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Surface roughness occurs in a wide variety of processes where it is both difficult to avoid and control. When two
bodies are separated by a small distance the roughness starts to play an important role in the interaction between
the bodies, their adhesion, and friction. Control of this short-distance interaction is crucial for micro and
nanoelectromechanical devices, microfluidics, and for micro and nanotechnology. An important short-distance
interaction is the dispersion forces, which are omnipresent due to their quantum origin. These forces between
flat bodies can be described by the Lifshitz theory that takes into account the actual optical properties of
interacting materials. However, this theory cannot describe rough bodies. The problem is complicated by the
nonadditivity of the dispersion forces. Evaluation of the roughness effect becomes extremely difficult when
roughness is comparablewith the distance between bodies. In this paperwe review the current state of the prob-
lem. Introduction for non-experts to physical origin of the dispersion forces is given in the paper. Critical exper-
iments demonstrating the nonadditivity of the forces and strong influence of roughness on the interaction
between bodies are reviewed. We also describe existing theoretical approaches to the problem. Recent advances
in understanding the role of high asperities on the forces at distances close to contact are emphasized. Finally,
some opinions about currently unsolved problems are also presented.
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1. Introduction

Dispersion forces originate from quantum and thermal fluctuations
of electric currents inside of interactingmedia and in the gap separating
them [1–4]. Assumingflat surfaces, the forces increase as d−αwhen dis-
tanced between bodies decreases. The exponentα is in between 3 and4
depending on the distance. Conditionally the dispersion forces become
dominant when the bodies are separated by the distances smaller
than 100 nm. They play an important role in nanoscience and nanotech-
nology including micro and nanoelectromechanical devices [5–8]. The
role of these forces is also essential in colloid and interface science
[9–15]. In the latter case the interaction happens in a liquid medium,
where in addition the electrostatic forces are involved. The dispersion
forces are closely related to adhesion between bodies under dry condi-
tions [16,17]. They define the adhesion energy as the force acting via the
gap separating the bodies upon contact.

Historically different names are used for the forces, whichwe call here
dispersion forces. At distances smaller than a fewnanometers these forces
are termed van der Waals forces [1]. At larger distances the same forces
are called the retarded van der Waals forces or Casimir forces [2,19]. All
these forces have the same physical origin related to fluctuating currents.
To stress this point the general name Casimir–Lifshitz force is in use.
Evgeny Lifshitz [3] was the first who recognized the common origin of
the van der Waals and Casimir forces. He deduced the so-called Lifshitz
formula [18], which is able to predict the force between two parallel
plates separated by distance d using as input parameters the dielectric
functions of interactingmaterials. Therefore the bodieswithin the Lifshitz
theory are treatedmacroscopically. Theminimal size in the Lifshitz theory
is the size where the dielectric function is well defined (much larger than
interatomic distances). The Lifshitz formula interpolates between the van
derWaals force at small distances d b 5 nm and the pure Casimir force at
d N 1 μm. Between parallel plates the first decreases as d−3 while the sec-
ond one decreases as d−4 when the distance increases. In this paper to
name all the forces having the same origin we use the general term dis-
persion forces proposed by London for molecules.

The dispersion forces are nonadditive. The force between twomole-
cules depends on the position of a thirdmolecule located nearby. A con-
sequence is that the force between bodies of finite size cannot be
calculated as pairwise summation of forces acting between separate
molecules. This is an important point because it complicates the calcula-
tion of the force inmanypractical situations. Nonadditivity is often cited
as a very specific property of the dispersion forces. However, the elec-
trostatic force can also be nonadditive. The force between metallic
sphere and plate cannot be calculated as the sum of forces between in-
finitesimal capacitors. The reason is that the charges redistribute in re-
sponse to the field. A similar effect happens for the dispersion forces
where polarization changes with the field.

One limitation of the Lifshitz formula is that the force is predicted ex-
plicitly only between parallel plates. It is not a principal restriction but
rather a computational one related to nonadditivity. Only recently a
closed-form expression for the sphere–plate interaction was presented
[20,21]. Even for numerical calculations the problem was not an easy
task but significant progress was made in the last decade and the force
was evaluated for a number of geometrical configurations [22]. The
same restriction exists for the Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory of colloidal stability [9,10] with an additional complica-
tion that includes electrostatic forces.

Nonadditivity makes the problem even more difficult if one would
like to calculate the force between randomly rough bodies. All solids
in nature or in laboratories are rough. The roughness can be character-
ized by two main parameters that are the root–mean–square (rms)
roughness ξ (typical feature size).Whilew is much smaller than the dis-
tance between bodies d the roughness correction to the force can be cal-
culated using the perturbation theory. The correspondingmethods have
been developed in relation to the precise measurements of the Casimir
forces at distances larger than 100 nm [23–25]. However, when the
forcewasmeasured at distances smaller than 100 nm, strong deviations
from the predictions based on the perturbation theory were found [26]
even for relatively small rms roughness w ≪ d. As was explained later
[27] this effect is due to significant deviations of the roughness statistics
from the normal distribution for some materials.

The ultimate problem related to surface roughness is the evaluation
of the force when the rms roughness is comparable with the distance
between the bodies. At this moment the problem is not solved but it is
clear that high peaks of the roughness profile play a principal role. For
this reason the problem is closely related to the contact between two
bodies. In principle the force can be calculated numerically, but practi-
cally it can be done only for a restricted area. Up to now the roughness
effect was not tackled numerically. The important role of high peaks,
which are rare statistical events, combined with numerical calculations
and experimental data could give a strong push to understand the influ-
ence of roughness on dispersion forces.

The purpose of this paper is not only to review existing experimental
and theoretical approaches to the roughness problem, which are still in
their infancy, but also to give an introduction for non-experts to the
methods used to calculate the dispersion forces in different practical sit-
uations. The paper is organized as follows. In Section 2 the physical ori-
gin of the dispersion forces is described and some helpful relations are
presented. A review of experiments important for understanding of
the roughness effect is presented in Section 3. Methods to describe
rough surfaces and existing theoretical models for the force taking
into account roughness effect are described in Section 4. Finally some
conclusions and our vision of the problems that have to be solved are
collected in the last chapter.

2. Dispersion forces

In this section we describe themain ideas and results of Lifshitz the-
ory of dispersion forces. We try to present a clear physical picture and
give the necessary equations in the form convenient for practical appli-
cations of the theory. This section can be considered as an introduction
to the Lifshitz theory. Quite often it is not realized that so different phys-
ical phenomena as well-known van der Waals forces acting between
macroscopic bodies separated by a few nanometers gap and rather
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exotic Casimir forces related to the boundary conditions on perfectly
reflecting mirrors separated by much larger distances are actually inti-
mately related to each other. In terms of the Lifshitz theory both origi-
nate from fluctuating currents (or polarizations) in macroscopic
bodies. The currents in one of the bodies give rise to the electromagnetic
field interacting with the currents in the other body. If this distance is
small, one can neglect the retardation effect and the resulting interac-
tion reproduces the van der Waals forces. At larger distances the retar-
dation becomes important and one can reproduce the Casimir forces.

2.1. Early representations

2.1.1. Van der Waals force
Van der Waals [28] introduced weak intermolecular forces to ex-

plain deviations from the ideal gas laws but the physical nature of
these deviations stayed unclear. In 1930 London [1] showed how one
can understand the long distance behavior of the forces using quantum
mechanics. It was shown that the attractive forces appear from electro-
static interaction of temporary dipoles in atoms or molecules. If R is the
distance between atoms, the interaction energy between them decays
according to the power law: Vint ∼ R−6. The forces associated with this
potential are called dispersion or induced London dipole–dipole forces.

Appearance of attractive forces between neutral atoms naturally
leads to similar forces between any two macroscopic bodies separated
by a distance d. The force between twomacroscopic spheres was calcu-
lated for the first time by Hamaker [29] using pairwise summation of
the van der Waals–London potential between atoms. Ironically this fa-
mous result happened to be incorrect. As became clear later the disper-
sion forces are nonadditive and the pairwise summation gives incorrect
results in general. Nevertheless, at some conditions more precise calcu-
lations based on the Lifshitz theory showed that the Hamaker approach
can be accepted as a convenient first approximation [30]. As a particular
case, Hamaker found the van der Waals force (per unit area) between
two parallel macroscopic slabs that had been derived earlier by de
Boer [31] and this result is absolutely precise. As a function of distance
d this force is

FvdW ¼ AH

6πd3
; ð2:1Þ

where AH is the so-calledHamaker constant [29] accounting formaterial
properties of the slabs. Precisemeaning of this constant and the range of
distances where the formula (Eq. (2.1)) is applicable were clarified only
after the development of the Lifshitz theory [3,4,18].

2.1.2. Casimir force
In 1948 Casimir [2] showed that two uncharged ideally reflecting

mirrors parallel to each other and separated by a gap dwill bemutually
attracted. The force per unit area was found to be

FC ¼ π2ħc
240d4

: ð2:2Þ

It is the famous Casimir formula. An exceptional feature of this for-
mula is that the force depends only on the separation and fundamental
constants; no electron charge enters the formula.

The attraction is attributed to quantum fluctuations of vacuum elec-
tromagnetic fields, which are different between themirrors and outside
of them due to the presence of ideally reflecting boundaries. Inside the
cavity formed by the mirrors, only the modes that have nodes on the
mirrors are allowed. Outside of the cavity all the modes can exist. In
this situation the radiation pressure from the outside will be larger
than that from the inside of the cavity. As the result the mirrors will at-
tract each other. According to quantum mechanics each mode of the
field with frequency ω has a zero-point energy ħω/2. Then the Casimir
energy is the change in the zero-point energy of vacuum due to the
presence of the boundaries.

Zero-point energy interpretation became so popular in the physics
community that the other side of the problem is remembered mostly
by experts in the field. Namely, in the same year of 1948, Casimir and
Polder published a paper [19],where they took into account the retarda-
tion effect in the interaction between two induced dipoles. It was found
that when the distance between atoms increases the interaction energy
falls off with distance as∼ 1/R7. It is faster than for the non-retarded van
der Waals interaction (∼1/R6). Casimir already realized [2] that the
retarded interaction of dipoles has to give the force betweenmacroscopic
bodies, which behaves with the distance precisely as Eq. (2.2). However,
thefinal clarification of this pointwasmade by Lifshitz [3]whopresented
the van der Waals (Section 2.1.1) and Casimir (Section 2.1.2) forces as
the limit cases of one and the same force at small and large distances,
respectively.

2.2. Lifshitz theory

The most detailed theory of dispersion forces between macroscopic
bodies was developed by Lifshitz in 1955. It was based on the Rytov's
theory of fluctuating electromagnetic fields [32]. This theory is applica-
ble, in principle, to any bodies, independent on theirmolecular constitu-
tion. It includes retardation effects automatically and the only
restriction on the distance is that it must be much larger than the inter-
atomic distance. An important feature of the theory is that it expresses
the force viamacroscopic dielectric functions of the bodies. An approach
close to the original Lifshitz consideration is described briefly in [33].
Generalization of the theory to the case of liquid gap separating the bod-
ies was developed by Dzyaloshinskii, Lifshitz, and Pitaevskii in 1961 [4]
and became part of the textbook [18].

In general, the Lifshitz theory can be applied to bodies of arbitrary
shape. However, in a closed form the expression for the dispersion
forces can be given only for parallel plates separated by a gap. This is
the most important restriction of the Lifshitz formula, which was re-
cently overcome by the development of numerical procedure [34].

