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Topic

Supply demand matching at an economic level: distributed optimal
control via dual decomposition.

Briefly, a power systems approach via energy based modeling. Useful
for stability and stabilization, also for optimization, pricing, etc.?

Two decoupled layers?
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Past and future power grid
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Outline

1 Distributed optimal control of the power grid
The production side
Demand side control

2 Market embedding

3 Grid integration
Distributed control of the gas grid
Distributed control with power to gas facilities

4 The physics of the power grid
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An example project: The Flexines Project

Gas important in Groningen area, micro-CHP of interest for
distributed generation.

Business case: Estimation that in 2020 1 million µCHP units
in the Netherlands, in 2030 4 million.

Jacquelien Scherpen Smart energy sytems ECC15, 15-17 July, Linz 6 / 49



The Flexines Project

Goal Develop Energy Management System (EMS) based on prices, helping
user to regulate costs.

Role Network balance and prices.
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The Flexines Project

Goal Develop Energy Management System (EMS) based on prices, helping
user to regulate costs.

Role Network balance and prices.

Local production, lower
transmission losses.
No longer centralized top-down
control.
End users also producers,
prosumers.
Stability of the network.
Need for coordination.

Jacquelien Scherpen Smart energy sytems ECC15, 15-17 July, Linz 7 / 49



Smart grid experiment in suburb Groningen

Place: An area in Groningen.
Field test with Power-Matcher concept.
Households with controllable devices
(washing machines, heat pump, µCHP,
batteries, solar panels, etc.)
Multi-agent accumulating bid curves in
a tree structure. Microeconomics used
to determine equilibrium price.
No forecasting included.
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Another alternative: Distributed control

Interested in an alternative way of
coordination.
Distributed control → Local price
communication between neighbors.

The micro Combined Heat Power
(µCHP) system is an option for local
production (e.g., Houwing et al. 2011).

Overall efficiency of the µCHP can be
as high as 90%.
Electrical output is typical 1kWh.
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Network control issues

Imbalance zero.
Avoid peaks → may allow more
connections on one transformer.
Lower transmission losses → local
delivery.
Delivery certainty.
Local optimization versus global
optimization.
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Problem formulation

Minimize imbalance and costs of production given the imbalance equations
per household, i.e., minuΣxT x + uTu.

xi [k] is imbalance information household i at time k . Then

xi (k + 1) = Aiixi (k) +
∑

Aijxj(k) + u(k) + wi (k)

xi imbalance information, wi change in demand (white noise), ui change in
production. NB: real imbalance x̃i : Aij = 0, Aii = 1.

A =


∗ 0 0 ∗ 0
∗ ∗ 0 0 0
∗ 0 ∗ 0 0
∗ 0 ∗ ∗ ∗
0 0 0 ∗ ∗


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Network model - Information weights

// i − 1 Ai,i−1 //

Ai−1,i−1
		

i Ai+1,i //

Ai,i




i + 1 //

Ai+1,i+1
		

R1 Aij 6= 0 if and only if information is exchanged from agent j to agent i .
R2 All weights are non-negative: Aij ≥ 0, i , j = 1, . . . , n.
R3 All columns sum up equal to one:∑n

i=1 Aij = 1, j = 1, . . . , n.
R4 The graph corresponding to information matrix A is strongly

connected.

Consequence, if x̃(0) = x(0), then
n∑

i=1

xi (k) =
n∑

i=1

x̃i (k), ∀ k ≥ 0,

where x̃ is the real imbalance, and x the imbalance information.
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Dual-decomposition and sub-gradient iterations

Game theoretic interpretation from economics literature, dual decomposition
in optimization treated in e.g.
(Boyd and Vandenberghe 2004).
Based on price mechanisms in linear quadratic team theory and dynamic
dual decomposition for distributed control,
(Rantzer 2007,2009).

“Distributed model predictive control with suboptimality and stability
guarantees” (Giselsson and Rantzer 2013).

