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Chapter 1

Introduction

This thesis takes a theoretic point of view on synchronization and formation-
keeping in groups of interacting autonomous agents. The focus is cooperative

control of complex multi-agent networks facing information constraints, such as
quantized information, uncertainties in agents’ dynamics, and local knowledge on
network topologies. When agents have to communicate in order to coordinate, we
look into quantization effects on synchronization of multi-agent systems. We also
look into controlling triangular formations of autonomous mobile agents in finite
time using coarse measurements. When agents are governed by different dynamics,
we study cooperation in heterogeneous linear systems with uncertain parameters
aiming at synchronizing and trajectory tracking. When focusing on the effects of
network topologies, we investigate adaptively allocating coupling strengths based
on local topological information to guarantee global complete synchronization in
complex dynamical networks.

1.1 Cooperative control

In the past two decades, cooperative control of autonomous multiple agent sys-
tems has drawn more and more attention in many disciplines, including engineer-
ing (Bullo et al. 2009, Kumar et al. 2005, Ren and Beard 2008), computer science
(Bertsekas and Tsitsiklis 1997), biology (Couzin et al. 2005), social science (Hegselmann
and Krause 2002), and so on. The mobile agents that are under study are usually au-
tonomous with computation, communication and sensing capabilities. The goal of
the team is to achieve prescribed collective behaviors provided that each agent uses
only local information (Bai et al. 2011). Such local information may be positions,
velocities, and directions obtained from sensing or communication between neigh-
boring agents.

The key characteristic of cooperative control is local availability of information
(Shamma 2007). The distributed control laws make use of local information avail-
able only to some agents. A centralized control system usually has a central decision-
maker that has access to the information gathered by all the agents. In compari-
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son, the distributed approach does not require such a powerful central decision-
maker with the tradeoff that it makes the computation more complicated. How-
ever, distributed control strategies find their growing applications in complex net-
worked systems of information constraints, such as limited sensing range, limit-
ed bandwidth in communication, and potentially large scales of systems (Ren and
Beard 2008). In addition, distributed information processing may lead to interest-
ing and appealing collective behaviors, such as intelligent self-organization, robust-
ness to system component failures, and flexibility to environment or communication
changes (Shamma 2007).

The objectives in cooperative control of distributed multi-agent coordination in-
clude agreement, flocking or swarming, formation keeping, intelligent transporta-
tion, distributed optimization, and distributed estimation and sensing, etc. We dis-
cuss below several tasks in cooperative control that are related to the work in this
thesis.

Agreement. The agreement problem is also called the consensus or synchroniza-
tion problem in different contexts. In such a problem, the goal of a group of in-
teracting agents is to drive agents’ variables of interest (such as the heading angles
of vehicles, the positions or velocities of robots, and the phases of oscillators, etc.)
to a common value. The pioneering work (Bertsekas and Tsitsiklis 1997, Jadbabaie
et al. 2003, Cao et al. 2008) has studied consensus in Vicsek’s model and its variations
facing time-varying topologies using distributed updating laws. More recently, sig-
nificant research progress has been made in terms of how to coordinate the motions
of teams of autonomous mobile agents (Bullo et al. 2009, Kumar et al. 2005, Ren
and Beard 2008). In parallel, synchronization in complex dynamical networks has
been intensively studied in the last two decades (Wu and Chua 1995, Wu 2007, Lü,
Yu, Chen and Cheng 2004, Wang and Chen 2002). The studies in this field focus on
synchronization phenomena in networks of coupled dynamical systems.

Formation keeping. The objective is to stabilize the shape of a formation of mobile
agents to prescribed desired one. Some approach to formation stabilization requires
that each mobile agent is equipped with a compass such that all the agents share
a common sense of direction (Lin et al. 2004). Some others do not make such a
requirement, and only assume that each mobile agent knows its neighbors’ relative
distances and directions in its local coordinates (Smith et al. 2006, Cao and Morse
2007, Cao et al. 2007, Cao and Morse 2010). The differences in the local coordinates of
the mobile agents significantly complicate formation stabilization, since control laws
involving Euclidean norms of relative distances result in nonlinearity and multiple
equilibrium manifolds of the coupled agent systems. The formation stabilization
problem has been studied using rigid graph theory (Krick et al. 2009, Anderson
et al. 2008).
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Trajectory tracking. In the tracking problem, usually leaders’ information (such
as the tracking references) is only available to a small portion of agents. Distributed
control laws are proposed using local interaction of agents among themselves and
the references according to the given communication graphs. The tracking can be
realized globally provided that the leader has directed paths to its follower agents
(Ren and Beard 2008, Mei, Ren and Ma 2011).

1.2 Information constraints in the control of multi-agent
networks

This thesis focuses on cooperative control in complex multi-agent networks facing
information constraints. The motivation of taking into account the information con-
straints in cooperative multi-agent systems is discussed in this section.

Generally speaking, there are two components requiring special attention in the
framework of cooperative control: agent dynamics governing the self-motions of
agents and interaction terms between agents subject to communication constraints.
The complexity of the agent dynamics (Wieland 2011) may range from simple linear
integrator dynamics to higher order integrator dynamics to nonlinear dynamics,
and to heterogenous dynamics with uncertainties. The complexity of the interaction
includes local interaction topologies due to limited communication links or limited
sensing ranges, static or dynamical coupling strategies, and imperfect information
exchange that suffers from effects of quantization, time-delays, package dropouts,
etc. This thesis addresses the information constraints rooted in both agent dynamics
and interaction, in the framework of cooperative control of multi-agent networks.
In particular, we consider the information constraints from the three aspects listed
below.

1.2.1 Heterogeneities and uncertainties

Uncertainties are commonly used in system models, which usually arise from the
unknown components and imprecise measurements that contribute to the differ-
ences between the real systems and the models. However, even small errors in the
models’ parameters may make the controlled systems behave quite different from
expectations. Thus it is important to design controllers to stabilize the systems and
make them robust against their parameter uncertainties. Furthermore, when we
consider a multi-agent system with parameter uncertainties, it may be too restrictive
to assume that the agents are with identical uncertainties. Hence, it is of practical
importance to study cooperative control in heterogeneous multi-agent systems with
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parameter uncertainties.

1.2.2 Quantization and coarse information

In real applications, agents in a cooperative control system are equipped with com-
munication or sensing devices. Thus they might be constrained by their limit-
ed communication or sensing capabilities. Agents sometimes cannot acquire their
neighbors’ information through realtime sensing, but rely on digital communication
to obtain the needed information in its quantized form. In some other cases, coarse
sensors are applied due to cost considerations. The coarsely quantized information
to be used in control is usually described by a sign function that returns finite values.

1.2.3 Local and global network topologies

Since cooperative control is based on the interaction among agents, network topolo-
gies play an important role in the coordination of agents. The eigenvalues of the
Laplacian matrix of the network under study are important for the synchronization
problems. They can measure the synchronization thresholds of complex dynamical
networks (Wu 2007), and indicate the convergence speed of consensus-type linear
models. However, the eigenvalues of the Laplacian matrix can be calculated in ana-
lytic forms only for simple network topologies such as complete graphs, star graphs,
etc. It is rarely possible to obtain analytical estimation for the eigenvalues for more
complicated networks. Neither is it straightforward to tell anything about the eigen-
values from information about local topologies. So it is challenging to estimate the
eigenvalues determined by global properties using flexibly local topological features
of the network.

1.3 Outline and contributions

This thesis is structured as follows.
Chapter 2 gives some basics on algebraic graph theory and some important def-

initions and theorems for nonsmooth analysis. It is the preliminary for the thesis
work.

Chapter 3 studies synchronized motions of multi-agent systems with quantiza-
tion in information exchange. For a team of multiple agents governed by second-
order dynamics, it answers how different quantizers affect the performances of
consensus-type schemes to achieve synchronized collective motion. It is shown that
when different types of quantizers are used for the exchange of relative position and
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velocity information between neighboring agents, different collective behaviors ap-
pear.

• Under the chosen logarithmic quantizers and with symmetric neighbor rela-
tionships, we prove that the agents’ velocities and positions get synchronized
asymptotically.

• Under the chosen symmetric uniform quantizers and with symmetric neigh-
bor relationships, the agents’ velocities converge to the same value asympto-
tically while the differences of their positions converge to a bounded set. It
has also been shown that when the uniform quantizers are not symmetric, the
agents’ velocities may grow unbounded.

Chapter 4 studies the performances of the gradient-based formation-control stra-
tegies for teams of autonomous mobile agents when the agents’ range measure-
ments are coarse. The triangular formation stabilization problem is considered with-
out the restriction that the agents share a common compass. Since the dynamics
of the resulting closed-loop system are discontinuous, Filippov solutions to non-
smooth dynamical systems are introduced.

• Similar to the existing stability results for triangular formations with precise
range measurements, we prove that under coarse range measurements, the
convergence to the desired formation is almost global except for initially col-
linearly positioned formations.

• More importantly, we are able to make stronger statements that the conver-
gence takes place within finite time and that the settling time can be deter-
mined by the geometric information of the initial shape of the formation.

Chapter 5 studies the synchronization and trajectory tracking problem in teams
of heterogeneous agents. It is impossible to completely synchronize the full states
of heterogeneous agents. However, it is possible to synchronize the partial states
(outputs) of those heterogeneous agents through decentralized output regulation.
We consider the problem in which N heterogeneous linear systems with parameter
uncertainties aim at tracking one or more reference signals generated by given ex-
osystems. We consider information constraints that not all the agents can get direct
access to the exosystems. Decentralized robust controllers are designed to track the
prescribed reference signals in the following two steps:
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• Reconstruct reference signals via local interaction of the systems among them-
selves and the exosystems in accordance with the given communication graph.

• Decentralized robust controllers that use the reconstructed reference signals
are designed applying the internal model principle. It has been shown that
there exist decentralized controllers which achieve the desired regulation task
in the presence of large but bounded uncertainties in the systems’ models.

Chapter 6 studies how to synchronize a network of diffusively coupled oscilla-
tors via allocating coupling strengths according to the topological structure of the
network. We consider undirected and directed networks, respectively, as follows:

• Using spectral graph theory and especially its graph comparison techniques,
we propose new methodologies to allocate coupling strengths to guarantee
global complete synchronization in complex undirected networks. The key
step is that all the eigenvalues of the Laplacian matrix associated with a giv-
en network can be estimated by utilizing flexibly topological features of the
network. The proposed methodologies enable the construction of different
coupling-strength combinations in response to different knowledge about sub-
networks.

• We further extend the allocation method to the case of directed networks. For
large directed networks that can be decomposed into a set of smaller strongly
connected components, we apply the methodology at the local level to im-
prove computational efficiency.

Chapter 7 concludes the thesis and provides recommendations for possible fu-
ture research.
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Chapter 2

Preliminaries

This chapter introduces notations used in the thesis, and tools from algebraic
graph theory and nonsmooth analysis.

2.1 Notations

IR field of real numbers
IRn vector space of n ˆ 1 real vectors
IRmˆn space of m ˆ n real matrices
G graph
b Kronecker product
▹ partial order
0n n ˆ 1 column vector of all zeros
1n n ˆ 1 column vector of all ones
F r¨s the Filippov set-valued map
co convex hull
λipAq the ith eigenvalue of matrix A

diagta1, . . . , anu diagonal matrix with diagonal entries a1 to an
diagtA1, . . . , Anu diagonal matrix with diagonal entries A1 to An

sgn sign function
S the closure of set S
x¨, ¨y the inner product
||x|| Euclidean norm of a real vector x
||x||8 8-norm of a real vector x
∇fpxq gradient of function f at x
Bfpxq generalized gradient of function f at x
f

1
px, νq directional derivative of f at x in direction ν

f0px, νq generalized directional derivative of f at x in direction ν

The Kronecker product of an n by m matrix A and a p by q matrix B is the np by
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mq matrix A b B defined by

A b B “

¨

˚

˚

˚

˝

a11 B a12 B . . . a1m B

a21 B a22 B . . . a2m B
...

...
. . .

...
an1 B an2 B . . . anm B

˛

‹

‹

‹

‚

.

For a matrix A P IRnˆn, we say A ą 0 (resp. A ľ 0) if xT Ax is positive (resp.
non-negative) for all nonzero x P IRn.
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2.2 Algebraic graph theory

This section introduces some useful definitions and results from algebraic graph the-
ory. In particular, it focuses on results about the Laplacian matrices and connectivity
of graphs which are useful for studying synchronization in multi-agent systems and
networks of coupled oscillators. The notations and terminologies are adopted from
(Godsil and Royle 2001, Wu 2007).

Graphs

Graphs are frequently used to model connection relationships between any two ob-
jects in some domain. In this thesis, we use graphs to describe the interaction rela-
tionships among the agents in a multi-agent network. A graph G “ pV, Eq consists
of a set of vertices V and a set of edges E . We take V “ t1, . . . , Nu, where N is the
number of vertices of the graph. The edge set E Ď V ˆ V , i.e., E Ď tpi, jq : i, j P Vu.
If the two vertices of an edge are the same, we call this edge a self-loop. A simple
graph is a graph with no self-loops and no multiple edges between the same pair of
distinct vertices. We focus on simple graphs in this thesis.

A directed graph is a graph where each edge in E is denoted by an ordered pair
of vertices. Let i and j be two vertices, then pi, jq denotes an edge which starts
at vertex i and ends at vertex j. A directed path from i to j is a sequence of edges
pv0, v1q, pv1, v2q, . . . , pvk´1, vkq in E such that v0 “ i and vk “ j. A path with no
repeated vertices is called a simple path. We only consider simple paths in the thesis.

An undirected graph is a graph where the edges in E are denoted by unordered
pairs of vertices, i.e., pi, jq P E if and only if pj, iq P E . An undirected graph can be
considered as a directed graph by associating each undirected edge between vertices
i and j as two directed edges between i and j with opposite orientations. Thus
undirected graphs can be considered as special directed graphs.

Connected graphs

An undirected graph is connected if there is a path between any pair of vertices. A
directed graph is strongly connected if for any pair of vertices pi, jq where j ‰ i, there
is a directed path from i to j. A directed tree on n vertices is a directed graph with
n ´ 1 edges which has a root vertex such that there is a directed path from the root
vertex to every other vertex. A spanning directed tree of graph G is a subgraph which
is a directed tree with the same vertex set and a selection of edges of G.
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Adjacency and Laplacian matrices

Given a graph G, the associated adjacency matrix A “ raijsNˆN is defined as follows:
the entry aij “ 1 if pj, iq P E and 0 otherwise. Since we only focus on graphs with
no self-loops in this thesis, we can set the entries aii “ 0 for i “ 1, 2, . . . , N . The
in-degree of a vertex in a directed graph is the number of edges ending at the vertex,
and the out-degree of a vertex is defined to be the number of edges starting at the
vertex. Let dpinq

i denote the in-degree of vertex i, and d
poutq
i the out-degree. Then

one has d
pinq
i “

ř

j‰i aij , dpoutq
i “

ř

j‰i aji. We say vertex i is balanced if its in-
degree equals its out-degree. If all the vertices in a directed graph G are balanced,
then G is said to be balanced. If graph G is undirected, one has aij “ aji for all
1 ď i, j ď N .

The in-degree matrix ∆ P IRNˆN is a diagonal matrix with the in-degrees d
pinq
i

being its diagonal entries. The Laplacian matrix of graph G is the matrix L “ ∆´A.
Example: The graph shown in Fig. 2.1(a) is undirected. The graph shown in Fig.

2.1(b) is directed and strongly connected. The adjacency matrices of the two graphs
are, respectively,

¨

˚

˚

˝

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

˛

‹

‹

‚

and

¨

˚

˚

˝

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

˛

‹

‹

‚

.

The Laplacian matrices of the two graphs are, respectively,

¨

˚

˚

˝

2 ´1 0 ´1

´1 2 ´1 0

0 ´1 2 ´1

´1 0 ´1 2

˛

‹

‹

‚

and

¨

˚

˚

˝

1 0 0 ´1

´1 1 0 0

0 ´1 1 0

0 0 ´1 1

˛

‹

‹

‚

.

Incidence matrix

For an undirected graph G, we can assign an orientation to each edge in G. We
use Gσ to denote the oriented graph determined by a specified orientation σ. The
incidence matrix D “ DpGσq “ rdijs of an oriented graph Gσ is the t0, 1,´1u matrix
with rows and columns indexed by the vertices and edges of G, respectively, such
that dij “ 1 if vertex i is the head of edge j, dij “ ´1 if vertex i is the tail of edge j,
and 0 otherwise. If graph G has N vertices and m edges, the incidence matrix of Gσ

has order N ˆ m. We have DDT “ L (Godsil and Royle 2001, Section 8.3).
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(b)(a)

1 2

4 3

1 2

4 3

Figure 2.1: Two simple graphs: (a) An undirected graph, (b) A directed graph.

Several typical undirected graphs

Now we introduce several typical undirected graphs. An undirected complete graph is
a graph in which every pair of distinct vertices are connected by a unique undirected
edge. The complete graph on N vertices is denoted by KN . KN has NpN ´ 1q{2

edges, and each vertex has the degree N ´ 1. The undirected star graph SN consists
of a single central vertex with degree N ´ 1 and N ´ 1 other vertices with degree
1. The undirected path graph PN is the graph with the vertex set t1, . . . , Nu where i is
adjacent to i ` 1 for 1 ď i ď N ´ 1. The undirected ring graph RN is the connected
graph with the vertex set t1, . . . , Nu where every vertex has exactly two neighbors.
Fig. 2.2 shows these graphs when N “ 6.

Weighted graphs

If we consider weights on the edges of graph G, the weighted graph can be described
by G “ pV, E , εq with the vertex set V , the edge set E , and the weight function ε : E Ñ

IR. Let εij be the weight on edge pj, iq, then the adjacency matrix for the weighted
graph is Apwq “ ra

pwq
ij sNˆN , where the entry a

pwq
ij “ εij if pj, iq P E and 0 otherwise.

The weighted degree matrix Dpwq P IRNˆN is defined to be the diagonal matrix with
entries

ř

j‰i εij for i “ 1, . . . , N . The Laplacian matrix of the weighted graph G is
the matrix Lpwq “ Dpwq ´ Apwq.

2.3 Nonsmooth analysis

In this section, we introduce some important results on nonsmooth systems. The
notation and terminology is mainly taken from (Clarke 1983, Cortés 2008a).
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Complete graph Star graph

Ring graph Path graph

Figure 2.2: Some typical undirected graphs with N “ 6 vertices.

For a differential equation

9xptq “ Xpxptqq (2.1)

where X : IRd Ñ IRd is measurable but discontinuous, the existence of a continu-
ously differentiable solution is not guaranteed. In this paper, we adopt the Filippov
solution (Cortés 2008a).

Definition 2.1 Let BpIRdq denote the collection of all subsets of IRd. The Filippov set-
valued map F rXs : IRd Ñ BpIRdq is defined by

F rXspxq
∆
“

č

δą0

č

µpSq“0

cotXpBpx, δqzSqu, x P IRd

where S is the set of x at which Xpxq is discontinuous, Bpx, δq is the open ball of radius δ
centered at x, co denotes the convex closure, and

Ş

µpSq“0 denotes the intersection over all
sets S of Lebesgue measure zero.

Filippov solutions are then defined to be those absolutely continuous curves, which sat-
isfy the differential inclusion of the form

9xptq P F rXspxq. (2.2)

The Filippov set-valued map obeys the following rule.
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Lemma 2.1 (Cortés 2008a) If X1, X2 : IRd Ñ IRm are locally bounded at x0 P IRd, then
(a) sum rule: F rX1 ` X2spx0q Ď F rX1spx0q ` F rX2spx0q,

(b) product rule: F rpX1, X2qT spx0q Ď F rX1spx0q ˆ F rX2spx0q,

for which the equality signs hold when either X1 or X2 is continuous at x0.

A sufficient condition for the existence of the Filippov solution is given as follows.

Lemma 2.2 (Cortés 2008a) Assume X : IRd Ñ IRd is measurable and locally essentially
bounded, i.e. bounded in any bounded neighborhood of every point of definition excluding
the sets of measure zero. Then for all x0 P IRd, there exists a Filippov solution to (2.1) with
the initial condition xp0q “ x0.

We also use the following notions of the generalized directional derivative and gen-
eralized gradient.

Definition 2.2 (Clarke 1983) Assume f : IRd Ñ IR is locally Lipschitz near any given
point x P IRd. Then the generalized directional derivative of f at x in the direction ν P IRd

is defined by

f0px; νq
∆
“ lim sup

yÑx,
tÓ0

fpy ` tνq ´ fpyq

t
,

where y is a vector in IRd and t is a positive number.

Definition 2.3 (Clarke 1983) If f : IRd Ñ IR is locally Lipschitz, its generalized gradient
is defined by

Bfpxq
∆
“ cot lim

iÑ8
∇fpxiq : xi Ñ x, f

1
pxiq existsu,

where co denotes the convex hull, and f
1
pxiq is the derivative of f at xi P IRd.

The relationship between the generalized directional derivative and generalized
gradient can be summarized as follows.

Lemma 2.3 (Clarke 1983) Assume f : IRd Ñ IR is locally Lipchitz near x. Then for every
direction ν P IRd, we have

f0px; νq “ maxtxζ, νy : ζ P Bfpxqu,

where x¨, ¨y denotes the inner product.

The definition of regular functions is based on the notion of right directional deriva-
tive f

1
px; νq “ limtÓ0

1
t pfpx ` tνq ´ fpxqq.
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Definition 2.4 (Clarke 1983) A function f : IRd Ñ IR is said to be regular at x P IRd if
for all ν P IRd, the right directional derivative f

1
px; νq exists and f

1
px; νq “ f0px; νq.

We say that function f : IRd Ñ IR is a regular function, if it is regular everywhere in its
domain.

There are sufficient conditions for a function to be regular.

Lemma 2.4 (Clarke 1983) (i) If f : IRd Ñ IR is continuously differentiable at x, then f is
regular at x.
(ii) If tfi : IR

d Ñ IRu, i “ 1, . . . ,m, is a finite family of regular functions, each of which is
regular at x, then for any nonnegative scalars λi,

řm
i“1 λi fipxq is regular at x.

The following chain rule is useful for the calculations of derivatives of Lyapunov
functions.

Lemma 2.5 (Shevitz and Paden 1994) Let xp¨q be a Filippov solution to 9x “ Xpxq on an
interval containing t, and V : IRd Ñ IR be a Lipschitz and regular function. Then V pxptqq

is absolutely continuous and d
dt V pxptqq exists almost everywhere

d

dt
V pxptqq P

9̃V pxq, for a.e. t ě 0 ,

where
9̃V pxq “

č

ζPBV pxptqq

ζT F rXspxq .

Another definition of the set-valued derivative of Lyapunov function was in-
troduced in (Bacciotti and Ceragioli 1999). The set-valued derivative of Lyapunov
function V with respect to the differential inclusion 9x P F rXspxq is defined by

9V pxq “ ta P IR : Dν P F rXspxq such that p ¨ ν “ a ,@p P BV pxqu. (2.3)

In the case V is differentiable at x, one has 9V pxq “ t∇V pxq ¨ ν : ν P F rXspxqu.
Analogous to Lemma 2.5, the following lemma characterizes the derivative of V :

Lemma 2.6 (Bacciotti and Ceragioli 1999) Let xp¨q be a solution of the differential inclu-
sion (2.2) and let V : IRd Ñ IR be a locally Lipschitz continuous and regular function. Then
d
dt V pxptqq exists almost everywhere and d

dt V pxptqq P
9V pxq for a.e. t.

In the following we introduce the invariant principle that is applicable to discontin-
uous differential equations.
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Lemma 2.7 (Cortés 2008a, Theorem 2) Let V : IRd Ñ IR be a locally Lipschitz contin-
uous and regular function. Let S Ă IRd be compact and strongly invariant for the differ-
ential inclusion (2.2), and assume that max 9V pxq ď 0 for each x P S. Then, all solutions
x : r0,8q Ñ IRd of (2.2) starting at S converge to the largest weakly invariant set M

contained in
S X tx P IRd : 0 P

9V pxqu .

Moveover, if the set M consists of a finite number of points, then the limit of each solution
starting in S exists and is an element of M .





Chapter 3

Synchronization for Coupled Agents with
Quantized Information

In this chapter, we study how different quantizers affect the performances of
consensus-type schemes to achieve synchronized collective motion, for a team of
mobile agents governed by second-order dynamics. It is shown that when diffe-
rent types of quantizers are used for the exchange of relative position and velocity
information between neighboring agents, different collective behaviors appear. Un-
der the chosen logarithmic quantizers and with symmetric neighbor relationships,
we prove that the agents’ velocities and positions get synchronized asymptotically.
We show that under the chosen symmetric uniform quantizers and with symme-
tric neighbor relationships, the agents’ velocities converge to the same value while
the differences of their positions converge to a bounded set. We also show that
when the uniform quantizers are not symmetric, the agents’ velocities may grow
unbounded. Through simulations we present richer undesirable system behaviors
when different logarithmic and uniform quantizers are used. Such different quan-
tization effects underscore the necessity for a careful selection of quantization stra-
tegies, especially for multi-agent systems with higher-order agent dynamics. The
results presented in this chapter are published in (Liu et al. 2011, Liu et al. 2012).

3.1 Introduction

R
ecently significant research efforts have been made to study how to coordinate
the motion of teams of mobile autonomous agents (Kumar et al. 2005). One

popular approach is to use consensus-type algorithms to guide a team of agents to
coincide with one another moving with the same velocity under the conditions that
the relative position and/or relative velocity information is shared locally among
agents and no agent is isolated from the rest of the team (Olfati-Saber et al. 2007, Ren
and Beard 2008, Yu et al. 2010a). Since agents might be constrained by their limited
sensing capabilities, they sometimes cannot acquire their neighboring agents’ infor-
mation through realtime sensing, but rely on digital communication to obtain the
needed information in its quantized form. This has motivated a growing number
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of research activities studying how to design effective coordination control strate-
gies using quantized information (Kashyap et al. 2007, Nedic et al. 2009, Frasca et al.
2009, Carli et al. 2010, De Persis et al. 2010, Ceragioli et al. 2011, Liu et al. 2011, You
and Xie 2011, Chen, Lewis and Xie 2011, De Persis and Jayawardhana 2012).

Agents governed by second-order dynamics as double-integrators are widely
used for modeling mobile autonomous agents especially when the research focus
is on the collective team dynamics instead of detailed individual agent dynamics
(Ren 2008). Multi-agent systems with second-order agent dynamics can have dra-
matically different collective behavior than those with first-order agent dynamics
even when agents are coupled together in similar manners (Yu et al. 2010b). Howev-
er, while various quantized consensus schemes have been proposed for multi-agent
systems with first-order agent dynamics (Frasca et al. 2009, Ceragioli et al. 2011), less
is known about the quantization effects on the consensus-type algorithms for mo-
tion coordination in systems with higher-order agent dynamics. Recently some in-
teresting sufficient and/or necessary conditions have been constructed for synchro-
nizing coupled double integrators without quantization (Ren 2008, Yu et al. 2010b).
In a more recent paper (De Persis and Jayawardhana 2012), higher-order passive
nonlinear systems under quantized measurements are considered, but the coordi-
nation task considered there is different and its results cannot be applied directly to
the problem considered here.

In this chapter, we utilize the control laws that have been used in (Ren 2008), but
study their performances when quantized information is used. Then a new set of
tools including new forms of Lyapunov functions are developed accordingly to deal
with the challenges in analysis for the discontinuity on the right-hand side of the
system equations as a result of quantization. We find in this chapter that when loga-
rithmic quantizers are used in the proposed coordination scheme and the neighbor
relationships are symmetric, the agents’ velocities and positions get synchronized
asymptotically. When the chosen symmetric uniform quantizers are used instead of
the logarithmic quantizers, the agents’ velocities converge to the same value asymp-
totically, while the differences of the agents’ positions converge to a bounded set as
time goes to infinity. In comparison, when the chosen uniform quantizers are asym-
metric, the agents’ velocities might keep increasing and become unbounded. We
also indicate through simulations that richer undesirable system behavior may ap-
pear under asymmetric neighbor relationships, e.g. the agents’ positions may never
become the same. Some of such undesirable behaviors are inherently associated
with the higher-order agent dynamics. Hence, it is emphasized that when choosing
quantization schemes for agents with higher-order dynamics, in order to achieve
desired motion coordination, appropriate quantizers have to be picked carefully.

The rest of this chapter is organized as follows. In Section 3.2, the quantized
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control for motion synchronization is discussed for systems of agents governed by
second-order dynamics and the uniform and logarithmic quantizers are defined.
The analysis for systems with the chosen logarithmic and uniform quantizers are
discussed in Sections 3.3 and 3.4 respectively. We provide some additional sim-
ulation results in Section 3.5 for the case when the neighbor relationships are not
symmetric.

3.2 Motion coordination for agents with second-order
dynamics

We consider a team of N ą 0 autonomous agents, each of which is governed by the
following second-order dynamics

#

9ri “ vi

9vi “ ui i “ 1, . . . , N,
(3.1)

where ri, vi P IRn denote the position and the velocity of agent i respectively and
ui is agent i’s control input. The goal for designing distributed control laws ui is
to synchronize the motions of the N agents in such a way that the velocities and
positions of all the agents become the same asymptotically and thus they move to-
gether as a single entity. Such a motion coordination problem has been studied
before (Ren 2008, Yu et al. 2010b), and the solution that has been proposed is to use
a consensus-type scheme

ui “ ´
ÿ

jPN1piq

pri ´ rjq ´
ÿ

jPN2piq

pvi ´ vjq , (3.2)

where N1piq (resp. N2piq) denotes the set of agent i’s neighbors in the graph G1

(resp. G2) that describes the neighbor relationships in terms of whether the position
(resp. velocity) information can be exchanged between a pair of agents. We use aij
and bij , 1 ď i, j ď N , to denote the elements of the adjacency matrices of G1 and G2

respectively; in other words, aij (resp. bij) equals one if j is a neighbor of i in G1

(resp. G2) and zero otherwise. The entries aii “ 0, bii “ 0 for all i “ 1, . . . , N .
In the rest of the chapter unless we clarify otherwise, we assume that G1 and

G2 are undirected and fixed. Note that in the context of distributed control, each
agent only has access to the relative position or velocity information, i.e. no global
coordinate system is available. It has been shown in (Ren 2008) that when G1 and
G2 are connected, the control law (3.2) can achieve the control goal effectively.

In this chapter, we consider the scenario where for each agent, the relative posi-
tion and velocity information of its neighbors is acquired through digital communi-



22 3. Synchronization for Coupled Agents with Quantized Information

cation. Hence, if we continue to use the consensus-type coordination strategy (3.2),
we have the control signals in the following form

ui “ ´
ÿ

jPN1piq

qpri ´ rjq ´
ÿ

jPN2piq

qpvi ´ vjq , (3.3)

where q : IRn Ñ IRn denotes the vector quantizer of choice. Here we have assumed
that all the agents have been installed with identical quantizers.

Remark 3.1 In the literature, when quantizers are applied to agents with first-order dy-
namics, different information has been quantized. For example, in (Nedic et al. 2009) the
quantization takes place after the relative positions have been summed up, namely

ui “ ´q

¨

˝

ÿ

jPN1piq

pri ´ rjq

˛

‚;

in (Ceragioli et al. 2011) the absolute position information in some global coordinate system
is quantized, namely

ui “ ´
ÿ

jPN1piq

ˆ

qpriq ´ qprjq

˙

.

In (Dimarogonas and Johansson 2010), the relative position information is quantized in a
similar way as what we have done in (3.3) for first-order agent dynamics. Thus the coordi-
nation task is different.

In this chapter, we consider the following three types of quantizers. The symme-
tric uniform quantizer that we consider is a map qu : IR Ñ IR such that

qupxq “ δu

ˆZ

x

δu

^

`
1

2

˙

, (3.4)

where δu is a positive number and tau, a P IR, denotes the greatest integer that is less
than or equal to a. The uniform quantizer (3.4) is similar to the one used in (Carli
et al. 2010, Dimarogonas and Johansson 2010), with the difference that the definition
at 0 is different.
The asymmetric uniform quantizer that we consider (Johansson et al. 2005) is a map
q˚
u : IR Ñ IR such that

q˚
upxq “ δu

Z

x

δu

^

. (3.5)
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The logarithmic quantizer that we use (Carli et al. 2010) is an odd map ql : IR Ñ IR

such that

qlpxq “

$

&

%

equpln xq when x ą 0;

0 when x “ 0;

´equplnp´xqq when x ă 0.