2.2.1. Physical ground
It is not possible to calculate the dispersion forces between macro-

scopic bodies starting from microscopic interaction between separate
atoms. Pairwise summation would be valid only for rarefied bodies
such as gases. In condensed bodies the atoms in the neighborhood
cause an essential change in the properties of the electronic shells, and
the presence of a medium between the interacting atoms affects the
electromagnetic field through which the interaction is established [4].
Nonadditivity is often cited as a very specific property of the dispersion
forces. However, the electrostatic interaction also demonstrates nonad-
ditive properties when charges in the bodies are able to redistribute in
response to the applied field.

Instead of a “microscopic” description of the problem one can use a
macroscopic point of view, in which interacting bodies are treated as
continuous media. This is possible when the bodies are separated by
the distances large in comparison with interatomic distances.

The fundamental idea of the theory is that the interaction between
the bodies is established through fluctuating electromagnetic fields.
Such fields are always present inside and extend beyond material
boundaries. A well-known example is thermal radiation but it has to
be stressed that electromagnetic fluctuations persist even at zero tem-
perature as zero-point quantum fluctuations. The source of thesefluctu-
ations is the electric polarization P(ω, r) or equivalently the electric
current density J(ω, r) =− iωP(ω, r), where we understand the phys-
ical values as Fourier transformed in time. The origin of fluctuating cur-
rents is easier to understand for metals. The density of quasi-free
electrons in a metal fluctuates as the density of particles in any gas. If
at a point r the density is smaller than the average value, there will be
a current tending to increase the density at this point.
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Fig. 1. The simplest configuration consisting of two semispaces separated by a gap, for
which the Green function can be found explicitly.
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2.2.2. Fluctuation–dissipation theorem
According to the fluctuation dissipation theorem (FDT) [32,33,35] in

thermal equilibrium the correlations of these fluctuating currents are re-
lated to the dissipation in the medium:

Jα ω; rð Þ J�β ω0
; r0

� �D E
¼ ωε″ ωð Þ ħω

2
þ ħω
eħω=kT−1

� �
� δ ω−ω0� �

δ r−r0
� �

δαβ ;

ð2:3Þ

where α, β= x, y, z enumerate vector components, and the dissipation is
proportional to the imaginary part of the dielectric function ε″(ω) =
Imε(ω). Due to FDT the very existence of the dispersion forces is closely relat-
ed to the dissipation in the materials of interacting bodies. In Eq. (2.3) the
contributions from the zero-point and thermal fluctuations are explicitly
separated (the first and second terms in the brackets). Some additional
information related to the application of FDT for calculating the dispersion
forces including nonequilibrium situations can be found in [36–38].

Fluctuating currents are the sources of electromagnetic field. This
field is described by theMaxwell equations. Solutions of these equations
can be expressed via the Green functions. For example, the components
of the electric field Eα(ω, r) are

Eα ω; rð Þ ¼ i
ω

Z
dr0Gαβ ω; r; r0

� �
Jβ ω; r0
� �

; ð2:4Þ

where Gαβ are the components of the Green tensor. It is clear from
Eq. (2.4) that the Green functions play the role of the response function
in the linear-response theory [39].

Using the relation (2.4) together with the FDT (2.3) andmaking use
of the general properties of the Green tensor we can find the correlation
functions for the components of the electric field expressed via the
Green functions:

Eα ω; rð ÞE�β ω0
; r0

� �D E
¼

2πℏcoth
ħω
2kT

� �
ImGαβ ω; r; r0

� �
δ ω−ω0� �

:
ð2:5Þ

The correlation functions of themagnetic field can be easily found by
applying the Maxwell equations [18].

The Green tensor is the solution of the equation, which follows di-
rectly from the Maxwell equations:

∂α∂β−δαβ ∇2 þω2

c2
ε ω; rð Þ

 !" #
Gαγ ω; r; r0

� � ¼
4π

ω2

c2
δαβδ r−r0

� �
:

ð2:6Þ

Here ε(ω, r) is the nonhomogeneous dielectric function describing
the interacting bodies. For example, if two bodies are interacting via a
vacuumgap then ε(ω, r) is 1 within the gap, it is ε1(ω) in the place filled
with body 1 and is ε2(ω) in the space occupied by body 2. Eq. (2.6) has
to be solved with proper boundary conditions characterizing the field
components at the interfaces [18]. In the sense of boundary conditions
Gαβ(ω, r, r′) behaves as Eα(ω, r).

The force acting on the body surface is the normal component of the
Maxwell stress tensor. The averaged stress tensor can be expressed via
the correlation functions (2.5) or finally via the Green functions of the
system (2.6) at r = r′ where r approaches the surface from the side of
the gap. In case of the gap filled with a liquid it is possible to do it due
to equilibrium between absorption and emission [4]. This point was re-
cently stressed again by Pitaevskii [40].

2.3. Lifshitz formula

The explicit form of the Green functions can be easily found for two
parallel plates interacting via the long wavelength fluctuations. The
simplest configuration is two semispaces made from differentmaterials
with the dielectric functions ε1(ω) and ε2(ω), respectively, separated by
a small gap dfilledwith thematerial described by the dielectric function
ε0(ω). This configuration is shown schematically in Fig. 1.

2.3.1. Real frequency representation
For parallel plates the force (pressure) acting on body 2 (right plate)

is calculated via the Green functions taken at z = z′ → d/2. Solution of
Eq. (2.6) is very similar to the optical problem in the cavity with addi-
tional complication due to the tensor structure. The final result for the
force (per unit area) can be written as

F T ;dð Þ ¼ ħ
2π2

Z∞
0

dωcoth
ħω
2kT

� �
Re
Z∞
0

dq q k0 g q;ωð Þ; ð2:7Þ

where thewave vector in the gap is K=(q, k0) with q being the x and y
components of the vector and k0 = (ε0ω2/c2 − q2)1/2 being the z-
component. The function g(q, ω) is

g q;ωð Þ ¼
X
ν¼s;p

rν1r
ν
2e

2ik0d

1−rν1r
ν
2e

2ik0d
: ð2:8Þ

Here r1,2
ν are the reflection coefficients of the inner surfaces of the

plates (index 1 or 2) for two different polarizations: ν= s or transverse
electric (TE) polarization, and ν= p or transversemagnetic (TM) polar-
ization. The factor g(q, ω) describes multiple reflections from the inner
surfaces of bodies 1 and 2. The frequency dependent factor coth(ħω/
2kT) originates from the FDT.

The reflection coefficients r1,2ν entering in the Lifshitz formula are
nothing else but the Fresnel reflection coefficients. In the simple config-
uration in Fig. 1 these coefficients are expressed via the z-component of
the wave vectors in the gap k0 and in the ith body ki as

rsi ¼
k0−ki
k0 þ ki

; rpi ¼ εik0−ε0ki
εik0 þ ε0ki

; ð2:9Þ

where

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 ωð Þω

2

c2
−q2

s
; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εi ωð Þω

2

c2
−q2

s
: ð2:10Þ

Eq. (2.7) is the Lifshitz formula in the real frequency representation
[33].

In many practical applications this representation is not very conve-
nient because the integrand is a fast oscillating function due the factor
eik0d. However, there are situationswhen the real frequency representa-
tion is the only possible or plays an important role in highlighting un-
derlying physics. It happens, for example, in the non-equilibrium
situations, when the plates have different temperatures [38]. In
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addition, this paper is directed to the distance range d≲ 100 nm,where
the thermal fluctuations do not play a significant role at T around the
room temperature. This is because distance d is much smaller than the
thermal wavelength λT = ħc/kT = 7.6 μm at T = 300 K. If we take
into account only quantum fluctuations, then in Eq. (2.7) one has to
change coth(ħω/kT) → 1.

2.3.2. Imaginary frequency representation
The problem of fast oscillations is usually avoided by the contour ro-

tation in the frequency complex plane. This is possible due to analyticity
of the integrand. With this rotation the force can be expressed as an in-
tegral over the imaginary frequency ω = iζ as:

F dð Þ ¼ ħ
2π2

Z∞
0

dζ
Z∞
0

dq qjk0jg q; iζð Þ; ð2:11Þ

where the low temperature limit T→ 0 is assumed as explained above.
To get the reflection coefficients at imaginary frequencies one has to

make analytical continuation of Eqs. (2.9) and (2.10) to the imaginary
axis. For example, k0 at ω = iζ will be

k0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 iζð Þ ζ

2

c2
þ q2

s
: ð2:12Þ

The general sign of the square root is defined by the condition that
any wave decays inside of a material or Imk0 N 0. Therefore, the reflec-
tion coefficients in this case will depend on the dielectric functions at
the imaginary frequencies ε(iζ). These functions cannot be directlymea-
sured but can be expressed via the observable function ε″(ω) with the
help of the Kramers–Kronig relation [33]:

ε iζð Þ ¼ 1þ 2
π

Z∞
0

dω
ωε″ ωð Þ
ω2 þ ζ2: ð2:13Þ

The general property of ε(iζ) is that this function is real, positive, and
monotonously decreases when ζ increases.

The relation (2.13) shows that the dispersion forces are completely
determined by ε″(ω), which is responsible for the dissipation in themate-
rial. Therefore, the very existence of the forces is intimately related to the dis-
sipation. This relation is indeed a consequence of the fluctuation–
dissipation theorem. The same Eq. (2.13) also shows that the force is sen-
sitive to ε″(ω) in the integral sense.

2.3.3. Van der Waals and Casimir limits
Let us demonstrate that the Lifshitz formula (2.11) reproduces the

van derWaals and Casimir regimes given by Eqs. (2.1) and (2.2) as lim-
iting cases. Distance d separating the plates defines a characteristic
imaginary frequency

ζ ch ¼ c=2d: ð2:14Þ

It has to be stressed that the real frequencyωch= c/2d does not always
play a similar role due to fast oscillations of the integrand in Eq. (2.7).

Let ω0i be a typical frequency of the resonances in the absorption
spectra of the i-th body or in the gap (i = 0). Distance d is so small
that one can neglect the retardation d ≪ c/ω0i for every i = 0, 1, 2,
then the van der Waals regime is realized because |ki| ≈ |k0|. In this re-
gime for the reflection coefficients one has

rsi≈0; rpi ≈
εi iζð Þ−ε0 iζð Þ
εi iζð Þ þ ε0 iζð Þ : ð2:15Þ

It is interesting to note that the s-polarization does not contribute. It
happens because in the quasi-static approximation, which is equivalent
to the non-retarded case, the s-polarization is reduced to puremagnetic
field that freely penetrates non-magnetic materials.

Introducing a new variable x = 2d|k0| it is easy to find from
Eq. (2.11) with the help of Eq. (2.15)

F dð Þ ¼ ħ
16π2d3

Z∞
0

dζ
Z∞
0

dxx2
ε1þε0ð Þ ε2þε0ð Þ
ε1−ε0ð Þ ε2−ε0ð Þ ex−1

; d≪ c
ω0i

; ð2:16Þ

where εi are functions of ζ. The double integral here depends only on the
dielectric functions but not on the distance. Comparing Eq. (2.16) with
the van derWaals force (Section 2.1.1) one finds that the Hamaker con-
stant is defined as

AH ¼ 3ħ
8π

Z∞
0

dζ
Z∞
0

dxx2
ε1þε0ð Þ ε2þε0ð Þ
ε1−ε0ð Þ ε2−ε0ð Þ ex−1

: ð2:17Þ

This is a precise definition of theHamaker constant expressed via the
dielectric properties of involved materials.

