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Overview of chapters
The four empirical chapters included in this PhD dissertation are reprints of the 

following publications and manuscripts:

Chapter 2:
Stoeldraijer, L., van Duin, C., van Wissen, L. and Janssen, F. (2013). Impact of 

different mortality forecasting methods and explicit assumptions on projected 

future life expectancy: The case of the Netherlands. Demographic Research 29(13): 

323–354. 

Chapter 3:
Stoeldraijer, L., Bonneux, L., van Duin, C., van Wissen, L. and Janssen, F. (2015). The 

future of smoking-attributable mortality: the case of England & Wales, Denmark 

and the Netherlands. Addiction 110(2): 336–45. 

Chapter 4:
Stoeldraijer, L., van Duin, C., van Wissen, L. and Janssen, F. (2018). A quantitative 

and qualitative evaluation of methods to coherently forecast mortality. Submitted.

Chapter 5:
Stoeldraijer, L., van Duin, C., van Wissen, L. and Janssen, F. (2018). Comparing 

strategies for matching mortality forecasts to the most recently observed data. 

Exploring the trade-off between accuracy and robustness. Genus 74(16): 1–20. 

Annex:
Stoeldraijer, L., van Duin, C. and Janssen, F. (2012). Bevolkingsprognose 2012–2060: 

model en veronderstellingen betreffende de sterfte. Bevolkingstrends 27-6-2013. 
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1. 
Introduction
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1.1 Introduction

Against a background of rapid population aging in Western Europe (European 

Commission 2014), mortality forecasting is becoming increasingly important. Since 

1960, life expectancy in Western Europe has risen by around 10 years (from 70 to 

80 years) (United Nations 2017). As people are living longer lives and their health 

needs are expanding, it is not only the structure of the individual life that is 

changing, but the structure of society as a whole (Bengtsson and Christensen (Eds.) 

2006). In particular, social security programs are becoming strained and the 

sustainability of pension schemes is being called into question (Currie et al. 2004). 

In order to have some idea of how long individuals will live in the future, what the 

size and the composition of the older population will be, and how sustainable 

current pension schemes will be over the long term, it is essential that we have 

accurate estimates of future mortality by age. Such estimates are usually obtained 

through mortality forecasts. Since the recent enactment in several Western 

countries of pension reforms that link the retirement age and/or retirement 

payments to rapidly increasing life expectancy (OECD 2015; Carone et al. 2016), 

having accurate and high-quality mortality forecasts has become increasingly 

important. 

As the relevance of mortality forecasts has grown, researchers, statistical offices, 

and actuarial associations have become increasingly interested in mortality 

forecasting, especially in Western Europe, where the proportions of older people 

are high. As a result, numerous models for mortality modelling and forecasting 

have been developed over the last few decades (for recent reviews, see Booth and 

Tickle 2008; Cairns et al. 2011). The majority of these new methods of mortality 

forecasting are extrapolative in nature; that is, they extend a past mortality trend 

by assuming that both age patterns and trends remain regular over time (Booth 

and Tickle 2008). Because mortality trends have largely been linear in the majority 

of Western European countries, this approach generally works well (Booth and 

Tickle 2008). Compared with other forecasting approaches, the extrapolative 

methods are highly objective; i.e., they reduce the role of subjective judgment 

involved in mortality forecasting (Booth and Tickle 2008).

However, particularly in situations in which past trends have been non-linear, the 

use of an objective extrapolative method will be more problematic. Indeed, in a 

number of European countries – especially in Nordic countries, the United Kingdom, 

and the Netherlands, and particularly among men – past mortality trends have 

been non-linear: in these countries, the increasing trends in life expectancy 

stagnated over longer periods of time in the 1950s and the 1960s, and then rose 
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sharply (Janssen et al. 2004; Vallin and Meslé 2004; Kaneda and Scommegna 2011; 

Crimmins et al 2011). In addition, in the Netherlands and Denmark, clear non-linear 

trends have been observed among women, as the increasing trend in life 

expectancy for women in these countries stagnated in the 1980s (Van der Wilk et 

al. 2001; Lindahl-Jacobsen et al. 2016). If a trend is not linear, the mortality 

forecasted based on this trend could vary greatly depending on the historical 

period used in the estimation of the model (Janssen and Kunst 2007). 

To ensure the robustness of mortality forecasting, it is essential that we determine 

the cause of non-linearity in mortality trends by studying past trends for a large 

number of countries (Janssen and Kunst 2007). The non-linearity in past mortality 

trends in Western European countries is mainly attributable to smoking (Janssen et 

al. 2007; Janssen et al. 2013; Lindahl-Jacobsen et al. 2016). As the full impact on 

mortality of the widespread uptake of smoking did not occur until 30 years later 

(Lopez et al. 1994), the influence of smoking resulted in a clear non-linear pattern 

in mortality, particularly among men. Making explicit adjustments for the distorting 

effects of smoking is likely to improve the accuracy of the overall mortality forecast 

(Janssen and Kunst 2007; Bongaarts 2014; Peters et al. 2016). Another option for 

improving mortality forecasts when the past trends are non-linear is to use the 

more linear trends of other countries as the underlying long-term trend in mortality 

(Janssen and Kunst 2007). The use of this approach could produce better estimates 

of the future direction of the mortality trends in a country with less linear trends. 

These types of methods are referred to as coherent forecasting methods (see, e.g., 

Li and Lee 2005).

Both approaches to improving mortality forecasts when past mortality trends are 

non-linear require additional information, such as information on smoking (direct 

or indirect estimations) or information on mortality trends in other countries. 

However, adding such information introduces more subjectivity into a mortality 

forecast because decisions have to be made about how the information will be 

incorporated into the forecasting method, and what kind of information will be 

included. 

Thus, there is an important debate about whether only “objective” extrapolation 

methods should be employed even in cases of non-linearity, or whether it is 

preferable to include additional information, such as information on trends in other 

countries or smoking, even if doing so introduces additional subjectivity. To address 

this question, mortality forecasting approaches must be evaluated in the context of 

non-linear past mortality trends. 
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Most of the previous evaluation and comparison studies in the field of mortality 

forecasting did not consider different types of methods or approaches, such as both 

extrapolation methods and more explanatory approaches that include additional 

information. Furthermore, in these previous studies, little attention was paid to the 

effect of explicit assumptions; i.e., to the specific choices that must be explicitly 

stated in a method, such as the choice of the length of the historical period used in 

the estimation of the method (fitting period) and of the mortality rates used as the 

starting values of the mortality forecast (jump-off rates; i.e., the rates observed in 

the last year(s) or the rates estimated by the underlying mortality model). 

Moreover, previous evaluation studies assessed the performance of mortality 

forecasting methods using a quantitative approach that focused solely on their 

accuracy. It is, however, essential to evaluate these methods based on qualitative 

criteria as well (Cairns et al. 2011), such as the robustness and the plausibility of 

the outcomes of the mortality forecasting method. This PhD thesis will include 

these different approaches when evaluating the performance of mortality 

forecasting in the context of non-linear past mortality trends. 

In addition to contributing to the debate on the degree of subjectivity associated 

with particular forecasting methods, this PhD thesis will generate results that can 

be used to improve the mortality forecasts of Statistics Netherlands. Thus, this study 

will provide important input for the official national population forecasts of 

Statistics Netherlands. The Netherlands is among the countries where past trends in 

mortality have been particularly non-linear (Van der Wilk et al. 2001; Janssen et al. 

2003). This lack of regularity has made mortality forecasting, and, subsequently, 

population forecasting, in the Netherlands especially challenging. Previous 

methods that were employed by Statistics Netherlands were not able to fully deal 

with the non-linear past trends. Until 2012, mortality was forecasted by making 

assumptions about separate causes of death. Statistics Netherlands adopted a new 

method in 2012 based on recent research insights from Janssen and Kunst (2010) 

and Janssen et al. (2013). This new method makes use of extrapolation, but 

includes additional information on trends in other countries in Western Europe, and 

separately forecasts a clear non-linear pattern in smoking-attributable mortality 

(Stoeldraijer et al. 2012). The current PhD thesis provides a detailed analysis of the 

different components of this new approach, and the findings of this study can be 

used to evaluate, validate, and – ultimately – further improve the mortality 

forecasts, and, subsequently, the population forecasts, of Statistics Netherlands.
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1.2 Objective and research questions

The aim of the current PhD research is to evaluate mortality forecasting in the 

context of non-linear past mortality trends. 

The evaluation is comprised of (i) a quantitative and qualitative evaluation of not 

just different mortality forecasting models, but different mortality forecasting 

approaches; (ii) an assessment of the sensitivity of future mortality based on 

different explicit assumptions (e.g., fitting period, jump-off rates); and (iii) an 

evaluation of different elements of a mortality forecasting approach that deals 

with non-linear past mortality trends (e.g., the forecasting of smoking-attributable 

mortality, a model that forecasts mortality coherently). 

The study is guided by the following research questions:

1) In a context in which mortality trends are non-linear, how does the choice of the 

mortality forecasting method and the explicit assumptions affect future 

forecasted mortality?

2) How can future levels of smoking-attributable mortality be formally estimated?

3) Which model should be used when the goal is to forecast mortality coherently, 

namely by taking into account the mortality experiences of other countries?

4) How can mortality forecasts be adjusted to take into account more recently 

observed data?

1.3 Background

1.3.1 Different mortality forecasting approaches

Mortality forecasting refers to the art and science of determining likely future 

mortality rates for a population. A forecast is an expectation of what is likely to 

happen; i.e., what is most likely to occur (De Beer 2011). It is primarily based on an 

assessment of historical trends and of the conditions for the continuation of these 

trends. There is a noteworthy distinction between a mortality forecast and a 

mortality projection: a mortality projection is what might occur. A projection is 

based on a technical calculation of a model that assumes that current trends will 

continue (De Beer 2011). Projections can also use hypothetical trends to answer 

“what-if” kinds of questions.
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Only three decades ago, the methods used for mortality forecasting were relatively 

simple and involved a fair degree of subjective judgment. For example, a forecast 

might have consisted of a projection based on model life tables or data from 

another “more advanced” population (see Pollard 1987 for a review). But in the 

last two decades, more sophisticated models have been developed (Tabeau 2001; 

Wong-Fupuy and Haberman 2004; Booth and Tickle 2008; Cairns et al. 2011). The 

new models make increasing use of statistical methods drawn not only from 

demography, but from other fields of research, including epidemiology, actuarial 

science, spatial analysis, and Bayesian hierarchical modelling (Booth and Tickle 

2008).

The mortality forecasting methods currently being used can be roughly divided into 

three types of approaches: extrapolation, explanation, and expectation (Booth and 

Tickle 2008). The extrapolation approach makes use of the regularity in age 

patterns and trends over time. The methods employed in this approach are the 

most objective; i.e., they reduce the role of subjective judgment by extrapolating 

historical trends based on the available data. The explanation approach makes use 

of (measurable) exogenous variables that are known to be related to certain 

causes of death. Examples of these approaches are extrapolation by cause of death 

and explanatory models based on mortality determinants. The expectation 

approach makes use of the subjective opinions of experts. In this approach, 

qualitative information and other relevant knowledge are incorporated into the 

forecast, such as the opinions of experts in demography or epidemiology. Setting a 

target of life expectancy for a date in the future is a commonly-used expectation 

method. 

The majority of the mortality forecasting methods can be classified as extrapolative 

approaches. The Lee-Carter method (Lee and Carter 1992) is the dominant method 

of extrapolative mortality forecasting, and is frequently used as a benchmark for 

other methods that rely on extrapolation. The Lee-Carter method summarises 

mortality by age and period for a single population into an overall time trend, an 

age component, and the extent of change over time by age (Lee and Carter 1992). 

Mortality is forecasted by extrapolating the parameters for the overall time trend 

using time series methods, such as autoregressive-integrated-moving average 

(ARIMA) time series models (Box and Jenkins 1976; Tiao and Box 1981). Many 

studies since Lee and Carter (1992) have tried to improve upon their model by, for 

instance, adding more principal components, a cohort effect, a poisson-gamma 

setting, or a Bayesian version (among others: Booth et al. 2006; DeJong and Tickle 

2006; Renshaw and Haberman 2006; Delwarde et al. 2007; Yang et al. 2010; Chen 

and Cox 2009; Li et al. 2009; Li et al. 2011; Deng et al. 2012; Li et al. 2013; Mitchell 

et al. 2013; Wisniowski et al. 2015; Ševčíková et al. 2016).
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The major reason for the success of extrapolative forecasting methods is their 

congruence with historic trends. In many countries, the decline in mortality rates 

has been remarkably regular (see as well 1.3.2). Because extrapolation methods 

must be based on a steady, long-term trend, these methods work well for countries 

that exhibit such regular trends, and are now the leading approach for mortality 

forecasting (Tuljapurkar et al. 2000; Oeppen and Vaupel 2002; White 2002; Booth 

and Tickle 2008).

1.3.2 Past mortality trends in Western Europe

Over the 20th century, life expectancy in low-mortality countries increased enormously. 

In the early 1900s, the life expectancy at birth in Western Europe and other low-

mortality countries was around 50 years (Kinsella 1992). Today, life expectancy in most 

Western European countries exceeds 80 years (United Nations 2017).

The historical increase in life expectancy is described in Omran’s epidemiological 

transition theory (Omran 1971). According to this original epidemiological 

transition theory, all countries have experienced (or will eventually experience) 

three “ages”: (1) the “age of pestilence and famine”, during which mortality from 

infectious diseases is very high; (2) the “age of receding pandemics”, during which 

life expectancy increases as mortality from infectious diseases at young ages 

decreases; and (3) the “age of the degenerative diseases and man-made diseases”, 

during which the decline in mortality at younger ages gradually shifts towards 

older ages, with degenerative and man-made diseases like cardiovascular disease 

and cancers becoming the main causes of death. In the last age, life expectancy in 

all countries tends to converge towards the maximum level that has almost been 

reached by the most advanced countries. The timing and the duration of this 

transition vary across countries. 

Omran (1971) thus described an overall transition from high levels of mortality 

from infectious diseases at young ages to high levels of mortality from 

cardiovascular diseases and cancers at old ages. He attributed the decrease in 

infectious diseases in low-mortality countries to modernisation, including improved 

nutrition, improved hygiene, and large-scale public health innovations.

As soon as Omran published his paper in 1971, the increasing life expectancy trends 

in Western Europe and other low-mortality countries continued. These further gains 

were due to socio-economic development and medical progress (Omran 1998; 

Mackenbach 2013). Since the 1970s, declines in mortality from cardiovascular 

diseases that were made possible by rapid innovations in medical treatments and 
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prevention have played an increasing role in improving life expectancy in many 

developed countries (Meslé and Vallin 2006). 

Although life expectancy continued to increase in low-mortality countries in the 

latter decades of the 20th century, there were also signs of stagnation in some 

European countries, especially in Eastern European countries, which were hit by a 

health crisis starting in 1975; but also in some North-western European countries in 

the 1950s and the 1960s (e.g., Vallin and Meslé 2004). In a number of European 

countries – especially in Nordic countries, the United Kingdom, and the 

Netherlands; and particularly among men – life expectancy stagnated over longer 

periods of time in the 1950s and the 1960s. While life expectancy gains stalled in 

Northern Europe, in Southern European countries, where life expectancy in 1950 

was lower than in Northern Europe because the standard of living was generally 

lower, life expectancy continued to advance. By 1970, the life expectancy gap 

between North and South was significantly reduced. Around 1980, male life 

expectancy in most Western European countries started to increase again (Janssen 

et al. 2004; Vallin and Meslé 2004; Kaneda and Scommegna 2011; Crimmins et al 

2011). The gains registered in Western European countries did not, however, spread 

to Central and Eastern European countries. Due to the health crisis in that region, 

life expectancy stagnated (or even decreased), especially among men. Thus, by the 

mid-1990s, there was a huge East-West life expectancy gap in Europe. However, in 

some Western European countries, like the Netherlands and Denmark, life 

expectancy for women stagnated in the 1980s (Van der Wilk et al. 2001; Lindahl-

Jacobsen et al. 2016).

These signs of stagnation have been described in Vallin and Meslé (2004), who 

used them as the basis for their convergence-divergence approach to the health 

transition. Briefly, their theory, which is based on empirical research, states that a 

succession of divergence-convergence movements will take place at different times 

from population to population (Vallin and Meslé 2004, 2005). They also posited 

that Omran’s epidemiologic transition is the first stage of a global process of health 

transition; while the second stage (the cardiovascular revolution) is characterised 

by innovations in health from which some countries benefit, while others do not. 

These developments are expected to result in a trend towards divergence, followed 

by a trend towards convergence as late-entering countries are able to catch up to 

the pioneers. The authors further observed that progress in life expectancy made in 

the most advanced countries, especially among women, indicates that some 

countries are entering a third stage centred on the ageing process, which will 

initially lead to a new trend towards divergence between countries (again 

scattered between pioneers and those lagging behind), and then to a new trend 

towards convergence (after catching up).
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The theory of Vallin and Meslé (2004) explains not just the remarkable similarities 

in life expectancy trends in Western Europe, but the variations in slopes between 

countries. Furthermore, there is evidence that behaviour and lifestyle factors (and 

the knowledge thereof) are becoming increasingly important for life expectancy 

progress in many countries (O’Doherty et al. 2016; Li et al. 2018). Smoking, alcohol 

consumption, diet, and exercise have all contributed to the success (or failure) of 

life expectancy advances. 

The periods of stagnation and acceleration in mortality trends are more 

problematic for mortality forecasting, which relies heavily on the extrapolation of 

past trends. To ensure the robustness of mortality forecasting, it is essential that we 

determine the causes of the non-linearity in mortality trends by studying past 

trends for a large number of countries (Janssen and Kunst 2007).

1.3.3 Important role of smoking in past non-linear 
mortality trends

The unfavourable developments in life expectancy among men in many North-

western European countries in the 1950s and the 1960s are related to changes in 

lifestyle after the Second World War (i.e., smoking) (Vallin and Meslé 2004). 

Differences between countries in the timing and the size of the smoking epidemic, 

the lagged effect of smoking on death rates, and the mortality declines following 

cessation all help to explain the mortality trends and the differences in mortality 

levels observed among countries since the middle of the 20th century (Janssen et 

al. 2007; Janssen et al. 2013; Lindahl-Jacobsen et al. 2016). The extended period of 

relative stagnation in female life expectancy that some countries (Denmark, the 

Netherlands, and England and Wales) experienced in the 1980s and 1990s is also a 

legacy of heavy smoking among women in these countries since the Second World 

War (Lindahl-Jacobsen et al. 2016). 

The adverse impact of smoking on health and mortality is well established (CDC 

2010; Ezzati et al. 2003; Doll et al. 2004; Jha and Peto 2014; Peto et al. 1992; Peto 

et al. 2012; Preston, Glei, and Wilmoth 2010a). In addition to being responsible for 

the large majority of lung cancer deaths worldwide, smoking has been shown to 

increase mortality from other cancers, cardiovascular diseases, and most other 

diseases. Furthermore, smoking is the most important preventable risk factor in the 

European Union (WHO 2009).
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In general, as was described in the smoking epidemic model proposed by Lopez et al. 

(1994), men in Anglo-Saxon countries were the first to take up smoking in the early 

20th century. After a rapid rise lasting two or three decades, male smoking 

prevalence started to decline. Smoking-attributable mortality (i.e., the number of all 

deaths in a population caused by smoking) followed the increase and the subsequent 

decline in smoking prevalence some 30–40 years later. The increase in smoking 

prevalence generally started about 20 years later for women than for men, but, 

depending on the country, this period may have been shorter or longer. As the 

maximum levels of female smoking prevalence were considerably lower than those 

for men, smoking-attributable mortality was also lower among women than among 

men. It is posited in the last stage of the original smoking epidemic model that 

declines in smoking prevalence will reach similar levels for men and women, which 

suggests that smoking-attributable mortality for men and women should converge in 

the future (McCartney et al. 2011; Lopez et al. 1994). However, smoking-attributable 

mortality for women has continued to increase during this last stage. Currently, some 

countries, such as England and Wales, have already experienced the peak in smoking-

attributable mortality for women (Thun et al. 2013). In other countries in Northern 

and Western Europe, such as Denmark and the Netherlands, this peak appears to be 

approaching, as the peak in smoking prevalence for women has passed (Janssen et 

al. 2013; Lindahl-Jacobsen et al. 2016).

Patterns of smoking behaviour and the accompanying patterns of smoking-

attributable mortality have changed enormously over time. Indeed, smoking has 

been the most important non-linear determinant of mortality in low-mortality 

countries in recent decades. Furthermore, patterns of smoking behaviour and, 

consequently, of smoking-attributable mortality differ greatly by country, and have 

contributed to the emergence of a large gender gap in mortality (McCartney et al. 

2011; Lopez et al. 1994). Ignoring the smoking epidemic yields a bias in the 

forecast of life expectancy, especially if the method used relies on extrapolation of 

past observed mortality trends (Janssen & Kunst 2007). Making explicit adjustments 

for the distorting effects of smoking is likely to improve the accuracy of forecasts 

(Janssen and Kunst 2007; Bongaarts 2014; Peters et al. 2016).
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1.3.4 Dealing with non-linear past mortality trends in 
mortality forecasting

Non-linear past trends in mortality pose additional challenges when forecasting 

mortality. If the trend is not linear, the forecasted mortality could be very different 

depending on the historical period used in the estimation of the model (Janssen 

and Kunst 2007).

Thus, when dealing with non-linear past mortality trends, it is essential to 

determine the cause of the non-linearity by studying past trends for a large number 

of countries (Janssen and Kunst, 2010). When the cause is known (and 

measurable), it can be incorporated into the forecasting method. 

As was detailed in section 1.3.3, past smoking behaviour has been established as 

an important factor in the non-linearity of past mortality trends in the Netherlands 

and in many other Western European countries, especially for men. For this reason, 

a few studies have explicitly adjusted mortality projections to account for the 

impact of smoking (e.g., Pampel 2005; Bongaarts 2006; Janssen and Kunst 2007; 

Girosi and King 2008; Wang and Preston 2009; Technical Panel on Assumptions and 

Methods 2011; Janssen, van Wissen, and Kunst 2013; Preston et al. 2014). The 

forecasting approaches used in these papers differ. Bongaarts (2006), Janssen and 

Kunst (2007) and Technical Panel on Assumptions and Methods (2011) employed 

an approach that looked at developments in mortality and life expectancy without 

smoking. Pampel (2005) and Preston et al. (2014) used information on smoking 

prevalence to forecast smoking-related mortality. Girosi and King (2008) and Wang 

and Preston (2009) included covariates for smoking within the forecasting method 

of total mortality. Janssen, van Wissen, and Kunst (2013) separately projected 

smoking- and non-smoking-related mortality. The different approaches were 

chosen in part based on the availability of adequate data. Because more 

assumptions are required in a method that incorporates smoking, a trade-off must 

be made between the advantage of being able to take the impact of smoking into 

account and the advantage of the objectivity of a pure extrapolation approach 

based on total mortality.

When the cause of the non-linearity is unknown, or the cause cannot be quantified 

within the forecasting method, an approach that can be used to account for the 

non-linearity is coherent mortality forecasting (Janssen and Kunst 2007). Coherent 

forecasting methods, whereby “coherent” refers to non-divergent forecasts for 

sub-populations within a larger population (Li and Lee 2005), were introduced to 

ensure that divergence as a result of individual forecasting does not occur. The 
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scholars who proposed these methods observed that mortality patterns and trajectories 

in closely related populations are likely to be similar in some respects, and that 

differences are unlikely to increase in the long run. Thus, they argued, experiences in 

other countries can be used to create a broader empirical basis for the identification of 

the most likely long-term trend (Janssen et al. 2013; Shair et al. 2017). In other words, 

the approach assumes that countries with more linear mortality trends could provide 

better information about the future direction of the mortality trends in a country with 

less linear trends than the country’s own past trends. 

In coherent forecasting methods, non-divergence is derived by applying constraints 

to the parameters of individual forecasts of multiple populations. Most existing 

coherent forecasting methods are based on the Lee-Carter structure (Carter and Lee 

1992; Li and Lee 2005; Li and Hardy 2011; Zhou et al. 2012; Zhou et al. 2013; Yang 

and Wang 2013; Wan et al. 2013; Kleinow 2015), but there are also methods based 

on the age-period-cohort structure (Dowd et al. 2011; Cairns et al. 2011a; Jarner 

and Kryger 2011; Börger and Aleksic 2014) and the functional data paradigm 

(Hyndman et al. 2013; Shang and Hyndman 2016). Other structures are usually 

more complex. Even within a single structure, these coherent forecasting methods 

can differ greatly. So far, few of these methods have been compared in terms of the 

accuracy of their forecasts (Shang 2016; Enchev et al. 2016; Shair et al. 2017).

A method that simultaneously takes into account smoking and the experiences of 

other countries was proposed by Janssen et al. (2013). The idea behind their 

methodology is as follows: by first removing smoking from the mortality trends for 

each country, the actual long-term trend in mortality driven by socio-economic 

developments and medical care improvements can be identified. This more linear 

trend of non-smoking-attributable mortality may be expected to converge across 

countries, and can then be used in the coherent forecasting method. The non-linear 

past trend in smoking-attributable mortality, which cannot be captured by age-

period modelling or projection, must be projected separately, and subsequently 

combined with the forecast of non-smoking-attributable mortality. The inclusion of 

epidemiological information can thus generate a more robust long-term trend that 

may be used as a basis for projection (Janssen et al. 2013), thereby lessening 

dependence on the historical period.

1.3.5 Mortality forecasting by Statistics Netherlands

Statistics Netherlands regularly publishes a mortality forecast (Gjaltema and 

Broekman 2002; Stoeldraijer et al. 2017). The mortality forecast is part of the 

population forecast, which currently follows a three-year cycle. An extensive 
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population forecast is issued once every three years, with adjustments being made 

in the intermediate years. In the intervening years, the adjusted population forecast 

is supplemented with a household forecast in the first year and a population and 

household forecast on the municipality level in the second year. The adjustments to 

the mortality forecast made in the intervening years include a re-estimation of the 

current forecast method based on the most recent data available, but usually 

include no changes to the method itself.

The mortality forecast published by Statistics Netherlands in 1950 assumed that 

mortality rates would remain constant (Gjaltema and Broekman 2002). Because it 

underestimated the development in life expectancy, the 1951 forecast used an 

extrapolation of the decrease in five-year mortality rates. However, this still 

underestimated the development in life expectancy: between 1950 and 1970, life 

expectancy increased 0.3 years per decade for men and 2.0 years per decade for 

women. In the forecast published in 1965, extrapolation was increased for the 

initial years of the forecast period, but mortality rates were again kept constant 

after 15 years of the forecast period. In 1970, a forecast with four causes of death 

was introduced. Because the added uncertainty associated with the breakdown 

was estimated to be too large and the increase in life expectancy in that period 

was minimal (especially for men), the mortality rates used in the 1975 forecast 

were again kept equal to the observed rates (over the 1971-1974 period), with a 

small extrapolation for some ages. However, between 1970 and 1980, life 

expectancy increased 1.7 years for men and 2.7 years for women. 

In its 1980 forecast, Statistics Netherlands used a limit for life expectancy at certain 

ages after 10 years of the forecast period (Gjaltema and Broekman 2002). The limit 

was set based on a literature review and consultation with experts from the 

Netherlands and abroad. It was expected that in the near future, the negative 

impacts on the life span of the population of certain socio-economic, cultural, and 

technological developments would not outweigh the positive impacts of 

developments in medicine, hygiene, nutrition, and preventive health care. It was 

thus assumed that mortality rates would decline further, and that the excess 

mortality of men would decrease slightly. After the 10-year period, the mortality 

rates were kept constant. For the forecasts after 1980, the limit was raised a few 

times in response to increasing life expectancy. In 1996, the limit was determined 

for 2050 instead of for 10 years in the future. Because it was assumed that 

achieving additional increases in life expectancy would become more and more 

difficult, it was anticipated that the increasing trend would level off in the future.

For its 2002 forecast, Statistics Netherlands used an explanatory model based on 

life expectancy at birth (de Jong 2003). In this model, the effects of underlying 
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factors on mortality were taken into account to a limited extent. Therefore, in the 

forecasts it issued between 2004 and 2012, Statistics Netherlands forecasted 

mortality using the extrapolation of trends by cause of death (de Jong 2005). This 

made it possible to include determinants and model non-linearities. However, 

because a very large number of assumptions were required in applying this 

method, the model was ultimately seen as too time-consuming and lacking in 

transparency. In addition, it was found that obtaining well-founded expert 

expectations about future developments per cause of death was difficult when 

using this method, and that the level of detail required by the model made it hard 

to include international trends. Yet more fundamental objections to the use of this 

type of model were also raised, including that it can allow the cause of death with 

the least favourable development to dominate the overall future trend in mortality 

(Wilmoth 1995); and that extrapolating trends per cause of death can paint an 

overly pessimistic picture, especially over the long term. 

Because of the problems associated with the use of these approaches (i.e., 

underestimation of life expectancy and non-linearity in the trend), Statistics 

Netherlands adopted a new method in 2012. The method is a refinement of the 

method proposed in Janssen and Kunst (2010) and Janssen et al. (2013), which was 

described in the last paragraph of the previous section. To reiterate, the new 

methodology takes into account mortality trends in other European countries, and 

systematically includes in the calculation information about developments in 

smoking. The new methodology is in line with existing evidence that smoking 

plays an important role in mortality trends in the Netherlands, and it places 

mortality fluctuations not attributable to smoking in an international context. The 

mortality forecasting method used by Statistics Netherlands is explained (in Dutch) 

in Stoeldraijer et al. (2012, included in the Annex of this PhD thesis). The method 

for forecasting smoking-attributable mortality and the jump-off rates were refined.

The new mortality forecasting method used by Statistics Netherlands requires 

researchers to make a number of explicit choices. The estimation of smoking-

attributable mortality is based on the extrapolation of lung cancer mortality 

through the use of age-period-cohort analyses and the smoking epidemic model 

(Lopez et al. 1994). An indirect estimation technique is applied to the observed and 

forecasted levels of lung cancer mortality in order to estimate the observed and 

forecasted levels of smoking-attributable mortality (Rostron 2010). To coherently 

forecast non-smoking-attributable mortality, the Li-Lee method (Li and Lee 2005) is 

used (with Denmark, England and Wales, Finland, France, Germany, Italy, Norway, 

Spain, Sweden, and Switzerland serving as the main group of countries), following 

the work of Janssen et al. (2013). The Li-Lee method is essentially the Lee-Carter 

method, but is then applied twice, first to the group of countries, and then to the 
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difference between the group and the country of interest. The last observed 

mortality rates are used as the initial jump-off rates. However, these choices have 

yet to be evaluated. 

1.3.6 Previous evaluation of the performance of 
mortality forecasting models

As these new mortality forecasting models were being developed, approaches for 

evaluating their performance were also proposed. Many of the previous evaluation 

and comparison studies in the field of mortality forecasting considered one method 

or similar methods within the same approach. For example, the extensions of the 

Lee-Carter method have been compared with the original method (among others, 

Wilmoth 1993; Lee and Miller 2001; Booth et al. 2002; Li and Lee 2005; Renshaw 

and Haberman 2006; Li et al. 2006; Booth et al. 2006; Shang et al. 2011; Li et al. 

2013). 

Previous studies often assessed the performance of mortality forecasting models 

using a quantitative approach that focused solely on their accuracy (Cairns et al. 

2009). There are several measures that can be used to summarise the accuracy of 

forecasting methods. Most of these measures are based on the error of the model 

or forecast compared to the actual values of death rates, life expectancy, and other 

relevant statistics. Examples of such measures are the explanation ratio (ER), the 

root mean squared error (RMSE), the Bayes information criterion (BIC), and the 

mean absolute (percent) error (MA(P)E). Particularly, as coherent forecasting 

methods are relatively new, few have been compared in terms of forecast accuracy 

(Shang 2016; Enchev et al. 2016; Shair et al. 2017). Among the other more 

qualitative criteria that have been used to evaluate forecasting models are 

biological reasonableness, the plausibility of predicted levels at different ages, and 

the robustness of the forecasts relative to the sample period used to fit the model 

(Cairns et al. 2009). Because these criteria are more qualitative, a visual 

comparison is generally used in these evaluations (Cairns et al. 2009).

Most previous evaluations of mortality forecasting focused purely on the 

performance of mortality forecasting models. However, recent studies (Booth et al. 

2002; Janssen and Kunst 2007) have noted the importance of explicit assumptions. 

An explicit assumption is a specific choice that must be explicitly stated in a 

method, such as the choice of the length of the historical period and of the 

jump-off rates (i.e., the starting values of the actual mortality forecast). Previous 

research has shown that the historical period used is the main determinant of the 
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large differences in the outcomes of mortality forecasts (Janssen and Kunst 2007), 

especially when there is considerable non-linearity in the trends. In coherent 

forecasting, the choice of the main group of countries influences the outcome, 

because the main group determines the long-term trend of a specific country in the 

coherent mortality forecast (Li and Lee 2005). Moreover, while choosing appropriate 

jump-off rates is a practical consideration in every mortality forecast (regardless of 

the method used), it is essential for matching the mortality forecast to the most 

recently observed data, and thus influences the performance of the forecast. Choosing 

different jump-off rates can improve the accuracy of a single forecast and/or reduce 

the discontinuity between the last observed death rate and the first forecasted death 

rate. However, when successive forecasts differ from each other because different 

jump-off rates were chosen, the robustness of the forecast is affected.

