizing the message passing mechanism

just described.

7.3 Synchronizing clocks in networks

Now we consider a network of N clocks that are described by (7.1) with i “ 1, . . . , N ,

a1 “ 1, and ai close to 1 for i “ 2, . . . , N . Since the skews ai, i “ 2, . . . , N, of the
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clocks can be estimated through message passing, similar to the discussion at the end

of Section 7.2, a transformation will lead to the same-skew case

x̃iptq “
1

ai
xiptq “ t `

1

ai
bi, i “ 2, . . . , N.

Hence, in what follows, we will only consider the case when the skews of the clocks

are the same, namely ai “ 1 for all i.

Since among the networks with the same number of nodes, the network with a

directed ring topology can lead to the greatest difference in the delays of dij and

dji for a given pair of adjacent nodes i and j, we first study synchronizing clocks in

networks with directed ring topologies.

7.3.1 Synchronizing clocks in directed ring networks

A. Synchronizing three clocks in a directed ring network

We fist consider a ring network of three nodes 1, 2 and 3 and three directed edges

p1, 2q, p2, 3q and p3, 1q. Similar to the message passing process for the 2-clock case

discussed in the previous section, we illustrate the message passing process among

the three clocks in Fig. 7.2, where d12, d23, d31 and wi, i “ 1, 2, 3, are the time delays

and idling times respectively.

Node 1

Node 2

Node 3

t0 t1 t2 t3 t4 t5 t6 t7

d12 d31d23 d12w1 w3w2

t8 t9

w1 d23

x t1( )

x t2 ( )

x t3( )

Figure 7.2: Message exchanges among three clocks with directed connections.

Although the delays d12, d23 and d31 cannot be determined from the time-stamped

messages, the round-trip delay D “ d12 ` d23 ` d31 can be determined precisely by

D “ x1p5q ´ x3p4q ` x3p3q ´ x2p2q ` x2p1q ´ x1p0q.

We take D̄ “ D
3 as the nominal delay for the three clocks when they update their

displays. To be more specific, we take time t1, when node 2 receives a message from

node 1, as an example. At t1 clock 2 updates its display to the average of its current

display and the current estimate of clock 1’s display x1p0q ` D̄. And w1 time units
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later, clock 2 sends the message x2p2q to clock 3, which in turn updates its display

following the same averaging rule. This procedure repeats periodically. As one can

see from Fig. 7.2, every link is used exactly once in each period from t6k to t6pk`1q

for k ě 0.

Now we write down the system equations. Define

xpkq “ rx1pkq, x2pkq, x3pkqsT , v “ rd12, d23, d31sT .

Then for k ě 0,

»

–

x1p6k ` 1q

x2p6k ` 1q

x3p6k ` 1q

fi

fl “

»

—

—

–

x1p6kq ` d12

1
2

ˆ

px1p6kq ` D̄q ` px2p6kq ` d12q

˙

x3p6kq ` d12

fi

ffi

ffi

fl

“

»

–

1 0 0
1
2

1
2 0

0 0 1

fi

fl

»

–

x1p6kq

x2p6kq

x3p6kq

fi

fl `

»

–

1 0 0
2
3

1
6

1
6

1 0 0

fi

fl

»

–

d12
d23
d31

fi

fl .

Through a similar procedure, one can obtain

xp6k ` iq “ Aixp6k ` i ´ 1q ` Biv, 1 ď i ď 6, (7.9)

where

A1 “

»

–

1 0 0
1
2

1
2 0

0 0 1

fi

fl , A3 “

»

–

1 0 0

0 1 0

0 1
2

1
2

fi

fl , A5 “

»

–

1
2 0 1

2

0 1 0

0 0 1

fi

fl ,

B1 “

»

–

1 0 0
2
3

1
6

1
6

1 0 0

fi

fl , B3 “

»

–

0 1 0

0 1 0
1
6

2
3

1
6

fi

fl , B5 “

»

–

1
6

1
6

2
3

0 0 1

0 0 1

fi

fl ,

A2 “ A4 “ A6 “ I3, B2j “ lj
“

13 O3ˆ2

‰

, j “ 1, 2, 3.

Here, lj “
wj

d12
. We can further obtain the following system equation in an iterative

form

xp6pk ` 1qq “ A6A5 ¨ ¨ ¨A1xp6kq `

6
ÿ

i“1

A6 ¨ ¨ ¨Ai`1Biv.

Define A
∆
“ A6A5 ¨ ¨ ¨A1 “ A5A3A1 and B

∆
“

ř6
i“1 A6 ¨ ¨ ¨Ai`1Bi, then we have

xp6pk ` 1qq “ Ak`1xp0q `

k
ÿ

i“0

AiBv, k ě 0. (7.10)

We first prove the following convergence result.
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7.3.1. Proposition. As k goes to infinity, xip6pk ` 1qq ´ xjp6pk ` 1qq converge to

some constants for i, j “ 1, 2, 3, i ‰ j.

For an arbitrary vector x “ rx1, x2, . . . , xN sT , define x̄ “ max1ďiďN xi and x “

min1ďiďN xi. For any matrix Q “ rα1 α2 ¨ ¨ ¨ αmsT P Rmˆm, where αi P Rm, i “

1, . . . ,m, are column vectors, we use

σijpQq
∆
“ αT

i ´ αT
j

to denote the difference between the ith and jth rows of Q, where 1 ď i, j ď m, i ‰ j.

The following result will be useful in the proof for Proposition 7.3.1.

7.3.1. Lemma. Let P P Rmˆm be a scrambling matrix. Then σijp
řk

l“0 P
lq converge

to some constant row vectors as k goes to infinity for 1 ď i, j ď m, i ‰ j.

Proof : Since the convergence to be proved is meant in the element-wise sense, without

loss of generality, we only need to prove the convergence of the first element of

σ12p
řk

l“0 P
lq.

Let pσ12pP iqq1 be the first element of σ12pP iq for i ě 0 and let pσ12p
řk

i“0 P
iqq1

be the first element of σ12p
řk

i“0 P
iq. It is easy to check that the operator σ12p¨q has

the property that

pσ12p

k
ÿ

i“0

P iqq1 “

k
ÿ

i“0

pσ12pP iqq1.

Thus it suffices to prove that
ř8

i“0pσ12pP iqq1 converges. Towards this end, let ui “

pσ12pP iqq1 and

P i “

”

η
piq
1 η

piq
2 ¨ ¨ ¨ η

piq
m

ı

,

where η
piq
1 , . . . , η

piq
m are m column vectors of the matrix P i. Denote η

p1q
1 “ M ě 0,

then one can prove by induction using Lemma 3.3.1(a) that

η
piq
1 ď τpP qi´1M, i ě 1,

where τpP q is the coefficient of ergodicity of P .