In the opposite limit when the distance is so large that d≫ c/ω0i (but
still d≪λT to neglect the thermal effects)we can introduce newvariables
x=2d|k0| and p= xζch/ζ in Eq. (2.11). In these terms the argument of the
dielectric functions εi(iζ)will be ζ= ζchx/p. By definitionp≥1 andnatural
value of x is x∼ 1 due to the exponential dependence. Itmeans that ζ≲ ζch
andbecause ζch is smallwe can take the static values of the dielectric func-
tions εi(iζ)≈ ε0i. With this simplification we can write Eq. (2.11) as

F dð Þ ¼ ħc
32π2d4

Z∞
1

dp
p2

Z∞
0

dxx3g x;pð Þ jεi¼ε0i
; ζ ch≪ω0i ð2:18Þ

Again, the double integral here is a number that depends on permit-
tivities of the materials. In this case both polarizations contribute and
the force decreases faster with the distance increase due to the retarda-
tion effect. In comparison with the van der Waals force in Eq. (2.18)
there is an extra factor ζch responsible for the retardation. If we choose
in Eq. (2.18) the materials to be ideal metals, ε0i → ∞ (i = 1, 2), and
the gap to be vacuum, ε00 = 1, then both the reflection coefficients
are ri

s = r i
p = 1 and we reproduce the Casimir result (Section 2.1.2).

Eqs. (2.16) and (2.18) present the limiting cases and these equations
can be used only to obtain rough estimates in the range of separation
typical for MEMS and NEMS. For example, for gold Eq. (2.16) can be ap-
plied with a reasonable precision for d ≲ 5 nm [41] and Eq. (2.18) is
working well for d ∼ 1 μm [42] (for larger d the thermal correction be-
comes important). In the range of separation 1 nm b d b 1 μm it is pref-
erable to use full Eq. (2.11).

2.3.4. Convenient representation
Concluding the discussion of the Lifshitz formula let us present a rep-

resentation convenient for numerical evaluation of the force. Introduc-
ing in Eq. (2.11) new variables x and t according to the relations x =
2|k0|d and tx = ζ/ζch the force can be presented in the form

F dð Þ ¼ ħc
32π2d4

X
ν¼s;p

Z1
0

dt
Z∞
0

dxx3
rν1r

ν
2e

−x

1−rν1r
ν
2e

−x: ð2:19Þ

The Fresnel reflection coefficients are

rsi ¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 εi−ε0ð Þ

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 εi−ε0ð Þ

q ;

rpi ¼
εi−ε0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 εi−ε0ð Þ

q
εi þ ε0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 εi−ε0ð Þ

q :

ð2:20Þ
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Here all the dielectric functions are functions of the imaginary fre-
quency expressed via t and x as εi(iζ) = εi(iζchtx). The convenience of
this representation is related to the simplicity of the integration range
that is a stripe of unit width and effectively finite length.

The reflection coefficients (2.20) are presented for thick slabs made
of material i. If the body i consists of different layers, then the reflection
coefficients have to be generalized. For this case the coefficients can be
found in Refs. [43,44].

2.4. Proximity force approximation

Aswas alreadymentioned, the force between two bodies can be pre-
sented in an explicit formonly for parallel plates.While the stress tensor
approach is valid for an arbitrary geometry of the bodies, the Green
function cannot be found in a closed form. Recently numerical methods
were developed [34] to evaluate the stress tensor for arbitrary geome-
tries, but here a simple analytical approach is presented.

Under some conditions one can find approximate results for a non-
planar geometry. This approximation, called the proximity force ap-
proximation (PFA), was applied for the first time for calculation of the
dispersion forces by Derjaguin [45]. It was discussed in detail for appli-
cations in nuclear physics [46], and it was derived for bodies of arbitrary
shapes in colloidal science [47]. The approximation can be appliedwhen
the smallest separation between bodies d is much smaller than a typical
curvature R of the bodies [48], d≪ R. If this condition is fulfilled, locally
one can change the curved surfaces by flat patches, calculate the force
between the opposed patches as between parallel plates, and take the
sum over all patches. The scheme of the procedure is presented in Fig. 2.

The size of patches must be much larger than d. If this size is still
small in comparison with R, then one can change the sum over the
patches by the integral. The precision of the PFA is of the order of d/R
and the main problem of this approximation is that the precision is
poorly controlled. The PFA can be also applied to other nonadditive
forces. For example, one can apply it to the electrostatic force, for
which the answers for some problems are known precisely [49].

Let us consider as an illustrative example the electrostatic force be-
tween a cylinder parallel to a plate. The force (per unit area) between
two plates in a vacuum is

Fplel dð Þ ¼ V2
0

8πd2
; ð2:21Þ

where V0 is the potential difference between the plates. The local dis-
tance between the cylinder and the plate is d(x) = R + d − (R2 −
x2)1/2, where R is the radius of the cylinder and x is the horizontal coor-
dinate in the plane of Fig. 2. The local distance can be approximated as
d(x) ≈ d + x2/2R. The area of rectangular patches is dA = Ldx, where
L is the length of the cylinder. Then the force between the cylinder
and the plate within PFA will be

Fc;plel dð Þ≈V2
0

8π

Z∞
−∞

Ldx

dþ x2=2R
� �2 ¼ V2

0L
ffiffiffi
R

p

8
ffiffiffi
2

p
d3=2

; ð2:22Þ

wherewe changed the integration limits to infinitywithin the precision
d/R. The precise electrostatic result is [50]:

Fc;plel dð Þ ¼ LV2
0

Δ
ln−2 dþ R−Δ

dþ Rþ Δ

� �
; ð2:23Þ
dA

d

Fig. 2. Scheme of application of the proximity force approximation.
whereΔ=[(d+ R)2−R2]1/2. ExpandingEq. (2.23) in a series of d/R one
finds that the relative correction to PFA result (2.22) is 9/8(d/R). The lat-
ter is in agreement with the expectations.

The PFA was invented to calculate the dispersion forces in the con-
figurations of sphere–plate and crossed cylinders that were used to
measure the forces. In both cases the van der Waals and Casimir forces
calculated from the plate–plate interaction (Section 2.1.1) and
(Section 2.1.2) are

FvdW ¼ AHR
6d2

; FC dð Þ ¼ π3R
360

� ħc
d3

: ð2:24Þ

For the sphere–plate configuration R is the radius of the sphere and
for the crossed cylinders R ¼ ffiffiffiffiffiffiffiffiffiffiffi

R1R2
p

, where R1 and R2 are the radii of
cylinders.

The PFA integration can be applied to the Lifshitz formula (2.11) to
find the force between sphere and plate. In this formula the dependence
on the distance d is contained in the exponent e−djk0 j. This distance has
to be changed by the local distance d(x, y) and the formula has to be in-
tegrated over the (infinite) area in x–y plane. After explicit integration
one finds:

Fsp dð Þ ¼ − ħR
2π

X
ν¼s;p

Z∞
0

dζ
Z∞
0

dqqln
rν1r

ν
2e

−2jk0 jd

1−rν1r
ν
2e

−2jk0 jd

 !
: ð2:25Þ

This equation is usually considered as the Lifshitz formula for the
sphere–plate configuration at zero temperature.

3. Critical experiments

The importance of roughness on dispersion forces has been fully rec-
ognized relatively recently. This recognitionwas ignited by a few critical
experiments performed in different fields where these forces play im-
portant role. In this chapter we describe these experiments and review
related papers.

3.1. Forces between corrugated bodies

In this sectionwe consider the dispersion interactionwith intention-
ally corrugated bodies. It differs from random surface roughness but
firmly establishes nonadditivity of dispersion forces that is used further
for random roughness.

The Casimir force is strongly geometry dependent [22,51,52] and it
was already stressed that the dispersion forces in general are not addi-
tive. One of the well-investigated case is the interaction between a flat
plate and a corrugated plate. The force between flat and sinusoidally
corrugated plates made of ideal metal was calculated for the first time
in Ref. [52] taking into account non-additivity effects (beyond the prox-
imity force approximation). It was found that for corrugation wave-
length λ much larger than the distance between bodies λ ≫ d, the
pairwise summationworkswell but in the opposite limit,λ≪ d, the de-
viation from PFA is significant. The case of rectangular corrugation was
considered in [53]. Strong deviation from PFA was found over a wide
range ofλ, even though the surfacewas composedonly offlat segments.

Strong deviation from PFA for rectangular corrugation one can
understand qualitatively in the followingway. The Casimir force is asso-
ciated with confined electromagnetic modes with wavelength compa-
rable to the separation between the interacting objects. When λ ≪ d
these modes fail to penetrate into the trenches, rendering the Casimir
force on the corrugated surface equal to a flat one. On the other hand,
for sufficiently deep trenches the additivity predicts the effective area
of interaction that is equal to the fraction of solid surface.

Besides many theoretical arguments the nonadditivity was tested
only recently by direct experiments. For these experiments corrugated
plates provide a convenient platform. The first experiment where the
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normal Casimir force between aluminum-coated plate with small sinu-
soidal corrugation and a large sphere was performed with the use of an
atomic force microscope technique [54]. The force wasmeasured in the
range of separations between the bodies from 0.1 to 0.9 μm.While this
measurement showed deviations fromPFA, the interpretation of the de-
viation is still controversial [52,55].

The first conclusive experiment has been done by Chan et al. in 2008
[56] (see also [57]). In this experiment one of the interacting objects is a
silicon plate with nanoscale high aspect ratio rectangular corrugations.
The other object was a gold-coated glass ball with a radius of 50 μm.
Two identical balls are stacked and glued onto a micromechanical tor-
sional oscillator [58,59] that is often used to measure the Casimir
force. The oscillator consisted of a 3.5 μm thick, 500 μm square silicon
plate suspended by two torsional rods. Somedetails of the experimental
configuration are shown in Fig. 3.

Three plates were used for measurements: one with a corrugation
period of 400 nm, onewith a period of 1 μm, and onewith a flat surface.
The distance between theball and theplatewas variedwith a piezoelec-
tric actuator. The resonance frequency of the torsional oscillator was
changed in response to the attraction between the ball and the plate.
This frequency change is proportional to the gradient of the force be-
tween bodies.

It was found that for the flat sample the measured force is in a rea-
sonable agreement with the force predicted theoretically. The latter
was calculated using the Lifshitz formula for sphere–plate (2.25) with
the tabulated optical data [60] for used materials (Au and Si). Note
that roughness of gold layer on the sphere can be neglected because it
was small in comparison with the distance between bodies. For the
sample with a corrugation period of λ = 400 the measured gradient
of the force F′(d) is shown in Fig. 4a. The observed value is compared
with the force gradient predicted by PFA that is pFflat′(d), where p =
0.5 is the fraction of solid surface on the sample and Fflat(d) is the
force for the flat sample. One can see that the measured force gradient
is larger than that predicted assuming the additivity. Fig. 4b shows the
parameter

ρ dð Þ ¼ F 0 dð Þ
pF 0flat dð Þ : ð3:1Þ
Fig. 3. Detail of the experiment [56]. (a) Cross section of rectangular trenches in silicon
with a period of 400 nm and depth of 0.98 μm. (b) Top view of the trenches. (c) Scheme
of the experimental setup including the torsional oscillator, gold covered spheres, and sil-
icon trench array. (d) Measurement scheme with electrical connections.
Courtesy of H. B. Chan.
Deviation of this parameter from 1 characterizes the effect of nonad-
ditivity. One can see that this deviation is more than 20%, however, it is
less than the value predicted theoretically [53] for perfect reflectors. It
was concluded [56] that both effects nonadditivity and finite conductiv-
ity of the materials play a role.