(3.6)

Note that for the uniform quantizers, the quantization error is always bounded
by δu, namely |qupxq ´ x| ď δu or |q˚

upxq ´ x| ď δu for all x P IR. Note also that for
the logarithmic quantizer, it holds that

x qlpxq ě 0, for all x P IR, (3.7)

and the equality sign holds if and only if x “ 0; the quantization error for the loga-
rithmic quantizer is bounded by |qlpxq ´ x| ď δl |x|, where the parameter δl is deter-
mined by δl “ 1 ´ e´δu .

The above definitions of scalar-valued uniform and logarithmic quantizers can
be easily generalized to their counterparts of vector-valued quantizers. Take the
logarithmic quantizer as an example. For any x “

“

x1 . . . xn

‰T
P IRn, we define

the vector logarithmic quantizer qlp¨q : IRn Ñ IRn to be qlpxq
∆
“
“

qlpx1q . . . qlpxnq
‰T

.
One can easily check that xx,qlpxqy ě 0 and the equality sign holds if and only if
x “ 0.

The main purpose of the chapter is to show different quantization effects on the
performances of the consensus-type coordination algorithms (3.3). Because of the
discontinuity of the quantized signals, we will make use of nonsmooth analysis of
differential equations to proceed.

3.3 Main results

Because of the discontinuity of the quantized signals, we consider Filippov solu-
tions pr, vq to the equations (3.1) and (3.3), where r

∆
“

“

rT1 . . . rTN
‰T

and v
∆
“

“

vT1 . . . vTN
‰T

. In other words, we consider absolutely continuous functions pr, vq

such that

9vi P F ruis Ď ´
ÿ

jPN1piq

F rqpri ´ rjqs ´
ÿ

jPN2piq

F rqpvi ´ vjqs, (3.8)

where we have used Lemma 2.1 to deduce the relationship between the sets.
Now we take another look at the set-valued map F r¨s in equation (3.8). For all

x0 P IRn, let qpx´
0 q fi limxÒx0 qpxq and qpx`

0 q fi limxÓx0 qpxq. We use the notation

r̃ij fi ri ´ rj
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for i ‰ j. If qp¨q is continuous at r̃ij , then it follows that F rqpr̃ijqs “ qpr̃ijq. If on
the other hand qp¨q is discontinuous at r̃ij , then F rqpr̃ijqs “ rqpr̃´

ijq,qpr̃`
ijqs where

for x “
“

x1 . . . xn

‰T
P IRn, rqpx´q, qpx`qs is defined to be rqpx´

1 q, qpx`
1 qs ˆ

rqpx´
2 q, qpx`

2 qs ˆ ¨ ¨ ¨ ˆ rqpx´
n q, qpx`

n qs.
The main result of the chapter is to show different quantization effects on the

performances of the consensus-type coordination algorithms (3.3). We first study
logarithmic quantizers.

3.3.1 Synchronized motion using logarithmic quantizers

When the logarithmic quantizer is used, one can show that the distributed control
law that we are using can still cause the motions of all the agents to get synchro-
nized.

Theorem 3.1 Assume the graphs G1 and G2 are connected and the logarithmic quantizers
qlp¨q are used in the control (3.3). Then, any Filippov solution pr, vq to the system (3.1) and
(3.3), is such that the positions of all the agents converge to 1

N

řN
j“1 rjp0q` t

N

řN
j“1 vjp0q

as t Ñ 8, and the velocities of all the agents converge to 1
N

řN
j“1 vjp0q as t Ñ 8.

To prove this theorem, we first need to prove a few facts. In order to proceed,
note that qlp¨q is monotonic, so it is integrable. So we can define the potential func-
tion W p¨q : IRn Ñ IR for r̃ij

W pr̃ijq “

ż r̃ij

0

qlpxqdx , (3.9)

where W pr̃ijq is the line integral from 0 to r̃ij . It is easy to check that W pr̃ijq ě 0 and
the equality sign holds if and only if r̃ij “ 0. Let S denote the set of all discontinuous
points of ql, and then for any z P S, limr̃ijÒz W

1
pr̃ijq ‰ limr̃ijÓz W

1
pr̃ijq. So W pr̃ijq

is not differentiable with respect to r̃ij at any point in S. Using the generalized
gradient defined in Definition 2.3, one has

BW pr̃ijq

Br̃ij
“

#

qlpr̃ijq r̃ij P RnzS,
tQ˚ : Q˚ P rqlpr̃

´
ijq,qlpr̃

`
ijqsu r̃ij P S.

(3.10)

We define the kinetic energy function for the velocity vi to be

Upviq “
1

2
vTi vi . (3.11)

We first prove the following result.
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Lemma 3.1 W p¨q is regular everywhere.

Proof : From Definition 2.4, it suffices to prove that W
1
pz; νq “ W 0pz; νq for all ν “

“

ν1 ¨ ¨ ¨ νn
‰T

P IRn and z “
“

z1 ¨ ¨ ¨ zn
‰T

P IRn. The definitions of W 0pz; νq

and W
1
pz; νq have been given in Lemma 2.3 and Definition 2.4 respectively. Since

W
1
pz; νq “ W 0pz; νq holds trivially for z R S, we only need to consider the case

when z P S.
From the definition of W p¨q , one has

W pzq “

ż z

0

qlpxqdx “

n
ÿ

k“1

ż zk

0

qlpxqdx .

From Lemma 2.3 it follows that

W 0pz; νq “ max t xζ, νy : ζ P BW pzqu

“ max

#

n
ÿ

k“1

ζk νk : ζk P
BW

Bzk

+

“

n
ÿ

k“1

max

"

ζk νk : ζk P
BW

Bzk

*

,

(3.12)

and the last equality follows from the fact that the sets, which ζ and ν take their
values from, are rectangular. Since qlpz

´
k q ă qlpz

`
k q, for each k one has

max

"

ζk νk : ζk P
BW

Bzk

*

“ qlpz
`
k q νk (3.13)

when νk ą 0 and

max

"

ζk νk : ζk P
BW

Bzk

*

“ qlpz
´
k q νk (3.14)

when νk ă 0. On the other hand, the directional derivative of W pzq is

W
1
pz; νq “ lim

tÓ0

W pz ` tνq ´ W pzq

t

“ lim
tÓ0

şz`tν

z
qlpxq dx

t

“ lim
tÓ0

1

t

n
ÿ

k“1

ż zk`tνk

zk

qlpxqdx.

(3.15)

Since

lim
tÓ0

1

t

ż zk`tνk

zk

qlpxqdx “ qlpz
`
k q νk (3.16)
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when νk ą 0 and

lim
tÓ0

1

t

ż zk`tνk

zk

qlpxqdx “ qlpz
´
k q νk, (3.17)

when νk ă 0, we know

lim
tÓ0

1

t

ż zk`tνk

zk

qlpxqdx “ max

"

ζk νk : ζk P
BW

Bzk

*

,

for all k “ t1, ¨ ¨ ¨ , nu. (3.18)

Combining (3.12), (3.15) and (3.18), we arrive at W
1
pz; νq “ W 0pz; νq for all ν. ˝

Note that F rqlpri´rjqs represents the set that is given by the interval rqlpr̃
´
ijq,qlpr̃

`
ijqs.

We now prove a property of the set-valued map.

Lemma 3.2 It holds that rTi F rqlpri ´ rjqs “ ´rTi F rqlprj ´ riqs, for all i ‰ j.

Proof : Since qlp¨q is an odd function, one has qlpri ´ rjq ` qlprj ´ riq “ 0. Then we
have rTi F rqlpri ´ rjqs “ rTi F r´qlprj ´ riqs “ ´rTi F rqlprj ´ riqs. ˝

We can further derive some relationships between the positions and velocities of
the agents.

Lemma 3.3 It holds that

N
ÿ

i“1

ÿ

jPN1piq

rTi F rqlpri ´ rjqs “
1

2

N
ÿ

i“1

ÿ

jPN1piq

pri ´ rjqT F rqlpri ´ rjqs (3.19)

and

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs “
1

2

N
ÿ

i“1

ÿ

jPN2piq

pvi ´ vjqT F rqlpvi ´ vjqs. (3.20)

Proof : We only prove (3.20). The equality (3.19) can be proved in a similar manner.
It suffices to prove that

řN
i“1

řN
j“1 bij v

T
i F rqlpvi ´ vjqs “ 1

2

řN
i“1

řN
j“1 bij pvi ´

vjqT F rqlpvi ´ vjqs. Then

1

2

N
ÿ

i“1

N
ÿ

j“1

bij pvi ´ vjqT F rqlpvi ´ vjqs

“
1

2

N
ÿ

i“1

N
ÿ

j“1

bij v
T
i F rqlpvi ´ vjqs ´

1

2

N
ÿ

i“1

N
ÿ

j“1

bij v
T
j F rqlpvi ´ vjqs
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“
1

2

N
ÿ

i“1

N
ÿ

j“1

bij v
T
i F rqlpvi ´ vjqs ´

1

2

N
ÿ

j“1

N
ÿ

i“1

bji v
T
i F rqlpvj ´ viqs

“
1

2

N
ÿ

i“1

N
ÿ

j“1

bij v
T
i F rqlpvi ´ vjqs `

1

2

N
ÿ

i“1

N
ÿ

j“1

bij v
T
i F rqlpvi ´ vjqs

“

N
ÿ

i“1

N
ÿ

j“1

bij v
T
i F rqlpvi ´ vjqs,

where we have used the fact that bij “ bji for undirected graph G2 and Lemma 3.2.
˝

The following result, in which v and r are mixed, can be proved in a similar
manner.

Lemma 3.4 It holds that

N
ÿ

i“1

N
ÿ

j“1

aij v
T
i F rqlpri ´ rjqs “

1

2

N
ÿ

i“1

N
ÿ

j“1

aij pvi ´ vjqT F rqlpri ´ rjqs. (3.21)

In order to prove the convergence result in Theorem 3.1, we rewrite the system
dynamics (3.1) and (3.3) into

$

’

’

&

’

’

%

9̃rij “ vi ´ vj , j ‰ i

9vi “ ´

N
ÿ

j“1

aijql pr̃ijq ´

N
ÿ

j“1

bijql pvi ´ vjq,
(3.22)

using the new set of states

r̃12, r̃13, . . . , r̃1N , . . . , r̃N1, r̃N2 . . . , r̃N,N´1, v1, . . . , vN .

Then in what follows, we will carry out our analysis on solutions to (3.22) and in
fact we will prove the convergence of r̃ijptq and viptq ´ vjptq.

Proof of Theorem 3.1: Consider the following candidate Lyapunov function that is
defined using the potential functions defined in (3.9) and (3.11) respectively

V pr̃, vq “
1

2

N
ÿ

i“1

N
ÿ

j“1

aij W pr̃ijq `

N
ÿ

i“1

Upviq, (3.23)

where r̃ “ rr̃T12, . . . , r̃
T
1N , . . . , r̃TN,N´1sT and v “ rvT1 , . . . , v

T
N sT . From Lemma 3.1 we

know that W pr̃ijq is regular. Then in view of Lemma 2.4, it follows that
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řN
i“1

řN
j“1 W pr̃ijq is also regular. Furthermore, Upviq is continuously differentiable,

so V pr̃, vq is regular. In addition,

BV pr̃, vq

Br̃ij
“

BW pr̃ijq

Br̃ij
, (3.24)

where BW pr̃ijq

Br̃ij
are given in (3.10), and

BV pr̃, vq

Bvi
“ vi . (3.25)

Then the generalized gradient of V pr̃, vq has the form

BV pr̃, vq “

„ˆ

BV pr̃, vq

Br̃12

˙T

,

ˆ

BV pr̃, vq

Br̃13

˙T

, . . . ,

ˆ

BV pr̃, vq

Br̃N´1,N

˙T

, vT1 , v
T
2 , . . . , v

T
N

ȷT

.

(3.26)

Applying Lemma 2.5, one has

d

dt
V pr̃, vq P

9̃V pr̃, vq, a.e. for t ě 0,

which can be further computed by

9̃V pr̃, vq “
č

ξPBV pr̃,vq

ξT
„

9̃r
T

12, 9̃r
T

13, . . . , 9̃r
T

N,N´1, F
T r 9v1s, FT r 9v2s, . . . , FT r 9vN s

ȷT

“
č

ξijP
BV pr̃,vq

Br̃ij

˜

1

2

N
ÿ

i“1

N
ÿ

j“1

aij ξ
T
ij pvi ´ vjq `

N
ÿ

i“1

vTi F r 9vis

¸

.

Using (3.24) to rewrite the intersection condition and (3.8) to replace 9v, we have

9̃V pr̃, vq Ď
č

ξijP
BW pr̃ijq

Br̃ij

˜

1

2

N
ÿ

i“1

N
ÿ

j“1

aij ξ
T
ij pvi ´ vjq

´

N
ÿ

i“1

N
ÿ

j“1

aijv
T
i F rqlpr̃ijqs

´

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs

˛

‚.
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From Lemma 3.4, we can further deduce

9̃V pr̃, vq Ď
č

ξijP
BW pr̃ijq

Br̃ij

˜

1

2

N
ÿ

i“1

N
ÿ

j“1

aij ξ
T
ij pvi ´ vjq

´
1

2

N
ÿ

i“1

N
ÿ

j“1

aijpvi ´ vjqT F rqlpr̃ijqs ´

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs

˛

‚

“
č

ξijP
BW pr̃ijq

Br̃ij

˜

1

2

N
ÿ

i“1

N
ÿ

j“1

aijpvi ´ vjqT ξij

´
1

2

N
ÿ

i“1

N
ÿ

j“1

aijpvi ´ vjqT rqlpr̃
´
ijq,qlpr̃

`
ijqs

¸

´

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs

“
č

ξijPrqlpr̃´
ijq,qlpr̃`

ijqs

1

2

N
ÿ

i“1

N
ÿ

j“1

aijpvi ´ vjqT ˆ

r´qlpr̃
`
ijq ` ξij ,´qlpr̃

´
ijq ` ξijs

´

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs.

Since
č

ξijPrqlpr̃´
ijq,qlpr̃`

ijqs

r´qlpr̃
`
ijq ` ξij ,´qlpr̃

´
ijq ` ξijs “ t0u,

and in view of Lemma 3.3, one has

d

dt
V pr̃, vq P

9̃V pr̃, vq Ď ´

N
ÿ

i“1

ÿ

jPN2piq

vTi F rqlpvi ´ vjqs

“ ´
1

2

N
ÿ

i“1

ÿ

jPN2piq

pvi ´ vjqT F rqlpvi ´ vjqs .

(3.27)

This implies that d
dt V pr̃, vq ď 0. Thus, V pr̃, vq ď V pr̃p0q, vp0qq, which further implies

that both r̃ptq and vptq are bounded. Now we apply LaSalle’s invariance principle
(Cortés 2008a, Theorem 2) to show the convergence of solutions to (3.22). Define
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S ∆
“ tpr̃, vq|V pr̃, vq ď V pr̃p0q, vp0qqu and E ∆

“ tpr̃, vq|0 P
9̃V pr̃, vqu. Note that from

(3.27) and the connectivity of G2, E “ tpr̃, vq|vi “ vj , @i ‰ ju. The solutions to
(3.22) converge to the largest weakly invariant set M contained in S X E . Consider
a solution to (3.22) that evolves in this set for all t ě 0. It satisfies

$

’

’

&

’

’

%

9̃rij “ 0, j ‰ i

9vi “ ´

N
ÿ

j“1

aijqlpr̃ijq @ i, j “ 1, ¨ ¨ ¨ , N.
(3.28)

Hence, the solutions to (3.22) converge to a set of points pr̃, vq such that every r̃ij
remains constant and all the velocities vi are equal.

Following (Arcak 2007, De Persis 2011), to proceed further in the proof, we use
D1 to denote the incidence matrix associated with the graph G1 and introduce the
variable z

∆
“ pDT

1 bInqr to denote the vector of the relative positions between neigh-
boring agents where b denotes the Kronecker product. Since G1 is connected, r̃ is
constant if and only if z is constant. Moreover, in view of (3.3), the second equation
in (3.28) can be written in a compact form

9v “ ´pD1 b Inqqlpzq.

Hence, a solution to (3.28) such that r̃ is constant and vi “ vj for all i, j in the
coordinates pz, vq satisfies

#

9z “ 0,

9v “ ´pD1 b Inqqlpzq
(3.29)

and is such that z “ pDT
1 b Inqr is constant and pDT

1 b Inqv “ 0, i.e. all the velocities
are the same. Consider a solution to system (3.29) and define ṽ

∆
“ pDT

1 b Inqv. We
have 9̃v P ´pDT

1 b InqpD1 b InqF rqlpzqs. For a solution to (3.29) to remain in a set
where z “ pDT

1 b Inqr is constant and ṽ “ 0, it must be true that

0 P ´pDT
1 b InqpD1 b InqF rqlpzqs “ ´pDT

1 D1 b InqF rqlpzqs.

Let w P F rqlpzqs be such that 0 “ pDT
1 D1 b Inqw. Then y

∆
“ pD1 b Inqw belongs to

kerpDT
1 bInq, i.e. pDT

1 bInqy “ 0. Then yT y “ yT pD1bInqw “ 0. Hence, pD1bInqw “

0 with w P F rqlpzqs. Since z “ pDT
1 b Inqr, from pD1 b Inqw “ 0 one obtains that

rT pD1 b Inqw “ 0 “ zTw. Since w P F rqlpzqs and ql is the logarithmic quantizer,
we know zTw “ 0 implies necessarily that z “ 0. Hence a weakly invariant set for
(3.29) where z “ pDT

1 bInqr remains constant and pDT
1 bInqv “ 0 is such that z “ 0.
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In view of the second equation of (3.29), this also implies that 9v “ 0. Considering
the trajectories of pr̃, vq, we conclude that the solutions converge to a set M where
r̃ “ 0, pDT

1 b Inqv “ 0 and 9v “ 0.
One can further calculate the asymptotic positions and velocities for all the agents.
On one hand, one can check that for any solution pr, vq, p1N bInqT 9v “ 0 a.e. for t ě

0, namely
řN

i“1 9vi “ 0. Hence, one has
řN

i“1 vi “
řN

i“1 vip0q. Combining with the
fact that vi “ vj “ v̄ on M, we know that v̄ “ 1

N

řN
i“1 vip0q, for all i “ 1, 2, ¨ ¨ ¨ , N .

So any solution viptq tends to 1
N

řN
i“1 vip0q as t Ñ `8. On the other hand, on M,

9ri “ v̄ “ 1
N

řN
i“1 vip0q, and hence riptq “ 1

N

řN
j“1 rjp0q ` t

N

řN
j“1 vjp0q, for all i “

t1, 2, ¨ ¨ ¨ , Nu. We conclude that any solution pr̃, vq is such that ri Ñ 1
N

řN
j“1 rjp0q `

t
N

řN
j“1 vjp0q as t Ñ `8. ˝

Remark 3.2 In the proof of Theorem 3.1, from 0 P
9̃V pr̃, vq it is shown that vi “ vj ,@i ‰ j,

which implies that the velocities of all the agents get synchronized precisely. However, if we
use a logarithmic quantizer with finite quantization levels towards the origin, such as

qlpxq “

$

&

%

equpln xq when x ą δ;

0 when x P r´δ, δs;

´equplnp´xqq when x ă ´δ,

(3.30)

where δ P IR is a positive constant, the convergence result for velocities will be different. In
fact, a slight modification of the proof leads to the conclusion that vi ´ vj P r´δ, δs1n,@j P

N2piq, i “ 1, . . . , N ; in other words, the norms ||vi ´ vj || of the relative velocities between
neighboring agents are bounded from above by the constant

?
nδ.

Theorem 3.1 can be illustrated through simulations. We consider a team of 4

agents whose neighbor relationship graphs G1 and G2 are taken to be the same as
shown in the upper left corner of Figure 3.1.

We take n “ 2 and let δu “ 1, δl “ 1´e´1. Each coordinate of the initial positions
are chosen randomly from p0, 30q while those of the initial velocities from p0, 10q.
Figures 3.2 (a) and (b) illustrate the evolutions of the positions and velocities of the
four agents in their x-coordinates respectively.

3.3.2 Synchronized motion using uniform quantizers

When uniform quantizers (3.4) are used, one achieves a form of roughly synchro-
nized motion, i.e., the differences of the agents’ positions converging to a bounded
set. For simplicity, we suppose that the undirected graphs G1 and G2 are the same
and use a common symbol G. Let L P IRNˆN denote the Laplacian matrix of the
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Figure 3.1: Some graphs for different communication topologies.
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(b) viptq, i “ 1, 2, 3, 4.

Figure 3.2: Evolutions of riptq and viptq with the logarithmic quantizers.

graph G and D P IRNˆm the corresponding incidence matrix, where m is the num-
ber of edges in G.

Theorem 3.2 Assume the graph G is connected and that the uniform quantizers qup¨q in
(3.4) are used in the control law (3.3). Then any Filippov solution pr, vq to the system (3.1)
and (3.3) is such that
a) the velocities v of all the agents converge to 1

N

řN
j“1 vjp0q;

b) the distances ||ri ´ rj || between all pairs of neighboring agents are upper bounded by
?
nδu when t Ñ 8;



3.3. Main results 33

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

x

q u(x
)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

x

F
[q

u(x
)]

Figure 3.3: Visualization of the map qup¨q in (3.4) and the set-valued map F rqup¨qs, when
δu “ 1.

c) the positions of all the agents converge to the set

R “ tr P IRNn : ||r ´ p1N b Inqravgq|| ď

c

mn

λ2pLq
δuu ,

where ravg “ 1
N

řN
i“1 rip0q ` t

N

řN
i“1 vip0q.

To prove this theorem, we first need a few facts. The following is straightforward
to prove:

Lemma 3.5 For the incidence matrix D P IRNˆm associated with the graph G, the null
space of DT D is the null space of D.

Moreover, we have the following Lemma (see e.g. Lemma 1 in (Ceragioli et al.
2011)).

Lemma 3.6 For any x P IRN , one has xT Lx ě λ2pLq||x´ 11T

N x||2, where 1 P IRN is the
vector of all ones and λ2 is the algebraic connectivity.

In the following, we analyze a few properties of the uniform quantizer (3.4). First
we represent the map qup¨q and the set-valued map F rqup¨qs in Figure 3.3. This will
be helpful in our analysis. From the definition of the uniform quantizer (3.4), one
has the following lemma.

Lemma 3.7 a) For x P IR and |x| ď δu, it holds that

xpF rqupxqs ` F rqup0qsq Ď r0,`8q. (3.31)
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b) For x P IR and |x| ą δu, it holds that

xpF rqupxqs ` F rqup0qsq Ď p0,`8q. (3.32)

Proof : We use Figure 3.3 to help our analysis.
a) If x “ 0, it follows that xpF rqupxqs ` F rqup0qsq “ t0u.
If 0 ă x ă δu, it follows that F rqupxqs “ t δu

2 u. Then F rqupxqs ` F rqup0qs “

r0, δus, since F rqup0qs “ r´ δu
2 , δu

2 s. Thus one has that every element in the set
xpF rqupxqs ` F rqup0qsq is nonnegative.
Similarly one proves that if ´δu ă x ă 0, then F rqupxqs ` F rqup0qs “ r´δu, 0s. Thus
one has that every element in the set xpF rqupxqs ` F rqup0qsq is nonnegative.
If x “ δu or x “ ´δu, similar arguments work as well. Hence, we conclude that
(3.31) holds if |x| ď δu.
b) If x ą δu, it follows that F rqupxqs Ď r 3 δu

2 ,`8q. Then F rqupxqs ` F rqup0qs Ď

rδu,`8q, since F rqup0qs “ r´ δu
2 , δu

2 s. Thus one has that any element in the set
xpF rqupxqs ` F rqup0qsq is strictly positive. In the same way one can prove (3.32)
if x ă ´δu. Now we conclude that (3.32) holds if |x| ą δu. ˝

Now we are ready to prove the synchronization of the systems of second-order
agent dynamics with uniform quantizers.
Proof of Theorem 3.2: We use the variable z “ pDT b Inqr to denote the vector of the
relative positions between neighboring agents. Then we rewrite (3.1) and (3.3) into
the compact form

#

9z “ pDT b Inqv

9v “ ´pD b Inqqupzq ´ pD b InqquppDT b Inqvq .
(3.33)

We use the Lyapunov function

V pz, vq “

m
ÿ

k“1

n
ÿ

j“1

ż zkj

0

qupsqds `

N
ÿ

i“1

Upviq

where Upviq “ 1
2v

T
i vi. The function is convex and when computed along the so-

lutions to (3.33) it satisfies d
dtV pzptq, vptqq P

9V pzptq, vptqq a.e. for t ě 0, where

the set-valued derivative 9V pz, vq can be computed similarly as in Lemma 1 in (De
Persis 2011), and is given by

9V pz, vq “ ta P IR : Dw P F rquppDT b Inqvqs s.t. a “ ´vT pD b Inqwu.

Following the convention (Bacciotti and Ceragioli 1999) let max 9V pz, vq “ ´8 if
9V pz, vq “ H. By definition of F rquppDT b Inqvqs this implies that d

dtV pz, vq Ď
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p´8, 0s and that 0 P
9V pz, vq necessarily implies pDT bInqv “ 0, i.e. v “ spant1bInu.

We conclude that the solutions converge to a subset of the largest weakly invariant
set where v “ spant1 b Inu. On this invariant set the system evolves according to

#

9z “ 0

9v “ ´pD b Inqqupzq ´ pD b InqquppDT b Inqvq

and the solutions must satisfy the differential inclusion

ˆ

9z

9v

˙

P

ˆ

0

´pD b InqF rqupzqs ´ pD b InqF rqup0qs

˙

. (3.34)

Consider the solution to system (3.34), which evolves in the largest weakly in-
variant set where pDT b Inqv ” 0. One has pDT b Inq 9v ” 0. From (3.34), it follows
that pDT b Inq 9v P ´pDT D b InqpF rqupzqs ` F rqup0qsq and also

0 P ´pDT D b Inq pF rqupzqs ` F rqup0qsq .

Applying Lemma 3.5, one has

0 P ´pD b Inq pF rqupzqs ` F rqup0qsq .

And multiplying on the right by rT , one further obtains

0 P ´zT pF rqupzqs ` F rqup0qsq . (3.35)

The latter in combination with Lemma 3.7 shows that ||z||8 ď δu. Thus, the solu-
tions pz, vq converge to the set where ||z||8 ď δu, pDT b Inqv “ 0.
As to the further calculation of asymptotic velocities of all the agents, one can fol-
low the argument of the last part of the proof of Theorem 3.1. And we have that any
solution viptq tends to 1

N

řN
i“1 vip0q as t Ñ `8. Now we calculate the asymptotic

positions of all the agents. From ||z||8 ď δu, one has

||ri ´ rj || ď
?
nδu , (3.36)

where i “ t1, ¨ ¨ ¨ , Nu and j is a neighbor of i. Note that z “ pDT b Inqr P IRmn.
Then one has

||pDT b Inqr|| “ ||z|| ď
?
mn ||z||8 ď

?
mnδu.
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From Lemma 3.6, one has

||r ´ p
1N1T

N

N
b Inqr||2 ď

1

λ2pLq
rT pL b Inqr

“
1

λ2pLq
rT pDDT b Inqr

“
1

λ2pLq
||pDT b Inqr||2

ď
mn

λ2pLq
δ2u ,

that is,

||r ´ p
1N1T

N

N
b Inqr|| ď

c

mn

λ2pLq
δu. (3.37)

Furthermore,
řN

i“1 9riptq “
řN

i“1 viptq “
řN

i“1 vip0q, and hence the average position
of all the agents can be calculated by

ravg fi
1

N

N
ÿ

i“1

riptq “
1

N

N
ÿ

i“1

rip0q `
t

N

N
ÿ

i“1

vip0q. (3.38)

Then in combination with (3.37), we have

||r ´ p1N b Inqravgq|| ď

c

mn

λ2pLq
δu . (3.39)

We conclude that the asymptotic positions of all the agents converge to the set R “

tr P IRNn : ||r ´ p1N b Inqravgq|| ď
b

mn
λ2pLq

δuu, where ravg “ 1
N

řN
i“1 rip0q `

t
N

řN
i“1 vip0q. ˝

Remark 3.3 In the proof it is shown that pDT b Inqv “ 0, which means that the velocities
of all the agents accurately achieve synchronization. However, if we use a different uniform
quantizer, such as the one used in (Frasca et al. 2009, Ceragioli et al. 2011):

qupxq “ δu

Z

x

δu
`

1

2

^

, (3.40)

instead of the uniform quantizer in (3.4), the convergence result for velocities will be diffe-
rent. In fact, a slight variation of the proof shows that pDT b Inqv P r´ δu

2 , δu
2 s1mn, i.e. the

norm ||vi ´ vj || of the relative velocity between neighbors is bounded by the constant
?
n
2 δu.
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Figure 3.4: viptq under the uniform quantizers (3.4) and (3.40) respectively.

Theorem 3.2 and Remark 3.3 can be illustrated through simulations. We take the
neighbor relationship graphs G1 and G2 both to be the graph on the upper right
of Figure 3.1. We set δu “ 1 and initialize the system in the same way as what we
have done for the simulation of the system with the logarithmic quantizer. We show
the results in Figure 3.4. When the uniform quantizer (3.4) is adopted, the agents’
velocities converge 1 to the average value, as shown in Figure 3.4(a). When the
uniform quantizer (3.40) is adopted, the agents’ velocities converge to a bounded
set with the diameter less than 1, shown in Figure 3.4(b). The results in Figure 3.4
are consistent with the different convergence results in Theorem 3.2 and Remark 3.3.

While the steady-state performances of the consensus-type coordination algo-
rithm is satisfactory when the above quantizers are chosen, we show in the next
section that this is not the case if uniform quantizers are used differently.

3.4 Undesirable steady-state dynamics using asymmet-
ric quantizers

In this section, we consider the effects of asymmetric uniform quantizers (3.5) on the
consensus-type scheme (3.3). We first use two examples to demonstrate that when
the uniform quantizers (3.5) are utilized for the controllers (3.3), some undesirable

1Namely, every Filippov solution converges to a set where velocities synchronize. However, chatter-
ing with very small amplitudes (less than 0.05 in the shown simulation run) takes place in steady states.
This is due to sliding modes along the synchronized manifolds of velocities.
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Figure 3.5: Synchronized motion with unbounded agent velocities with the uniform quantiz-
ers (3.5).

steady-state behaviors may arise for the multi-agent systems (3.1). In the first ex-
ample, we show that, although the agents may get synchronized in the sense that
they move with almost the same velocity and almost the same time-varying position
asymptotically, the agents’ velocities grow unbounded, which cannot happen in re-
ality. In the second case, we show an even worse case when the agents’ positions
never coincide with one another.

We take the neighbor relationship graphs G1 and G2 both to be the graph on the
upper right of Figure 3.1. We set δu “ 1 and initialize the system in the same way as
what we have done for the simulation of the system with the logarithmic quantizer
in Section 3.3. We show the simulation results in Figure 3.5. It is clear that as the
system evolves, the agents’ positions become the same, their velocities keep oscil-
lating around the time-varying average velocity of the whole group 1

N

řN
i“1 viptq.

Obviously, as indicated by Figure 3.5(b), the agents’ velocities grow unbounded as
t increases.

Next we show that the steady states of the system can be even more undesirable,
namely the agents’ positions always differ from one another. Towards this end, we
take the neighbor relationship graphs G1 and G2 both to be the graph on the upper
left of Figure 3.1. We keep all the other setting the same as before. The simulated
system dynamics are shown in Figure 3.6. It is clear that the agents’ positions do
not become the same while their velocities oscillate around the average velocity
1
N

řN
i“1 viptq and become unbounded. In particular, in Figure 3.6(a) the values of r1,

r2, and r3 become the same for almost every t and r4 keeps a distance of 1 from the
rest.
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Now we explain the observed behavior in Figure 3.5(b) and Figure 3.6(b). We
consider again the Filippov solutions to system (3.1) and (3.3) with the chosen uni-
form quantizer. To simplify the discussion, here we focus on the case when the
positions ri and the velocities vi, i “ 1, ¨ ¨ ¨ , N , are scalars. The analysis can be ex-
tended straightforwardly to the higher dimensional case. From the definition for
the uniform quantizer in (3.5), we know that

F rq˚
upri ´ rjqs ` F rq˚

uprj ´ riqs “ q˚
upri ´ rjq ` q˚

uprj ´ riq “ ´δu (3.41)

when ri ´ rj ‰ kδu, where k are integers, and

F rq˚
upri ´ rjqs ` F rq˚

uprj ´ riqs

“ rpk ´ 1qδu, kδus ` r´pk ` 1qδu,´kδus

“ ´δu r0, 2s

(3.42)

when ri ´ rj “ kδu. From (3.42), we have

N
ÿ

i“1

N
ÿ

j“1

aijF rq˚
upri ´ rjqs “

1

2

N
ÿ

i“1

N
ÿ

j“1

aij F rq˚
upri ´ rjqs `

1

2

N
ÿ

j“1

N
ÿ

i“1

aji F rq˚
uprj ´ riqs

“
1

2

N
ÿ

i“1

N
ÿ

j“1

aij F rq˚
upri ´ rjqs `

1

2

N
ÿ

i“1

N
ÿ

j“1

aij F rq˚
uprj ´ riqs

“
1

2

N
ÿ

i“1

N
ÿ

j“1

aij tF rq˚
upri ´ rjqs ` F rq˚

uprj ´ riqsu

“ ´
1

2

N
ÿ

i“1

N
ÿ

j“1

aijδu r0, 2s .