Let s0 “ 1 and si “ τpP qi´1M, i ě 1, then in view of the definitions of σ12p¨q,

one has

|ui| “ |pσ12pP iqq1| ď η
piq
1 ď si

for i ě 1. It is obvious that u0 “ 1 because P 0 “ Im. Then we know |ui| ď si for all

i ě 0. Since P is a scrambling matrix, 0 ď τpP q ă 1, which implies the convergence

of the series
8
ÿ

i“0

si “ 1 `

8
ÿ

i“1

τpP qi´1M “ 1 `
M

1 ´ τpP q
.
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Hence,
ř8

i“0 |ui| converges, and so does
ř8

i“0 ui. This completes the proof. l

Now we are ready to prove Proposition 7.3.1.

Proof of Proposition 7.3.1: Since A1, A3, and A5 are all stochastic matrices and the

class of all stochastic matrices with the same dimension is closed under multiplication,

we know A “ A5A3A1 is also a stochastic matrix. In addition, because of the special

structures of these matrices, one can check that A is scrambling and irreducible [44].

Then we know that limkÑ8 Ak “ limkÑ8pA5A3A1qk “ 13ζ
T [44], where ζ is some

constant column vector. Hence, one immediately gets

lim
kÑ8

σijpAkq “ 0, 1 ď i, j ď 3, i ‰ j.

In view of (7.10), one has

xip6pk ` 1qq ´ xjp6pk ` 1qq “ σijpAk`1qxp0q ` σijp

k
ÿ

l“0

AlqBv.

As k Ñ 8, it follows from Lemma 7.3.1 that xip6pk ` 1qq ´ xjp6pk ` 1qq converge to

some constants. l

If we take t2 or t4 in Fig. 7.2 as the starting time of the system evolution,

following similar arguments as shown above, one can get that xip6k` 2q ´xjp6k` 2q

and xip6k ` 4q ´ xjp6k ` 4q both converge to some constants for 1 ď i, j ď 3, i ‰ j,

as k Ñ 8. Since

xip6k ` rq ´ xjp6k ` rq “ xip6k ` r ´ 1q ´ xjp6k ` r ´ 1q,

hold for r “ 2, 4, 6, one can get the following conclusion.

7.3.2. Proposition. As k goes to infinity, xip6k` rq ´xjp6k` rq converge to some

constants for all r “ 1, . . . , 6, and i, j “ 1, 2, 3, i ‰ j.

From Proposition 7.3.2, we know that we can define

eijp6k ` rq
∆
“ xip6k ` rq ´ xjp6k ` rq,

ep6k ` rq
∆
“ re12p6k ` rq, e23p6k ` rqsT ,

and the constants

erij
∆
“ lim

kÑ8
eijp6k ` rq, er

∆
“ rer12, e

r
23sT ,

where i, j “ 1, 2, 3, i ‰ j, and r “ 1, . . . , 6. From the system equations (7.9), one can

get a set of equations

ep6k ` iq “ Ãiep6k ` i ´ 1q ` B̃iv, 1 ď i ď 6, (7.11)
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where

Ã1 “

„

1
2 0
1
2 1

ȷ

, Ã3 “

„

1 0

0 1
2

ȷ

, Ã5 “

„

1
2 ´ 1

2

0 1

ȷ

,

B̃1 “

„

1
3 ´ 1

6 ´ 1
6

´ 1
3

1
6

1
6

ȷ

, B̃3 “

„

0 0 0

´ 1
6

1
3 ´ 1

6

ȷ

, B̃5 “

„

1
6

1
6 ´ 1

3

0 0 0

ȷ

,

Ã2 “ Ã4 “ Ã6 “ I2, B̃2 “ B̃4 “ B̃6 “ O2ˆ3.

By iteration, one has

ep6pk ` 1qq “ Ã6Ã5 ¨ ¨ ¨ Ã1ep6kq `

6
ÿ

i“1

Ã6 ¨ ¨ ¨ Ãi`1B̃iv

“ Ãk`1ep0q `

k
ÿ

i“0

ÃiB̃v, k ě 0,

where Ã
∆
“ Ã6Ã5 ¨ ¨ ¨ Ã1 “ Ã5Ã3Ã1 and B̃ “

ř6
i“1 Ã6 ¨ ¨ ¨ Ãi`1B̃i. Taking k to infinity,

one has

lim
kÑ8

ep6pk ` 1qq “ lim
kÑ8

Ãk`1ep0q ` lim
kÑ8

k
ÿ

i“0

ÃiB̃v, k ě 0.

Since the limit limkÑ8 ep6pk`1qq exists for any initial condition and any time delays

from Proposition 7.3.2, it must be true that both limkÑ8 Ãk`1 and limkÑ8

řk
i“0 Ã

i

converge, from which we conclude that ρpÃq ă 1, namely, the spectral radius of Ã is

strictly less than 1.

In view of the fact that er`1 “ er, r “ 1, 3, 5, we define

e
∆
“ rpe1qT , pe3qT , pe5qT sT .

Then we get the equation of the asymptotic synchronization errors between clocks

by taking k on both sides of (7.11) to infinity:

e “ Āe ` B̄v,

where

Ā “

»

–

O O Ã1

Ã3 O O

O Ã5 O

fi

fl , B̄ “

»

–

B̃1

B̃3

B̃5

fi

fl .

If the matrix I ´ Ā is invertible, the error e can be calculated as e “ pI ´ Āq´1B̄v.

7.3.2. Lemma. The matrix I ´ Ā is invertible.
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Proof : We prove this Lemma by showing that pI ´ Āqy “ 0 has a unique solution

y “ 0. From

pI ´ Āqy “

»

–

I O ´Ã1

´Ã3 I O

O ´Ã5 I

fi

fl

»

–

y1
y2
y3

fi

fl “ 0,

one has

y1 “ Ã1y3, y2 “ Ã3y1, y3 “ Ã5y2, (7.12)

Substituting the first two equations of (7.12) into the last one of (7.12), we obtain

y3 “ Ã5Ã3Ã1y3 “ Ãy3.

Since ρpÃq ă 1, y3 “ Ãy3 has a unique solution y3 “ 0. Substituting y3 “ 0 into the

equations (7.12), one has y “ 0. l

Thus, by calculating e “ pI ´ Āq´1B̄v, one has

er12 “ d12 ´ D̄, er23 “ d23 ´ D̄, r “ 1, . . . , 6.

Hence, we have proved the following.

7.3.1. Theorem. As time goes to infinity, the synchronization errors between clocks

in the three-clock directed ring network converge and

lim
tÑ8

pxiptq ´ xrisptqq “ di,ris ´ D̄, i “ 1, 2, 3,

where ris “ i ` 1 if i “ 1, 2 and ris “ 1 if i “ 3.

The following result is a direct consequence of Theorem 7.3.1.

7.3.1. Corollary. For the three clocks in the directed ring network, if the delays

are all equal, namely d12 “ d23 “ d31, the clocks can get synchronized asymptotically.

In the next subsection, we extend the results that we have obtained for the three-

clock directed ring network to general directed ring networks with n ě 3 nodes.