In the PFA picture, the total interaction is a sumof two contributions:
interaction with the top surface of the corrugated plate (fraction p) and
interaction with the bottom surface (fraction 1− p). In the experiment
[56] the latter contribution is negligible because the trenches are deep
(∼ 1 μm) and interaction with the bottom surface is small. In Ref. [61]
the depth of trenches was comparable with the distance between bod-
ies and the contribution of the bottom surface played a role. The mea-
sured force was compared with advanced calculations based on the
scattering theory [34,62,63] that includes both geometry effects and
the optical properties of the material. In this experiment a reasonable
agreement with the theory was found. Therefore, nonadditivity of dis-
persion forces is nowproven experimentally and is in a good agreement
with theoretical expectations.

Recently a detailed investigation of interaction between metallic
gratings with the sizes on the level of 100 nm and a sphere was per-
formed [64]. Corrugations in a metallic layer can behave differently
from that in Si because collective surface modes such as surface plas-
mons can be excited in metallic gratings. It is known that the surface
plasmons affect the force in a non-trivia manner [65]. Very significant
deviations from the PFA predictionswere observed, however, the inter-
pretation of these deviations is still unclear.
Fig. 4. Results of the experiment [56]. (a) Measured gradient of the Casimir force (dots).
The solid curve is the theoretical prediction assuming additivity but taking into account fi-
nite conductivity of the material. (b) Parameter ρ defined by Eq. (3.1). Experimental data
for λ=400 are shown by solid squares and for λ=1 μm are shown by open circles. The
theoretical predictions are shown by the dashed and solid lines for the first and second
case, respectively.
Courtesy of H. B. Chan.



Fig. 6. Permanent stiction in MEMS devices [68]. The arrows show adhered elements.
(a) Stiction of soft microcantilevers to the substrate. (b) Microstructured elements in a
micromachined accelerometer after impact loading.
Courtesy of Y. P. Zhao.

8 V.B. Svetovoy, G. Palasantzas / Advances in Colloid and Interface Science 216 (2015) 1–19
3.2. Stiction problem

Because of the very small sizes involved in micro and nanoelectro-
mechanical systems (MEMS or NEMS), surface forces are dominant, and
they can generate a severe problem resulting in malfunction some of
theMEMSdevices ormaking fabrication impossible. The problem is spon-
taneous stiction between separate elements of MEMS devices. It is an im-
portant limitation in bringingMEMS to the broader market. The problem
was identified already in the 1990s [16,66,67]. MEMS structures are typ-
ically made by forming a layer of material on top of a sacrificial layer
above another material with the following wet etching of the sacrificial
layer. For example, it is desirable to fabricate transducers with suspended
structures that have aminimum gap distance and large area. Drying after
rinsing is the final fabrication step that can collapse such microstructures
resulting in permanent adherence. Schematically the situation is shown
in Fig. 5. Strong capillary forces pull the surfaces together but when the
liquid is dried out the surfaces can stuck permanently due to presence
of the dispersion forces. It happens if a restoring elastic force cannot over-
come attraction induced by the dispersion forces.

This strongly undesirable effect makes impossible fabrication of many
MEMSdevices or restricts their functioning. The latter happens if two sur-
faces approach too close to each other during the device operation. The
reason can be related to surface forces (capillary, electrostatic) or inertial
forces (shock, rapid air flow). Due to jump to contact the surfaces stuck
permanently and the device cannot operate anymore. Fig. 6 shows fail-
ures of realistic MEMS devices. It was realized that coatingmaterials, sur-
face roughness, and environmental aging can influence the autoadhesion.

The problem of adhesion between macromachined surfaces was
tackled experimentally using microfabricated cantilevers hanging
above a substrate [17,69–71]. A theory and experimental method for
measuring surface energy of cantilever beams has been proposed by
Mastrangelo and Hsu [72,73]. This theory describes the role of capillary
forces in bringing beams into contactwith the substrate and determines
critical beam lengths for beam collapse. Adhesion of the dried cantilever
beam is predicted by considering the elastic energy in the deformed
beam, which is attempting to pull the beam up off the substrate, and
the surface energy that is promoting continued adhesion.

The theory was refined further by de Boer and Michalske [69] who
proposed and realized also a practical method to measure the adhesion
energy. They fabricated an array of cantilever beams made of polysilicon.
The beams with a width of 20 μmwere separated from Si substrate by a
gap of 1.8 μm and their length was varied from 10 to 500 μm. One set of
samples was dried in air after rinsing and the other set was treated with
a molecular coating of octadecyltrichlorosilane. The samples from the
first set were hydrophilic and from the second set were hydrophobic.

Short beams were free but starting from some length (172 and
225 μm for hydrophilic and hydrophobic, respectively) the beams
were adhered. The adhered cantilevers had so-called S-shape shown
in Fig. 7a. According to the theory [69,72] from the shape of the beams
one can deduce the adhesion energy. An important parameter here is
the crack length s that is an unattached length of the beam. The attached
length t can be calculated as t= L− s, where L is the length of the beam.
The shape of adhered cantilevers was observed with the help of an in-
terferometer. Interferograms similar to those in Fig. 7b–ewere recorded
and analyzed. It was shown that the shape of S-shaped cantilevers is in
1

2

3

Fig. 5. Schematic view of amembrane suspended above a substrate. 1 is the substrate, 2 is
liquid, and 3 is themembrane. Dryingmeniscus pulls the surfaces together. When the liq-
uid is vaporized the membrane can stuck to the substrate if the restoring elastic force is
smaller than the dispersion forces acting on the membrane.
good agreementwith expectations and can be used for precise determi-
nation of the adhesion energy. Although the surface roughness in this
experiment was not changed, it was stressed that it can play a signifi-
cant role in the apparent adhesion energy.

Controlled actuation of cantileverswas used [70,71] instead of spon-
taneous adhesion to getmore detailed information on the surface forces
acting in the adhesion area (landing pad). For this purpose an actuation
pad under each beam was fabricated [74]. The cantilever and landing
pad were at ground potential, while a large potential can be applied to
the actuation pad (see Fig. 7a). Detailed theoretical description and
measurement of the beam shape under combined action of the electro-
static and adhesive forces was made in Ref. [71].

Chemical and capillary forces result in the strongest adhesion be-
tween surfaces [75] but these forces can be eliminated using coating
with a low-surface-energy hydrophobic molecular monolayer [76,77].
However, the dispersion forces cannot be eliminated and they pose a
fundamental limit to the adhesion between micromachined surfaces.
Influence of surface roughness on the adhesion energywas investigated
in a special experiment with the actuated cantilevers [17]. The main
purpose of this experiment was to clarify the role of the van der Walls
forces in adhesion of micromachined surfaces.

Polysilicon cantilevers 1500 μm long and 30 μm wide separated from
the substrate by a gap of 1.9 μm were used in this experiment. To make
the cantilevers freestanding and also to eliminate capillary forces at the in-
terface, a hydrophobic monolayer coating of perfluorodecyltrichlorosilane
(FDTS, CF3(CF2)7(CH2)2SiCl3) was applied with a water contact angle
of 110° in a solvent-based process [76]. Roughness of the lower layer



Fig. 7. Adhered cantilever [17]. (a) Schematic image of the cantilever adhered to the substrate. The crack length is s, the adhered length is t. Voltage can be applied to the actuation pad to
produce an electrostatic load. (b)–(e) Interferograms of cantilever beams at a fixed actuation voltage but different surface roughnesses.
Courtesy of M. P. de Boer.

ig. 8. Adhesion energy as a function of averaged distance between rough bodies [17]. The
lue curve shows the limit of smooth surfaces separated by thedistance dave. The black line
ives the adhesion energy for the limit of single asperity contact. The triangles show the
nergy calculated from the AFM images and the squares give the energy determined
om the observed shapes of cantilevers.

Courtesy of M. P. de Boer.
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of polysilicon, which defines the landing pad, was accomplished by
thermal oxidation in dry O2 at 900 °C for increasing times. The rms sur-
face roughness increases with the oxidation time. This occurs because
the polysilicon grains are randomly oriented, and dry oxidation pro-
ceeds at different rates on the various orientations of silicon.

To perform the adhesion test freestanding cantilevers were brought
into contact with the substrate by applying a voltage to the actuation
pad. Using phase-stepping interferometry, the full deflection curve of
the cantilevers was determined to nanometer-scale accuracy. The
resulting interferograms are shown in Fig. 7b–e for an applied load of
Vpad =50 V. They qualitatively indicate a decrease in adhesion for an in-
crease in surface roughness. The adhesion energy was extracted from the
beam shape under action of electrostatic and adhesive forces as described
in [71].

The result is presented in Fig. 8 as a function of the average surface
separation dave that was calculated using actual surface topography (see
[17] for details). For relatively smooth surfaces it is natural to assume
that the adhesion energyper unit area Γ is definedby the dispersion forces
between parallel plates separated by the distance dave [74]. This distance
(later we call it distance upon contact) is defined by one highest asperity
where the bodies come to a contact. The energy due to the van derWaals
force in the contact area is negligible in comparison with that in the non-
contact area. This limit case is shown by the blue curve. The other limit
case is realized for relatively rough surfaces when the dispersion force
over the non-contact area is negligible. In this case the adhesion energy
is given by the van der Walls interaction in the area of contact. It is esti-
mated as [13]

Γ ¼ 1
A

AHR
6d0

� �
; ð3:2Þ

where A is the nominal area of contact, R is the radius of contacting asper-
ity, and d0 = 0.2 is the cutoff separation. This limit is shown in Fig. 8 by a
black line.
Influence of surface roughness on Γ was estimated using the actual
surface topographies of the landing-pad and structural polysilicon
layers. The topographies were measured by tapping-mode atomic
force microscopy (AFM). For each pixel in the AFM images the local dis-
tancedlocwasdetermined. The surface energywas calculated as the sum
of dispersion energies over all pixels opposing each other. These calcu-
lations are shown by the green triangles in Fig. 8. At last the experimen-
tal results for Γ determined from the shape of cantilevers are presented
by brown squares.
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In Fig. 8 one can conclude that the energy determined experimentally
and that estimated from the AFM images are in a reasonable agreement
with each other. However the limits of smooth surfaces and single as-
perity contact lie well below the experimental data. It means that the
surface roughness gives a considerable contribution to the adhesion en-
ergy and simple theoretical models strongly underestimate Γ. The situ-
ation does not change for a relative humidity up to 80%, therefore,
capillary condensation does not play a role.
Fig. 9. Scheme of the experiment with the electrochemical SFA [85]. The electrochemical
three-electrode cell consists of the goldworking electrodes (WE), a platinumcounter elec-
trode (CE), and an Ag|AgCl reference electrode. The WE is a glass sphere or cylinder cov-
ered with gold. Interaction of the WE is investigated with the mica sheet covered with
amino-silane monolayer. In this setup an external electrochemical potential is applied to
the gold electrode and force–distance curves are measured. At the potential Upzc (the po-
tential of zero charge) the effective surface potential of gold is zero.
Courtesy of J. N. Israelachvili.
3.3. Forces measured with surface force apparatus

Dispersion interaction across liquid medium is often accompanied
by the electrostatic interaction. Both of these interactions are nonaddi-
tive and for this reason the inclusion of roughness into consideration
is a difficult problem. Despite the fact that most of natural surfaces are
rough, in very few experiments the influence of surface roughness on
the dispersion forces was reported.

Twomainmethods tomeasure the dispersion forces in liquid environ-
ment are in use. One uses a surface force apparatus (SFA)where the force
is measured between two macroscopically curved surfaces over a rela-
tively large area of nominal contact. This method is able tomeasure abso-
lute normal distances with angstrom resolution. The secondmethod uses
AFM tomeasure the forces. In this case the interaction area ismuch small-
er and determination of the absolute separation between bodies is a diffi-
cult problem. We consider the second method in the next section.