1.4 Approach

The approach used in this PhD thesis is both academic and practical. It is academic 

because the thesis contributes to the academic debate on degrees of subjectivity in 

forecasting methods; and because it supports the further development of mortality 

forecasting approaches and methods, especially in situations in which the trends 

are not linear. It is practical because the findings of this PhD thesis can be used to 

improve the mortality forecasts issued by Statistics Netherlands. 

The evaluation approach adopted in this PhD thesis differs from those used in 

previous evaluation studies. In addition to evaluating different mortality 

forecasting methods, the thesis evaluates different forecasting approaches (i.e., 

extrapolation, explanation, and expectation). In the course of evaluating the 

approaches to and the methods for forecasting mortality, both quantitative and 

qualitative criteria will be examined: i.e., accuracy (fit to historical data), 

robustness (stability across different fitting periods), and the plausibility of results 

(smooth continuation of trends from the fitting period) (Cairns et al. 2009). The 

focus of the evaluation is not only on the performance of the model, but on the 

sensitivity of the outcome to underlying explicit assumptions, such as the jump-off 

rates and the main group of countries chosen. Furthermore, the different elements 

of a mortality forecasting method that deals with non-linear past mortality trends 

are evaluated. 

This PhD research adopts a data-driven approach. First, although the focus of the 

PhD thesis is on the Netherlands, other Western European countries are also 
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studied. The inclusion of data from these other countries made it possible to assess 

how different past trends, especially linear versus non-linear trends, affect the 

performance of different mortality forecasting approaches and methods; and to 

relate the differential effects of the explicit assumptions to previously observed 

national past trends. In addition, by evaluating mortality models for different 

countries (e.g., models for forecasting smoking-attributable mortality; coherent 

mortality modelling), we are able to obtain stronger evidence regarding their 

performance. A second element of the data-driven approach is that it was possible 

to make ample use of the already observed past trends. In addition to assessing the 

model fit and to comparing the future outcomes of the forecasts, it was possible to 

compare the outcomes forecasted with part of the data and the actual observed 

values. Third, it should be noted that the majority of mortality forecasting 

approaches that are being evaluated are also data-driven (Booth et al. 2008), and 

either consist of the pure extrapolation of past trends in age-specific mortality, or 

include additional data on either the smoking epidemic or past mortality trends in 

other countries. 

By focusing on the evaluation of the different elements and the explicit 

assumptions of the mortality forecasting approach used by Statistics Netherlands 

(e.g., the separate projection of smoking-attributable mortality and the coherent 

forecasting of non-smoking-attributable mortality), this PhD thesis will contribute 

to the evaluation, validation, and further development of the mortality forecasts 

issued by Statistics Netherlands.

1.5 Data and methods 

To answer the research questions, the PhD thesis employs both a review of existing 

forecasting approaches and methods, and an actual evaluation of different 

forecasting approaches and methods. 

In the review of the existing forecasting methods, the current methods for 

forecasting mortality used by statistical offices in Europe and the different national 

and international forecasts/projections that exist for the Netherlands are outlined.

In the actual evaluation, this PhD thesis uses data on mortality (all-cause and 

cause-specific; i.e., lung cancer), population exposure data, and data on smoking 

prevalence. The data are obtained by sex, age, year (between 1950 and 2014), and 

country. 
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The analyses are done separately for men and women, except for the analyses in 

Chapter 5, for which sex was irrelevant (however, sex-specific analyses are 

included in the Appendix of Chapter 5). 

Most of the data are divided into five-year age groups (0, 1-4, 5-9, …, 90-94, 95+), 

but single ages are also used (e.g., in Chapter 5). For specific research questions, 

only some of the ages are analysed: in Chapter 3, the ages at which smoking-

attributable mortality is relevant (40+) are analysed; and in Chapter 5, the ages at 

which pension reforms are relevant are analysed (65+).

The Netherlands is used as a case study, but other Western European countries are 

also analysed to extend the conclusions more broadly. The focus is on national 

populations. Results are predominantly presented for Belgium, Denmark, England 

and Wales / the United Kingdom, Finland, France, Italy, Norway, Spain, Sweden, 

Switzerland, and West Germany. Chapter 4 uses as well other countries that are 

included as part of the main group.

The data used in this thesis have been obtained from various sources. Statistics 

Netherlands is the source for the data from the Netherlands (all-cause, cause-

specific, and lung cancer mortality data; and population exposure data). The 

Human Mortality Database (HMD, www.mortality.org) is the source for the all-cause 

mortality and population exposure data from all other countries. The WHO 

Statistical Information System (WHOSIS, http://www.who.int/healthinfo/statistics/

mortality_rawdata/en/) is the source for the lung cancer mortality data for all 

countries. The data on smoking prevalence are obtained from Cancer Research UK, 

The Dutch Expert Centre on Tobacco Control, the International Smoking Statistics 

WEB Edition, the Organization for Economic Co-operation and Development Health 

Data, and the World Health Organization.

This PhD thesis applies different mortality forecasting techniques to these data in 

order to address the general objective. These techniques include individual 

forecasting methods: (i) direct linear extrapolation; (ii) the Lee-Carter model (Lee 

and Carter 1992); (iii) an extension of the Lee-Carter model that includes a cohort 

dimension (Renshaw and Haberman 2006); and (iv) the method used between 

2004 and 2010 in the official forecast issued by Statistics Netherlands 

(extrapolation by cause-of-death) (De Jong 2004). This thesis also uses the 

following coherent forecasting methods: (i) the Li-Lee method (Li and Lee 2005); 

(ii) the co-integrated Lee-Carter method (Li and Hardy 2011; Cairns et al. 2011a); 

and (iii) the coherent functional data method (Hyndman et al. 2013). To include 

smoking in the forecast, a model in which smoking-related and non-smoking-

related mortality is projected separately (Janssen and Kunst 2010; Janssen et al. 

http://www.who.int/healthinfo/statistics/mortality_rawdata/en/
http://www.who.int/healthinfo/statistics/mortality_rawdata/en/
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2013) is used. Age-period-cohort (APC) analysis is used for the extrapolation of 

lung cancer mortality. Indirect estimation techniques are applied to the observed 

and the projected levels of lung cancer mortality to obtain the observed and the 

projected levels of smoking-attributable mortality (an adapted and simplified 

version of the indirect Peto-Lopez method, Peto et al. 1992; Rostron 2010; Preston 

et al. 2010).

To evaluate these methods and the explicit assumptions chosen, different 

approaches are employed. The evaluation is comprised of (i) an assessment of the 

model fit based on past trends from 1950 onwards; (ii) a forecast based on part of 

the data and a comparison of the outcomes with actual observed values (in-sample 

forecasting); and (iii) a comparison of the future outcomes (i.e., for the years 2020, 

2030, 2040, or 2050) from different forecasts (out-of-sample forecasting). The 

outcomes – life expectancy at birth or at age 65 up to 2050 – of the different 

forecasting methods are compared visually, whereas the other comparisons are 

mostly done in a tabular manner.

The evaluation is based on both quantitative (i.e., focused on accuracy) and 

qualitative (i.e., focuses on robustness and the plausibility of the results) 

evaluation criteria (Cairns et al. 2009). To test the degree of accuracy (fit to 

historical data), the following measures are used: the explanation ratio (ER); the 

root mean squared error (RMSE); the mean absolute percent error (MAPE) of the log 

death rates averaged over ages and years; and the mean absolute error (MAE) of 

the forecasted life expectancy at age 65. To test the degree of robustness (stability 

across different fitting periods), the standard deviation of the life expectancy at 

birth (e0) in 2050 resulting from the use of the three fitting periods, averaged over 

the seven countries and the three selected main country groups, and the standard 

deviation (SD) in the increase/decrease of the (out-of-sample) life expectancy at 

age 65 in a given year in the future are used. To evaluate whether the results are 

plausible (smooth continuation of trends from the fitting period), the following 

measures are used: (i) the standard deviation of e0 in 2050 resulting from the 

selection of the three main country groups, averaged over the seven countries and 

the three fitting periods; (ii) the standard deviation of e0 in 2050 resulting from 

the mortality forecasts for the seven countries, averaged (unweigthed) over the 

three main country groups and the three different fitting periods; and (iii) the 

improvement of the mortality rates by age between the last year of the fitting 

period and 2050.
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1.6 Outline

This thesis consists of six chapters. The current first chapter introduces the topic of 

this thesis. 

Chapters 2 to 5 each answer one of the four different research questions. Chapter 2 

reviews the different mortality forecasting methods and their assumptions in 

Europe, and assesses their impact on projections of future life expectancy for the 

Netherlands. More specifically, (i) the current methods used in official mortality 

forecasts across Europe are reviewed; (ii) the outcomes and the assumptions of 

different projection methods used within the Netherlands are compared; and (iii) 

the outcomes of different types of methods based on similar explicit assumptions, 

including the same historical period, are compared for the Netherlands. 

In Chapter 3, a formal estimation of future levels of smoking-attributable mortality 

up to 2050 is presented for the total national populations of England and Wales, 

Denmark, and the Netherlands. An update and an extension of the descriptive 

smoking epidemic model are provided in the estimation. 

In Chapter 4, different coherent forecasting methods are evaluated in terms of their 

accuracy (fit to historical data), robustness (stability across different fitting periods), 

subjectivity (sensitivity to the choice of the group of countries), and plausible 

outcomes (smooth continuation of trends from the fitting period) for France, Italy, 

the Netherlands, Norway, Spain, Sweden, and Switzerland up to 2050.

In Chapter 5, an evaluation of six different options for the jump-off rates and an 

examination of their effects on the robustness and accuracy of the mortality 

forecast are presented for Belgium, Finland, France, the Netherlands, Norway, 

Spain, Sweden, and the United Kingdom. The focus of the chapter is on life 

expectancy at age 65.

Finally, in Chapter 6, the main findings of the PhD thesis as a whole are 

summarised and discussed. The implications of these findings for mortality 

forecasting in the Netherlands, mortality forecasting in general, future research, 

and policy are also explored.
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Abstract

BACKGROUND
With the rapid aging of the population, mortality forecasting becomes increasingly 

important, especially for the insurance and pension industries. However, a wide 

variety of projection methods are in use, both between and within countries, that 

produce different outcomes.

OBJECTIVE
We review the different mortality forecasting methods and their assumptions in 

Europe, and assess their impact on projections of future life expectancy for the 

Netherlands.

METHODS
For the Netherlands, we assess the projections of life expectancy at birth (e0) and 

at age 65 (e65) up to 2050 resulting from different methods using similar explicit 

assumptions regarding the historical period and the jump-off rates. We compare 

direct linear extrapolation, the Lee-Carter model, the Li-Lee model, a cohort model, 

separate projections of smoking- and non-smoking-related mortality, and the 

official forecast.

RESULTS
In predicting mortality, statistical offices in Europe mostly use simple linear 

extrapolation methods. Countries with less linear trends employ other approaches 

or different assumptions. The approaches used in the Netherlands include 

explanatory models, the separate projection of smoking- and non-smoking-related 

mortality, and the projection of the age profile of mortality. There are clear 

differences in the explicit assumptions used, including assumptions regarding the 

historical period. The resulting e0 in 2050 varies by approximately six years. Using 

the same historical period (1970–2009) and the observed jump-off rates, the 

findings generated by different methods result in a range of 2.1 years for women 

and of 1.8 years for men. For e65, the range is 1.4 and 1.9 years, respectively.

CONCLUSIONS
As the choice of the explicit assumptions proved to be more important than the 

choice of the forecasting method, the assumptions should be carefully considered 

when forecasting mortality.

Keywords: mortality forecasting, explicit assumptions, life expectancy 
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2.1 Introduction

With the rapid aging of the population, mortality forecasts have become more 

important. Recent reforms in the pension systems in Europe—which were necessary 

to ensure that pensions remain sustainable—have made the link between pensions 

and changes in life expectancy more apparent than ever. In general, monthly 

pension payments are based on remaining life expectancy when people retire. But 

whereas in some countries benefit levels are linked to life expectancy (Germany, 

Finland, and Portugal), in others the pension age is set to rise with increasing life 

expectancy (Denmark, the Netherlands), or the contribution period for pensions is 

set to be extended as people live longer (France) (OECD 2007). The accurate 

modelling and projection of mortality rates and life expectancy are therefore of 

growing interest to researchers.

As mortality forecasts have become increasingly important, numerous models for 

mortality modelling and forecasting have been developed (for reviews see Pollard 

1987; Tabeau 2001; Wong-Fupuy and Haberman 2004; Booth and Tickle 2008). The 

various methods for mortality forecasting can be divided into three approaches: 

extrapolation, explanation, and expectation (Booth and Tickle 2008). Extrapolative 

methods make use of the regularity typically found in both age patterns and trends 

in time. The explanation approach makes use of structural or epidemiological 

models of mortality from certain causes of death for which the key exogenous 

variables are known and can be measured. The expectation approach is based on 

the subjective opinions of experts involving varying degrees of formality. It should 

be noted that some mortality forecasting methods include aspects of one or more 

approaches.

In the past, most methods were relatively simple and were largely based on 

subjectivity (Pollard 1987). Over time, however, more sophisticated methods that 

make increasing use of standard statistical methods have been developed and 

applied (Booth and Tickle 2008). The majority of these methods can be classified as 

extrapolative approaches, of which the Lee-Carter method has become dominant. 

This method summarises mortality by age and period for a single population as an 

overall time trend, an age component, and the extent of change over time by age 

(Lee and Carter 1992).

One of the strengths of the Lee-Carter method and of extrapolation methods in 

general is their robustness in situations in which age-specific log mortality rates 

have linear trends (Booth et al. 2006). However, some countries have less linear 

trends (e.g., Booth, Maindonald, and Smith 2002 for Australia; Renshaw and 
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Haberman 2006 for England and Wales; Janssen, Kunst, and Mackenbach 2007 for 

the Netherlands). It is therefore important to debate whether merely –objective 

linear extrapolation methods should be employed, despite the non-linearity in the 

trends, or whether adding information—e.g., by including a cohort effect or trends 

in other countries, or by using more explanatory models—is preferable, despite the 

subjectivity this would involve.

One example of a method which includes additional information is coherent 

forecasting (Li and Lee 2005). This extension of the Lee-Carter model seeks to 

ensure that the forecasts for related populations maintain certain structural 

relationships based on commonalities in their historical trends; for example, that 

forecasts for similar countries are not radically different. The Lee-Carter method has 

also recently been extended to include a cohort dimension (Renshaw and 

Haberman 2006), and other stochastic models have been introduced to integrate 

the cohort dimension in mortality forecasting (see Cairns et al. 2011). Other 

examples are forecasting methods using valuable medical knowledge and 

information on behavioural and environmental changes, such as smoking and/or 

obesity (e.g. Pampel 2005; Olshansky et al. 2005; Bongaarts 2006; Janssen and 

Kunst 2007; Stewart, Cutler, and Rosen 2009; Wang and Preston 2009; King and 

Soneji 2011; Janssen, van Wissen, and Kunst 2013). Although these new types of 

methods have many advantages, the more explanatory methods involve a large 

element of subjective judgment (see Section 6.5 for a further discussion). 

Furthermore, as all of the above-mentioned methods are fairly new, the number of 

times they have been applied is still relatively small.

The advent of new methods has led to a variety of types of methods being used to 

produce projections within a single country (e.g., Wong-Fupuy and Haberman 

2004), which have produced different forecast outcomes. Most existing studies that 

have compared the outcomes of different methods have focused predominantly on 

variants within one model, such as the Lee-Carter model and its variants, 

extensions, or generalisations. These include Booth et al. (2002, 2005, 2006); Li 

and Lee (2005); Renshaw and Haberman (2006); Hyndman and Ullah (2007); Wang 

and Liu (2010); and Shang, Booth, and Hyndman (2011). Other studies (CMI 2005, 

2006, 2007; Cairns et al. 2011) have compared the Lee-Carter model (and its cohort 

extension) with other extrapolative statistical models, such as P-splines models and 

the statistical model CBD (see Cairns, Blake and Dowd, 2006). These studies showed 

that using different assumptions leads to different outcomes, and that comparing 

different variants and extensions does not automatically result in the identification 

of a single best method. The historical period used is the main determinant of large 

differences in outcomes (see also Janssen and Kunst 2007), especially when there 

is considerable non-linearity in the trends.
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Comparison studies of different types of methods, including both extrapolation and 

explanatory approaches, are not often undertaken. The comparison of outcomes 

from different studies is hampered by differences in the explicit assumptions; i.e., 

in the specific choices that must be explicitly stated in a method, such as the choice 

of the length of the historical period and of the jump-off rates. It would be helpful 

to examine, however, whether differences in projection outcomes within a country 

are caused by different methods, or by the use of the explicit assumptions.

The purpose of this study is to review the different mortality forecasting methods 

and their assumptions in Europe, and to assess their impact on projections of future 

life expectancy for the Netherlands.

More specifically, (i) we will review the current methods used in official mortality 

forecasts in Europe; (ii) compare the outcomes and the assumptions of different 

projection methods within the Netherlands; and (iii) compare the outcomes of 

different types of methods for the Netherlands using similar explicit assumptions, 

including the same historical period.

2.2 Data and methods

2.2.1 Methodology

After first reviewing the current methods for forecasting mortality used by statistical 

offices in Europe and the different national and international forecasts/projections 

that exist for the Netherlands, we will show to what extent different methods 

applied to Dutch data for the period 1970–2009 lead to different future values of 

life expectancy up to 2050. For the latter, we look at two outcome measures: life 

expectancy at birth and, in light of pension reforms, life expectancy at age 65. 

Moreover, we limit our own calculations to methods based on extrapolating the 

trends in age-specific death rates.

We found mortality forecasting methods used by statistical offices in the 

Netherlands and Europe in publications, including online publications, up to 2011 

by using the following search words: “mortality forecasting”, ”forecasting”, 

”mortality projection”, ”population projection”, and “projection”. Information on the 

methods is given for Austria, Belgium, Denmark, France, Italy, Ireland, Luxemburg, 

the Netherlands, Norway, Poland, Portugal, Spain, Sweden, and the UK. Mortality 
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forecasts for the Netherlands are published by Statistics Netherlands, the Actuarial 

Society, RIVM (National Institute for Public Health and the Environment), Eurostat 

(EUROPOP2010), and by four research projects: TOPALS (De Beer 2012); UPE (Alders 

et al. 2007); Janssen, van Wissen, and Kunst (2013); and the European 

Demographic Datasheet (VID/IIASA/PRB 2012).

The six different methods we applied to the Dutch data for 1970–2009, separately 

for both sexes, are:

— direct linear extrapolation;

— the Lee-Carter model (Lee and Carter 1992);

— an extension of the Lee-Carter model that includes the mortality experiences of 

other countries (Li and Lee 2005);

— an extension of the Lee-Carter model that includes a cohort dimension (Renshaw 

and Haberman 2006);

— a model in which smoking-related and non-smoking-related mortality is 

projected separately (Janssen and Kunst 2010; Janssen, van Wissen, and Kunst 

2013); and

— the method used between 2004 and 2010 in the official forecast by Statistics 

Netherlands. 

Our review showed that these methods—which represent fundamentally different 

approaches—were among the mortality forecasting methods used most frequently 

by the statistical offices in Europe, including in the Netherlands. We have chosen to 

avoid explicitly applying an expectation approach method because of the high 

degree of dependence on expert opinion in setting the target; e.g., every outcome 

can be set. We have also decided to ignore other methods that do not specifically 

extrapolate trends in age-specific death rates. See Section 2.3 for a more detailed 

description of the applied methods.

We chose data for 1970–2009 because of the data requirements of the method 

used by Statistics Netherlands. In addition to using a fixed historical period, we will 

use the observed values for 2009 as the jump-off rates for all the methods. 

Whenever possible, the further specifications and assumptions within each 

framework are also kept the same.

2.2.2 Data

Data on all-cause mortality and population numbers by sex, age (0, 1–4, 5–9, …, 

90–94, 95+), and year (1970–2009) were obtained from Statistics Netherlands. For 

the Li-Lee model, the same data were also obtained for Denmark, England and 
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Wales, Finland, France, Italy, Norway, Spain, Sweden, Switzerland, and West 

Germany from the Human Mortality Database. Lung cancer mortality data and 

cause-specific mortality data were obtained from Statistics Netherlands for the 

separate projection of smoking- and non-smoking-related mortality and for the 

official forecast, respectively.

2.2.3 The models in more detail

The direct linear extrapolation model is given by

  
    (1) 

where  denotes the central mortality rate at age  and year  the constant 

age pattern,  the set of age-specific constants that describe relative rate of 

change at any age and  the residual error.

The Lee-Carter model (Lee and Carter 1992) is given by

     (2)

where  denotes the underlying time development.   is set equal to the average 

over time of  and   are found using Singular Value Decomposition 

under the assumptions  and . After estimation, we adjusted  to fit 

the observed life expectancy (Lee and Miller 2001) and extrapolated  using a 

random walk with drift.

The Li-Lee method is an extension of the Lee-Carter method, which takes into 

account the mortality experiences of other populations, e.g. countries (Li and Lee 

2005). Short-term differences in mortality are preserved, but in the long term, the 

age-specific death rates within the group of countries are constrained to a constant 

ratio to one another. In essence, the Lee-Carter method is applied twice: first to all 

countries combined (  ), and then to the residuals 

(  denotes the central mortality rate (at 

age  and year ) of all countries combined and  the central mortality rate of 

country i . The estimates are combined into one model for the country concerned:

   (3)

where  equals the average over time of . The time parameter of the 

residual ( ) is extrapolated using an autoregressive model (AR(1)). Other 
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specifications are the same as in the Lee-Carter method described above. The 

mortality experiences of ten low-mortality countries surrounding the Netherlands 

are taken as the experiences of the other populations, i.e. Denmark, England and 

Wales, Finland, France, Norway, Spain, Sweden, Switzerland and West Germany. 

The cohort model represents an extended version of the Lee-Carter model with an 

extra parameter  which denotes the underlying cohort effect that is a function 

of the year of birth . (Renshaw and Haberman 2006). The model is given by

    (4) 

 

Thus, this is in fact a model which includes the age effect, the period effect and the 

cohort effect. Because of the inclusion of cohorts, age groups 0 and 1–4 are 

combined to have age groups of equal length. Furthermore, cohorts with fewer 

than four observation years are not taken into account. The parameters are 

estimated by an iterative process (by maximum likelihood) using the constraints 

. After estimation,  is adjusted to fit the 

observed life expectancy and extrapolated using a random walk with drift. To avoid 

unrealistic future mortality patterns, gamma ( ) is set to zero for the cohorts 

outside the data. We choose zero because no clear trend for the cohort parameter 

showed in the Dutch data, and its average over the whole period was close to zero. 

Because of this constraint, caution is warranted when interpreting the outcomes of 

this cohort model.

The model which projects non-smoking-related mortality and smoking-related 

mortality separately is referred to as the “smoking+non-smoking” model. First, 

non-smoking-related mortality, i.e. mortality after exclusion of deaths caused by 

smoking, is calculated using etiological fractions. The etiological fractions are the 

age and sex-specific proportions of total mortality determined by smoking. They 

are estimated by an adaptation of the indirect Peto-Lopez method (see Janssen and 

Kunst (2010) and Janssen, van Wissen and Kunst (2013) for more detail). Non-

smoking-related mortality is projected using the Lee-Carter method. Assumed 

future etiologic fractions and the projected non-smoking-related mortality 

combined give the projected total mortality. The future etiologic fractions are taken 

from Janssen, van Wissen and Kunst (2013). 

Statistics Netherlands publishes a mortality forecast as part of its official population 

forecast for the Netherlands (Van Duin et al. 2011). Overall mortality is forecasted 

using decomposition by cause of death (Van Duin et al. 2011; De Jong and Van Der 

Meulen 2005). The probability of dying from a specific cause-of-death group in a 

specific age interval is projected for selected sample years. The techniques used are 
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extrapolation combined with expert opinion, but epidemiological information 

(smoking) is also used. The all-cause probability of surviving is calculated by 

multiplying the probability of surviving for each cause of death. Intermediate years 

are calculated by interpolation. The Brass-logit method (Brass 1971) is used to 

calculate age-specific probabilities from the probabilities per age interval. 

Smoothed age-specific probabilities of dying of the last two observed years are 

used as model curve. 

2.3 Forecasting methods in Europe

The approaches currently used by statistical offices in Europe to project future 

mortality vary considerably (see Table 2.3.1). Extrapolation methods are used most 

frequently. These methods are either a direct linear extrapolation of the logarithm 

of the age-specific mortality rates (Austria, Belgium, France, and Spain), or a variant 

of the Lee-Carter model (Denmark, Italy, Norway, Portugal, and Sweden). Ireland, 

Luxembourg, Poland, and the UK use a more subjective target approach. For Poland 

and Luxembourg, information on trends in other countries is included directly in 

the projection. Statistics Netherlands projects cause-specific mortality using 

extrapolation techniques combined with expert opinion (Van Duin et al. 2011; De 

Jong and Van Der Meulen 2005). This is the only national statistical office in our 

selection that includes epidemiological information directly in its projection. 

Portugal, France, Ireland, and the UK also include expert opinion in their mortality 

forecasts. Indirectly, through the knowledge of the experts, this could include 

trends in other countries and epidemiological information.

In addition to the differences in the methods used, there are also differences in the 

variants and the extensions employed. Denmark, Italy, Portugal, and Sweden use 

different variants of the original Lee-Carter method. Norway and Denmark extend 

the original method. Belgium and Spain extend the direct extrapolation method 

with a re-estimation after smoothing the age-specific parameter, but use a 

different period for the re-estimation. Belgium and France both make some 

adjustments for old-age mortality. Ireland and the UK make a similar assumption 

about the target value; namely, a constant improvement rate after some year in the 

future. The UK includes a cohort approach for the convergence because of the 

apparent cohort effects in that country.

Moreover, the historical period used differs considerably by country. Ireland, 

Norway, and the UK use long periods (82, 109, and 109 years, respectively), 
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whereas Denmark, France, Spain, and Sweden use relatively short periods (20, 15, 

17, and 13 years, respectively). There is also variation in the length of the 

forecasted period, ranging from 28 (Poland) to 91 years (Denmark), although this 

does not seem to correlate with the length of the historical period.

2.3.1 Methods and assumptions behind mortality forecasting methods of 
statistical offices in Europe

 

Country Reference Type of method Assumptions
Historical 
period

Forecasted 
period

 

 

Austria Hanika (2010) Direct extrapolation Extension: using more recent 
data for the short-term trend 
and convergence to a plausible 
function of age and sex for the 
long term (Ediev 2008)

1970–2008 2010–2050

Belgium Bureau fédéral du Plan  
(2009)

Direct extrapolation Extension: Old-age adjustment;  
Extension: 10-year period for 
re-estimation after smoothing 
the age-specific parameter

1970–2007 1990–2060

Denmark Hansen and Stephensen  
(2010)

Lee-Carter Variant: adjust k(t) to fit the 
observed life expectancy (Lee 
and Miller 2001);  
Extension: short-term correction 
to account for the error between 
estimated jump-off rate and 
observation (Bell 1997); 
Extension: smoothing 
mechanism (De Jong and Tickle 
2006)

1990–2009 2010–2100

France Blanpain and Chardon  
(2006)

Direct extrapolation, 
Expert opinion

Age 3-13 no improvement after 
2040; 
Extension: old-age adjustment

1988–2002 2007–2060

Italy Salvini, Santini and Vignoli  
(2006)

Lee-Carter Variant: an autoregressive 
time-series model with a 
deterministic time trend

Unknown 2001–2051

Ireland Central Statistics Office  
(2008)

Target value, Expert 
opinion

Long-term rate of 1.5 percent 
per annum from 2031 onwards;  
Extension: linear interpolation 
between mortality declines in 
2005 and 2031

1926–2005 2011–2041

Luxembourg STATEC  
(2005)

Target value Assumptions of Eurostat 
(convergence in 2100 for all EU 
countries; BMS method (Booth 
et al. 2002) for total group)

1962–2005 2005–2055

Netherlands Van Duin et al.  
(2011)

Cause of death, Direct 
extrapolation, Lee-Carter, 
Expert opinion

Different assumptions per cause 
of death, depending on 
historical trend 

1970–2009 2010–2060

Norway Keilman and Pham (2005), 
Brunborg and Texmon (2010)

Lee-Carter Extension: a quadratic age effect 1900–2008 2010–2060

Poland Glówny Urzad Statystyczny  
(2009)

Target value ‘Catch-up’ with developed 
countries 21-22 years later

1950–2005 2008–2035

Portugal Instituto Nacional de Estatística 
(2009)

Lee-Carter, Expert 
opinion

Variant: Poisson log-bilinear 
model (Brouhns et al. 2002, 
Bravo 2007)

1980–2007 2008–2060

Spain Instituto Nacional de Estadistica 
(2009)

Direct extrapolation 5-year moving average; 
Extension: 3-year period for 
re-estimation after smoothing 
the age specific parameter

1991–2007 2009–2049

Sweden Statistiska centralbyrån (2005) Lee-Carter Variant: no correction for time 
component

1990–2002 2003–2050

United 
Kingdom

Office for National Statistics 
(2009)

Target value, Expert 
opinion

Annual rate of improvement 
converges to 1.0 percent in 2033 
and remains constant thereafter;  
Variant: partly cohort approach 
for convergence

1900-2008 2008-2083
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It appears that the observed past trends determine which method and historical 

period is used. Life expectancy at birth in western Europe has increased by six to 10 

years since 1970 (WHO Health Database, Human Mortality Database). All of the 

countries in western Europe have experienced a rise in life expectancy, albeit at 

different rates and with periods of stagnation. Countries with a more linear trend 

(e.g., France and Switzerland) use extrapolation methods with an average 

historical period, while countries with more non-linear trends (e.g., Denmark, the 

Netherlands, and Norway) use different approaches in order to take non-linearity 

into account. Denmark, which has a history of having a less linear trend among 

women in particular, uses an extrapolation method, but with a short historical 

period. The Netherlands, which has non-linear trends among both men and 

women, uses epidemiological information in the forecast. Norway, with a period of 

stagnation in the 1980s among men, uses a very long period, but includes a 

quadratic age effect to account for the non-linearity.

2.4 Forecasts for the Netherlands

Like in other European countries, in the Netherlands a large number of national 

and international projections have been undertaken in recent years. The 

Netherlands is an exception to the broadly parallel upward trend in life expectancy 

at birth for men and women in western Europe (WHO Health Database, Human 

Mortality Database). Dutch life expectancy at birth rose from 76.5 years in 1970 to 

82.7 years in 2009 for women, and from 70.8 to 78.5 years for men. The yearly 

increase in male life expectancy was smaller until 2000, and was larger than in 

other countries from 2000 onwards. Female life expectancy experienced an 

extended period of relative stagnation between 1980 and 2000. Overall, mortality 

improvements in other countries in western Europe in the period 1970–2009 were 

slightly larger and more linear.

Because of this non-linearity, it is not surprising that various agencies and 

researchers in the Netherlands have paid particular attention to mortality 

projection methodology. They used different methods and different assumptions, 

resulting in a number of different mortality projections for the Netherlands (see 

Table 2.4.1). International projects, which contain results for the Netherlands 

(EUROPOP2010, TOPALS, UPE, and European Demographic Datasheet), use a more 

general method of extrapolation and targeting. TOPALS (De Beer 2012) makes use 

of a linear spline, which produces a smoother age curve than, for example, the 

Lee-Carter method. The European Demographic Datasheet (VID/IIASA/PRB 2012) 
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takes into account that mortality dynamics are characterised by considerable 

inertia, which generates a more optimistic outlook for future mortality. All four take 

into account trends in other countries.

Projection methods developed specifically for the Netherlands (Actuarial Society, 

Statistics Netherlands, RIVM and Janssen, van Wissen, and Kunst (2013)), rely less on 

direct extrapolation. They use different approaches to account for the non-linearity 

observed in the trends. The method of the Actuarial Society combines a short-term 

trend with a long-term trend. The short-term trend (eight years of observations) 

determines the development in the near future, while the eventual level of the 

forecast is determined by the long-term trend (20 years of observations) using 

direct linear extrapolation. The RIVM, Janssen, van Wissen, and Kunst (2013) and 

Statistics Netherlands use epidemiological information in their models. The two 

former models also use information on trends in other countries. The differences 

between these two approaches lie in the different extrapolations of 
res
itk ,  in 

equation (3) and in the use of modelled instead of observed jump-off rates. 

Statistics Netherlands uses a cause-of-death decomposition.

The different national and international mortality forecasts and projections for the 

Netherlands produce outcomes for life expectancy at birth in 2050 (see Table 2.4.1) 

that vary by 5.7 years for women and by 6.6 years for men. This large range may be 

caused by the different methods and the different explicit assumptions, including 

the different historical periods, used. The highest life expectancy at birth in 2050 is 

given by TOPALS 3; namely, 92.1 years for women and 89.1 years for men. The 

lowest values are given by UPE for both women and men; namely, 86.4 and 82.5 

years, respectively. The higher projected outcomes for both the European 

Demographic Datasheet and TOPALS 3 result from projection methodologies that 

are different from the projection of trends in age-specific mortality rates. Instead, 

the European Demographic Datasheet uses the notion of mortality inertia; i.e., that 

younger cohorts are healthier than their older peers, and their future mortality 

rates may therefore be lower than those of the currently old cohorts (Ediev 2011). 