B. Synchronizing more clocks in a directed ring network

Now we consider a directed ring network of N ě 3 nodes. The message passing

procedure in the network with unidirectional communications is illustrated in Fig.

7.3, where di,ris and wi, i “ 1, . . . , n, are time delays and idling times respectively.

Here, ris is defined to be i ` 1 when i “ 1, . . . , N ´ 1 and 1 when i “ N .
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Node 1

Node 2

Node 3

Node N

t0 t
1

t3 2 2N
t −

…
.

…
.

….t
2

d
12 d23w

1 1N
d

N
w

2 1N
t − 2 1N

t +2N
t

d
12

x t
1
( )

x t
2
( )

x t
3
( )

( )
N

x t

…
.

Figure 7.3: Message exchanges among N ě 3 clocks with directed connections.

Although the time delays di,ris, i “ 1, . . . , N , between clocks cannot be deter-

mined precisely no matter how many time-stamped messages are exchanged, the

round-trip delay D “
řN

i“1 di,ris can be calculated after sufficiently many messages

are delivered

D “

N´1
ÿ

i“0

ˆ

xri`1sp2i ` 1q ´ xi`1p2iq

˙

.

Similar to the three-clock case in Subsection 7.3.1A, we use D̄ “ D
N as the nominal

delay for all the clocks when they update their displays.

Define

xpkq “ rx1pkq, x2pkq, . . . , xN pkqsT , v “ rd12, d23, . . . , dN1sT .

Then we have the system equations in state space

xp2Nk ` iq “ Aixp2Nk ` i ´ 1q ` Biv, (7.13)
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for 1 ď i ď 2N and k ě 0, where

A1 “

»

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0
1
2

1
2 0 ¨ ¨ ¨ 0

0 0 1
. . . 0

...
...

. . .
. . .

...

0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , A2N´1 “

»

—

—

—

—

—

—

—

–

1
2 0 0 ¨ ¨ ¨ 1

2

0 1 0 ¨ ¨ ¨ 0

0 0 1
. . . 0

...
...

. . .
. . .

...

0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

B1 “

»

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0
N`1
2N

1
2N

1
2N ¨ ¨ ¨ 1

2N

1 0 0
. . . 0

...
...

. . .
. . .

...

1 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . , B2N´1 “

»

—

—

—

—

—

—

—

–

1
2N

1
2N

1
2N ¨ ¨ ¨ N`1

2N

0 0 0 ¨ ¨ ¨ 1

0 0 0
. . . 1

...
...

. . .
. . .

...

0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

A2 “ A4 “ ¨ ¨ ¨ “ A2N “ IN , B2j “ lj
“

1N ONˆpN´1q

‰

, j “ 1, . . . , N,

and lj “
wj

d12
.

We can write down the iterative equations

xp2Npk ` 1qq “ A2NA2N´1 ¨ ¨ ¨A1xp2Nkq ` p

2N
ÿ

i“1

A2N ¨ ¨ ¨Ai`1Biqv

“ Ak`1xp0q `

k
ÿ

i“0

AiBv.

where A “ A2NA2N´1 ¨ ¨ ¨A1 and B “
ř2N

i“1 A2N ¨ ¨ ¨Ai`1Bi. This equation is in the

same form as Eq. (7.10). Then using similar arguments to that in Subsection 7.3.1A,

one can prove the following result.

7.3.2. Theorem. As time goes to infinity, the synchronization errors between clocks

in the N -clock ring network, N ě 3, converge and

lim
tÑ8

pxiptq ´ xrisptqq “ di,ris ´ D̄, i “ 1, . . . , N.

Since undirected graphs can be viewed as a special class of directed graphs, the

2-clock synchronization discussed in Section 7.2 can be viewed as a special case of

the N -clock synchronization in a directed ring network when N “ 2. In view of this,

Theorem 7.2.1 is consistent with Theorem 7.3.2.

In the next subsection, we discuss how to synchronize clocks in connected undi-

rected networks.
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7.3.2 Synchronizing clocks in connected undirected networks

A. Synchronizing three clocks in a connected undirected network

We fist consider a network of three nodes with undirected edges p1, 2q, p2, 3q and

p1, 3q. Similar to the message passing process for the 2-clock case discussed before,

we illustrate the message passing process among the three clocks in Fig. 7.4.

Node 1

Node 2

Node 3

t0 t1 t2 t3 t4
t5 t6 t7

d12 d3121dw1 w3
w2

t8 t9

4wd23

x t1( )

x t2 ( )

x t3( )

10t 13t
11t 12t

13d32d 5w 6w

Figure 7.4: Message exchanges among three clocks with undirected connections.

Although the delays dij , 1 ď i, j ď 3, cannot be determined from the time-

stamped messages, the round-trip delay between each pair of connected clocks can

be calculated precisely. For example, the round-trip delay D12 between clocks 1 and

2 is

D12 “ d12 ` d21 “ x1p3q ´ x2p2q ` x2p1q ´ x1p0q.

We take D̄ij “
Dij

2 as the nominal delay for a pair of adjacent clocks i and j when

they update their displays, where Dij “ dij ` dji is the round-trip delay between

clocks i and j. As before the clocks update following the same average rule and this

procedure repeats periodically. It can be seen from Fig. 7.4 that, in each update

period from t12k to t12pk`1q for k ě 0, a pair of adjacent nodes exchange messages

exactly once.

Define xpkq “ rx1pkq, x2pkq, x3pkqsT and v “ rd12, d21, d23, d32, d13, d31sT . Then

we obtain the system equations

xp12k ` iq “ Aixp12k ` i ´ 1q ` Biv, (7.14)
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for 1 ď i ď 12 and k ě 0, where

A1 “

»

–

1 0 0
1
2

1
2 0

0 0 1

fi

fl , A3 “

»

–

1
2

1
2 0

0 1 0

0 0 1

fi

fl , A5 “

»

–

1 0 0

0 1 0

0 1
2

1
2

fi

fl ,

A7 “

»

–

1 0 0

0 1
2

1
2

0 0 1

fi

fl , A9 “

»

–

1 0 0

0 1 0
1
2 0 1

2

fi

fl , A11 “

»

–

1
2 0 1

2

0 1 0

0 0 1

fi

fl ,

B1 “

»

–

1 0
3
4

1
4

1 0

O3ˆ4

fi

fl , B3 “

»

–

1
4

3
4

0 1

0 1

O3ˆ4

fi

fl , B5 “

»

–

0 0 1 0 0 0

0 0 1 0 0 0

0 0 3
4

1
4 0 0

fi

fl ,

B7 “

»

–

0 0 0 1 0 0

0 0 1
4

3
4 0 0

0 0 0 1 0 0

fi

fl , B9 “

»

–O3ˆ4

1 0

1 0
3
4

1
4

fi

fl , B11 “

»

–O3ˆ4

1
4

3
4

0 1

0 1

fi

fl ,

A2 “ ¨ ¨ ¨ “ A12 “ I3, B2j “ lj
“

13 O3ˆ5

‰

, 1 ď j ď 6.