Then in combination with (3.8), we have

N
ÿ

i“1

9vi P ´

N
ÿ

i“1

N
ÿ

j“1

aij F rq˚
upri ´ rjqs ´

N
ÿ

i“1

N
ÿ

j“1

bij F rq˚
upvi ´ vjqs

“
1

2

N
ÿ

i“1

N
ÿ

j“1

aijδu r0, 2s `
1

2

N
ÿ

i“1

N
ÿ

j“1

bijδu r0, 2s

(3.43)

Now we claim that
řN

i“1 9vi is always positive whenever there is at least one pair of î
and ĵ, 1 ď î, ĵ ď N , such that rî ´ rĵ ‰ k1δu or vî ´ vĵ ‰ k2δu for any integers k1 and
k2. This is because for such a pair of î and ĵ, it follows from (3.41) and (3.43) that

N
ÿ

i“1

9vi P

#

1

2

N
ÿ

i“1

N
ÿ

j“1

aij ´ 1

+

δu r0, 2s `
1

2

N
ÿ

i“1

N
ÿ

j“1

bijδu r0, 2s ` δu (3.44)
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(a) riptq ´ r1ptq, i “ 2, 3, 4.
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Figure 3.6: Agents evolving with different positions and increasing velocities with the uni-
form quantizers (3.5).

when rî ´ rĵ ‰ k1δu and

N
ÿ

i“1

9vi P
1

2

N
ÿ

i“1

N
ÿ

j“1

aijδu r0, 2s `

#

1

2

N
ÿ

i“1

N
ÿ

j“1

bij ´ 1

+

δu r0, 2s ` δu (3.45)

when vî ´ vĵ ‰ k2δu. So in either case,
řN

i“1 9vi is always positive since the first and
second terms of (3.44) and (3.45) are always nonnegative and the third terms are
always positive. This gives one of the reasons that the agents’ velocities may grow
unbounded as t increases.

3.5 More complicated behaviors resulting from network
topologies

Up to now, we have assumed that both G1 and G2 are undirected. In this section,
we show through simulations that when G1 and G2 are directed, more undesir-
able system behaviors may arise. In (Yu et al. 2010b), some necessary and sufficient
conditions based on directed neighbor relationship graphs have been constructed
for reaching consensus in multi-agent systems with second-order agent dynamics
without quantization. However, those conditions are not applicable to the case with
quantization. We use again an example to illustrate this.

We take both G1 and G2 to be the directed ring shown on the bottom of Figure
3.1, which is balanced and contains a directed spanning tree (Cao et al. 2008). The
other simulation conditions are set to be the same as in the simulation in Section 3.3.
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Figure 3.7: Oscillating behavior when G1 and G2 are directed rings with the logarithmic
quantizers.

Although the logarithmic quantizers are used, neither the agents’ positions riptq

nor their velocities viptq can be synchronized, which keep oscillating as shown in
Figure 3.7 (a) and (b) respectively. Note that the same system without quantization
satisfies the conditions stipulated in Theorem 1 of (Yu et al. 2010b) and thus can
get synchronized. So conditions for synchronized motions with directed G1 and G2

need to be further investigated in the future.

3.6 Concluding remarks

We have shown the effects of different quantizers on the steady-state behavior of
teams of mobile agents with second-order dynamics. We have studied the perfor-
mances of the chosen logarithmic and uniform quantizers respectively. It has been
emphasized that for coordinating agents with higher-order dynamics, the quanti-
zation effects of various quantizers are different and undesirable system behavior,
e.g. oscillations, may happen even when the same system without quantization is
stable.

It is of interest to look into more different quantization schemes. We are also
interested in understanding how different non-standard solutions to nonsmooth
systems can be used in the analysis of the quantization effects. More coordination
strategies other than the consensus-type algorithms will be studied in the future
to obtain more general conclusions about the quantization effects on coordination
tasks in multi-agent systems in general.





Chapter 4

Formation Control for Mobile Agents using
Coarse Measurements

The chapter studies the performances of the popular gradient-based formation con-
trol strategies for teams of autonomous agents when the agents’ range measure-
ments are coarse. Since the dynamics of the resulting closed-loop system are dis-
continuous, Filippov solutions of non-smooth dynamical systems are introduced.
Similar to the existing stability results for triangular formations with precise range
measurements, we prove that under coarse range measurements, the convergence
to the desired formation is almost global except for initially collinearly positioned
formations. More importantly, we are able to make stronger statements that the con-
vergence takes place within finite time and that the settling time can be determined
by the geometric information of the initial shape of the formation. Simulation and
experimental results are provided to illustrate the theoretical analysis. The results
presented in this chapter have been submitted for publication (Liu et al. n.d.).

4.1 Introduction

C
ooperative control for teams of autonomous robots has been extensively studied
in the last decade (Bullo et al. 2009, Fink et al. 2013). One typical coordination

task is formation keeping in which a team of mobile agents is required to move
collaboratively so that the overall team manoeuvres as a whole with a prescribed
formation shape (Anderson et al. 2008, Krick et al. 2009, Cao et al. 2011, Grocholsky
et al. 2008, Stump et al. 2009, Turpin et al. 2012). The biggest challenge in such
formation-keeping tasks is that each agent has only limited local information about
its neighboring agents while the success of the team tasks can only be evaluated
globally. Various ideas have been proposed to address this challenge (Krick et al.
2009, Smith et al. 2006). In particular, controlling triangular formations has been
identified to be the benchmark case, since these formations are small enough to
allow global stability analysis while still exhibiting interesting behaviors inherently
related to the rigidity properties of a formation (Cao and Morse 2011).
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However, most of the existing work assumes that the agents are able to obtain
the precise information about the relative positions of their neighboring agents. In
this chapter, we look into the more challenging case when the range measurements
are carried out by coarse sensing. In practice, agents can sense the directions of
their neighboring agents through bearing sensors, such as acoustic or infrared sen-
sors, which have a range of low-price choices (Quigley et al. 2010). But it is more
expensive to acquire precise distance information through range sensors, such as
laser sensors (Guo et al. 2009). This motivates researchers to look into the sce-
narios when range measurements are acquired in their quantized forms (Frasca
et al. 2009, Ceragioli et al. 2011, Liu et al. 2012). To maximally reduce the require-
ments for sensing and computation capabilities, existing work (Cortés 2006, Chen,
Lewis and Xie 2011, De Persis et al. 2010) has attempted to deduce theoretical stabi-
lity results for formation control or consensus problems in simplified settings when
controllers use coarsely quantized information.

Along this line of research, in this chapter we propose the gradient-based forma-
tion control strategy for a team of autonomous agents when agents’ range measure-
ments are coarse. We focus on cyclic triangular formations since it is the building
block for controlling bigger formations and allows rigorous global stability analysis.
The formation control strategy utilizing coarsely quantized range measurements has
the additional advantage in application that the agents’ velocities become normal-
ized and computations are thus greatly simplified. However, since the continuous-
time model describing the resulting behavior of the overall system is non-smooth,
we have to apply tools from non-smooth analysis to analyze the performances of the
controllers. We are able to prove the convergence results using the Lyapunov func-
tion method, and show the set of feasible initial positions of the agents to achieve
prescribed triangular formations. Compared with the convergence results in (Cao
and Morse 2011), a much stronger statement is proven that finite time convergence
can be achieved, which is especially appealing if one wants to apply similar control
strategies to larger formations in practice.

The rest of the chapter is organized as follows. Our research problem is formu-
lated in Section 4.2. Then in Section 4.3, we provide the convergence analysis results
using tools from nonsmooth analysis. Furthermore we prove the finite-time conver-
gence in Section 4.4. Experimental and numerical examples are given in Section 4.5
to illustrate our theoretical analysis. In Section 4.6, we make concluding remarks
and suggest possible extensions of this work.
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Figure 4.1: Clockwise triangular formation.

4.2 Problem formulation

We consider a formation in the plane consisting of three autonomous agents labeled
by 1, 2, and 3, shown in Fig 4.1. For i P t1, 2, 3u, we write ris for the label of agent
i’s leader where r1s “ 2, r2s “ 3 and r3s “ 1. We assume that the desired distance
between agents i and ris is di; here the di are positive numbers which satisfy the
triangle inequalities:

d1 ă d2 ` d3 , d2 ă d1 ` d3 , d3 ă d1 ` d2 . (4.1)

Note that there are two distinct triangular formations which satisfy the desired dis-
tance constraints. The first is shown in Fig. 4.1 and referred to as a clockwise tri-
angle. The second, called a counterclockwise triangle, is the triangle which results
when the triangle shown in Fig. 4.1 is flipped over.

We write xi for the Cartesian coordinate vector of agent i in some fixed global
coordinate system in the plane. In (Cao et al. 2007), Cao et al have studied how to
control three autonomous agents to achieve a prescribed triangular formation, for
which the agents’ dynamics are described by

9x1 “ ´px1 ´ x2qp||x1 ´ x2||2 ´ d21q ,

9x2 “ ´px2 ´ x3qp||x2 ´ x3||2 ´ d22q ,

9x3 “ ´px3 ´ x1qp||x3 ´ x1||2 ´ d23q .

(4.2)

In their setting, it is assumed that for i P t1, 2, 3u, agent i can measure precisely
the relative position xi ´ xris of agent ris in its own coordinate system. It has been
proved that under such gradient-based control laws, system (4.2) can be stabilized
almost globally to an equilibrium corresponding to the triangular formation with



46 4. Formation Control for Mobile Agents using Coarse Measurements

the desired shape. However, in this chapter we investigate the much more challeng-
ing scenario where each agent cannot measure precisely the relative distances. To
be more specific, we assume that in the three-agent system shown in Fig. 4.1, agent
i can sense the direction xris´xi

||xris´xi||
of its non-collocated leader ris in its own local

coordinates through a bearing sensor, and measure whether the relative distance is
greater or less than the desired distance through a crude range sensor. Let the sign
function sgnp¨q : IR Ñ IR be defined by

sgnpaq “

$

&

%

`1 a ą 0;

0 a “ 0;

´1 a ă 0.

(4.3)

Then the agents’ coarse measurements about the range xi ´ xris are in the form of
the trinary value sgnp||xi ´ xris|| ´ diq. With such measurements, we investigate the
performance of the gradient-based control law corresponding to (4.2) and obtain the
new set of equations describing the system’s dynamics

9x1 “ ´
px1 ´ x2q

||x1 ´ x2||
sgnp||x1 ´ x2|| ´ d1q ,

9x2 “ ´
px2 ´ x3q

||x2 ´ x3||
sgnp||x2 ´ x3|| ´ d2q ,

9x3 “ ´
px3 ´ x1q

||x3 ´ x1||
sgnp||x3 ´ x1|| ´ d3q .

(4.4)

Let

zi fi xi ´ xris, ei fi ||zi|| ´ di , (4.5)

for i “ 1, 2, 3. And let

x “

»

–

x1

x2

x3

fi

fl , z “

»

–

z1
z2
z3

fi

fl , e “

»

–

e1
e2
e3

fi

fl . (4.6)

Then system (4.4) is defined on the set

X “
␣

x P IR6 : ||xi ´ xris|| ą 0, for all i “ 1, 2, 3
(

.

Let X c be the complement of X in IR6, i.e.,

X c “ IR6zX “
␣

x P IR6 : ||xi ´ xris|| “ 0, for some i “ 1, 2, 3
(

.
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Now we study the stability of system (4.4). Towards this end, we first rewrite the
dynamics (4.4) using zi, and study the stability of the resulting z-system

9z1 “ ´
z1

||z1||
sgnp||z1|| ´ d1q `

z2
||z2||

sgnp||z2|| ´ d2q ,

9z2 “ ´
z2

||z2||
sgnp||z2|| ´ d2q `

z3
||z3||

sgnp||z3|| ´ d3q ,

9z3 “ ´
z3

||z3||
sgnp||z3|| ´ d3q `

z1
||z1||

sgnp||z1|| ´ d1q ,

(4.7)

which is defined on the set

Z “
␣

z P IR6 : ||zi|| ą 0, for all i “ 1, 2, 3
(

.

Let Zc be the complement of Z in IR6, i.e.,

Zc “ IR6zZ “
␣

z P IR6 : ||zi|| “ 0, for some i “ 1, 2, 3
(

.

Obviously, the set Z is open and connected. One can easily check that x P X if and
only if z P Z . It turns out that the z-system (4.7) is easier to work with for con-
vergence analysis, which we will present in detail in the next section. However, to
study the system’s dynamics, we need to first specify what we mean by the solu-
tions to the system. Since the vector fields on the right-hand sides of (4.4) and (4.7)
are discontinuous, we consider Filippov solutions.

First we use Lemma 2.2 to show the existence of the Filippov solutions to system
(4.4) and system (4.7). Since the Euclidean norms of the right-hand sides of (4.7) are
upper bounded by 2 on Z , the conditions in Lemma 2.2 are satisfied and thus the
Filippov solutions to (4.7) exist when z P Z . So the Filippov solution to (4.7) exists
for all t ě 0 when the system is well defined. One can use similar arguments to
show that the Filippov solution to (4.4) also exists for all t ě 0 when x P X . In the
next section, we present the convergence analysis for the Filippov solutions to the
z-system.

4.3 Convergence analysis

Let gpzq be the vector field on the right-hand side of (4.7). We consider the dif-
ferential inclusions 9z P F rgpzqs of system (4.7), where F r¨s is the set-valued map
corresponding to the Filippov solutions.

Let N be the set of points in IR6 corresponding to agent positions in the plane
which are collinear, namely

N ∆
“
␣

z : rank
“

z1 z2 z3
‰

ă 2, z1 ` z2 ` z3 “ 0
(

. (4.8)
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One can easily see that the positions of the three agents x1, x2, x3 are collinear if and
only if z1, z2, z3 are collinear.

Note that N is a closed manifold containing the set Zc. Now we show that if
a solution to (4.7) starts outside of N and thus in Z at t “ 0, it remains outside of
N for all t ą 0; in other words, the evolution of the z-system is well defined when
zp0q R N .

Lemma 4.1 If a solution to (4.7) starts outside of N at t “ 0, it cannot converge to Zc for
any t ą 0.

Proof: We prove by contradiction. Suppose the contrary is true. Then for some zp0q R

N , there exists a T ą 0, which can approach infinity, such that zptq approaches Zc

as t approaches T . It is straightforward to check that det
“

z1 z2
‰

“ ´det
“

z1 z3
‰

.
This and the definition of N in (4.8) imply that

N “
␣

z : det
“

z1 z2
‰

“ 0
(

. (4.9)

So the assumption about T implies that

lim
tÑT

det
“

z1 z2
‰

“ 0. (4.10)

Furthermore, from the definition for Zc, we know that limtÑT ||ziptq|| “ 0 for some
i P t1, 2, 3u. Without loss of generality, we take i “ 1. Then for any δ satisfying
0 ă δ ! mintd1, d2, d3u, there exists a finite t1 ă T such that ||z1ptq|| ď δ for all
t ą t1. Now for any t1 ă t ă T , we consider two cases:
Case 1: ||z2ptq|| ě 3δ and ||z3ptq|| ě 3δ. In this case, we have

´

ˆ

sgnpe1ptqq

||z1ptq||
`

sgnpe2ptqq

||z2ptq||
`

sgnpe3ptqq

||z3ptq||

˙

ą
1

δ
´

1

||z2ptq||
´

1

||z3ptq||

ě
1

δ
´

1

3δ
´

1

3δ
“

1

3δ
.

Case 2: ||z2ptq|| ă 3δ or ||z3ptq|| ă 3δ. Then we have

´

ˆ

sgnpe1ptqq

||z1ptq||
`

sgnpe2ptqq

||z2ptq||
`

sgnpe3ptqq

||z3ptq||

˙

ą
1

δ
`

1

3δ
`

1

4δ
ą

1

3δ
.

In either case, we always have

´

ˆ

sgnpe1ptqq

||z1ptq||
`

sgnpe2ptqq

||z2ptq||
`

sgnpe3ptqq

||z3ptq||

˙

ą
1

3δ
for t1 ă t ă T . (4.11)
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Now we look more carefully at the evolution of system (4.7). Let D denote the set of
all the discontinuity points of its right-hand side

D ∆
“ tz : e1 e2 e3 “ 0u .

Then along any solution to (4.7), one has

d

dt
det

“

z1 z2
‰

“ ´

ˆ

sgne1
||z1||

`
sgne2
||z2||

`
sgne3
||z3||

˙

det
“

z1 z2
‰

(4.12)

when z R D; and

d

dt
det

“

z1 z2
‰

P ´

ˆ

F rsgne1s

||z1||
`

F rsgne2s

||z2||
`

F rsgne3s

||z3||

˙

det
“

z1 z2
‰

(4.13)

when z P D. Note that

det
“

z1ptq z2ptq
‰

“ e
´

şt
t1

´

sgne1psq
||z1psq|| `

sgne2psq
||z2psq|| `

sgne3psq
||z3psq||

¯

ds
det

“

z1pt1q z2pt1q
‰

(4.14)

for t ě t1 because of (4.12) and (4.13). Hence,

det
“

z1ptq z2ptq
‰

ą e
t´t1
3δ det

“

z1pt1q z2pt1q
‰

,

for all t P pt1, T q. On the other hand,

det
“

z1pt1q z2pt1q
‰

“ e
´

şt1
0

´

sgne1psq
||z1psq|| `

sgne2psq
||z2psq|| `

sgne3psq
||z3psq||

¯

ds
det

“

z1p0q z2p0q
‰

.

and det
“

z1p0q z2p0q
‰

is bounded away from below from zero since zp0q starts out-
side of N . Thus, det

“

z1pt1q z2pt1q
‰

is also bounded away from below from zero.
Therefore, det

“

z1ptq z2ptq
‰

ą det
“

z1pt1q z2pt1q
‰

is bounded from below from zero
for any t P pt1, T q, which contradicts (4.10). This completes the proof. ˝

To show system (4.7) is well defined, it remains to be shown that it is so when
zp0q P N X Z .

Lemma 4.2 If a solution to (4.7) starts in N X Z , it remains in N X Z for all t ą 0.

Proof: One can easily check that N is positively invariant since if det
“

z1 z2
‰

“ 0

at t “ 0, then det
“

z1 z2
‰

“ 0 for all t ą 0 from (4.12) and (4.13). So for a solution
starting in N X Z , it remains in N , and thus z1, z2 and z3 remain collinear. For this
reason, one can always use the coordinate transformation aligning the coordinate
axis with N to write z1, z2, z3 into scalars. To simplify notations, we still use zi to
denote the resulting scalars and rewrite (4.7) into

9z1 “ ´sgnpz1q sgnp|z1| ´ d1q ` sgnpz2q sgnp|z2| ´ d2q ,

9z2 “ ´sgnpz2q sgnp|z2| ´ d2q ` sgnpz3q sgnp|z3| ´ d3q ,

9z3 “ ´sgnpz3q sgnp|z3| ´ d3q ` sgnpz1q sgnp|z1| ´ d1q .

(4.15)
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For any i “ 1, 2, 3, if 0 ă |zi| ă di, then the derivative of z2i along a solution to (4.15)
is

d z2i
dt

P

"

|zi| p1 ` sgnzi ¨ sgnzris ¨ γrisq : γris P r´1, 1s

*

.

So if there exists a t˚ such that 0 ă |zipt
˚q| ă di, then |ziptq| ě |zipt

˚q| for t ą t˚

whenever |ziptq| ă di. Hence, |zi| cannot approach 0 for any t. ˝

From Lemmas 4.1 and 4.2, we have shown that system (4.7) is well defined. We
summarize it as follows.

Proposition 4.1 If a solution to (4.7) starts in Z , it remains in Z for all t ą 0.

The set of the equilibrium points of the z-system (4.7) is the union of the two sets
E and M defined as follows

E ∆
“ tz : e1 “ e2 “ e3 “ 0u and (4.16)

M ∆
“

"

z :
z1

||z1||
sgn e1 “

z2
||z2||

sgn e2 “
z3

||z3||
sgn e3

*

.

One can check that M is a subset of N . Using similar arguments as those to prove
Lemma 2 in (Cao et al. 2007), one can prove the following lemma for the sets N and
E .

Lemma 4.3 (Cao et al. 2007) N and E are disjoint sets.

Obviously, N and E are closed sets. In addition, M and E are also disjoint sets
since M Ă N . That N might be the place where the triangular formation will fail
is further underscored by the fact that N is an invariant manifold; in other words,
formations which are initially collinear, remain collinear forever. This is true since if
det

“

z1 z2
‰

“ 0 at t “ 0, then det
“

z1 z2
‰

“ 0 for all t ą 0 as shown in (4.12) and
(4.13).

4.3.1 Lyapunov-function based analysis

The main result in this chapter that we want to prove is as follows.

Theorem 4.1 All the Filippov solutions to system (4.7) starting outside of N , converges to
a finite limit in E . Furthermore, the convergence is achieved within finite time.
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The set of points IR6zN consists of two disjoint sets, one for which det
“

z1 z2
‰

ą

0 and the other for which det
“

z1 z2
‰

ă 0. Once this theorem is proved, it will be
easy to verify that formations starting at positions such that det

“

z1 z2
‰

ă 0, con-
verge to the positively oriented triangular formations in E whereas formations start-
ing at points such that det

“

z1 z2
‰

ą 0, converge to the corresponding negatively
oriented triangular formation in E .

The proof of Theorem 4.1 involves several steps. First we focus on the conver-
gence and later on check the convergence speed. To begin with, we introduce some
notations. We use x¨, ¨y : IRn ˆ IRn ÞÑ IR to denote the inner product, and θpa, bq the
angle between any two vectors a, b P IR2. For the two vectors zi, zris, one has the fact

that cos θpzi, zrisq “
xzi ,zrisy

||zi||¨ ||zris||
.

Theorem 4.2 All the Filippov solutions to system (4.7) are bounded and converge globally
to the set E Y M.

Proof: We choose the candidate Lyapunov function

V pzptqq “
1

4

`

p||z1||2 ´ d21q2 ` p||z2||2 ´ d22q2 ` p||z3||2 ´ d23q2
˘

. (4.17)

When zptq R D,

d

dt
V pzptqq

“

3
ÿ

i“1

p||zi||
2 ´ d2i qzTi

ˆ

´
zi

||zi||
sgnp||zi|| ´ diq `

zris

||zris||
sgnp||zris ´ dris||q

˙

“ ´

3
ÿ

i“1

| ||zi||
2 ´ d2i | ¨ ||zi||

ˆ

1 ´
xzi, zrisy

||zi|| ¨ ||zris||
sgnp||zi|| ´ diqsgnp||zris|| ´ drisq

˙

ď 0

with the equality sign holds if and only if z1
||z1||

sgnp||z1||´d1q “ z2
||z2||

sgnp||z2||´d2q “
z3

||z3||
sgnp||z3|| ´ d3q .

When zptq P D, one has d
dt V pzptqq P

9V pzptqq, where the set-valued derivative
9V pzptqq is given by 9V pzptqq “ tx∇V pzq, νy, ν P F rgpzqsu, and the column vector
∇V pzq is the gradient of V pzq.

If z P E Ă D, then ∇V pzq “ 0 and therefore 9V pzptqq “ t0u; if on the other hand,
z P DzE , then there must exist at least one i such that ||zi|| ´ di “ 0 and at least one
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j ‰ i such that ||zj || ´ dj ‰ 0. Denote the label of the remaining agent by k. Then

x∇V pzq, νy “ p||zk||2 ´ d2kqzTk

ˆ

´
zk

||zk||
γk `

zj
||zj ||

sgnp||zj || ´ djq

˙

`p||zj ||2 ´ d2j qzTj

ˆ

´
zj

||zj ||
sgnp||zj || ´ djq `

zi
||zi||

γi

˙

where γi P r´1, 1s and γk P r´1, 1s. In particular, γk can be reduced to sgnp||zk||´dkq

if ||zk|| ´ dk ‰ 0. The above inequality can be further written into

x∇V pzq, νy “ ´| ||zk||2 ´ d2k| ¨ ||zk||

ˆ

1 ´
xzk, zjy

||zk|| ¨ ||zj ||
γk sgnp||zj || ´ djq

˙

´| ||zj ||2 ´ d2j | ¨ ||zj ||

ˆ

1 ´
xzj , ziy

||zj || ¨ ||zi||
γi sgnp||zj || ´ djq

˙

ď 0

with the equality sign holds if and only if zj
||zj ||

sgnp||zj || ´ djq “ zi
||zi||

γi “ zk
||zk||

γk
and z P N X D.
Summarizing the discussion so far, we have shown that for all z P Z , max 9V pzptqq ď

0, and that 0 P
9V pzptqq if and only if z P E YM. Hence, for all t ě 0, we have V pzptqq

is non-increasing and satisfies 0 ď V pzptqq ď V pzp0qq. In view of V ’s definition, the
zi are bounded for all t ě 0. Furthermore, applying LaSalle’s invariance principle
for differential inclusions (Bacciotti and Ceragioli 1999, Cortés 2008a, Cortés 2008b),
any solution to the differential inclusion converges to the largest weakly invariant
set in the closure of E Y M. Since E Y M is the set of equilibria of (4.7), we know
E Y M is weakly invariant. So we arrive at the conclusion that any solution zptq of
the differential inclusion 9z P F rgpzqs is bounded and converges to the equilibrium
set E Y M. ˝

In fact, one can make a stronger claim about the boundedness of zi.

Lemma 4.4 It holds that

||zi|| ď di `
?
2 rV pzp0qqs

1
4 , for i “ 1, 2, 3,

where V is defined in (4.17).

Proof: Since V pzptqq ď V pzp0qq, we know that 1
4

ř3
i“1 p||zi||

2 ´ d2i q2 ď V pzp0qq. It
implies 1

4 p||zi||
2 ´ d2i q2 ď V pzp0qq for i “ 1, 2, 3. Then, ||zi||

2 ď d2i ` 2rV pzp0qqs1{2.
Using the fact that the inequality a ` b ď p

?
a `

?
bq2 holds for any nonnegative

numbers a and b, we conclude that ||zi|| ď di `
?
2rV pzp0qqs1{4. ˝

Since for any z P M, it holds that 9z “ 0, we know M is an invariant manifold;
moreover along any trajectory in M, the three agents move at the same constant
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velocity. Thus x1, x2, x3 could drift to infinity together while the ||xi ´xris|| still con-
verge to some finite positive numbers. So although as we have proved, the solutions
to (4.7) are always bounded, those to (4.4) are not necessarily so. Examples to show
such cases will be provided in the simulation section.

Since the largest weakly invariant set E Y M contains the set M on which the
three agents are collinear, it is of interest to characterize those initial conditions un-
der which the asymptotic relative positions of the agents converge to the set M. We
will do so in the next subsection.

4.3.2 Different steady states depending on initial conditions

We now turn to the problem of showing that all trajectories starting outside of N
must be bounded away from M, even in the limit as t Ñ 8. In view of (4.9) and
(4.14), it must be true that any trajectory starting outside of N cannot enter N {and
therefore M} in finite time. It remains to be shown that any such trajectory cannot
approach M even in the limit as t Ñ 8. To prove this, we need several facts.

Lemma 4.5 (Cao et al. 2007) It holds that

N “ N1 Y N2 Y N3

where Ni “
␣

x : x P N , ||zi|| “ ||zris|| ` ||zrriss||
(

for i “ 1, 2, 3.

With Lemma 4.5 at hand, it is possible to write

M “ M1 Y M2 Y M3

where Mi “ Ni X M.

Lemma 4.6 For any x P M,

sgne1
||z1||

`
sgne2
||z2||

`
sgne3
||z3||

ď 0 .

Proof: We will prove this lemma for the case when x P M1. Similar arguments work
as well when x P M2 or x P M3. Since x P M1, we know that ||z1|| “ ||z2|| ` ||z3||.
Note that ||zi|| ‰ 0 for i “ 1, 2, 3. From the definition of M, we have ei ‰ 0 for all
i P t1, 2, 3u. Since z1

||z1||
sgne1 “ z2

||z2||
sgne2 and ||z1|| ą ||z2||, it follows that |sgne1|

||z1||
ď

|sgne2|

||z2||
. Because of the definition of M1, we know that z1 is pointing to the opposite

direction with respect to that of z2 and z3, which implies sgne1 ¨ sgne2 ď 0 and
sgne1 ¨ sgne3 ď 0. Now suppose e1 ď 0. Then e2 ě 0 and e3 ě 0, which imply that
||z1|| ď d1, ||z2|| ě d2 and ||z3|| ě d3. Consequently d1 ě ||z1|| “ ||z2|| ` ||z3|| ě
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d2 ` d3 which contradicts the triangle inequality d1 ă d2 ` d3. Hence, it must be
true that e1 ě 0, e2 ď 0, e3 ď 0. In view of the fact |sgne1|

||z1||
ď

|sgne2|

||z2||
, we know

sgne1
||z1||

`
sgne2
||z2||

`
sgne3
||z3||

ď
sgne3
||z3||

ď 0. ˝

Now we are ready to show that any trajectory starting outside of N , cannot ap-
proach M in the limit as t Ñ 8. Suppose the opposite is true, namely that xptq is
a trajectory starting outside of N which approaches M as t Ñ 8. Then in view of
(4.14), (4.9), and the fact that M Ă N ,

lim
tÑ8

|det
“

z1 z2
‰

| “ 0 . (4.18)

We show that this is false in the following. In view of Lemma 4.6, there must be
an open set V containing M on which the equality in Lemma 4.6 continues to hold.
In view of Lemma 4.3 and the fact that M Ă N , it is possible to choose V small
enough so that in addition to the preceding, V and E are disjoint. In order to have
xptq approaching M, it must be true that there exists some finite time t˚ such that
xptq P V for t P rt˚,8q. This implies that sgne1

||z1||
`

sgne2
||z2||

`
sgne3
||z3||

ď 0 for t ą t˚. In view
of (4.14), det

“

z1ptq z2ptq
‰

ě det
“

z1pt˚q z2pt˚q
‰

for t ą t˚. But

det
“

z1pt˚q z2pt˚q
‰

“ e
´

şt˚
0

´

sgne1psq
||z1psq|| `

sgne2psq
||z2psq|| `

sgne3psq
||z3psq||

¯

ds det
“

z1p0q z2p0q
‰

.

Moveover, det
“

z1p0q z2p0q
‰

ą 0 since z starts outside of N . Therefore

det
“

z1ptq z2ptq
‰

ě det
“

z1pt˚q z2pt˚q
‰

ą 0

for t ą t˚, which contradicts (4.18). This completes the proof of Theorem 4.1. ˝

We have proved that trajectories starting outside of N cannot approach M. On
the other hand, any trajectory starting inside of N will be in N for t ą 0 and must
approach M in particular. This can be easily proved by exploiting the fact that
9V ă 0 at all points in N which are not in M. Therefore, combing with Theorem 4.2,

we have achieved the following proposition.

Proposition 4.2 (a) All the Filippov solutions to system (4.7) starting outside of N con-
verge to E .
(b) All the Filippov solutions to system (4.7) starting inside of N stay in this invariant set
for t ą 0, and converge to M.

In the next section, we look into the convergence speed of the converging process
just analyzed.



4.4. Finite-time convergence 55

4.4 Finite-time convergence

In the previous section, we have shown that all trajectories starting outside of N
converge to E . In this section, we will prove that the convergence is achieved in
finite time. We first prove some useful facts.

Lemma 4.7 Let ϱptq fi maxiPt1,2,3u | cos θpziptq, zrisptqq|. If zp0q R N , then there exists a
positive constat ϱ̄ ă 1 such that ϱptq ď ϱ̄ for all t ě 0.