By contrast, TOPALS 3 assumes an acceleration in the decrease in future mortality. 

Furthermore, TOPALS uses a best-practice level of mortality in which direction the 

death probabilities move. The speed is determined by a partial adjustment model.

There is no clear difference in the outcomes of the methods used in the 

international projects and of the methods specifically developed for the 

Netherlands. The European Demographic Datasheet and TOPALS 3 predict life 

expectancies at the high end of the range for both men and women, whereas 

TOPALS 1 and UPE predict life expectancies at the lower end of the range. In 

addition, the inclusion of trends in other countries generates mixed results. The 



52      53

2.4.1 Methods, assumptions and outcomes (e0 in 2050) of different national and 
international mortality forecasts/projections for the Netherlands

 

Forecast/ 
projection by Reference Type of method Assumptions

Historical 
period

e0 2050 NL
 

F M Diff.

 

 

European 
Demographic 
Datasheet 2012

VID/IIASA/PRB  
(2012),  
Ediev  
(2011)

Direct 
extrapolation, 
Coherent 
forecasting, Cohort 
approach

Extrapolation of exposure- 
adjusted life table assuming 
non-divergence and constant 
mortality conditions. Based on 
the concept of mortality inertia 
(Ediev, 2011)

1980–2010 91.8 87.7 4.1

EUROPOP2010 Eurostat  
(2012),  
Eurostat  
(2007)

Lee-Carter, Target 
approach

Convergence mortality rates in 
2100 for all EU countries;  
Variant: Booth et al. (2002) for 
all countries combined

1960–2009 88.0 84.0 4.0

TOPALS 1 De Beer  
(2012)

Target approach, 
direct extrapolation

Extrapolation of the past trends 
in the risk ratio (ratio between 
age-specific probabilities of 
death and a smooth, standard 
age schedule, i.e. projected 
age-specific probability of 
death of Japanese women) for 
each country separately

1976–2006 86.6 1) 82.9 1) 3.7

TOPALS 2 De Beer  
(2012)

Target approach, 
Coherent 
forecasting

Extrapolation of the past trends 
in the risk ratio of 15 countries 
in Europe

1976–2006 88.4 1) 84.7 1) 3.7

TOPALS 3 De Beer  
(2012)

Target approach, 
Coherent 
forecasting

Extrapolation of the past trends 
in the risk ratio of 15 countries 
in Europe and the half time will 
be half of TOPALS 5

1976–2006 92.1 1) 89.1 1) 3.0

UPE Alders et al.  
(2007)

Target approach The same rate of decline for all 
countries in 2030 (the eventual 
rate of decline was empirically 
estimated using eleven 
countries in a 30-year period).  
Extension: the change to the 
eventual rate is linear

1967/1971–
1997/2001

86.4 82.5 3.9

Actuarial Society Actuarieel  
Genootschap & 
Actuarieel 
Instituut (2010)

Direct extrapolation Two-year moving average;  
Extension: old-age adjustment;  
Extension: correction females

1988–2008 87.3 85.5 1.8

Statistics 
Netherlands

Statistics 
Netherlands 
(2012),  
Van Duin et al. 
(2011)

Direct 
extrapolation, 
Lee-Carter, Expert 
opinion, Cause of 
death

Different assumptions per 
cause of death, depending on 
the historical trend

1970–2009 86.6 83.7 2.9

RIVM Janssen and 
Kunst (2010)

Explanatory 
approach, Coherent 
forecasting

Separate projection of 
smoking- and non-smoking-
related mortality;  
Including mortality experiences 
of 10 other European countries

1970–2006 88.1 83.8 4.3

Janssen,  
van Wissen and  
Kunst (2013)

Janssen,  
van Wissen and 
Kunst (2013)

Explanatory 
approach, Coherent 
forecasting

Separate projection of 
smoking- and non-smoking-
related mortality;  
Including mortality experiences 
of 10 other European countries

1970–2006 87.4 83.6 3.8

  

1) Results for 2050 obtained from the author
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European Demographic Datasheet and TOPALS 3 present a high life expectancy in 

2050 for both men and women, but TOPALS 1 and UPE give low values. However, 

the inclusion of trends in other countries, either by coherent forecasting or by the 

choice of the target value, produces a greater difference in life expectancy between 

the sexes in 2050 than the other extrapolation methods.

The historical period used ranges from 20 years (Actuarial Society) to 43 years 

(EUROPOP2010). Statistics Netherlands includes the most recent data.

2.5 Results of different methods for 
Dutch mortality

If different methods are applied to the same historical period, a different range of 

outcomes can be expected. Thus, we apply methods, similar to the ones in 

Table 2.3.1 and 2.4.1, which are used in Europe and the Netherlands to Dutch 

mortality data for the period 1970–2009 and compare the outcomes.

To recap, the methods applied to the Dutch data range from simple extrapolation 

models (direct linear extrapolation and Lee-Carter) to extrapolation models which 

account for non-linearity in the data, either by including cohort effects or trends in 

other populations in the Lee-Carter model, or by using more explanatory approaches; 

i.e., the separate projection of smoking and non-smoking mortality and the projection 

by cause of death, as is done in the official Dutch forecasts. These methods are all based 

on the extrapolation of age-specific death rates. See Section 2.2 for more details.

Direct linear extrapolation results in a life expectancy at birth in 2050 of 86.5 years 

for women and 83.3 years for men (Figure 2.5.2, Table 2.5.1); i.e., an increase of 

3.8 years for women and of 4.7 years for men over the next 40 years. The Lee-

Carter method gives higher life expectancy values; i.e., 87.4 years for women and 

83.8 years for men. The Li-Lee model generates values of 87.7 years for women 

and 85.0 years for men, which is the highest of the values for men. The cohort 

model gives a life expectancy at birth of 87.8 years for women and 83.5 years for 

men. The smoking+non-smoking model, in which smoking-related mortality and 

non-smoking-related mortality are projected separately, leads to the highest 

predicted values; i.e., 88.6 years for women and 84.2 years for men. Statistics 

Netherlands, which uses a cause-of-death decomposition, projects a life expectancy 

at birth of 86.6 years for women and 83.7 years for men in 2050.
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The difference between the models in life expectancy at birth in 2050 is thus 

2.1 years for women and 1.8 years for men. The average increase in life expectancy at 

birth between 2009 and 2050 is 4.8 years for women and 5.4 years for men. The 

direct extrapolation model results in a lower life expectancy for both men and 

women than the other models find. The methods which account for the non-linearity 

generally generate higher outcomes than the simple extrapolation models do.

The increase is almost a straight line for the extrapolation methods, while the 

cohort model, the smoking+non-smoking model, and the method of Statistics 

Netherlands are less linear (Figure 2.5.2). The straight line of the extrapolation 

methods is a result of linear, but slightly declining, increases in life expectancy at 

birth in the period 2009–2050. The yearly increases of the cohort model, the 

smoking+non-smoking model, and the method of Statistics Netherlands differ from 

year to year. They differ not only from the extrapolation methods, but also from 

each other (see Table 2.5.1 and compare the observation in 2009 and the outcomes 

in 2030 and 2050). For instance, compared to all other methods, the cohort model 

predicts a small increase in life expectancy at birth for men in the period 2009–

2030 and a relatively large increase in the period 2030–2050. For women, the 

smoking+non-smoking model predicts larger increases in the first half and smaller 

increases in the second half of the period, which results in the same increase in the 

period 2009–2030 as in the period 2030–2050. The method of Statistics 

Netherlands predicts greater yearly increases in the first half of the period than the 

other methods, and constant increases in the second half for both men and 

women.

Three of the six methods—i.e., the Lee-Carter model, the cohort model, and the 

smoking+non-smoking model—forecast a larger sex difference in life expectancy at 

birth in 2050 than was observed in 2009.

When comparing the forecasted values of remaining life expectancy at age 65 in 2050 

according to the different forecasting methods, we find that the differences amount to 

1.4 years for women, and 1.9 years for men (Figure 2.5.3, Table 2.5.1). Just as for life 

expectancy at birth, the smoking+non-smoking model results in the highest remaining 

life expectancy at 65 for women (25.0 years), and the Li-Lee model results in the 

highest value for men (22.0 years). The direct extrapolation model results in the lowest 

value for men (20.2 years) and the second-lowest value for women (23.7 years).

The largest difference between the outcomes at birth and at age 65 is observed for 

the smoking+non-smoking model. For the short-term, its effect—in terms of a 

smaller increase in life expectancy—is much more evident for e65 than for e0. 

Among men, the outcomes at age 65 drift apart more than the outcomes at birth.
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2.5.1 Life expectancy at birth and at age 65: observed (2009) and projected 
values (2030, 2050) for different mortality forecasting methods, the 
Netherlands, by sex

 

Women Men Sex difference
   

e0 e65 e0 e65 e0 e65

 

 

Observed values 2009 82 .65 20 .77 78 .53 17 .41 4 .12 3 .36

Projected values 2030

  Direct Extrapolation 84 .73 22 .32 81 .23 18 .92 3 .50 3 .40

  Lee-Carter 85 .25 22 .73 81 .59 19 .16 3 .67 3 .57

  Li-Lee 85 .39 22 .74 82 .05 19 .81 3 .34 2 .92

  Cohort model 85 .47 22 .99 80 .78 18 .44 4 .69 4 .55

  “smoking+non-smoking” model 85 .61 22 .62 81 .77 19 .69 3 .84 2 .92

  Statistics Netherlands 84 .90 22 .40 81 .73 19 .72 3 .17 2 .68

Projected values 2050

  Direct Extrapolation 86 .49 23 .68 83 .26 20 .16 3 .23 3 .52

  Lee-Carter 87 .39 24 .41 83 .82 20 .55 4 .57 3 .86

  Li-Lee 87 .72 24 .50 85 .02 22 .03 2 .70 2 .47

  Cohort model 87 .80 24 .87 83 .45 20 .27 4 .35 4 .60

  “smoking+non-smoking” model 88 .59 24 .96 84 .18 21 .48 5 .28 4 .41

  Statistics Netherlands 86 .57 23 .59 83 .65 21 .07 2 .92 2 .52
  

Observations

2.5.2   Life expectancy at birth; observed (1970–2009) and projected 
(2010–2050) values for di�erent mortality forecasting methods, 
the Netherlands, by sex

Direct Extrapolation
Cohort model Lee-Carter 

Smoking+non-smoking
Li-Lee

Statistics Netherlands

70

72

74
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'50'45'40'35'30'25'20'15'10'05'00'95'90'85'80'75'70

Male

Female
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2.6 Discussion

2.6.1 Summary of the results

Mortality projection methods and assumptions clearly differ both between and 

within countries. In the context of new mortality projection methodologies with a 

focus on extrapolation, statistical offices in Europe currently predict mortality 

mainly using extrapolation methods (either direct or Lee-Carter), but they also 

make use of target values, expert opinion, and cause-specific mortality projections. 

The method and the historical period used seem to reflect past mortality trends in 

the country, with simple linear extrapolation being used by countries with gradual 

increases in life expectancy, and other approaches or different assumptions being 

applied by countries with non-linear trends.

The approaches used in national and international projections for the Netherlands 

also include simple linear extrapolation methods, but these are mainly methods 

that take into account the non-linearity in the observations by including trends in 

other countries, projecting smoking and non-smoking-related mortality separately, 

Observations

2.5.3   Life expectancy at age 65; observed (1970–2009) and projected 
(2010–2050) values for di�erent mortality forecasting methods, 
the Netherlands, by sex

Direct Extrapolation
Cohort model Lee-Carter 

Smoking+non-smoking
Li-Lee

Statistics Netherlands
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or making projections based on causes of death. The 10 different projections for 

the Netherlands resulted in a wide range for life expectancy at birth in 2050 of 5.7 

for women and 6.6 for men, which may be caused by both the different methods 

and the different explicit assumptions, including the length of the historical period, 

that are used.

When we compare different methods using the same historical period, including 

simple linear extrapolation and models that account for non-linearity, we can see 

that the differences in outcomes become smaller. Life expectancy at birth in 2050 

then ranges from 86.5 to 88.6 for women and from 83.3 to 85.0 for men. For life 

expectancy at age 65 in 2050, the values range from 23.6 to 25.0 for women and 

from 20.2 to 22.0 for men. The models that account for non-linearity in past trends 

predict a less linear trend for the future as well.

2.6.2 Reflection on the differences in the outcomes

The resulting differences in the outcomes of the different methods using the same 

explicit assumptions—i.e., 2.1 years for women and 1.8 years for men—are small 

compared to the differences in the outcomes of the 10 different projections for the 

Netherlands, which were 5.7 years for women and 6.6 years for men. Although the 

methods used for the Netherlands and the methods we applied to the Dutch data 

are not exactly the same, it is clear from these results that using the same historical 

period and other explicit assumptions result in a smaller range of outcomes. 

Janssen and Kunst (2007) also found that using different periods may lead to larger 

differences between the outcomes of the models than the type of models 

themselves. Moreover, the resulting differences between the outcomes are small 

compared to the expected average increase in life expectancy at birth between 

2009 and 2050, which is 4.8 years for women and 5.4 years for men.

In addition, the range of outcomes, using the same explicit assumptions, is small 

compared to the range of outcomes for other types of uncertainty. The differences 

between point forecasts calculated here only describe the uncertainty regarding 

the type of method. However, there are other types of uncertainty, such as 

parameter uncertainty (i.e., the uncertainty in the values of the parameters in a 

given model) and structural uncertainty (i.e., uncertainty because of the stochastic 

nature of a given model) (Cairns 2000). Parameter and structural uncertainty can be 

presented by prediction intervals, where parameter uncertainty is very important 

for long-run forecasts. Statistics Netherlands takes 10 years as a good indicator for 

the uncertainty of life expectancy at birth in 2050 (Carolina and van Duin 2010). 

Keilman and Pham (2004) found a 95% prediction interval of life expectancy at 
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birth in 2050 of 13.1 years for women and 7.7 years for men in the Netherlands. 

This indicates that all projections for the Netherlands presented in this paper can 

be rated as acceptable, given the estimated uncertainties for earlier forecasts for 

the Netherlands. It should be noted, however, that the uncertainty of the 

projections depends to a large extent on the choice of the explicit assumptions, 

which are not captured by prediction intervals. Furthermore, the variability in 

rates, which is used to estimate uncertainty, is, on average, underestimated by 

most methods (Shang et al. 2011).

2.6.3 Reflection on the explicit assumptions used

In our comparison of the different methods, we used the same explicit assumptions 

to the greatest extent possible, including the same historical period and the same 

modelling of . In addition, the most recently observed mortality rates are used as 

the jump-off rates in all of the projections. These assumptions warrant some 

attention, however, as they can affect the outcome of the projection, and thus the 

range of the outcomes.

We used the period 1970–2009 to fit the models. This is the period Statistics 

Netherlands used in its 2010 official forecast. As we noted above, the choice of the 

historical period may produce different outcomes. This is expected to influence the 

outcome of the simple extrapolation methods more than of the more complicated 

methods, because the latter take into account the possible non-linearity of the 

data. For instance, the smoking+non-smoking model excludes the non-linear 

smoking-related mortality trends from all-cause mortality trends. This allows us to 

obtain a more robust long-term trend that can be used as the projection basis 

(Janssen, van Wissen, and Kunst 2013). Furthermore, using a shorter historical 

period as the projection base may reduce jump-off error, but this advantage may 

be lost after a number of years.

We used the most recently observed mortality rates as jump-off rates to ensure that 

the first year of the forecast matches smoothly and closely, as well as to account for 

a possible jump-off error (Lee and Miller 2001). However, it could also be argued 

that the actual purpose of a forecast should be robustness; i.e., that when the 

observations are updated in the future, these small changes in the observations 

result in only modest changes in the forecasts (Cairns et al. 2011). The advantage of 

using the original Lee-Carter method (Lee and Carter 1992)—and indeed of using 

many time series approaches—is that it makes it possible to avoid the peculiarities 

of mortality rates in a particular year by taking the modelled mortality rates as 

jump-off rates. The two above-mentioned approaches to forecasting (matching the 
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first year of the forecast versus the robustness of the results) conflict with each 

other, and may lead to substantial differences in outcomes (Janssen, van Wissen, 

and Kunst 2013). In addition, the range of outcomes might be different if the 

modelled death rates are used as jump-off rates. Additional analysis reveals that 

the outcomes of the simple extrapolation methods and the outcomes for men 

(because of the large increase in life expectancy since 2002) are influenced the 

most by the choice of the jump-off rates. For instance, life expectancy at birth in 

2050 for men using the direct extrapolation method and modelled jump-off rates is 

one year lower than with observed jump-off rates. For women, the difference is 

0.5 years. The Li-Lee method results in a difference of 0.5 for men and 0.2 for 

women. Because the effect of using modelled instead of observed mortality rates 

as jump-off rates is different for the various methods, the range will also be 

affected.

The modelling of tk  in the Lee-Carter model and its extensions determines part of 

the future development. We used a random walk with drift, which assumes a linear 

relationship, and that each forecasted mortality rate changes at a constant 

exponential rate. Moreover, within the direct linear extrapolation and Lee-Carter 

model, the rates of decrease at different ages maintain the same ratio to one 

another over time, because of the assumption of a certain pattern of change in the 

age distribution of mortality. In practice, the relative speed of decrease at different 

ages may vary.

The patterns of mortality improvement show a progressive shift of high rates from 

lower to higher ages in some countries (Andreev and Vaupel 2005). In the past 

decades, most of the improvement occurred within the younger age groups, and 

only recently has some improvement been visible at older ages. None of the 

methods applied here really take into account the potential gains at older ages, as 

the inertia of past trends dominates the prediction. Estimated mortality 

improvement at higher ages for the future could therefore be underestimated (see, 

for instance, the high outcomes of the European Demographic Datasheet in 

Table 2.5.1, which uses a method that takes into account mortality inertia).

If more information is included in a model, more assumptions need to be made. 

For instance, the future share of smoking-attributable mortality within the 

smoking+non-smoking model is also based on assumptions. See Janssen, van 

Wissen, and Kunst (2013) for a discussion of this issue. In the cohort model we 

assumed that the cohort effect in equation (4) is zero. Hence, there can be a 

discontinuity of the last observed and the first fully projected cohort. Alternatives 

are, for instance, equal to the last observation or the average of the last few 

observations.
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The longer the projection period, the larger the effect of the assumed cohort effect 

and of future smoking-related shares in the period life expectancy. In our 

projections we used a projection horizon equal to the historical period of 40 years. 

In fact, in more general terms, the effect of the (explicit) assumptions will depend 

on the chosen projection horizon.

2.6.4 Explanation of the observed projection outcomes

While the differences in the outcomes of the six methods applied in analysing the 

Dutch data are small, they are also clear. For instance, the trend in future life 

expectancy clearly differs. The simple linear extrapolation methods project an 

almost straight line, whereas the cohort model, the smoking+non-smoking model, 

and the method of Statistics Netherlands show a less linear future trend. In 

addition, the simple linear extrapolation methods generally produce lower 

outcomes than the methods which account for the non-linearity in the 

observations. Both can be linked to the non-linearity observed in the past trends. 

The simple linear extrapolation methods extrapolate the average increase of 

all-cause mortality over the whole period to the future, and thus result in a straight 

projection to the future. The cohort model, the smoking+non-smoking model, and 

the method of Statistics Netherlands include the past non-linear trend, and also 

extrapolate that trend into the future. In this particular case, including the effects 

causing non-linearity in a model results in a more optimistic increase over the 

observed period than extrapolating the average increase in all-cause mortality, and 

thus in a higher life expectancy in the future.

Because the assumptions about the source of the non-linearity vary between these 

models, the future non-linearity also differs.

The outcome of the cohort model, which differs from the outcomes of the 

smoking+non-smoking model and the method of Statistics Netherlands, might 

result from our assumption regarding the cohort effect for new cohorts (see 

before). For instance, setting the cohort effects to zero for the cohorts outside the 

data may also freeze some essential developments in the data. That might also 

explain why the cohort model predicted different patterns for men and women 

than the other models.

The smoking+non-smoking model incorporates smoking history, which was not the 

same for men and women. Among men, smoking had already been decreasing for 

much of the observation period. Thus, the effect of reduced smoking among men is 

already reflected in the parameters of the model without the smoking variable. 
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Among women, the turning point from an increase to a decrease in smoking has 

not yet been reached (Janssen, van Wissen, and Kunst 2013). Thus, the use of the 

smoking+non-smoking model influences future mortality improvements among 

women more than among men.

The trend in future life expectancy predicted by Statistics Netherlands is flattened 

because the cause of death with the worst future trend will dominate future total 

mortality. Mortality improvements are expected to be large in the near future, but 

are expected to be relatively small over the longer term.

Three of the six models forecast an increased sex differential in life expectancy at 

birth between 2009 and 2050: the Lee-Carter model, the cohort model, and the 

smoking+non-smoking model. Because of the separate projections of life 

expectancy for men and women, the past trend causes the increasing gap. The gap 

between male and female life expectancy in 2050 projected by the smoking+non-

smoking model, in particular, is large. As men took up smoking before women, the 

sex difference increased. As women caught up, the gap decreased. The lag in the 

process for women means, in short, that the more advanced the stage of the 

smoking epidemic, the closer the smoking mortality rates of men and women 

become. Thus, in the (near) future, the gender gap may be expected to narrow 

because of the smaller differences in the smoking habits of men and women. 

However, as smoking among women and men moves towards parity, trends in 

non-smoking mortality become important. Because deaths other than from 

smoking have risen among men relative to women (Pampel 2002), the gap may 

increase in the future.

For life expectancy at age 65, we see roughly the same results as for life 

expectancy at birth: an almost straight line and generally lower outcomes for the 

simple linear extrapolation methods. Among women, an important difference is 

that, in the short run, the effect of the smoking+non-smoking model in terms of the 

increase in life expectancy is much more evident for e65 than for e0. This could be 

explained by the assumption of an increase in smoking-attributable mortality at 

older ages, but a decrease at younger ages. A smaller difference is that, among 

women, the cohort model generates higher life expectancy values at age 65 in 

2050 than the other models, relative to the results for life expectancy at birth in 

2050. This might again be due to our assumption regarding the cohort effect when 

projecting e0. Among men, we see greater differences between the smoking+non-

smoking model on the one hand, and the linear extrapolation model on the other. 

This may be related to the ongoing decrease in smoking among older Dutch men.
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2.6.5 Forecasting considerations

Mortality forecasting involves a number of decisions. In addition to the forecasting 

approach, these include the measure to be forecasted, the specification of an 

underlying data model, and the specific forecasting method. Among the most 

important issues that must be taken into account when assessing a forecasting 

method are the amount of subjectivity, robustness, and whether the outcomes will 

be logical (e.g., Cairns et al. 2009, 2011). An example of a logical outcome is the 

plausibility of the projected age-sex profiles of the death rates.

The choice of the forecasting approach (extrapolation, explanation, or expectation) 

may depend on several criteria. For instance, because the extrapolative approach 

generally requires a lengthy series of data for long-term forecasting, data 

availability and the projection period are important criteria. Other examples of 

criteria are the aim and the accuracy of the forecast.

The decision of which measure is to be extrapolated is also important in forecasting 

mortality. All of the extrapolation methods used in this paper and by the statistical 

offices in Europe are variants of extrapolation of death rates. Life expectancy may 

also be used as the measure to be forecast. Oeppen and Vaupel (2002) reported 

stable trends in the record life expectancy at birth over 160 years, and White (2002) 

reported a near-perfect fit of average life expectancy of 21 high-income countries 

to a straight line from 1955 to 1996; an extrapolation of the life expectancy itself 

would therefore be an alternative to the methods used in this paper. This different 

approach will generally be more optimistic than an extrapolation based on death 

rates. Other examples are methods that take into account mortality inertia (see the 

European Demographic Datasheet above) or an acceleration of the decrease in 

mortality (see TOPALS above).

Even when the focus is on the extrapolation of trends in age-specific mortality 

rates, different specific forecasting methods exist. Especially crucial is the choice of 

either simple linear extrapolation methods or methods that include additional 

information. Including additional (e.g., epidemiological) information or adding an 

extra dimension to the data (e.g., cohort) will automatically lead to the use of a 

more subjective method, but it may also lead to the use of a more robust method 

(with respect to small changes in the explicit assumptions, such as the historical 

period used) that generates more logical (i.e., more epidemiologically sound) 

outcomes.

Models which capture age, period, and cohort effects in mortality will provide a 

better model fit than age-period models, given that a cohort effect exists in the 
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mortality data. For some countries, cohort effects are clearly visible, although they 

are generally much smaller than period effects. However, there is no guarantee 

that models with a better fit will produce better forecasts. Cohort models in 

combination with age and period are fairly new and need to be fully tested, 

particularly in terms of their stability in response to changes in the age range or 

fitting period (Booth and Tickle 2008).

Epidemiological information can be included in the model in different ways (see, 

for instance, Pampel 2005; Bongaarts 2006; Janssen and Kunst 2007; Stewart, 

Cutler, and Rosen 2009; Wang and Preston 2009; King and Soneji 2011; Janssen, 

van Wissen, and Kunst 2013). Forecasters first have to identify the correlation 

between the determinant and mortality, and then formulate assumptions about the 

future. This requires them to have sufficient data on the determinants or indirect 

techniques to allow them to estimate mortality that can be attributed to a certain 

risk factor. Currently, no well-defined explanatory models are available, and the 

determinants are well understood (and measurable) for only a few causes of 

death. Comorbidities and dependencies among causes make such models even 

more complex. However, researchers like King and Soneji (2011) have emphasised 

the potential utility of including risk factors in forecasts, arguing that doing so will 

improve the quality, accuracy, and transparency of mortality forecasts. A classic 

example in which the determinant is known and can be measured is the 

dependence of lung cancer on smoking.

The challenge that arises when using methods that include additional information, 

such as a cohort effect or epidemiological information, lies in the prediction of the 

additional information itself. The advantage of using additional information in the 

forecasting method diminishes if the additional information cannot be forecast 

more accurately than mortality itself.

The inclusion of trends in other countries in the models is based on the observation 

that mortality evolution in most developed countries is similar because of 

similarities in socio-economic factors, life style, medical treatment, etc. Mortality 

levels will probably continue to develop in parallel. Again, several decisions have 

to be made, such as about how the information should be included: i.e., by a 

target approach or by coherent forecasting. Another crucial question is which 

countries determine the central tendency, or the basic mortality trend, that will be 

applied to the other countries. In addition, many different coherent forecasting 

methods exist, such as those of Li and Lee (2005); of Hyndman, Booth, and 

Yasmeen (2013); and of Li (2012). The methods for coherent forecasting are 

relatively new, and more research on this topic is needed.
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All in all, the determination of which extrapolation method is optimal will depend 

on the amount of linearity in the past. If past trends in mortality have been largely 

linear, it is better to use the simple extrapolation methods, especially because the 

outcomes of different extrapolation methods using the same explicit assumptions 

do not differ greatly. If the past trends have been non-linear, including additional 

information is likely to result in a more robust forecast if the main effects of the 

non-linearity are successfully captured. Even though this involves more assumptions 

and more subjectivity, the right balance between added information and added 

subjectivity should be achieved.

2.7 Overall conclusion

In this paper, we have examined the various projection methods currently used in 

official mortality forecasts in Europe and mortality projections and forecasts in the 

Netherlands. The methods and the historical period used seem to reflect past 

mortality trends in the country. The Netherlands, along with other countries, use 

methods that take into account the non-linearity observed in the past trends. The 

different projections for a country lead to different results, which may have large 

implications for the insurance and pension industries.

For the Netherlands, the differences in the outcomes proved to be smaller if the 

same explicit assumptions were used, such as the same historical period and 

observed jump-off rates. The remaining sensitivity was shown to be small 

compared to other forms of uncertainty, and small compared to the increase in life 

expectancy over the long time horizon. The remaining differences in the outcomes 

mainly reflect differences between the methods which include the observed 

non-linearity, and the simple linear extrapolation methods which do not. For 

countries with more linear trends, smaller differences are likely to result.

Because the choice of explicit assumptions contributes more to the differences in 

outcome than the choice of the forecasting approach, the choice of the projection 

method should be based not only on different approaches, but, more importantly, 

on the explicit assumptions. The method which depends the least on the choice of 

the explicit assumptions might be the best option. Moreover, in order to improve 

the comparability of mortality projections from different institutions, the use of 

sensitivity analyses in which the range of different underlying explicit assumptions 

are applied would be an important step forward. Finally, it is important to realise 

that prediction intervals do not capture the uncertainty of the projections due to 
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the choice of the explicit assumptions. Caution is therefore warranted when 

judging the uncertainty of projections based on prediction intervals only.
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Abstract

AIMS
We formally estimate future smoking-attributable mortality up to 2050 for the total 

national populations of England & Wales, Denmark and the Netherlands, providing 

an update and extension of the descriptive smokingepidemic model. 

METHODS 
We used smoking prevalence and population-level lung cancer mortality data for 

England & Wales, Denmark and the Netherlands, covering the period 1950–2009. 

To estimate the future smoking-attributable mortality fraction (SAF) we: (i) project 

lung cancer mortality by extrapolating age–period–cohort trends, using the 

observed convergence of smoking prevalence and similarities in past lung cancer 

mortality between men and women as input; and (ii) add other causes of death 

attributable to smoking by applying a simplified version of the indirect Peto–Lopez 

method to the projected lung cancer mortality. 

FINDINGS
The SAF for men in 2009 was 19% (44 872 deaths) in England & Wales, 22% (5861 

deaths) in Denmark and 25% (16 385 deaths) in the Netherlands. In our projections, 

these fractions decline to 6, 12 and 14%, respectively, in 2050. The SAF for women 

peaked at 14% (38 883 deaths) in 2008 in England & Wales, and is expected to 

peak in 2028 in Denmark (22%) and in 2033 in the Netherlands (23%). By 2050, a 

decline to 9, 17 and 19%, respectively, is foreseen. Different indirect estimation 

methods of the SAF in 2050 yield a range of 1–8% (England & Wales), 8–13% 

(Denmark) and 11–16% (the Netherlands) for men, and 7–16, 12–26 and 13–31% 

for women. 

CONCLUSIONS
From northern European data we project that smoking-attributable mortality will 

remain important for the future, especially for women. Whereas substantial 

differences between countries remain, the age-specific evolution of smoking-

attributable mortality remains similar across countries and between sexes.

Keywords: Age-period-cohort, Europe, lung cancer mortality, Peto-Lopez method, 

projection, smokingattributable mortality, smoking-epidemic.



76      77

3.1 Introduction

Smoking is a life-style with a considerable effect on health, mortality and trends 

therein over time. Within Europe, smoking is the leading risk factor of premature 

mortality (Lin et al. 2012). However, smoking behaviour and, consequently, 

smoking-attributable mortality (i.e. the number of all deaths in a population 

caused by smoking) differ strongly by country and cause a major gender gap in 

mortality (McCartney et al. 2011; Lopez et al. 1994).

The smoking-epidemic model by Lopez et al. in 1994 (Lopez et al. 1994) described 

that, in general, men in Anglo-Saxon countries were the first to take up smoking in 

the early 20th century. After a rapid rise lasting two to three decades, male 

smoking prevalence started to decline. Smoking-attributable mortality followed the 

increase and subsequent decline in smoking prevalence some 30–40 years later. For 

women, the increase in smoking started about 20 years later than men but, 

depending on the country, this period may be shorter or longer (Thun et al. 2013). 

The maximum levels in female smoking prevalence would be considerably lower 

than for men and, consequently, female smoking-attributable mortality would be 

lower than that for men.

In the last stage of the original smoking-epidemic model, similar (declining) levels 

of smoking prevalence for men and women were put forward, suggesting that 

smoking-attributable mortality for men and women will converge in the future 

(McCartney et al. 2011; Lopez et al. 1994). Smoking-attributable mortality for 

women, however, still increased during this last stage. Currently, some countries 

have already experienced the peak in smoking-attributable mortality for women, 

e.g. England &Wales (Thun et al. 2013). In other countries in northern and western 

Europe, such as Denmark and the Netherlands, this peak is also approaching, due 

to the past peak in smoking prevalence for women. An update of the smoking-

epidemic model is therefore warranted.

A previous update of the smoking-epidemic model by Thun et al. (Thun et al. 2013) 

in which the experience of developing countries was added, and previous 

projections of smoking-attributable mortality (Pampel 2005; Wen et al. 2005), 

however, only included the short-term future. Whereas Thun et al. (Thun et al. 

2013) qualitatively suggested a parallel future decrease in smoking-attributable 

mortality for men and women, and Pampel (2005) also revealed the equalization 

of smoking mortality rates for men and women, the long-term future evolution of 

the gap between the sexes in smoking-attributable mortality has not formally been 

studied previously. Furthermore, in the original smoking-epidemic model and its 
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Iupdate (Thun et al. 2013), little information is provided concerning differences by 

age groups.

Our objective is to update and extend the smoking-epidemic model by estimating 

future levels of smoking-attributable mortality up to 2050 for England & Wales, 

Denmark and the Netherlands, three countries that are ahead in the smoking-

epidemic. We shall formally estimate the peak and subsequent decline in smoking-

attributable mortality for women, and will provide information on the differences 

by sex and age groups for the long-term future. Our results will aid policymakers 

and public health professionals in setting goals for tobacco control programmes 

and can provide important input to all-cause mortality projections.