Here lj “
wj

d12
. By iteration, we have

xp12pk ` 1qq “ Ak`1xp0q `

k
ÿ

i“0

AiBv, k ě 0,

where A “ A12A11 ¨ ¨ ¨A1 and B “
ř12

i“1 A12 ¨ ¨ ¨Ai`1Bi. Following similar arguments

to that in Subsection 7.3.1A, one can prove the following result.

7.3.3. Proposition. As k goes to infinity, xip12k ` rq ´ xjp12k ` rq converge to

some constants for all r “ 1, . . . , 12, and i, j “ 1, 2, 3, i ‰ j.

Define

eijp12k ` rq
∆
“ xip12k ` rq ´ xjp12k ` rq,

ep12k ` rq
∆
“ re12p12k ` rq, e23p12k ` rqsT ,

and the constants

erij
∆
“ lim

kÑ8
eijp12k ` rq, er

∆
“ rer12, e

r
23sT ,

where i, j “ 1, 2, 3, i ‰ j, and r “ 1, . . . , 12. From the system equations (7.14), one

gets a set of equations

ep12k ` iq “ Ãiep12k ` i ´ 1q ` B̃iv, 1 ď i ď 12, (7.15)
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where

Ã1 “

„

1
2 0
1
2 1

ȷ

, Ã3 “

„

1
2 0

0 1

ȷ

, Ã5 “

„

1 0

0 1
2

ȷ

,

Ã7 “

„

1 1
2

0 1
2

ȷ

, Ã9 “

„

1 0

´ 1
2

1
2

ȷ

, Ã11 “

„

1
2 ´ 1

2

0 1

ȷ

,

B̃1 “
1

4

„

1 ´1

´1 1
O2ˆ4

ȷ

, B̃3 “
1

4

„

1 ´1

0 0
O2ˆ4

ȷ

,

B̃5 “
1

4

„

0 0 0 0 0 0

0 0 1 ´1 0 0

ȷ

, B̃7 “
1

4

„

0 0 ´1 1 0 0

0 0 1 ´1 0 0

ȷ

,

B̃9 “
1

4

„

O2ˆ4
0 0

1 ´1

ȷ

, B̃11 “
1

4

„

O2ˆ4
1 ´1

0 0

ȷ

,

Ã2 “ ¨ ¨ ¨ “ Ã12 “ I2, B̃2 “ ¨ ¨ ¨ “ B̃12 “ O2ˆ6.

Since er`1 “ er, r “ 1, 3, . . . , 11, we conclude from Proposition 7.3.3 that as k Ñ

8, the synchronization errors between a pair of distinct nodes approach permanent

oscillations among at most 6 values. One can further calculate these values easily.

Let e
∆
“ rpe1qT , pe3qT , . . . , pe11qT sT . By taking k on both sides of (7.15) to infinity,

we can get the equation for the synchronization errors between clocks

e “ Āe ` B̄v, (7.16)

where

Ā “

»

—

—

—

—

—

—

—

–

O O ¨ ¨ ¨ O Ã1

Ã3 O ¨ ¨ ¨ O O
...

. . .
. . .

...
...

O O
. . . O O

O O ¨ ¨ ¨ Ã11 O

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B̄ “

»

—

—

—

—

—

—

–

B̃1

B̃3

...

B̃9

B̃11

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since pI ´ Āq is invertible, which can be proved using similar arguments to that in

Lemma 7.3.2, the error e can be calculated by e “ pI´Āq´1B̄v. Thus we have proved

the following result.

7.3.3. Theorem. As time goes to infinity, the synchronization errors between each

pair of distinct clocks in the three-clock connected undirected network will approach

permanent oscillations among at most 6 values, which are determined by

e “ pI ´ Āq´1B̄v.
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7.3.1. Remark. In the three-clock directed ring network, the synchronization errors

between clocks converge to some constants; for example, limtÑ8px1ptq ´ x2ptqq “

d12 ´ D̄ “ er12 for all r “ 1, . . . , 6. However, in the three-clock connected undirected

network, the synchronization errors between a pair of distinct clocks may not con-

verge, which in general will oscillate; for example, limtÑ8px1ptq ´ x2ptqq may not

exist because er112 may not be equal to er212 for some r1, r2, 1 ď r1, r2 ď 12.

Although the synchronization errors between a pair of distinct clocks in general

will oscillate, it is easy to see that if

er1 “ er2 , @r1, r2 “ 1, 3, . . . , 11, (7.17)

then the errors converge to some constant values. Substituting (7.17) into (7.16), one

has

er12 “ d12 ´ D̄12, er23 “ d23 ´ D̄23, er12 ` er23 “ d13 ´ D̄13,

where r “ 1, 3, . . . , 11. Since (7.16) has a unique solution e “ pI ´ Āq´1B̄v, we can

conclude that if d12 ´ D̄12 ` d23 ´ D̄23 “ d13 ´ D̄13, namely, d12 ` d23 ` d31 “

d13 ` d32 ` d21, then er12 “ d12 ´ D̄12, er23 “ d23 ´ D̄23, r “ 1, 3, . . . , 11, is indeed the

solution to (7.16). We summarize.

7.3.2. Corollary. If d12 ` d23 ` d31 “ d13 ` d32 ` d21, then as time goes to infin-

ity, the synchronization errors between clocks in the three-clock undirected network

converge and

lim
tÑ8

pxiptq ´ xjptqq “ dij ´ D̄ij , i ‰ j.

Specifically, if the time delays are symmetric, namely dij “ dji i ‰ j, then the three

clocks can get synchronized asymptotically.

In the next subsection, we extend the results that we have obtained for the three-

clock connected network to general connected networks with bidirectional links.

B. Synchronizing more clocks in a connected undirected network

We consider a connected network consisting of N nodes and m undirected edges.

For the ease of describing the message passing process, we assume that the edges

have been labeled and in each update period, a pair of connected nodes exchange

messages exactly once. The indices of the edges determine the ordering of the pair

of nodes that are activated to exchange messages. For the two nodes associated with

an edge, the one with the smaller index starts the message exchange process. For

the sth edge of the graph, let s1 ă s2 denote the indices of the associated two nodes.

Then s1 always sends a message to s2 first, and then s2 replies. Taking the three
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clocks in Subsection 7.3.2A as an example, we label the edges p1, 2q, p2, 3q and p1, 3q

by 1⃝, 2⃝ and 3⃝, respectively. For the 2nd edge p2, 3q, node 2⃝1 “ 2 always sends a

message to node 2⃝2 “ 3 first, and after waiting for some idling time, node 3 sends

back a message to node 2. Thus the message passing process is illustrated more in

detail in Fig. 7.4.

Define xpkq “ rx1pkq, . . . , xN pkqsT , and v “ rd11,12 , d12,11 , . . . , dm1,m2 , dm2,m1sT .