Proof: Let σ1 be defined by σ1
∆
“ maxzPE,iPt1,2,3u | cos θpzi, zrisq|. From Proposition

4.2(a) we know that limtÑ8 ϱptq “ σ1 ă 1, which implies that for the fixed number
1´σ1

2 ą 0, there exists a finite time T ą 0 such that for all t ą T , |ϱptq ´ σ1| ă 1´σ1

2 .
It further implies ϱptq ď 1`σ1

2 ă 1 for all t ą T . Since ϱptq is continuous, one can

consider σ2
∆
“ max0ďtďT ϱptq. We now prove by contradiction that σ2 ă 1. Suppose

there exists 0 ď t1 ď T such that ϱpt1q “ 1. It follows then that z1, z2, z3 are collinear
at t “ t1 and thus zpt1q P N , which in combination with the fact that N is positively
invariant, contradicts the result in Proposition 4.2(a), that z approaches E . Hence,
let ϱ̄ “ maxt 1`σ1

2 , σ2u, then we have ρptq ď ϱ̄ ă 1 for all t ě 0. ˝

Lemma 4.8 If zp0q R N , then it follows that

||ziptq|| ě mintdi, ||zip0q||u , (4.19)

for all t ě 0 and i “ 1, 2, 3.

Proof: Let Vipzptqq “ 1
4 p||zi||

2 ´ d2i q2, for i “ 1, 2, 3. We consider the derivative of

V1pzptqq along the Filippov solutions to (4.7), and have that d
dt V1pzptqq P

9V1pzptqq

where 9V1pzptqq “ tx∇V1pzq, νy, ν P F rgpzqsu. Moreover,

x∇V1pzq, νy “ ´| ||z1||2 ´ d21| ||z1||

ˆ

1 ´ cos θpz1, z2q γ1γ2

˙

where γ1, γ2 P r´1, 1s. From Lemma 4.7, one has | cos θpz1, z2q| ă 1 for all t ą 0.
Thus, we have d

dt V1pzptqq ď 0 and d
dt V1pzptqq “ 0 if and only if ||z1|| “ d1. Therefore

V1pzptqq decreases monotonously to zero as t Ñ 8. Then we have ||z1ptq|| ě ||z1p0q||

when ||z1p0q|| ď d1 and ||z1ptq|| ě d1 when ||z1p0q|| ě d1. So we have proved the
conclusion for i “ 1. Using similar arguments for V2 and V3, one can prove the cases
for i “ 2 and 3. ˝

We will need the following theorem on the finite-time stability of differential
inclusion.
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Theorem 4.3 (Moulay and Perruquetti 2005, Proposition 5) Let Y be an open set of IRn

containing the origin and H a set valued function on Y that defines the differential inclusion

9y P Hpyq, y P Y (4.20)

and satisfies 0 P Hp0q. If there exists a continuously differential Lyapunov function V that
satisfies the differential ineqaulity

x∇V pyq, νy ď ´rpV pyqq, (4.21)

for all y P Y and all ν P Hpyq, where r : IRě0 Ñ IRě0 is continuous and satisfies rp0q “ 0

such that for all ϵ ą 0

ż ϵ

0

dz

rpzq
ă `8, (4.22)

then the origin of (4.20) is finite time stable and for any Filippov solution with the initial
condition y0, the settling time T py0q satisfies T py0q ď

şV py0q

0
dz
rpzq

.

Now we prove the main result on finite-time convergence.

Theorem 4.4 All the Filippov solutions to the z-system (4.7) starting outside of N reach

E in finite time, for which the settling time is Ts “

?
V pzp0qq

d p1´ϱ̄q
, where V is defined in (4.17),

d “ mintd1, d2, d3, ||z1p0q||, ||z2p0q||, ||z3p0q||u, and ϱ̄ is defined in Lemma 4.7.

Proof: For the V pzptqq defined in (4.17), we have that for each ν P F rgpzqs,

x∇V pzq, νy “

3
ÿ

i“1

p||zi||
2 ´ d2i qzTi

ˆ

´
zi

||zi||
γi `

zris

||zris||
γris

˙

“ ´

3
ÿ

i“1

| ||zi||
2 ´ d2i | ¨ ||zi||

“

1 ´ cos θpzi, zrisq ¨ γi γris

‰

where γi P r´1, 1s for i “ 1, 2, 3. In particular, γi reduce to sgnp||zi||´diq if ||zi||´di ‰

0. From Lemma 4.7 we know that | cos θpzi, zrisq| ď ϱ̄ since zp0q R N . From Lemma
4.8, one has ||zi|| ě d. Combining the two inequalities, we have

x∇V pzq, νy ď ´d p1 ´ ϱ̄q ¨

3
ÿ

i“1

| ||zi||
2 ´ d2i | .

Using the fact that for any real numbers a1, a2 and a3, |a1| ` |a2| ` |a3| ě pa21 ` a22 `

a23q1{2, we know that

x∇V pzq, νy ď ´2d p1 ´ ϱ̄q ¨ rV pzqs1{2 , (4.23)
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Figure 4.2: Three agents whose dynamics are described by (4.4) converge to the formation
with the prescribed shape. (a) shows the trajectories of the three agents in the plane. (b)
shows the pairwise distances of the three agents.

for all ν P F rgpzqs. Let rpsq fi 2d p1 ´ ϱ̄q s1{2. Note that V pzq|zPE “ 0 and every z P E
is an equilibrium of system (4.7). From Theorem 4.3, we know that the solutions to
system (4.7) reach the equilibrium set E in finite time with the settling time Ts ď
şV pzp0qq

0
ds
rpsq

“

?
V pzp0qq

d p1´ϱ̄q
. ˝

4.5 Simulations and experiments

First we give a numerical example to illustrate the correctness of Theorem 4.1. We
consider the three agents in the two dimensional plane with the initial positions
p0, 0q, p2, 8q, p10, 6q. The initial positions are not collinear. The prescribed distances
are d1 “ d2 “ d3 “ 2. Fig. 4.2(a) shows the trajectories of the three agents in
the plane according to the evolution of system (4.4). Fig. 4.2(b) shows the relative
distances between the three agents, in which these distances converge to d1, d2, d3
in finite time.

Now we give another numerical example to illustrate the conclusions in Propo-
sition 4.2(b). We choose the initial positions for the three agents to be the collinear
positions p0, 1q, p4.5, 1q, p7, 1q. The other settings are chosen to be the same as in the
previous example. Fig. 4.3 shows the simulation results. Fig. 4.3(a) illustrates that
the three agents drift to infinity and move at the same velocity eventually. From Fig.
4.3(b), one can see that the three agents fail to achieve the desired formation, and
their positions remain collinear for all t.



58 4. Formation Control for Mobile Agents using Coarse Measurements

0 5 10 15 20
−20

−15

−10

−5

0

5

10

t

x i1
(t

)

x
11

x
21

x
31

(a)

0 5 10 15 20
1

2

3

4

5

6

7

t
||z

i||

||z
1
||

||z
2
||

||z
3
||

(b)

Figure 4.3: Evolutions of the positions and the pairwise distances of the three agents. It is
shown that agents starting in collinear positions remain so.

Finally, we test the formation convergence result in Theorem 4.1 using E-pucks
(Mondada et al. 2009). The experimental setup consists of three wheeled E-puck
robots in a 2D area of 2.6 ˆ 2 meters. Each robot is identified by a datamatrix as a
marker on its top as shown in Fig. 4.4. The robot’s reference point in the position of
its lower right corner and the orientation of the marker are recognized by a vision
algorithm running at a PC employing a webcam placed above the testing area. Since
an E-puck is usually modeled by a unicycle, we apply feedback linearization about
its reference point to obtain the single-integrator model for simpler controller im-
plementation. Therefore, we control the shape formed by the three reference points
of the robots. The whole image of the testing area is covered by 1600 ˆ 1200 pix-
els, where the distance between two consecutive horizontal or vertical pixels corre-
sponds approximately to 1.6mm. The PC runs a real time process computing the
relative vectors between the robots from the vision algorithm, then it computes the
control inputs determined by (4.4). Note that although the control inputs for the
robots are computed by the PC, this does not change the distributed nature of the
proposed control algorithm since we are not modifying (4.4) in any way. The com-
munication takes place when sending the commands from the PC to the E-pucks
in order to move their wheels. These commands are obtained after applying the
feedback linearization, which gives the required linear and angular velocities to the
robots, and this information is translated to common (linear velocity) and differen-
tial (angular velocity) commands to the wheels of the robots. The communication
is done via Bluetooth at the fixed frequency of 20Hz. In order to make the exper-
iments faster, the selected constant speed has been chosen to be 17 pixels/sec or
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Figure 4.4: Three wheeled E-pucks with datamatrices as markers on their tops.

equivalently 2.72cm/sec.
We consider an equilateral triangle with side length being 250 pixels as the pre-

scribed shape. Chattering might be occur when the three robots are close to the
target formation since in practice the argument in the sign function of (4.4) cannot
be zero due to noise in sensors or floating point number representation. In order to
prevent the chattering, if the absolute error for ei is smaller than the threshold of 8
pixels (1.3cm), then we set the control input to 0.

By using the proposed controllers, the three robots converge to the desired for-
mation as it is shown in Figure 4.5. The observed settling time is 31 seconds which
is less than the upper bound Ts “ 336 seconds given in Theorem 4.4.

Figure 4.5: Initial and final positions of the E-pucks after applying the proposed distributed
control laws. The final distances ||z1||, ||z2|| and ||z3|| between the reference points of the
robots are 255, 248 and 249 pixels, respectively.

The trajectories of the robots are shown in Fig. 4.6. The initial and final po-
sitions correspond to the ones shown in Fig. 4.5. The evolutions of the errors
ei for i “ 1, 2, 3 and the terms of the Lyapunov function (4.17) are shown in Fig.
4.7. As predicted, the three terms of the Lyapunov function are always decreasing
over time. The video of the experiment can be checked following the link http-
s://dl.dropboxusercontent.com/u/2689187/Tcoarse.mp4 .
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Figure 4.6: Evolution of the formation converging to the desired equilateral triangle. The red,
green and blue colors stand for robots 1, 2 and 3, respectively.
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Figure 4.7: Evolutions of the errors ei for i “ 1, 2, 3 and the terms of the Lyapunov function.

4.6 Concluding remarks

In this chapter, a gradient-based formation control law using coarse range measure-
ments has been proposed to stabilize three agents moving in a plane to the desired
triangular formations. We have proven that under coarse range measurements, the
three agents converge to the desired formations as long as they are not initially col-
linearly positioned. Different from the existing stability results on triangular for-
mations with precise range measurements, it has been shown that the convergence
takes place within finite time and that the settling time can be determined by the
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geometric information of the initial shape of the formation. The analysis techniques
are applicable to larger formations. The challenge will be how to determine the set-
tling time when more agents are involved. We will continue our research in this
direction using both theoretical analysis and experimental validations.





Chapter 5

Cooperation in Heterogeneous Agents with
Uncertainty

In this chapter, we consider the problem in which N coupled agents described by
heterogeneous uncertain linear systems aim at tracking one or more reference sig-
nals generated by given exosystems. We consider information constraints that not
all the agents can get direct access to the exosystems. To tackle this problem, the ref-
erence signals are reconstructed via local interaction among the agents themselves
and between agents and the exosystems in accordance with the given communica-
tion graph. Then decentralized robust controllers that use the reconstructed refer-
ence signals are designed and are shown to result in a closed-loop system whose
outputs track the prescribed reference signals. The results presented in this chapter
are published in (Liu, De Persis and Cao 2013, De Persis et al. 2012).

5.1 Introduction

I
n multi-agent coordination problems one of the possible tasks which the agents
have to carry out is to track an exogenous signal (Rodriguez-Angeles and Nijmeijer

2004, Arcak 2007, Chung and Slotine 2009, Hokayem et al. 2009, Nuno et al. 2011,
Mei, Ren and Ma 2011). Two possible scenarios can be considered. In the first one,
all the agents are assumed to know the reference signal and use this information as
well as the relative information coming from the neighboring agents to carry out
the control task, while the use of the neighbors’ information in the control laws may
improve the robustness of the overall system. In the second scenario, the reference
signal is not available to all the agents, and strategies to overcome this limitation are
put in place (Bai et al. 2009, Mei, Ren and Ma 2011, Dong 2011).

A related problem has been considered in (Wieland et al. 2011). Given N hetero-
geneous linear systems and a communication graph, what are the necessary and suf-
ficient conditions for the systems to achieve output synchronization? Interestingly,
the authors have shown that an exosystem (Isidori et al. 2003) which generates the
“reference signal” to which all the systems’ outputs converge must necessarily ex-
ist. As a result, controllers which guarantee output synchronization are those which
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solve an output regulation problem associated to that exosystem. In addition, to
make sure that the outputs of all the systems converge to a specific reference signal
(the same for all the systems) generated by the exosystem, the controllers exchange
local information with their neighbors.

Motivated by this result, we turn our attention to the problem in which the sys-
tems aim at tracking one or more reference signals generated by exosystems given in
advance and ask whether there exist controllers which can guarantee the tracking of
the reference signals even under the restriction that not all the systems are directly
connected to the exosystem. Inspired by (Wieland et al. 2011) we aim at reconstruct-
ing the reference signal via local interaction of the systems among themselves and
the exosystem in accordance with the given communication graph. Then, controllers
which solve the output regulation problem are designed and shown to track the ac-
tual reference signal even though they are fed by the local estimate of the signal.
Different from (Wieland et al. 2011), we do not assume that the systems’ models are
perfectly known and robust regulators have to be designed (Isidori et al. 2003). The
problem in (Wieland et al. 2011) for the case of uncertain systems has been studied
in (Kim et al. 2011) as well but, compared with the latter, the problem formulation
in this chapter is different and the approach taken in this chapter seems to lead to
simpler analysis.

Similar approaches have been proposed very recently in the literature. In (Wang
et al. 2010), the systems which do not have direct access to the exosystem exchange
information about the local tracking errors. Compared to our contribution, however,
the authors require the communication graph to contain no cycles, with the leader
(the exosystem) having a directed path to all the other systems. In this chapter we
show that the latter condition is sufficient. Moreover, we assume the uncertainties
of the system to range over a(n arbitrarily large) compact set rather than being suf-
ficiently small. The problem of lifting the restrictions on the graph containing no
cycles in (Wang et al. 2010) have been also tackled in the subsequent paper (Hong
et al. 2011). However, the systems considered in that paper are all assumed to have
the same model and no uncertainty is considered.

Other related papers have appeared in the recent literature. To deal with ve-
locity tracking in coordination problems for passive systems, (Bai et al. 2011, Chap-
ter 3) proposes an internal model approach in which the reference trajectory is ge-
nerated by an exosystem which cannot be accessed by the agents except one. Also
leader-follower problems using the internal model principle have been studied in
(Wieland 2011). In Section III of (Mei, Ren and Ma 2011) an internal model approach
to (position and) velocity tracking in networks of Euler-Lagrange systems is pur-
sued, but the exosystem is restricted to the trivial one (constant reference velocity).
To deal with non-constant reference velocities the authors rely on a discontinuous
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control law and require information about one-hop and two-hop neighbors. Relat-
ed work is also available in (Dong 2011). Examples on the use of ideas from output
regulation theory and multi-agent systems can be found in the work (Gazi 2005),
later developed in e.g. (Gazi and Passino 2006), (Gul and Gazi 2010).

We also look at the problem of tracking multiple reference signals in order to
realize clustering in multi-agent systems. Clustering has recently been studied as a
coordination task (Wu et al. 2009, Xia and Cao 2011, Chen, Lü, Han and Yu 2011),
and the main challenge is how to have the agents converge to different asymptotic
states under the constraints that all the agents are coupled together throughout the
system’s evolution. Until now, only few of the existing works have considered the
situation when the agents are heterogenous. Building upon our results on tracking
a single reference signal, we propose a novel robust decentralized output regulation
algorithm to track different reference signals for different subgroups of systems and
thus realize clustering.

In Section 5.2 we first formulate the problem of robust decentralized output regu-
lation for uncertain heterogeneous systems along with the standing assumptions,
and then state the main results. In Section 5.3, we extend the results in Section 5.2
to study clustering output synchronization. The actual design of the controllers is
described in Section 5.4 and then illustrated via two numerical examples in Section
5.5. Conclusions are drawn in Section 5.6.

5.2 Output regulation of uncertain heterogeneous sys-
tems

5.2.1 Problem statement and standing assumptions

Consider N heterogeneous uncertain linear dynamical systems

Si :
9xi “ Aipµiqxi ` Bipµiqui

yi “ Cipµiqxi ,
(5.1)

with state vector xi P IRni , control input ui P IRpi , and output vector yi P IRq for
i “ 1, ¨ ¨ ¨ , N . Each matrix of the system (5.1) depends on a vector µi of uncertain
parameters which is assumed to range over a given set Pi.
Consider also another system, which we will refer to as the “leader”, whose dyna-
mical behavior is described by the following equation:

9w0 “ Sw0

r “ Rw0 ,
(5.2)
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where w0 P IRm, r P IRq , and matrices S P IRmˆm, R P IRqˆm are assumed to satisfy
the following assumption:

Assumption 5.1 The real parts of the eigenvalues of S are zero, i.e., σpSq Ă C0 and pR,Sq

is detectable.

The N systems (5.1) exchange information according to the communication topol-
ogy described by the directed graph G “ pV, Eq. Each system is represented by a
node in the set V “ t1, 2, . . . , Nu and system j sends information to system i if and
only if pj, iq P E Ď VˆV . Associated to the graph G is the adjacency matrix A “ raijs.
The entry aij “ 1 if and only if pj, iq P E and 0 otherwise. The entry aii “ 0 for each
i “ 1, 2, . . . , N . The matrix L is the Laplacian matrix associated to the graph G.
In addition to the graph G, we consider the directed graph G0 “ pV0, E0q, obtained as
follows. Let system (5.2) (the leader) be associated with node 0 and set V0 “ V Y t0u.
Moreover, for i “ 1, 2, . . . , N , we set ai0 “ 1 if and only if there is an arc from 0 to i

and ai0 “ 0 otherwise. Then we set E0 “ E Y tp0, iq : ai0 “ 1u. Compared with G,
the graph G0 additionally describes which followers have direct access to the infor-
mation of the leader.
In what follows we exploit the following lemma (Mei, Ren and Ma 2011), where we
refer to the graphs G,G0 and the Laplacian L introduced above.

Lemma 5.1 (Mei, Ren and Ma 2011) If in graph G0, node 0 has directed paths to all the
nodes i “ 1, 2, . . . , N , then the matrix L ` diagpa10, . . . , aN0q has all eigenvalues with
strictly positive real part.

The objective of this chapter is to design the control laws ui which guarantee

lim
tÑ8

||yiptq ´ Rw0ptq|| “ 0, for all i “ 1, ¨ ¨ ¨ , N,

under the following restrictions on the available measurements:
(i) Only the systems Si for which ai0 ą 0 can access the leader and therefore the
reference signal r. Hence, only these systems Si can measure the tracking error

ϵi “ yi ´ Rw0.

This restricted access to the leader causes the readability of ϵi from yi to be impossi-
ble for some of the systems (Wang et al. 2010) and makes the problem challenging.
(ii) The systems Si’s exchange only local information on the relative measurements.
(iii) For all i “ 1, ¨ ¨ ¨ , N , the system Si has access to the relative information with
respect to Sj if and only if Sj is a neighbor of Si.

Other assumptions are needed in order to state our main result in the next sub-
section.
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Assumption 5.2 (i) The µi´dependent Francis’ equations

ΠipµiqS “ AipµiqΠipµiq ` BipµiqΓipµiq

0 “ CipµiqΠipµiq ´ R
(5.3)

have a µi´dependent solution Πipµiq, Γipµiq for each i “ 1, ¨ ¨ ¨ , N .
(ii) There exist matrices Φi,Hi,Σipµiq, with Φi,Hi independent of µi, such that

ΣipµiqS “ Φi Σipµiq

Γipµiq “ HiΣipµiq
(5.4)

(iii) There exists a matrix Gi independent of µi such that the linear system defined by
the triplet

ˆ

Aipµiq BipµiqHi

0 Φi

˙ ˆ

Bipµiq

Gi

˙

`

Cipµiq 0
˘

is robustly stabilizable by the dynamic output feedback, i.e. there are matrices Ki, Li,Mi

independent of µi, such that the matrix
¨

˝

ˆ

Aipµiq BipµiqHi

0 Φi

˙ ˆ

Bipµiq

Gi

˙

Mi

Ki

`

Cipµiq 0
˘

Li

˛

‚ (5.5)

is Hurwitz.

A few comments on Assumption 5.2 are as follows.
– Fix i P t1, 2, . . . , Nu. Suppose that there exists a controller of the form

9ξi “ Liξi ` Kiϵi
ui “ Hiξi ` Miϵi

(5.6)

which robustly stabilizes the system Si. Then, provided that σpSq Ă C0 (see As-
sumption 5.1), equations (5.3), (5.4) are well-known ((Isidori et al. 2003, Proposition
1.4.1)) necessary and sufficient conditions for the controller (5.6) to solve the track-
ing problem for the system (5.1) for each µi P Pi. Recall that the controller (5.6) is
said to solve the tracking problem for the system (5.1) for each µi P Pi if, for each
µi P Pi, (i) the equilibrium pxi, ξiq “ p0,0q of the unforced closed-loop system (5.1),
(5.6) is asymptotically stable; (ii) the response of the closed-loop system (5.1), (5.6)
is such that limtÑ8 ϵiptq “ 0.
– If in addition, condition (iii) in Assumption 5.2 holds, then one can prove that the
dynamic feedback control law

9ηi “ Φiηi ` GiMiξi
9ξi “ Liξi ` Kiϵi
ui “ Hiηi ` Miξi

(5.7)
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solves the tracking problem. Due to the fact that the tracking error ϵi may not be
available to the controller of system Si, the previous controller cannot be imple-
mented. In the next section, we overcome this lack of information on ϵi by using the
information collected from the neighbors of system Si.

5.2.2 Tracking a single reference

The control strategy we propose to solve the decentralized output regulation pro-
blem formulated in the previous section comprises two steps. Since not all the sys-
tems Si may have access to the reference signal r, we first design systems which
aim at asymptotically reconstructing the reference signal using only locally avail-
able relative information. As a second step, we use such an asymptotic estimate of
the reference signal to feed the tracking controllers and show that they achieve the
prescribed control objective.
Motivated by Lemma 5.1, we introduce the following:

Assumption 5.3 In graph G0 the node 0 has directed paths to all the nodes i “ 1, 2, . . . , N .

With the above assumption at hand, we can assume that there exist 1 ď N1 ď N

systems which has direct access to the leader. Without loss of generality and for the
sake of simplicity, we assume that N1 “ 1 and that the system with direct access to
the leader is the first one. To reconstruct the reference signal, the systems cooperate
to estimate the internal state of the exosystem. For system S1, the estimation is
carried out by

9̂w0 “ Sŵ0 ` G0Rpw0 ´ ŵ0q

9w1 “ Sw1 `
ÿN

j“1
a1jpwj ´ w1q ` a10pŵ0 ´ w1q,

(5.8)

where the matrix G0 is properly chosen in such a way that σpS ´ G0 Rq Ă C´ and
ŵ0 is an asymptotic estimate of the leader’s internal state w0. For system Si, i P

t2, . . . , Nu, the system which carries out the asymptotic estimation is given by

9wi “ Swi `
ÿN

j“1
aijpwj ´ wiq. (5.9)

For the system

9w0 “ Sw0

9̂w0 “ Sŵ0 ` G0Rpw0 ´ ŵ0q

9w1 “ Sw1 `
ÿN

j“1
a1jpwj ´ w1q ` a10pŵ0 ´ w1q

9wi “ Swi `
ÿN

j“1
aijpwj ´ wiq , i “ 2, ¨ ¨ ¨ , N,

(5.10)
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we have the following result for the convergence of wi:

Lemma 5.2 Let Assumptions 5.1 and 5.3 hold. Then ||wiptq ´ w0ptq|| Ñ 0 exponentially
for all i “ 1, ¨ ¨ ¨ , N , as t Ñ 8.

Proof: Let w̃i “ wi ´ w0, for all i “ 1, ¨ ¨ ¨ , N . Let w̃0 “ ŵ0 ´ w0. Then, we have

9̃w1 “ 9w1 ´ 9w0 “ Sw̃1 `
ÿN

j“1
a1jpw̃j ´ w̃1q ` a10pw̃0 ´ w̃1q ,

and

9̃wi “ Sw̃i `
ÿN

j“1
aij pw̃j ´ w̃iq .

Moreover,

9̃w0 “ 9̂w0 ´ 9w0 “ Spŵ0 ´ w0q ` G0 Rpw0 ´ ŵ0q “ pS ´ G0 Rqw̃0 .

Since σpS ´ G0 Rq Ă C´, one obtains that w̃0 converges to the origin exponentially
as t Ñ 8.
Following (Scardovi and Sepulchre 2009), let ωi “ e´Stw̃i for all i “ 0, 1, ¨ ¨ ¨ , N .
Then we have

9ω1 “ ´Se´St w̃1 ` e´St rSw̃1 `
ÿN

j“1
a1jpw̃j ´ w̃1q ` a10pw̃0 ´ w̃1qs

“
ÿN

j“1
a1jpωj ´ ω1q ` a10pω0 ´ ω1q ,

(5.11)

and

9ωi “
ÿN

j“1
aij pωj ´ ωiq, i “ 2, ¨ ¨ ¨ , N . (5.12)

Let ω “ pωT
1 , ω

T
2 , ¨ ¨ ¨ , ωT

N qT P IRNm. We write the above two equations into the
compact form

9ω “ ´pL b Imqω ´

˜

a10Im 0

0 0

¸

ˆ

ω1

0

˙

`

˜

a10Im 0

0 0

¸

ˆ

ω0

0

˙

“ ´pL̃ b Imqω `

˜

a10Im 0

0 0

¸

ˆ

ω0

0

˙

,

where ´L̃ “ ´L ´ diagpa10, 0, ¨ ¨ ¨ , 0q and b denotes the Kronecker product. Ac-
cording to Lemma 5.1, ´L̃ is Hurwitz. Thus, ´L̃ b Im is Hurwitz. Moreover, it
has been proved that w̃0 converges to the origin exponentially as t Ñ 8. Thus,
ω0 “ e´St w̃0 converges to zero exponentially as t Ñ 8, since σpSq Ă C0. Therefore,
ω converges to the origin exponentially as t Ñ 8. Since w̃i “ eStωi for i “ 1, ¨ ¨ ¨ , N

and σpSq Ă C0, one has that w̃i Ñ 0 exponentially as t Ñ 8. Thus, we arrive at the
result ||wiptq ´ w0ptq|| Ñ 0 exponentially for all i “ 1, ¨ ¨ ¨ , N , as t Ñ 8. ˝
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Remark 5.1 Clearly the signals Rwiptq, i “ 1, 2, . . . , N , converge exponentially to rptq.

Next, we introduce the controllers for systems (5.1) as follows. As system S1 has
access to w0, we design u1 as

9̂w0 “ Sŵ0 ` G0Rpw0 ´ ŵ0q

9w1 “ Sw1 `
ÿN

j“1
a1jpwj ´ w1q ` a10pŵ0 ´ w1q

9η1 “ Φ1 η1 ` G1M1ξ1

9ξ1 “ L1ξ1 ` K1py1 ´ Rw1q

u1 “ H1η1 ` M1ξ1

(5.13)

For agent i “ 2, ¨ ¨ ¨ , N , we design ui as

9wi “ Swi `
ÿN

j“1
aijpwj ´ wiq

9ηi “ Φi ηi ` Gi Miξi

9ξi “ Liξi ` Kipyi ´ Rwiq

ui “ Hiηi ` Miξi

(5.14)

The matrices Φi, Gi,Mi, Li,Ki,Hi are those found in Assumption 5.2. The design
of ηi, ξi, ui in the above controllers is inspired by the output regulation method for
a single system in (Isidori et al. 2003).

Theorem 5.1 Consider N heterogeneous linear systems (5.1) coupled via the dynamic cou-
plings (5.13) and (5.14). Suppose Assumptions 5.1–5.3 hold. Then, ||yiptq ´ Rw0ptq||

exponentially converges to 0 as t Ñ 8 for all i “ 1, ¨ ¨ ¨ , N .

Proof: Let x̃i “ xi ´ Πipµiqwi, η̃i “ ηi ´ Σipµiqwi. Recall that ai0 ą 0 if and only if
i “ 1 and 0 otherwise. Then, according to equations (5.1), (5.8) and (5.9), we have

9̃xi “ Aipµiqx̃i`BipµiqHiη̃i`BipµiqMiξi´Πipµiq

ˆ N
ÿ

j“1

aijpwj ´wiq`ai0pŵ0´wiq

˙

,

where we have exploited the first equation of (5.3) and the second equation of (5.4)
in Assumption 5.2. Furthermore, standard manipulations and the first equation of
(5.4) in Assumption 5.2 lead to the equation

9̃ηi “ Φiη̃i ` GiMiξi ´ Σipµiq ¨

ˆ N
ÿ

j“1

aijpwj ´ wiq ` ai0pŵ0 ´ wiq

˙

.
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One can also observe that

yi ´ Rwi “ Cipµiqxi ´ Rwi

“ Cipµiqx̃i `

ˆ

CipµiqΠipµiq ´ R

˙

wi

“ Cipµiqx̃i ,

where we have used the second equation of (5.3) in Assumption 5.2. Hence,

9ξi “ Liξi ` Kipyi ´ Rwiq

“ Liξi ` Ki

`

Cipµiq 0
˘

ˆ

x̃i

η̃i

˙

.
(5.15)

Using the new coordinates x̃i, η̃i and ξi, we write the dynamics in the compact form

ˆ

9̃xi

9̃ηi

˙

“

ˆ

Aipµiq BipµiqHi

0 Φi

˙ ˆ

x̃i

η̃i

˙

`

ˆ

Bipµiq

Gi

˙

Miξi

´

ˆ

Πipµiq

Σipµiq

˙ ˆ N
ÿ

j“1

aijpwj ´ wiq ` ai0pŵ0 ´ wiq

˙

9ξi “ Liξi ` Ki

`

Cipµiq 0
˘

ˆ

x̃i

η̃i

˙

.

(5.16)

The third condition of Assumption 5.2 shows that the dynamic matrix of the closed
loop system (5.16) is Hurwitz. Since

řN
j“1 aijpwj ´ wiq ` ai0pŵ0 ´ wiq converges

exponentially to zero, then x̃i Ñ 0 , η̃i Ñ 0 exponentially. Furthermore, yi ´ Rwi “

Cipµiqx̃i Ñ 0 exponentially. As wi ´ w0 Ñ 0 for all i exponentially, then the latter
implies that yiptq Ñ Rw0ptq for all i exponentially. ˝

Remark 5.2 Theorem 5.1 solves the robust decentralized output regulation problem, in
which the actual reference signal is tracked relying on local estimates of the signal. The
papers (Wieland et al. 2011, Kim et al. 2011, Su and Huang 2012a, Su and Huang 2012b)
have addressed similar problems, with some differences that we are going to discuss below.
Differently from (Wieland et al. 2011), we do not assume that the systems’ models are per-
fectly known and robust regulators have to be designed. The problem in (Wieland et al. 2011)
has been studied in (Kim et al. 2011) in the case of uncertain systems. Compared with (Kim
et al. 2011), the systems’ models in this chapter can have large uncertainties. In addition,
it is worth mentioning that the problem formulation in this chapter is different from that in
(Wieland et al. 2011, Kim et al. 2011). The work in (Wieland et al. 2011, Kim et al. 2011)
deals with synchronization problem without any leader and thus they cannot enforce the
desired asymptotic regime of individual systems. In contrast, our problem requires that the
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outputs of individual systems track the prescribed reference signal. More recently, (Su and
Huang 2012a, Su and Huang 2012b) have studied the leader-follower output synchroniza-
tion problem of heterogeneous linear multi-agent systems. However, the systems considered
in the two papers are perfectly known and assumed to have no uncertainty.

The design of robust regulators that fulfill the conditions in Assumption 5.2 will
be discussed in Section 5.4. For such a design, we will need Corollary 5.1 below
which deals with the case in which the dynamics of each system (5.1) is affected by
the signals wi, namely

Sw
i :

9xi “ Aipµiqxi ` Bipµiqui ` Pipµiqw

yi “ Cipµiqxi ,
(5.17)

where w “ pwT
1 . . . wT

N qT is the vector of signals generated by (5.8), (5.9) and

Pipµiq “ pPi1pµiq . . . PiN pµiqq.

The previous theorem can be easily extended provided that Assumption 5.2 is mod-
ified as follows:

Assumption 5.4 (i) the µi´dependent Francis’ equations

ΠipµiqS “ AipµiqΠipµiq ` BipµiqΓipµiq `

N
ÿ

j“1

Pijpµiq

0 “ CipµiqΠipµiq ´ R

(5.18)

have a µi´dependent solution Πipµiq, Γipµiq for each i “ 1, ¨ ¨ ¨ , N .
(ii) and (iii) are as in Assumption 5.2.

The result below is used in Section 5.4 to design the output regulators.