With the help of SFA the effect of surface roughness on the contact
mechanics was studied for various polymeric surfaces with application
of external load [78]. The force was measured in the crossed-cylinder ge-
ometry with a curvature radius of R≈ 2 cm. Experiments were conduct-
ed in atmosphere of dry nitrogen or with lubricant oil between surfaces.
Randomly rough surfaces were prepared by spin coating of polymer
films onto mica. Roughness was controlled by varying the temperature
of the polymer solution, the solvent composition, the rate of evaporation,
and the relative humidity when deposited onto a substrate. The rms
roughness was varied from 3 to 220 nm.

Normal force-distance curvesmeasured on several different randomly
rough surfaces all showan extended exponentially repulsive force at close
distances. The repulsion is dominated by asperities and their bulk elastic
or plastic properties. At large separations, the forces were less repulsive
due to the attractive short-range van der Waals and/or solvation forces
between the initially contacting asperities. The adhesion energy versus
roughness showed no obvious correlation at a fixed preload. Moreover,
the observed value of adhesion was very large, Γ ≈ 28 mJ/m2. For com-
parison, the value of Γ between oxidized polysilicon surfaces [17] was
smaller than 10 μJ/m2. Large adhesion energy was explained by the seg-
mental entanglements of the polymers, which is correlated with the
real contact area [79]. The results of the discussed paper are consistent
with the old statement [80] that the real contact area is proportional to
the applied load and with the later works [81,82] on the effect of rough-
ness and material stiffness on the adhesion of solids.

A different method to prepare rough surfaces was used in Ref. [83].
The rough surfaceswere polymer replicas of substrates of different rough-
ness and composition. The replicas were fabricated following a technique
similar to microcontact printing [84], using a UV-curable polyurethane.
This methodmade it possible to keep the mechanical properties and sur-
face chemistry of the substrates constant, while varying the roughness.
The friction between surfaces prepared in this way and smooth bare
mica was measured in dry air or in the presence of lubricating oil using
the SFA.

The experiments described in [78,83] are related to themain point of
our interest but do not tell much on the roughness dependence of the
dispersion forces. This is because the adhesion investigated in these pa-
pers was not dominated by the dispersion forces as, for example, in [17]
but was defined by much stronger forces related to the segmental en-
tanglements of the polymers.
There is lack of unambiguous experimental data on interaction
forces between rough surfaces in electrolyte solutions. The first surface
forcemeasurements across a liquidmediumbetween a roughmetal and
a ceramic surface with a control of the electrochemical potential was
performed in Ref. [85]. These experiments reveal how increasing level
of surface roughness and dissimilarity between the potentials of the
interacting surfaces influence the strength and range of electric double
layer, dispersion forces, hydration, and steric forces and how this con-
tributes to deviations from DLVO theory (other than roughness devia-
tions are reviewed in [15]). Roughness and hydration effects [86] are
known to influence colloidal forces, adhesion, contact mechanics, fric-
tion and wear [87,88].

An electrochemical surface force apparatus (EC-SFA)was used to con-
trol interaction forces between dissimilar surfaces in situ in an electrolyte
[89]. This apparatus iswell suited to study the forces between rough elec-
trodes. It has combined capabilities to simultaneously control the elec-
trode surface potential, measure interaction forces, and visualize the
contactmechanics. The systemused formeasurements in Ref. [85] is illus-
trated in Fig. 9. The forces were measured between gold electrode with
varied surface roughness and a molecularly smooth self-assembled
amino-silane monolayer on mica in a 1.0 mM aqueous solution of
HNO3. The surface potential of the gold electrode was varied in situ.
Three samples with different roughness were used. One sample was
atomically smooth gold film (Au-1) with rms roughness w = 3 Å pre-
pared by template stripping from mica surface [90]. The second sample
(Au-2)was prepared byphysical vapor deposition (PVD) andwasmoder-
ately rough (w=12 Å). The third sample (Au-3) was further roughened
by electrochemical treatment of the deposited Au film (w = 17 Å). Al-
though the third sample is only slightly rougher compared to the second
one, it has a distinctly different surface morphology.

Fig. 10 shows the force-distance profiles measured for positive elec-
trode potentials (ΔU N 0), where the electrode and SAM surfaces are
like-charged (the amine groups in SAM are fully protonated charging
the surface positively). The results show that interaction forces measured
for atomically smooth gold surfaces are fitted very well by DLVO-theory
using constant potential boundary conditions down to separations of
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around 8 nm. Below 8 nm, the Au-1 electrode shows a jump in to about
4 nm,where the appearance of short ranged hydration forces overpowers
the attractive contribution from the dispersion forces. The solid line de-
scribing the fit for Au-1 data includes DLVO interactions and an additional
term taking into account repulsions due to hydration forces. This repul-
sive contribution agrees well with the literature value [91] for specifically
adsorbed nitrate ions at the positively charged SAM surface.

The force profiles and the repulsive ‘hard wall’ separation measured
for the two rough surfaces are shifted outwards by approximately 3 nm
and 3.5 nm for Au-2 and Au-3, respectively. Moreover, an additional ex-
ponentially repulsive component is superimposed on the force profile
(see Fig. 10) for rough samples and a pronounced ‘kink’ in the slope of
the repulsive force can be seen. These effects represent an additional ste-
ric repulsion force arising from the elastic deformation of the outermost
asperities at the rough surfaces. These asperities extend out to up to
10–15 nm.

It was found also that even small differences in the roughness mor-
phology lead to observable changes in the force profiles. Particularly, the
differences in “jump-in” behavior show that attractive dispersion forces
are weakened by the presence of surface roughness and depend on the
height distribution andnumber density of the nano-scale asperities. Qual-
itatively similar effects were observed for opposite charged surfaces
(ΔU b 0).

It has to be noted that in general the surface force apparatus are bet-
ter suited for investigation of surface forces at very small separations
and assume application of significant load. In comparison with the
force measurements with AFM they investigate larger area and inde-
pendently measure the distance between bodies with high precision.
On the other hand, the AFMmethod can givemore detailed information
about the force at larger separationwithout application of external load.
This method is reviewed in the next section.

3.4. Forces measured with atomic force microscope

Precise measurement of the dispersion forces with AFM was per-
formed for the first time by Mohideen and Roy in 1998 [92]. A typical
scheme for AFM experiments is shown in Fig. 11. Instead of a sharp tip
they attached a sphere to the AFM cantilever to increase the magnitude
of the force. For this configuration the effective area of interaction is
∼ πRd, where R is the sphere radius. For practical reasons it was possible
Fig. 10. Results of the experiment [85]. (a) Representative force–distance profiles mea-
sured during approach at externally applied positive potentials (ΔU = U − Upzc). Differ-
ently rough gold electrodes are indicated as Au-1,2,3. The inset (b) shows the semi-log
plot of the same data shown in (a). The solid lines correspond to theoretical fits (normal-
ized by the radius of curvature, R) using the theoretical model explained in [85].
Courtesy of J. N. Israelachvili.
to use the sphere with a radius of 100 μm. The interaction area is much
smaller than that in SFA where R= 2 but with a soft cantilever (spring
constant k≈ 0.02) it was possible tomeasure quite weak forces ∼ 10. In
this experiment both the sphere and the plate were covered with
300 nm of aluminum and 20 nm of Au/Pd alloy to prevent oxidation
of Al. The distance between bodies was controlled with a piezo.

The main problem of the AFM method is determination of the abso-
lute distance between the bodies. It is reduced to determination of the pa-
rameter d0 that is the absolute separation on contact. This parameter is
usually extracted from the electrostatic force measured at relatively
large distanceswhere the dispersion forces are small. Significant progress
in determination of d0 was reached during later development [58,93,94]
but the errors in the force versus separation distance are still dominated
by the errors in d0.

In the first experiment [92] roughness of the bodieswas quite signif-
icant up to 35 nm on each surface. As the result the distance upon con-
tact was determined as d0 = 120± 5. In this situation roughness has to
give a significant contribution to the force. It was estimated using the
perturbation theory (see Section 4.2) as 50% at closest separations. In
the following development of the method most of the experiments
were performed using Au [95] instead of Al to cover the dielectric bod-
ies. This eliminated the problem of oxide formation and resulted in sig-
nificant reduction of roughness applying well-developed deposition
methods. In the most precise experiments [59,95–96] the roughness
contribution to the force was on the level of the experimental errors.

However, the precise experiments were performed at distances of the
order of 100 nm. In this case rms roughness in a few nanometers is not
important but at smaller separations it can play very significant role. Spe-
cial investigation of the roughness effect at smallest possible separations
was undertaken in Ref. [26] (see some additional details in [97]). Relative-
ly stiff cantilevers have beenused to reach as small separations as possible
between sphere (R = 100 μm) and plate before jump to contact. The
spherewas coveredwith 100 nmAu in an electron-beam evaporator. Sil-
icon wafers were coated in the same way by Au to different thicknesses
between 100 and 1600 nm. All of these films have different rms rough-
ness w and different feature size ξ (correlation length) as one can see
Fig. 12. The value of w increases with the film thickness from 1.5 nm to
10.1 nm while ξ is between 22 and 42.

The forcewasmeasured in air in the samewayas shown in Fig. 11. The
cantilever spring constant k, the residual contact potential Vc, and the dis-
tance upon contact d0 all three parameters were determined from the
electrostatic calibration similar to [95]. Much stiffer cantilevers with k =
0.235 have been used. It was found that the parameter d0 correlates
very well with the roughness of investigated surfaces. Nearly linear
Fig. 11. Scheme of the AFM experiment. The sphere is attached to the AFM cantilever
whose position is read out by a laser beam. The plate is mounted on a piezo allowing con-
trol of the distance between bodies. Inset shows SEM image of the sphere with magnified
area shown as AFM image.



Fig. 13. Casimir force measured for different rough surfaces on a log–log scale for various
Au film thicknesses. The theoretical curves for 100 nm and 1600 nm films are shown by
solid lines. The inset shows the electrostatically calibrated values of d0 as a function of
the rms roughness.
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relation (see inset in Fig. 13) was found d0= C(w+wsph), wherewsph=
3.5 is the sphere roughness and the constant C ≈ 3.7. It is important to
stress that the value of d0 is considerably larger than the rms roughness
of interacting surfaces. At the smallest possible separations (just before
jump to contact) the error in the force versus separation d is about 10%
and it is dominated by the error in d0 that is Δd0 ∼ 1.

The results for the force vs distance are presented in Fig. 13 for the
films of different thicknesses. Thin films (100, 200, and 400 nm) are in
reasonable agreement with the theoretical expectations that take into
account some deviations of dielectric functions of deposited gold from
the single crystal material and account for the roughness corrections
using the perturbation theory (see Section 4.2). For these films the
force is well described by the power law [98] F ∼ d−α, where α is be-
tween 2 and 3. However, the thick films show very different behavior.
There is significant deviation from expected scaling. The theoretical
curve (black) including the roughness correction is not able to describe
the observed force. It seems like the perturbation theory is still applica-
ble even for the roughest film 1600 nm. For this film w ≈ 10 and the
minimal distance is d = d0 ≈ 50. The relative perturbation correction
is estimated as 6(w/d0)2 ≈ 0.24. It is much smaller than the observed
deviation. Explanation of this phenomenon is presented in Section 4.3.