Then we can derive the system equations through a similar procedure to that in

Subsection 7.3.1A.

xp4mk ` iq “ Aixp4mk ` i ´ 1q ` Biv, 1 ď i ď 4m, k ě 0, (7.18)

where

A2 “ ¨ ¨ ¨ “ A4m “ IN , B2j “ lj
“

1N ONˆp2m´1q

‰

,

and lj “
wj

d11,12
, wj are idling times for 1 ď j ď 2m, and when i “ 4ps ´ 1q ` 1, for

1 ď s ď m,

Ai “ diagtIs1´1, A
1
i, IN´s2u, Bi “

“

ONˆp2s´2q B1
i ONˆp2m´2sq

‰

,

with

A1
i “

»

—

—

—

—

–

1 0 ¨ ¨ ¨ 0

0 1
. . . 0

...
...

. . .
...

1
2 0 ¨ ¨ ¨ 1

2

fi

ffi

ffi

ffi

ffi

fl

, B1
i “

»

—

—

—

—

—

—

–

1s1´1 0s1´1

1 0
...

...
3
4

1
4

1N´s2 0N´s2 ,

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

When i “ 4ps ´ 1q ` 3, for 1 ď s ď m,

Ai “ diagtIs1´1, A
1
i, IN´s2u, Bi “

“

ONˆp2s´2q B1
i ONˆp2m´2sq

‰

,

with

A1
i “

»

—

—

—

—

–

1
2 0 ¨ ¨ ¨ 1

2

0 1
. . . 0

...
...

. . .
...

0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

fl

, B1
i “

»

—

—

—

—

—

—

–

0s1´1 1s1´1
1
4

3
4

...
...

0 1

0N´s2 1N´s2 ,

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We can further obtain

xp4mpk ` 1qq “ Ak`1xp0q `

k
ÿ

i“0

AiBv, k ě 0,

where A “ A4mA4m´1 ¨ ¨ ¨A1 and B “
ř4m

i“1 A4m ¨ ¨ ¨Ai`1Bi. Following similar ar-

guments to that in Subsection 7.3.1A, we can conclude that as k goes to infinity,



110 7. Determination of clock synchronization errors in distributed networks

xip4mk ` rq ´ xjp4mk ` rq converge to some constants for all r “ 1, . . . , 4m, and

i, j “ 1, . . . , N, i ‰ j.

Then define eijp4mk` rq
∆
“ xip4mk` rq ´xjp4mk` rq, ep4mk` rq

∆
“ re12p4mk`

rq, e23p4mk`rq, . . . , eN´1,N p4mk`rqsT , and the constants erij
∆
“ limkÑ8 eijp4mk`rq,

er
∆
“ rer12, e

r
23, . . . , e

r
N´1,N sT , where i, j “ 1, . . . , N, i ‰ j, and r “ 1, . . . , 4m. From

the system equations (7.18), one can get a set of equations

ep4mk ` iq “ Ãiep4mk ` i ´ 1q ` B̃iv, 1 ď i ď 4m, (7.19)

where

Ã2 “ ¨ ¨ ¨ “ Ã4m “ IN´1, B̃2 “ ¨ ¨ ¨ “ B̃4m “ OpN´1qˆ2m,

and when i “ 4ps ´ 1q ` 1, for 1 ď s ď m,

Ãi “ diagtIs1´1, Ã
1
i, IN´1´s2u, B̃i “

“

OpN´1qˆp2s´2q B̃1
i OpN´1qˆp2m´2sq

‰

,

with

Ã1
i “

»

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 0 0 0
...

. . .
...

...
...

0 ¨ ¨ ¨ 1 0 0

´ 1
2 ¨ ¨ ¨ ´ 1

2
1
2 0

1
2 ¨ ¨ ¨ 1

2
1
2 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B̃1
i “

»

—

—

–

0s2´2 0s2´2
1
4 ´ 1

4

´ 1
4

1
4

0N´1´s2 0N´1´s2

fi

ffi

ffi

fl

,

when i “ 4ps ´ 1q ` 3, for 1 ď s ď m,

Ãi “ diagtIs1´2, Ã
1
i, IN´s2u, B̃i “

“

OpN´1qˆp2s´2q B̃1
i OpN´1qˆp2m´2sq

‰

,

with

Ã1
i “

»

—

—

—

—

—

—

–

1 1
2

1
2 ¨ ¨ ¨ 1

2

0 1
2 ´ 1

2 ¨ ¨ ¨ ´ 1
2

0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B̃1
i “

»

—

—

–

0s1´2 0s1´2

´ 1
4

1
4

1
4 ´ 1

4

0N´s1´1 0N´s1´1

fi

ffi

ffi

fl

.

Let

e
∆
“ rpe1qT , pe3qT , . . . , pe4m´1qT sT .

Then the equation of the synchronization errors can be written as

e “ Āe ` B̄v,
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where

Ā “

»

—

—

—

—

—

—

—

–

O O ¨ ¨ ¨ O Ã1

Ã3 O ¨ ¨ ¨ O O
...

. . .
. . .

...
...

O O
. . . O O

O O ¨ ¨ ¨ Ã4m´1 O

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B̄ “

»

—

—

—

—

—

—

–

B̃1

B̃3

...

B̃4m´3

B̃4m´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since the matrix I ´ Ā is invertible, the errors can be calculated by e “ pI ´ Āq´1B̄v.

7.3.4. Theorem. As time goes to infinity, the synchronization errors between each

pair of distinct clocks in the N -clock undirected connected network will approach

permanent oscillations among at most 2m values, which are determined by

e “ pI ´ Āq´1B̄v.

Networks with tree topologies are preferred when applying network clock syn-

chronization protocols [34], the following corollary suggests the reason behind it.

7.3.3. Corollary. If the communication graph G is an undirected tree, the syn-

chronization errors between clocks in the network converge and

lim
tÑ8

pxiptq ´ xjptqq “ dij ´ D̄ij , i ‰ j,

where pi, jq P E and D̄ij “ 1
2 pdij ` djiq.

In the next section, we discuss how to synchronize clocks in networks with strongly

connected directed topologies.

7.3.3 Expansion to strongly connected directed networks

In order to synchronize N clocks in a network with strongly connected directed

topology, we may use only some of the edges in the network. To better explain this

idea, we need to introduce some more notions.

