Skip to ContentSkip to Navigation
Research Zernike (ZIAM) Micromechanics Onck Group

Bio-inspired, responsive materials for lab-on-chip and soft-robotic systems

This work aims at understanding and designing bio-inspired, responsive materials by developing computational models (molecular dynamics, solid-fluid interaction techniques and finite-element models) for application in, e.g., microfluidic systems, lab-on-chip applications and soft-robotics. Emphasis is on magneto- and photomechanical interactions.

1. Switchable surface topographies by photo-responsive liquid crystal coatings

We use azobenzene-modified liquid-crystal polymers to design coatings that can be switched by light. We focus on different surface topographies and analyze the underlying physical mechanisms by using continuum modelling to describe the light attenuation process and the internal stress distributions that are key in generating the patterns. We study micro-domain, linearly patterned and fingerprint coatings, the effect of dual wavelength light and we generate surface waves by rotating a polarized light source.

Switchable surface topographies by photo-responsive liquid crystal coatings
Switchable surface topographies by photo-responsive liquid crystal coatings

PhD student: L.Liu. In collaboration with D.J. Broer (Eindhoven University of Technology) and R.K. Annabattula (IIT Madras).

Publications

  • Mehta, K., Peeketi, A.R., Liu, L., Broer, D., Onck, P., & Annabattula, R.K. (2020). Design and applications of light responsive liquid crystal polymer thin films. Applied Physics Reviews, 7(4), [041306]. https://doi.org/10.1063/5.0014619
  • Mehta, K., Peeketi, A.R., Sol, J.A.H.P., Debije, M.G., Onck, P.R., Annabattula, R. K. (2020). Modeling of surface waves in photo-responsive viscoelastic liquid crystal thin films under a moving light source. Mechanics of Materials 147, [103388]. DOI: 10.1016/j.mechmat.2020.103388
  • Liu, L., Broer, D. J., & Onck, P. R. (2019). Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating polarized light. Soft Matter, 15(40), 8040-8050. DOI: /10.1039/c9sm01594a
  • Liu, L., & Onck, P.R. (2019). Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. Journal of the Mechanics and Physics of Solids, 123, 247-266. DOI: 10.1016/j.jmps.2018.09.021
  • Liu, L., & Onck, P.R. (2018). Topographical changes in photo-responsive liquid crystal films: a computational analysis. Soft Matter. DOI: 10.1039/c7sm02474f
  • Liu, L., & Onck, P.R. (2017). Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model. Physical Review Letters , 119(5), [057801]. DOI: 10.1103/PhysRevLett.119.057801
  • Liu*, D., Liu*, L., Onck, P.R., & Broer, D.J. (2015). Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. PNAS 112(13), 3880-3885. DOI: 10.1073/pnas.1419312112, *contributed equally to this work.

2. Digital microfluidics: droplet transport on switchable surfaces

Digital microfluidics: droplet transport on switchable surfaces
Digital microfluidics: droplet transport on switchable surfaces

In digital-microfluidic systems, discrete droplets containing biofluids or particles are used as small reactors, and transporting droplets with full control over their contents is an essential property of such systems. Here we show that surface topographies made from switchable materials are able to transport droplets through dynamic pinning forces. The transport performance was demonstrated in both 2D and 3D and its dependence on the fluid and structural parameters was numerically investigated by means of a two-phase computational fluid dynamics model.

PhD student: E. de Jong. In collaboration with J. den Toonder (Eindhoven University of Technology).

Publications

  • De Jong, E., Van Der Klok, M. L., Den Toonder, J. M. J., & Onck, P. R. (2023). Numerical modeling and quantification of droplet mixing using mechanowetting. Physics of Fluids, 35(4), Article 043313. https://doi.org/10.1063/5.0143208
  • De Jong, E. , Den Toonder, J.M.J. , & Onck, P.R. (2022). Directional droplet transport on switchable ratchets by mechanowetting . Microfluidics and Nanofluidics, 26(4), [32]. https://doi.org/(...)7/s10404-022-02537-z
  • De Jong, E., Kremer, R., Liu, L., Den Toonder, J.M.J. , & Onck, P.R. (2021). Mechanowetting drives droplet and fluid transport on traveling surface waves generated by light-responsive liquid crystal polymers. Physics of Fluids, 33(6), [063307]. https://doi.org/10.1063/5.0050864
  • de Jong, E., Den Toonder, J.M.J., & Onck, P.R. (2020). Microfluidic slug transport on traveling-wave surface topographies by mechanowetting. Physical Review Fluids, 5(6), [063604]. https://doi.org/(...)ysRevFluids.5.063604
  • De Jong, E., Wang, Y., Den Toonder, J.M.J., & Onck, P.R. (2019). Climbing droplets driven by mechanowetting on transverse waves. Science Advances, 5(6), [eaaw0914]. DOI: 10.1126/sciadv.aaw0914
  • Akhtar, N., Thomas, P. J., Svardal, B., Almenningen, S., de Jong, E., Magnussen, S., ... Holst, B. (2018). Pillars or Pancakes? Self-cleaning surfaces without coating. Nano Letters, 18(12), 7509-7514. DOI: 10.1021/acs.nanolett.8b02982