The force in the sphere–plate configuration was measured with AFM
also in intervening liquids. Munday and Capasso [99] measured the
force betweengold coveredbodies in ethanol. In polar liquids electrostatic
calibration of the system (determination of k, Vc and d0) is inappropriate
due to strong reduction of the force. Instead the hydrodynamic drag
force has been used for calibration. In this experiment the forcewasmea-
sured for distances as small as 35 nm and the effect of surface roughness
clearly manifested itself in the data. It was found that a simple theory for
roughness correction based on PRA (see Section 4.2) overestimates the
force at small separations. Few information on the roughnessmorphology
was presented. A more detailed analysis of the electrostatic forces has
been done in [100] including the screening effect due to dissolved NaI
in ethanol. In this experiment the measured force was found to be in a
good agreement with the theoretical prediction including the roughness
correction. Comparison of the dispersion forces between gold–gold and
gold–silica immersed in bromobenzene is discussed in [101]. It was ob-
served that the force between gold and silica becomes repulsive as pre-
dicted by the Lifshitz theory. The roughness contributed to the force
was not discussed in detail.
Fig. 12. AFM images of deposited Au films on Si substrate. Successive images correspond to the
color scale.
3.5. What we learned from the experiments

The first conclusion that can be driven from the experiments with
corrugated bodies is that the dispersion forces are not additive. In gen-
eral, one cannot calculate the force using the pairwise summationmeth-
od. Insteadmuchmore complicated approaches developed in the last 15
years have to be used. The additivity is applicable if the corrugation
wavelength is much larger than the distance between bodies. It is not
very clear to what extend we can transfer this conclusions to random
roughness.

Both AFM experiments in air and experiments with adhered cantile-
vers demonstrate that the dispersion forces deviate very significantly
from expectations based on simple theories. Typically the forces at
small separations aremuch larger than expected. The situation for inter-
action in liquids is not that clear and needs more analysis.

Experiments with SFA give very detailed information about the
forces for bodies in contact at significant external load. When the sepa-
ration distance increases they become less informative. An important
conclusion that can be drawn from these experiments is significant in-
fluence of roughness distribution on the dispersion forces.
film thickness 100, 200, 400, 800, 1600 nm, scan size is 0.5 μm, all but the last on the same



Fig. 14. (a) AFM image of a deposited gold film 100 nm thick. The image size is 1 × 1 μm2.
(b) The correlation function extracted from the image (red circles). Blue solid line is the
linear fit (on log–log scale) that allows determination of both parameters ξ and H.
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4. Theoretical description of roughness

The Lifshitz formula (2.19) does not take into account inevitable
roughness of interacting bodies. When rms roughness of the bodies is
much smaller than the separation distance, then the roughness influence
on the force can be calculated using the perturbation theory (see
Section 4.2). However, when the distance becomes comparable with the
roughness, the perturbation theory cannot be applied. The problem of
short distance separations between rough bodies is one of the unresolved
problems. In this chapter we give introduction into interaction of two
rough plates or a sphere and a plate and describe the current state of
the problem.

4.1. Description of a rough surface

4.1.1. Characterization
Suppose there is a rough plate with a surface profile that can be de-

scribed by the function h(x, y), where x and y are the in-plane coordi-
nates. An approximation for this function provides, for example, an
AFM scan of the surface. It gives the height hij at the pixel position
xi = Δ ⋅ i and yj = Δ ⋅ j, where i, j=1, 2,…, N and Δ is the pixel size re-
lated to the scan size as L= Δ ⋅ N. We can define the mean plane of the
rough plate as the averaged value of the function h(x, y): h ¼ A−1

∫dxdyh x; yð Þ, where A is the area of the plate. This definition assumes
that the plate is infinite. In reality we have to deal with a scan of finite
size, for which the mean plane is at

hav ¼
1
N2

X
i; j

h xi; yj

� �
: ð4:1Þ

The difference h−hav , although small, is not zero and is a random
function of the scan position on the plate [102]. This difference becomes
larger the smaller the scan size is. Keeping inmind this point, which can
be important in some situations, we can consider Eq. (4.1) as an approx-
imate definition of the mean plane position.

An important characteristic of a rough surface is the rms roughness
w, which is given as

w ¼ 1
N2

X
i; j

h xi; yj

� �
−hav

h i2
: ð4:2Þ

It has the meaning of the surface width. More detailed information
on the rough surface can be extracted from the height-difference corre-
lation function defined for an infinite surface as

g Rð Þ ¼ 1
A

Z
dxdy h rþ Rð Þ−h rð Þ½ �2; ð4:3Þ

where r = (x, y) and R = r′ − r.
A wide variety of surfaces, as for example, deposited thin films far

from equilibrium, exhibit the so called self-affine roughness which is
characterized besides the rms roughness amplitude w by the lateral cor-
relation length ξ (indicating the average lateral feature size), and the
roughness exponent 0 b H b 1 [103–105]. Small values of H ∼ 0 corre-
sponds to jagged surfaces, while large values ofH∼ 1 to a smooth hill val-
ley morphology. For a special case of the self-affine rough surfaces g(R)
scales as

g Rð Þ ¼ R2H
; R≪ ξ;

2w2
; R≫ ξ:

(
ð4:4Þ

The parameters w, ξ and H can be determined from the measured
height-difference correlation function g(R). This function can be extracted
approximately from theAFMscans of the surface. An example is shown in
Fig. 14. The top image is an AFM scan of 100 nm thick Au film. The bottom
image shows the correlation function extracted from the image and its
approximation with Eq. (4.4). From Eq. (4.2) it is found that w ≈ 1.5
and from the power-law behavior of the correlation function it is found
that ξ ≈ 22.4 and H≈ 0.9. The latter value shows that deposited gold is
described by smooth hills and valleys.

To find roughness correction to the force one has to know (see
Section 4.2) the spectral density σ(k) of the height–height correlation
function C(R). The latter is related to g(R) as g(R) = 2w2 − C(R). An ana-
lytic form of the spectral density for a self-affine surface is given by [106]:

σ kð Þ ¼ CHw2ξ2

1þ k2ξ2
� �1þH ; C ¼ 2

1− 1þ k2c ξ
2

� �−H : ð4:5Þ

Here C is a normalization constant [105,106] and kc = 2π/Lc is the
cutoff wavenumber.

4.1.2. Distance upon contact and height distribution
The absolute distance separating two bodies is a parameter of prin-

cipal importance for determination of the dispersion forces. In fact,
when the bodies are brought into gentle contact they are still separated
by some distance d0, whichwe call the distance upon contact due to sur-
face roughness. This parameter has a special significance forweak adhe-
sion, which is mainly due to van der Waals forces across an extensive
noncontact area [17]. In the modern precise measurements of the dis-
persion forces [8,94,95] d0 is the main source of errors. The distance
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upon contact is usually considerably larger than the rms roughness be-
cause it is defined by the highest asperities. It is important to clearly un-
derstand the origin of d0, its dependence on the lateral size L of involved
surfaces, and possible uncertainties in its value [107].

Consider two parallel rough plates facing each other. Each surface can
be described by the roughness profile hi(x, y) (i=1, 2 for plates 1 or 2) as
shown in Fig. 15a. The averaged value over a large area is assumed to be
zero 〈hi(x, y)〉= 0. Then the local distance between the plates is

d x; yð Þ ¼ d−h1 x; yð Þ−h2 x; yð Þ: ð4:6Þ

This distance depends on the combined rough profile h(x, y) =
h1(x, y) + h2(x, y). Indeed, the averaged local distance has to give
〈d(x, y)〉= d. We can define the distance upon contact d0 as the largest
distance d = d0, for which d(x, y) becomes zero.

It is well known from contact mechanics [108] that the contact of two
elastic rough plates is equivalent to the contact of a rough hard plate and
an elastic flat plate with an effective Young's modulus E and a Poisson
ratio ν. Here we analyze the contact in the limit of zero load when both
bodies can be considered as hard. Then we can consider an equivalent
configuration of a flat plate facing a rough plate with the roughness
given by the combined profile h(x, y) as shown in Fig. 15b. In this config-
uration d0 is defined as the maximal peak of the combined profile.

Consider a combined image with the size L. It is assumed that this
size is much larger than the correlation length ξ presenting typical fea-
ture size in the image. It means that the image area can be divided into a
large number N2 = L2/ξ2 of cells. The height of each cell (asperity) can
be considered as a random variable h. The probability to find h smaller
than some value z can be presented in a general form

P zð Þ ¼ 1−e−ϕ zð Þ
; ð4:7Þ

where the “phase” ϕ(z) is a nonnegative and nondecreasing function of
z. Note that Eq. (4.7) is just a convenient way to represent the data: in-
stead of the cumulative distributions P(z)we are using the “phase”ϕ(z),
which carries more information about the tails of the distribution.

For a given asperity the probability to find its height above d0 is 1−
P(d0), then within the area of nominal contact one asperity will be
higher than d0 if

e−ϕ d0ð Þ L2=ξ2
� �

¼ 1 or ϕ d0ð Þ ¼ ln L2=ξ2
� �

: ð4:8Þ

This condition can be considered as an equation for the height of the
height asperity due to a sharp exponential behavior of the distribution
d0

combined rough

smooth

d0

a h1(x,y) h2(x,y)

b h1(x,y)+h2(x,y)

Fig. 15. Contact of two rough surfaces. (a) Two rough plates in contact. Roughness of each
plate, hi(x, y), is counted from themean plane shown by the dashed lines. The distance be-
tween bodies is the distance between thesemean planes. (b) The interaction between two
rough plates is equivalent to the interaction between a smooth plate and a rough plate
with the roughness given by the combined profile h(x, y). The distance upon contact, d0,
is the maximal peak within a given area.
tail. To solve Eq. (4.8) we have to know the function ϕ(z), which can
be found from the roughness topography.

The cumulative distribution P(z) can be extracted from combined
images by counting pixels with the height below z. The probability den-
sity function f(z) can be expressed as f(z) = dP/dz. The “phase” is calcu-
lated as ϕ(z) = − ln(1 − P). The results are presented in Fig. 16b. The
procedure of solving Eq. (4.8) is shown schematically by thin dashed
lines, and the solution itself is the red solid curve in Fig. 16a. The blue
dots with the error bars show the values of d0 determined directly
from the combined AFM images taken on different scales L. The error
bars demonstrate variation of d0 determined from different local areas
of the size L2 of homogeneous gold films [107]. Note that d0 is consider-
ably larger than w for all the scales L ≫ ξ.

It has to be mentioned that the normal distribution fails to describe
the data for Au films at large z. Other known distributions cannot satis-
factory describe the data for all z. Asymptotically at large |z| the data can
be reasonably well fit with the generalized extreme value Gumbel dis-
tributions (green lines in Fig. 16b) [109]:

lnϕ zð Þ ¼ −αz; z→−∞
βz; z→∞

	
ð4:9Þ

It has to be stressed that the extreme value statistics describes quite
well the tails of the distribution of all gold films investigated in [107].

4.2. Perturbative correction to the force

Suppose that the force per unit area between two flat plates is F(d). If
the rms roughnessw of the combined profile h(x, y) is small,w≪ d, but
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Fig. 16. (a) Distance upon contact as a function of the length scale. Dotswith the error bar
are the values calculated from the AFM images. The solid curve is the theoretical expecta
tion according to Eq. (4.8). (b) Statistics of the surface roughness. Four 10 × 10 μm2 im
ages were used. The main graph shows the “phase” as a function of z. The green solid
lines show the best fits at large positive and negative z. The red dashed lines demonstrate
the solution of Eq. (4.8). The inset shows the cumulative distribution P(z).
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the correlation length is large, ξ≫ d, we can use the proximity force ap-
proximation and calculate the roughness correction additively. Averag-
ing the force for local distances d(x, y) and expanding it in power series
in w/d one can present the energy between rough plates as

F dð Þ ¼ F d x; yð Þð Þh i≈F dð Þ þ F″

2
h2
D E

; ð4:10Þ

where 〈h2〉=w2 =w1
2 + w2

2 is the square of the combined rms rough-
ness and F is the force between two rough plates. Eq. (4.10) defines the
PFA roughness correction δF(d) = F″(d)w2/2. This correction was used
in all early studies to estimate the roughness effect.