Corollary 5.1 Consider N heterogeneous linear systems (5.17). Suppose the systems are
coupled via the dynamic couplings (5.13) and (5.14). Suppose Assumptions 5.1, 5.3 and 5.4
hold. Then, ||yiptq ´ Rw0ptq|| exponentially converges to 0 as t Ñ 8 for all i “ 1, ¨ ¨ ¨ , N .

Proof: The result descends from the proof of Theorem 5.1 after making necessary
modifications. In view of (5.18), the variable x̃i of the closed-loop system (5.17),
(5.13) and (5.14) satisfies the equation

9̃xi “ Aipµiqx̃i ` BipµiqHiη̃i ` BipµiqMiξi`
řN

j“1 Pijpµiqpwj ´ wiq ´ Πipµiq ¨

ˆ

řN
j“1 aijpwj ´ wiq ` ai0pŵ0 ´ w1q

˙

.
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Repeating the same arguments of Theorem 5.1, one arrives at the following system:
ˆ

9̃xi

9̃ηi

˙

“

ˆ

Aipµiq BipµiqHi

0 Φi

˙ ˆ

x̃i

η̃i

˙

`

ˆ

Bipµiq

Gi

˙

Miξi

`

˜

řN
j“1 Pijpµiqpwj ´ wiq

0

¸

´

ˆ

Πipµiq

Σipµiq

˙ ˆ N
ÿ

j“1

aijpwj ´ wiq ` ai0pŵ0 ´ w1q

˙

9ξi “ Liξi ` Ki

`

Cipµiq 0
˘

ˆ

x̃i

η̃i

˙

As before, the system above is Hurwitz and driven by signals which converge expo-
nentially to zero. The states converge exponentially to zero and the thesis follows.
˝

In the next section, we further expand the results to the case where multiple
reference signals have to be tracked.

5.3 Clustering through output regulation

5.3.1 Problem statement

We again consider N heterogeneous uncertain linear dynamical systems Si, 1 ď i ď

N , given by (5.1). In addition, we consider another n systems Lj , 1 ď j ď n, called
“leaders”, with state variables w01, w02, . . . , w0n. Their dynamics are of the same
form described by

9w0j “ Sw0j

rj “ Rw0j ,@j “ 1, . . . , n
(5.19)

but with different initial conditions, i.e., w01p0q, w02p0q, . . . , w0np0q are different from
each other. This problem formulation is inspired by cooperation in a group of multi-
agents in which the agents achieve different phase states. For example, it requires to
generate the anti-phase sinusoidal body-wave for robotic fish in the imitation of fish
schooling (Wang et al. 2011). We will explore topological connections and design
decentralized controllers such that, for a given partition of the N heterogeneous sys-
tems Si with n subsets, the output of each system in the same subset asymptotically
converges to the same reference signal Rw0j for j P t1, . . . , nu and the outputs of
the systems in different subsets converge to different reference signals. The desired
behavior is formalized as follows.

Definition 5.1 Let tN1,N2, . . . ,Nnu be a partition of the set t1, 2, . . . , Nu into n nonemp-
ty subsets, which satisfy Ni XNj “ H where i ‰ j and

Ťn
i“1 Ni “ t1, 2, . . . , Nu. Suppose
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that N1 “ t1, . . . , h1u,N2 “ th1 ` 1, . . . , h1 ` h2u, . . . ,Nn “ th1 ` . . . ` hn´1 `

1, . . . , h1 ` . . . ` hn´1 ` hnu, where 1 ă n ă N , 1 ď hi ă N , and
řn

i“1 hi “ N . A
network of N heterogeneous linear systems Si, partitioned according to tN1,N2, . . . ,Nnu

is said to realize an n-cluster output synchronization, if the outputs yi of the heterogeneous
systems (5.1) satisfy limtÑ`8

řn
j“1

ř

iPNj
||yiptq ´ Rw0jptq|| “ 0.

The N systems Si exchange information according to the topology described by
the directed graph G. Associated to the graph G is the adjacency matrix A “ raijs P

IRNˆN . The entry aij equals 1 or ´1 for 1 ď i, j ď N, i ‰ j, if and only if there is
a coupling from Sj to the system Si; otherwise aij “ 0. In this section, we allow
couplings among the agents that belong to different subsets to be negative, and as a
result aij P t1, 0,´1u. We set aii “ 0 for each i “ 1, . . . , N . Moreover, the partition
tN1,N2, . . . ,Nnu induces the following block-matrix structure of the matrix A:

A “

¨

˚

˚

˝

A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . .

An1 An2 . . . Ann

˛

‹

‹

‚

.

The Laplacian matrix L “ rlijs P IRNˆN associated with the graph G is the matrix
L “ D ´ A, with D “ diagpd1, . . . , dN q where di “

řN
j“1,j‰i aij . Similar to A, the

matrix L can be written as

L “

¨

˚

˚

˝

L11 L12 . . . L1n

L21 L22 . . . L2n

. . . . . . . . . . . .

Ln1 Ln2 . . . Lnn

˛

‹

‹

‚

,

with Lij P IRhiˆhj for i, j “ 1, . . . , n.
The matrix L is assumed to satisfy the following:

Assumption 5.5 Suppose that the block-matrices Lij P IRhiˆhj , i, j “ 1, . . . , n, have zero
row sums, namely

řhj

ℓ“1 lki`m,kj`ℓ “ 0 for all m “ 1, . . . , hi, ki “ h1 ` . . . hi´1 and
kj “ h1 ` . . . hj´1. Furthermore, the off-diagonal elements of Lii P IRhiˆhi are non-
positive.

A few explanations on Assumption 5.5 are in order. The assumption that all Lij

have zero row sums is natural and necessary. It means that the sum of the couplings
from the systems in the jth subset to each system in the ith (i ‰ j) subset is zero.
Thus the effect from the systems in the jth subset to each system in the ith subset
will vanish when synchronization in each subset of systems is achieved. This guar-
antees that clustering synchronization can be realized.
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Next we explain the existence of negative elements in the adjacency matrix A in
the framework of clustering synchronization. If aij ą 0, a cooperative coupling
is enforced, while if aij ă 0 the coupling is competitive or repulsive. Intuitively,
competition or repulsion can affect the synchronization behavior and may result in
diverse behaviors in a coupled network. Hence, it is natural to allow negative cou-
plings among different subsets of systems, and to have positive couplings among
the systems in the same subset.
In what follows we will also need the following connectivity assumption:

Assumption 5.6 For each j “ 1, . . . , n, there exists at least one system Si, i P Nj which is
connected to the leader Lj .

Moreover, we assume that there is a unique leader for each subset of systems. That
is to say, we exclude the possibility that a system Si, i P Nj , is connected to a leader
Lk where k ‰ j. We use a10, a20, . . . , aN0 to describe the existence of a directed edge
from the leader to a system. Namely, for each j “ 1, 2, . . . , n, if there is a coupling
from the leader Lj to the system Si, i P Nj , then ai0 “ 1; otherwise ai0 “ 0.

The matrix A only describes the underlying communication topological struc-
ture. It does not provide any information about how strong the couplings or con-
nections are. We use the notion of “coupling strength” to describe the strength of
the coupling for an edge. Intuitively, enhancing the couplings among agents inside
the same subset will help the whole network to realize clustering synchronization.
Hence, we set the coupling strengths among the systems that are inside the set Nj

to be equal to the positive constant cj ě 1. And we set the coupling strengths of the
directed edges from the leader Lj to the systems Si where i P Nj to be equal to the
constant cj as well. We call the parameters cj , for j “ 1, . . . , n as the inner coupling
strengths.

5.3.2 Tracking multiple references

The control strategy, which we propose to solve the clustering output synchroniza-
tion problem formulated in Definition 5.1, comprises two steps. Since not all the
systems Si may have access to the leaders, we first design systems which aim at
asymptotically reconstructing the reference signals using only locally available rel-
ative information. As a second step, we use such an asymptotic estimate of the
reference signal to feed the tracking controllers and show that they achieve the pre-
scribed control objective.

To reconstruct the reference signal, the systems cooperate to estimate the internal
state of the exosystems. Using the above setting for the communication graph G0,
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for system Si, i P Nj , j “ 1, . . . , n, the estimation is carried out by

9̂w0j “ Sŵ0j ` G0 Rpw0j ´ ŵ0jq ,

9wi “ Swi `
ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq ,
(5.20)

where the matrix G0 is properly chosen in such a way that σpS´G0 Rq Ă C´ and ŵ0j

is an asymptotic estimate of the leader’s internal state w0j . Let matrix Ξj P IRhjˆhj

denote the diagonal matrix

diagpakj`1,0, . . . , akj`hj ,0q.

In compact form, let w̄h1 “ pwT
1 , . . . , w

T
h1

qT , . . . , w̄hn “ pwT
h1`¨¨¨`hn´1`1, . . . , w

T
h1`¨¨¨`hn

qT .
We now write the dynamics of the estimations as follows:

¨

˚

˚

˚

˝

9̄wh1

9̄wh2

...
9̄whn

˛

‹

‹

‹

‚

“ pIN b Sq

¨

˚

˚

˚

˝

w̄h1

w̄h2

...
w̄hn

˛

‹

‹

‹

‚

´

¨

˚

˚

˝

c1 L11 L12 . . . L1n

L21 c2 L22 . . . L2n

. . . . . . . . . . . .

Ln1 Ln2 . . . cn Lnn

˛

‹

‹

‚

b Im ¨

¨

˚

˚

˚

˝

w̄h1

w̄h2

...
w̄hn

˛

‹

‹

‹

‚

` diag tc1 Ξ1, c2 Ξ2, . . . , cn Ξnu b Im ¨

¨

˚

˚

˚

˝

1h1 b ŵ01 ´ w̄h1

1h2 b ŵ02 ´ w̄h2

...
1hn b ŵ0n ´ w̄hn

˛

‹

‹

‹

‚

,

(5.21)

where 1hj P IRhj are vectors of all ones, for j “ 1, . . . , n.
To show the convergence of wi, we first introduce some notations of block ma-

trices. Let the matrices

LΞ fi

¨

˚

˚

˝

c1 L11 ` c1 Ξ1 L12 . . . L1n

L21 c2 L22 ` c2 Ξ2 . . . L2n

. . . . . . . . . . . .

Ln1 Ln2 . . . cn Lnn ` cn Ξn

˛

‹

‹

‚

, (5.22)

L
p1q

Ξ fi diagtc1 L11 ` c1 Ξ1, c2 L22 ` c2 Ξ2, . . . , cn Lnn ` cn Ξnu, Lp2q

Ξ fi LΞ ´ L
p1q

Ξ , and
DΞ fi diag tc1 Ξ1, c2 Ξ2, . . . , cn Ξnu. We have the following result for the convergence
of wi:

Lemma 5.3 Suppose that Assumptions 5.5 and 5.6 hold. If the matrix LΞ is positive defi-
nite, then wi, i P Nj for all j “ 1, . . . , n will asymptotically track the references w0j , i.e., it
holds that limtÑ`8

řn
j“1

ř

iPNj
||wiptq ´ w0jptq|| “ 0.
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Proof: Let w̃hj “ w̄hj ´ 1hj b w0j and w̃0j “ ŵ0j ´ w0j for j “ 1, . . . , n. From (5.21),
one has

¨

˚

˚

˚

˝

9̃wh1

9̃wh2

...
9̃whn

˛

‹

‹

‹

‚

“ pIN b Sq

¨

˚

˚

˚

˝

w̃h1

w̃h2

...
w̃hn

˛

‹

‹

‹

‚

´

¨

˚

˚

˝

c1 L11 L12 . . . L1n

L21 c2 L22 . . . L2n

. . . . . . . . . . . .

Ln1 Ln2 . . . cn Lnn

˛

‹

‹

‚

b Im ¨

¨

˚

˚

˚

˝

w̄h1

w̄h2

...
w̄hn

˛

‹

‹

‹

‚

´ pDΞ b Imq ¨

¨

˚

˚

˚

˝

w̃h1

w̃h2

...
w̃hn

˛

‹

‹

‹

‚

` pDΞ b Imq ¨

¨

˚

˚

˚

˝

1h1 b w̃01

1h2 b w̃02

...
1hn b w̃0n

˛

‹

‹

‹

‚

(5.23)

Note that Lij are zero-row-sum matrices. It follows that

¨

˚

˚

˝

c1 L11 L12 . . . L1n

L21 c2 L22 . . . L2n

. . . . . . . . . . . .

Ln1 Ln2 . . . cn Lnn

˛

‹

‹

‚

b Im ¨

¨

˚

˚

˚

˝

1h1 b w01

1h2 b w02

...
1hn b w0n

˛

‹

‹

‹

‚

“ 0 .

Using the above equation and the notation LΞ, we can rewrite (5.23) as

¨

˚

˚

˚

˝

9̃wh1

9̃wh2

...
9̃whn

˛

‹

‹

‹

‚

“ pIN bSq

¨

˚

˚

˚

˝

w̃h1

w̃h2

...
w̃hn

˛

‹

‹

‹

‚

´pLΞbImq

¨

˚

˚

˚

˝

w̃h1

w̃h2

...
w̃hn

˛

‹

‹

‹

‚

`pDΞ bImq ¨

¨

˚

˚

˚

˝

1h1 b w̃01

1h2 b w̃02

...
1hn b w̃0n

˛

‹

‹

‹

‚

(5.24)

Let w̃ fi pw̃T
h1
, w̃T

h2
, . . . , w̃T

hn
qT , w̃˚

0 fi
`

p1h1 b w̃01qT , p1h2 b w̃02qT , . . . , p1hn b w̃0nqT
˘T .

Then (5.24) can be written into the compact form

9̃w “ pIN b Sqw̃ ´ pLΞ b Imqw̃ ` pDΞ b Imq w̃˚
0 . (5.25)

Let ϖ “ pIN b e´Stqw̃ and φ “ pIN b e´Stqw̃˚
0 . Then one has

9ϖ “ ´pIN b e´StSqw̃ ` pIN b e´Stq 9̃w

“ ´pIN b e´StqpLΞ b Imqw̃ ` pIN b e´StqpDΞ b Imqw̃˚
0

“ ´pLΞ b Imqϖ ` pDΞ b Imqφ .

(5.26)

According to the condition in Lemma 5.3, the matrix ´pLΞ b Imq is Hurwitz. More-
over, from 9̃w0j “ 9̂w0j ´ 9w0j “ pS ´ G0 Rqw̃0j and σpS ´ G0 Rq Ă C´, one has
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that w̃˚
0 converges to zero exponentially as t Ñ 8. It further implies φ “ pIN b

e´Stqw̃˚
0 converges to zero exponentially. Therefore, one has that ϖ converges to

the origin exponentially as t Ñ 8. Furthermore, because w̃ “ pIN b eStqϖ and
σpSq Ă C0, one has that w̃ Ñ 0 exponentially as t Ñ 8. Thus, one obtains that
limtÑ`8

řn
j“1

ř

iPNj
||wiptq ´ w0jptq|| “ 0. ˝

Remark 5.3 Assumption 5.5 is a trivial condition when clustering synchronization is dis-
cussed in multi-agent systems with diffusively coupled dynamic oscillators. For example,
Assumption 5.5 on the Laplacian matrix L is the same as the one in Definition 4 in (Wu
et al. 2009), and similar to that in Proposition 2 in (Xia and Cao 2011). However, in this
subsection we study different system dynamics and thus a different problem. We have pro-
posed the stability criterion for system (5.20) in Lemma 5.3 under suitable assumptions on
the communication topologies.

The condition on the matrix LΞ is an algebraic condition, which is difficult to
check in applications. Now we specify the connectivity strengths such that the ma-
trix LΞ is negative definitive. The way to construct the connectivity strengths is
motivated by some results in (Wu et al. 2009, Xia and Cao 2011). Since the results
in (Wu et al. 2009, Xia and Cao 2011) cannot be applied to our problem directly, we
carry out the construction as follows:

Lemma 5.4 (Horn and Johnson 1985) Let A and B be N ˆ N Hermitian matrices, and
let the eigenvalues λipAq, λipBq, λipA ` Bq be arranged in increasing order as λ1p¨q ď

λ2p¨q ď . . . ď λN p¨q. For each k “ 1, 2, . . . , N , we have

λkpAq ` λ1pBq ď λkpA ` Bq ď λkpAq ` λN pBq .

Lemma 5.5 Suppose that Assumptions 5.5 and 5.6 hold. And suppose that the matrix L is
symmetric and the matrices Ljj for j “ 1, . . . , n are irreducible. If

cj ą max

#

´
λminpL

p2q

Ξ q

λminpLjj ` Ξjq
, 0

+

for all j “ 1, . . . , n, then the matrix LΞ is positive definitive.

Proof: We will prove that the matrix LΞ is positive definite if the constants cj for
j “ 1, . . . , n are sufficiently large. From Lemma 5.4, one has

λminpLΞq ě λminpL
p1q

Ξ q ` λminpL
p2q

Ξ q

“ min1ďjďn tλminpcj Ljj ` cj Ξjqu ` λminpL
p2q

Ξ q

“ min1ďjďn tcj λminpLjj ` Ξjqu ` λminpL
p2q

Ξ q .
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Note that Ljj for j “ t1, . . . , nu are Laplacian matrices satisfying zero row sums and
non-positive off-diagonal elements. Thus Ljj are positive semi-definite. In addition,
Ljj are irreducible. According to Lemma 1, the matrices Ljj ` Ξj for j “ 1, . . . , n

are positive definite. Thus, if cj ą ´
λminpL

p2q
Ξ q

λminpLjj`Ξjq
for j “ 1, . . . , n, then λminpLΞq ą 0.

We have arrived at the conclusion that the matrix LΞ is positive definite if cj ą

max

"

´
λminpL

p2q
Ξ q

λminpLjj`Ξjq
, 0

*

for j “ 1, . . . , n. ˝

Now we give some comments on the condition of the inner coupling strengths
cj in Lemma 5.5.

Remark 5.4 There might exist other connection patterns such that LΞ is positive definite.
Lemma 5.5 provides one way to construct communication topologies for this purpose. It
requires lower bounds for cj to guarantee the positive-definiteness of LΞ which implies that
large inner couplings are good for clustering synchronization in a network. This also can be
understood in real-world situations, as clustering is likely to happen in a network if inner
connections inside clusters are strong while connections among different clusters are weak.
In addition, if more systems in the subset Nj are connected to their leader Lj , it results in a
larger positive value of λminpLjj ` Ξjq. According to the lower bound for cj in Lemma 5.5,
a smaller positive cj may be obtained consequently. This also makes sense in practice.

We have discussed clustering synchronization of the reference trajectories in
Lemma 5.3. The estimations wi can be treated as a group of reference signals,
and used to tackle the decentralized n-cluster output synchronization problem for
heterogeneous systems. This is pursued below.

We introduce the controllers for systems (5.1) as follows. For agent i P Nj , j “

1, . . . , n, we design ui as

9̂w0j “ Sŵ0j ` G0 Rpw0j ´ ŵ0jq

9wi “ Swi `
ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq

9ηi “ Φi ηi ` Gi Miξi

9ξi “ Liξi ` Kipyi ´ Rwiq

ui “ Hiηi ` Miξi

(5.27)

The matrices Φi, Gi,Mi, Li,Ki,Hi are those found in Assumption 5.2. The design of
ηi, ξi, ui is inspired by the output regulation method for a single system in (Isidori
et al. 2003).
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Theorem 5.2 Consider N heterogeneous linear systems (5.1) coupled via the dynamic cou-
plings (5.27). Suppose that Assumptions 5.1 and 5.2 hold, and the assumptions in Lemma
5.3 hold. Then, limtÑ`8

řn
j“1

ř

iPNj
||yiptq ´ Rw0jptq|| “ 0.

Proof: Let x̃i “ xi ´Πipµiqwi, η̃i “ ηi ´Σipµiqwi. Similar manipulations as those
in the proof of Theorem 5.1 lead to

9̃xi “ Aipµiqx̃i ` BipµiqHiη̃i ` BipµiqMiξi´

Πipµiq

ˆ

ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq

˙

,

and
9̃ηi “ Φiη̃i ` GiMiξi ´ Σipµiq¨

¨

ˆ

ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq

˙

.

Furthermore yi ´ Rwi “ Cipµiqx̃i. Hence,

9ξi “ Liξi ` Kipyi ´ Rwiq

“ Liξi ` Ki

`

Cipµiq 0
˘

ˆ

x̃i

η̃i

˙

.
(5.28)

In the new coordinates x̃i, η̃i and ξi, the system can be written as
ˆ

9̃xi

9̃ηi

˙

“

ˆ

Aipµiq BipµiqHi

0 Φi

˙ ˆ

x̃i

η̃i

˙

`

ˆ

Bipµiq

Gi

˙

Miξi

´

ˆ

Πipµiq

Σipµiq

˙ ˆ

ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq

˙

9ξi “ Liξi ` Ki

`

Cipµiq 0
˘

ˆ

x̃i

η̃i

˙

.

(5.29)

By Assumption 5.2, the dynamic matrix of the closed loop system (5.29) is Hur-
witz. Moreover, all the forcing inputs decay exponentially to zero. As a result
limtÑ`8

řn
j“1

ř

iPNj
||yiptq ´ Rw0jptq|| “ 0. ˝

5.4 Design of the controllers

The actual design of the controllers in the previous sections 5.2 and 5.3 depends on
the fulfillment of the conditions in Assumption 5.2 or 5.4. In this section we discuss



5.4. Design of the controllers 81

how this can be achieved. The arguments follow the treatment in (Isidori et al. 2003,
Section 1.5). For the sake of simplicity, we only focus on the design of controllers
discussed in Section 5.2. The controllers discussed in Section 5.3 can be designed
similarly.
We start with condition (ii), namely with the fulfillment of the internal model prin-
ciple. Let Φ,H and Σipµiq be the matrices

Φ “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

´a0 ´a1 ´a2 . . . ´ad

˛

‹

‹

‹

‹

‹

‹

‚

, H “

¨

˚

˚

˚

˚

˚

˝

1

0

0

. . .

0

˛

‹

‹

‹

‹

‹

‚

T

Σipµiq “

¨

˚

˚

˚

˚

˚

˚

˝

Γipµiq

ΓipµiqS
...

ΓipµiqS
d´2

ΓipµiqS
d´1

˛

‹

‹

‹

‹

‹

‹

‚

where λd ` ad´1λ
d´1 ` a1d ` a0 is the minimal polynomial of S and Γipµiq is the

matrix which appears in the regulator equations (5.3). It is straightforward to check
that these matrices satisfy the internal model condition (5.4).
To the purpose of fulfilling also the robust stability condition (iii), it is convenient to
introduce other matrices Fi, Gi,Ψi, Ti which also fulfill the internal model principle.
These matrices are detailed in the following lemma:

Lemma 5.6 (Isidori et al. 2003, Lemma 1.5.6) Let Fi be any Hurwitz sˆs matrix and let
Gi be any s ˆ 1 vector such that the pair pFi, Giq is controllable. Let Φ be any s ˆ s matrix
whose eigenvalues are all in C` and let H be any 1 ˆ s vector such that the pair pH,Φq is
observable.
Then there exist a 1 ˆ s vector Ψi and a nonsingular s ˆ s matrix Ti such that

pFi ` GiΨiqTi “ TiΦ

ΨiTi “ H.
(5.30)

It is immediate to see that the matrix Σ̃ipµiq “ TiΣipµiq satisfies

Σ̃ipµiqS “ pFi ` GiΨiqΣ̃ipµiq

Γipµiq “ ΨiΣ̃ipµiq .

Hence, the internal model principle property (5.4) is fulfilled by the matrices Fi `

GiΨi, Ψi, Σ̃ipµiq.
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The controllers introduced in Section 5.2.2 can be rewritten as:
9̂w0 “ Sŵ0 ` G0Rpw0 ´ ŵ0q

9w1 “ Sw1 `

N
ÿ

j“1

a1jpwj ´ w1q ` a10pŵ0 ´ w1q

9η1 “ pF1 ` G1Ψ1q η1 ` G1M1ξ1

9ξ1 “ L1ξ1 ` K1py1 ´ Rw1q

u1 “ Ψ1η1 ` M1ξ1

(5.31)

and, for agent i “ 2, ¨ ¨ ¨ , N ,

9wi “ Swi `

N
ÿ

j“1

aijpwj ´ wiq

9ηi “ pFi ` GiΨiq ηi ` Gi Miξi

9ξi “ Liξi ` Kipyi ´ Rwiq

ui “ Ψiηi ` Miξi

(5.32)

For the purpose of stabilizing the overall closed-loop system (requirement (iii) in
Assumption 5.2), it is more convenient to work with these controllers (5.31),(5.32)
rather than with those in (5.13), (5.14). In the rest of the section, we turn now to the
problem of determining the stabilizing matrices Li,Ki,Mi, i “ 1, 2, . . . , N .
For each i, consider the system (5.1) with output εi “ yi ´ Rwi, namely

9xi “ Aipµiqxi ` Bipµiqui

εi “ Cipµiqxi ´ Rwi .
(5.33)

As in (Isidori et al. 2003), to reduce the notational burden, we focus on the case in
which the inputs ui and the outputs yi are scalar, i.e. pi “ 1 for i “ 1, 2, . . . , N and
q “ 1. Further assume that Pi is a compact set and that for each µi P Pi, the system
(5.33) has the same relative degree ri from ui to εi. Namely, there exists an integer
ri ě 1 such that for each µi P Pi

CipµiqA
j
i pµiqBipµiq “ 0 , j “ 0, 1, . . . , ri ´ 2

CipµiqA
ri´1
i pµiqBipµiq ‰ 0 .

Then there exists a µi-dependent change of coordinates

ˆ

zi
ei

˙

“

¨

˚

˚

˚

˚

˚

˚

˝

Zipµiq

Cipµiq

CipµiqAipµiq

...
CipµiqAipµiq

ri´1

˛

‹

‹

‹

‹

‹

‹

‚

xi “: Z̃ipµiqxi, (5.34)
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where Zipµiq is a suitable matrix such that Z̃ipµiq is nonsingular, such that the sys-
tem (5.33) in the new coordinates becomes

9zi “ A
p11q
i pµiqzi ` A

p12q
i pµiqei

9ei1 “ ei2
...

9ei,ri´1 “ eiri
9ei,ri “ A

p21q
i pµiqzi ` A

p22q
i pµiqei ` bipµiqui

εi “ ei1 ´ Rwi “ Cei ´ Rwi,

(5.35)

where in particular bipµiq “ CipµiqA
ri´1
i pµiqBipµiq ‰ 0.

We further change the coordinates in the following way:

ẽi “ ei ` Qiw

where Qi “ pQT
i1 . . . Q

T
irqT , w “ pwT

1 . . . wT
N qT ,

Qi1 “ p01ˆm . . .01ˆm ´ R 01ˆm . . .01ˆmq ,

Qi,j`1 “ Qi,jS̃, j “ 1, 2, . . . ri ´ 1

and S̃ “ pIN b S ´ L b Imq. Then we obtain

9zi “ A
p11q
i pµiqzi ` A

p12q
i pµiqẽi ` Qipµiqw

9̃ei1 “ ẽi2
...

9̃ei,ri´1 “ ẽiri
9̃ei,ri “ A

p21q
i pµiqzi ` A

p22q
i pµiqẽi ` Q̃ipµiqw ` bipµiqui

εi “ ẽi1,

(5.36)

with

Qipµiq “ ´A
p12q
i pµiqQi, Q̃ipµiq “ ´A

p22q
i pµiqQi.

Below we use the following partition for the two matrices:

Qipµiq “ pQi1pµiq . . . QiN pµiqq

Q̃ipµiq “ pQ̃i1pµiq . . . Q̃iN pµiqq.

Observe that due to the latter change of coordinates the signal w affects the dynam-
ics of the systems. Hence, (5.36) falls in the class of systems considered in (5.17) and
Corollary 5.1 applies. Before doing this, we need an additional assumption. Let the
system (5.33) be minimum-phase, namely
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Assumption 5.7 For each µi P Pi, all the eigenvalues of Ap11q
i pµiq have strictly negative

real parts.

As a consequence of this assumption it is promptly verified (see (Isidori et al. 2003),
page 27) that the matrices

Πipµiq “
`

Πi1pµiq
T 0 . . . 0

˘T

Γipµiq “ ´
1

bipµiq

«

A
p21q
i pµiqΠi1pµiq ´

N
ÿ

j“1

Q̃ijpµiq

ff

,
(5.37)

where Πi1pµiq is the unique ri ˆ ri matrix which solves the Sylvester equation

Πi1pµiqS “ A
p11q
i pµiqΠi1pµiq `

N
ÿ

j“1

Qijpµiq, (5.38)

satisfy condition (i) in Assumption 5.4 with

Pipµiq “

¨

˚

˚

˚

˚

˚

˚

˝

Qipµiq

0
...
0

Q̃ipµiq

˛

‹

‹

‹

‹

‹

‹

‚

.

Before carrying out the next step of our robust controllers design, we explain the
differences of our design method explored in the above, compared with the basic
robust regulator design method in (Isidori et al. 2003).

Remark 5.5 The arguments on the actual design of the decentralized robust controllers
follow closely the treatment in (Isidori et al. 2003), but they are not the same. The robust
controller design method in (Isidori et al. 2003) only deals with output regulation of a single
system. In our case, we design decentralized robust controllers for the cooperative multi-
agent systems (5.1). Consequently, we have to deal with the dynamical coupling terms
existing in the controllers (5.31) and (5.32). To be specific, in our case only system S1 has
direct access to the exosystem, the other systems S2, . . . ,SN are fed by the local estimates of
the reference signal. As a result, the systems’ controllers are coupled with each other through
the estimates, and the controllers cannot be designed separately for each system Si to track
the corresponding reconstructed reference signal wi. To deal with the difficulties caused by
the dynamical couplings and the cooperation framework discussed in this chapter, in the
calculations to obtain (5.36) we treat the reconstructed references w1, . . . , wN as a whole,
that is generated by an exosystem 9w “ S̃ w. Finally, we have adopted different coordinate
changes for ẽi, compared with those in (Isidori et al. 2003, Section 1.5).
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The design of the matrices Ki, Li,Mi such that condition (iii) is satisfied can be
carried out in two steps. Consider the system (5.36) and write it in the compact form

9zi “ A
p11q
i pµiqzi ` A

p12q
i pµiqẽi ` Qipµiqw

9̃ei “ Aẽi ` B
”

A
p21q
i pµiqzi ` A

p22q
i pµiqẽi ` Q̃ipµiqw ` bipµiqui

ı

εi “ Cẽi,

(5.39)

where A,B,C are understood from the context. Also consider a controller of the
form

9ηi “ Fiηi ` Giui

ui “ Ψiηi ` vi
(5.40)

where vi is an additional control input and obtain the closed-loop system

9ηi “ pFi ` GiΨiqηi ` Givi

9zi “ A
p11q
i pµiqzi ` A

p12q
i pµiqẽi ` Qipµiqw

9̃ei “ Aẽi ` B
”

A
p21q
i pµiqzi ` A

p22q
i pµiqẽi`

Q̃ipµiqw ` bipµiqpΨiηi ` viq
ı

εi “ Cẽi.

(5.41)

The change of coordinates

χi “ ηi ´
1

bipµiq
GiC A

ri´1
ẽi

yields the closed-loop system

ˆ

9χi

9zi

˙

“

˜

Fipµiq ´ 1
bipµiq

GiA
p21q
i pµiq

0 A
p11q
i pµiq

¸

ˆ

χi

zi

˙

`

˜

1
bipµiq

”

FiGiC A
ri´1

´ GiA
p22q
i pµiq

ı

A
p12q
i pµiq

¸

ẽi `

˜

´ 1
bipµiq

GiQ̃ipµiq

Qipµiq

¸

w

9̃ei “ Aẽi ` B
”

bipµiqΨiχi ` A
p21q
i pµiqzi`

pA
p22q
i pµiq ` ΨiGiCA

ri´1
qẽi ` bipµiqvi ` Q̃ipµiqw

ı

εi “ Cẽi.

(5.42)

The zero dynamics of the system is

ˆ

9χi

9zi

˙

“

˜

Fi ´ 1
bipµiq

GiA
p21q
i pµiq

0 A
p11q
i pµiq

¸

ˆ

χi

zi

˙

.
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This is asymptotically stable for each µi P Pi since Fi is Hurwitz by construction
and A

p11q
i pµiq is Hurwitz by Assumption 5.7. In view of this property, it is proven in

(Isidori et al. 2003, Lemma 1.5.4) that under the assumption that bipµiq ě b̄i ą 0 for
all µi P Pi, there exists a positive gain k˚

i , a 1ˆ ri vector M i such that for all ki ě k˚
i ,

the feedback

vi “ ´kiM iẽi “: Miẽi (5.43)

stabilizes the system (5.42) for all µi P Pi. Moreover, the matrix M i is of the form

M i “ pdi0 di1 . . . di,ri´2 1q

where λri´1 ` di,ri´2λ
r1´2 ` . . . ` di0 is any polynomial having all the roots with

strictly negative real parts.
The feedback (5.43) cannot be implemented since it requires the knowledge of ẽi
which is not available. The second step of the construction consists in the design of
a controller which uses an estimate of ẽi. This design can be carried out following
(Isidori et al. 2003, Lemma 1.5.5). Consider the dynamic feedback controller

9ξi “ Liξi ` Kiεi
vi “ Miξi,

(5.44)

where

Li “

¨

˚

˚

˚

˚

˚

˚

˝

´gici,ri´1 1 . . . 0

´g2i ci,ri´2 0 . . . 0
...