For a strongly connected graphG “ pV, Eq, we can find subgraphsGi “ pVi, Eiq, i “

1, . . . , p, of G such that Y
p
i“1Vi “ V and each Gi is a directed ring graph. Those

edges in Y
p
i“1Ei are to be utilized in the message passing process. We divide each

update period of the overall network into p stages. Each stage corresponds to a di-

rected ring subgraph Gi, in which the message passing process is the same as that

in Subsection 7.3.1B. Note that Gi might share common edges and the nodes as-

sociated with these edges will carry out message passing more than once in each

period. We take the message passing process in Subsection 7.3.2A as an example
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since connected undirected graphs can always be viewed as strongly connected di-

rected graphs. The graph corresponds to Fig. 7.4 is G “ pV, Eq with V “ t1, 2, 3u

and E “ tp1, 2q, p2, 1q, p2, 3q, p3, 2q, p1, 3q, p3, 1qu. Define Gi “ pVi, Eiq, i “ 1, 2, 3, with

V1 “ t1, 2u, E1 “ tp1, 2q, p2, 1qu, V2 “ t2, 3u, E2 “ tp2, 3q, p3, 2qu, and V3 “ t1, 3u,

E3 “ tp1, 3q, p3, 1qu. It is easy to check that Y3
i“1Vi “ V and Gi are directed ring

graphs for i “ 1, 2, 3. Thus each update period can be divided into 3 stages, and

each stage corresponds to a subgraph Gi. The message passing process in each stage

is the same as that in Subsection 7.3.1B.

One can obtain the following result which is similar to that in the previous section.

7.3.5. Theorem. As time goes to infinity, the synchronization errors between each

pair of distinct clocks in the N -clock strongly connected network will approach per-

manent oscillations among at most
řp

i“1 |Ei| values.

The synchronization errors between clocks, which in general will oscillate, are

determined by the choices of the subgraphs and the time delays. A proper choice of

the subgraphs can lead to the convergence of synchronization errors. One example

is that if we only choose the subgraphs G1, G2 of G defined in the previous example

for message passing, the synchronization errors will converge to some constants in

view of Corollary 7.3.3.

7.4 Illustrative examples

7.4.1. Example. (Directed ring networks) We first consider three clocks with the

same skew in a directed ring network, whose message passing procedure is shown in

Fig. 7.2. The three time delays, not known by the clocks, are d12 “ 0.2, d23 “ 0.4,

and d31 “ 0.9. Then the round-trip delay D “ 1.5 and the nominal delay D̄ “ 0.5.

Every clock waits for one time unit after receiving a message before sending its

own message, namely wi “ 1, i “ 1, 2, 3. We set the initial time displays of the

three clocks to be rx1p0q, x2p0q, x3p0qsT “ r10, 40, 20sT . The simulation results of

the evolution of the displays of the three clocks are shown in Fig. 7.5. One can see

that the three clocks do not synchronize, but the asymptotic synchronization error

between clocks 1 and 2 is ´0.3 and that between clocks 2 and 3 is ´0.1, which agrees

with our theoretical analysis. If we set all the three time delays to be equal, namely

d12 “ d23 “ d31 “ 0.5, then from Theorem 7.3.1 it follows that the three clocks are

synchronized asymptotically as shown in Fig. 7.6.

Since the time delays are random variables in real distributed networks, we re-

run the simulation for the case when the delays take random values in the intervals

d12 P r0.15, 0.25s, d23 P r0.3, 0.5s, and d31 P r0.8, 1.0s. The expected round-trip
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Figure 7.5: Time displays of three clocks

with nonidentical delays in a directed ring net-

work.
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Figure 7.6: Time displays of three clocks

with identical delays in a directed ring net-

work.
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Figure 7.7: Time displays of three clocks with time-varying delays in a directed ring

network.

delay is still D “ 1.5, and thus D̄ is still 0.5. The simulation results are shown in

Fig. 7.7, from which one can tell the clock synchronization errors are bounded in a

small range.

7.4.2. Example. (Connected undirected networks) We consider three clocks with

the same skew in an undirected network, whose message passing procedure is shown
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Figure 7.8: Time displays of three clocks

with asymmetric delays in an undirected net-

work.
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Figure 7.9: Time displays of three clocks

with time-varying delays in an undirected net-

work.

in Fig. 7.4. The time delays are d12 “ 0.2, d21 “ 0.3, d23 “ 0.3, d32 “ 0.4, d13 “ 0.4,

and d31 “ 0.3. Thus the nominal delays for the three pair of clocks p1, 2q, p2, 3q, and

p1, 3q are D̄12 “ 0.25, D̄23 “ 0.35, and D̄13 “ 0.35 respectively. We set the idling

times to be wi “ 0.5, i “ 1, . . . , 6, and the initial time displays of the three clocks

to be rx1p0q, x2p0q, x3p0qsT “ r10, 40, 20sT . The simulation results of the evolution of

the displays of the three clocks are shown in Fig. 7.8, from which one can find that

the synchronization errors are bounded in a small range without converging to some

constants.

When we rerun the simulations for the case when the delays take random values in

the intervals d12 P r0.15, 0.25s, d21 P r0.2, 0.4s, d23 P r0.2, 0.4s, d32 P r0.3, 0.5s, d13 P

r0.3, 0.5s, and d31 P r0.2, 0.4s. The expected nominal delays are still the same as

above. From Fig. 7.9 one can find that the clock synchronization errors are still

bounded in a small range.

7.4.3. Example. (Strongly connected networks) We consider four clocks with the

same skew in a strongly connected graph G “ tV, Eu with V “ t1, 2, 3, 4u and E “

tp1, 2q, p2, 3q, p3, 1q, p2, 4q, p4, 1qu as shown in Fig. 7.10. Let G1 “ tV1 “ t1, 2, 3u, E1 “

tp1, 2q, p2, 3q, p3, 1quu and G2 “ tV2 “ t1, 2, 4u, E2 “ tp1, 2q, p2, 4q, p4, 1quu. Then

G1 and G2 are both directed ring graphs and V1 Y V2 “ V. The time delays are

d12 “ d24 “ d41 “ 0.2, d23 “ 0.3, and d31 “ 0.4. The nominal delay for the directed

ring graph G1 is D̄1 “ 1
3 pd12 ` d23 ` d31q “ 0.3 and the nominal delay for G2 is

D̄2 “ 1
3 pd12 ` d24 ` d41q “ 0.2. We set the idling times to be wi “ 0.5 and the initial

time displays of the four clocks to be rx1p0q, x2p0q, x3p0q, x4p0qsT “ r10, 40, 20, 30sT .

The simulation results of the evolution of the displays of the four clocks are shown

in Fig. 7.11, from which one can find that the synchronization errors oscillate among
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Figure 7.10: The graph topology of a general

strongly connected graph.
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Figure 7.11: Time displays of four clocks in

a strongly connected network.

several values.

7.5 Conclusion

We have presented explicit expressions for the asymptotic synchronization errors be-

tween two interconnected clocks, and expanded the results to larger networks with

directed ring topologies, connected undirected topologies, and general strongly con-

nected directed topologies respectively. The obtained synchronization errors comple-

ment the impossibility results for clock synchronization in the literature. Determinis-

tic time delays have been considered in this chapter. Questions on the determination

of clock synchronization errors in realistic data networks are still open, where the

time delays are random.





Chapter 8

Conclusions and future research

In this chapter, we summarize our work in this thesis and give recommendations for

future research.