Genet et al. [23] noted that in most experimental configurations the
condition ξ ≫ d is broken and PFA cannot be applied. In Refs. [24,25] a
theory was developed, which is not restricted by the condition ξ ≫ d.
Within this theory the roughness correction is expressed via the spec-
tral density of the rough surface σ(k) as

δF dð Þ ¼
Z

d2k
2πð Þ2 ρ k;dð Þσ kð Þ; ð4:11Þ

where ρ(k, d) is the roughness response function derived in [25]. This
function is quite complicated and we do not provide it here refereeing
to the original paper. The PFA result (4.10) is recovered from
Eq. (4.11) in the limit of small wavenumbers k → 0 when ρ(k, d) →
F″(d)/2. The roughness power spectrum is normalized by the condition
∫d2kσ(k)/(2π)2 = w2. The spectrum itself can be obtained from AFM
scans and in the case of self-affine rough surfaces is given by Eq. (4.5).

Let us enumerate the conditions at which the PFA result given by
Eq. (4.10) is valid. (i) The lateral dimensions of the roughness ξ must
Fig. 17. AFM megascan of the 100 nm film (a) and the sphere (b). The insets show the
highlighted areas at higher magnifications.
be much smaller than the system size L, ξ ≪ L. This is usually the case
in experiments. (ii) The rms roughness w must be small compared to
the separation distance, w ≪ d. This condition means that roughness
is treated as perturbative effect. (iii) The lateral roughness dimensions
must be much larger than the vertical dimensions, w ≪ ξ [25]. The
last two assumptions are not always satisfied in the experiment.

In the plate–plate configuration the force per unit area can be calcu-
lated as F (d). For the sphere–plate configuration, which is used in
most of the experiments, the force is calculated with the help of PFA
as F sp(d) = 2πR∫d

∞F (t)dt. In contrast with the roughness correction
the latter relation is justified for d ≪ R, which holds true for most of
the experimental configurations. We use the sphere–plate configura-
tion to illustrate the roughness effect. The deposited gold films can be
considered as self-affine. The perturbative correction to the Casimir
force was calculated for the sphere–plate geometry [26,27,110] using
the smoothest spheres with the parameters w = 1.8, ξ = 22, and
H = 0.9 [111]. The plate roughness was different in dependence on
thickness of the deposited Au films. We use the optical data for gold
filmsmeasured in [112]. It was found that the PFA limit is quickly recov-
ered for increasing correlation length. Deviations from PFA prediction
for real films were found to be about 1–5% in the range of distances
d = 50 − 200.

Therefore, for real rough surfaces the scattering theory gives a few
percent correction to the force compared to the PFA. This difference is
difficult tomeasure. However, at small separations both PFA and pertur-
bation theory fail since the rms roughness becomes comparable in size
to the separation distance. It is important to calculate the roughness ef-
fect when d is comparable withw. At the moment there is no a theoret-
ical instrument to estimate the effect except a direct numerical analysis
similar to that used in [113] (see also [22] as a review of themethod). It
would be interesting to do a full numerical analysis for rough films in
close proximity when the perturbation theory does not work. However,
even this approach seems quite complicated for real rough surfaces. On
the other hand, it is experimentally possible to go to sufficiently small
distances as was discussed in Section 3. A class of problems that can
be solved using a relatively simple semi-analytical approach is present-
ed in the next section.

4.3. Beyond perturbation theory

Here we are going to present an approach that allows us to calculate
the roughness correction beyond perturbation theory. The approach is
based on the experimental fact that the contact of rough bodies happens
at the distance d0, which is considerably larger than the rms roughness
w. The distance upon contact depends on the lateral scale L but for
L N 1 μm it is typically d0 N 3w. This fact was established for gold films in
many papers [26,58,93–95,96], where the Casimir force was measured,
and checked directly by analysis of the AFM images [107]. However, at
the moment there are no data for other materials and restrictions of
the method are not clear yet.

The general idea of the method is very simple [27]. If two bodies are
gently touched they are still separated by the distance d0. If the area of
nominal contact includes many asperities, the real contact happens
only in one or a few highest asperities. The contribution of these highest
peaks to the force has to be calculated precisely. It is possible to do be-
cause the distance between high peaks is large. Normal asperities with
the height ∼ w can still be calculated using the perturbation theory.
Let us consider now the details of the approach.

4.3.1. Roughness statistics of Au films
A detailed analysis of the roughness statistics of different gold films

was performed by van Zwol et al. [107]. The films were already de-
scribed in Section 3.4. These films were optically characterized [112]
in a wide frequency range from 0.03 b ω b 9 eV and were used to mea-
sure the roughness contribution to the dispersion forces [26]. The AFM
images of the films presented in Fig. 12 cannot be used to extract



16 V.B. Svetovoy, G. Palasantzas / Advances in Colloid and Interface Science 216 (2015) 1–19
detailed information on the film roughness. This is because the scan size
L = 0.5 μm is too small to draw conclusions on the statistics from one
image. Practically itmeans that onehas to analyze a large number of im-
ages to get reliable data but even this is difficult because the film is not
absolutely homogeneous: images taken from different local places can
poor correlate.

This practical problemwas resolved [107] by collecting the so-called
megascans for each film. These are high resolution AFM scans with the
size up to 40 × 40 μm2 and a lateral resolution of 4096 × 4096 pixels.
The maximal area that was possible to scan on the sphere was 8 ×
8 μm2 (2048 × 2048 pixels). All images were flattened with linear fil-
tering; for the sphere the parabolic filtering was used to exclude the ef-
fect of curvature. The images of 100 nm film and the sphere are shown
in Fig. 17(a) and (b), respectively. Each image can be zoomed a few
times due to high resolution. The detailed statistics is collected just
from one image. In this way we can be sure that nonhomogeneity of
the film plays a minimal role.

From all the images the cumulative distribution P(z) was deter-
mined. Using this distribution the “phase” ϕ(z) has been calculated ac-
cording to Eq. (4.7) and the probability density function was
calculated as f(z) = dP/dz. In Fig. 18 the result is presented for the
image of the roughest 1600 nm thick Au film. Aswas alreadymentioned
the logarithm of the “phase” at large positive and negative z is well de-
scribed by the linear behavior that is a signature of the extreme value
statistics. Strong deviation of the tails from the normal distribution is
well visible in the inset. The real film has much more high peaks than
predicted by the normal distribution of the asperity heights. The latter
is important to calculate the roughness effect beyond perturbation
theory.

4.3.2. Roughness contribution
We can imagine a rough surface as a large number of asperities with

the height ∼ w and lateral size ξ, and occasional high peaks and deep
pits. These peaks are high in the sense that their height is considerably
larger than w, say N 3w. The situation can be visualized as a lawn cov-
ered with grass and occasional high trees standing here and there. For
this reason the model described in this subsection sometimes is called
“lawn and threes” model.

The interacting surfaces are separated by the distance d N d0 N 3w.
Normal asperities with the height ∼w can be treated perturbatively be-
cause even at contact (w/d)2 ≪ 1 and the perturbation theory can be
applied. For the high peaks the local distance between the bodies be-
comes small and the perturbation theory fails. Because the high peaks
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Fig. 18. The “phase” as a function of z for a 1600 nm gold film. The circles are the actual
data extracted from the AFM image via P(z). At large positive and large negative heights
log10ϕ(z) is well fitted by linear functions of z as it is shown by the straight lines. The
curved line is a polynomial fit at intermediate z. The inset shows the probability density
function f(z). It demonstrates a significant deviation from the normal distribution.
are rare the average distance between them l is large. If l ≫ d then we
can calculate the contribution of the high peaks independently on
each other. Interaction of one high peak with a flat surface can be
taken into account precisely using developed numerical or sometimes
analytical methods [22].

The number of asperitiesNwith a height d1 N 3w and lateral size ξ on
the area L2 is given by the equation similar to Eq. (4.8):

N ¼ L2

ξ2
e−ϕ d1ð Þ

: ð4:12Þ

The average distance between these peaks is

l ¼ Lffiffiffiffi
N

p ¼ ξeϕ d1ð Þ=2
: ð4:13Þ

One can choose the parameter d1 in such a way that l≫ d. Its actual
value lies in the interval 3w b d1 b d0. If it happens that d1 N d0 than the
perturbation theory can be applied for all asperities and there is no need
to separate high asperities.

Suppose for a moment that the PFA can be applied to any roughness
topography. Then the force between rough surfaces can be calculated as

F dð Þ ¼
Z d0

d1

…þ
Z −d01

−d00

…þ
Z d1

−d01

dzf zð ÞF d−zð Þ; ð4:14Þ

where F(d) is the force between flat surfaces, f(z) = dP/dz is the proba-
bility density function determined from the images of rough surfaces.
The first integral is the contribution of high peaks, the second one ac-
counts for the deep pits with the corresponding parameters d1′ and
d0′, and the last term is the contribution of normal roughness.

We know that application of PFA to normal asperities is wrong but it
is possible to apply the perturbation theory to the last term that has to
be generalized as (only the roughness correction)

δF PT dð Þ ¼ F″ dð Þ
2!

Z
d2k
2πð Þ2 ρ k;dð Þσ kð Þ: ð4:15Þ

Here σ(k) is the Fourier spectrum of the roughnessmeasured or cal-
culated according to Eq. (4.5). The function ρ(k, d) measures the devia-
tion from the PFA and it is the same function introduced in Eq. (4.10).
One can use for ρ(k, d) the expressions found in [24,25].

The second term in Eq. (4.14) can be neglected because the force for
deep pits is small and their number is not large. On the contrary, the first
term in Eq. (4.14) is important and the PFA is applicable to this term be-
cause the high peaks do not influence each other. The final result for the
force between rough surfaces can be written as

F dð Þ ¼ F dð Þ þ δF PT dð Þ þ δF P FA dð Þ; ð4:16Þ

where δFPFA is the contribution of the high peaks given by the relation

δF P FA dð Þ ¼
Z d0

d1

dzf zð Þ�

F d−zð Þ−F dð Þ þ F 0 dð Þz− F″

2!
z2

" #
:

ð4:17Þ

There last three terms in the square brackets exclude the contribu-
tion that was already included in δF PT(d). Eqs. (4.16) and (4.17) give
us the possibility to calculate the effect of roughness beyond the pertur-
bation theory.

4.3.3. Comparison with the experiments
We have seen already in Sections 3.2 and 3.4 that the experiments

demonstrate significant deviation of the roughness contribution to the
force (or adhesion energy) from expectations. The described above
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model that is going beyond the perturbation theory has a chance to set-
tle the contradiction. It is difficult to make predictions for the experi-
ment [17], where the adhesion energy between oxidized polysilicon
surfaces was measured. This is because the detailed roughness of
polysilicon surfaces was not collected. On the other hand, all the neces-
sary information for the experiment [26] is available. In this experiment
very strong deviation from the expected scaling of the force with dis-
tance was found. This is an optimal situation to check a new model. It
was done for the first time by Broer et al. [27].