3.2 Estimation methodology 

We studied past trends in age- and sex-specific smoking prevalence, lung cancer 

mortality rates and smoking-attributable mortality for England &Wales, Denmark 

and the Netherlands during the period 1950–2009. 

Data on smoking prevalence by sex and age group were obtained from Cancer 

Research UK (2013) for England &Wales for 1950–2009 and The Dutch Expert Centre 

on Tobacco Control (STIVORO) (2013) for the Netherlands for 1958–2009. For 

Denmark, data on smoking prevalence among adults by sex was obtained from 

International Smoking Statistics WEB Edition (2013), Organization for Economic 

Co-operation and Development (OECD) Health Data (2013) and the World Health 

Organization (WHO) (2013) for 1950–69, 1970–93 and 1994–2009, respectively.

Annual lung cancer mortality deaths [International Classification of Diseases 

(ICD)-9: 162; ICD-10: C33–C34] by age (40–44, 45–49, . . . , 80+) and sex were 

obtained through the WHO Statistical Information System (2012) for England & 

Wales (1950–2009), Denmark (1951–2006) and the Netherlands (1950–2009). For 

Denmark, additional death numbers for 2007–09 were obtained through the Nordic 

Cancer Statistics Database NORDCAN (2013). Rates were calculated by dividing the 

deaths by population exposure data from the Human Mortality Database (2012).

To estimate the smoking-attributable mortality fraction (SAF), i.e. the proportion of 

all deaths due to smoking, an adapted and simplified version of the indirect 

Peto–Lopez method (Janssen et al. 2013) was used. Our method, like Peto et al. 

(Peto et al. 1992), uses observed lung cancer mortality—controlled for background 
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lung cancer mortality—as an indicator of the accumulated damage from smoking. 

That is, the observed national lung cancer mortality rates are compared with the 

rates of smokers and never-smokers of the American Cancer Society’s Cancer 

Prevention Study II (ACS CPS-II) study to obtain the proportion of the population 

that is exposed to smoking (p) (Peto et al. 1992). We combined this indicator with 

relative risks (RR) for all-cause mortality for smokers versus nonsmokers from the 

ACS CPS-II study to obtain the age- and sex-specific SAF: SAF = p(RR-1)/(p(RR-1) + 1) 

(Mackenbach et al. 2004). The RRs were smoothed by applying a second-level 

polynomial and the excess risk was reduced by 30% to allow for confounding 

(Ezzati and Lopez 2003).

Lung cancer mortality and the SAF for all ages combined were directly age-

standardized using sex- and country-specific population and death numbers, 

respectively, in 2009 as the standard.

To summarize the past trends more formally, age–period–cohort (APC) analysis was 

applied to lung cancer mortality. We chose an APC model with drift (Clayton and 

Schifflers 1987), defined as:

 ( ) paappapapa pNy ,,, *exp εγβαδ ++++= −   (1) 

 

where pay ,  is the number of deaths in age group a  in period p  which follows a 

Poisson distribution, paN ,  is the number of person-years at risk in age group a  in 

period p , and pa,ε  is the error term. δ , aα , pβ , ap−γ  are the drift, age 

(nonlinear) period and (non-linear) cohort effect, respectively. The model is 

applied to data by 5-year age groups (45–49,. . . , 80+) and 5-year calendar periods 

(1950–2009).We set the first and last cohort and first and last period to 0 to ensure 

identifiability (Clayton and Schifflers 1987). The model is fitted in R version 2.10 

using the function glm.

3.3 Past trends

For men, smoking prevalence in the 1950s was very high: 60% in England & Wales, 

80% in Denmark and 90% in the Netherlands (Fig. 1). During the period 1950–2009, 

smoking prevalence for men declined in all three countries, reaching a level of 30% 

in the Netherlands and approximately 20% in the other two countries. For women, 

smoking prevalence in the 1950s was between 30 and 40%. After reaching a 

maximum of approximately 45% between 1970 and 1980, smoking prevalence for 



80    

women also started to decline. From 1990 onwards the decline in smoking 

prevalence for women was parallel with the decline for men in all three countries. 

In 2009, smoking prevalence for women was almost 20% in England & Wales and 

Denmark and approximately 24% in the Netherlands. 

For men, lung cancer mortality and the corresponding age-standardized SAF 

reached its maximum around 1975 in England & Wales and almost 10 years later in 

Denmark and the Netherlands (Fig. 3.3.1). The SAF was 33% (90,087 deaths), 29% 

(9,167 deaths) and 37% (25,578 deaths), respectively. Thereafter, the SAF showed a 

steady decline in all three countries, leading to a level of SAF in 2009 of 19% 

(44,872 deaths), 22% (5,861 deaths) and 25% (16,385 deaths), respectively. For 

women, lung cancer mortality and the SAF increased during the whole period in all 

three countries and converged to the level of men. The female SAF in 2009 was 

14% (36,479 deaths) in England & Wales, 19% (5,249 deaths) in Denmark and 12% 

(8,099 deaths) in the Netherlands.

For men, the age-specific lung cancer mortality rates (Fig. 3.3.2) show a clear 

cohort pattern in the timing of the maximum, reflecting the uptake of smoking. The 

maximum is followed by a more period pattern after the peak, reflecting the 

quitting of smoking as a result of, for instance, tobacco control or changes in 

life-style when there is a decline in the lung cancer mortality rates at the same 

time for different age groups. The declines after the peak show parallel trends at 

the log scale for the different age groups, indicating that the age-specific patterns 

converge. For women, the cohort pattern in lung cancer mortality is less clear, but 

visible at the moment the lung cancer mortality starts to rise for each successive 

age group, and at the moment the increase for the youngest age groups ceases. For 

the youngest age groups we can observe that the moment the rates for women 

cross the rates for men, the rates start to decline at the same pace. The rates for 

women at higher ages show a steady increase over time. These observations also 

hold for the age-specific SAF’s (results not shown). 

Our APC analysis shows that men with the highest lung cancer mortality are born 

around 1900 in England & Wales, around 1925 in Denmark and around 1910 in the 

Netherlands (see Supporting information, Online Resource 1). The increase in lung 

cancer mortality among the oldest cohorts is very similar for the three countries, as 

well as the decline after the maximum. For women, differences in the timing of the 

increase in lung cancer mortality show England & Wales to be the forerunner. 

Women in England & Wales born around 1930 experienced the highest lung cancer 

mortality. For Denmark and the Netherlands no such maximum occurred.
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3.4 Projection methodology

Based on our study of past trends (see previous section), we were able to 

formulate the basic assumptions behind our projection methodology:

— convergence of smoking prevalence and lung cancer mortality between men 

and women;

— a similar decline in age-specific lung cancer mortality rates for women as for men 

after the age-specific rates for women reached the age-specific rates for men;

— a cohort approach for the increase in lung cancer mortality and a period 

approach for its decrease.

We projected lung cancer mortality up to 2050, making qualitative use of the 

predictive value that current smoking prevalence has on mortality for the next 

30–40 years. We then apply indirect estimation techniques to estimate the future 

SAF. For our main results we use the same simplified Peto–Lopez estimation 

technique. In addition, we performed a sensitivity analysis including four additional 

indirect estimation techniques (see Supporting information, Online Resource 3).

For men, the observed decline in lung cancer mortality for different age groups is 

projected to continue into the future. That is, we first estimated the maximum 

cohort exposed to smoking using an APC model applied to the lung cancer 

mortality data, and then projected the drift from the APC model applied to the lung 

cancer mortality data after this estimated maximum cohort (see Supporting 

information, Online Resource 1). 

For women, we needed to estimate the year and level of the maximum in lung 

cancer mortality as well as the trend up to and after this maximum. We 

extrapolated the age-specific increase through an APC model with drift using the 

drift and non-linear cohort component. The peak years for the separate age groups 

were obtained by estimating the year in which the age-specific trends for women 

would reach the age-specific trends for men. The long-term decline after the 

maximum for women has been set equal to the drift from the model of men. 

The limited reliability of historical smoking prevalence—due mainly to changed 

definitions and samples (Forey et al. 2002)—and the fact that smoking prevalence is 

a poor proxy of smoking intensity—mainly because it does not include dosage and 

age at onset (Ezzati and Lopez 2003)—are important restrictions of incorporating 

smoking prevalence directly in any projection methodology. Smoking prevalence is 

thus used merely to generate assumptions, i.e. the similarities in current smoking 

prevalence for men and women and its main effect on mortality 30–40 years later 

(Lopez et al 1994).
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We project lung cancer mortality and not smoking-attributable mortality, because 

of the different indirect estimation techniques that exist to estimate smoking-

attributable mortality, and the probable impact on the projection.

3.5 Future levels of smoking-
attributable mortality 

Figure 3.5.1 shows the projected age-standardized lung cancer mortality and SAF. 

For men in England & Wales, the SAF is estimated to decline from 19% in 2009 to 

6% in 2050. The maximum SAF for women in England & Wales was already reached 

in 2008 (14%, 38 883 deaths), and the SAF is estimated to decline from 14% in 2009 

to 9% in 2050. The SAF for men in Denmark is estimated to drop from 22% in 2009 

to 12% in 2050. The level for Danish women is estimated to first increase from 19% 

in 2009 to 22% in 2028 and then decline to 17% in 2050. For men in the 

Netherlands, the SAF is estimated to decline from 25% in 2009 to 14% in 2050. For 

Dutch women, the SAF is estimated to increase from 12% in 2009 to 23% in 2033 

and then decline to 19%. 

Figure 3.5.2 presents the future SAF by age (see Supporting information, Online 

Resource 2 for the projected lung cancer mortality by age).The results show the 

continuing convergence between the age groups and the (more pronounced) 

cohort pattern in the trend up to the maximum for women. For each country and 

each age group, it is expected that the SAF in 2050 for women is higher than the 

SAF for men.

When we apply five different indirect estimation methods (see Supporting 

information, Online Resource 3)—including using the National Health Interview 

Survey–Linked Mortality Files (NHIS-LMF) cohort study and the recent regression 

methods (Preston et al. 2010; Rostron 2010; Fenelon and Preston 2012)—the SAF’s 

for men in 2050 range from 1 to 8% (England & Wales), from 8 to 13% (Denmark) 

and from 11 to 16% (the Netherlands). For women the ranges are 7–16%, 12–26% 

and 13–31%, respectively. Note that without the outliers, method 2 (NHIS-LMF 

cohort study) for men and the regression method 3 (Preston et al 2010) for 

women, the ranges were much lower.
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3.5.2 Smoking-attributable mortality fractions for Denmark, England & 
Wales and the Netherlands for 1950–2009 [age–period–cohort (APC)-
estimates] and 2010–2050 (projected), by sex and age group (the 10-
year age groups are weighted averages of two 5-year age groups)
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3.6 Discussion

3.6.1 Summary of the results

The SAF for men in 2009 was 19% in England & Wales, 22% in Denmark and 25% in 

the Netherlands. In our projections, these fractions decline to 6, 12 and 14%, 

respectively, in 2050. The SAF for women peaked at 14% in 2008 in England & 

Wales, and is expected to peak in 2028 in Denmark (22%) and in 2033 in the 

Netherlands (23%). By 2050, a decline to 9, 17 and 19%, respectively, is foreseen.

3.6.2 Update and extension of the smoking-epidemic 
model

The original smoking-epidemic model assumes that, after a rapid rise, the SAF 

among women could be expected to peak at approximately 20–25% of all deaths, 

significantly lower than experienced by men (33%) and occurring approximately 

20 years later. Thereafter, smoking-attributable mortality for both sexes would 

decline progressively (Lopez et al. 1994).

Our projected maximum levels of SAF for women in Denmark (22%) and the 

Netherlands (23%) correspond with the expected peak of SAF for women in the 

smoking-epidemic model. However, the observed maximum level for women in 

England &Wales (14%) is clearly lower. The difference in the timing of the 

maximum level between men and women, which amounts to 20 years in the 

smoking-epidemic model, is much greater in England & Wales (35 years), Denmark 

(43 years) and the Netherlands (48 years), and supports earlier findings of 

differential results for different countries (Thun et al. 2013).

Our observed differences between countries in the future level of smoking-

attributable mortality and in sex differences in the (timing of the) smoking-

epidemic are related clearly to differences in historical smoking prevalence, 

especially for women. These differences in smoking prevalence can be related to 

differences in cultural, political and economic determinants that led to differences 

in tobacco control and life-style (Thun et al. 2013). For instance, in England & Wales 

tobacco companies began the pursuit of female smokers after World War I (Action 

on Smoking and Health 2014). In other countries the government promoted 

traditional social roles for women that, among other things, discouraged tobacco 

use (Gomez 1999).
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Our analyses also highlighted some important differences and commonalities 

between the different age groups. The SAF by age is characterized by a clear cohort 

pattern, and starts to rise, to peak and subsequently to decline first at younger 

ages. The SAF for younger age groups is higher than for older age groups, but after 

the maximum there is convergence between the age groups. These age patterns 

are similar across countries and sexes.

In spite of the observed convergence in smoking prevalence and lung cancer 

mortality rates between men and women, the SAFs in 2050 for women are higher 

than for men. This is because of lower relative risks and lower all-cause mortality 

rates for women compared to men in each age group.

3.6.3 Reflection on the projection methodology

Previous projections of smoking-attributable or smoking-related mortality consisted 

mainly of methods incorporating lagged smoking prevalence or different smoking 

scenarios (Pampel 2005; Wen et al. 2005). Probably because of the limited 

historical data on smoking prevalence, these projections were limited to a short 

projection period. Our methodology can be used for a longer projection period. 

Previous projections of lung cancer mortality all used APC methodologies, although 

in different ways (e.g. Bashir and Estéve 2001; Kaneko et al. 2003; Shibuya et al. 

2005; Olsen et al. 2008). Most of these methods do not perform well in a situation 

where the past trend in lung cancer mortality does not continue in the future, as 

we expect to happen with the trend for women. An exception is Shibuya et al. 

(2005), who replaced the period variable by lagged information on smoking. Their 

method might project changes in the trend in lung cancer mortality due to changes 

in smoking habits, although to obtain projections for the long term the smoking 

habits themselves need to be projected. Thus, previous projection methods of lung 

cancer mortality were relevant only for short-term projections. 

Our methodology—differently from earlier studies— takes into account the 

expectation that future smoking-attributable mortality will first increase and then 

decline among women. Our assumption, and subsequent estimation, of the 

maximum level in lung cancer mortality for women resulted from the observed 

similar smoking prevalences for men and women and our assumption that this 

would result in similar lung cancer mortality rates 30–40 years later (as described 

by the smoking epidemic model by Lopez et al. (1994) and already observed for 

the youngest age groups). Applying our methodology to part of the data for 

England &Wales (1950–99), our assumption and methodology proved able to 
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predict the observed maximum in 2008, justifying the use of the trend and level in 

lung cancer mortality of men to determine the maximum for women.

3.6.4 Reflection on the indirect estimation method 

The adapted and simplified Peto–Lopez method that we used to estimate SAF has the 

advantage of a low demand of data, is easy to use and is widely used (Pérez-Rios and 

Montes 2008). Furthermore, potential benefits of smoking cessation and probable 

effects of second-hand smoking are taken into account indirectly, because of the use of 

lung cancer mortality. The results of the simplified method are comparable to the 

results of the original Peto–Lopez method (Mackenbach et al. 2004).

A limitation of the (adapted and simplified) Peto–Lopez method is the use of the 

ACS CPS-II study, which may not be representative for the population under 

consideration due, for instance, to generally lower lung cancer mortality rates for 

female smokers. Furthermore, Mehta and Preston (2012) show a continuing 

increase over time in the relative risk of death for current and former smokers. 

Finally, the Peto–Lopez method assumes that the temporal relationship between 

accumulated exposure (including cessation) and risk will be similar between lung 

cancer and other smoking-determined risks (e.g. vascular disease, chronic 

respiratory disease).

In recent years additional indirect estimation methods have been developed, 

making use of regression analysis (Preston et al. 2010; Rostron 2010; Fenelon and 

Preston 2012). These methods rely only on observed lung cancer mortality and 

all-cause death rates. The two most recent methods (Rostron 2010; Fenelon and 

Preston 2012) showed a large similarity with the method we used, showing the 

validity of the three methods. Because differences at higher age groups had the 

largest effect on the SAF of all ages combined, its estimation should receive special 

attention.

3.7 Overall conclusion and implications 

Our results for England &Wales, Denmark and the Netherlands illustrate clearly that 

smoking-attributable mortality will remain important for the future, especially for 

women. Substantial differences between countries are expected, both in the future 

level of smoking-attributable mortality and in the sex difference in the (timing of 
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the) smoking-epidemic. However, because of similarities in smoking prevalence, 

the similar age-specific evolution of smoking-attributable mortality across countries 

and between sexes, with convergence between the age groups, is also likely to 

occur for other countries currently at the fourth stage of the smoking epidemic. 

Because our projection methodology requires a limited amount of data, it can be 

applied easily to other countries where lung cancer is dominated by smoking. The 

methodology would be suitable especially for countries where (i) the maximum 

level of lung cancer mortality for men was reached quite some time ago (e.g. 

Finland, Ireland, Italy, Sweden and Switzerland) and (ii) recent smoking prevalence 

is similar for men and women. In countries where the maximum for men was 

reached only recently (e.g. France, Norway, Portugal and Spain), an APC model 

would be more difficult to estimate and information from forerunners would also 

be needed. In addition, for countries at an earlier stage of the smoking epidemic, 

detailed information on smoking prevalence would be necessary.

Our formal quantification of future health effects of past smoking behaviour and 

differences therein by age and sex can aid policymakers and public health 

professionals in setting goals for tobacco control programmes. The effect of recent 

control measures, such as the WHO Framework Convention on Tobacco Control 

(2005), is expected to have its main effect on mortality after 2050. Moreover, it is 

essential to take into account the nonlinear development of the smoking-epidemic 

to project all-cause mortality correctly for the future. 
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Abstract

BACKGROUND
Methods to forecast mortality coherently are valuable as they can better identify 

the most likely long-term mortality trend and produce non-divergent outcomes. An 

evaluation of both quantitative and qualitative aspects of the different coherent 

forecasting methods is lacking, however.

OBJECTIVE
We evaluate different coherent forecasting methods in terms of accuracy (fit to 

historical data), robustness (stability across different fitting periods), subjectivity 

(sensitivity to the choice of the group of countries) and plausible outcomes 

(smooth continuation of trends from the fitting period).

METHODS
Mortality data from the Human Mortality Database (1970-2011) are used to 

produce both individual Lee-Carter (LC) and coherent mortality forecasts for France, 

Italy, the Netherlands, Norway, Spain, Sweden and Switzerland up to 2050. We 

compare a co-integrated Lee-Carter (CLC) method, the Li-Lee (LL) method, and the 

Coherent Functional Data (CFD) method.

RESULTS
The CFD method performed best on the accuracy measures. Both the CLC and LL 

method were robust. The CLC method (for women) and the LL method (for men) 

were least sensitive to the choice of the group of countries. The LL method 

generated the most plausible results, with convergence of future life expectancy 

similar to the fitting period and a smooth pattern of age-specific improvements.

CONTRIBUTION
To assess the suitability of coherent forecasting methods for particular forecasting 

applications it is essential to include both quantitative and qualitative evaluation 

criteria. This could imply the use of the LL method – which performed best on 

robustness, subjectivity and plausibility – over the CFD method – whose accuracy 

(model fit) was better.

Keywords: coherent mortality forecasting, accuracy, robustness, sensitivity, 

countries, fitting period
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4.1 Introduction

Against a background of rapid population aging, mortality forecasting is becoming 

ever more important. Mortality forecasts are valuable for social security 

programmes and are often used to predict the sustainability of pension schemes 

(Currie et al., 2004). Forecasts of future mortality levels, especially among the 

elderly, are important for governments to be able to provide for health and other 

needs in their societies (Bengtsson and Christensen (Eds.), 2006).

The growing importance of mortality forecasts has resulted in the development of 

numerous models for mortality modelling and forecasting (for reviews see Pollard, 

1987; Tabeau, 2001; Wong-Fupuy and Haberman, 2004; and Booth and Tickle, 

2008). The majority of these methods can be classified as extrapolative, i.e. they 

make use of the regularity typically found in both age patterns and trends over 

time, with the Lee-Carter method (Lee and Carter, 1992) currently the most widely 

used one (Booth and Tickle, 2008). The Lee-Carter method summarises mortality by 

age and period for one single population into a time-varying index, an age 

component, and the extent of change over time by age (Lee and Carter, 1992). It 

forecasts probability distributions of age-specific death rates using standard time 

series procedures.

One of the strengths of the Lee-Carter method, and extrapolation methods in 

general, is its robustness in situations where age-specific log mortality rates have 

linear trends (Booth et al., 2006). However, herein also lies a drawback of the 

Lee-Carter method: there are examples of countries which have less linear trends, 

such as the Netherlands, Denmark and Norway. If the trend is not linear, the 

forecasted mortality could be very different, depending on the fitting period 

(Stoeldraijer et al., 2013). 

Another important issue with the Lee-Carter method is that mortality forecasts 

using extrapolation methods based on information of each country separately 

might result in divergence, contrary to historic trends. In western Europe, 

convergence has been observed in mortality levels (White, 2002; Wilson, 2001) and 

in old-age mortality (Janssen, Mackenbach and Kunst, 2004). Continued 

convergence between countries is likely because of common socio-economic 

policies, similar progress in medical technology, and shared importance of certain 

lifestyle factors over time (Janssen, van Wissen and Kunst, 2013). Furthermore, it is 

likely that mortality levels of countries with similar mortality evolutions will 

continue to evolve similarly.
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To avoid divergence, coherent forecasting methods are introduced, where 

“coherent” refers to non-divergent forecasts for sub-populations within a larger 

population (Li and Lee, 2005). The idea behind coherent forecasting is that 

mortality forecasts for populations with similar mortality developments will not 

diverge radically, but also that structural differences will remain (for instance, 

consistently higher mortality for men than for women (Hyndman, Booth and 

Yasmeen, 2013)). 

The coherent forecasting methods are an important asset to obtain coherent 

forecasts either between the sexes or between countries (Li and Lee, 2005). Till 

now, coherent forecasting methods are applied more often to take into account 

male-female differentials than to obtain coherent forecasts between countries 

(Stoeldraijer et al., 2013). For instance, insurers and annuity providers need to 

model both sexes properly in a joint fashion because of EU rules on gender-neutral 

pricing in the insurance industry (European Commission, 2012). Li et al. (2016) 

found significant financial implications in allowing for the comovement of 

mortality of females and males properly. Obtaining coherent forecasts between 

countries is important as well, especially when past trends have been non-linear, 

as different fitting periods could lead to different forecasted mortality in individual 

forecasting. In coherent forecasting, the more linear trends for a group or an 

average of countries is likely to provide better information about the future 

direction of mortality trends in other countries with less linear trends. Experiences 

in other countries can thus be used to create a broader empirical basis for the 

identification of the most likely long-term trend, as has been suggested previously 

(Janssen and Kunst, 2007). 

In coherent forecasting methods, non-divergence is derived by applying constraints 

to the parameters of individual forecasts of multiple populations. Most existing 

coherent forecasting methods are based on the Lee-Carter structure (Carter and Lee, 

1992; Li and Lee, 2005; Li and Hardy, 2011; Zhou et al., 2012; Zhou, Li and Tan, 

2013; Yang and Wang, 2013; Wan, Bertschi and Yang, 2013; Kleinow, 2015), but 

there are also examples in the age-period-cohort structure (Dowd et al., 2011; 

Cairns et al., 2011a; Jarner and Kryger, 2011; Börger and Aleksic, 2014) and the 

functional data paradigm (Hyndman, Booth and Yasmeen, 2013; Shang and 

Hyndman, 2016). Other structures are usually more complex. Even within one 

structure, these coherent forecasting methods are very different from each other. So 

far, few methods have been compared in terms of forecast accuracy (Shang, 2016; 

Enchev, Kleinow and Cairns, 2016; Shair, Purcal and Parr, 2017). Because a good fit 

to historical data does not guarantee sensible forecasts (Cairns et al., 2011b), a 

comparison on more qualitative aspects is important as well.
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The purpose of this study is to evaluate different coherent forecasting methods in 

terms of accuracy (i.e. how well the model fits to historical data), robustness (i.e. 

stability across different fitting periods), subjectivity (i.e. sensitivity to the choice of 

the group of countries) and plausible outcomes (i.e. smooth continuation of trends 

from the fitting period). We compare the outcomes of the individual Lee-Carter 

method and three well-known (often cited) coherent forecasting methods that are 

all extensions of the individual Lee-Carter method: (i) the co-integrated Lee-Carter 

method (Li and Hardy, 2011; Cairns et al., 2011a); (ii) the Li-Lee method (Li and 

Lee, 2005); and (iii) the Coherent functional data method (Hyndman, Booth and 

Yasmeen, 2013). 

4.2 Data and methodology

4.2.1 Data

Unsmoothed data on all-cause mortality numbers and exposures by sex, age (0, 

1-4, 5-9, …, 90-94, 95+), and year (1970-2011) were obtained from the Human 

Mortality Database (www.mortality.org, accessed February 9, 2016). The results are 

presented for France, Italy, the Netherlands, Norway, Spain, Sweden and 

Switzerland; seven low-mortality countries in Western Europe. Age and sex-specific 

death rates were calculated by dividing the mortality numbers by the exposures.

4.2.2 Analysis

Based on data for the period 1970-2011, we produced out-of-sample mortality 

forecasts to 2050 for the individual Lee-Carter (LC) method and three coherent 

forecasting methods (see section 4.3). We compared the models from two 

perspectives: quantitative, i.e. how well the models fit to historical data (accuracy), 

and qualitative, i.e. whether or not the forecasts are credible given historical data 

(robustness, subjectivity and plausibility).

To assess the accuracy of the method we examined the explanation ratio (ER), the 

Root Mean Squared Error (RMSE) and the Mean Absolute Percent Error (MAPE) of the 

log death rates averaged over ages and years. The explanation ratio can be 

interpreted as the proportion of variance in historic mortality rates explained by 

the method (Li and Lee, 2005). The higher the ER, the lower the RMSE and the 
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lower the MAPE, the better the fit to the data. Because a method with more 

parameters normally gives a higher ER, a lower RMSE and a lower MAPE, we also 

performed a Diebold Mariano test (Diebold and Mariano, 1995) to test if a method 

is more accurate than another method. For this, the errors of fitted values are used, 

but also errors outside the fitting period (using an in-sample forecast based on 

1970-2001 for the period 2002-2011).

To evaluate the robustness of the coherent forecasting methods, we assessed the 

stability of the out-of-sample forecast outcomes across different fitting periods. For 

this purpose, we not only used 1970-2011 as the fitting period, but also 1970-2001 

and 1970-2006. For each method we calculated the standard deviation of the life 

expectancy at birth (e0) in 2050 resulting from the use of the three fitting periods, 

averaged over the seven countries and the three selected main country groups (see 

below). In formula, 

 

where c denotes the seven countries, p the three fitting periods and g the three 

main country groups. µ denotes the (unweigthed) average of the life expectancy at 

birth. A lower average standard deviation implies that the method is less sensitive 

to the fitting period, and consequently more robust. 

To compare the subjectivity of the different coherent forecasting methods, we 

assessed the sensitivity of the method to the choice of the included group of 

countries for their mortality experience (hereafter referred to as main country 

groups). For this purpose, we produced forecasts with three different main country 

groups who differ especially in their e0 values in 2011, in the amount of increase 

in e0 over the period 1970-2011, and as well in the linearity of the past trend 

(table 4.4.1.1):

— Group ‘All HMD’: all countries in the HMD with sufficient data (France, Italy, 

Netherlands, Norway, Spain, Sweden, Switzerland, Australia, Austria, Belarus, 

Belgium, Canada, Czech Republic, Denmark, East Germany, Estonia, Finland, 

Iceland, Ireland, Japan, Latvia, Lithuania, Luxembourg, New Zealand, Portugal, 

Slovakia, Ukraine, United Kingdom, U.S.A., West Germany).

— Group ‘Top 10’: the ten countries with the highest life expectancy at birth in 

2011 (men and women combined; France, Italy, Netherlands, Norway, Spain, 

Sweden, Switzerland, Australia, Canada, Japan)
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— Group ‘Western Europe’: western Europe (France, Italy, Netherlands, Norway, 

Spain, Sweden, Switzerland, Austria, Belgium, Denmark, East Germany, Finland, 

Ireland, Portugal, United Kingdom, West Germany). 

For each method we calculated the standard deviation of e0 in 2050 resulting from 

the selection of the three main country groups, averaged over the seven countries 

and the three fitting periods. In formula,

where c denotes the seven countries, p the three fitting periods and g the three 

main country groups. µ denotes the (unweigthed) average of the life expectancy at 

birth. A lower average standard deviation implies that the method is less sensitive 

to the choice of the group of countries, and consequently less subjective. 

‘Plausibility’ is a rather subjective concept that is difficult to define. To assess if 

forecasts are plausible, we judged to what extent future patterns are in line with 

historical patterns or in line across age groups. That is, for each method we 

compared the amount of convergence in the projection period relative to the fitting 

period. The amount of convergence is calculated using the standard deviation of e0 

in 2050 resulting from the mortality forecasts for the seven countries, averaged 

(unweigthed) over the three main country groups and the three different fitting 

periods. A smaller value of the standard deviation in 2050 compared to the 

observation period means that the forecast is convergent while a higher value 

means there is divergence. Furthermore, we compared the methods based on the 

improvement of the mortality rates by age between the last year of the fitting 

period and 2050. The forecasts are plausible if the age pattern of age-specific 

mortality improvements is smooth. 

All forecasts were made with the program R. For the Coherent Functional Data 

method (Hyndman, Booth and Yasmeen, 2013) we used the Demography package 

for R (Hyndman, 2010). 

For all methods we used the observed values in the last year of the fitting period as 

the jump-off rates. The forecasts are made for each sex separately without any 

assumption of gender coherence. Also the main country group in each coherent 

forecast does not include the other sex. In other words, the sexes are treated 

separately. We treated the sexes separately because there is no unified method to 

incorporate county and gender coherence at the same time.
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To estimate the mortality rates of the three main country groups, the death rates for 

the individual countries were weighted by the population numbers. This means 

that the largest population dominates the mortality rates of the group. We choose 

to do so because the population of the whole region is relevant, not the countries 

separately. By creating the largest population possible of comparable countries, the 

most likely long-term trend of each country within the group could be determined.

4.3 The mortality forecasting methods

We compared the accuracy, robustness, subjectivity and plausibility for the 

individual Lee-Carter method and three coherent mortality forecasting methods: (i) 

the co-integrated Lee-Carter method (Li and Hardy, 2011; Cairns et al., 2011a); (ii) 

the Li-Lee method (Li and Lee, 2005); and (iii) the Coherent functional data method 

(Hyndman, Booth and Yasmeen, 2013). The three coherent forecasting methods are 

well known (often cited) and are all extensions of the individual Lee-Carter 

method.

4.3.1 The Lee-Carter method (LC method) 

A well-known mortality forecasting method for individual populations was 

developed by Lee and Carter in 1992: 

     (1)

where itxm ,,  denotes the death rate of population i  , ixa ,  equals the average over 

time of  , ixb ,  is the set of age-specific constants that describe relative 

rate of change at any age, itk ,  denotes the underlying time development and 

itx ,,ε  the residual error. Singular Value Decomposition is used to estimate ixb ,  and 

itk ,  under the assumptions 1, =∑
x

ixb  and 0, =∑
t

itk . After estimation, itk ,  is 

extrapolated using a random walk with drift.

For more detailed information about the Lee-Carter method, see Lee and Carter 

(1992).
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4.3.2 The Co-integrated Lee-Carter method (CLC 
method) 

A simple extension of the Lee-Carter method is to assume a relationship between 

the mortality rates of two populations, by modelling the underlying time 

development of both processes together (Li and Hardy, 2011; Cairns et al., 2011a). 

Essentially, we have two Lee-Carter models: one for all populations combined and 

one for population :

      (2a)

      (2b)

txM ,  denotes the death rate at age x  and year t  of all populations combined, 

xA  equals the average over time of , xB  is the set of age-specific 

constants that describe the relative rate of change at any age, tK  denotes the 

underlying time development and txE ,  the residual error. tK  and xB  are found 

using Singular Value Decomposition under the assumptions 1=∑
x

xB  and 

0=∑
t

tK . 

Because we have the situation where the main group is much larger than 

population i  , we model the parameter of the time development for all 

populations combined ( tK  ) as a random walk, similar to a one-population 

model, while the spread between population i  and the group ( itt kK ,−  ) is 

modelled as an AR(1) time series, i.e.  ,  

in such a way that it will tend toward a certain constant level over time. itk ,  is 

then calculated using the extrapolated values for tK  and itt kK ,−  .

The difference in the parameters xB  and ixb ,  may still lead to diverging mortality 

forecasts, thus the co-integrated Lee-Carter method is only partly coherent.

For more detailed information about co-integration within the Lee-Carter method, 

see Li and Hardy (2011) and Cairns et al. (2011a).

4.3.3 The Li-Lee method (LL method) 

Li and Lee (2005) extended the (co-integrated) Lee-Carter method so that the 

forecasted mortality rates will not diverge. In essence, the Lee-Carter method is 

applied twice: first to all populations combined, and then to the residuals.

( ) ( ) itittiiitt kKcckK ,,11,2,1, * ε+−+=− −−
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Again, the model for all populations combined is given by

      (3)

tK  is extrapolated using a random walk with drift.