8.1 Concluding remarks

This thesis has investigated distributed algorithms for multi-agent systems and clock

synchronization in distributed networks. To aid the analysis of the convergence of

these distributed algorithms, we have reviewed some classical and recent results on

the convergence of backward products of stochastic matrices. A new necessary and

sufficient condition has been given by making use of the Sarymsakov class of stochastic

matrices, which we have reexamined and made a connection to those well-understood

SIA matrices.

The set of scrambling stochastic matrices has been used to construct a sufficient

condition to guarantee the convergence of an asynchronous coordination algorithm

based on the convergence results on products of stochastic matrices in Chapter 3.

We have generalized discussions on distributed algorithms to settings where the

couplings between pairs of agents in a network could be positive or negative in Chap-

ter 4. By making use of the notion of structural balance, sufficient conditions have

been constructed to guarantee that the states of the agents polarize or reach an a-

greement of zero value. The systems studied here can be used to model the opinion

dynamics in social networks, which are often structurally balanced and can be divided

into two opposing factions.

Chapter 5 has investigated three different algorithms that lead to n-cluster syn-

chronization in multi-agent systems. Some sufficient conditions and/or necessary

conditions have been constructed for systems with different agent self-dynamics, with

delay or having negative couplings. The three models presented here are just exam-

ples of different approaches towards cluster synchronization and much richer cluster

synchronization behaviors in natural and man-made systems require further identi-

fication of more such models. More insights have been gained by jointly studying

the controllability problem and the cluster synchronization problem of multi-agent
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systems. Those multi-agent networks that are uncontrollable in finite time tend to

realize cluster synchronization as time goes to infinity.

We have explored clock synchronization problem in distributed networks and

presented explicit expressions for the asymptotic synchronization errors between two

interconnected clocks, and expanded the results to larger networks with directed ring

topologies, connected undirected topologies, and general strongly connected directed

topologies respectively. The obtained synchronization errors complement the impos-

sibility results for clock synchronization in the literature.

8.2 Recommendations for future research

We have seen that the theory on products of stochastic matrices is fundamental in

establishing the effectiveness of distributed coordination algorithms. This is closely

related to the theory on ergodicity of non-homogeneous Markov chains. (See [40]

for detailed information.) One possible way to study the ergodicity of a chain of

stochastic matrices is to check the total information flow between two disjoint sets

of agents in a network over time, where the notions of infinity flow and absolute

infinite flow are used to attack this problem [96, 95]. It has been shown that the

absolute infinite flow property of a chain of stochastic matrices is necessary, but not

sufficient for the ergodicity of this chain. People are still making efforts to find out

what additional conditions are needed to make a chain of stochastic matrices ergodic.

Chapter 3 has studied the asynchronous implementation of a distributed coordi-

nation algorithm. It is also interesting to consider the case when the agents update

asynchronously in distributed algorithms in the presence of positive and negative

couplings and also in clustering algorithms. Besides the asynchronous events that

may arise in practical situations, other constraints such as time delays, quantized in-

formation, noisy measurements and so on, are also important issues that one should

take into account when dealing with realistic systems. Another active research area in

coordination algorithms is the analysis of the convergence speed of these algorithms

[74], which is an important characterization of the performance of these algorithm-

s. Some authors have proposed algorithms that achieve finite-time convergence in a

network [27] and some have proposed distributed algorithms that make use of the

states of the agents in previous steps to accelerate the convergence process [18, 75].

We have obtained some preliminary results on accelerating consensus by removing

specific edges in a network from simulations and further work will follow this line

and seek to provide theoretical proofs.

We have generalized distributed algorithms for multi-agent systems by incorporat-

ing negative couplings between agents in the interaction graph topologies in Chapter

4 and proposed an algorithm that might lead to clustering phenomena by making use
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of negative couplings in Chapter 5. Negative coupling, that represents competitive

or conflicting relationships between a pair of agents in a network and modeled by

an edge with negative weight in a graph, definitely deserves further investigation.

Numerical computation has found out that in some cases, when some pairs of agents

are conflicting, consensus in a network can be reached with a much faster speed [111].

Said differently, conflict sometimes accelerates the reaching of an agreement among

agents. However, there is almost no rigorous mathematical analysis on how an agree-

ment is reached in the presence of both positive and negative couplings. Note that

in Chapter 4, agreement can be reached when two opposing factions exist, but the

agreed value is trivially zero. It is interesting to find out when a nontrivial agreed

value can be achieved in the presence of negative couplings. Preliminary work in this

direction has been given in [31]. The results there include the matrix-tree theorem

as a special case, which may have great potential to be further developed to carry

out the analysis for the dynamical behavior of the system concerned. This may lead

to some necessary and sufficient conditions for reaching an agreement in the pres-

ence of negative couplings and serve as the first step of explaining how conflicts may

sometimes accelerate the process of reaching agreement.

Another issue that deserves consideration is the case when the interaction graph

topologies are not only purely dependent on time but also on the system state, since

in practical situations, whether a link between a pair of agents exists or not probably

depends on the relative differences between the two agents [85, 43]. For example, in

social networks, if the state of an agent denotes the opinion of an individual towards

a subject, then a link between a pair of individuals could vanish or establish as the

difference between their opinions varies, which induces state-dependent interaction

topologies [43]. Thus the dynamics of the agents and the interaction graph topologies

are interacting with each other and it brings great challenges to analyze the dynamical

behavior of the system. The convergence results on reaching an agreement or splitting

into clusters in a network in the present thesis and also in most of the literature, are

derived under proper connectivity assumptions on the graph topologies. However, in

general, it is difficult to check whether the connectivity assumptions can be met as

the system evolves given an initial condition of the system, when the graph topologies

are depending on the state of the system. Recent work on opinion dynamics models

has been devoted to this research direction [11, 12, 68]. There are still a number of

open problems in these opinion dynamics models with state-dependent interaction

graphs especially in the models with asymmetric confidence bound [68].

It has been seen in Chapter 4 that the states of the agents in a network evolve into

two opposite values in a structurally balanced network. Structural balance theory

is a static theory, and people are also trying to find out how structural balance

dynamically arises in a social network. Establishing a satisfactory dynamical model
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describing the emergence of structural balance is challenging. Present models are

focused on networks with all-to-all connections [64] and models for other network

topologies are not available. An extension of structural balance of a network is the

clustering structure, in which the network can be split into more than two clusters

such that each positive connection links two agents of the same cluster and each

negative connection links agents from different clusters [28]. A proper dynamical

model that can describe the emergence of clustering in social networks is still not

available. Another interesting problem is to find out how the opinions evolve in a

network that has a clustering structure and to see whether they will finally evolve

into several clusters.
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Summary

In the control community, the study on distributed control of multi-agent systems

has received considerable attention in recent years due to their broad applications

in sensor networks, robotic teams, and so on. This is also motivated by the grow-

ing interest in understanding the collective group behaviors in natural, social and

engineered networks. The architecture of these complex networks is distributed or

decentralized in character. Each individual agent in the complex multi-agent system

does not have global information of all the agents; instead, each agent only interacts

with its neighbors, receives limited information from them, and takes actions based

on the local information. Huge efforts have been devoted to investigate the inter-

play between the individual agent dynamics and the network structure in order to

understand the emergence of collective behaviors. This thesis is concerned with dis-

tributed algorithms for interacting autonomous agents. We study several distributed

algorithms that drive a group of agents to reach an agreement on the value of a

variable of common interest or to split into two or more clusters. The clock syn-

chronization problem in distributed networks with communication time delays is also

discussed.