Recently applied to production side control with micro CHP’s and heat
pumps, (Larsen, van Foreest, Scherpen, 2013, 2014).
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From a centralized MPC to a distributed MPC

Central MPC

min
û,x̂

k+N∑
τ=k

n∑
i=1

li (x̂i (τ), ûi (τ))

s.t. for all i , τ

x̂i (τ + 1) = Aii x̂i (τ) +
∑
j∈Ni

Aij x̂j (τ) + Bii ûi (τ),

x̂i (τ)τ=k= xi (k),

x̂i (τ)∈ Xi , ûi (τ)∈ Ui ,

Distributed MPC

min
ûi ,x̂i ,v̂i

k+N∑
τ=k

V i
agent

s.t. for all τ it holds:
x̂i (τ + 1) = Aii x̂i (τ) + v̂i (τ) + Bii ûi (τ)

x̂i (τ)τ=k= xi (k),

x̂i (τ)∈ Xi , ûi (τ)∈ Ui ,

with sub-gradient iterations
λ̂i,r+1(τ) =

λ̂i,r (τ) + γi,r [v̂i,r (τ)−
∑

j∈Ni
Aij x̂j,r (τ)]

V i
agent =

(
li (x̂i (τ), ûi (τ)) + λ̂i (τ)v̂i (τ)−

∑
j∈Ni

λ̂j(τ)Aji x̂i (τ)
)
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li (x̂i (τ), ûi (τ)) + λ̂i (τ)v̂i (τ)−

∑
j∈Ni

λ̂j(τ)Aji x̂i (τ)
)

Jacquelien Scherpen Smart energy sytems ECC15, 15-17 July, Linz 14 / 49



Our electricity grid

Current grid:

Possible fully distributed topology:
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Networks of households with µCHP and heat pumps

Heat demand is leading, i.e., it is a constraint that the heat demand
has to be met with local devices.
Constraints on production side, i.e., µCHP, and heat pump (off-time,
not on for very small demand, maximum production level, etc.), of
which some are non-convex.
Information exchange with neighbors.

Via game theory and dual decomposition price mechanism
interpretation.
Control of the imbalance can be done fully distributed at each
household with only information of the neighbors.
Implementation feasible, imposing constraints.
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Realistic electrical demand obtained from field tests
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Optimal control u(k)
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Optimal control u(k)

Zoom
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Summary of production side

By embedding the electrical power grid in the dual decomposition framework
distributed suboptimal control of decentralized power generation can be
achieved.

Method can also capture current network structure.

Information from physical far away neighbours set to zero. This is promising
with respect to computational complexity, and reduces transportation costs.

Propose that the structure of the network in the future may change when
there is a high share of controllable decentralized generation present.

Published in IEEE Transactions on Smart Grid (2013, 2014), and Applied
Mathematical Modelling (2014).
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Extensions

To do: feasible, and optimal storage topology to be incorporated in
the modeling.
To do: price interpretation. Shadow prices are marginal costs made to
decrease limitations and circumvent bottle necks. What are real
prices?
How to involve demand control? Include additional models.
Example: demand side control with a washing machine (Larsen et al.,
2013).
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A network of households with Washing Machines
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Eletric demand for 250 households
type 1
type 2
type 3
type 4
type 5
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Demand Pattern Washing Machine 

Decide about best starting time for washing
machine:

Suppose 50 % of the households do one wash
per day

Explore flexibility

The household specifies end time Tfinish

Flatten net power load
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Goal

The households in the network is a subset of all households in the
Power Network
Two-way communication
Global goal: flatten total power demand in the network
Local decision: when to turn on the Washing Machine

Jacquelien Scherpen Smart energy sytems ECC15, 15-17 July, Linz 22 / 49



Network model

// i − 1 Ai,i−1 //

Ai−1,i−1
		

i Ai+1,i //

Ai,i




i + 1 //

Ai+1,i+1
		

n households
Demand: di (k) = fi (k) + gi (k)

Dynamics of Demand: di (k + 1) = di (k) + ui (k) + wi (k)

Change in washing machine demand: ui (k) = fi (k + 1)− fi (k)

Change in rest of demand: wi (k) = gi (k + 1)− gi (k)

Demand information:
xi (k + 1) = Aiixi (k) +

∑
æ∈Ni

Aijxj(k) + ui (k) + wi (k)
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Washing machine model - constraints ui(k)

1 not loaded → can not run
2 not running → electric demand equals zero
3 starting → run until end of cycle
4 running → follow the demand pattern
5 at end of cycle → it stops and gets unloaded
6 loaded → forced to be finished within Tfinish time-steps
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Introduce binary variables and IF AND statements