The model for the residuals is given by

    (4)

where itxm ,,  denotes the death rate of population i  , ixa ,  equals the average over 

time of  and tx KB ˆˆ  are the estimates from the first equation. 
res

ixb ,  is the 

set of age-specific constants that describe relative rate of change at any age, res
itk ,  

denotes the underlying time development and 
res

itx ,,ε  the residual error. Again, 

Singular Value Decomposition is used to estimate 
res

ixb ,  and res
itk ,  . res

itk ,  is 

extrapolated using an autoregressive model (AR(1) or a higher order model if res
itk ,  

does not converge to a constant when AR(1) is used).

The estimates are combined into one model for the population concerned:

    (5)

For more detailed information about the Li-Lee method, see Li and Lee (2005).

4.3.4 The Coherent Functional Data method (CFD 
method) 

The coherent functional data (CFD) method (Hyndman, Booth and Yasmeen, 2013) 

can be viewed as a generalisation of the Li-Lee method, with the difference that 

the CFD method uses up to six principal components ( xB  and res
ixb ,  are the first 

principal components of model (3) and (4)), more general extrapolation models 

and smoothing. It involves forecasting interpretable product and ratio functions of 

rates using functional time series models introduced in Hyndman and Ullah (2007). 

First, the death rates itxm ,,  for population i  at age x  and year t  are smoothed 

using weighted penalised regression splines (Wood 1994) so that each curve is 

monotonically increasing above age 65. The weights take care of the heterogeneity 

in death rates across ages. Let itxm ,,
~  be the smoothed death rates. Then the 

products ( txproduct , ) and ratios ( itxratio ,, ) of the smoothed rates for each 

population i  are defined:



104      105

  

II

i
itxtx mproduct

/1

1
,,,

~ 







= ∏

=
 and txitxitx productmratio ,,,,, /~=  (6)

These products and ratios - which behave roughly independently of each other 

and, on the log scale, are approximately uncorrelated - are then modelled using 

functional time series models, which are estimated using the weighted principal 

components algorithm of Hyndman and Shang (2009):

     (7a)

     (7b)

where product
xa  and ratio

ixa ,  are the means of txproduct ,  and itxratio ,, , 

respectively, kx,φ  and ilx ,,ψ  are the principal components obtained from 

decomposing txproduct ,  and itxratio ,,  , respectively, and kt ,β  and ilt ,,γ  are the 

corresponding principal component scores. txe ,  and itxw ,,  are the error terms.

Forecasts are obtained by forecasting each coefficient 1,tβ  , … , Kt ,β  and it ,1,γ  , … 

, iLt ,,γ  independently. 1,tβ  , … , Kt ,β  are forecasted using autoregressive 

integrated moving average (ARIMA) models. it ,1,γ  , … , iLt ,,γ  are forecasted using 

any stationary autoregressive moving average (ARMA) or autoregressive fractionally 

integrated moving-average (ARFIMA) process. 

The implied model for each population is given by

   (8)

For more detailed information about the Coherent Functional Data method, see 

Hyndman, Booth and Yasmeen (2013).
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4.4 Results

4.4.1 Past trends

The life expectancy at birth (e0) in France, Italy, the Netherlands, Norway, Spain, 

Sweden and Switzerland, increased in the period 1970-2011 with strong 

fluctuations from year to year. For France and Italy, the trend in e0 is almost a 

straight line, whereas for the Netherlands and men in Norway there are periods 

with a strong increase and periods with a weak increase. For men, the increase was 

higher than for women. Group ‘Top 10’ has the highest e0 of the three groups and 

was for women less linear than group ‘All HMD’ and ‘Western Europe’. All three 

groups have a strongly linear evolution of e0 over the fitting period, comparable 

with Italy and France.

4.4.2 Future trends

Averaged over all seven countries and the three fitting periods, e0 in 2050 of the LC 

forecasts is equal to 89.3 years for women and equal to 84.3 years for men 

(Table 4.4.2.1). The LC forecasts show a clear divergence in e0 for women between 

the Netherlands, Norway and Sweden on one side and France, Italy, Spain and 

4.4.1.1 Life expectancy at birth (e0) in 2011 and past trends since 1970, for the 
seven countries under study, and the three groups used in the coherent 
forecasts, by sex

 

Country Life expectancy (e0) in 2011 Slope of e0 1970–2011

Formal test of linearity 
(unexplained variance, 1-R2) 
of e0 1970–2011

 

 

Women Men Women Men Women Men

 

France 85 .0 78 .5 0 .23 0 .25 0 .010 0 .005

Italy 84 .5 79 .6 0 .25 0 .28 0 .009 0 .005

The Netherlands 82 .8 79 .2 0 .13 0 .19 0 .071 0 .036

Norway 83 .4 79 .0 0 .14 0 .20 0 .019 0 .044

Spain 85 .1 79 .3 0 .24 0 .22 0 .022 0 .025

Sweden 83 .6 79 .8 0 .15 0 .21 0 .008 0 .019

Switzerland 84 .7 80 .3 0 .19 0 .24 0 .014 0 .016

Average (unweigthed) 84 .2 79 .4 0 .19 0 .23 0 .022 0 .021

Group 'All HMD' 82 .7 77 .1 0 .18 0 .21 0 .010 0 .007

Group 'Top 10' 85 .0 79 .3 0 .24 0 .24 0 .011 0 .003

Group 'Western Europe' 83 .8 78 .7 0 .22 0 .25 0 .005 0 .005
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Switzerland on the other side (Table 4.4.2.1). For men, a cross-over in e0 between 

France and the Netherlands, Norway and Sweden occurs. In the fitting period e0 for 

men was always higher in the Netherlands, Norway and Sweden than in France. For 

both women and men, the increase in e0 in the Netherlands, Norway and Sweden 

is less than the increase in the other four countries. 

Averaged over all seven countries, three fitting periods and three groups of 

countries, e0 in 2050 for women is 89.6 years using the CLC method, 89.9 years 

using the LL method and 88.8 years using the CFD method (Table 4.4.2.1, see 

Table A1 for all outcomes). For men, e0 in 2050 is equal to 84.3 years (CLC method), 

85.0 years (LL method), and 84.5 years (CFD method). The outcomes of the coherent 

forecasts are generally closer together than the outcomes of the individual 

forecasts. The coherent forecasts for France, Italy, Spain (women) and Switzerland 

are on average lower than the individual forecasts, the coherent forecasts for The 

Netherlands, Norway, Spain (men), Sweden are on average higher than the 

individual forecasts (Table 4.4.2.1). 

When applying coherent forecasts, divergence or crossover between countries 

occurs less often than for individual forecasts.

4.4.3 Accuracy

By calculating the ER, RMSE and MAPE, using the historical data for 1970-2011, we 

determined the accuracy of the method, i.e. how well the models fit to historical 

data. The CFD method outperforms the (C)LC method and LL method for all 

4.4.2.1 Period life expectancy in 2050 for the seven countries under 
study, by forecasting method and sex(unweighted averages 
over the three fitting periods and the three main country 
groups)

 

Women Men
   

LC CLC LL CFD LC CLC LL CFD

 

 

France 91 .1 91 .1 90 .9 89 .4 84 .7 84 .7 84 .7 84 .0

Italy 91 .3 90 .2 90 .5 88 .8 85 .8 85 .0 85 .5 84 .5

The Netherlands 86 .4 87 .5 88 .2 88 .1 82 .4 82 .6 84 .1 84 .2

Norway 87 .2 88 .9 89 .2 88 .5 82 .8 83 .3 84 .6 84 .5

Spain 91 .0 90 .5 90 .9 89 .3 84 .4 84 .9 84 .9 84 .6

Sweden 87 .7 88 .6 89 .6 88 .8 84 .3 84 .3 85 .3 84 .8

Switzerland 90 .2 90 .2 90 .2 89 .1 85 .9 85 .2 85 .5 84 .9

Average (unweigthed) 89 .3 89 .6 89 .9 88 .8 84 .3 84 .3 85 .0 84 .5
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countries and sexes (Table 4.4.3.1) and is thus the most accurate. The ER, RMSE and 

MAPE values for the LL method is higher for some countries than values of the (C)LC 

method and lower for other countries. On average, the LL method performs equally 

or better than the (C)LC method. For all methods and countries, the MAPE for men is 

much higher than for women, indicating that all methods fit the data for women 

better than for men. The ER and RMSE are more equal for men and women.

To take into account the different number of model parameters, also a Diebold-

Mariano test is performed to examine the accuracy of the methods. Based on the 

errors of the fitted values in the fitting period 1970-2011, the CFD method is more 

accurate than the (C)LC and LL method in all countries and both sexes 

4.4.3.1 Explanation Ratio (ER), Root Mean Squared Error (RMSE) and Mean 
Absolute Percent Error (MAPE) in log death rates (averaged over the three 
fitting periods and the three main country groups)

 

Women Men
  

LC CLC LL CFD LC CLC LL CFD

 

 

ER
   France 0 .96 0 .96 0 .97 0 .98 0 .94 0 .94 0 .95 0 .98

   Italy 0 .95 0 .95 0 .96 0 .98 0 .93 0 .93 0 .94 0 .98

   The Netherlands 0 .90 0 .90 0 .90 0 .96 0 .93 0 .93 0 .93 0 .97

   Norway 0 .74 0 .74 0 .72 0 .90 0 .87 0 .87 0 .86 0 .95

   Spain 0 .94 0 .94 0 .94 0 .97 0 .84 0 .84 0 .90 0 .96

   Sweden 0 .86 0 .86 0 .86 0 .95 0 .88 0 .88 0 .88 0 .97

   Switzerland 0 .85 0 .85 0 .86 0 .95 0 .82 0 .82 0 .87 0 .94

   Average (unweigthed) 0 .89 0 .89 0 .89 0 .96 0 .89 0 .89 0 .90 0 .96

RMSE
   France 0 .049 0 .049 0 .047 0 .036 0 .060 0 .060 0 .054 0 .036

   Italy 0 .060 0 .060 0 .058 0 .044 0 .077 0 .077 0 .071 0 .045

   The Netherlands 0 .063 0 .063 0 .065 0 .042 0 .059 0 .059 0 .061 0 .041

   Norway 0 .112 0 .112 0 .115 0 .068 0 .088 0 .088 0 .092 0 .054

   Spain 0 .072 0 .072 0 .068 0 .046 0 .106 0 .106 0 .082 0 .050

   Sweden 0 .087 0 .087 0 .089 0 .051 0 .088 0 .088 0 .090 0 .048

   Switzerland 0 .099 0 .099 0 .095 0 .058 0 .117 0 .117 0 .101 0 .066

   Average (unweigthed) 0 .078 0 .078 0 .077 0 .049 0 .085 0 .085 0 .079 0 .048

MAPE
   France 0 .92 0 .92 0 .97 0 .72 1 .49 1 .49 1 .64 1 .04

   Italy 1 .23 1 .23 1 .20 0 .90 1 .80 1 .80 1 .76 1 .22

   The Netherlands 1 .49 1 .49 1 .35 0 .99 1 .99 1 .99 1 .89 1 .29

   Norway 1 .98 1 .98 1 .96 1 .48 2 .13 2 .13 2 .27 1 .57

   Spain 1 .26 1 .26 1 .36 0 .99 2 .13 2 .13 2 .06 1 .25

   Sweden 1 .42 1 .42 1 .52 1 .15 2 .19 2 .19 2 .32 1 .60

   Switzerland 2 .06 2 .06 1 .99 1 .50 3 .35 3 .35 2 .65 2 .15

   Average (unweigthed) 1 .48 1 .48 1 .48 1 .10 2 .15 2 .15 2 .08 1 .44
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(Table 4.4.3.2), although, especially for women, the difference is not always 

statistically significant. Based on the errors of the forecasted values over the period 

2002-2011 using the fitting period 1970-2001, the accuracy of the CFD method is 

statistically higher compared to the other methods for only a few countries/sexes 

(6 out of 28). Only for men in Sweden the CFD method is statistically more accurate 

then both the CLC and LL method. However, for France and women in Sweden the 

CLC method is statistically more accurate than both the LL and CFD method.

4.4.3.2 Results of the Diebold-Mariano test, both when applied to the fitting 
period 1970–2011 and when 2002–2011 is forecasted based on  
1970–2001

 

Fitting period 1970–2011 1) Forecast 2002–2011 based on 1970–2001
  

(C)LC - LL (C)LC - CFD LL - CFD LC - CLC LC - LL LC - CFD CLC - LL CLC - CFD LL - CFD

 

 

France
  Women −1 .95 1 .31 2 .25 1 .00 –2.242) -3.56 2) –2.75 2) -3.55 2) −2 .69

  Men −1 .50 2 .522) 2 .852) 1 .08 −1 .38 -3.30 2) –1.98 2) -3.33 2) −1 .62

Italy
  Women −0 .36 2 .41 2 .37 2 .282) 0 .71 −0 .16 –1.98 2) −1 .47 −0 .58

  Men 0 .07 2 .832) 2 .632) 0 .50 −1 .01 –2.68 2) −1 .17 -2.75 2) –3.19 2)

The Netherlands
  Women 2 .28 2 .412) 1 .73 4 .052) 1 .00 3 .392) 0 .11 2 .642) 1 .90

  Men 1 .70 3 .232) 2 .732) −0 .72 2 .792) 2 .612) 2 .772) 2 .582) 0 .63

Norway
  Women 0 .61 2 .802) 2 .822) 4 .812) 1 .66 0 .16 0 .96 −0 .05 0 .19

  Men −1 .49 1 .58 1 .982) 0 .42 2 .29 2 .312) 2 .11 2 .28 0 .88

Spain
  Women −1 .14 1 .44 2 .03 −0 .04 −1 .68 −1 .00 −1 .80 −1 .05 0 .65

  Men −0 .98 3 .792) 3 .552) –2.51 2) 2 .422) 2 .222) 2 .432) 2 .282) −1 .11

Sweden
  Women −0 .09 1 .57 1 .60 −1 .23 –2.36 2) –3.03 2) –2.41 2) –3.08 2) −1 .88

  Men −0 .63 1 .812) 2 .272) -5.85 2) 1 .99 3 .382) 2 .15 3 .442) 2 .552)

Switzerland
  Women 0 .69 2 .582) 1 .93 −1 .70 −0 .39 −1 .34 0 .54 −0 .86 −0 .59

  Men 1 .14 2 .332) 1 .00 0 .55 0 .57 2 .242) 0 .56 2 .272) 0 .44
  

1) The fitted values for the LC and CLC method are equal in the fitting period 1970-2001, and the values for the DB tests 
are equal as well.

2) significance at the five percent level. A negative value of the DB-test indicates the first mentioned method is more 
accurate, a positive values that the second mentioned method is more accurate.
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4.4.4 Robustness

By calculating the standard deviation of the mean e0 in 2050, averaged over 

groups, from Table A.1, we determined the robustness of each method, i.e. stability 

across different fitting periods. The coherent forecasting methods are sensitive to 

the fitting period, just as the individual forecasting method. For women the 

dependence on the choice of the fitting period of the coherent forecasts is lower 

than of the individual forecast (Table 4.4.5.1), i.e. the coherent forecasting methods 

are more robust than the LC method. The LL method depends the least on the 

choice of the fitting period and is therefore the most robust. For men, the CFD 

method depends more on the fitting period than the individual forecast (i.e. less 

robust), and the dependence for the CLC and LL method are close to each other and 

less than for the individual forecast (i.e. more robust).

4.4.5 Subjectivity

By calculating the standard deviation of the mean e0 in 2050, averaged over the 

three fitting periods, from Table A.1, we determined the subjectivity of the method, 

i.e. the sensitivity to the choice of the group of countries. The coherent forecasting 

methods are sensitive to the choice of the group of countries. The higher the group 

dependence, the more subjective the method is. The group dependence for women 

is the highest for the LL method, but close to the group dependence of the CFD 

method, and the lowest for the CLC method; for men the CFD method results in the 

highest dependence and the LL method in the lowest dependence (Table 4.4.5.1). 

4.4.5.1 Sensitivity of the different methods to the use of the three different 
fitting periods and the three different selections of the main country 
group, by sex

 

Fitting period dependence Main country group dependence
Standard deviation of e0 in 2050, averaged over all seven 
countries and the three selected main country groups

Standard deviation of e0 in 2050, averaged over all seven 
countries and the three fitting periods

 

 

Women Men Women Men

    

LC method 0 .33 1 .10 0 .00 0 .00

CLC method 0 .22 0 .89 0 .69 0 .68

LL method 0 .16 0 .91 0 .89 0 .54

CFD method 0 .32 2 .02 0 .85 0 .87
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4.4.6 Plausibility

By comparing the amount of convergence in the projection period related to the 

fitting period and the improvement of mortality rates by age, we determined the 

plausibility of the forecasts. 

The (unweigthed) average standard deviation of e0 across the seven countries, 

representing the amount of convergence, in the last ten years of observation is 

equal to 0.87 for women and 0.69 for men (Figure 4.4.6.1). For the CLC method the 

average standard deviation of e0 in 2050 is equal to 1.32 for women and 0.99 for 

men, which means that the CLC method still shows divergence compared to the 

fitting period. The LL method shows some divergence for women (1.03 in 2050) 

and some convergence for men (0.61 in 2050) compared to the fitting period. The 

CFD method results in a clear convergence (0.45 for women and 0.34 for men), 

much stronger than in the fitting period.

Women
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The improvement of the mortality rates of the LC, CLC and LL method changes 

gradually by age. The shape of the mortality rates by age of the CLC method is 

similar to the shape of the LC method, only higher or lower, depending on the 

fitting period and group of countries used. The shape of the LL method is somewhat 

different than the LC and CLC method. For the CFD method the improvement of the 

mortality rates change less gradually by age: there is much difference between 

adjacent ages, most often around ages 25-30 and 35-40. 

Women
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4.4.6.2 Mortality improvement between 2011 and 2050 by age group, 
compared for the four forecasting methods, by sex (�tting period: 
1970-2011, main country group: Top10, unweighted averages over 
the seven countries)
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4.5 Discussion

4.5.1 Coherent versus individual forecasts

The outcomes of the coherent forecasts were not only less divergent than the 

outcomes of the individual forecasts, but also, on average, more accurate and 

robust. This clearly shows the added value of using coherent forecasts instead of 

individual forecasts. Shang (2016) also demonstrated that the coherent methods 

performed better than the individual methods, especially for populations with 

large variability over age and year. Also Shair, Purcal and Parr (2017) showed that, 

in terms of overall accuracy, the forecasts of the coherent models are consistently 

more accurate than those of the independent models.

Our finding that the coherent forecasts resulted, depending on the country, in 

either higher or lower outcomes than the individual forecast, can be linked to the 

initial position of the country relative to the group. For countries with lower initial 

positions, the coherent forecast generally leads to higher outcomes than the 

individual forecasts, and vice versa.

4.5.2 The different coherent forecasting methods 
evaluated

The coherent forecasting methods CLC, LL and CFD were evaluated in terms of 

accuracy, robustness, subjectivity and plausible outcomes.

Accuracy To assess the accuracy of the forecasting methods, the explanation ratio 

(ER), root mean squared error (RMSE) and mean absolute percent error (MAPE) for 

the different methods were compared. Furthermore, a Diebold-Mariano test was 

performed.

The CFD method performed better than the CLC and the LL method, both on the different 

accuracy measures and on the Diebold-Mariano test applied to the fitting period 

1970-2011. The LL method ranked second regarding accuracy. This was expected 

because models with more parameters normally perform better on these measures. 

The Diebold-Mariano test applied to the forecast 2002-2011 showed that none of the 

methods outperformed the other methods on forecast accuracy for all countries.
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An earlier comparison of the LL and CFD method, based on a dataset of 16 

countries, (Shang, 2016) showed that the point forecast errors for the CFD method 

are almost always lower than the point forecast errors for the LL method. This is 

supplementary to our analysis and based on this we can cautiously conclude that 

the CFD is more accurate than the LL method.

However, for certain forecast applications, examining purely the accuracy of the 

forecasting method is not sufficient. Therefore we evaluated the three coherent 

forecasting methods as well on the more qualitative indicators robustness, 

subjectivity and plausible outcomes. 

Robustness To assess the robustness of the forecasting methods, the stability across 

different fitting periods was evaluated based on out of sample forecasting. 

Both the CLC method and the LL method proved robust, i.e. with stable outcomes 

across different fitting periods. The CFD method proved less robust then the other 

two coherent forecasting methods and for men even less robust than the individual 

LC method. This can be related to the CFD method using the weighted principal 

components algorithm of Hyndman and Shang (2009), which places more weight 

on recent data. If new recent data, with a different trend than the older data, is 

added to the fitting period, the out of sample forecast will be different as well. As a 

result, the CFD method is less stable across different fitting periods. 

The weighting on recent data in the CFD method is an advantage in situations 

where the rates of decrease were not constant for each age in the fitting period, 

such as the past acceleration in the increase in e0 for men and some improvement 

at older ages in recent years, whereas in past decades most of the mortality 

improvement occurred within the younger age groups. Because weighting is at the 

expense of robustness (i.e. stability across different fitting periods), consideration 

should be made between weighting (to better fit the recent data) and robustness 

(to keep stability across different fitting periods).

The LL method in our analysis is estimated using Singular Value Decomposition 

(SVD). Earlier research (Enchev, Kleinow and Cairns, 2016) showed that when the LL 

method is calibrated using maximum likelihood estimation (MLE), the model 

potentially suffers from robustness problems. Therefore, the use of SVD is 

recommended for a robust forecast.

Looking at the results by main group (table A.2), it stands out that for men the 

groups with the more linear trend and higher e0 in 2011 (group ‘Top 10’), give a 

lower standard deviation of e0 in 2050, irrespective of the method. For women the 
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group ‘Western Europe’ is more linear than group ‘Top 10’, but the standard 

deviation of e0 is about equal for both groups, irrespective of the method. From 

this we may infer that a higher life expectancy in the recent period combined with 

a more linear trend (in the future) of the group of countries contributes to a more 

robust method. This means that also coherent methods, like individual methods 

(Booth et al., 2006), are more robust in situations where age-specific log mortality 

rates have linear trends. 

Subjectivity To assess the subjectivity of the methods, the sensitivity to the choice of 

the group of countries was examined. 

Where the CLC method proved less sensitive to the choice of the group of countries 

than the CFD method and LL method for women, the LL method proved least 

subjective for men. The CFD method was most dependent on the choice of the group 

of countries, which can be related to the strong convergence that seems embedded 

in this method. It puts more weight on the trend of the group of countries than on 

the individual country in comparison to the other methods. If other groups with 

different trends are used this will consequently have a larger effect.

Coherent forecasting methods are sensitive to the choice of the group of countries. 

Kjaergaard, Canudas-Romo and Vaupel (2015) showed – with preliminary results – 

that the selection of the main group of countries in coherent forecasting methods 

has a large effect on the forecasted life expectancy for some Danish women, but 

not so much for Spanish women. Based on our results we recommend a group of 

countries with a linear trend in the past to improve robustness of the coherent 

forecasting method. 

Plausible outcomes To assess if the outcomes are plausible, the continuation of 

trends from the fitting period are examined in terms of convergence/divergence of 

e0 between the seven countries and consistent age patterns.

In terms of convergence it was observed that the LL outcomes seems most 

plausible, with convergence level similar to the fitting period. The CFD outcomes 

revealed a strong convergence, which is a continuation of the trend in recent years, 

and, therefore, also plausible. The CLC method, however, showed divergence 

relative to the fitting period.

The CLC method assumes convergence through the parameter for the underlying time 

development. This method may still lead to diverging mortality forecasts, however, if 

the relative rate of change differs between the group and the country of interest.
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As regards the consistent age patterns, both the CLC method and the LL outcomes 

looked plausible: the CLC method resulted in improvements in the mortality rates 

by age that are similar to the LC method; the LL outcomes showed a smooth pattern 

of age-specific mortality improvements. The CFD method, however, showed strong 

differences between adjacent ages in the age-specific mortality improvements.

Like most methods, the CLC and LL method assume that the rates of decrease are 

constant for each age, which not only results in plausible age patterns, but also in a 

slowdown in the increase in e0. This was evident from our results: the average 

annual increase in future e0 diminished slightly over the forecast horizon. For a 

constant (or increasing) annual increase, the rate of decrease of death rates must 

be nonlinear, and in particular must accelerate for at least some ages (White, 

2002). With the extra parameters in the CFD method (up to six principal 

components) it is possible to produce a variable age pattern of change over time. 

Furthermore, the weighting ensures that the future age pattern and change in age 

pattern is more in line with recent data. This is for instance relevant in situations 

where mortality decline shifted from lower to higher ages. However, there are 

examples where the changing age pattern is reversed in the projection period 

(Hyndman, Booth and Yasmeen, 2013). Our results also showed that the CFD 

method has a deviating pattern of the improvement in the death rate for the 

younger age groups, while other results with respect to the age distribution 

seemed plausible. 

Overall The CLC method was robust and, for women, least sensitive to the choice of 

the group of countries, but showed less plausible results: divergence of e0 in the 

future of the seven countries relative to the fitting period. Also its results were least 

accurate. The LL method was also robust, least sensitive to the choice of the group of 

countries for men, and its outcomes seemed plausible, with convergence of future e0 

of the seven countries similar to the fitting period and a smooth pattern of age-

specific mortality improvements. In terms of accuracy the LL method ranked second. 

The CFD method performed best on the accuracy measures in the fitting period, but 

was less robust and most dependent on the choice of the group of countries. Its 

outcomes revealed a strong convergence of future e0 and – less plausible – difference 

between adjacent ages in the age-specific mortality improvements. 

Based on the above, we deduce that, overall, the CFD method performed best on 

accuracy (model fit), while the LL method performed best on the qualitative 

evaluation criteria (robustness, plausible outcomes and subjectivity. The choice of the 

best method can therefore differ depending on the forecasting application, and the 

value attached to quantitative versus qualitative criteria. For instance, for forecasts 

that are updated regularly, robustness should be given higher priority. Given that the 
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outcomes of future updates are uncertain, a robust forecasting method gives a little 

bit more certainty for users of the forecasts. Therefore, when robust forecasts are the 

aim, we would recommend the LL method over the CFD method.

4.5.3 Additional recommendations for coherent 
forecasting

In this paper we focused on coherence between countries, and not between 

genders. As a result, in our forecasts, coherence between genders is not 

guaranteed. Coherence between countries is often neglected in national forecasts, 

but especially important for countries with a less linear trend in the past. 

Coherence between genders is important as well to assess the future long-term 

trend. An approach to ensure coherence between countries and genders that has 

been used before is to also use the other gender in the group of countries (Janssen, 

van Wissen and Kunst, 2013). Also other approaches exist (e.g. Hyndman et al., 

2011; Shang and Hyndman, 2016; Shang, 2016; Li et al. 2016). These different 

approaches will likely result in different outcomes. Both gender coherence and 

country coherence should ideally be incorporated in coherent forecasting.

The coherent mortality projection can be improved by taking into account smoking 

and other (lifestyle) factors affecting mortality. The non-linear pattern in mortality 

of most lifestyle factors affects the long-term trend for the country concerned, but 

also for the total group of countries. Coherent forecasting is most helpful in case of 

structural improvements in life expectancy because of medical improvements and 

socio-economic improvements. (Temporary) deviations from the general 

improvement, caused by lifestyle factors, should be projected separately (Janssen 

and Kunst, 2007). For smoking, this has been done for example by distinguishing 

smoking attributable mortality from non-smoking attributable mortality, and by 

performing the coherent forecast on non-smoking attributable mortality (see e.g. 

Janssen, van Wissen and Kunst, 2013).

This paper focused on point forecasts, but because future mortality is difficult to 

predict, measures of uncertainty are also important to users of mortality 

projections. With all methods analysed here or extensions to the methods, it is 

possible to produce prediction intervals by using a (Bayesian) stochastic model (see 

for example Cairns et al. 2011a and Antonio et al. 2015). It should be noted 

however that prediction intervals do not provide all uncertainty. In stochastic 

forecasts ideally also the uncertainty due to different selections of groups of 

countries and different fitting periods should be incorporated. 
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4.6 Conclusion

In this article, we evaluated three different coherent forecasting methods in terms 

of accuracy (i.e. fit to historical data), robustness (i.e. stability across different 

fitting periods), subjectivity (i.e. sensitivity to the choice of the group of countries) 

and plausible outcomes (i.e. smooth continuation of trends from the fitting period). 

Out of the three examined methods (the co-integrated Lee-Carter method (CLC); the 

Li-Lee method (LL); and the Coherent functional data method (CFD)), the CFD 

method performed the best on the accuracy measures (model fit), whereas the LL 

method performed best on the qualitative criteria (robustness, subjectivity and 

plausible outcomes). 