We reexamine a subclass of stochastic matrices, the Sarymsakov class of stochas-

tic matrices and explore its relationship with other well-studied classes of stochastic

matrices. The classical conditions scattered in the literature for the convergence

of products of stochastic matrices are reviewed and a new necessary and sufficient

condition is then proposed by making use of the Sarymsakov matrices. These conver-

gence results serve as fundamental tools for the analysis of distributed coordination

algorithms for multi-agent systems. They are applied to solve an asynchronous im-

plementation problem of a distributed coordination algorithm that causes a group of

agents to reach an agreement.

By employing the structural balance theory from social networks study, we study
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distributed algorithms in the presence of positive and negative couplings. These

models differ from most of those investigated in the literature, which only consider

positive couplings in networks. Sufficient conditions are constructed to show when

the state of the system polarizes or converges to an agreed value of zero.

To better understand the clustering behavior emerging in natural and man-made

systems, three different mechanisms that may lead to the clustering behavior are

proposed and analyzed. Some sufficient conditions and/ or necessary conditions are

constructed for systems with different agent self-dynamics, with delay or having neg-

ative couplings. These clustering mechanisms are examples of different mechanisms

leading to clustering phenomena. More mechanisms may be identified after gaining

insight into the clustering behavior in natural and man-made systems. Furthermore,

by jointly studying the controllability problem and the cluster synchronization prob-

lem of multi-agent systems, it is shown that those multi-agent networks that are

uncontrollable in finite time tend to realize cluster synchronization as time goes to

infinity.

Another issue that is addressed in the thesis is the clock synchronization prob-

lem in distributed networks with communication time delays. Recently, there have

been studies showing the impossibility of clock synchronization in distributed net-

works with asymmetric time delays. Based on similar models for clocks, we derive

explicit expressions for the asymptotic synchronization errors between two intercon-

nected clocks and expand the results to larger networks with directed ring topologies,

connected undirected topologies, and general strongly connected directed topologies,

respectively.



Samenvatting

In de systeemtheorie en regeltechniek heeft het onderzoek naar gedistribueerde aans-

turing van multi-agent systemen de afgelopen jaren veel aandacht gekregen door hun

brede toepassing in sensor netwerken, robot teams, enzovoort. De motivatie voor

dit onderzoek komt ook voort uit de groeiende interesse om het collectieve gedrag

van groepen in natuurlijke, sociale en geconstrueerde netwerken beter te begrijpen.

De architectuur van dergelijke complexe netwerken heeft een gedistribueerd of gede-

centraliseerd karakter. Geen van de individuele agenten heeft kennis van de globale

informatie aangaande alle agenten; in plaats daarvan kan elke agent alleen met zijn

buren samenwerken, gelimiteerde informatie van hen ontvangen en actie ondernemen

op basis van deze lokale informatie. Veel arbeid is geleverd om de wisselwerking

tussen de dynamica van de individuele agenten en de structuur van het netwerk

te onderzoeken met het doel het ontstaan van collectief gedrag beter te begrijpen.

Dit proefschrift behandelt gedistribueerde algoritmes voor samenwerkende autonome

agenten. We bestuderen verschillende gedistribueerde algoritmes voor een groep a-

genten die een overeenkomst willen bereiken over een variabele van gezamenlijke

interesse of de groep splitst in twee of meer clusters. Het kloksynchronisatie prob-

leem in gedistribueerde netwerken met tijdsvertragingen als gevolg van communicatie

wordt ook behandeld.

We heroverwegen een subklasse van stochastische matrices, de zogenoemde Sarym-

sakov klasse van stochastische matrices, en verkennen de relatie met andere bekende

klassen van stochastische matrices. Klassieke voorwaarden uit de literatuur aan-

gaande de convergentie van producten van stochastische matrices zijn heroverwogen

en een nieuwe noodzakelijke en voldoende voorwaarde zijn voorgesteld door gebruik

te maken van de Sarymsakov matrices. Deze convergentie resultaten worden gebruikt

voor de analyse van gedistribueerde algoritmes voor multi-agent systemen. De voor-

waarden zijn toegepast voor de oplossing van een asynchroon implementatieprobleem
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voor een gedistribueerd coördinatie algoritme, wat ervoor zorgt dat een groep agenten

overeenstemming bereikt.

Gebruik makend van de theorie van structurele balans, welke zijn oorsprong vindt

in de studie van sociale netwerken, onderzoeken we gedistribueerde algoritmes in de

aanwezigheid van positieve en negatieve koppelingen. Deze modellen verschillen van

reeds onderzochte modellen, welke alleen positieve koppelingen beschouwen. Vol-

doende voorwaarden zijn opgesteld, welke laten zien wanneer de toestand van het

systeem polariseert, dan wel convergeert naar een afgesproken waarde van nul.

Om het clustering gedrag, wat verschijnt in natuurlijke en kunstmatige systemen,

beter te begrijpen zijn drie verschillende mechanismes die tot clustering gedrag kun-

nen leiden voorgesteld en geanalyseerd. Een aantal voldoende voorwaarden en/of

noodzakelijke voorwaarden zijn geconstrueerd voor systemen met; verschillende zelf-

dynamica van de agenten, tijdsvertragingen, of negatieve koppelingen. Deze clus-

tering mechanismes zijn voorbeelden van verschillende mechanismes die leiden tot

clustering verschijnselen. Meer mechanismes kunnen worden onderscheiden nadat

meer inzicht is verkregen in het clustering gedrag in natuurlijke en kunstmatige sys-

temen. Bovendien, door het beheersbaarheid probleem en het cluster synchronisatie

probleem gezamenlijk te bestuderen, is aangetoond dat die meerdere-agent systemen

die niet beheersbaar zijn in eindige tijd, cluster synchronisatie realiseren wanneer de

tijd naar oneindig gaat.

Een ander onderwerp in dit proefschrift is het klok synchronisatie probleem in

gedistribueerde netwerken met communicatie tijdsvertragingen. Recentelijk zijn er

onderzoeken geweest die aantonen dat klok synchronisatie in gedistribueerde netwerken

met asymmetrische tijdsvertragingen onmogelijk is. Op basis van vergelijkbare mod-

ellen voor klokken, leiden wij expliciete uitdrukkingen af voor de asynchrone syn-

chronisatiefouten tussen twee verbonden klokken en breiden deze resultaten uit naar

grotere netwerken met respectievelijk gerichte ring topologiën, verbonden niet-gerichte

topologiën, en algemene sterk verbonden gerichte topologiën.