3. Magnetic soft robotics: Artificial cilia and magnetic swimmers

Snapshot of a computational fluid dynamics simulation of magnetically-actuated artificial cilia, generating fluid flow in a microfluidic channel.
Snapshot of a computational fluid dynamics simulation of magnetically-actuated artificial cilia, generating fluid flow in a microfluidic channel.

Cilia and flagella are long hair-like projections from the surface of living cells that play an important role in cell motility. Cells and micro-organisms use cilia and flagella to propel themselves or to propel the fluid surrounding them. Here we use the natural beating pattern as inspiration to design bio-inspired cilia and flagella. We use polymeric films embedded by magnetic nanoparticles that are actuated by applying a rotating or oscillating magnetic field. We demonstrated that artifical cilia and flagella can be generated that pump fluid through microfluidic channels and that can swim through confined spaces.

PhD students: I. Aggarwal, R. Pramanik, R. Zhang, S. Namdeo, S.N. Khaderi. In collaboration with M. Sitti (Max Planck Institute, Stuttgart) and J. den Toonder (Eindhoven University of Technology).

Publications (selection)

  • Pramanik, R., Verstappen, R. W. C. P., & Onck, P. R. (2023). Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers. Physical Review E, 107, Article 014607. https://doi.org/10.1103/PhysRevE.107.014607
  • Zhang, S., Hu, X., Li, M., Bozuyuk, U., Zhang, R., Suadiye, E., Han, J., Wang, F., Onck, P., & Sitti, M. (2023). 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability. Science Advances, 9(12), Article eadf9462. https://doi.org/10.1126/sciadv.adf9462
  • Zhang, R., Toonder, J. D., & Onck, P. R. (2022). Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing. Soft Matter, 18(20), 3902-3909. https://doi.org/10.1039/d1sm01680f
  • ul Islam, T., Wang, Y., Aggarwal, I., Cui, Z. , Eslami Amirabadi, H., Garg, H., Kooi, R., Venkataramanachar, B. B., Wang, T., Zhang, S., Onck, P. R., & den Toonder, J. M. J. (2022). Microscopic artificial cilia - a review. Lab on a Chip, 22, 1650-1679. https://doi.org/10.1039/D1LC01168E
  • Ren, Z., Zhang, R., Soon, R. H., Liu, Z., Hu, W., Onck, P. R., & Sitti, M. (2021). Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Science Advances, 7(27), [eabh2022]. https://doi.org/10.1126/sciadv.abh2022
  • Zhang, R., den Toonder, J., & Onck, P. R. (2021). Transport and mixing by metachronal waves in nonreciprocal soft robotic pneumatic artificial cilia at low Reynolds numbers. Physics of Fluids, 33(9), [092009]. https://doi.org/10.1063/5.0054929
  • Zhang, S., Wang, Y., Onck, P., & den Toonder, J. (2020). A concise review of microfluidic particle manipulation methods. Microfluidics and Nanofluidics, 24(4), [24]. https://doi.org/(...)07/s10404-020-2328-5
  • Zhang, S., Zuo, P., Wang, Y., Onck, P. R., & den Toonder, J. M. J. (2020). Anti-Biofouling and Self-Cleaning Surfaces Featured with Magnetic Artificial Cilia. ACS Applied Materials & Interfaces, 12(24), 27726–27736. https://doi.org/10.1021/acsami.0c05403
  • Dong, X., Lum, G. Z., Hu, W. , Zhang, R. , Ren, Z. , Onck, P. R. , & Sitti, M. (2020). Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Science Advances, 6(45), [eabc9323 ]. https://doi.org/10.1126/sciadv.abc9323
  • Zhang, S., Zhang, R., Wang, Y., Onck, P. R., & den Toonder, J. M. J. (2020). Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia. ACS Nano, 14(8), 10313-10323. https://doi.org/10.1021/acsnano.0c03801
  • Milana, E., Zhang, R., Vetrano, M. R., Peerlinck, S., De Volder, M., Onck, P. R., Reynaerts, D., & Gorissen, B. (2020). Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Science Advances, 6(49), [eabd2508]. https://doi.org/10.1126/sciadv.abd2508