Performing better on one quantitative evaluation criteria (e.g. accuracy) clearly 

does not mean performing better as well on more qualitative evaluation criteria 

(e.g. robustness, subjectivity and plausibility). To assess the suitability of (coherent) 

forecasting methods for particular forecasting applications it is essential to include 

both quantitative and qualitative evaluation criteria. Based on our results, and 

when the aim is to obtain robustness, subjectivity and plausibility, this would imply 

the use of the LL method over the CFD method. 
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Appendix A

A.1 e0 in 2050, given fitting period and group of countries, for each sex, method 
and country

 

LC CLC LL CFD LC CLC LL CFD LC CLC LL CFD
 

 

a. Women 1970–2001 1970–2006 1970–2011
   

Group 'All HMD'
FRATNP 90 .8 90 .7 90 .0 87 .9 91 .3 90 .7 90 .7 88 .6 91 .2 90 .6 90 .6 88 .9
ITA 91 .5 89 .6 89 .8 87 .4 91 .7 89 .4 89 .4 88 .0 90 .9 89 .9 90 .2 88 .4
NLD 85 .7 86 .8 86 .0 86 .6 86 .3 86 .8 87 .5 87 .1 87 .2 86 .7 88 .0 87 .7
NOR 86 .5 87 .5 88 .2 87 .1 87 .5 87 .6 88 .3 87 .5 87 .5 88 .1 88 .4 87 .9
ESP 91 .0 90 .8 90 .4 87 .9 91 .0 89 .4 90 .9 88 .3 91 .0 90 .6 90 .9 88 .9
SWE 87 .6 87 .4 88 .2 87 .2 87 .8 87 .4 88 .4 87 .6 87 .8 87 .8 88 .6 88 .2
CHE 90 .3 89 .2 89 .0 87 .7 90 .2 89 .0 89 .0 88 .0 90 .1 88 .7 89 .2 88 .5
mean 89 .0 88 .9 88 .8 87 .4 89 .4 88 .6 89 .2 87 .9 89 .4 88 .9 89 .4 88 .4
sd 2 .4 1 .6 1 .5 0 .5 2 .1 1 .4 1 .2 0 .5 1 .8 1 .5 1 .2 0 .5

Group 'Top 10'
FRATNP 90 .8 91 .9 91 .6 89 .8 91 .3 91 .7 91 .8 89 .9 91 .2 90 .9 91 .5 90 .0
ITA 91 .5 91 .2 91 .5 89 .4 91 .7 90 .9 91 .8 89 .4 90 .9 89 .9 90 .9 89 .4
NLD 85 .7 88 .2 90 .0 88 .3 86 .3 88 .2 88 .9 88 .9 87 .2 87 .9 89 .2 88 .8
NOR 86 .5 89 .6 90 .0 89 .0 87 .5 89 .7 90 .5 89 .2 87 .5 89 .4 90 .0 89 .0
ESP 91 .0 91 .1 91 .6 89 .8 91 .0 90 .8 91 .6 89 .8 91 .0 90 .3 91 .3 90 .0
SWE 87 .6 89 .4 91 .1 89 .6 87 .8 89 .3 91 .0 89 .5 87 .8 89 .0 90 .2 89 .4
CHE 90 .3 91 .7 91 .4 89 .8 90 .2 91 .3 91 .4 89 .8 90 .1 90 .1 90 .8 89 .8
mean 89 .0 90 .4 91 .0 89 .4 89 .4 90 .3 91 .0 89 .5 89 .4 89 .6 90 .6 89 .5
sd 2 .4 1 .4 0 .7 0 .6 2 .1 1 .3 1 .0 0 .4 1 .8 1 .0 0 .8 0 .5

Group 'Western Europe'
FRATNP 90 .8 91 .0 90 .3 89 .1 91 .3 91 .3 90 .8 89 .7 91 .2 91 .1 90 .8 90 .2
ITA 91 .5 90 .3 90 .2 88 .7 91 .7 90 .5 90 .6 89 .2 90 .9 90 .1 90 .2 89 .6
NLD 85 .7 87 .2 88 .6 88 .3 86 .3 87 .4 87 .3 88 .7 87 .2 88 .0 88 .3 88 .8
NOR 86 .5 88 .8 88 .9 88 .4 87 .5 89 .3 89 .4 89 .0 87 .5 89 .6 89 .4 89 .1
ESP 91 .0 90 .3 90 .3 89 .0 91 .0 90 .4 90 .6 89 .6 91 .0 90 .4 90 .6 90 .1
SWE 87 .6 88 .7 89 .2 88 .8 87 .8 89 .0 89 .9 89 .3 87 .8 89 .1 89 .8 89 .5
CHE 90 .3 90 .8 90 .1 89 .0 90 .2 90 .9 90 .3 89 .5 90 .1 90 .3 90 .3 89 .9
mean 89 .0 89 .6 89 .6 88 .8 89 .4 89 .8 89 .8 89 .3 89 .4 89 .8 89 .9 89 .6
sd 2 .4 1 .4 0 .7 0 .3 2 .1 1 .3 1 .2 0 .4 1 .8 1 .0 0 .8 0 .5
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A.1 e0 in 2050, given fitting period and group of countries, for each sex, method 
and country

 

LC CLC LL CFD LC CLC LL CFD LC CLC LL CFD
 

 

b. Men 1970–2001 1970–2006 1970–2011
   

Group 'All HMD'
FRATNP 83 .6 83 .2 82 .6 80 .4 85 .1 84 .6 85 .3 82 .4 85 .5 84 .3 85 .2 86 .1
ITA 84 .8 83 .7 84 .1 81 .3 86 .2 84 .1 86 .0 83 .1 86 .3 85 .7 86 .3 86 .6
NLD 80 .5 80 .6 82 .6 81 .1 82 .7 81 .8 83 .5 82 .6 84 .2 83 .3 84 .8 86 .1
NOR 81 .2 80 .9 83 .1 81 .2 83 .3 82 .6 84 .2 82 .8 84 .0 83 .4 84 .6 86 .5
ESP 83 .2 83 .4 83 .2 81 .4 84 .3 83 .6 84 .1 82 .8 85 .5 85 .5 85 .2 86 .6
SWE 83 .7 82 .4 84 .2 81 .8 84 .2 83 .3 84 .5 83 .0 84 .9 84 .1 85 .4 86 .7
CHE 85 .0 83 .3 83 .8 81 .6 86 .1 84 .3 84 .3 83 .2 86 .6 85 .1 85 .7 87 .2
mean 83 .1 82 .5 83 .4 81 .3 84 .6 83 .5 84 .6 82 .9 85 .3 84 .5 85 .3 86 .5
sd 1 .7 1 .3 0 .7 0 .5 1 .3 1 .0 0 .8 0 .3 1 .0 1 .0 0 .6 0 .4

Group 'Top 10'

FRATNP 83 .6 84 .7 84 .5 82 .9 85 .1 85 .2 85 .4 84 .1 85 .5 85 .2 85 .5 85 .5

ITA 84 .8 84 .9 85 .2 83 .4 86 .2 85 .5 86 .1 84 .5 86 .3 85 .5 86 .0 85 .8

NLD 80 .5 81 .2 83 .8 83 .1 82 .7 83 .3 85 .0 84 .2 84 .2 84 .5 85 .4 85 .7

NOR 81 .2 82 .4 84 .2 83 .5 83 .3 84 .4 85 .6 84 .6 84 .0 84 .7 85 .6 85 .7

ESP 83 .2 85 .3 84 .8 83 .6 84 .3 85 .8 85 .4 84 .7 85 .5 85 .1 86 .2 86 .0

SWE 83 .7 83 .9 85 .4 83 .9 84 .2 85 .1 86 .1 84 .9 84 .9 85 .4 86 .1 86 .1

CHE 85 .0 85 .4 85 .5 83 .9 86 .1 86 .0 86 .1 85 .0 86 .6 85 .8 86 .9 86 .3

mean 83 .1 84 .0 84 .8 83 .5 84 .6 85 .0 85 .7 84 .6 85 .3 85 .2 86 .0 85 .9

sd 1 .7 1 .6 0 .6 0 .4 1 .3 0 .9 0 .4 0 .3 1 .0 0 .4 0 .5 0 .3

Group 'Western Europe'

FRATNP 83.6 84.1 83.7 82.2 85.1 85.0 85.0 85.3 85.5 85.7 85.6 87.0

ITA 84.8 84.3 84.3 82.8 86.2 85.3 85.6 85.6 86.3 85.7 86.0 87.3

NLD 80.5 81.1 82.3 82.6 82.7 83.2 84.1 85.2 84.2 84.7 85.5 87.0

NOR 81.2 82.0 83.3 83.0 83.3 84.2 85.3 85.8 84.0 85.0 85.6 87.1

ESP 83.2 84.6 84.0 83.0 84.3 85.4 85.1 85.7 85.5 85.5 86.0 87.5

SWE 83.7 83.5 84.5 83.4 84.2 84.9 85.6 85.8 84.9 85.7 86.1 87.4

CHE 85.0 84.8 84.7 83.3 86.1 85.8 85.7 86.0 86.6 86.1 86.7 87.7

mean 83.1 83.5 83.8 82.9 84.6 84.8 85.2 85.6 85.3 85.5 85.9 87.3

sd 1.7 1.4 0.8 0.4 1.3 0.9 0.6 0.3 1.0 0.5 0.4 0.3
  

(continued)
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A.2 Mean and standard deviation of period life expectancy in 2050 (averaged 
over all seven countries) for each group of countries, by sex

 

Women Men
  

LC CLC LL CFD LC CLC LL CFD

 

 

Mean

‘All HMD’ 89 .3 88 .8 89 .1 87 .9 84 .3 83 .5 84 .4 83 .6

‘Top 10’ 89 .3 90 .1 90 .9 89 .5 84 .3 84 .7 85 .5 84 .6

‘Western Europe’ 89 .3 89 .7 89 .8 89 .2 84 .3 84 .6 85 .0 85 .3

St.dev.

‘All HMD’ 2 .0 1 .4 1 .3 0 .6 1 .6 1 .3 1 .1 2 .3

‘Top 10’ 2 .0 1 .2 0 .9 0 .5 1 .6 1 .2 0 .7 1 .1

‘Western Europe’ 2 .0 1 .2 0 .9 0 .5 1 .6 1 .3 1 .1 1 .9
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Abstract 
BACKGROUND
Given the increased link between retirement age and payments to the 

development in life expectancy, a precise and regular forecast of life expectancy is 

of utmost importance. The choice of the jump-off rates, i.e. the rates in the last year 

of the fitting period, is essential for matching mortality forecasts to the most 

recently observed data. A general approach to the choice of the jump-off rates is 

currently lacking.

OBJECTIVE
We evaluate six different options for the jump-off rates and examine their effects 

on the robustness and accuracy of the mortality forecast. 

DATA AND METHODS
Death and exposure numbers by age for eight European countries over the years 

1960-2014 were obtained from the Human Mortality Database. We examined the 

use of model values as jump-off rates versus observed values in the last year or 

averaged over the last couple of years. The future life expectancy at age 65 is 

calculated for different fitting periods and jump-off rates using the Lee-Carter 

model and examined on accuracy (mean absolute forecast error) and robustness 

(standard deviation of the change in projected e65).

RESULTS
The choice for the jump-off rates clearly influences the accuracy and robustness of 

the mortality forecast, albeit in different ways. For most countries using the last 

observed values as jump-off rates resulted in the most accurate method, which 

relates to the relatively high estimation error of the model in recent years. The 

most robust method is obtained by using an average of observed years as jump-off 

rates. The more years that are averaged, the better the robustness, but accuracy 

decreases with more years averaged.

CONCLUSION
Carefully considering the best choice for the jump-off rates is essential when 

forecasting mortality. The best strategy for matching mortality forecasts to the most 

recently observed data depends on the goal of the forecast, the country-specific 

past mortality trends observed, and the model fit.

Keywords: mortality forecasting, robustness, accuracy, jump-off rates
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5.1 Introduction

The growth in public expenditure, such as expenditure on state pension, due to an 

ageing population is one of the key challenges in European countries (Lanzieri, 

2011). To ensure the sustainability of the pension system expenditures, pension 

reforms in several countries in Western Europe have been carried out, linking the 

retirement age and/or retirement payments to the rapidly increasing life 

expectancy (Carone et al., 2016). In some countries, such as Finland and the 

Netherlands, the link is made with a forecasted remaining life expectancy (OECD, 

2015). Given the increased link between retirement age and/or retirement 

payments to the development in life expectancy, a precise and regular forecast of 

life expectancy is of utmost importance.

The growing relevance of life expectancy forecasts has resulted in a lot of attention 

regarding the quality of mortality forecasts. There has been a growing range of 

models for forecasting mortality and studies performing quantitative and 

qualitative comparisons of these models (Booth and Tickle, 2008; Cairns et al., 

2011; etc.). Also, in recent literature, there has been a lot of attention for the 

elements that influence the quality of mortality forecasts, i.e. the fitting period 

(Booth et al. 2002) or additional information, such as smoking (Jansen et al., 2013) 

or trends in other countries (Li and Lee, 2005). Less attention has been given, 

however, to the choice of the jump-off rates, i.e. the rates in the last year of the 

fitting period or jump-off year (Booth et al., 2006). The choice of the jump-off rates 

is leading when matching the mortality forecast to the most recently observed 

data. The matching is in turn important for a precise and regular forecast of the life 

expectancy and thus for the determination of the retirement age and payments.

The choice of the jump-off rates is essential for matching mortality forecasts to the 

most recently observed data (Lee and Miller, 2001; Booth et al., 2006) and is a 

practical consideration in every mortality forecast, regardless of the method 

chosen. A different choice of the jump-off rates may improve the accuracy of a 

single forecast and/or reduce the discontinuity between the last observed death 

rate and the first forecasted death rate (Lee and Miller, 2001; Booth et al., 2006). A 

forecast is called accurate if the out-of-sample forecast errors, examined using 

historical data, are small (Booth et al., 2008). An accurate method produces precise 

forecasts which are relevant to determine the retirement age in a future year based 

on the forecasted life expectancy. However, the choice of the jump-off rates can 

also influence how much successive forecasts differ, thereby affecting the 

robustness of the forecast (Cairns et al., 2011). A forecast is called robust if only 

modest changes in the forecasts occur after a small change to the sample period 
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(for example, adding the latest mortality data). For instance, if a retirement age in 

a future year is set based on the forecasted life expectancy, it is undesirable if a 

forecast based on one more year of data gave a different outcome. Both accuracy 

and robustness are important for a mortality forecast (Cairns et al., 2011), but can 

be differently affected by the choice of the jump-off rates.

The choice for the jump-off rates being more a practical problem than a theoretical 

one, is also highlighted by the fact that there are only four papers about the choice 

for the jump-off rates. Lee and Carter (1992) used model values (i.e. fitted rates in 

the jump-off year) as jump-off rates and accepted the discontinuity in observed to 

forecasted death rates. They stated that the jump-off bias affects only death rates 

which are absolutely very low and have little impact on the forecasted life 

expectancy. However, Bell (1997) as well as Lee and Miller (2001) concluded that a 

correction for the jump-off bias improves the accuracy of the forecast of life 

expectancy, especially in the early years of the forecast. They used the last observed 

values (i.e. actual rates) as jump-off rates. Finally, Booth et al. (2006) evaluated as 

well a two year average of the last observed values as jump-off rates as part of the 

evaluations of Lee-Carter models and variants. The literature thus gives us only 

three options to choose from: model values, last observed values, and a two year 

average of last observed values.

In practice, statistical and actuarial offices use different options for the jump-off 

rates (mostly last observed values) and, with a new update of the forecast, the 

choice of the jump-off rates might differ as well. Often, however, it is not explained 

how they reached these jump-off rates. There are some examples where there are 

more extensive adjustments of the jump-off bias, but they are relevant for the 

practical problem at hand and not for universal use (for instance, the statistical 

office of New Zealand adjusts the rates in the first few years to give plausible life 

expectancy at birth and death numbers (Woods and Dunstan, 2014)). In fact, a 

general approach on how to choose between different options for the jump-off 

rates seems to be lacking.

In the literature (Lee and Carter, 1992; Bell, 1997; Lee and Miller, 2001) and in 

practice, the jump-off rates are adjusted to improve the accuracy of the forecast. 

Also quantitative and qualitative comparisons of different models are mainly 

focused on improving accuracy. However, in light of regular forecasts for the 

determination of retirement age and payments, it is also of interest to take into 

account the robustness of the method.
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This article examines the effects of different options for the jump-off rates on the 

accuracy and the robustness of the mortality forecast. This information can be used 

to determine the optimal choice for a given forecast, which will depend on the 

relative importance of accuracy and robustness for the applications for which the 

forecast is used. 

We will do so by forecasting future life expectancy at age 65 for eight Western 

European countries using different fitting periods and six different options for the 

jump-off rates. A accurate and robust forecast of the life expectancy at age 65, with 

the mortality forecast matched as optimally as possible to the most recently 

observed data, is important for the pension reforms in Western Europe.

5.2 Data and methods

5.2.1 Data

For the analysis, deaths and exposures by calendar year and single year of age 

from the Human Mortality Database (2018) are used, from 1960 to 2014. In our 

calculations, we aggregated the data for ages 95 and over (Wunsch and Termote, 

1978). 

To contribute to the debate about the retirement age in Western Europe, and to 

observe commonalities and differences in the effect of the choice of the jump-off 

rates for the mortality forecast, data from eight Western European countries is 

used: the Netherlands (‘NLD’), France (‘FRA’), Belgium (‘BEL’), Spain (‘ESP’), Finland 

(‘FIN’), United Kingdom (‘UK’), Norway (‘NOR’) and Sweden (‘SWE’). 

These countries experienced foremost fairly regular mortality trends in the chosen 

period, for which extrapolative forecasting methods would be suitable. Differences 

exist however in the extent of mortality decline between the individual countries. 

We selected data from 1960 up until 2014, which gave us the opportunity to 

compute forecasts for the more recent years in the period in order to test the 

accuracy of the forecasting method.
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5.2.2 Model

Many statistical offices are currently using extrapolation methods to forecast 

mortality (Stoeldraijer et al., 2013). To evaluate the effect of different choices for 

the jump-off rates, we will apply the most used extrapolation method: the Lee-

Carter method (Lee and Carter, 1992; Booth and Tickle, 2008). 

The Lee-Carter model (Lee and Carter, 1992) is given by:

 
  

where txm ,  denotes the death rate at age x  and year t , xa  equals the average 

over time of  , xb  is the set of age-s pecific constants that describe the 

relative rate of change at any age, tk  denotes the underlying time development 

and tx,ε  the residual error (Lee and Carter, 1992). Singular Value Decomposition is 

used to estimate xb  and tk  under the assumptions 1=∑
x

xb  and 0=∑
t

tk  

(Lee and Carter, 1992). After estimation, tk  is extrapolated using a random walk 

with drift (as also found by Lee and Carter, 1992, after carrying out the standard 

model specifications (see Box and Jenkins, 1970)). 

5.2.3 Jump-off rates

For the analysis, three options for the jump-off rates are compared:

— Jump-off rates equal to the model values in the last year of the fitting period 

(Lee and Carter, 1992);

— Jump-off rates equal to the last observed death rates (Lee and Miller, 2001); this 

corresponds to taking xa  equal to the last observed values of  and tk  

equal to zero in the last observed year;

— Jump-off rates equal to an average of multiple years of the observed death 

rates; this corresponds to taking xa  equal to the average of a multiple observed 

years of  and  nti
k /∑ , the midpoint of the years on which is averaged, 

equal to zero.

By distinguishing four alternatives for the last option (average over two, three, four 

or five years) we end up with in total six different alternatives.

5.2.4 Analysis

For the analysis, we made for each country ten forecasts of life expectancy at age 

65, men and women combined, using data for ten different fitting periods: from 
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1960-2005, 1960-2006, …, and 1960-2014. The forecasts are calculated using the 

six different alternatives of the jump-off rates: the model values, the observed 

values and an average of two/three/four/five observed values.

Subsequently we compared between the different choices for the jump-off rates 

the accuracy (fit of the model) and the robustness of the forecast, as these are the 

most important evaluation criteria for mortality forecasts (e.g. Dowd et al., 

2010a,b; Cairns et al., 2011; Booth and Tickle, 2008).

A model is accurate if the out-of-sample forecast errors, examined using historical 

data, are small (Booth et al. 2008). For evaluating the accuracy we used the mean 

absolute forecast error (MAFE) (Booth et al. 2006). The MAFE measures how close 

forecasts are to the eventual outcomes. The smaller the error, the more accurate 

the forecast, given the option for the jump-off rates. For each country and choice of 

the jump-off rates, we calculated the MAFE by comparing the forecasted values 

with the actual values of the life expectancy at age 65. The MAFE for the first year 

of the forecasting period (i.e. the first year after the fitting period) was calculated 

using fitting periods 1960–2005, …, 1960–2013. The forecast of 2006 (with fitting 

period 1960–2005) was compared with the actual value in 2006, the forecast of 

2007 (with fitting period 1960–2006) was compared to the actual value in 2007, 

and in a similar way for the subsequent forecasts until the forecast of 2014 (with 

fitting period 1960–2013) which is compared to the actual value of 2014. The 

errors are then averaged across the nine different forecasts (2006–2014). The MAFE 

for the second year of the forecasting period was calculated using fitting periods 

1960–2005, …, 1960–2012 and then averaged across the eight different forecasts. 

In the results (see Table 5.3.2.1), only the MAFE for the first and fifth year of the 

forecasting period are presented, because the results for the intervening years did 

not provide useful additional information.

Furthermore, to explain the results regarding the accuracy of the forecast (fit of the 

model), we calculated the mean absolute (percent) error over the period 1960-

2014 and the mean error over the period 2005-2014 of the log death rates, limited 

to age 65 and above, of the Lee-Carter forecast (estimated over the period 1960-

2014).

With a robust forecast, only modest changes would occur to the forecasted life 

expectancy after a small change to the sample period (e.g. adding one more year) 

(Cairns et al. 2011). It is important here to look at the stability of each incremental 

change to the sample period. This is relevant in the case a forecast is regularly 

updated, i.e. when a new forecast is made each time new data becomes available. 

Normally, robustness is measured by looking at the changes in model parameters 
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(Cairns et al. 2008). However, these parameters do not depend on the option that 

is used for the jump-off rates. Therefore, to evaluate the robustness of the forecast 

given the different options for the jump-off rates, we calculated the standard 

deviation (SD) of the increase/decrease of the (out-of-sample) life expectancy at 

age 65 in 2020 obtained for ten successive forecasts using fitting periods 1960-

2005, …, 1960-2014. A lower SD means that the forecast is more robust.

5.3 Results

5.3.1 Past trends in remaining life expectancy at age 65

Over the period 1960 to 2014, the remaining life expectancy at age 65 (e65) 

increased in the eight selected European countries, for men and women combined 

(Figure 5.3.1.1). On average, from 14.2 years in 1960 to 20.3 years in 2014. France 

has seen the largest increase over the whole period, while Norway has seen the 

lowest increase. Especially for the Netherlands and the United Kingdom there was 

a higher increase in e65 in the last decade of the observation period than in the 

decades before. In 2014, the highest e65 was observed for France (21.5 years) and 

the lowest for Finland (19.8 years), United Kingdom (19.9 years) and the 

Netherlands (19.9 years). 

5.3.1.1 Life expectancy at age 65, 1960–2014 for eight countries,
men and women combined

FRA ESP SWE BEL UK NOR FIN NLD

Average all countries
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5.3.2 Effect of choice of jump-off rate on accuracy of 
mortality forecast

The six different options for the jump-off rates resulted in clear differences in the 

outcome for the accuracy of the forecast (see Table 5.3.2.1): on average there was 

a difference of 0.18 between the option which gave the minimum accuracy and the 

option which gave the maximum accuracy for the first year of the forecasting 

period. The minimum difference was found for France (0.03) and the maximum 

difference was found for United Kingdom (0.43). With a large difference, such as 

for United Kingdom, it makes a clear difference which option is chosen for the 

jump-off rates. The larger the difference between the options for the jump-off 

rates, the more important it is to choose the correct jump-off rates so that the 

accuracy of the forecast can be improved.

Using the last observed values as jump-off rates or an average of two years 

resulted in the most accurate forecast in the first year of the forecasting period for 

most countries (looking at the minimum MAFE by country). Only for Belgium the 

most accurate forecast was achieved by using the model values as jump-off rates. 

The minimum MAFE in the first year of the forecast ranged from 0.07 (Sweden) to 

0.15 (Spain). The most accurate forecast for the fifth year of the forecasting period 

was achieved by using the last observed values as jump-off rates, except for Spain, 

where the most accurate forecast was achieved by using the model values as 

jump-off rates. The minimum MAFE in the fifth year of the forecast ranged from 

0.10 (Sweden) to 0.38 (United Kingdom). 

Except for France, Spain and Belgium using the model values as jump-off rates 

resulted in the least accurate forecast in the first year. For France, Spain and Belgium 

using the average of five observed years resulted in the least accurate forecast in 

the first year. The least accurate for the fifth year of the forecasting period showed 

the same pattern as the accuracy for the first year of the forecasting period. For all 

countries the accuracy decreases distinctly with the averaging of more years.

Generally, the MAFE in the fifth year is higher than in the first year (using the same 

option for the jump-off rates), reflecting that uncertainty further in the future is 

greater.

The most optimal choice for the jump-off rates for an accurate forecast is related to 

the error the model makes in the recent estimation period (fitting errors, 

Table 5.3.2.2). The mean error over the estimation period 2005-2014 is close to 

zero for Belgium. 
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This was the only country for which the model values as jump-off rates gave the 

most accurate results. For Sweden, United Kingdom, Norway, Finland and the 

Netherlands the mean error is negative, i.e. the recent period was underestimated 

by the Lee-Carter model. For these countries the model values as jump-off rates 

were the worst option for an accurate forecast. These countries had a stronger 

increase in e65 in the recent decade compared to earlier decades. Hence using 

observed values as jump-off rates would mean the forecast is already closer to the 

observed future values than using the model values. For France and Spain the mean 

error was positive and differences in accuracy between the options for the jump-off 

rates were small.

5.3.2.1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 
65 for the first and fifth year in the forecasting period, for six different 
choices of the jump-off rates applied to a Lee-Carter model, for eight 
Western European countries, men and women combined, fitting periods 
1960–2005, 1960–2006, …, 1960–2014. The lowest MAFE is marked in 
bold, the highest MAFE in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD Av 1)

 

 

Mean absolute forecast error in the first year of the forecasting period
 

Model values 0 .16 0 .16 0 .24 0 .10 0 .56 0 .24 0 .41 0 .39 0 .28
Last observed values 0 .13 0 .17 0 .08 0 .14 0 .13 0 .12 0 .10 0 .13 0 .12
Average two years observed 0 .13 0 .15 0 .07 0 .15 0 .16 0 .11 0 .08 0 .16 0 .13
Average three years observed 0 .13 0 .16 0 .09 0 .14 0 .19 0 .12 0 .09 0 .21 0 .14
Average four years observed 0 .14 0 .17 0 .10 0 .15 0 .24 0 .13 0 .12 0 .26 0 .16
Average five years observed 0 .16 0 .19 0 .11 0 .17 0 .28 0 .16 0 .16 0 .32 0 .19

Mean absolute forecast error in the fifth year of the forecasting period
 

Model values 0 .20 0 .17 0 .31 0 .18 0 .76 0 .45 0 .41 0 .55 0 .38
Last observed values 0 .16 0 .30 0 .10 0 .17 0 .38 0 .20 0 .13 0 .31 0 .22
Average two years observed 0 .17 0 .32 0 .11 0 .18 0 .41 0 .21 0 .14 0 .35 0 .24
Average three years observed 0 .18 0 .35 0 .13 0 .19 0 .44 0 .24 0 .15 0 .41 0 .26
Average four years observed 0 .20 0 .38 0 .16 0 .20 0 .46 0 .29 0 .18 0 .47 0 .29
Average five years observed 0 .21 0 .40 0 .18 0 .21 0 .49 0 .34 0 .19 0 .55 0 .32
  

1) Unweigthed average of all eight countries

5.3.2.2 Mean absolute (percent) error over the period 1960–2014 and mean error 
over the period 2005–2014 of the log death rates limited to age 65 and 
above of the Lee-Carter forecast estimated over the period 1960–2014, 
for eight Western European countries, men and women combined

 

FRA ESP SWE BEL GBR NOR FIN NLD
 

 

Mean abs error (1960–2014) 0 .028 0 .040 0 .031 0 .032 0 .036 0 .037 0 .046 0 .036
Mean abs perc error (1960–2014) 1 .20% 1 .72% 1 .49% 1 .61% 1 .51% 1 .61% 2 .34% 1 .65%
Mean error (2005–2014) 0 .017 0 .019 −0 .016 0 .001 −0 .035 −0 .016 −0 .028 −0 .019
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5.3.3 Effect of choice of jump-off rate on robustness of 
mortality forecast

The choice of the jump-off rates clearly affected the robustness of the forecast: on 

average there was a difference of 0.18 between the minimum value of the SD and 

the maximum value of the SD. The minimum difference was found for the 

Netherlands (0.10) and maximum for Finland (0.36) (Table 5.3.3.1). 

Using an average of recent observed years as jump-off rates results in a lower 

standard deviation of the increase/decrease of the life expectancy at age 65 in 

2020 and thus a more robust method. This holds for all countries under study. The 

minimum standard deviation (per country) ranges from 0.05 (Spain and Sweden) to 

0.15 (Finland). For most countries an average of at least four years gives the 

minimum standard deviation. The difference between a two year average and a 

five year average (maximum 0.5) is small compared to the differences with last 

observed or model values. 

The worst options for the jump-off rates in terms of the robustness are either the 

model values (Sweden, Norway, Finland and the Netherlands) or the observed 

values (France, Spain, Belgium and United Kingdom). The maximum standard 

deviation (per country) ranges from 0.17 (United Kingdom and the Netherlands) to 

0.51 (Finland).

5.3.3.1 Standard deviation (SD) of the increase/decrease of the life expectancy 
at age 65 in 2020 between ten successive forecasts (fitting periods 
1960–2005, 1960–2006, …, 1960–2014) for six different choices of the 
jump-off rates applied to a Lee-Carter model, for eight Western European 
countries, men and women combined. The lowest SD is marked in bold, 
the highest SD in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD Av 1)

 

 

Standard deviation in 2020

 

Model values 0 .11 0 .11 0 .23 0 .17 0 .15 0 .26 0 .51 0 .17 0 .22

Last observed values 0 .19 0 .24 0 .09 0 .20 0 .17 0 .12 0 .16 0 .13 0 .16

Average two years observed 0 .11 0 .10 0 .06 0 .10 0 .11 0 .09 0 .15 0 .08 0 .10

Average three years observed 0 .10 0 .09 0 .06 0 .08 0 .09 0 .09 0 .18 0 .08 0 .10

Average four years observed 0 .08 0 .05 0 .05 0 .06 0 .07 0 .10 0 .18 0 .08 0 .08

Average five years observed 0 .07 0 .05 0 .06 0 .06 0 .06 0 .09 0 .16 0 .07 0 .08
  

1) Unweigthed average of all eight countries
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The fact that the last observed values as jump-off rates are not performing well on 

robustness is related to the nature of the data: the observed life expectancy 

fluctuates greatly from year to year. By using the last observed values as jump-off 

rates in the forecasting model, also the future values will fluctuate when recent 

data is added. Taking an average of multiple years makes sure there are fewer 

fluctuations. The model values are similar to taking an average, but over the whole 

period in that case. Because the relative decline of the model will influence the 

forecast more when using the model values as jump-off rates than an average of 

recent observed years, the robustness of the forecast is better using the average as 

jump-off rates.

Another feature of the results is also apparent: the countries in the south of 

Western Europe (France and Spain) have the last observed values as the worst 

option for the jump-off rates, but for the countries in the north of Western Europe 

(Sweden, Norway and Finland) have the model values as the worst option. For 

France and Spain the model values are not much different with the average as 

jump-off rates, while for Sweden, Norway and Finland the difference between the 

last observed values and the average are small. Belgium, United Kingdom and the 

Netherlands are more in between (in location and in the results). For these three 

countries it also holds that the difference between using the model values and last 

observed values as jump-off rates does not differ as much as for the other five 

countries.

5.4 Discussion

We evaluated the accuracy and robustness of the forecast of life expectancy at age 

65 in Western Europe for six different options for the jump-off rates. We observed 

that the options for the jump-off rates clearly influence the accuracy and robustness 

of the mortality forecast, albeit in different ways. For most countries, the most 

accurate forecast resulted from taking the last observed values as jump-off rates, 

which relates to the relatively high estimation error of the model in recent years. 

The most robust forecast was obtained by using an average of the most recent 

observed years as jump-off rates. The more years that are averaged, the better the 

robustness, but accuracy decreases with more years averaged. The best choice for 

the jump-off rates, thus, seems to depend on whether you are interested mainly in 

accuracy or robustness, on the country-specific past mortality trends, and the model 

fit. 
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The influence of the choice of the jump-off rates on the accuracy and robustness of 

the forecast can be substantial. Figure A.1 in Appendix A gives an example for the 

Netherlands of a forecast with the model values as jump-off rates, a forecast with 

the last observed values as jump-off rates and a forecast with an average of five 

observed years as jump-off rates, with different fitting periods. The forecasts with 

the model values as jump-off rates are not accurate, i.e. there are large gaps 

between the observed values and the forecasts in the first year. The forecasts with 

the model values are also not robust: the successive forecasts, using different 

fitting periods, show large differences ( i.e. increases and decreases between 

successive forecasts) between the successive forecasted e65 for a particular year. 

For the forecasts with the last observed values as jump-off rates the accuracy is 

improved, and, from the analysis, the most accurate from the six options for the 

jump-off rates. However, the successive forecasts are also showing large differences 

between the successive forecasted e65 in a particular year. Lastly, the successive 

forecasts with an average of five observed years as jump-off rates are slowly 

increasing with each new year of data added to the fitting period. This option for 

the jump-off rates was the most robust for the Netherlands.

5.4.1 Evaluation of analysis 

We assessed the effect of the choice of the jump-off rates by means of two 

important evaluation criteria for a mortality forecasting method: robustness and 

accuracy (Dowd et al., 2010a,b; Cairns et al., 2011). A third evaluation criterion for 

evaluating a mortality forecast is plausibility (Cairns et al., 2011): is the outcome of 

the forecast reasonable given what we know? This is rather a subjective issue for 

which there are no objective measures and for that reason we did not include it in 

the analysis. Nonetheless, plausibility is important to consider when performing a 

mortality forecast. A plausible future age pattern is an important issue related to 

the plausibility of the results. Different characteristics of the jump-off rates, such as 

a rough age pattern of the last observed values, have an effect on the plausibility 

of the future age pattern of mortality. To limit the effect of the choice of the 

jump-off rates on the plausibility of the future age pattern, smoothing the 

observed mortality rates by age is recommended.

We performed the different mortality forecasts using the Lee-Carter method, which 

is frequently used for mortality forecasting in practice (Stoeldraijer et al., 2013) , as 

benchmark method (Booth and Tickle, 2008), and as the basis for more recent 

mortality forecasting models (Booth and Tickle, 2008; Lee and Carter, 1992). The 

Lee-Carter method, however, is known to be biased and tends to underpredict 

future mortality (Bell, 1997; Lee, 2000; Lee and Miller, 2001; Booth et al., 2002; 
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Girosi and King, 2007; Liu and Yu, 2011), as we have also seen in Table 5.3.2.2. 

where the mean error in the last ten years of the fitting period was negative for 

most countries. Therefore, differences between the last observed values and the 

model values tend to be relatively large. For this reason we performed a sensitivity 

analysis using two additional models: (i) a Lee-Carter model using three principal 

components (Appendix B), because based on earlier research it is unnecessary to 

adjust the jump-off rates when several principal components are used (Hyndman et 

al., 2013), and (ii) the Cairns-Blake-Dowd model (Cairns et al., 2006; Appendix C), 

which is considered a different stochastic model compared to the Lee-Carter model 

and widely used in actuarial sciences. The results show smaller differences in 

outcomes compared to differences we observed earlier with the Lee-Carter model, 

but, especially for accuracy, the importance of the jump-off rates remains. This 

highlights the importance of the model for the best choice of the jump-off rates.

We showed the results of our analysis for men and women combined. Similar 

results are observed however for men and women separately (see Tables D.1 and 

D.2 in the Appendix D). Also for men (with the exception of Finland) and women 

separately, an average of multiple years as jump-off rates was preferred for the 

most robust forecast. For the most accurate forecast there was some more variation 

in the results for men and women separately compared to men and women 

combined. For men in France and Spain the forecast is most accurate when using 

model values as jump-off rates, although accuracy is only slightly higher compared 

to the last observed values. For women, the most accurate forecast in the fifth year 

of the forecasting period is obtained by using the last observed values. The 

accuracy of the forecast for the first year of the forecasting period shows for 

women mostly small differences between choices for the jump-off rates, but 

resulted in model values (France, Sweden), last observed values (Belgium, United 

Kingdom), and an average (Spain, Norway, Finland, the Netherlands). 

We deliberately computed the accuracy and the robustness measures directly for 

life expectancy at age 65, because of the use of this indicator in the pension 

reforms. For different contexts, e.g. life insurance and pension valuation, an 

evaluation of other outcomes (e.g. death rates or probabilities) would be relevant 

and could lead to different outcomes. That is for different age groups the model fit, 

and subsequently the choice of the jump off rates, might be different. Booth et al. 

(2006) compared both errors in life expectancy and log death rates when analysing 

the accuracy for different choices of the jump-off rate. They concluded that accuracy 

in log death rates does not necessarily translate into accuracy in life expectancy. 

Analysis based on forecasted log death rates might therefore lead to different 

conclusions, but in general last observed values as jump-off rates would give the 

most accurate forecast (Booth et al. 2006). The above indicates that the context of 
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the forecast determines the outcome measure used in the analysis of the jump-of 

rates and, hence, the final choice for the best jump-off rates.