δi (k) =

{
1 running,
0 otherwise,

Num 3 as an example:

δi (k) = 1
∧

ti ,on(k) < Tprogram ⇒ δi (k + 1) = 1

Implemented as:

δ̂i (τ)Tprogram − t̂i ,on(τ) ≤ δ̂i (τ + 1)Tprogram
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Settings

50 % load a wash
Wash must finish before:
Ti ,f = 4 h 40 minutes
Wash: 1h 30 minutes
∆k = 7 minutes
Simulation-time: Tend = 7h
V =

∑Tend
k=0

∑n
i=1[xi (k)− a]2

a = 0.5 kW
γi ,r = 0.001
|λi ,r (τ)− λi ,r−1(τ)| < 0.05
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w
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Demand Pattern Washing Machine 

A =



0.6 0.2 0 0 · · · 0.2
0.2 0.6 0.2 0 · · · 0
0 0.2 0.6 0.2 · · · 0
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.
0 · · · 0 0.2 0.6 0.2

0.2 · · · 0 0 0.2 0.6



NB: non-convexity!
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20 households - 10 washing machines
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Green line: total demand. Blue dotted line: non-shiftable demand. Red
dotted line: demand from washing machines.

Computations are well scalable.
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Demand side control for washing machine feasible

Further study
Must choose information exchange matrix A wisely.
Multiple types of devices.
Connect to local production of power as presented before. Ongoing
work.

Scalability of simulations, so far simulations up to 10.000 households
via parallel implementation goes well.
Combination of hierarchical scheduling methods with distributed
control, embedding in market structure → fit in Universal Smart
Energy Framework.
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Market embedding

Market in the Netherlands deregulated, separate price for network
transport and energy delivery.
Transport can be accounted for by choices in A matrix, i.e., low weight
corresponds to expensive transport.
However, supplier market is deregulated, physical neighbors may have
different suppliers → how to embed distributed control algorithms?
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Market embedding

Ongoing work to embed distributed algorithms in USEF (Universal Smart
Energy Framework) → Collaboration within a consortium.
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USEF in the operation phase

Imbalance 
market

Optimi-
zation
BRP 1

Optimi-
zation
BRP 2

Optimi-
zation
BRP n

Optimi-
zation 
Agg 1

Optimi-
zation 
Agg 2
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… 

… 

control signal
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Prosumer 
2
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Prosumer 
n

… 

control signal

Congestion 
detection

DSO

control signal

Imbalanc
e 

detection
TSO

Heat 
pump or 
micro-

CHP

Other 
Flexible 

appliances

control signal
control signal

Day ahead planning

 

Ongoing work:
Extra aggregator layer. Distributed
control per layer, combined distributed
and hierarchical control, how to
guarantee performance?

Goal function initialized from day ahead
planning, and then adapted in the
operation phase depending on the real
loads. Depends on both fixed and
flexible load. How to embed?
Role of DSO, put capacity limitations in
constraints. Feasibility analysis needed.
Collaboration between market parties?
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Ongoing work:
Extra aggregator layer. Distributed
control per layer, combined distributed
and hierarchical control, how to
guarantee performance?
Goal function initialized from day ahead
planning, and then adapted in the
operation phase depending on the real
loads. Depends on both fixed and
flexible load. How to embed?
Role of DSO, put capacity limitations in
constraints. Feasibility analysis needed.

Collaboration between market parties?
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Outline

1 Distributed optimal control of the power grid
The production side
Demand side control

2 Market embedding

3 Grid integration
Distributed control of the gas grid
Distributed control with power to gas facilities

4 The physics of the power grid
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Distributed control of the gas grid

Smart gas grid project.

Local farmers produce biogas.

Optimize real costs.

High, medium and low pressure gas grid.

What is the optimal size of storage?

Inclusion of lorry’s picking up gas from farmers.

