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In STED microscopy1, fluorescent features are switched off by the STED beam, which confines 

the fluorophores to the ground state everywhere in the focal region except at a subdiffraction 

area of extent 𝑑 ≈ 𝜆/(2𝑁𝐴 1 + 𝐼/𝐼𝑠) . 

In RESOLFT microscopy2,3, the principles of STED have been expanded to fluorescence on-off-

switching at low intensities I, by resorting to molecular switching mechanisms that entail low 

switching thresholds Is. An Is lower by many orders of magnitude is provided by reversibly 

switching the fluorophore to a long-lived dark (triplet) state2-4 or between a long-lived 

‘fluorescence activated’ and ‘deactivated’ state2,5.  

These alternative switching mechanisms 

entail an Is that is several orders of 

magnitude lower than in STED. In 

imaging applications, STED/RESOLFT 

enables fast recordings and the 

application to living cells, tissues, and 

even living animals6,7.  

Starting from the basic principles of 

nanoscopy we will discuss recent 

developments8,9 with particular attention 

to RESOLFT and the recent nanoscale 

imaging of the brain of living mice7 by 

STED. 

 
 

STED movie from a living mouse brain Neuron recorded from 

the molecular layer of the somatosensory cortex of a living 

transgenic mouse expressing YFP with resolution < 68 nm, 

showing moving dendritic spines.  
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