5.4.2 Generalizability of our outcomes

We evaluated the results based on the life expectancy at age 65 in relation to 

pension reforms. Results based on the life expectancy at birth (e0) are very similar 

to the results based on e65 (Appendix E). The differences between the six options 

for the jump-off rates for both accuracy and robustness are slightly larger for e0 

than for e65. This means that our conclusions can be generalized to other ages of 

life expectancy.

We focused our analysis on Western Europe, because of the prevalence of the 

pension reforms. Our findings can be generalized to countries which have seen 

similar trends in the past. For example, the results for the Netherlands are expected 

to be close to the results for Denmark, since both experienced a stagnation of the 

increase in life expectancy at approximately the same time (Janssen et al., 2004). 

Similarly our results for the remaining Western European countries can be 

generalized to other countries exhibiting fairly regular increases in life expectancy, 

like Japan since 1970 (Leon, 2011). Generalising our results to Eastern Europe 

however will be more daunting because these countries experienced very different 

past mortality trends due to the health crisis from 1975 onwards (McKee and 

Shkolnikov, 2001; Vallin and Meslé, 2004; Leon, 2011). The Lee-Carter method is 

most likely not suited to account for these specific past mortality trends (Bohk and 

Rau, 2015). Before evaluating different choices for the jump-off rates in the context 

of Eastern Europe, first the forecasting method needs to be improved.

5.4.3 Recommendations

Following our findings, we recommend the goal of the forecast, and the related 

emphasis on accuracy, robustness or both, to be leading for determining the best 

choice of the jump-off rates.

If the goal of the mortality forecast is focused on accuracy, it is relevant to examine 

the error of the estimates of the model over the period it is applied to, following 

its importance in explaining our results for accuracy. We recommend the model 

values as most suitable as jump-off rates for an accurate forecast when the errors 

are small. We recommend the last observed values as most suitable jump-off rates 

when the model errors are large and there is underestimation of the model in the 
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most recent period. With large errors and an overestimation of the model in the 

most recent period, we recommend to use the model values as jump-off rates, 

following our results of men and women separately.

If the goal of the mortality forecast is focused on robustness, we recommend using an 

average of multiple years as jump-off rates, as was the most suitable for a robust 

forecast for all countries in our analysis. There was little difference in the outcomes 

between a two year average and a five year average, thus the number of years used 

in the averaging is less important. Robustness becomes more important in situations 

where the forecast is made regularly, for instance when the future retirement age 

based on the forecasted life expectancy needs to be determined every year.

Because often the goal of the forecast is focused both on accuracy and robustness, 

the most optimal choice for the jump-off rates must give the most accurate as well 

as the most robust forecast. For each country in our analysis, there was no option of 

the jump-off rates that guaranteed accuracy and robustness at the same time. Thus, 

there always has to be a trade-off between accuracy and robustness. Therefore, we 

recommend looking into developing a choice for the jump-off rates that is both 

accurate and robust. Our four recommendations for determining the best choice for 

the jump-off rates that give both an accurate and robust forecast are: (1) Because 

the accuracy of the forecast decreases distinctly with the averaging of more 

observed years as jump-off rates, whereas the robustness of the forecast stayed 

approximately the same, it is preferable to use an average using as few years as 

possible to improve the accuracy with a robust forecast. (2) Using the observed 

values instead of the model values in case the model fits the data well does not 

improve accuracy and deteriorates the robustness. Thus, in the case the model fits 

well, it is best to use the model values as jump-off rates and not the observed 

values as is often done by force of habit. (3) The further ahead, the less accurate 

the forecast gets. This means that the relative price you pay for more robustness is 

lower for a forecast further in the future. If the forecast further in the future is of 

more importance than the short-term forecast, there should be a greater value 

attached to the robustness of the forecast, and thus the best option for the most 

robust forecast can be selected. (4) In line with the previous recommendations: to 

best unite the results for robustness and accuracy we would recommend 

interpolation (see Appendix F for an example). Robustness is more important for 

the long-term forecast (for instance, from five years in the future) as a result of the 

increasing uncertainty with duration. For the first few years accuracy would be 

more relevant because data for these years will be available quickly. Our 

recommendation would be to start with a forecast using a jump-off rate that is the 

most accurate in the first year. Subsequently, make a forecast that is most robust in, 

say, the fifth year of the forecast period. Between the two forecast, each year more 
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weight should be given to the most robust forecast, i.e. we recommend 

interpolating from the most accurate forecast to the most robust forecast. By 

interpolating between the two forecasts both accuracy in the first year of the 

forecast and robustness of the forecast five years ahead is obtained.

An additional issue to consider: To match the forecast to recent data it is important 

that it is of good quality. Preliminary data might underestimate or overestimate the 

life expectancy. Using jump-off rates based on this data might not work well for 

the accuracy (to final data) of the forecast. It might also turn out to be 

disadvantageous for the robustness if the preliminary data is replaced by final data. 

The use of preliminary data is therefore not recommended when matching the 

forecast to recent data.

5.5 Overall conclusion

The choice of the jump-off rates clearly influences, in different ways, the accuracy 

and robustness of the mortality forecast. It is therefore important to carefully 

consider the best choice for the jump-off rate when forecasting mortality. This is 

especially relevant when a forecast is regularly updated, as is the case for the 

pension reforms. 

The best choice depends on the goal of the forecast, the country-specific past 

mortality trends observed, and the model fit. Because the best option of the 

jump-off rates for accuracy (most often last observed values) and the best option 

for robustness (average of observed years) are not equal, there will always have to 

be a trade-off between the two. The recommendations presented, of which 

interpolation between the jump-off rates with optimal accuracy and optimal 

robustness combines accuracy and robustness, give guidelines to make a just 

trade-off between accuracy and robustness of the forecast.
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Appendix A

a. Forecast in 2005 with three options of the jump-o� rates

Observations Forecast in 2005

Forecast in 2005 Forecast in 2005

'60 '70 '80 '90 '00 '10 '20 '30
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b. Forecasts with jump-o� rates equal to model values

Observations Forecast in 2005 Forecast in 2006 Forecast in 2007
Forecast in 2008 Forecast in 2009 Forecast in 2010 Forecast in 2011

Forecast in 2012 Forecast in 2013 Forecast in 2014

'60 '70 '80 '90 '00 '10 '20 '30

14
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c. Forecasts with jump-o� rates equal to last observed values

'60 '70 '80 '90 '00 '10 '20 '30

14
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d. Forecasts with jump-o� rates equal to the average 
five years observed

A.1 Example of forecasts with di
erent choices for the jump-o
 
rates, the Netherlands, men and women combined, Lee-Carter 
model, �tting periods 1960-2005, 1960-2006, …, 1960-2014
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Appendix B
In Tables B.1 and B.2 the results of the different choices for the jump-off rates with 

a Lee-Carter model using three principle components are presented. The different 

model mostly influences the robustness results, with for France, Spain and the 

Netherlands the model values as jump-off rates as the most optimal. Differences in 

outcome between the choices of the jump-off rates are much smaller than the 

difference in outcome with the Lee-Carter model with only one principal 

component. The results for the accuracy of the model are similar as with the 

Lee-Carter model with only one principal component (mostly observed values as 

jump-off rates are most optimal). Again we see less differences in outcomes 

between the different choices of the jump-off rates.

B.1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 
for the first and fifth year in the forecasting period and standard deviation 
(SD) of the increase/decrease of the life expectancy at age 65 in 2020 
between ten successive forecasts, for six different choices of the jump-
off rates applied to a Lee-Carter model with three principal components, 
for eight Western European countries, men and women combined, fitting 
periods 1960–2005, 1960–2006, …, 1960–2014. The lowest MAFE is marked in 
bold, the highest MAFE in italic

 

FRA ESP SWE BEL GBR NOR FIN NLD Av1)

 

 

Jump-off rates Standard deviation in 2020

 

Model values 0 .17 0 .23 0 .25 0 .14 0 .16 0 .28 0 .50 0 .20 0 .24

Last observed values 0 .21 0 .30 0 .17 0 .20 0 .14 0 .19 0 .45 0 .25 0 .24

Average two years observed 0 .20 0 .25 0 .18 0 .15 0 .13 0 .17 0 .51 0 .20 0 .22

Average three years observed 0 .18 0 .24 0 .19 0 .14 0 .16 0 .22 0 .54 0 .21 0 .23

Average four years observed 0 .18 0 .23 0 .20 0 .13 0 .17 0 .23 0 .53 0 .21 0 .23

Average five years observed 0 .18 0 .24 0 .21 0 .13 0 .17 0 .24 0 .52 0 .21 0 .24

Mean absolute forecast error in the first year of the forecasting period

 

Model values 0 .24 0 .24 0 .22 0 .12 0 .21 0 .22 0 .36 0 .21 0 .23

Last observed values 0 .14 0 .18 0 .13 0 .14 0 .14 0 .13 0 .30 0 .18 0 .17

Average two years observed 0 .15 0 .15 0 .12 0 .12 0 .15 0 .13 0 .31 0 .16 0 .16

Average three years observed 0 .15 0 .15 0 .12 0 .12 0 .17 0 .14 0 .31 0 .17 0 .17

Average four years observed 0 .16 0 .16 0 .12 0 .12 0 .18 0 .15 0 .31 0 .18 0 .17

Average five years observed 0 .17 0 .16 0 .13 0 .12 0 .19 0 .15 0 .32 0 .19 0 .18

Mean absolute forecast error in the fifth year of the forecasting period

 

Model values 0 .31 0 .40 0 .31 0 .18 0 .51 0 .43 0 .38 0 .41 0 .37

Last observed values 0 .18 0 .23 0 .15 0 .17 0 .43 0 .28 0 .24 0 .36 0 .26

Average two years observed 0 .20 0 .24 0 .20 0 .20 0 .46 0 .28 0 .25 0 .36 0 .27

Average three years observed 0 .21 0 .25 0 .19 0 .21 0 .48 0 .29 0 .25 0 .37 0 .28

Average four years observed 0 .23 0 .27 0 .20 0 .22 0 .50 0 .30 0 .25 0 .37 0 .29

Average five years observed 0 .24 0 .28 0 .22 0 .21 0 .51 0 .32 0 .28 0 .39 0 .31
  

1) Unweigthed average of all eight countries
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B.2 Mean absolute (percent) error over the period 1960–2014 and mean error 
over the period 2005–2014 of the log death rates limited to age 65 and above 
of the Lee-Carter forecast with three principal components estimated over 
the period 1960–2014, for eight Western European countries, men and 
women combined

 

FRA ESP SWE BEL GBR NOR FIN NLD
 

 

Mean abs error (1960–2014) 0 .020 0 .025 0 .028 0 .030 0 .022 0 .035 0 .042 0 .024

Mean abs perc error (1960–2014) 0 .91% 1 .17% 1 .35% 1 .50% 1 .04% 1 .54% 2 .19% 1 .17%

Mean error (2005–2014) −0 .007 −0 .006 −0 .012 −0 .004 −0 .004 −0 .011 −0 .019 −0 .001
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Appendix C
In Tables C.1 and C.2 the results of the different choices for the jump-off rates with 

the Cairns-Black-Dowd (CBD) model (Cairns et al. 2006), a variant of the Lee-Carter 

model which relies on the linearity of the logit of one-year death probabilities at 

older ages, are presented. With this model the differences between the outcome of 

the different choices of the jump-off rates are much more smaller compared to the 

differences in outcomes for the Lee-Carter model. The fit of this model over the 

whole fitting period is similar to the fit of the Lee-Carter method, but the mean 

error in recent years of the fitting period is now positive, which might influence the 

outcomes as well.

C.1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 
for the first and fifth year in the forecasting period and standard deviation 
(SD) of the increase/decrease of the life expectancy at age 65 in 2020 
between ten successive forecasts, for six different choices of the jump-off 
rates applied to the Cairns-Black-Dowd method (ages 65 to 95), for eight 
Western European countries, men and women combined, fitting periods 
1960–2005, 1960–2006, …, 1960–2014. The lowest SD/MAFE is marked in 
bold, the highest SD/MAFE in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD Av1)

 

 

Standard deviation in 2020

 

Model values 0 .24 0 .29 0 .12 0 .24 0 .20 0 .15 0 .13 0 .16 0 .19

Last observed values 0 .22 0 .28 0 .11 0 .23 0 .19 0 .15 0 .12 0 .15 0 .18

Average two years observed 0 .22 0 .28 0 .11 0 .23 0 .19 0 .15 0 .13 0 .15 0 .18

Average three years observed 0 .22 0 .28 0 .11 0 .22 0 .19 0 .15 0 .13 0 .15 0 .18

Average four years observed 0 .22 0 .28 0 .11 0 .22 0 .19 0 .15 0 .13 0 .15 0 .18

Average five years observed 0 .22 0 .28 0 .11 0 .22 0 .19 0 .15 0 .13 0 .15 0 .18

Mean absolute forecast error in the first year of the forecasting period

 

Model values 0 .15 0 .17 0 .08 0 .15 0 .12 0 .11 0 .12 0 .11 0 .13

Last observed values 0 .13 0 .17 0 .08 0 .14 0 .12 0 .12 0 .10 0 .13 0 .12

Average two years observed 0 .13 0 .17 0 .08 0 .13 0 .12 0 .12 0 .10 0 .13 0 .12

Average three years observed 0 .13 0 .17 0 .08 0 .13 0 .12 0 .12 0 .10 0 .13 0 .12

Average four years observed 0 .13 0 .17 0 .09 0 .13 0 .12 0 .12 0 .10 0 .13 0 .12

Average five years observed 0 .13 0 .17 0 .09 0 .13 0 .12 0 .12 0 .10 0 .13 0 .12

Mean absolute forecast error in the fifth year of the forecasting period

 

Model values 0 .19 0 .25 0 .04 0 .17 0 .34 0 .11 0 .26 0 .27 0 .20

Last observed values 0 .16 0 .32 0 .06 0 .17 0 .35 0 .18 0 .19 0 .28 0 .21

Average two years observed 0 .16 0 .32 0 .06 0 .17 0 .35 0 .18 0 .19 0 .28 0 .21

Average three years observed 0 .16 0 .32 0 .06 0 .17 0 .35 0 .18 0 .19 0 .28 0 .21

Average four years observed 0 .16 0 .31 0 .06 0 .17 0 .35 0 .19 0 .19 0 .28 0 .21

Average five years observed 0 .17 0 .31 0 .06 0 .17 0 .35 0 .19 0 .19 0 .28 0 .21
  

1) Unweigthed average of all eight countries
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C.2 Mean absolute (percent) error over the period 1960–2014 and mean error 
over the period 2005–2014 of the log death rates limited to age 65 and above 
of the Cairns-Black-Dowd method (ages 65 and above) estimated over the 
period 1960–2014, men and women combined

 

FRA ESP SWE BEL GBR NOR FIN NLD
 

 

Mean abs error (1960–2014) 0 .055 0 .039 0 .041 0 .042 0 .033 0 .042 0 .047 0 .038

Mean abs perc error (1960–2014) 2 .18% 1 .71% 1 .84% 2 .03% 1 .65% 1 .94% 2 .44% 1 .89%

Mean error (2005–2014) 0 .025 0 .019 0 .016 0 .022 0 .009 0 .013 0 .019 0 .012
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Appendix D

D.1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 
for the first and fifth year in the forecasting period, and standard deviation 
(SD) of the increase/decrease of the life expectancy at age 65 in 2020 
between ten successive forecasts, for six different choices of the jump-off 
rates applied to a Lee-Carter model, for eight countries, men (a) and women 
(b), fitting periods 1960–2005, 1960–2006, …, 1960–2014. The lowest SD/
MAFE is marked in bold, the highest SD/MAFE in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD AV 1)

 

 

a. Men Standard deviation in 2020

 

Model values 0 .11 0 .11 0 .36 0 .16 0 .16 0 .26 0 .52 0 .13 0 .23

Last observed values 0 .15 0 .23 0 .10 0 .21 0 .13 0 .16 0 .13 0 .14 0 .16

Average two years observed 0 .09 0 .08 0 .09 0 .11 0 .09 0 .11 0 .14 0 .09 0 .10

Average three years observed 0 .08 0 .08 0 .07 0 .08 0 .08 0 .09 0 .15 0 .08 0 .09

Average four years observed 0 .06 0 .05 0 .08 0 .07 0 .07 0 .11 0 .15 0 .07 0 .08

Average five years observed 0 .05 0 .05 0 .09 0 .06 0 .06 0 .10 0 .14 0 .06 0 .08

Mean absolute forecast error in the first year of the forecasting period

 

Model values 0 .11 0 .14 0 .69 0 .52 0 .75 0 .80 0 .58 1 .15 0 .59

Last observed values 0 .12 0 .18 0 .10 0 .16 0 .12 0 .16 0 .10 0 .20 0 .14

Average two years observed 0 .13 0 .17 0 .13 0 .17 0 .16 0 .17 0 .10 0 .25 0 .16

Average three years observed 0 .15 0 .19 0 .17 0 .19 0 .21 0 .20 0 .09 0 .34 0 .19

Average four years observed 0 .19 0 .22 0 .21 0 .22 0 .27 0 .26 0 .12 0 .44 0 .24

Average five years observed 0 .23 0 .24 0 .25 0 .26 0 .34 0 .32 0 .15 0 .53 0 .29

Mean absolute forecast error in the fifth year of the forecasting period

 

Model values 0 .21 0 .35 0 .93 0 .69 1 .04 1 .25 0 .84 1 .60 0 .86

Last observed values 0 .25 0 .42 0 .35 0 .24 0 .42 0 .48 0 .16 0 .65 0 .37

Average two years observed 0 .28 0 .45 0 .38 0 .28 0 .45 0 .53 0 .17 0 .74 0 .41

Average three years observed 0 .33 0 .50 0 .42 0 .33 0 .50 0 .58 0 .20 0 .84 0 .46

Average four years observed 0 .38 0 .54 0 .47 0 .39 0 .56 0 .65 0 .26 0 .95 0 .52

Average five years observed 0 .43 0 .57 0 .52 0 .44 0 .62 0 .73 0 .31 1 .05 0 .58

b. Women Standard deviation in 2020

 

Model values 0 .13 0 .14 0 .15 0 .23 0 .18 0 .40 0 .62 0 .26 0 .26

Last observed values 0 .21 0 .24 0 .14 0 .19 0 .20 0 .19 0 .22 0 .15 0 .19

Average two years observed 0 .13 0 .11 0 .08 0 .11 0 .12 0 .12 0 .18 0 .09 0 .12

Average three years observed 0 .11 0 .09 0 .04 0 .09 0 .11 0 .10 0 .23 0 .09 0 .11

Average four years observed 0 .10 0 .05 0 .03 0 .06 0 .08 0 .09 0 .21 0 .09 0 .09

Average five years observed 0 .08 0 .06 0 .03 0 .07 0 .06 0 .07 0 .20 0 .09 0 .08
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D.1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 
for the first and fifth year in the forecasting period, and standard deviation 
(SD) of the increase/decrease of the life expectancy at age 65 in 2020 
between ten successive forecasts, for six different choices of the jump-off 
rates applied to a Lee-Carter model, for eight countries, men (a) and women 
(b), fitting periods 1960–2005, 1960–2006, …, 1960–2014. The lowest SD/
MAFE is marked in bold, the highest SD/MAFE in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD AV 1)

 

 

Mean absolute forecast error in the first year of the forecasting period

 

Model values 0 .13 0 .20 0 .08 0 .14 0 .47 0 .14 0 .54 0 .15 0 .23

Last observed values 0 .14 0 .17 0 .11 0 .12 0 .14 0 .13 0 .11 0 .12 0 .13

Average two years observed 0 .15 0 .15 0 .10 0 .13 0 .17 0 .11 0 .09 0 .10 0 .13

Average three years observed 0 .15 0 .15 0 .09 0 .13 0 .19 0 .10 0 .13 0 .14 0 .14

Average four years observed 0 .17 0 .16 0 .10 0 .13 0 .21 0 .10 0 .17 0 .17 0 .15

Average five years observed 0 .16 0 .17 0 .08 0 .13 0 .24 0 .09 0 .20 0 .20 0 .16

Mean absolute forecast error in the fifth year of the forecasting period

 

Model values 0.26 0.37 0.12 0.25 0.61 0.14 0.46 0.24 0.31

Last observed values 0.18 0.26 0.09 0.17 0.36 0.11 0.25 0.21 0.20

Average two years observed 0.21 0.28 0.10 0.18 0.38 0.12 0.26 0.23 0.22

Average three years observed 0.19 0.31 0.11 0.18 0.40 0.11 0.27 0.27 0.23

Average four years observed 0.22 0.33 0.10 0.20 0.41 0.15 0.28 0.31 0.25

Average five years observed 0.22 0.34 0.10 0.19 0.44 0.16 0.29 0.34 0.26
  

1) Unweighted average of all countries

D.2 Mean absolute (percent) error over the period 1960–2014 and mean error 
over the period 2005–2014 of the log death rates limited to age 65 and above 
of the Lee-Carter forecast estimated over the period  
1960–2014, men (a) and women (b)

 

FRA ESP SWE BEL GBR NOR FIN NLD
 

 

a. Men

Mean abs error (1960–2014) 0 .027 0 .039 0 .046 0 .049 0 .043 0 .061 0 .064 0 .067

Mean abs perc error (1960–2014) 1 .39% 1 .91% 2 .25% 2 .61% 2 .06% 2 .82% 3 .66% 3 .06%

Mean error (2005–2014) 0 .005 0 .019 −0 .046 −0 .028 −0 .047 −0 .052 −0 .045 −0 .063

b. Women

Mean abs error (1960–2014) 0 .029 0 .042 0 .036 0 .039 0 .035 0 .046 0 .062 0 .040

Mean abs perc error (1960–2014) 1 .09% 1 .79% 1 .57% 1 .73% 1 .36% 1 .89% 2 .82% 1 .73%

Mean error (2005–2014) 0 .018 −0 .007 0 .004 0 .015 −0 .034 0 .000 −0 .055 0 .010
  

(continued)
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Appendix E
In Tables E.1 and E.2 the results of the different choices for the jump-off rates with 

the Lee-Carter model are presented for the life expectancy at birth (e0). For the 

most accurate forecast the last observed values as jump-off rates are the best 

choice, similar as with the life expectancy at age 65 (e65). For Spain the best 

option of the model values as jump-off rates is more clear than in the results with 

e65. For France an average of multiple years as jump-off rates is better than the last 

observed values, but the difference is small. For the most robust forecast an 

average of multiple years is the best choice for the jump-off rates based on the 

results of e0, which was also the best choice based on the results of e65. 

E.1 Mean absolute forecast error (MAFE) of remaining life expectancy at birth for 
the first and fifth year in the forecasting period, and standard deviation (SD) 
of the increase/decrease of the life expectancy at birth in 2020 between ten 
successive forecasts, for six different choices of the jump-off rates applied 
to a Lee-Carter model, for eight countries, men and women combined, fitting 
periods 1960–2005, 1960–2006, …, 1960–2014. The lowest SD/MAFE is 
marked in bold, the highest  
SD/MAFE in italic

 

Jump-off rates FRA ESP SWE BEL GBR NOR FIN NLD Av1)

 

 

Standard deviation in 2020
 

Model values 0 .16 0 .15 0 .36 0 .25 0 .22 0 .37 0 .71 0 .25 0 .31
Last observed values 0 .20 0 .25 0 .09 0 .22 0 .18 0 .11 0 .25 0 .16 0 .18
Average two years observed 0 .12 0 .11 0 .08 0 .11 0 .12 0 .10 0 .19 0 .11 0 .12
Average three years observed 0 .11 0 .10 0 .07 0 .10 0 .10 0 .11 0 .20 0 .11 0 .11
Average four years observed 0 .10 0 .05 0 .07 0 .07 0 .08 0 .13 0 .20 0 .11 0 .10
Average five years observed 0 .08 0 .07 0 .09 0 .07 0 .06 0 .12 0 .19 0 .10 0 .10

Mean absolute forecast error in the first year of the forecasting period
 

Model values 0 .21 0 .17 0 .38 0 .08 0 .46 0 .38 0 .42 0 .47 0 .32
Last observed values 0 .15 0 .19 0 .08 0 .15 0 .13 0 .11 0 .13 0 .16 0 .14
Average two years observed 0 .14 0 .19 0 .08 0 .15 0 .15 0 .12 0 .09 0 .20 0 .14
Average three years observed 0 .14 0 .21 0 .10 0 .15 0 .19 0 .16 0 .10 0 .26 0 .16
Average four years observed 0 .15 0 .24 0 .11 0 .16 0 .24 0 .22 0 .12 0 .33 0 .20
Average five years observed 0 .19 0 .27 0 .13 0 .17 0 .29 0 .27 0 .13 0 .42 0 .23

Mean absolute forecast error in the fifth year of the forecasting period
 

Model values 0 .24 0 .37 0 .49 0 .18 0 .78 0 .74 0 .62 0 .70 0 .51
Last observed values 0 .17 0 .48 0 .16 0 .16 0 .50 0 .38 0 .25 0 .39 0 .31
Average two years observed 0 .16 0 .52 0 .16 0 .17 0 .51 0 .40 0 .25 0 .44 0 .33
Average three years observed 0 .18 0 .58 0 .19 0 .19 0 .52 0 .45 0 .26 0 .52 0 .36
Average four years observed 0 .22 0 .61 0 .22 0 .21 0 .54 0 .52 0 .28 0 .62 0 .40
Average five years observed 0 .25 0 .65 0 .25 0 .24 0 .57 0 .60 0 .31 0 .71 0 .45
  

1) Unweighted average of all countries
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E.2 Mean absolute (percent) error over the period 1960–2014 and mean error 
over the period 2005–2014 of the log death rates of the Lee-Carter forecast 
estimated over the period 1960–2014

 

FRA ESP SWE BEL GBR NOR FIN NLD
 

 

Mean abs error (1960–2014) 0 .054 0 .076 0 .087 0 .071 0 .051 0 .097 0 .094 0 .060

Mean abs perc error (1960–2014) 1 .07% 1 .49% 1 .53% 1 .39% 1 .08% 1 .70% 1 .88% 1 .22%

Mean error (2005–2014) −0 .005 −0 .010 −0 .010 −0 .010 −0 .007 −0 .016 −0 .010 −0 .015
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Appendix F
In Figure F.1 an example of a forecast using interpolation is shown for the 

Netherlands. It starts with a forecast using a jump-off rate that gives the most 

accurate forecast in the first year (red line). Subsequently, a forecast using jump-off 

rates that is most robust in the fifth year of the forecast period is made (green line). 

Between the two forecast each year more weight is given to the most robust 

forecast until the weight is equal to 1 from the fifth year of the forecast onwards 

(dashed purple line).

F.1 Example of forecasts with interpolation from the forecast with 
the option for the jump-o� rates which is considered the most 
accurate to the forecast with the option for the jump-o� rates 
which is considered the most robust, the Netherlands, men and 
women combined, Lee-Carter model, �tting period 1960-2014

Observations Most accurate Most robust Interpolation
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6. 
Conclusion and discussion
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6.1 Introduction and research 
questions

This study aimed to evaluate mortality forecasting in the context of non-linear 

mortality trends. Particularly in populations among whom the past trends have 

been non-linear (like in the Netherlands), the use of an objective extrapolative 

mortality forecasting method will be more problematic: the level of forecasted 

mortality could differ greatly depending on the fitting period, and mortality 

forecasts for individual countries might result in unrealistically divergent outcomes 

between countries. 

Among the potential approaches for improving mortality forecasts when the trends 

are non-linear trends are making explicit adjustments for the distorting effects of 

smoking on mortality trends, and using the more linear trends of other countries as 

the underlying long-term mortality trend. However, both of these approaches 

require the inclusion of more subjective information in the mortality forecast. Thus, 

there is an important debate about whether only “objective” extrapolation 

methods should be employed even in cases of non-linearity, or whether it is 

preferable to include additional information, even if doing so introduces additional 

subjectivity. To address this question, mortality forecasting approaches must be 

evaluated in the context of non-linear past mortality trends. Most previous studies 

on this topic were purely quantitative evaluations of mortality forecasting models 

that focused solely on their accuracy, or they evaluated purely objective forecasting 

approaches that are less relevant for non-linear trends. Moreover, most of these 

studies did not evaluate the sensitivity of future mortality to explicit assumptions; 

i.e., to the specific choices that are explicitly stated in a method, such as the choices 

of the length of the fitting period and of the jump-off rates. This PhD thesis 

included these important elements. Furthermore, the findings of this research can 

be used to evaluate, validate, and further improve the mortality forecasts of 

Statistics Netherlands, which take into account the mortality trends in other 

Western European countries, and which systematically include in the calculation 

information about developments in smoking, following the approach by Janssen et 

al. (2013).

This study was guided by the following research questions:

1) In a context in which mortality trends are non-linear, how does the choice of the 

mortality forecasting method and the explicit assumptions affect future 

forecasted mortality

2) How can future levels of smoking-attributable mortality be formally estimated?
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3) Which model should be used when the goal is to forecast mortality coherently , 

namely by taking into account the mortality experiences of other countries?

4) How can mortality forecasts be adjusted to take into account more recently 

observed data? 

In the remainder of this concluding chapter, summaries of both the overall results 

and the results by chapter are provided (6.2). Reflections on the main findings are 

then offered (6.3). Next, the implications of the results for mortality forecasting and 

for the official mortality forecasts of Statistics Netherlands are discussed (6.4), and 

reflections on the approach are provided (6.5). Finally, recommendations for 

further research on mortality forecasting and for users of mortality forecasts are 

made (6.6).

6.2 Summary of the findings

6.2.1 Summary of the results by chapter

Chapter 2 reviewed the different mortality forecasting methods and their 

assumptions in Europe, and assessed their impact on projections of future life 

expectancy for the Netherlands. More specifically, (i) the current methods used in 

official mortality forecasts in Europe were reviewed; (ii) the outcomes and the 

assumptions of different projection methods within the Netherlands were 

compared; and (iii) the outcomes of different types of methods for the Netherlands 

using similar explicit assumptions, including the same historical period, were 

compared. The findings of a review of the current methods indicated that most 

statistical offices in Europe use simple linear extrapolation methods, but that 

countries with less linear trends employ other approaches or different assumptions. 

The approaches employed in the Netherlands include the use of explanatory 

models, the separate projection of smoking- and non-smoking-related mortality, 

and the projection of the age profile of mortality. There are, however, clear 

differences in the explicit assumptions used in these approaches, and the resulting 

e0 in 2050 varies by approximately six years. Using the same historical period 

(1970-2009) and the observed jump-off rates, the findings generated by different 

methods result in a range of 2.1 years for women and of 1.8 years for men. For 

e65, the range is 1.4 years for men and 1.9 years for women. These findings 

suggest that the choice of explicit assumptions is more important than the choice 

of the forecasting method.
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In Chapter 3, a formal estimation of future levels of smoking-attributable mortality 

up to 2050 was proposed for the total national populations of England and Wales, 

Denmark, and the Netherlands. An update and an extension of the descriptive 

smoking epidemic model were provided in the estimation. A two-step method for 

estimating the future smoking-attributable mortality fraction was presented: (i) 

lung cancer mortality was projected by extrapolating age-period-cohort trends 

(1950-2009), while using the observed convergence among men and women of 

smoking prevalence and past lung cancer mortality levels as input; and (ii) other 

causes of death attributable to smoking were added by applying a simplified 

version of the indirect Peto–Lopez method to the projected levels of lung cancer 

mortality. The smoking-attributable mortality fractions (SAF) for men in 2009 were 

found to be 19% (44,872 deaths) in England and Wales, 22% (5,861 deaths) in 

Denmark, and 25% (16,385 deaths) in the Netherlands. In the projections, these 

fractions declined to 6%, 12%, and 14%, respectively, in 2050. The SAF for women 

peaked at 14% (38,883 deaths) in 2008 in England and Wales, and is expected to 

peak in 2028 in Denmark (22%) and in 2033 in the Netherlands (23%). By 2050, 

declines to 9%, 17%, and 19%, respectively, are foreseen. The use of different 

indirect methods for estimating the SAF in 2050 yielded ranges of 1–8% in England 

and Wales, 8–13% in Denmark, and 11–16% in the Netherlands for men; and of 

7–16%, 12–26%, and 13–31%, respectively, for women. 