...
. . .

...
´gri´1

i ci,1 0 . . . 1

´grii ci,0 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‚

,Ki “

¨

˚

˚

˚

˚

˚

˚

˝

gici,ri´1

g2i ci,ri´2

...
gri´1
i ci,1
grii ci,0

˛

‹

‹

‹

‹

‹

‹

‚

(5.45)

the polynomial λri ` ci,ri´1λ
ri´1 ` . . . ` ci,1λ

1 ` ci,0 is any polynomial having all
the roots with negative real part, gi ą 0 is a design parameter and Mi is as in (5.43).
Under Assumption 5.7, if bipµiq ě b̄i ą 0 for all µi P Pi, it can be shown that
there exists a positive gain g˚

i ą 0 such that, for all gi ě g˚
i , the controller (5.44)

asymptotically stabilize the system (5.42) for all µi P Pi.
The latter statement allows us to summarize as follows:

Proposition 5.1 Consider the system (5.39). Let Assumption 5.7 hold and assume that
bipµiq ě b̄i ą 0 for all µi P Pi, with Pi a compact set. Then there exists a positive gain
g˚
i ą 0 such that, for all gi ě g˚

i , the matrices Li,Ki,Mi defined in (5.45) and (5.43) are
such that the dynamic feedback controller (5.44) globally asymptotically stabilizes (5.42) for
all µi P Pi.
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Remark 5.6 The overall controller is given by the interconnection of the internal model
(5.40) and the stabilizer (5.44). We observe that the design of the two controllers requires
local information only. As a matter of fact, the matrices Fi, Gi,Ψi of the internal model
can be obtained via Lemma 5.6. On the other hand, the controller (5.44) is designed to
robustly stabilize the system (5.39). Since the only terms in the system (5.39) that depend
on the Laplacian matrix L are the “disturbance” vectors Qipµiq, Q̃ipµiq which play no role
in the stability property of the closed-loop system, one infers that the design of Li,Ki,Mi is
independent of the knowledge of the graph topology.

Remark 5.7 We do not assume explicit bounds for the uncertainties µi, but implicit in
Assumption 5.7.

5.5 Numerical examples

5.5.1 Tracking a single reference

In this section we illustrate the design of the robust controllers for decentralized
output regulation via a numerical example. The example we consider corresponds
to a network of double integrators with different actuator dynamics, namely we
consider the case in which the systems (5.1) are modeled as

9xi “

¨

˝

0 1 0

0 0 ci
0 ´di ´ai

˛

‚

looooooooooomooooooooooon

Aipµiq

xi `

¨

˝

0

0

bi

˛

‚

looomooon

Bipµiq

ui

yi “
`

1 0 0
˘

loooooomoooooon

Cipµiq

xi, i “ 1, 2, . . . , N,

(5.46)

where µi “ pai bi ci diq
T is the vector of uncertain parameters. The example was pro-

posed in (Wieland et al. 2011) where it was assumed that the parameters appearing
in the equations are known and used to design the controllers. Here we consid-
er the case when these parameters are uncertain. Hence the controllers have to be
designed differently. We assume that µi is not precisely known and ranges over a
compact set Pi which is contained in IR3

ą0 ˆ IRě0. Observe that the uncertain pa-
rameters ai, bi, ci are bounded away from zero. We consider the problem in which
the matrices which define the leader’s equation (5.2) are given by

S “

ˆ

0 1

0 0

˙

, R “
`

1 0
˘

. (5.47)
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In other words, the position of the systems (5.46) has to asymptotically evolve as the
ramp reference signal set by the leader.
Following the previous section, we first compute the relative degree ri of each sys-
tem. It is easily verified that

CipµiqBipµiq “ CipµiqAipµiqBipµiq “ 0

CipµiqA
2
i pµiqBipµiq “ bici .

Since bici ‰ 0 for each µi P Pi, the previous equalities show that each system has a
relative degree ri “ 3. As the relative degree equals the dimension of the systems,
the matrix Z̃ipµiq in the change of coordinates (5.34) can be written as

Z̃ipµiq “

¨

˝

Cipµiq

CipµiqAipµiq

CipµiqAipµiq
2

˛

‚“

¨

˝

1 0 0

0 1 0

0 0 ci

˛

‚

and in the new coordinates the system (5.35) can be written as

9ei1 “ ei2
9ei2 “ ei3
9ei3 “ ´cidiei2 ´ aiei3 ` biciui.

(5.48)

When compared with (5.35), we observe that the system has no zero dynamics and
checking Assumption 5.7 becomes superfluous. Moreover,

A
p21q
i pµiq “ 0, A

p22q
i pµiq “ ´ p0 cidi aiq , bipµiq “ bici,

from which we conclude that bipµiq ě b̄i ą 0, for all µi P Pi, for some b̄i.
Having verified that all the assumptions of Proposition 5.1 hold, we can determine
the controllers. First of all, we determine the matrices Fi, Gi,Ψi in (5.40). This com-
putation is carried out as in the proof of (Isidori et al. 2003, Lemma 1.5.6). Since the
minimal polynomial of S is λ2, we have

Φ “

ˆ

0 1

0 0

˙

H “
`

1 0
˘

and let (see Lemma 5.6 above)

Fi “

ˆ

0 1

´1 ´2

˙

, Gi “

ˆ

0

1

˙

be a pair of matrices with Fi Hurwitz and pFi, Giq controllable. Here, for the sake
of simplicity, we take Fi, Gi to be the same for each i “ 1, 2, . . . , N . Following the
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proof of (Isidori et al. 2003, Lemma 1.5.6), one can construct the vector Ψi and the
nonsingular matrix Ti which satisfy (5.30) and obtain

Ψi “
`

1 2
˘

, Ti “

ˆ

1 ´2

0 1

˙

.

This concludes the computation of the matrices Fi, Gi,Ψi which appear in (5.40).
We turn now to the design of the matrices Li,Ki,Mi which appear in (5.7). Since
ri “ 3, and letting λ2`di1λ`di0 “ λ2`2λ`1, λ3`ci2λ

2`ci1λ`ci0 “ λ3`3λ2`3λ`1

two polynomials with all the roots having strictly negative real parts, the matrices
Li,Ki,Mi are given by

Li “

¨

˝

´3gi 1 0

´3g2i 0 1

´g3i 0 0

˛

‚, Ki “

¨

˝

3gi
3g2i
g3i

˛

‚,

Mi “ ´ki
`

1 2 1
˘

where ki, gi are gains to be chosen sufficiently large. Finally, we let G0 “ p2 1qT be
such that S ´ G0R is Hurwitz.
We conclude that the controllers (5.31), (5.32) with the matrices Fi, Gi,Ψi, Li,Ki,Mi,
G0 computed above, solve the decentralized output regulation problem for the sys-
tems (5.46), (5.47).
We have run a simulation for N “ 4 systems with parameters tai, bi, ci, diu chosen
to be t1 ` µ1, 1 ` µ2, 1 ` µ3, µ4u, t2.5 ` µ1, 2 ` µ2, 1 ` µ3, µ4u, t2 ` µ1, 1 ` µ2, 1 `

µ3, 0.5 ` µ4u, t2 ` µ1, 1 ` µ2, 1 ` µ3, 1 ` µ4u respectively, where µ1, µ2, µ3, µ4 are
0.3, 0.4, 0.5, 0.7 respectively. We set the gains k “ 1.1, g “ 14. As for the commu-
nication graph, we have chosen one with a direct link between the exosystem and
the system S1, i.e. there is a directed link p0, 1q. The communication graph among
the systems Si, i “ 1, 2, 3, 4 is set to be the undirected and static graph with edges
tp1, 2q, p2, 3q, p3, 4q, p4, 1qu. The initial value for the exosystem w0 is taken to be p2 1qT

while all the other initial values are randomly chosen in the interval r0, 10s.
Fig. 5.1 shows that the outputs yi, i “ 1, 2, 3, 4 of the systems successfully track the
exosystem output Rw0. The simulation result supports the conclusions of Theorem
1 and the controller design method.

5.5.2 Tracking multiple references

In this subsection we illustrate the design of the robust controllers for decentralized
clustering output synchronization through a numerical example. The example we
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Figure 5.1: The outputs of the systems track the signal Rw0.

consider corresponds to a network of double integrators with different actuator dy-
namics, namely we consider the case in which systems (5.1) are modeled by (5.46)
as well. We consider the problem in which the matrices which define the leader’s
dynamics (5.19) are given by

S “

ˆ

0 1

´1 0

˙

, R “
`

1 0
˘

. (5.49)

In other words, the trajectory of systems (5.46) has to converge asymptotically to the
sinusoidal reference signals of the leaders.
For systems (5.46), we have verified that all the assumptions of Proposition 5.1 hold
in the previous subsection. Thus, we can determine the controllers, using the ap-
proach given in Section 5.4.
First of all, we remark that the matrices Fi, Gi in (5.40) are the same as in the previ-
ous subsection. Following again the proof of (Isidori et al. 2003, Lemma 1.5.6), we
arrive at the vector Ψi and at the nonsingular matrix Ti

Ψi “
`

0 2
˘

, Ti “

ˆ

0 ´ 1
2

1
2 0

˙

such that (5.30) is satisfied. The matrices Li,Ki,Mi in (5.7) can be chosen as in the
previous subsection.
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Therefore, the controllers

9̂w0j “ Sŵ0j ` G0 Rpw0j ´ ŵ0jq

9wi “ Swi `
ÿ

kPNj

cj aikpwk ´ wiq `

N
ÿ

k“1,kRNj

aikpwk ´ wiq ` cj ai0pŵ0j ´ wiq

9ηi “ pFi ` GiΨiq ηi ` Gi Miξi

9ξi “ Liξi ` Kipyi ´ Rwiq

ui “ Ψiηi ` Miξi

(5.50)

for i P Nj , j “ 1, . . . , n, with G0 “ p2 1qT and the matrices Fi, Gi,Ψi, Li,Ki,Mi

computed above, solve the decentralized output regulation problem for systems
(5.46), (5.49).
We consider N “ 6 heterogeneous systems with parameters tai, bi, ci, diu for i “

1, . . . , 6 chosen to be t1`µ1, 1`µ2, 1`µ3, µ4u, t2.5`µ1, 2`µ2, 1`µ3, µ4u, t2`µ1, 1`

µ2, 1`µ3, 0.5`µ4u, t2`µ1, 1`µ2, 1`µ3, 1`µ4u, t2.5`µ1, 1.5`µ2, 1`µ3, 0.5`µ4u,
t1 ` µ1, 2 ` µ2, 1 ` µ3, 1 ` µ4u respectively, where the uncertainties µ1, µ2, µ3, µ4

are 0.3, 0.4, 0.5, 0.7 respectively. Those systems communicate according to graph G
shown in Figure 5.2. There are two different leaders L1,L2 as shown in Figure 5.2.
We pick systems 1 and 5 to be connected to the two leaders L1,L2 respectively, such
that the systems in the network realize a 2-cluster synchronization and track the
two different trajectories of the leaders L1,L2. To be specific, there is a directed
edge from leader L1 to system 1, and a directed edge from leader L2 to system 5.
Leader L1 has directed paths to all the nodes in N1 “ t1, 2, 3, 4u, although t1, 2u and
t3, 4u are connected indirectly through the nodes t5, 6u. We set the inner coupling
strengths c1 “ c2 “ 2. Then the matrix LΞ in (5.22) can be described as LΞ “
˜

c1 L11 L12

L21 c2 L22

¸

` diagt2, 0, 0, 0, 2, 0u , where

˜

c1 L11 L12

L21 c2 L22

¸

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

2 ´2 0 0 1 ´1

´2 2 0 0 0 0

0 0 2 ´2 ´1 1

0 0 ´2 2 0 0

0 ´1 0 1 2 ´2

0 1 0 ´1 ´2 2

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (5.51)

One can check that the matrix LΞ is positive definite.
We consider the leader L1 satisfying 9w01 “ Sw01 with w01p0q “ p´2, 0qT , and the

leader L2 satisfying 9w02 “ Sw02 with w02p0q “ p2, 0qT , where S has been given in
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Figure 5.2: Communication graph.

(5.49). The initial values of wi for i “ 1, . . . , 6 are randomly selected from the interval
r0, 5s. We ran the simulation for systems (5.46) and controllers (5.50) in which the
gains k, g are set to be 0.8 and 12 respectively. Figure 5.3 shows that the outputs yi,
i “ 1, 2, 3, 4 of the systems asymptotically track the exosystem output Rw01, and the
outputs yi, i “ 5, 6 asymptotically track the exosystem output Rw02. The simulation
result illustrates the conclusions of Theorem 5.2 and the controller design method.

5.6 Concluding remarks

We have tackled the problem of designing decentralized controllers able to track
prescribed reference signals generated by exosystems under the restriction that not
all the systems can access the information available at the exosystem. Under the
assumption that each leader (exosystem) has a directed path to its follower systems,
we have shown that there exist decentralized controllers which achieve the desired
regulation task in the presence of arbitrarily large but bounded uncertainties in the
systems’ models.
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Figure 5.3: The outputs of the systems are synchronized in clusters and track the exosystem
outputs Rw01, Rw02.





Chapter 6

Synchronization and Network Topologies

The study of synchronization in complex networks has many diverse applications,
such as flocking behavior in birds and social insects, social dynamics in popula-
tions, and coordination strategies in mobile autonomous robots. This research area
has been a hot issue in the past decades. In this chapter, using spectral graph the-
ory and especially its graph comparison techniques, we propose new methodolo-
gies to allocate coupling strengths to guarantee global complete synchronization in
complex networks. The key step is that all the eigenvalues of the Laplacian matrix
associated with a given network can be estimated by flexibly utilizing topological
features of the network. The proposed methodologies enable the construction of
different coupling-strength combinations in response to different knowledge about
sub-networks. Adaptive allocation strategies can be carried out as well using on-
ly local network topological information. For large directed networks that can be
decomposed into a set of smaller strongly connected components, we apply the
methodology at the local level to improve computational efficiency. Besides formal
analysis, we use simulation examples to demonstrate how to apply the methodolo-
gies to typical complex networks. The results presented in Section 6.3 of this chapter
are published in (Liu, Cao and Wu 2013a, Liu, Cao and Wu 2013b), and the result
presented in Section 6.4 includes the publication (Liu, Cao and Wu 2013c).

6.1 Introduction

S
ynchronization phenomena in various complex networks have attracted great at-
tention in the past decades (Pecora and Carroll 1998, Wu and Chua 1995, Strogatz

2003, Wu 2007, Newman 2010, Mei, Zhang and Cao 2011, Xia and Cao 2011, Liu
et al. 2009). The master stability function method has been established as a pow-
erful tool in (Pecora and Carroll 1998) to study the local synchronization problem
for linearly coupled chaotic systems. In (Wu 2007), a general systematic framework
was presented for the study of synchronization of nonlinear dynamical systems with
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diffusive couplings. When deriving various synchronization conditions, one focus
is how to assign coupling strengths to the interconnections between systems, and in-
tuitively it is natural to assume that the synchronized behavior of any two systems
is always possible to take place provided that the coupling strength between them
is sufficiently large (Wu 2007). In order to provide a lower bound on the coupling
strengths for interconnected systems, for a network with diffusive and symmetric
couplings, one can further investigate the synchronizability of the network by ex-
amining the magnitude of the second smallest eigenvalue of the Laplacian matrix,
called algebraic connectivity, of the network (Wu 2003). A range of related research
problems, such as robustness issues, have been studied following this approach (Lü,
Yu and Chen 2004, Lü, Yu, Chen and Cheng 2004, Wang and Chen 2002). In parallel,
a different line of research has also been developed to study the global synchro-
nization of complex networks, which uses extensively the topological information
of the graph that describes the couplings between the systems in a network (Belykh
et al. 2004). The main idea is to construct a bound on the total length of all the paths
passing through a chosen edge in the graph. This bound can then be exploited to
allocate coupling strengths to all the edges in order to achieve global synchroniza-
tion in the network. One aim of this chapter is to bridge the main results developed
separately with these two different approaches and propose new coupling strength
allocation methods to guarantee global complete synchronization in complex net-
works. Newly obtained results from spectral graph theory will be utilized towards
this end.

Graph comparison techniques have been developed in the past to bound the
second smallest eigenvalues of Laplacian matrices of undirected graphs (Guattery
et al. 1999, Guattery and Miller 2000, Kahale 1998), where the bounds are obtained
by embedding complete graphs into the graph under study. More general ideas for
graph comparison have been reported in (Spielman 2004, Spielman 2012), where the
comparison of combinatorial features can be carried out between two arbitrary gra-
phs with the same vertex set for the purpose of bounding any eigenvalues of Lapla-
cian matrices of the graphs. In this chapter, we follow the approach delineated in
(Spielman 2004, Spielman 2012) to study conditions based on graph comparison for
synchronization in complex networks. By doing so, we prove that the synchroniza-
tion condition given in (Belykh et al. 2004) for allocating coupling strengths can be
explained by comparing the network graph with the corresponding complete graph.
We then propose different coupling strength allocation strategies by comparing the
network graphs with other typical network structures. Since adaptive allocations
can be carried out using only local network topological information, our method
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is especially useful in large, time-varying, complex networks. So the main contri-
bution of this chapter lies in a set of new methodologies using graph comparison
to allocate coupling strengths to guarantee complete synchronization in complex
networks.

We further develop our methodologies for general networks associated with
directed graphs. We prove that the synchronization conditions given in (Belykh
et al. 2006a) and (Belykh et al. 2006b) for allocating coupling strengths can be ex-
plained by comparing the network graphs with the corresponding complete graphs.
We construct an algorithm that incorporates graph comparison procedures to find
candidate sets of coupling strengths for synchronization. To keep the computation
tractable, for a large network that can be decomposed into smaller strongly connect-
ed subnetworks, we run the algorithm locally for each subnetwork. The proposed
algorithm is novel in that no graph comparison results for directed networks have
been reported before in the literature. In addition, the topological conditions pro-
posed are typically much easier to check.

The rest of this chapter is organized as follows. In Section 6.2, we review a clas-
sical complex dynamical network model and some relevant results in the literature
on synchronization. Then we give several synchronization criteria using tools from
spectral graph theory and propose methods to allocate coupling strengths. In par-
ticular, we deal with undirected networks and directed networks in Sections 6.3 and
6.4 respectively. Finally, concluding remarks are given in Section 6.5.

6.2 Problem formulation

We consider a network of n ą 1 coupled identical oscillators whose dynamics are
described by

9xi “ fpxiq `

n
ÿ

j“1

εijptqP xj , i “ 1, . . . , n , (6.1)

where xi P IRd is the state of the ith oscillator, fp¨q : IRd Ñ IRd denotes the identical
self-dynamics of each oscillator, εijptq ě 0 pi ‰ jq describes the strength of the cou-
pling from oscillator j to i, εiiptq “ ´

řn
j“1,j‰i εijptq, and the diagonal p0, 1q-matrix

P P IRdˆd determines through which components of the states that the oscillators
are coupled together. The couplings between the oscillators can be conveniently de-
scribed by a weighted graph G “ pV, E , εptqq with the vertex set V “ t1, . . . , nu, the
edge set E , and the weight function ε : E Ñ IR. There is an edge from vertex j to i if
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and only if εijptq ą 0. Let LGptq P IRnˆn be the Laplacian matrix of the graph Gptq.
Then the ijth entry of LGptq is ´εijptq for 1 ď i, j ď n.

System (6.1) has been used widely to study under what conditions the coupled
oscillators can achieve asymptotically global and complete synchronization, where
for any initial condition, ||xiptq ´ xjptq|| Ñ 0 as t Ñ 8 for all i, j (Wu 2007). In this
chapter, we explore such synchronization conditions using spectral graph theory.
Towards this end, we make one standard technical assumption about system (6.1).

Assumption 6.1 For a sufficiently large positive constant a, it holds that

pxj ´ xiq
T rpfpxjq ´ fpxiqq ´ aP pxj ´ xiqs ď ´c||xj ´ xi||

2 ,

for some c ą 0 and for any xi, xj P IRd.

Here the constant a is determined by both the function f and the inner coupling ma-
trix P . Assumption 6.1 implies that any two coupled oscillators are always able to
get synchronized when their coupling is sufficiently strong. An equivalent assump-
tion has been made in (Belykh et al. 2004, Belykh et al. 2006a, Belykh et al. 2006b),
which guarantee that the whole network of oscillators can get synchronized when
the coupling strengths between oscillators are sufficiently large. Such networks that
satisfy Assumption 6.1 include most of the coupled limit-cycle or chaotic oscillators.
For those networks that do not satisfy this assumption, it is likely that increasing
the coupling strengths between some pairs of oscillators may destroy the network’s
locally stable synchronous states (Pecora and Carroll 1998). We refer the interested
reader to (Pecora and Carroll 1998) and a more recent paper (Tang et al. 2012) for a
systematic classification of different network synchronization behavior.

In the following, we introduce a general synchronization criterion for networks
with time-varying dynamics. We use Ws to denote the set of irreducible, symmetric
matrices that have zero row sums and non-positive off-diagonal elements.

Lemma 6.1 (Minor rephrasing of Theorem 2 from (Wu 2003) and a result in Chapter 4
from (Wu 2007)) Let Y ptq be a dˆd time-varying matrix and V a dˆd symmetric, positive
definite matrix such that py ´ zqTV pfpy, tq ` Y ptqy ´ fpz, tq ´ Y ptqzq ď ´c||y ´ z||2 for
some c ą 0 and all y, z, t. Then system (6.1) synchronizes globally if there exists an n ˆ n

matrix U P Ws such that

pU b V qpLGptq b p´P q ´ In b Y ptqq ĺ 0 (6.2)

for all t.
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Now we present a synchronization criterion using properties of graphs. Here, graph
Gptq can be undirected or directed.

Theorem 6.1 Under Assumption 6.1, the synchronization manifold of system (6.1) is glo-
bally asymptotically stable if there exists a connected undirected graph G0 with the same
vertex set of Gptq such that

LG0 LGptq ´ aLG0 ą 0 , for all t. (6.3)

Proof : Assumption 6.1 on the self-dynamics fp¨q is equivalent to the condition that
py ´ zqT V pfpy, tq `Y ptqy ´ fpz, tq ´Y ptqzq ď ´c||y ´ z||2 when we set Y ptq “ ´aP ,
V “ Id. To apply Lemma 6.1, we choose Y ptq “ ´aP , V “ Id, and U “ LG0 . Then
from (6.2) we have pLG0 bIdqpLGptq bp´P q´Inbp´aP qq ĺ 0, i.e., LG0 LGptq bp´P q´

aLG0 b p´P q ĺ 0. Since ´P ĺ 0, this is satisfied if LG0 LGptq ´ aLG0 ľ 0. Therefore,
the complete synchronization of system (6.1) is guaranteed if LG0 LGptq ą aLG0 for
all t. ˝

6.3 Graphical synchronization criteria for undirected com-
plex networks

In this section, we look at graphical synchronization criteria for undirected complex
networks. Towards this end, we introduce some notations and discuss some alge-
braic properties of graphs. We say A ą B if A ´ B ą 0. Similarly, we say A ľ B if
A ´ B ľ 0. We extend this notation for graphs as follows.

Definition 6.1 For two undirected graphs G and H with the same vertex set V “ t1, . . . , nu,
we say

G ľ H
if their Laplacian matrices satisfy LG ľ LH.

For an undirected graph G with vertex set V , we use λk, 1 ď k ď n, to denote
the kth smallest eigenvalue of LG. For graphs G and H with the same vertex set, we
consider some multiple cG of graph G. Using Courant-Fischer Theorem (Spielman
2012), one can easily prove the following result.

Lemma 6.2 (Spielman 2012) If G and H are the graphs with the same vertex set V satis-
fying cG ľ H, then

cλkpGq ě λkpHq

for all 1 ď k ď n.
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6.3.1 Comparison with complete graphs

Theorem 6.1 gives a synchronization condition based on graph comparison. One
natural idea is to compare the system graph Gptq with the complete graph. Let Kn

denote the unweighted, undirected complete graph with n vertices. We have the
following theorem.

Theorem 6.2 Suppose that graph Gptq is undirected and connected. Under Assumption
6.1, the synchronization manifold of system (6.1) is globally asymptotically stable if

Gptq ą
a

n
Kn , for all t. (6.4)

Proof : The result in Theorem 6.2 can be obtained from Theorem 6.1. If we take the
graph G0 in Theorem 6.1 to be Kn, then one has that the synchronization manifold
of system (6.1) is globally asymptotically stable if LKn LGptq ą aLKn for all t. Note
that LKn “ n In ´ J where J is the n ˆ n all-one matrix. We know then LKn LGptq “

pnIn ´ JqLGptq “ nLGptq ą aLKn . Thus, the synchronization manifold of system
(6.1) is globally asymptotically stable if LGptq ą a

n LKn . ˝

The implication of Theorem 6.2 is profound. For any coupled oscillators whose
couplings are described by a weighted undirected graph Gptq, one can always ex-
amine whether Gptq ą a

n Kn holds by comparing Gptq to the complete graph with
identical edge weight a

n . Now we show that the inequality in Theorem 6.2 can be
stated differently.

Theorem 6.3 For an undirected graph Gptq, it holds that

Gptq ą
a

n
Kn ô λ2pGptqq ą a .

Proof : “ñ”: From Gptq ą a
n Kn for each t and Lemma 6.2, we know λ2pGptqq ą

a
n λ2pKnq for each t. Since λ2pKnq “ n, it then must be true that λ2pGptqq ą a for
each t.
“ð”: Since the all-one vector 1 “ r1, . . . , 1sT is in the kernel of LGptq and LKn , to
prove Gptq ą a

n Kn, it suffices to prove that xT pLGptq ´ a
n LKnqx ą 0 for any x P IRn

that is not in the kernel of LGptq and LKn . Furthermore, one can easily see that it
suffices to prove that xT pLGptq ´ a

n LKnqx ą 0 for all the vector x P IRn orthogonal to
1.
For any vector x orthogonal to 1, from Courant-Fischer theorem (Spielman 2012),
one has

λ2pGptqq ď min
xK1

xTLGptqx

xTx
, for each t.
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Thus one has
λ2pGptqqxTx ď xT LGptqx , @x K 1 .

Since λ2pGptqq ą a, we know xT LGptqx ą axTx for all x K 1. Using the fact that
LKn “ nIn ´ J , we have

xT pnLGptq ´ aLKnqx “ xT
`

nLGptq ´ apnIn ´ Jq
˘

x

“ nxT LGptqx ´ naxTx ` axT Jx

ě npxTLGptqx ´ axTxq ą 0,

which implies that nGptq ´ aKn ą 0 for all x K 1, namely Gptq ą a
n Kn. ˝

Remark 6.1 In Theorem 3 in (Wu 2003), a lower bound for λ2pGptqq has been given to
guarantee the synchronization of coupled dynamical oscillators under certain assumptions.
In Theorem 6.3, we have shown the equivalence between graph comparisons and bounding
from below the second smallest eigenvalues of the Laplacian matrices of graphs.

To apply more tools from spectral graph theory, we need to introduce another
equivalent definition of the Laplacian matrix of graphs. Following (Spielman 2004),
we define the elementary Laplacian Lpu,vq to be the Laplacian of the graph with the
vertex set V and only one edge between vertices u and v. Then for an undirected
graph Gptq “ pV, E , εptqq consisting of the vertex set V , the edge set E , and the weight
function ε : E Ñ IR, its Laplacian matrix has the form

LpGptqq
∆
“

ÿ

pu,vqPE

εpu,vqptq ¨ Lpu,vq. (6.5)

Moreover, we say graph G is unweighted if the weights εpu,vq “ 1 for all u ‰ v.
Now we introduce two graphical inequalities, which have been proved in (Spielman

2004).

Lemma 6.3 (Spielman 2004) Let c1, . . . , cn´1 ą 0. Then for graph G with vertex set E ,
one has

c

˜

n´1
ÿ

i“1

ci Lpi,i`1q

¸

ľ Lp1,nq,

where c “
ř

i
1
ci

.

If we take c1 “ c2 “ . . . “ cn´1 “ 1, then Lemma 6.3 becomes the following
result.
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Lemma 6.4 (Spielman 2004) For graph G with vertex set E , it holds that

pn ´ 1q

˜

n´1
ÿ

i“1

Lpi,i`1q

¸

ľ Lp1,nq.

With these graphical tools at hand, Theorem 6.2 can be further used to give
graphical conditions for the synchronization of system (6.1). In the following, we
present some sufficient conditions for synchronization using features of graph Gptq.
Consider a set of paths P “ tPij |i, j “ 1, . . . , n, j ą iu, one for each pair of distinct
vertices i and j. We denote the length of the path Pij by |Pij |, which is the num-
ber of edges in Pij . We assume that there are altogether m edges in the edge set
E of graph Gptq. If we label the edges of Gptq by 1, . . . ,m, then the lower bounds
on the coupling strengths of all the edges can be constructed to guarantee that the
inequality in Theorem 6.2 holds. We state it more formally as follows.

Theorem 6.4 Suppose that graph Gptq is undirected and connected. Under Assumption
6.1, the synchronization manifold of system (6.1) is globally asymptotically stable if

εkptq ą
bk
n

a, for k “ 1, . . . ,m,

where bk “
ř

jąi;kPPij
|Pij | is the sum of the lengths of all those paths Pij in P that contain

edge k.

Proof : From the definition introduced by (6.5), it holds that

a

n
LKn “

a

n

n´1
ÿ

i“1

ÿ

jąi

Lpi,jq .

For each pair of pi, jq where j ą i, we choose one path in the topological graph G
with two associated vertices i and j. Then one can apply Lemma 6.4 by comparing
the sum of all the Laplacian matrices Lk, k P Pij , of all the edges along this chosen
path and the Laplacian matrix Lpi,jq of the single edge pi, jq, which leads to

|Pij |
ÿ

kPPij

Lk ľ Lpi,jq. (6.6)
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Choosing such paths in graph G for all the pairs of i, j where j ą i, one obtains that

a

n
LKn ĺ

a

n

ÿ

jąi

¨

˚

˚

˝

|Pij |
ÿ

kPPij

kPEpGq

Lk

˛

‹

‹

‚

“
a

n

m
ÿ

k“1

¨

˚

˚

˝

ÿ

jąi
kPPij

|Pij |

˛

‹

‹

‚

Lk

“
a

n

m
ÿ

k“1

bk Lk

ă

m
ÿ

k“1

εkptqLk “ LG ,

where bk “
ř

jąi
kPPij

|Pij |. And the last inequality holds trivially when εkptq ą a
n bk

for each edge k. Therefore, the constructed coupling strengths εk for k “ 1, . . . ,m

guarantee that Gptq ą a
n Kn holds. Thus we arrive at the conclusion. ˝

Remark 6.2 Theorem 6.4 presents a synchronization condition for allocating coupling streng-
ths for Gptq. The same result has been achieved in (Belykh et al. 2004). Here we give a
different interpretation of the result by using graph comparison. In contrast with (Belykh
et al. 2004), we prove the result by using combinatorial features of the topological graph G,
which leads to the construction of efficient algorithms determining the coupling strengths as
we show later.

Up to now, we have only compared graph Gptq with the complete graph Kn. It is
natural to ask what different synchronization criteria can be obtained if we compare
Gptq with other graphs. We explore in this direction in the next subsection.

6.3.2 Comparison with other special graphs

Coupling strength allocation

In Theorem 6.2, the synchronization criteria are given based on the comparison be-
tween the given graph G with the complete graph. In addition, Theorem 6.4 gives
lower bounds of coupling strengths in order to achieve complete synchronization.
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In what follows, we show how to allocate coupling strengths systematically by com-
paring G with some special graphs. We list below some results about the eigenval-
ues of some special classes of graphs.

Lemma 6.5 (Spielman 2004) (a) The Laplacian matrix of the complete graph Kn has eigen-
value 0 with multiplicity 1 and n with multiplicity n ´ 1.
(b) The Laplacian matrix of the ring graph Rn has eigenvalues 2 ´ 2 cosp2πk{nq for 0 ď

k ď n{2.
(c) The Laplacian matrix of the path graph Pn has eigenvalues 2´ 2 cospπ k{nq for 0 ď k ď

n ´ 1.
(d) The Laplacian matrix of the star graph Sn has 1 as its second smallest eigenvalue.