Gold films can be considered as self-affine. The spectral density of
roughness for such films is given by Eq. (4.5) with the parameters w,
ξ, and H determined directly from the images. The dielectric functions
of the films needed for calculations were measured in [112]. This func-
tions were used to evaluate the first term in Eq. (4.16) that is given by
the Lifshitz formula (Eq. (2.25) for the sphere–plate configuration)
and the function ρ(k, d) needed for the second term. The last term re-
sponsible for the contribution of the high peaks is given by Eq. (4.17).
This is the term that has to be responsible for the strong change of the
force scaling. The probability density f(z) is extracted from the AFM im-
ages of the films. In the simplest approach it is assumed that the force
F(d) entering under the integral in Eq. (4.17) is also given by
Eq. (2.25). This assumptionmeans that the high asperities are presented
as pillars with the cross section ξ × ξ and a flat cap.

This assumption is justified by the following consideration. A few
high peaks can give significant contribution if the local distance be-
tween the peak and the opposing surface is very small. The actual con-
dition is d − d0 ≪ ξ. If this condition is true, then the shape of the
pillar cap is not very important. It becomes important if d − d0 ∼ ξ but
in this case the contribution of high peaks to the force is small.

The result of calculations and the experimental data from [26] are
shown in Fig. 19 for the roughest film 1600 nm, but similar situation is
observed for the films 800 nm and 1200 nm thick. It is obvious that
the model is able to explain the behavior of the force at small separa-
tions. This is due to the contribution of high peaks as the inset demon-
strates (curve 2). It increases very sharp with the distance. On the
other hand, the contribution of normal asperities is never large as the
curve 3 shows.

If one would naively apply the additivity to calculate the effect of
roughness in the dispersion forces (we call the approach “naive PFA”),
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the result would correspond to the dashed line in Fig. 19. For this
naive PFA the force is given by the expression similar to Eq. (4.14)

F dð Þ ¼
Z d0

−d00

dzf zð ÞF d−zð Þ: ð4:18Þ

At small distances this curve coincideswith the exactmodel because
the contribution of normal asperities is small but high asperities can be
included additively. At larger distances there is some deviations be-
tween the curves but it is not large. This deviation is due to the pertur-
bation theory contribution (4.15), which never dominates. One can
conclude that the reason for a strong deviation of the force from normal
scaling is found and this reason is a large contribution of high asperities
which locally approach the opposite surface very closely.

Influence of the shape of high peaks on the forcewas analyzed in de-
tail [110] in spite of the arguments above that it should not be signifi-
cant. One has to note that the shape cannot be determined from AFM
scans because the tip radius is comparable with the curvature radius
of a peak. The following model shapes were considered: a rectangular
pillar with a flat or spherical cap, an ellipsoid with half-axes d0 and
ξ/2, and a cone with height d0 and bottom diameter ξ. For a flat pillar
the force between a peak and a flat surface was calculated with the
Lifshitz formula (2.19). For a pillar with a spherical cap the force was
evaluated using sphere–plate interaction that does not assume applica-
bility of PFA [114]. For an ellipsoid and cone the forcewas calculated nu-
merically with a finite-difference time-domain (FDTD) [115] program
called Meep [116]. It was found that the all possible shapes of peaks
are nearly equivalent except of the cone. The conical shape predicts
the force to be too small to explain the experiment. One could expect
it because the tip of the cone gives very small contribution to the force
(small area). Due to the shape the force variation is smaller than 5%
nearby the contact.

4.4. What we learned from the theory

In general roughness contribution to the dispersion forces is a com-
plicated problem when the distance between interacting bodies be-
come comparable with the rms roughness, d ∼ w. The difficulty is
related to thenonadditivity of the dispersion forces. Similar problemap-
pears for the electrostatic interaction between rough bodies.

Naive PFA approach neglects the nonadditivity problem. The force is
calculated as the sum of independent forces between small parallel
patches. For randomly rough surfaces the force togetherwith the rough-
ness contribution is given by Eq. (4.18). To use this expression one has
to know the very detailed information about the probability density
function. The tails of the distribution are especially important. The prob-
ability density can be extracted from AFM images of the interacting sur-
faces. The probability to find a high peak on the rough surface is very
important because the high peaks can approach locally close to the op-
posite surface and give large contribution to the force. A strong disad-
vantage of the naive PFA approach is that the precision of this method
cannot be controlled. It is a good approximation if the correlation length
ismuch larger than the distance between bodies, ξ≫ d. Nevertheless, in
many situations the approximation works well even if this condition is
broken.

At large distances, d ≫ w, the roughness effect can be treated
perturbatively. A method to calculate the roughness correction in this
situation was developed [24]. It is based on the scattering theory and
it can be applied even if the condition ξ ≫ d is not fulfilled. One has to
know the roughness power spectrum that can be determined from
AFM images of the interacting surfaces. In this situation the roughness
correction is treated as a small correction to the Lifshitz formula that de-
scribes the main contribution to the force. This correction is given by
Eq. (4.15).

When the surfaces are close to contact the perturbative correction
does not describe the situation as was demonstrated experimentally
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[17,26]. However, the ratio (w/d)2 stays small even at contact because
the minimal distance between bodies is d0 N 3w and one would expect
that the perturbation theory is applicable. The explanation of the puzzle
was given for gold films where the problem is clearly observed [26].
Careful analysis of these films [107] revealed significant deviations
from the normal distribution. The number of high peaks for gold films
wasmuch larger than predicted by the normal distribution. This proper-
ty gave an idea for the “lawn and trees”model [27]. In this model asper-
ities with normal height ∼ w are treated perturbatively, while
contribution of high asperities N 3w can be calculated precisely. Because
the distance between high asperities is large they do not influence each
other and they can be treated additively. This approach successfully ex-
plained the experimental data. It also gives a hint why the proximity
force approximation works better than it is expected: at small separa-
tions high peaks play more important role than normal asperities, but
for these peaks the PFA can be applied.
5. Conclusions

The main purpose of this paper is to analyze the influence of natural
roughness on the dispersion interaction of two closely separated bodies.
We did not discuss in detail loaded contactwhen elastic or plastic defor-
mations of some asperities takes place (for recent analysis see [117]). A
convenient way to investigate influence of roughness on the dispersion
forces is analysis of contactless interaction between bodies approaching
the contact between highest asperities.

The problem considered here is important for a wide range of appli-
cations where one has to tune forces acting in air or in liquid environ-
ment between components of different micro or nanodevices. These
devices have areas large enough but gap small enough for these forces
to draw components together and even lock thempermanently. Rough-
ness also influences adhesion, friction, wetting, and stiction.

For non-experts in the dispersion forces we gave the introduction of
the forces between flat and gently curved surfaces. Special attention is
paid on the physical understanding of common origin of such forces as
van der Waals, Casimir, and Casimir–Lifshitz. The physical basis of the
Lifshitz theory [4] was briefly presented. This theory explains the dis-
persion forces as interaction between bodies due to electromagnetic
field induced by current fluctuations in the bodies.We provided a num-
ber of helpful relations to use in different practical situations.

There are many experiments where the effect of roughness was im-
portant but only in a few critical experiments this effect was investigat-
ed in detail.We reviewed these experiments in Chapter 3. Nonadditivity
of the dispersion forces was proven experimentally using the interac-
tion between corrugated plates and a sphere [56]. The fact of nonaddi-
tivity is a serious obstacle in the development of the theory. After
careful investigation of the stiction problem that results in malfunction
of many microelectromechanical devices it becomes clear that it is pos-
sible to exclude strong adhesion forces like capillary of chemical forces,
but it is not possible to switch off the dispersion interaction. Special in-
vestigation of adhesion due to this interaction revealed the significant
role of roughness [17]. The effect of roughness happened to be consider-
ably stronger than one would expect for interaction between flat
surfaces.

Influence of roughness was investigated also using the surface force
apparatus. Thismethod is better designed for investigation of strong ad-
hesion. It was demonstrated that attractive dispersion forces depend on
the details of the height distribution of the nano-scale asperities [85].
The forcesmeasuredwith atomic forcemicroscope or with torsional os-
cillator also showed the dependence on roughness. However, in most
cases it was done at rather large distances when the roughness effect
is small. Only in one experiment influence of roughness was investigat-
ed specifically at the smallest possible distance between sphere and
plate covered with deposited gold. In this experiment it was demon-
strated that roughness changed significantly the expected scaling of
the force with the distance [26]. Moreover, it seemed that the observed
effect cannot be explained by any existed theory until recently.

The state of the theory was reviewed is Chapter IV. First, we de-
scribed the ways to characterize a rough surface with emphasis on the
minimal distance between bodies. This distance d0 is an important pa-
rameter for interaction at smallest separations. For gold films d0 is con-
siderably larger than rms roughness, d0 = (3− 5)w, depending on the
size of the interaction area [107]. The roughness correction to the force
can be expressed explicitly if the distance between bodies is much larg-
er than the rms roughness, d≫w. In this case one can apply the pertur-
bation theory using as a small parameter the ratiow/d. As input data one
has to know also the spectral density of the rough surface. For a smooth
roughness profile, when the correlation length ξ is large, ξ≫ d, it is pos-
sible to use additivity and the correction can be easily found. In the op-
posite situation, which is quite often the case, one has to use a
complicated approach based on the scattering theory. Nevertheless,
the explicit result for the correction exists [24].

Experiments demonstrate that significant deviations from theoreti-
cal expectations are observed for the parameter (w/d)2 ∼ 0.01 where
the perturbation theory has to work fine. To understand this phenome-
na careful analysis of the roughness statisticswas undertaken for depos-
ited gold films. It was found that the probability to find a high peak is
considerably higher than it is expected from the normal distribution
[107]. High peaks and deep pits for gold films are describedmuch better
with the extreme value statistics. Despite that only a small area is cov-
eredwith high peaks, they can be important because these peaks locally
can approach very close to the opposing surface. Using these observa-
tions the so-called “lawn and trees”model was proposed [27] to calcu-
late the force close to contact. In this model normal asperities (∼w) are
treated perturbatively, while the contribution of high asperities is calcu-
lated precisely. The latter is possible because the distance between high
peaks is large and they can be taken into account additively. This model
reproduced successfully the experimental data for rough gold films. It
also explainedwhy the naive approach based on the proximity force ap-
proximation (additivity) often works better than it is expected.

Serious investigation of roughness on the dispersion forces has
started relatively recently. Many questions are still open. Here
we would like to enumerate some important problems that have to be
analyzed. Few experiments characterize the influence of roughness on
the dispersion forces in liquid environment. The surface force apparatus
is able to give valuable information but it is better designed for
very small separations and flat surfaces. AFM experiments in dielectric
liquids and electrolytes could fill this gap. There was no special
attention to roughness contributions in the existing AFM experiments
in liquids.

It was demonstrated that the “lawn and trees”model was able to re-
produce the experimental data for gold films. How general the model
is? At this moment it is difficult to answer the question because careful
investigation of the roughness of different materials is needed. It has to
be stressed that a few AFM images with the size ∼ 1 μm are not suffi-
cient to collect the data on roughness. Different materials especially
those used in microtechnology have to be carefully characterized. It is
clear that there is a class of materials that has roughness similar to
that of gold. It is obvious also that some materials cannot be described
in this way, for example,materials with terraces. Is it possible to explain
roughness effect for some intermediate situations? If roughness can be
described by the normal distribution, still real contact happens at high
peaks. Will the model work in this case?

In any case evaluation of the roughness contribution seems not pos-
sible in the situation when the distance is comparable with the rms
roughness,w∼ d. The only possible approach here is numerical. This ap-
proach has been developed very successfully [22]. It was applied to cal-
culate the force between many geometrical configurations but the
roughness effect never has been tackled. These calculations combined
with careful characterization of the surfaces and model predictions
could give solid ground for the roughness problem.
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