  • Zhang, S., Wang, Y., Onck, P. R., & den Toonder, J. M. J. (2019). Removal of Microparticles by Ciliated Surfaces-an Experimental Study. Advanced Functional Materials, 29(6), [1806434]. DOI: 10.1002/adfm.201806434
  • Zhang, S., Wang, Y., Lavrijsen, R., Onck, P. R., & den Toonder, J. M. J. (2018). Versatile microfluidic flow generated by moulded magnetic artificial cilia. Sensors and actuators b-Chemical, 263, 614-624. DOI: 10.1016/j.snb.2018.01.189
  • Namdeo, S., & Onck, P. R. (2016). Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins. Physical Review E, 94(4), [042406]. DOI: 10.1103/PhysRevE.94.042406
  • Khaderi, S. N., den Toonder, J. M. J., & Onck, P. R. (2015). Magnetic Artificial Cilia for Microfluidic Propulsion. In S. P. A. Bordas, & D. S. Balint (Eds.), Advances in Applied Mechanics . (Vol. 48, pp. 1-78). Academic Press. DOI: 10.1016/bs.aams.2015.10.001
  • Namdeo, S., Khaderi, S. N., & Onck, P. R. (2014). Numerical modelling of chirality-induced bi-directional swimming of artificial flagella. Proceedings of the Royal Society A , 470(2162), [20130547]. DOI: 10.1098/rspa.2013.0547
  • Namdeo, S., Khaderi, S. N., & Onck, P. R. (2013). Swimming dynamics of bidirectional artificial flagella. Physical Review E, 88(4), 043013-1-043013-11. [043013]. DOI: 10.1103/PhysRevE.88.043013
  • den Toonder, J. M. J., & Onck, P. R. (2013). Microfluidic manipulation with artificial/bioinspired cilia. Trends in Biotechnology, 31(2), 85-91. DOI: 10.1016/j.tibtech.2012.11.005
  • Khaderi, S., den Toonder, J. M. J., & Onck, P. (2013). Computational Design of Magnetic Artificial Cilia. In J. M. J. den Toonder, & P. R. Onck (Eds.), Artificial Cilia . Cambridge, UK: The Royal Society of Chemistry.
  • Khaderi, S., Hussong, J., Westerweel, J., den Toonder, J., & Onck, P. (2013). Fluid propulsion using magnetically-actuated artificial cilia: Experiments and simulations. RSC Advances, 3(31), 12735-12742. DOI: 10.1039/c3ra42068j
  • Khaderi, S. N., & Onck, P. R. (2012). Fluid-structure interaction of three-dimensional magnetic artificial cilia. Journal of Fluid Mechanics, 708, 303-328. DOI: 10.1017/jfm.2012.306
  • Khaderi, S. N., den Toonder, J. M. J., & Onck, P. R. (2012). Magnetically Actuated Artificial Cilia: The Effect of Fluid Inertia. Langmuir, 28(20), 7921-7937. DOI: 10.1021/la300169f
  • Khaderi, S. N., den Toonder, J. M. J., & Onck, P. R. (2012). Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia. Biomicrofluidics, 6(1), 014106-1-014106-14. [014106]. DOI: 10.1063/1.3676068
  • Khaderi, S. N., den Toonder, J. M. J., & Onck, P. R. (2011). Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: A numerical analysis. Journal of Fluid Mechanics , 688(1), 44-65. DOI: 10.1017/jfm.2011.355
  • Namdeo, S., Khaderi, S. N., den Toonder, J. M. J., Onck, P. R., Colin, S. (Ed.), & Morini, G. L. (Ed.) (2011). Swimming direction reversal of flagella through ciliary motion of mastigonemes. Biomicrofluidics, 5(3), 034108-1-034108-15. [034108]. DOI: 10.1063/1.3608240
  • Khaderi, S. N., Craus, C. B., Hussong, J., Schorr, N., Belardi, J., Westerweel, J. , ... Onck, P. R. (2011). Magnetically-actuated artificial cilia for microfluidic propulsion. Lab on a Chip, 11(12), 2002-2010. DOI: 10.1039/c0lc00411a
  • Khaderi, S. N., Baltussen, M. G. H. M., Anderson, P. D., den Toonder, J. M. J., & Onck, P. R. (2010). Breaking of symmetry in microfluidic propulsion driven by artificial cilia. Physical Review E, 82(2), 027302-1-027302-4. [027302]. DOI: 10.1103/PhysRevE.82.027302
  • Khaderi, S. N., Baltussen, M. G. H. M., Anderson, P. D., Ioan, D., den Toonder, J. M. J., & Onck, P. R.(2009). Nature-inspired microfluidic propulsion using magnetic actuation. Physical Review E, 79(4), 046304-1-046304-4. [046304]. DOI:10.1103/PhysRevE.79.046304
Last modified:08 January 2024 11.55 a.m.