In fact, one can compare any two undirected and connected graphs, and obtain
a graphical inequality as a result. One can find more details in (Spielman 2004,
Spielman 2012). Thus, for a graph, such as Rn,Pn,Sn, whose second smallest eigen-
value is known, we can always compare it with Gptq and obtain a set of coupling
strengths to guarantee complete synchronization of the dynamical network (6.1), as
we see later in this section. To show how to implement this idea, we give an exam-
ple now on comparing graph Gptq with a star graph. Similar results can be achieved
when Gptq is compared with other typical graphs, such as ring graphs, path graphs,
and any graphs with known second smallest eigenvalues.

Now consider an n-vertex star graph Sn, in which without loss of generality we
assume vertex 1 has n´1 neighbors. Then LSn “

řn
i“2 Lp1,iq. We consider two cases

for all the edges p1, iq, 2 ď i ď n, in Sn:
1. Edge p1, iq is not in the edge set E of G. Since G is connected, there must exist
some paths in G connecting vertices 1 and i. We choose arbitrarily one of those
paths, which is denoted by P1,i. Then we have

Lp1,iq ĺ |P1,i|
ÿ

kPP1,i

kPEpGq

Lk. (6.7)

2. Edge p1, iq is in E . There are two options: one is to use p1, iq directly and the
other is to choose arbitrarily another path between vertices 1 and i, if such a path
exists. We set the probability of the first option to be 1 ´ αi, and that for the second
αi where 0 ď αi ă 1. If there are no paths between 1 and i other than the edge p1, iq,
we always set αi “ 0. Thus we have

Lp1,iq ĺ p1 ´ αiqLp1,iq ` αi |P1,i|
ÿ

kPP1,i

kPEpGq

Lk . (6.8)
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Note that (6.7) is the special case of (6.8) when αi is taken to be 1. Hence, we can
use the inequality (6.8) with a proper choice of αi P r0, 1s for each i P t2, . . . , nu, and
so

LSn “

n
ÿ

i“2

Lp1,iq

ĺ

n
ÿ

i“2

»

—

—

–

p1 ´ αiqLp1,iq ` αi |P1,i|
ÿ

kPP1,i

kPEpGq

Lk

fi

ffi

ffi

fl

“

n
ÿ

i“2

p1 ´ αiqLp1,iq `

n
ÿ

i“2

»

—

—

–

αi |P1,i|
ÿ

kPP1,i

kPEpGq

Lk

fi

ffi

ffi

fl

“

m
ÿ

k“1

»

—

–

n
ÿ

i“2
kPP1,i

αi |P1,i|

fi

ffi

fl

Lk `

n
ÿ

i“2

p1 ´ αiqLp1,iq

“

m
ÿ

k“1

»

—

–

n
ÿ

i“2
kPP1,i

αi |P1,i| ` φp1 ´ αiq

fi

ffi

fl

Lk ,

where the real valued function φp1 ´ αiq satisfies

φp1 ´ αiq “

#

1 ´ αi ‰ 0 if p1, iq is the edge k ,

0 otherwise .

Let

b
1

k “

n
ÿ

i“2
kPP1,i

αi |P1,i| ` φp1 ´ αiq. (6.9)

Then we have Gptq ą aSn if the weight of the edge k satisfies εkptq ą a b
1

k for k “

1, . . . ,m. From Lemma 6.2 one has λ2pGptqq ą λ2paSnq “ aλ2pSnq “ a if εkptq ą a b
1

k

for all k. From Theorem 6.3, the synchronization manifold of the dynamical system
(6.1) is globally asymptotically stable, if εkptq ą a b

1

k for k “ 1, . . . ,m. Thus we have
proved the following theorem.
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Theorem 6.5 Suppose that graph Gptq is undirected and connected. Under Assumption
6.1, the synchronization manifold of system (6.1) is globally asymptotically stable if the
coupling strength of edge k satisfies εkptq ą a b

1

k for all k “ 1, . . . ,m, where b
1

k is given by
(6.9).

Remark 6.3 In the above two cases for the edge p1, iq, one can choose arbitrarily the path
in G that connects vertices 1 and i. However, we choose the shortest path(s). To specify the
choice of these shortest paths, we set the rule as follows: for any two different vertices i and
j in G, we consider the set of all the shortest paths connecting i and j, which is denoted by
tPp1q

ij ,Pp2q
ij , . . . ,Ppnijq

ij u with nij ě 1. We choose a path in the set with equal probability
1

nij
. This rule is reasonable since the shortest paths are one of the most critical characteriza-

tions of connectivity between vertices in graphs and all the shortest paths between the same
pair of vertices are usually equally important.

Remark 6.4 Compared with the graphical condition in Theorem 6.4, the method in Theorem
6.5 greatly reduces the computational complexity. There are only n ´ 1 paths that need to
be considered in our algorithm, while one needs to check npn´ 1q{2 paths to apply Theorem
6.4.

Remark 6.5 The coupling strength allocation strategy in Theorem 6.4 (resp. Theorem 6.5)
is obtained based on the comparison between the given graph G and the complete graph Kn

(resp. the star graph Sn). Similar coupling strength allocation strategies can be obtained
when G is compared with other graphs, such as rings and paths. A proper choice of the gra-
phs in comparison is helpful to obtain less conservative lower bounds for coupling strengths
and reduce the computational complexity of the comparison at the same time.

1

2

4

53

2

1

3 4

5

Figure 6.1: Comparing G5 with the star S5.

Now we use one simple example to demonstrate the differences between the
synchronization conditions in Theorems 6.5 and 6.4. Consider an undirected graph
G5, consisting of five vertices tv1, v2, v3, v4, v5u and five edges tp1, 2q, p1, 3q, p1, 4q,

p3, 5q, p4, 5qu, which is shown on the left of Fig. 6.1. Suppose that G5 is compared
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with the star graph S5 on the right of Fig. 6.1. Comparing the two graphs, we use
the edge p1, 2q in G5 to represent the path connecting vertices v1, v2, p1, 3q for v1, v3,
p1, 4q for v1, v4, and candidate paths p1, 3, 5q and p1, 4, 5q for vertices v1, v5. Then we
have

LS5 “ Lp1,2q ` Lp1,3q ` Lp1,4q ` Lp1,5q

ĺ Lp1,2q ` Lp1,3q ` Lp1,4q

`

„

1

2
p2Lp1,3q ` 2Lp3,5qq `

1

2
p2Lp1,4q ` 2Lp4,5qq

ȷ

“ Lp1,2q ` 2Lp1,3q ` 2Lp1,4q ` Lp3,5q ` Lp4,5q.

Thus we have b
1

p1,2q
“ 1, b

1

p1,3q
“ 2, b

1

p1,4q
“ 2, b

1

p3,5q
“ 1, and b

1

p4,5q
“ 1. From

Theorem 6.5, we obtain the bounds for the edges in G5: εp1,2q ě a, εp1,3q ě 2a,
εp1,4q ě 2a, εp3,5q ě a, εp4,5q ě a.

In comparison, now we compare the two graphs G5 and K5. We use edge p1, 2q

in G5 to represent the path connecting vertices v1, v2, edge p1, 3q for vertices v1, v3,
edge p1, 4q for vertices v1, v4, edge p3, 5q for vertices v3, v5, edge p4, 5q for vertices
v4, v5, and candidate paths p1, 3, 5q and p1, 4, 5q for vertices v1, v5, path p2, 1, 3q for
vertices v2, v3, path p2, 1, 4q for vertices v2, v4, paths p2, 1, 4, 5q and p2, 1, 3, 5q for ver-
tices v2, v5, paths p3, 1, 4q and p3, 5, 4q for vertices v3, v4. Then we have

LK5 “ Lp1,2q ` Lp1,3q ` Lp1,4q ` Lp1,5q

` Lp2,3q ` Lp2,4q ` Lp2,5q ` Lp3,4q ` Lp3,5q ` Lp4,5q

ĺ Lp1,2q ` Lp1,3q ` Lp1,4q

`

„

1

2
p2Lp1,4q ` 2Lp4,5qq `

1

2
p2Lp1,3q ` 2Lp3,5qq

ȷ

` p2Lp1,2q ` 2Lp1,3qq ` p2Lp1,2q ` 2Lp1,4qq

`

„

1

2
p3Lp1,2q ` 3Lp1,3q ` 3Lp3,5qq `

1

2
p3Lp1,2q ` 3Lp1,4q ` 3Lp4,5qq

ȷ

`

„

1

2
p2Lp3,5q ` 2Lp4,5qq `

1

2
p2Lp1,3q ` 2Lp1,4qq

ȷ

` Lp3,5q ` Lp4,5q

“ 8Lp1,2q `
13

2
Lp1,3q `

13

2
Lp1,4q `

9

2
Lp3,5q `

9

2
Lp4,5q.

Thus we have bp1,2q “ 8, bp1,3q “ 6.5, bp1,4q “ 6.5, bp3,5q “ 4.5, and bp4,5q “ 4.5. From
Theorem 6.4, one of the possible sets of bounds is as follows: εp1,2q ě 8a

5 “ 1.6a,
εp1,3q ě 6.5a

5 “ 1.3a, εp1,4q ě 6.5a
5 “ 1.3a, εp3,5q ě 4.5a

5 “ 0.9a, and εp4,5q ě 4.5a
5 “

0.9a.
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From the above calculations, one can see that there are only 4 paths taken into
consideration in G5 according to the proposed method in Theorem 6.5, while there
are 5ˆ4

2 “ 10 paths considered according to the method in Theorem 6.4. This ex-
ample demonstrates less computational complexity of Theorem 6.5. In addition, we
have obtained another set of bounds for the coupling strengths, in which εp1,2q is
smaller. Using Theorem 6.5, the obtained bounds for the coupling strengths of an
arbitrary network may be looser or tighter, which depends on the specific applica-
tion.

Benefits from comparing with stars

Now we give an example to demonstrate the advantages of using the synchroniza-
tion condition in Theorem 6.5. To simplify our calculation, we consider a fractal
tree with ten vertices, shown on the left of Fig. 6.2. First, let the fractal graph G10

be compared with the star graph S10. Because of the fractal structure of graph G10,
we only need to focus on the calculations of bounds for the edges p1, 2q, p2, 5q, p2, 6q.
And we have the comparison:

LS10 “ Lp1,2q ` Lp1,5q ` Lp1,6q ` . . .

ĺ Lp1,2q ` 2pLp1,2q ` Lp2,5qq ` 2pLp1,2q ` Lp2,6qq ` . . .

“ 5Lp1,2q ` 2Lp2,5q ` 2Lp2,6q ` . . . .

Thus we have b
1

p1,2q
“ 5, b

1

p1,3q
“ 2, and b

1

p2,6q
“ 2. From Theorem 6.5, we obtain the

bounds for the edges p1, 2q, p2, 5q, p2, 6q in graph G10:

εp1,2q ě 5a, εp2,5q ě 2a, εp2,6q ě 2a. (6.10)

Second, we give another set of bounds for the edges in G10 using the method in The-
orem 6.4. We implement graph comparison between graph G10 and the complete
graph K10. Thus we need to consider the paths in G10 for every pair of vertices. The
choice of the path in G10 for each pair of vertices is unique, because there is no cycle
in G10. We only need to calculate the bounds for the edges p1, 2q, p2, 5q, p2, 6q. To do
so, we first list all the possible paths that pass through at lease one of these edges,
which are shown in Fig. 6.3. Then, from bk “

ř

jąi;kPPij
|Pij | in Theorem 6.4, we

have

bp1,2q “ |P1,2| ` |P1,5| ` |P1,6| ` |P2,3| ` |P2,4|

` |P2,7| ` |P2,8| ` |P2,9| ` |P2,10| ` |P3,5| ` |P3,6| ` |P4,5| ` |P4,6|

` |P5,7| ` |P5,8| ` |P5,9| ` |P5,10| ` |P6,7| ` |P6,8| ` |P6,9| ` |P6,10|

“ 1 ` 2 ˆ 4 ` 3 ˆ 8 ` 4 ˆ 8 “ 65 .
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Following the same reasoning, we have

bp2,5q “ |P1,5| ` |P2,5| ` |P3,5| ` |P4,5| ` |P5,6|

` |P5,7| ` |P5,8| ` |P5,9| ` |P5,10|

“ 2 ` 1 ` 3 ` 3 ` 2 ` 4 ˆ 4 “ 27 .

and bp2,6q “ 27 can be calculated similarly.
According to εk ą bk

n a in Theorem 6.4, we obtain the bounds for the coupling
strengths of the edges p1, 2q, p2, 5q, and p2, 6q as

εp1,2q ě
bp1,2q

10
a “ 6.5a,

εp2,5q ě
bp2,5q

10
a “ 2.7a, εp2,6q ě

bp2,6q

10
a “ 2.7a .

(6.11)

The above calculations show that the computational complexity of graph com-
parisons is greatly reduced by using the method in Theorem 6.5, comparing with
what obtained using Theorem 6.4. In addition, we have obtained another set of
bounds for coupling strengths of G10, in which each bound is much smaller. The
proposed method is especially effective when networks are large and sparse, since
these networks are more similar to the star graphs (or rings, path graphs) than to
the complete graphs.

1

2

3 4

5 6

7

8 9

10

1

2

3 4

5 6

7

8 9

10

Figure 6.2: Comparing a fractal tree with the star S10.

Furthermore, the method we proposed can be applied to adaptively adjust the
allocation of coupling strengths in order to ensure the synchronization of a dyna-
mical network when its topology changes with time. We explore in this direction
next.
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Figure 6.3: The paths in G10 that pass through one of these edges p1, 2q, p2, 5q, p2, 6q.

Applications in networks with continuing growth

Now we apply Theorem 6.5 to allocate coupling strengths in a network with contin-
uing growth. A growing graph considered in this subsection is the graph in which
the number of the vertices increases. It is much easier to compare a growing graph
with a growing star, with the same vertex set, than with a growing complete graph.
If one more vertex is added to the star graph Sn, only one more edge needs to be
added. However, if one more vertex is added to the complete graph Kn, n new
edges need to get involved in calculation. Moreover, the second smallest eigenvalue
of star graphs is the constant 1. These motivate us to apply Theorem 6.5 on dynamic
networks with continuing growth.

k layer

k-1 layer

1 1

Figure 6.4: Compare the growing complete binary tree with the growing star.

In the following, we use complete binary trees to illustrate the application. The
complete binary tree Tn with n “ 2d ´ 1 vertices is the graph with the edges of the
form pu, 2uq and pu, 2u`1q for integer u ă n{2 (Spielman 2004). The complete binary
tree Tn is shown on the left of Figure 6.4. In this subsection we use b

1
pk ´ 1, k, dq to

denote the value of b
1

for the edges between the pk ´ 1qth layer and the kth layer in
the binary tree Tn with n “ 2d ´1, and εpk´1, k, dq to denote the couplings between



6.3. Graphical synchronization criteria for undirected complex networks 111

the pk ´ 1qth layer and the kth layer in Tn. The synchronization condition for the
complete binary tree Tn is given in the proposition below.

Proposition 6.1 Under Assumption 6.1, for the complete binary tree Tn with n “ 2d ´ 1

vertices, the global synchronization of system (6.1) is guaranteed if the couplings between
the pk ´ 1qth layer and the kth layer satisfy

εpk ´ 1, k, dq ě

d
ÿ

j“k

pj ´ 1q ˆ 2j´k a, 2 ď k ď d.

Proof: We start with the complete binary tree with two layers d “ 2. Comparing it
with the star S3, we have

LS3 “ Lp1,2q ` Lp1,3q .

From Theorem 6.5, it is easy to obtain the bounds for the edges in T3: εp1,2q ě a, and
εp1,3q ě a.
Compare the complete binary tree with d “ 3 with S7:

LS7 “ Lp1,2q ` Lp1,3q ` Lp1,4q ` Lp1,5q ` Lp1,6q ` Lp1,7q

ĺ Lp1,2q ` Lp1,3q ` 2rLp1,2q ` Lp2,4qs ` 2rLp1,2q ` Lp2,5qs

` 2rLp1,3q ` Lp3,6qs ` 2rL1,3 ` Lp3,7qs

“ p1 ` 2 ˆ 2qLp1,2q ` p1 ` 2 ˆ 2qLp1,3q ` 2Lp2,4q ` 2Lp2,5q ` 2Lp3,6q ` 2Lp3,7q

and for the complete binary tree with d “ 4:

LS15 “ Lp1,2q ` Lp1,3q ` Lp1,4q ` ¨ ¨ ¨ ` Lp1,15q

ĺ p1 ` 2 ˆ 2 ` 3 ˆ 22qLp1,2q ` p1 ` 2 ˆ 2 ` 3 ˆ 22qLp1,3q

` p2 ` 3 ˆ 2qLp2,4q ` p2 ` 3 ˆ 2qLp2,5q ` p2 ` 3 ˆ 2qLp3,6q ` p2 ` 3 ˆ 2qLp3,7q

` 3Lp4,8q ` 3Lp4,9q ` 3Lp5,10q ` 3Lp5,11q

` 3Lp6,12q ` 3Lp6,13q ` 3Lp7,14q ` 3Lp7,15q .

We obtain the weights for the edges in the complete binary tree Tn with n “ 2d ´ 1

by induction, and we postulate

b
1
pk ´ 1, k, dq “

d
ÿ

j“k

pj ´ 1q ˆ 2j´k (6.12)

for the edges of the form pu, 2uq and pu, 2u ` 1q with u “ 2k´2, . . . , 2k´1 ´ 1 where
2 ď k ď d (the edges from the pk ´ 1qth layer to the kth layer).
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Now we use induction to prove our conjecture. Suppose that (6.12) holds for the
complete binary tree Tn with n “ 2d ´ 1. Then we calculate b

1
pk ´ 1, k, d` 1q for the

binary tree with n
1

“ 2d`1 ´1. The depth of Tn1 is d`1. The binary tree Tn1 has one
more layer, and has 2d more vertices which are labeled by v2d , v2d`1, . . . , v2d`1´1. In
order to assign couplings in Tn1 , we compare Tn1 with the star graph S2d`1´1, and
calculate for the edges of the form pu, 2uq and pu, 2u`1q with u “ 2k´2, . . . , 2k´1 ´1

and 2 ď k ď d ` 1 (the edges from the pk ´ 1qth layer to the kth layer):

b
1
pk ´ 1, k, d ` 1q “ b

1
pk ´ 1, k, dq ` d ˆ 2d´k`1

“

d
ÿ

j“k

pj ´ 1q ˆ 2j´k ` d ˆ 2d´k`1

“

d`1
ÿ

j“k

pj ´ 1q ˆ 2j´k.

This shows that (6.12) still holds for the binary tree Tn1 with d ` 1 layers, and hence
by induction we have proved that (6.12) is correct. Thus, for the binary tree Tn

with n “ 2d ´ 1, the weights for the edges of the form pu, 2uq and pu, 2u ` 1q for
u “ 2k´2, . . . , 2k´1 ´ 1 where 2 ď k ď d (the edges from the pk ´ 1qth layer to the
k-th layer) should satisfy εpk ´ 1, k, dq ě

řd
j“k pj ´ 1q ˆ 2j´k a. This completes the

proof. ˝

6.3.3 Application to synchronizability

In this subsection, we look at how to construct a lower bound for λ2pLGq when the
weights of G is fixed and given beforehand. In this case, λ2pLGq is referred to as
the algebraic connectivity (Godsil and Royle 2001) of G and describes how well G
is connected; it has also been used to measure the synchronizability of a coupled
dynamical network (Wu 2003). However, it is usually not so easy to calculate λ2pGq

using local information of graph G. In the following, we propose a way to construct
a lower bound for λ2pGq using the pairwise path information of G, which is inspired
by the graph comparisons done in Theorems 6.3, 6.4 and 6.5.

Measure synchronizability of unweighted graphs

We first assume that G is unweighted and time-invariant, and construct a lower
bound for λ2pGq using bk defined in Theorem 6.4.



6.3. Graphical synchronization criteria for undirected complex networks 113

Theorem 6.6 a) Let bmax denote max1ďkďm bk, where bk “
ř

jąi;kPPij
|Pij |. It holds

that
λ2pLGq ě

n

bmax
;

b) Let b
1

max denote max1ďkďm b
1

k, where b
1

k is defined by (6.9). It holds that

λ2pLGq ě
1

b1
max

.

Proof: a) We compare the complete graph Kn with the union of all the possible paths
in G. In the proof of Theorem 6.4, we have proven that

LKn ĺ

m
ÿ

k“1

bk Lk, where bk “
ÿ

jąi;kPPij

|Pij | .

Since bmax “ max1ďkďm bk, one has

LKn ĺ bmax

m
ÿ

k“1

Lk “ bmax LG .

From Theorem 6.3, bmax G ľ Kn is equivalent to λ2pLGq ě
λ2pLKn q

bmax
“ n

bmax
.

b) We compare the star Sn with the union of the paths p1, jq, j “ 2, . . . , n in G. In the
proof of Theorem 6.5, we have shown that

LSn ĺ

m
ÿ

k“1

b
1

k Lk ,

where b
1

k is defined by (6.9). Since b
1

max “ max1ďkďm b
1

k, one has

LSn ĺ b
1

max

m
ÿ

k“1

Lk “ b
1

max LG .

From Theorem 6.3, one has λ2pLGq ě
λ2pLSn q

b1
max

“ 1
b1
max

. ˝

Remark 6.6 The constructions of a lower bound of λ2pLGq in papers (Rad et al. 2011,
Guattery et al. 1999) are similar to our estimation given by Theorem 6.6 a). However, we
have taken a different approach, following a simpler derivation.

Remark 6.7 Theorem 6.6 b) is obtained through comparing graph G with the star Sn. Oth-
er lower bounds can be obtained similarly if graph G is compared with graphs whose second
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smallest eigenvalues are known beforehand. A proper choice of the compared graphs is help-
ful to obtain tighter lower bounds for λ2pGq and reduce the computational complexity of
comparison. In general, Theorem 6.6 b) is more efficient than a) especially when G is sparse
and large.

Now we give an example to show the effectiveness of the estimations in The-
orem 6.6. We consider the unweighted fractal graph whose topology is shown on
the left of Fig. 6.2. From the calculations in (6.11) and (6.10), we have bmax{n “

maxt65, 27u{10 “ 6.5 and b
1

max “ maxt5, 2u “ 5. Then the calculated lower bounds
for λ2 are 0.1538 and 0.2 according to Theorem 6.6 a) and Theorem 6.6 b) respec-
tively. The actual value of λ2 of this graph is 0.2679. In comparison, one can obtain
the lower bound 4

10ˆ4 “ 0.1 using Mohar’s lower bound (Mohar 1991) λ2 ě 4
nDmax

where Dmax is the diameter of the graph.

Measure synchronizability of weighted graphs

There have been different methods (de Abreu 2007) to estimate the second smallest
eigenvalues of the Laplacian matrices of unweighted graphs, but there is few re-
sult for weighted graphs. In this subsection, we measure the synchronizability of a
weighted network by expanding the result in the previous subsection.

Theorem 6.7 Let the weights of the m edges of G be c1, c2, . . . , cm. Let

b˚
k fi

ÿ

jąi,kPPij

p
ÿ

hPPij

1

ch
q , for 1 ď k ď m. (6.13)

It holds that λ2pLGq ě n
b˚
max

, where b˚
max is the maximum of all b˚

k .

Proof: For each pair of pi, jq where j ą i, we choose one path in the weighted graph
G with two associated vertices i, j. Then from Lemma 6.3, we have

Lpi,jq ĺ p
ÿ

kPPij

1

ck
q
ÿ

kPPij

ck Lk .

We compare the complete graph Kn with the union of all possible paths in the
weighted graph G. Thus we have

LKn “
ÿ

jąi

Lpi,jq

ĺ
ÿ

jąi

¨

˝p
ÿ

kPPij

1

ck
q
ÿ

kPPij

ck Lk

˛

‚
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“

m
ÿ

k“1

¨

˝

ÿ

jąi,kPPij

p
ÿ

hPPij

1

ch
q

˛

‚ck Lk

“

m
ÿ

k“1

b˚
k ck Lk

ĺ b˚
max

m
ÿ

k“1

ck Lk “ b˚
max LG .

From Theorem 6.3, b˚
max G ľ Kn is equivalent to

λ2pLGq ě
λ2pLKnq

b˚
max

“
n

b˚
max

.

Thus we have arrived at the conclusion. ˝

Remark 6.8 Theorem 6.6 a) is a special case of Theorem 6.7, which can be verified by setting
c1 “ c2 “ ¨ ¨ ¨ “ cm “ 1 in (6.13). In this case one obtains b˚

k “
ř

jąi,kPPij
|Pij | from

(6.13). In addition, Theorem 6.7 is obtained through comparing the weighted graph G with
the complete graph with the same vertex set. Other lower bounds can be obtained similarly if
G is compared with other fundamental graphs whose second smallest eigenvalues are known
beforehand.

Now we give an example to show how to use graph comparison to estimate
lower bounds for synchronizability of weighted graphs. We again consider the
fractal graph G10 whose topology is shown on the left of Fig. 6.2, however all
the edges in the graph are weighted in this example. Suppose the weights of the
edges p1, 2q, p1, 3q, p1, 4q are c1, and the weights of the other edges are c2. To sim-
plify the calculations in graph comparison, we choose to compare the fractal graph
G10 with the star S10, rather than with the complete graph K10. In view of Lem-
ma 6.3, we can compare edge p1, 5q in S10 with the weighted edges p1, 2q, p2, 5q in
G10, and obtain that Lp1,5q ĺ p 1

c1
` 1

c2
q pc1 Lp1,2q ` c2 Lp2,5qq. Similarly, we have

Lp1,6q ĺ p 1
c1

` 1
c2

q pc1 Lp1,2q ` c2 Lp2,6qq.
Because of the fractal structure of G10, we only need to focus on the calculations for
the edges p1, 2q, p2, 5q, p2, 6q and thus obtain

LS10 “ Lp1,2q ` Lp1,5q ` Lp1,6q ` . . .

ĺ Lp1,2q ` p
1

c1
`

1

c2
q pc1 Lp1,2q ` c2 Lp2,5qq

` p
1

c1
`

1

c2
q pc1 Lp1,2q ` c2 Lp2,6qq ` . . .
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“ p
3

c1
`

2

c2
q c1 Lp1,2q ` p

1

c1
`

1

c2
q c2 Lp2,5q

` p
1

c1
`

1

c2
q c2 Lp2,6q ` . . . .

So we have b
1

max “ maxt 3
c1

` 2
c2
, 1
c1

` 1
c2

u “ 3
c1

` 2
c2

. Note that the Laplacian matrix of
G10 can be written as LG10 “ c1 rLp1,2q `Lp1,3q `Lp1,4qs ` c2 rLp2,5q `Lp2,6q `Lp3,7q `

Lp3,8q ` Lp4,9q ` Lp4,10qs. Then one has LS10 ĺ b
1

max LG10 . Therefore λ2pLG10q ě
λ2pS10q

b1
max

“ c1c2
2c1`3c2

.

6.3.4 Numerical simulations

In this subsection, we provide a numerical example to illustrate Theorem 6.5. Giv-
en the self-dynamics fp¨q and the inner coupling matrix P , we first need to fig-
ure out the value a in Assumption 6.1. This has been extensively studied in the
literature on control and synchronization of chaotic dynamical systems (Wu and
Chua 1994, Kurths et al. 2003). For instance, two mutually coupled Chua’s cir-
cuits can synchronize by choosing P “ diagt1, 0, 0u for a large enough scalar a ą
maxp´Ga,´Gbq

C1
(Wu and Chua 1994, Corollary 10), where Ga, Gb, C1 are parameter-

s of Chua’s circuits. As another example, two Lorenz systems mutually coupled
through the first component of their states can synchronize when a is greater than
a computable threshold (Belykh et al. 2004, Appendix A). In this simulation, we
consider the network (6.1) consisting of n Lorenz systems coupled through the first
components of their states. To be specific, the dynamics of the network are given by

$

’

’

’

’

&

’

’

’

’

%

9xi “ σ pyi ´ xiq `

n
ÿ

j“1

εijptqxj

9yi “ rxi ´ yi ´ xi zi

9zi “ ´b zi ` xi yi

(6.14)

and the inner coupling matrix is P “ diagt1, 0, 0u. According to (Belykh et al. 2004,
Appendix A), the quantity a ą a˚ “

bpb`1qpr`σq2

16pb´1q
´ σ. We choose the fractal graph

with n “ 10 vertices on the left of Fig. 6.2 to be the network topology used in
the simulation. The bounds for coupling strengths have been calculated and given
by (6.10), and so we set the coupling strengths εp1,2q “ εp1,3q “ εp1,4q “ 5a, and
the coupling strengths for the other edges 2a. The parameters in (6.14) are set to
be σ “ 10, r “ 25, b “ 8{3. The initial states are randomly chosen from r0, 30s.
The three subfigures in Fig. 6.5 show the state of the coupled network (6.14) in its
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x, y, z´dimension respectively. From Fig. 6.5, one can see that the coupled Lorenz
oscillators asymptotically synchronize by adopting the coupling strength allocation
(6.10) obtained according to Theorem 6.5. The simulation results illustrate the cor-
rectness of Theorem 6.5.

0 1 2 3 4 5
−50

0

50

t

x i(t
)

0 1 2 3 4 5
−50

0

50

t

y i(t
)

0 1 2 3 4 5
0

20

40

60

t

z i(t
)

Figure 6.5: The states of the coupled Lorenz oscillators (6.14).

Up to now, we have presented new ways to allocate coupling strengths using
spectral graph theory in order to achieve synchronization in complex networks. The
main idea is to bound the second-smallest eigenvalues of Laplacian matrices asso-
ciated with the given networks by comparing the corresponding network graphs
to complete or other special graphs with the same vertex sets. In the next section,
we will look into applying the proposed methodologies to networks with directed
topologies. The main challenge is then how to deal with the fact that the Laplacian
matrices associated with directed graphs are not guaranteed to be positive semi-
definite anymore.

6.4 Graphical synchronization criteria for directed com-
plex networks

6.4.1 Spectral graph theoretic conditions

First, we investigate the graph theoretic condition for synchronization in directed
complex dynamical networks. In Theorem 6.1, we take graph G0 to be the complete
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graph Kn. Therefore the complete synchronization of system (6.1) is guaranteed if

LKn LG ą aLKn . (6.15)

Note that LKn “ nIn ´ J where J is the n ˆ n all-one matrix. From (6.15), one has

nLG ´ JLG ą aLKn . (6.16)

In the case where G is undirected, (6.16) can be further reduced to G ą a
nKn. How-

ever, in this section we are looking at the more challenging scenario where the net-
works are directed. We will use the following property of directed graphs.

Lemma 6.6 For a directed graph G, the condition nLG ´ JLG ą aLKn
is equivalent to

n
2 pLG ` LT

Gq ´ 1
2 pJLG ` LT

G Jq ą aLKn .

Proof : i) “ñ” From nLG ´JLG ą aLKn , it follows that nLT
G ´ pJLGqT ą aLKn . From

these two inequalities, we have n
2 pLG ` LT

Gq ´ 1
2 pJLG ` LT

G Jq ą aLKn .
ii) “ð” From n

2 pLG ` LT
Gq ´ 1

2 pJLG ` LT
G Jq ą aLKn , we have

xT

ˆ

n

2
pLG ` LT

Gq ´
1

2
pJLG ` LT

G Jq ´ aLKn

˙

x

“ xT

ˆ

n

2
LG ´

1

2
JLG ´

a

2
LKn

˙

x ` xT

ˆ

n

2
LT
G ´

1

2
LT
G J ´

a

2
LKn

˙

x

“ xT pnLG ´ JLG ´ aLKnqx ą 0

for all x P IRn. It implies then that nLG ´ JLG ą aLKn . ˝

Now we present a general graph theoretic synchronization criterion.