Micro-grid for farmers, and connection to low pressure grid plus lorry’s to
control capacity. Alkano et al., 2014.
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p2
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Storage
z1

u1
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Compressing

Low pressure
domestic gas grid
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Distributed control with power to gas facilities

Power to gas offers opportunities for storage of power in the form of
hydrogen.
Can be done locally.
Hydrogen can be used for mobility/industry, injected into the natural
gas grid (limited), or reconverted into electrical power.
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Distributed control with power to gas facilities

Schematically, with distributed PtG facilities:

Solar 

Wind 

Other  

renewable 

Electrolyser 

Fuel cell Storage 

Mobility/industry Flaring 

Gas grid Power grid 

Hydrogen 

Presentation tomorrow. Two layer optimization problem: maximize
PtG’s profit, and DSO’s of three grids have to avoid overloading of
grids. Builds on Biegel et al. 2012.

Ongoing: asynchronous information exchange.
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Recall

Supply demand matching at an economic level: distributed optimal
control via dual decomposition.

Briefly, the physics of the grid, a power systems approach via energy
based modeling. Starting research, useful for stability and
stabilization, also for optimization, pricing, etc.?

Two decoupled layers?
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The grid and the synchronous machine

Future power grid,
EJC special issue
paper 2013.
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The physics of the grid

From a power systems perspective:
Models of the power systems (synchronous generators), interconnected
via transmission lines (often approximated by pi models, a resistor,
inductor and two grounded capacitors).

Classical models used by power systems engineers not always suitable
to study the embedding of renewables.
Renewables embedding are known to cause large fluctuations,
sometimes causing large, and not always predictable power outages.
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The physics of the grid

Control system study towards the oscillators, swing equations (Dörfler,
Bullo, 2012). Swing equations limited due to missing transient
response of electrical part.

Recently, study to consider the full models (including the electrical
part) interconnected through the grid (Shaik, Zanotti, Ortega,
Scherpen, van der Schaft 2013). However, stability analysis only
achieved for one synchronous machine connected to an infinite bus.
Also, frequency deviations coupled to pricing mechanisms and stability
for the swing equations (Jokic 2009, Bürger, De Persis, 2013, 2014).
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Power systems in the grid

Example network: Corresponding graph:

The incidence matrix and the Kirchhof laws, together with the 8th order
models of the synchronous generators provide a port-Hamiltonian model of
the overall system.
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A Port Hamiltonian model of the grid

States of a synchronous generator:
3 phase rotor and stator flux linkages (6 in total) ψr , ψs .
the momentum p.
the angle θ.

States of the transmission lines:
Flux of the inductor ψL.
Charge on the capacitors qc .

Inputs:
Electrical field Ef .
Mechanical torque Tm.

Together with the incidence matrix, a PH model is obtained.
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Equilibrium points and stability analysis

No equilibrium points, i.e., angle constantly changes for a fixed
frequency.
Angle difference between generators.
Stability analysis not straightforward from Hamiltonian, also not after
Park-Blondel transformation.
Possible for synchronous machine connected to an infinite bus (SMIB)
under assumptions that some losses are zero, with help of forced
Hamiltonian systems analysis (Maschke et al., 2000).
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Lyapunov function

V (x) = H(x)−
(

Ef ψf

rf
+ Tm tan−1

(
ψq

ψd

))
with ψq, ψd , ψf transformed fluxes.

Only valid for SMIB case. Ongoing investigation how to use Hamiltonian
for multi-machine case. Under restrictive assumptions studied by Caliskan,
Tabuada, 2014.
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Utility optimization

Model is rather complex.
To consider utility optimization, a PH model can also be made of the
swing equations, only taking the mechanical structure into account.
Inverters (for e.g. the coupling of solar panels to the AC grid) and
load models can be added as well (Monshizadeh, De Persis 2015,
Stegink et al. 2015).

Other optimizations in relation to the frequency, and in different
settings (e.g., micro-grids) are available.

However, all static optimizations, dynamics not taken into account yet.
Topic of ongoing work.
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How to proceed?

How to study the grid in the multiple generator, multiple load case
with different characteristics, using the passivity properties.

Embedding of multi-terminal HVDC grid in the AC grid. Study of
mHVDC ongoing, see Doria, Olm, Scherpen 2015, Zonetti, Ortega
2015.
How to couple the economic and physical layer? Pricing via frequency
deviations.
How about voltage and angle stability?
How to embed in the market structures available?
........
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Summarizing

Supply demand matching at an economic level: distributed optimal
control via dual decomposition.

The physics of the grid, a power systems approach energy based
modeling. Useful for stability and stabilization, also for optimization,
pricing, etc.?

Two decoupled layers?
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QUESTIONS?
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