Theorem 6.8 Suppose that Assumption 6.1 holds, and that graph G contains a spanning
directed tree. The synchronization manifold of system (6.1) is globally asymptotically stable
if

n

2
pLG ` LT

Gq ´
1

2
pJLG ` LT

G Jq ą aLKn . (6.17)

Proof: From Lemma 6.6, the inequality (6.17) is equivalent to nLG´JLG ą aLKn
. The

latter is equivalent to LKn LG ą aLKn , noting that LKn “ nIn´J . Let G0 in Theorem
6.1 to be Kn. Thus there exist the connected undirected graph G0, which equals
Kn, such that the inequality (6.3) holds. This guarantees that the synchronization
manifold of system (6.1) is globally asymptotically stable. ˝
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In the following, we will show how to interpret (6.17) from the perspective of
graph comparisons. Let Dc

i denote the vertex unbalance (Belykh et al. 2006a) of
vertex i, namely Dc

i “
řn

k“1 εki “
ř

k‰i εki ` εii “
ř

k‰i εki ´
ř

k‰i εik, which is the
difference between the out-degree and in-degree of vertex i. It holds that

J LG “ 1 b
“

´
řn

k“1 εk1 ´
řn

k“1 εk2 . . . ´
řn

k“1 εkn
‰

“ ´1 b
“

Dc
1 Dc

2 . . . Dc
n

‰

And one has

LT
G J “ ´1T b

“

Dc
1 Dc

2 . . . Dc
n

‰T
.

It follows that the matrix ´pJ LG ` LT
G Jq is

»

—

—

–

2Dc
1 Dc

1 ` Dc
2 . . . Dc

1 ` Dc
n

Dc
2 ` Dc

1 2Dc
2 . . . Dc

2 ` Dc
n

. . . . . . . . . . . .

Dc
n ` Dc

1 Dc
n ` Dc

2 . . . 2Dc
n

fi

ffi

ffi

fl

,

where the (ij)th entry is Dc
i `Dc

j for i, j “ 1, . . . , n. Since the sum of the out-degrees
of all the vertices in G is equal to the sum of the in-degrees of all the vertices, we
have

řn
i“1 Dc

i “ 0. The ith row-sum of the matrix ´pJ LG ` LT
G Jq is then nDc

i `
řn

i“1 Dc
i “ nDc

i for i “ 1, . . . , n. Define the n ˆ n matrix

∆ fi diagtnDc
1, nD

c
2, . . . , nD

c
nu.

Then it follows that the matrix aLKn ` 1
2 pJLG ` LT

G Jq ` 1
2 ∆ is symmetric and has

zero row sums. Since the ith row-sum of the matrix LG ` LT
G is ´

řn
k“1 εki “ ´Dc

i

for i “ 1, . . . , n, we know that the matrix n
2 pLG ` LT

Gq ` 1
2 ∆ is symmetric and has

zero row sums and non-positive off-diagonal entries. Now we are ready to compare
the two symmetric matrices aLKn ` 1

2 pJLG ` LT
G Jq ` 1

2 ∆ and n
2 pLG ` LT

Gq ` 1
2 ∆.

From (6.17), we have

1

2
pLG ` LT

Gq `
1

2n
∆ ą

a

n

ˆ

LKn `
1

2a
pJLG ` LT

G Jq `
1

2a
∆

˙

. (6.18)

There are existing results providing sufficient conditions for the global synchro-
nization of system (6.1). We list one such result below.
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Theorem 6.9 (Belykh et al. 2006a) Under Assumption 6.1, the synchronization manifold
of system (6.1) is globally asymptotically stable if

n´1
ÿ

i“1

n
ÿ

jąi

ˆ

εij ` εji
2

˙

pxik ´ xjkq2 ą
a

n

n´1
ÿ

i“1

n
ÿ

jąi

ˆ

ˆ

1 `
Dc

i ` Dc
j

2a

˙

pxik ´ xjkq2

(6.19)

for 1 ď k ď d.

One can easily check that the inequality (6.18) is equivalent to the inequality (6.19)
in Theorem 6.9. Therefore, we have shown that Theorem 6.8 and Theorem 6.9 are
in fact one and the same. Since Theorem 6.8 provides the synchronization criterion
(6.18) in terms of graph comparison, it will be useful later on as we further develop
spectral graph theoretic conditions in this section.

The spectral graph theory discussed in (Spielman 2004) mainly focuses on undi-
rected graphs. It has been demonstrated in Section 6.3 that tools in spectral graph
theory are powerful in utilizing flexibly topological features of a given network.
However, the results developed in Section 6.3 can be applied only to undirected
networks and are thus not general enough. Motivated by (Belykh et al. 2006a), what
we propose to do in the next is to symmetrize the graph G first, and then construct
synchronization criteria on the symmetrized graph using spectral graph theory. To
be more specific, for any pair of unidirectionally coupled vertices i and j, we replace
the directed edge between them by an undirected edge with the weight εij{2 that is
half of the original coupling strength; for any bi-directionally coupled pair of ver-
tices i and j, we replace the two edges between them by an undirected edge with
the coupling strength pεij ` εjiq{2. Let Gs be the obtained symmetrized graph from
G. One can then check that the Laplacian matrix of Gs is LGs “ 1

2 pLG `LT
Gq ` 1

2n ∆.
For the symmetrized graph Gs, consider a set of paths P “ tPij |i, j “ 1, . . . , n, j ą

iu, one for each pair of distinct vertices i and j. Now we use Theorem 6.8 and (6.18)
to construct graph theoretic conditions for the synchronization of network (6.1). We
use EpGsq to denote the set of all the edges of Gs and assume that there are alto-
gether m edges that are labeled by 1, . . . ,m. In the following theorem, we show
that lower bounds on the coupling strengths εk, k “ 1, . . . ,m, can be constructed to
guarantee that the inequality (6.18) holds.

Theorem 6.10 Suppose that Assumption 6.1 holds, and the graph G contains a spanning
directed tree. The synchronization manifold of network (6.1) is globally asymptotically stable
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if

εk ą
a

n
bk, for k “ 1, . . . ,m, (6.20)

where bk “
ř

jąi;kPPij
wpPijq is the sum of the weighted lengths wpPijq of all those paths

Pij in P that contain the edge k that belongs to the symmetrized graph Gs and the weighted
path length wpPijq is defined by

wpPijq fi

#

|Pij |χ
´

1 `
Dc

i `Dc
j

2a

¯

, edgepi, jq R EpGsq ;

1 `
Dc

i `Dc
j

2a , edgepi, jq P EpGsq ,
(6.21)

where for z P IR, the function χpzq “ z if z ą 0, χpzq “ 0 otherwise.

Proof : Since the two matrices LGs and a
n

`

LKn ` 1
2a pJLG ` LT

G Jq ` 1
2a ∆

˘

are symme-
tric and have zero row and column sums, we can compare them as follows.

a

n

ˆ

LKn `
1

2a
pJLG ` LT

G Jq `
1

2a
∆

˙

“
a

n

ÿ

jąi

ˆ

1 `
Dc

i ` Dc
j

2a

˙

Lpi,jq

ĺ
a

n

ÿ

jąi;pi,jqREpGsq

χ

ˆ

1 `
Dc

i ` Dc
j

2a

˙

Lpi,jq `
a

n

ÿ

jąi;pi,jqPEpGsq

ˆ

1 `
Dc

i ` Dc
j

2a

˙

Lpi,jq

(For any pair of vertices i, j, if pi, jq P EpGsq, then we just keep the term
´

1 `
Dc

i `Dc
j

2a

¯

Lpi,jq; if pi, jq R EpGsq, we choose a path Pij in Gs. Using Lemma 6.4,
we compare Lpi,jq with the chosen path Pij .)

ĺ
a

n

ÿ

jąi;
pi,jqREpGsq

¨

˝|Pij |χ

ˆ

1 `
Dc

i ` Dc
j

2a

˙

ÿ

kPPij ;kPEpGsq

Lk

˛

‚

`
a

n

ÿ

jąi;pi,jqPEpGsq

ˆ

1 `
Dc

i ` Dc
j

2a

˙

Lpi,jq
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(We sum up all the weights for Lk where edge k P EpGsq.)

“
a

n

m
ÿ

k“1

¨

˝

ÿ

jąi;kPPij

wpPijq

˛

‚Lk

“
a

n

m
ÿ

k“1

bk Lk

ă

m
ÿ

k“1

εk Lk “ LGs ,

where bk “
ř

jąi;kPPij
wpPijq has been defined above. And the last inequality holds

trivially when εk ą a
n bk for each edge k. ˝

Remark 6.9 Theorem 6.10 presents a coupling strength allocation strategy for the synchro-
nization in a directed complex network. A similar result with slight differences in (6.21) has
been achieved in (Belykh et al. 2006a). Using graph comparison, we have provided a diffe-
rent proof compared with those in (Belykh et al. 2006b, Belykh et al. 2006a). Our approach
utilizes combinatorial features of the graphs associated with the networks, which results in a
much simpler derivation.

Remark 6.10 If G is asymmetric but balanced, then Dc
i “ 0 for i “ 1, . . . , n. From

Theorem 6.10, it follows that network (6.1) can be asymptotically synchronized if εk ą
bk
n a for k “ 1, . . . ,m, where bk “

ř

jąi;kPPij
|Pij |. The result then becomes the same

as Theorem 1 in (Belykh et al. 2006b) in which the connection graph stability method on
directed graphs with vertex balance is discussed.

Theorem 6.10 can be used to find a set of coupling strengths to realize global
synchronization in a network. We describe below an algorithm to achieve this goal.

Algorithm 6.1 Coupling strength allocation in a directed network.
Step 1. Determine the vertex unbalance Dc

i for each vertex.
Step 2. Symmetrize G to obtain the undirected graph Gs.
Step 3. Compare Gs with the corresponding complete graph Kn. For any pair of vertices
i, j, choose a path Pij in Gs. Here, we prefer to choose the shortest paths.
Step 4. For those paths Pij whose lengths are greater than 1, assign the weight 1 `

Dc
i `Dc

j

2a

if 1`
Dc

i `Dc
j

2a ą 0, and zero otherwise. For those paths Pij whose lengths equal 1, assign the

weight 1 `
Dc

i `Dc
j

2a .
Step 5. For each edge k in Gs write down the inequality (6.20).
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Step 6. Solve for the solutions to the obtained set of inequalities, which gives possible com-
binations of coupling strengths.

Remark 6.11 Similar ideas in this algorithm have been discussed in (Belykh et al. 2006a).
The main differences lie in Steps 4 and 5 where we have used graph comparison techniques.
Following (Belykh et al. 2006a), we call this algorithm the generalized connection graph
method and use the abbreviation GCGM in the rest of the chapter.

In the next subsection, we discuss in more detail a new systematic way to allocate
coupling strengths for large networks with local structures.

6.4.2 Networks with local structures

Although GCGM uses the combinatorial features of graphs and sometimes greatly
simplifies computation, it still has two shortcomings:
1) The computational complexity of counting paths grows exponentially as the size
of the network inceases.
2) As the number of inequalities obtained in step 5 increases, it becomes more diffi-
cult, sometimes impossible, to find a solution in step 6.

To address these two shortcomings, we improve the results by looking more
carefully at the networks’ local structures and thus apply graph comparison only
locally. To do so, we need to decompose graphs.

Definition 6.2 (Wu 2007) The Frobenius normal form of the Laplacian matrix of a directed
graph G is:

LG “ M

»

—

—

—

–

B1 B12 . . . B1k

B2 . . . B2k

. . .
...

Bk

fi

ffi

ffi

ffi

fl

MT (6.22)

where M is a permutation matrix and Bi are square irreducible matrices.

Lemma 6.7 (Wu 2007) The matrices Bi in (6.22) are uniquely determined by LG although
their ordering can be arbitrary as long as they follow a partial order induced by ▹ that is
defined by Bi ▹Bj ô Bij ‰ 0.

The uniqueness of the matrices Bi can be seen from the fact that these matrices cor-
respond to the strongly connected components of graph G. The decomposition of a
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Laplacian matrix into its Frobenius normal form is thus equivalent to the decompo-
sition of G into its strongly connected components. The partial order in Lemma 6.7
leads to the definition of condensation directed graphs as follows.

Definition 6.3 (Brualdi and Ryser 1991) The condensation directed graph of a directed
graph G is constructed by assigning a vertex to each strongly connected component of G
and an edge between two vertices if there exists an edge of the same orientation between the
corresponding strongly connected components of G.

The construction of condensation graphs can be done in linear time using stan-
dard graph searching algorithms (Tarjan 1972). We give an example of a direct-
ed graph and its corresponding condensation graph in Fig. 6.6. The condensation
graph has the following property.

Lemma 6.8 (Wu 2007) The condensation directed graph of G contains a spanning directed
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tree if and only if G contains a spanning directed tree.

The following synchronization criterion can be derived directly from Theorem
4.20 and Corollary 4.21 in (Wu 2007).

Lemma 6.9 (Wu 2007) Under Assumption 6.1, if the graph G contains a spanning directed
tree, then the network (6.1) synchronizes for sufficiently large coupling strength.

The idea of graph decomposition motivates us to design the following algorithm
to obtain the sets of coupling strengths for global synchronization using only local
topological information. To avoid notational confusion and distinguish from the
coupling strengths obtained by GCGM, we use d to denote the coupling strengths
to be found using graph decomposition.

Algorithm 6.2 Coupling strength allocation in a decomposable directed network.
Step 1. Decompose G into its k, k ď n, strongly connected components C1,C2, . . . ,Ck and
the partial ordering is given by Lemma 6.7.
Step 2. For Ck, use the GCGM algorithm in the subsection 6.4.1 to obtain a lower bound of
the coupling strength dk to synchronize the systems corresponding to the vertices in Ck.
Step 3. In descending order for i “ k ´ 1, . . . , 1, treat Ci one by one. Replace all
those vertices in Ci`1, . . . ,Ck, by a single vertex 0. And keep the edges between Ci and
Ci`1, . . . ,Ck. Thus we arrive at an condensed component C̃i. Use the GCGM algorithm to
obtain a lower bound of the coupling strength di for synchronization in C̃i.
Step 4. Combine di to get d.

The theorem below guarantees the correctness of Algorithm 6.2.

Theorem 6.11 Suppose that Assumption 6.1 holds, and the graph G contains a spanning
directed tree. The synchronization manifold of network (6.1) is globally asymptotically stable
if the coupling strengths for all the edges in G are allocated according to Algorithm 6.2.

Proof: We need to prove the synchronization of network (6.1) under the coupling
strength allocation according to Algorithm 6.2. Without loss of generality, we as-
sume that M is an identity matrix in the Frobenius normal form of LG. Let x fi

rxT
1 , x

T
2 , . . . , x

T
n sT . Let x̃i be the part of the state vector x corresponding to Bi for

i “ 1, . . . , k. For vector x̃i “ rx̃T
i1, . . . , x̃

T
ils

T , we use F px̃iq to denote

rfT px̃i1q, fT px̃i2q, . . . , fT px̃ilqsT .

Then the dynamics of px̃T
1 , . . . , x̃

T
k´1, x̃

T
k q can be written as (6.21). From (6.21), the
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»

—

—

—

—

—

—

–

9̃x1

9̃x2

...
9̃xk´1

9̃xk

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

F px̃1q

F px̃2q

...
F px̃k´1q

F px̃kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

–

B1 B12 . . . B1k

B2 . . . B2k

. . .
...

Bk´1 Bk´1,k

Bk

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

b P ¨

»

—

—

—

—

—

—

–

x̃1

x̃2

...
x̃k´1

x̃k

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.21)

state equation for x̃k is

9̃xk “ F px̃kq ` pBk b P qx̃k ; (6.24)

and the state equation for x̃k´1 is

9̃xk´1 “ F px̃k´1q ` pBk´1 b P qx̃k´1 ` pBk´1,k b P qx̃k . (6.25)

For the component Ck, we obtain a lower bound of the coupling strength dk to
synchronize the oscillators in (6.24) by GCGM. Suppose xs P IRd is the synchronous
state for the oscillators in (6.24), and then the dynamics for xs can be described by

9xs “ fpxsq ` ϕsptq , (6.26)

where ϕsptq Ñ 0 as t Ñ 8. Let 1 be the column vector of all ones with a proper
dimension. Then we have px̃k ´ 1 b xsq Ñ 0 as t Ñ 8. Let ϕkptq fi pBk´1,k b

P qpx̃k ´ 1 b xsq. Then (6.25) can be rewritten as

9̃xk´1 “ F px̃k´1q ` pBk´1 b P qx̃k´1

` pBk´1,k b P qp1 b xsq ` ϕkptq ,
(6.27)

where ϕkptq satisfies limtÑ8 ϕkptq “ 0.
Now we replace all those vertices in Ck by a single vertex 0 and collect their dynam-
ics into that of a single system whose state is xs. Keeping the edges between Ck and
Ck´1, we arrive at a condensed component C̃k´1 whose vertex set consists of the
vertex 0 and the vertices in the component Ck´1. The dynamics of the condensed
component C̃k´1 are described by (6.26) and

9̃xk´1 “ F px̃k´1q ` pBk´1 b P qx̃k´1 ` pBk´1,k b P qp1 b xsq . (6.28)

According to the graph decomposition, there are edge(s) from the vertex 0 to the
vertices in Ck´1, but no edge in the opposite direction. Thus, the states of the oscilla-
tors in C̃k´1 will synchronize to xs if the coupling strengths in C̃k´1 are big enough.
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For the component C̃k´1, we can obtain a lower bound of coupling strength dk´1

by GCGM such that the oscillators in C̃k´1 synchronize. From the subsection 6.4.1,
such coupling strength condition for graph C̃k´1 guarantees that LK LC̃k´1

ą aLK,
where K is the complete graph with the same vertex set of graph C̃k´1, which fur-
ther guarantees that (6.2) in Lemma 6.1 holds. In addition, we have shown that
limtÑ8 ϕkptq “ 0. Hence we are ready to use Theorem 4.4 in (Wu 2007). From it,
one has that the oscillators coupled by the dynamics (6.26) and (6.27) synchronize; to
be more specific, the states of those oscillators asymptotically converge to xs. Now
we can replace all those vertices in Ck´1,Ck by a single vertex 0 and collect their
dynamics into that of a single system whose state is xs.
Then, we repeat the same operations for the components Ci for i “ k ´ 2, . . . , 1 in
descending order. We treat Ci one by one, replace all those vertices in Ci`1, . . . ,Ck,
by a single vertex 0, and keep the edges between Ci and Ci`1, . . . ,Ck. Thus we ar-
rive at a condensed component C̃i whose vertex set consists of the vertex 0 and the
vertices in Ci. Using the GCGM algorithm to obtain a lower bound for the coupling
strength di for synchronization in C̃i, we guarantee that the states of the oscillators
in C̃i asymptotically synchronize to xs.
Finally, we get all the lower bounds dk, dk´1, . . . , d1 for the components Ck, C̃k´1,

. . . , C̃1. Under these coupling strengths, the states of the oscillators of the whole
network asymptotically synchronize. ˝

6.4.3 Numerical simulations

We use an example to show the effectiveness of the algorithm. We consider the
directed network on the left of Fig. 6.6. For simplicity, we choose to use an identical
coupling strength in the network. We follow all the four steps. First, we decompose
G into C1,C2,C3,C4 as shown in Fig. 6.6. And thus we have the partial orderings
B2 ▹ B3 ▹ B4 and B1 ▹ B3 ▹ B4. The condensation graph is shown on the right of
Fig. 6.6. For C4, using the GCGM algorithm, we calculate that d4 ą 3

2 a. For C3,
we obtain C̃3 shown in Fig. 6.7 and use the GCGM algorithm to obtain d3 ą 3a.
Similarly, we get d2 ą 3a for C̃2 and d1 ą 3a for C̃1. Finally, taking the maximum
over d1 to d4 together, we conclude that the global synchronization of the network
associated with G can be realized under the coupling strength d ą 3a.
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6.5 Concluding remarks

In this chapter we have presented new ways to allocate coupling strengths using
spectral graph theory in order to achieve synchronization in complex networks. The
main idea is to bound the second-smallest eigenvalues of the Laplacian matrices as-
sociated with the given networks by comparing the corresponding network graphs
to complete or other special graphs with the same vertex sets. The obtained results
can simplify the computation and be applied to growing networks. We have also
presented algorithms to allocate coupling strengths to achieve synchronization in
directed complex networks using graph comparison. By exploiting the symmetriza-
tion operation, we have dealt with the challenge that the Laplacian matrices associ-
ated with directed graphs are not guaranteed to be positive semi-definite anymore.
The obtained algorithms can be applied to large but decomposable networks.



Chapter 7

Conclusions

This final chapter summarizes the main results that have been presented in this
thesis and provides recommendations for future research.

7.1 Conclusions

This thesis has discussed cooperative control of complex multi-agent networks fac-
ing information constraints. In particular, this thesis has taken into account the in-
formation constraints caused by quantized local information, uncertainties and het-
erogeneities in individual dynamics, and local knowledge on network topologies.
The goal of this thesis has been to address the following three important issues in
cooperative control: synchronization in multi-agent systems or complex dynamical
networks, formation keeping of autonomous mobile agents, and trajectory tracking
in complex multi-agent systems.

This thesis has first studied synchronizing a team of multi-agent systems under
quantized communications. Chapter 3 has discussed how different quantizers affect
the performances of consensus-type schemes for second-order dynamics to achieve
synchronized collective motions. The performances of the logarithmic and uniform
quantizers have been studied, respectively. Under the logarithmic quantizers and
with symmetric neighbor relationships, it has been proven that the agents velocities
and positions get synchronized asymptotically. Under the chosen symmetric uni-
form quantizers and with symmetric neighbor relationships, the agents velocities
converge to the same value asymptotically while the differences of their positions
converge to a bounded set. Moreover, undesirable system behaviors, e.g., oscilla-
tions or unbounded trajectories, may arise when asymmetric uniform quantizers or
asymmetric neighbor relationships are adopted.

Chapter 4 has studied formation stabilization for teams of autonomous mobile
agents when the agents’ range measurements are coarse. A coarsely quantized con-
trol scheme based on the classical gradient-based formation-control strategies has
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been proposed to stabilize three agents moving in a plane to the desired triangular
formations. It has been proven that the expected convergence performance is al-
most global except the collinear initial positions of the three agents. Different from
the existing stability results on triangular formations with precise range measure-
ments, the convergence takes place within finite time and the settling time can be
determined by the geometric information of the initial shape of the formation.

Chapter 5 has presented the trajectory tracking and output synchronization in
a group of uncertain heterogeneous linear systems. We have tackled the problem
of designing decentralized controllers able to track prescribed reference signals ge-
nerated by exosystems under the restriction that not all the systems can access the
information available at the exosystem. Under the assumption that each leader (ex-
osystem) has a directed path to its follower systems, it has been shown that there
exist decentralized controllers which achieve the desired regulation task in the pres-
ence of large but bounded uncertainties in the systems models.

Chapter 6 has discussed synchronizing a complex dynamical network by utiliz-
ing its flexibly topological features. Using spectral graph theory, new methodologies
to allocate coupling strengths have been proposed to guarantee complete synchro-
nization in complex networks. The main idea has been to bound the second-smallest
eigenvalues of the Laplacian matrices associated with the given networks by com-
paring the corresponding network graphs to complete or other typical graphs with
the same vertex sets. The obtained results can simplify the computation and be ap-
plied to growing networks. This chapter has also presented algorithms to allocate
coupling strengths to achieve synchronization in directed complex networks using
graph comparison. By exploiting the symmetrization operation, we have dealt with
the challenge that the Laplacian matrices associated with directed graphs are not
guaranteed to be positive semi-definite anymore. The obtained algorithms can be
applied to large but decomposable networks.

7.2 Recommendations for future research

We identify three directions for subsequential research.
Consensus under communication constraints. This thesis has dealt with the limit-

ed bandwidth that is available for the communications among agents and analyzed
quantization effects on cooperative control in multi-agent networks. More commu-
nication constraints will be taken into consideration in network models in future
research, such as saturation of the transmitted signals, time-delay caused by finite
transmission speeds, and random changes in network topologies. In addition, this
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thesis has focused on the synchronization or consensus problem, under the condi-
tion that all the agents update their states synchronously. However, there might be
no such a global clock in real applications. This motivates extending the study in
this thesis to the case with asynchronous updates. That is to say, each agent can up-
date its state disregarding other agents’ updating times. It is a challenging problem
if one considers a combination of different communication constraints.

Different formation patterns under coarse measurements. Chapter 4 has studied the
cyclic triangular formations with coarse range measurements. The stabilization of a-
cyclic triangular formations and formations through with angle and range measure-
ments, can be further investigated when one considers limited sensing capabilities
of the agents. Those elementary triangular formations will be carefully studied us-
ing the proposed schemes with coarse quantization. Based on rigid graph theory in
(Krick et al. 2009), those schemes are applicable to larger rigid formations. Besides
triangular formations, formation on circles or lines, which are inspired by intelligent
transport systems, could be further studied using coarse measurements.

Application issues of synchronization criteria for complex dynamical networks. The cur-
rent work in this thesis has focused on proposing new methodologies of coupling
strength allocations to synchronize a network. It is of interest to use the constructed
synchronization criteria to develop optimal or sub-optimal solutions for adding or
deleting edges in a network to achieve better synchronizability. It should be fur-
ther studied to apply the results to practical engineered complex networks, such as
the synchronization of generators in electric power grids and data fusion for signal
processing in sensor networks. For large scale complex networks, it is complicated
to calculate the bounds for coupling strengths from graph comparison. Thus it is
appealing to develop more efficient algorithms to perform the calculations. At last,
the tools in spectral graph theory might be helpful to understand how the whole
eigenvalue spectra of Laplacians affects synchronization behaviors or synchroniza-
tion processes in dynamical complex networks.
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Summary

In the past two decades, cooperative control of complex multi-agent networks has
been a hot topic in many disciplines, including engineering, biology, social science,
and so on. A central topic is to coordinate in a distributed fashion the agents in the
whole network only using local information that is available to each agent. The ad-
justments of each agent’s individual behavior in response to their neighbors’ may
lead to desired collective behaviors at the network level. Along this line, the focus
of this thesis is cooperative control of complex multi-agent networks facing infor-
mation constraints.

We first study how quantized information affects collective behaviors in a net-
work. We study quantization effects on the performances of consensus-type algo-
rithms for second-order multi-agent systems. The performances under the loga-
rithmic and uniform quantizers are investigated. Under the logarithmic quantizers
and with symmetric neighbor relationships, it is proven that the agents velocities
and positions get synchronized asymptotically. Under the chosen symmetric uni-
form quantizers and with symmetric neighbor relationships, the agents velocities
converge to the same value asymptotically while the differences of their positions
converge to a bounded set. Moreover, undesirable system behaviors, e.g., oscilla-
tions or unbounded trajectories, may happen when asymmetric uniform quantizers
or asymmetric neighbor relationships are adopted.

In addition, we study coarse quantization effects on the performances of the clas-
sical gradient-based formation-control strategies for teams of autonomous mobile
agents. We focus on the formation problem when the agents’ range measurements
are coarse. Similar to the existing stability results for triangular formations with pre-
cise range measurements, it is proven that under coarse range measurements, the
convergence to the desired formation is almost global except for initially collinearly
positioned formations. More importantly, we are able to make stronger statements
that the convergence takes place within finite time and that the settling time can be



determined by the geometric information of the initial shape of the formation.
We study how to overcome heterogeneities of agents to synchronize a network in

which the individuals are associated with different uncertainties. We consider the
problem in which multiple coupled agents described by heterogeneous uncertain
linear systems aim at tracking one or more reference signals generated by given ex-
osystems. We consider information constraints that not all the agents can get direct
access to the exosystems. To tackle this problem, the reference signals are recon-
structed via local interaction among the agents themselves and between agents and
the exosystems in accordance with the given communication graph. Then decen-
tralized robust controllers that use the reconstructed reference signals are designed
and are shown to result in a closed loop tracking the prescribed reference signals.

In the end we study how to allocate coupling strengths for interactions only us-
ing local network topological information to guarantee the global synchronization
in a network given the pairwise synchronizability of any two coupled agents. Using
spectral graph theory, new methodologies to allocate coupling strengths are pro-
posed to guarantee complete synchronization in complex networks. The key step is
that all the eigenvalues of the Laplacian matrix associated with a given network can
be estimated by flexibly utilizing topological features of the network. The proposed
methodologies enable the construction of different coupling-strength combinations
in response to different knowledge about sub-networks. We also present algorithms
to allocate coupling strengths, using graph comparison, to achieve synchronization
in directed complex networks. For large directed networks that can be decomposed
into a set of smaller strongly connected components, we apply the methodology at
the local level to improve computational efficiency.



Samenvatting

In de afgelopen twee decennia is coöperatief regelen van complexe multi-agent
netwerken een actueel onderwerp geweest in veel disciplines, waaronder techniek,
biologie, sociale wetenschappen, enzovoort. Het centrale onderwerp is het coördi-
neren van de agenten op een gedistribueerde manier met alleen gebruik makend
van informatie dat lokaal beschikbaar is voor elke agent. Aanpassingen van het
individuele gedrag van elke agent als reactie op hun buren zou kunnen leiden tot
gewenst collectief gedrag op netwerk niveau. Soortgelijk, is de focus van dit proef-
schrift het coöperatief regelen van complexe multi-agent netwerken met informatie
restricties.

We onderzoeken eerst hoe gekwantificeerde informatie het collectieve gedrag in
een netwerk beı̈nvloedt. We bestuderen kwantisatie effecten op de prestaties van
consensus-type algoritmes voor tweede-orde multi-agent systemen. De prestaties
onder de logaritmische en uniforme kwantisatoren zijn onderzocht. Onder de loga-
ritmische kwantisatoren met symmetrische buurrelaties is het bewezen dat de snel-
heden en posities van de agenten asymptotisch synchroniseren. Onder de gekozen
symmetrische uniforme kwantisatoren en met symmetrische buurrelaties converg-
eren de snelheden van de agenten asymptotisch naar dezelfde waarde terwijl de
verschillen van hun posities convergeren naar een begrensde verzameling. Boven-
dien kan ongewenst systeemgedrag, zoals oscillaties of onbegrensde trajecten, op-
treden wanneer asymmetrische uniforme kwantisatoren of asymmetrische buurre-
laties worden aangenomen.

Daarnaast bestuderen we grove kwantisatie effecten op de prestaties van de
klassieke gradiënt-gebaseerde strategieën voor formatieregeling van teams van au-
tonome mobiele agenten. Wij richten ons op het formatie probleem wanneer de
afstandsmetingen van de agenten grof zijn. Vergelijkbaar met de bestaande sta-
biliteitsresultaten voor driehoekige formaties met precieze afstandsmetingen, is het
bewezen dat onder grove afstandsmetingen de convergentie naar de gewenste for-



matie vrijwel globaal is, behalve voor initiële collineaire gepositioneerde formaties.
Belangrijker, we zijn in staat sterkere statements te maken dat de convergentie plaat-
svindt binnen eindige tijd en dat de convergentietijd bepaald kan worden door de
geometrische informatie over de initiële vorm van de formatie.

Verder onderzoeken we hoe we de heterogeniteit van de agenten kunnen over-
winnen wanneer we een netwerk synchroniseren waarin de individuen worden ge-
associeerd met verschillende onzekerheden. We beschouwen het probleem waarbij
meerdere gekoppelde agenten, beschreven door heterogene onzeker lineaire sys-
temen, zijn gericht op het volgen van één of meer referentiesignalen gegenereerd
door gegeven exogene systemen. We beschouwen de informatie restricties dat ni-
et alle agenten rechtstreeks toegang tot de exogene systemen kunnen krijgen. Om
dit probleem aan te pakken zijn de referentiesignalen gereconstrueerd via lokale in-
teractie tussen de agenten onderling en tussen agenten en de exogene systemen in
overeenstemming met de gegeven communicatie graaf. Gedecentraliseerde robu-
uste regelaars die de gereconstrueerde referentiesignalen gebruiken zijn ontworpen
en er wordt aangetoond dat ze resulteren in het volgen van de voorgeschreven ref-
erentiesignalen in gesloten lus.

Op het einde bestuderen we hoe we de koppelingssterktes kunnen bepalen voor
interacties, enkel gebruik makend van topologische informatie van het lokale net-
werk, zodat globale synchronisatie gegarandeerd wordt in een netwerk gegeven de
paarsgewijze synchronisatie van iedere twee gekoppelde agenten. Met behulp van
spectrale grafentheorie zijn nieuwe methodieken voorgesteld om koppelingssterk-
tes te verdelen die volledige synchronisatie garanderen in complexe netwerken. De
belangrijkste stap is dat alle eigenwaardes van de Laplaciaanse matrix gekoppeld
aan een gegeven netwerk kunnen worden geschat door flexibel gebruik te mak-
en van topologische eigenschappen van het netwerk. De voorgestelde methodiek
maakt de constructie van verschillende combinaties van koppelingssterktes mo-
gelijk, afhankelijk van de verschillende kennis over de subnetwerken. We presen-
teren algoritmes, gebruik makend van graaf vergelijkingen, om koppelingssterktes
toe te wijzen die synchronisatie in gerichte complexe netwerken bereiken. Voor
grote gerichte netwerken die kunnen worden ontbonden in een verzameling k-
leinere sterk verbonden componenten passen we de methodiek op lokaal niveau
toe om de computationele efficiëntie te verbeteren.