In Chapter 4, different coherent forecasting methods were evaluated in terms of 

their accuracy (fit to historical data), robustness (stability across different fitting 

periods), subjectivity (sensitivity to the choice of the group of countries), and 

plausible outcomes (smooth continuation of trends from the fitting period). The 

coherent forecasting methods investigated in this chapter were as follows: the 

co-integrated Lee-Carter (CLC) method, the Li-Lee (LL) method, and the coherent 

functional data (CFD) method. The methods were applied to data from France, Italy, 

the Netherlands, Norway, Spain, Sweden, and Switzerland in order to generate 

forecasts up to 2050; and the results were compared to those of the individual 

Lee-Carter (LC) method. Of the three coherent forecasting methods evaluated, the 

CFD method was found to perform best on the accuracy measures. However, after 

the CFD method’s higher number of parameters was controlled for, the differences 

disappeared. Both the CLC and the LL methods were found to be robust. The CLC 

method (for women) and the LL method (for men) were shown to be the least 

sensitive to the choice of the group of countries. The LL method generated the most 

plausible results, as it showed a convergence of future life expectancy levels that 

was in line with the fitting period and the smooth pattern of age-specific 

improvements. This finding could imply that the LL method, which performed best 

in terms of robustness, subjectivity, and plausibility, provided a better fit than the 

CFD method, which had better accuracy (model fit).
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Finally, in Chapter 5, six different options for the jump-off rates were evaluated and 

their effects on the robustness and the accuracy of the mortality forecasts were 

examined. As the jump-off rates, the use of the model values, the observed values 

in the last year, and the averaged over the last couple of years are examined for 

data from eight European countries (Belgium, Finland, France, the Netherlands, 

Norway, Spain, Sweden, and United Kingdom, 1960-2014 period). The future life 

expectancy at age 65 was calculated for different fitting periods and jump-off rates 

using the Lee-Carter model, and the accuracy (mean absolute error) and the 

robustness (standard deviation of the change in projected e65) of the results were 

examined. The findings of the analysis showed that which jump-off rates were 

chosen clearly influenced the accuracy and robustness of the mortality forecast, 

albeit in different ways. For most of the countries, using the last observed values as 

the jump-off rates resulted in the most accurate method, due in part to the 

estimation error of the model in recent years. The most robust method was 

obtained when using an average of observed years as jump-off rates. The more 

years that were averaged, the higher the degree of robustness; but the level of 

accuracy decreased with more years averaged. These results imply that the best 

strategy for matching mortality forecasts to the most recently observed data 

depends on the goal of the forecast, the country-specific past mortality trends, and 

the model fit.

6.2.2 Overall summary of results

For countries with non-linear mortality trends, like the Netherlands, approaches 

and assumptions were used that differ from the simple linear extrapolation 

methods that are commonly used by national statistical offices. It was found that 

the choice of explicit assumptions (i.e., the assumptions that had to be explicitly 

stated in a method, such as the length of the fitting period and the jump-off rates) 

proved more important than the choice of the forecasting approach for the 

mortality forecast. Because the inclusion of additional information on the smoking 

epidemic or on the mortality experiences of other countries is generally known to 

diminish the effect of the length of the historical period, doing so is expected to 

result in a more robust forecast.

One way that additional information on the smoking epidemic could be included 

was by separately forecasting smoking-attributable mortality. The age-period-

cohort methodology – informed by assumptions derived from the smoking 

epidemic model and a careful study of past trends – proved valid for this purpose. 
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When the mortality experiences of other countries by means of coherent mortality 

forecasting were included, it was found that the Li-Lee method (Li and Lee 2005) 

outperformed the co-integrated Lee-Carter method (Li and Hardy 2011; Cairns et al. 

2011a) and the coherent functional data method (Hyndman et al. 2013) in terms of 

robustness, subjectivity, and plausibility. 

Another important explicit assumption was the choice of the jump-off rates; i.e., 

how mortality forecasts should be matched to the most recently observed data. It 

was found that which jump-off rates were chosen clearly influenced the accuracy 

and the robustness of the mortality forecast, albeit in different ways. It was 

therefore concluded that which strategy was best depended on the goal of the 

forecast, the country-specific past mortality trends, and the model fit.

All in all, it was found that forecasting mortality when the trends were non-linear 

involved more than the direct (linear) extrapolation of past mortality trends. Even 

though including additional information (like data on the smoking epidemic and/

or on the mortality experiences of other countries) made the method more 

subjective, it also made the method less dependent on an important explicit 

assumption: namely, the historical period. This insight is important, because this 

PhD thesis has also demonstrated that explicit assumptions play an essential role in 

mortality forecasts.

6.3 Reflections on the main findings

6.3.1 Importance of explicit assumptions

This PhD thesis found that in the Netherlands, where the past mortality trends are 

non-linear, the choice of explicit assumptions contributed more to the differences 

in the estimates of different mortality forecasts than the choice of the forecasting 

method/approache. Thus, the findings showed that when the same historical 

period and the same jump-off rates were used in different mortality forecasts, the 

differences in the life expectancy levels at birth projected for 2050 declined by 

approximately two-thirds. 

This is a novel and important finding. Most of the previous studies that evaluated 

mortality forecasts focused primarily on the method itself, and only very rarely on 

which explicit assumptions were chosen (examples are Booth et al. 2002; Bell 
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1997; Lee and Miller 2001; Janssen and Kunst 2007). This finding is important 

because explicit assumptions are an essential part of mortality forecasting 

methods; that is, forecasting methods cannot generate outcomes unless specific 

assumptions are made. It is important that this key point is acknowledged. 

The explicit assumptions also play an important role in the comparability of different 

mortality forecasting approaches and the related mortality forecasting methods, and 

of the outcomes from different institutions. Different forecasting approaches/methods 

are more comparable when the same explicit assumptions are used. Thus, the 

differences in outcomes reflect the different methods used in forecasts.

Furthermore, the explicit assumptions can have a large effect on the prediction 

intervals of mortality forecasts. Prediction intervals do not capture the level of 

uncertainty of the forecasts depending on which explicit assumptions are chosen; 

i.e., they are actually conditional intervals based on the assumptions. Because the 

explicit assumptions clearly contribute to the differences in mortality forecasts, they 

also contribute to the level of uncertainty of mortality forecasts. Ideally, in order to 

paint a more complete picture of the role of uncertainty, the prediction intervals 

would also include the level of uncertainty due to the explicit assumptions.

6.3.2 Inclusion of additional information

There is an important debate in the mortality forecasting literature about whether 

only “objective” extrapolation methods should be employed even in cases of 

non-linearity, or whether it is preferable to include additional information – e.g., 

data on trends in other countries and/or epidemiological information on smoking 

– even if doing so introduces additional subjectivity. The results of the analyses 

presented in this PhD thesis contribute to this debate. First, the literature review in 

Chapter 2 showed that the statistical offices in countries with non-linear past 

mortality trends often use more subjective methods that take into account the 

non-linearity observed in the past mortality trends, rather than the simple linear 

extrapolation methods typically used by national statistical offices in countries with 

more linear trends. These more subjective forecasting methods usually rely on a 

very short fitting period, a quadratic age effect, or epidemiological information. If, 

however, the past mortality trends have been largely linear, simple extrapolation 

methods will suffice, especially given that the outcomes of different extrapolation 

methods using the same explicit assumptions do not differ greatly. 

Chapter 2 also revealed that once the effect of explicit assumptions was controlled 

for, the remaining differences in the outcomes mainly reflect differences between 
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the methods that include additional information to account for the observed 

non-linearity, and the extrapolation methods that do not. When applied to the 

Netherlands based on the fitting period 1970-2009, the methods that included 

additional information – through either age-period-cohort modelling or the 

inclusion of data on smoking and/or other countries – resulted in higher future life 

expectancy estimates and less linear future trends than the Lee-Carter method and 

linear extrapolation. 

Both observations (higher future life expectancy estimates and less linear future 

trends) can be linked to the non-linearity observed in the past trends in the 

Netherlands, and to the main determinant of this non-linearity: the smoking 

epidemic. In the Netherlands, the impact of the smoking epidemic resulted in an 

overall mortality trend that was less optimistic than the trend in non-smoking-

attributable mortality. But when the continuing decline in smoking prevalence 

(and, hence, in smoking-attributable mortality) was taken into account, the 

estimates of future life expectancy were higher (see also “6.3.3 Methodology for 

forecasting smoking-attributable mortality” below). The less linear future trend 

found among women was the result of a projected increase in smoking-

attributable mortality, followed by a decline. Such a non-linear future pattern does 

not arise when using the Lee-Carter and the linear extrapolation methods, because 

these methods extrapolate the average increase in all-cause mortality over the 

whole period into the future, which results in a straight-line projection. 

Because the recent mortality trends in the Netherlands (1970-2009) have been less 

positive than the average trends in certain other countries, a method that includes 

these other countries will also result in a higher future life expectancy than a 

method that does not include these other countries. This was also shown in Chapter 

4: the countries that had less positive past mortality trends than those of the main 

group of countries used in the coherent forecasting model had higher future life 

expectancy levels than when the Lee-Carter method was applied, and vice versa 

(see also “6.3.4 Inclusion of the mortality experiences in other countries” below).

6.3.3 Methodology for forecasting smoking-
attributable mortality

The inclusion of information on the smoking epidemic can add non-linearity to the 

trend; and, depending on the phase in the smoking epidemic, can lead not only to 

higher estimated life expectancy outcomes, but to a more robust forecast. Thus, the 

inclusion of additional information on the smoking epidemic may be expected to 
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diminish the effect of the length of the historical period (Janssen and Kunst 2007). 

Janssen et al. (2013) clearly demonstrated for the Netherlands that past trends in 

non-smoking-attributable mortality were more linear over time than past trends in 

all-cause mortality. Furthermore, Janssen and Kunst (2007) demonstrated that 

because past declines in non-smoking-attributable mortality were more similar 

across countries and between the sexes than declines in all-cause mortality, 

including the former information in a forecast can lead to more comparable 

outcomes between countries and between men and women than relying on the 

latter data alone. Therefore, providing a separate forecast of smoking-attributable 

mortality clearly has value when forecasting mortality in a context in which 

mortality trends are non-linear, such as the Netherlands.

In Chapter 3, a method for forecasting smoking-attributable mortality was 

introduced and validated that, unlike previous methods, is capable of forecasting 

the long-term future. In contrast to the methodologies used in earlier studies, the 

methodology takes into account the expectation that among women, future 

smoking-attributable mortality will increase, and then decrease. This expectation is 

based on the smoking epidemic model described by Lopez et al. (1994), in which 

the wave pattern in smoking prevalence was followed 30-40 years later by a 

similar wave pattern in smoking-attributable mortality, first for men and then for 

women. In addition, the trends in smoking prevalence and smoking-attributable 

mortality for the three examined countries reported in Chapter 3 clearly show that 

smoking-attributable mortality is already declining for women for the youngest 

age groups. 

The age-period-cohort methodology developed in this PhD thesis was guided by 

the smoking epidemic model and by past trends in both smoking prevalence and 

smoking-attributable mortality. This methodology was shown to be valid for 

forecasting lung cancer mortality and, subsequently, smoking-attributable 

mortality. For example, when the methodology was applied to some of the data 

for England and Wales (1950–99), where smoking-attributable mortality among 

women peaked in 2008, it was found that the assumptions and methodology were 

able to predict the observed maximum in 2008 for women. This finding justifies the 

use of the trends in and the levels of lung cancer mortality for men to determine 

the maximum for women.

It is projected that the peak in smoking-attributable mortality will be reached in 

2033 for Dutch women and in 2028 for Danish women, and that smoking-

attributable mortality for these groups will decrease thereafter. Including these 

irregular trends in the forecast of total mortality will add non-linearity to the 

projected trend in mortality and, consequently, in life expectancy. 
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This methodology can be applied to other countries as well. For countries that are 

well into the fourth stage of the smoking epidemic (in which male mortality from 

smoking has peaked a few decades ago and smoking prevalence has been slowly 

declining for both men and women), the method can be easily applied. For 

countries where male mortality from smoking has peaked more recently, 

information about the forerunners would be needed to complement the 

methodology. For countries at an even earlier stage of the smoking epidemic, 

detailed information on smoking prevalence would be necessary as well.

6.3.4 Inclusion of the mortality experiences in other 
countries

Another way of introducing additional information into the mortality forecast is to 

include the mortality experiences of other countries. An approach that is often used 

to take into account the experiences of other countries is coherent forecasting, of 

which the best-known methods are the co-integrated Lee-Carter method (Li and 

Hardy 2011; Cairns et al. 2011a), the Li-Lee method (Li and Lee 2005), and the 

coherent functional data method (Hyndman et al. 2013).

The results in this PhD thesis showed that the Li-Lee (LL) coherent forecasting 

method performed better than the co-integrated Lee-Carter (CLC) method and the 

coherent functional data (CFD) method in terms of robustness, subjectivity, and 

plausibility (Chapter 4). Specifically, it was found that the LL method – when 

estimated using singular value decomposition – generated stable outcomes across 

different fitting periods; that the LL method (for men) was the least sensitivity to 

the choice of the group of countries; and that the LL method resulted in a 

convergence of future life expectancy trends that was in line with the fitting period 

and the smooth pattern of age-specific improvements. The high degree of stability 

observed across fitting periods can be explained by the equal weight the LL 

method placed on all data in the sample. This aspect of the LL method tends to 

diminish the dependence on new data being added, which can be higher when 

more weight is placed on recent data (such as in the CFD method). Because the LL 

method is less sensitive to the choice of the group of countries, it is less likely to 

result in convergence, particularly in comparison to the CFD method. Although the 

LL method scored lower than the CFD method on some accuracy measures, this 

difference in the degree of accuracy proved negligible when the number of model 

parameters was accounted for in the comparison. 
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Whereas projections for separate countries based on the past mortality trends in 

each individual country will lead almost inevitably to divergence (Lundström 2003; 

Giannakouris 2004; Li and Lee 2005; Janssen and Kunst 2007), including 

information from other countries in the forecasting method/approach will prevent 

this from happening. Furthermore, by using the experiences of other countries, a 

broader empirical basis can be created for the identification of the most likely 

long-term trends, which can improve the robustness of the forecast. 

In coherent mortality forecasting, an important explicit assumption that should be 

taken into account is the choice of the main group of countries that will be 

included in the model. Which main group is chosen determines the long-term 

trends for a specific country in the coherent mortality forecast. In Chapter 4, three 

different main groups were compared. The results showed that the coherent 

forecasting methods were sensitive to the choice of the group of countries. Among 

the important criteria for the selection of the main group were the linearity of the 

mortality trend of the total group (extrapolative methods perform better if the 

trends are linear) and the similarities (political, economic, health care) between 

the countries in the group and the country for which the forecast is being made.

6.3.5 Choice of the jump-off rates

In addition to the choice of the historical period (the effect of which is diminished 

by including additional information on the smoking epidemic and/or the mortality 

experiences of other countries) and of the main group of countries, another 

important explicit assumption in coherent mortality forecasting is the choice of the 

jump-off rates. The aim of the jump-off rates is matching the mortality forecast to 

the most recently observed data. The main problem encountered in the majority of 

forecasting methods is the appearance of a discontinuity between the observed 

and the predicted trends, which leads to a jump-off that is usually considered 

implausible. This is a practical problem more than it is a theoretical one, as it has a 

large impact on the outcomes of the forecasting methods. This issue has not been 

the main topic of any previous research article, and has not been adequately 

addressed in the scientific literature.

The results of the analysis (Chapter 5) showed that which jump-off rates were 

chosen clearly influenced the accuracy and the robustness of the mortality forecast. 

For most countries, using the last observed values as the jump-off rates resulted in 

the most accurate method, which was related to the estimation error of the model 

in recent years. That is, if the model had been underestimated, the last observed 

values would have already been closer to the future values than the model values, 
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which would have automatically favoured the last observed values as jump-off 

rates. The most robust method is generally obtained by using an average of the 

observed years as jump-off rates, as this approach can smooth out fluctuations in 

life expectancy. That is, if the last observed values are used as jump-off rates, life 

expectancy will fluctuate when recent data were added; whereas if an average of 

these values is used, these fluctuations will diminish. 

However, the use of different strategies can affect the robustness and the accuracy 

of the forecasts differently. For example, the more years with observed values that 

are averaged, the greater the robustness, but the lower the degree of accuracy. 

Thus, in determining which strategy is best, it is important to take into account not 

just the model fit and the country-specific past mortality trends, but the goal of the 

forecast. If the goal of the forecast is robustness, using an average of the observed 

years as jump-off rates (the most robust approach for most countries) may be 

preferable to using the last observed values as jump-off rates (the most accurate 

approach for most countries).

6.4 Implications

6.4.1 Implications of the results for mortality 
forecasting

The results of this PhD thesis have a number of implications for mortality 

forecasting. 

When past trends in mortality are non-linear, adding more information could have 

value; as the added information could reveal the true underlying trend in mortality, 

and could thus provide a solid basis for the mortality forecast. However, before any 

information is added to mortality forecasting models, a careful examination of past 

trends should be undertaken, and a careful assessment of the pros and cons of its 

inclusion should be performed. If more information is included in a model, more 

assumptions need to be made, which increases the subjectivity of the forecast. 

Therefore, the decision to add information should not be taken lightly. A key 

challenge that can arise when using methods that include additional information, 

such as a cohort effect or epidemiological information, is that the additional 

information can be hard to predict. The advantage of using additional information 
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in the forecasting method diminishes if the additional information cannot be 

forecast more accurately than mortality itself. It should, however, be possible to 

strike the right balance between the risks associated with including additional 

information in a forecasting method and the risks associated with increased 

subjectivity.

This PhD thesis showed the important role explicit assumptions can play in 

mortality forecasting. It is therefore essential that the explicit assumptions used in 

the forecasting method are selected carefully when making a forecast or when 

choosing a new forecasting method or approach. Choosing the right explicit 

assumptions can improve the accuracy and the robustness of the mortality forecast, 

but which assumptions are selected is likely to differ depending on the forecasting 

method/approach and the forecasting goal. It should be noted that currently, 

prediction intervals do not provide information about the levels of uncertainty 

associated with these explicit assumptions. The results presented in this PhD thesis 

strongly suggest that stochastic forecasts should also incorporate the levels of 

uncertainty associated with different explicit assumptions in order to provide a 

fuller picture of the degree of uncertainty. Currently, the methodology that would 

allow us to do so is not yet well developed.

New forecasting methods should be evaluated based not only on their accuracy, 

but on other more qualitative criteria. This PhD thesis showed, for example, that 

which coherent forecasting method is chosen can differ depending on whether the 

methods are evaluated solely on their accuracy, or also on the robustness, 

subjectivity, and plausibility of their outcomes. By adopting different evaluation 

criteria – both more quantitative (accuracy) and qualitative (the robustness, 

subjectivity, and plausibility of the results) – this PhD thesis was able to 

demonstrate that the best method might not be the most accurate method. Judging 

an approach or model using one type of criteria only will clearly not provide the 

full story.

The most appropriate method can differ depending on the forecasting application/

goal, and the value assigned to quantitative versus qualitative criteria. For instance, 

for forecasts that are updated regularly, robustness should be given higher priority. 

It is therefore advisable to keep the forecasting application/goal in mind when 

choosing the method, and to explicitly mention the forecasting application/goal 

when reporting on it. 

In addition, it is essential to remain flexible when forecasting mortality. Both 

mortality trends and their determinants are constantly changing, as is our 
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knowledge of them. Moreover, new forecasting methodologies are constantly 

being developed. Mortality forecasting can thus be described as “a work in 

progress”; and remind ourselves of the need to keep learning from new 

developments.

6.4.2 Implications for the official mortality forecasts in 
the Netherlands

This PhD thesis examined in detail the different components of the new mortality 

forecasting approach adopted by Statistics Netherlands in 2012 (Stoeldraijer et al. 

2012, see the Appendix). This new mortality forecasting approach was developed 

by Janssen and Kunst (2010) and Janssen et al. (2013). The approach made use of 

extrapolation, but included additional information on trends in other countries in 

Western Europe, and took into account the clear non-linear pattern in smoking-

attributable mortality. It combined the separate forecast of smoking-attributable 

mortality with the coherent forecast of non-smoking-attributable mortality. 

The method used by Statistics Netherlands differs from the method presented in 

Janssen and Kunst (2010) and Janssen et al. (2013) in two main ways: the methods 

use different jump-off rates and different approaches to forecasting smoking-

attributable mortality based on lung cancer mortality. 

Janssen and Kunst (2010) and Janssen et al. (2013) used the projected rates rather 

than the observed rates as the jump-off rates. The focus in Janssen et al. (2013) 

was on differences between the gains in life expectancy and the projected life 

expectancy in the jump-off year, which are not affected by the choice of jump-off 

rates. For Statistics Netherlands, it was important that the forecast was perfectly 

aligned with the last observation (i.e., had no jump-off bias). Thus, Statistics 

Netherlands used the observed rates in the last year as the jump-off rates. 

The most important difference in the forecasting methods used for smoking-

attributable mortality is that Janssen and Kunst (2010) and Janssen et al. (2013) 

used an age-period-cohort method applied to lung cancer mortality to estimate the 

year in which the smoking-attributable mortality fraction will reach its maximum 

for females (by adding the average age at dying from lung cancer to the cohort 

with the highest lung cancer mortality), but subsequently used the smoking-

attributable mortality fractions to forecast smoking-attributable mortality; whereas 

Statistics Netherlands projected levels of lung cancer mortality directly via the 

age-period-cohort method, and used the projected lung cancer mortality rates to 



170      171

calculate projected smoking-attributable mortality by applying an indirect method 

to estimate smoking-attributable mortality. 

Another difference in the approaches used for estimating future smoking-

attributable mortality lies in the indirect method used to estimate smoking-

attributable mortality from lung cancer mortality. Janssen and Kunst (2010) and 

Janssen et al. (2013) used the simplified Peto-Lopez method (Bonneux et al. 2003; 

Peto et al. 1992) for this purpose; whereas Statistics Netherlands, after comparing 

different indirect estimation methods, chose to use the indirect estimation method 

of Rostron (2010) instead. Both methods use lung cancer death rates as an 

indicator of the damage caused by smoking. Whereas the Peto-Lopez method 

merely uses epidemiological information from the American Cancer Study (lung 

cancer death rates among smokers and non-smokers, relative risks of dying from 

smoking); the method more recently developed by Rostron (2010) uses – instead of 

the relative risks – a regression model to predict mortality from causes other than 

lung cancer as a function of lung cancer mortality and other variables (dummy 

variables for age, year and country, and interaction terms), using data from several 

low-mortality countries (many of which are in Western Europe, see also Preston et 

al. 2010).

A third and smaller difference between the methods employed by Statistics 

Netherlands and Janssen and Kunst (2010) and Janssen et al. (2013) is that 

Statistics Netherlands uses the total population of Germany instead of the 

population of West Germany in the group of countries used in the coherent 

forecasting for the non-smoking-attributable mortality.

As a result of the research within this PhD thesis, several components of the 

mortality forecasting approach of Statistics Netherlands were closely evaluated, 

validated, and – if necessary – improved. 

The projection of smoking-attributable mortality by means of the age-period-

cohort model applied to lung cancer mortality was validated (Chapter 2) using 

in-sample forecasting, as well as data for Denmark and England and Wales. That is, 

the observed maximum of smoking-attributable mortality for women in 2008 was 

correctly estimated by using a portion of the data for England and Wales.

The indirect estimation method used to estimate smoking-attributable mortality 

was validated by comparing five different methods (Chapter 2). It was found that 

the regression-based method of Rostron (2010) was very similar to the simplified 

Peto-Lopez method (Bonneux et al. 2003; Peto et al. 1992), and thus concluded 

that both methods are valid. Because the regression-based method by Rostron 
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(2010) has a stronger empirical base (compared to the simplified Peto-Lopez 

method, it has data from more countries and data that are more recent) and uses 

recent new estimation techniques that were introduced in the field, Statistics 

Netherlands continues to use this method. 

In the original approach by Janssen and Kunst (2010), Janssen et al. (2013), and 

Statistics Netherlands, the Li-Lee method (Li and Lee 2005) was used as the 

coherent forecasting method for the non-smoking-attributable mortality projection 

because it was at that point in time (2009/2010) the most known coherent 

mortality forecasting technique (Hyndman et al. 2013). The method was easy to 

understand and easy to apply. In this PhD research, the use of this method rather 

other more recently developed coherent mortality forecasting methods was 

assessed (Chapter 4, based on all-cause mortality). It was found that compared to 

two other coherent forecasting methods (CFD, Hyndman et al. 2013; CLC, Li and 

Hardy 2011, Cairns et al. 2011a), the Li-Lee method performed just as well in terms 

of accuracy and better in terms of the robustness, subjectivity, and plausibility of 

the outcomes. These findings validated the use of the Li-Lee method over the other 

methods, and provided a stronger empirical basis for the use of the Li-Lee method 

by Statistics Netherlands. 

The results presented in Chapter 4 on the group of countries that is used in the 

coherent forecasting method did not lead to a modification of the group of 

countries used by Statistics Netherlands in their forecasting method. The group of 

countries used in the coherent forecasting method of Statistics Netherlands consists 

of countries in Western Europe that had similar trends in the past. Moreover, the 

mortality trend of the group is relatively linear, which is in line with previous 

recommendation in this PhD thesis (see 6.3, “Reflections on the main findings”).

In the original application of the method by Statistics Netherlands, the last 

observed years were used as the jump-off rates. However, in this PhD research, the 

strong effect of explicit assumptions, like the jump-off rate, led to a more detailed 

appraisal of the choice of the jump-off rates. As a result of this finding, the average 

of the mortality rates in three recent observed years are used as the jump-of rates 

instead of the rates in the last observed year (Van Duin and Stoeldraijer 2014). To 

ensure there was no jump-off bias, the first five years of the forecast were also 

adjusted: i.e., there was an interpolation between a forecast with jump-off rates 

equal to the last observed rates to a forecast with jump-off rates equal to the 

average of the three recent observed years. The interpolation was suggested in 

Chapter 5. Both the accuracy and the robustness of the mortality forecast was 

improved by this modification.
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More generally, the findings of this PhD research demonstrate how important it is 

that the mortality forecasts of Statistics Netherlands are adjusted in response to 

scientific developments and recent mortality trends, not only in the Netherlands, 

but in surrounding countries as well. Therefore, it is critical that Statistics 

Netherlands communicates with other statistical offices in Europe (through 

Eurostat) and other bureaus in the Netherlands that make mortality forecasts about 

their problems and the potential solutions to these problems, as well as about 

recent developments in research and methods. Furthermore, over the course of 

working on this PhD thesis, the need to better explain what forecasts are became 

clear, and to publish prediction intervals to inform users of the uncertainty 

surrounding forecasts. 

All in all, the mortality forecasts of Statistics Netherlands have become more 

evidence-based.

6.5 Reflections on the approach

The approach used in this research was data-driven and had a strong empirical 

basis that relied heavily on the careful study of past trends. By investigating how 

different mortality trends (especially linear versus non-linear trends) were affecting 

the performance of different mortality forecasting methods, both quantitatively 

and qualitatively, important new insights on mortality forecasting in the context of 

non-linear mortality trends were obtained. 

The focus of the PhD thesis was on Western Europe, and, more specifically, on the 

Netherlands. It is therefore possible that the results of the thesis might not apply to 

other countries with non-linear trends, such as countries in Eastern Europe and 

other high-mortality countries. These countries have very different past mortality 

trends than the Western European countries. For instance, a key reason why the 

Eastern European countries have very different past mortality trends is that they 

experienced a health crisis from 1975 onwards (McKee and Shkolnikov 2001; Vallin 

and Meslé 2004; Leon 2011). When forecasting mortality for these countries, 

extrapolation methods are not suitable because of the clear non-linear trends and 

the breaks in the trends, and because the non-linearity might be caused by factors 

other than smoking (alone). However, the approach used for these countries can be 

very similar: namely, the past mortality trends should be studied carefully; and the 

non-linear trends should be filtered out from the general trend, which can be 
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captured using extrapolation; attention to the explicit assumptions; and evaluation 

based on both quantitative and qualitative criteria.

In this PhD thesis, it was assumed that the data were of good quality, because on 

average, developed countries have the resources to collect and maintain extensive 

records of mortality and population data (Mathers et al. 2005). However, a different 

assessment of the forecasting approach might be made if this was not the case, or 

if the data did not satisfy the needs of the mortality forecast, or was preliminary in 

nature. Finally, forecasting might be improved by weighting or smoothing the data. 

As the outcome measure of the predictive ability of the mortality forecast, the focus 

in this PhD thesis was primarily on life expectancy, both at birth and at age 65. 

These parameters were useful for the criteria that were evaluated. Looking at 

future life expectancy provided information about the forecasted expected mean 

age at death. Some of the more novel outcome measures used in the field of 

mortality are the modal age at death – i.e., the age at which most of the deaths are 

occurring – and the variability of the age at death around the modal age (Canudas-

Romo 2008). The performance of mortality methods can be evaluated more 

comprehensively by analysing not only the mean age at death (life expectancy), 

but the modal age and the variability of the age at death (Bohk-Ewald et al. 2017). 

The evaluation approach of this PhD thesis was extensive, and comprised (i) an 

evaluation of not just different mortality forecasting methods, but different 

forecasting approaches; (ii) an evaluation of both quantitative and qualitative 

criteria; (iii) the assessment of the sensitivity of future mortality to different explicit 

assumptions (e.g., historical period, jump-off rates); and (iv) the evaluation of 

different elements of a mortality forecasting approach that deals with non-linear 

past mortality trends (e.g., the forecasting of mortality attributed to smoking, a 

model for coherently forecasting mortality). The use of this approach has led to 

important new insights, as was discussed in the previous sections. 

Although this PhD thesis covered many different aspects of mortality forecasting, 

much more research on this topic is possible, as the list of approaches, methods, 

evaluation criteria, and explicit assumptions which were compared is by no means 

exhaustive. This PhD focused on models based on extrapolation, which are the 

most frequently used, and which are more objective than models based on 

expectation or explanation. Furthermore, the focus was limited to models based on 

death rates. More recently, other models that can be used to study mortality have 

been developed, such as Bayesian models (in which prior knowledge and various 

sources of uncertainty can be included, Czado et al. 2002; Pedroza 2006) or models 

using mortality delay (with a shift in the age-at-death distribution towards older 
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ages, Janssen and de Beer 2016; Basellini et al. 2016; de Beer et al. 2017). In 

addition, while the forecasts were evaluated using different criteria, such as the 

accuracy, robustness, and plausibility of the results; it should be emphasised that 

these criteria represent only a selection of all the criteria that might be applied 

(Cairns et al. 2011). Among the explicit assumptions that could be added are whether 

and, if so, how mortality can be projected up to higher ages (de Beer et al. 2017).

Despite its limitations, the evaluation in this PhD thesis resulted not only in the 

evaluation, validation, and further improvement of the mortality forecasts of 

Statistics Netherlands, but contributed to the scientific literature and to research on 

mortality forecasting in general. 

6.6 Recommendations

6.6.1 Recommendations for further research on 
mortality forecasting

In connection with the evaluation of the approach (6.5), the following 

recommendations for further research on mortality forecasting are offered.

To obtain a fuller picture of the evaluation of mortality forecasting in contexts with 

non-linear past mortality trends, the patterns in Eastern European countries should 

be evaluated as well. Most countries in this region have past mortality trends that 

differ from those of Western European countries. The causes of the non-linearity 

might be different for these countries than for their Western counterparts. For 

instance, after the fall of the Berlin Wall, the morality trends in these countries 

changed suddenly, and the high levels of alcohol consumption among large parts 

of the population have had a clear impact on mortality in the Eastern European 

countries (Trias-Llimos at al. 2017). These causes and other potential sources of 

non-linearity should be investigated, and, if possible, incorporated into the 

forecasting method. If the cause of the non-linearity is purely a period effect or a 

break in the trend, the consequences for the method are different from those for 

the approach used here for smoking.

In Western Europe, the main cause of the (measurable) non-linearity in past trends 

has been smoking (Janssen et al. 2007; Janssen et al. 2013; Lindahl-Jacobsen et al. 
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2016). At the moment, large shares of the population in Western Europe are obese, 

which might influence future mortality trends (Vidra et al. 2018). It may be 

necessary to revise mortality forecasts in response to these changes in trends. Thus, 

it is important that past mortality trends are studied continuously, not just in the 

country of interest, but in other countries as well. 

The findings presented in this PhD thesis call for future studies to focus on a wider 

range of mortality forecast outcome measures. The focus on life expectancy in this 

PhD thesis was sufficient to address the research questions, but further research 

might explore other measures (such as the variability of the age at death, Bohk-

Ewald et al. 2017), not only in order to evaluate the mortality forecasts more 

comprehensively, but to improve upon the methods themselves.

While the focus in this PhD thesis was on national populations, there are also 

differences within these populations that are associated with mortality differences, 

such as differences in educational attainment, migration background, income, and 

type of employment. While important advances in mortality forecasting have been 

made (Janssen, forthcoming: GENUS thematic issue), mortality forecasts that are 

disaggregated beyond age, sex, and region are almost non-existent (Samir et al. 

2010; van Baal et al. 2016, Villegas and Haberman 2014). Developing such 

forecasts would be an important way forward in mortality forecasting, as policies 

can be better targeted to specific groups if the differences between them are 

known.

In the course of meeting the two main goals of this PhD thesis (i.e., contributing to 

the debate on objective versus subjective mortality forecasting methods and 

further improving the mortality forecasts of Statistics Netherlands), the importance 

of developing a closer relationship between the professional and the academic 

worlds became apparent. The approaches to mortality forecasting used in 

academia differ greatly from the approaches used in practice, and the two worlds 

could learn from each other. For instance, in practice it is important that a method/

approach is understandable and reproducible, and the academic world can do 

more to support these aims. A collaboration between the various institutes and 

disciplines involved in mortality forecasting is also recommended, as fields such as 

demography and actuarial sciences employ different approaches, but have similar 

goals. 
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6.6.2 Recommendations for the users of mortality 
forecasts 

Mortality forecasts have many users, as mortality rates affect many aspects of 

society (e.g., Currie et al. 2004). The most widespread users of mortality forecasts 

are the government (health care and public retirement), planning bureaus 

(population projections), and actuarial companies (life insurance and annuities). 

Examples of aspects of society that are affected by mortality rates (Bengtsson and 

Christensen (Eds.) 2006) are the cost of old-age income support in social security 

systems, public retirement policies, the financial position of defined benefit 

pension funds, the solvency requirements of life insurers, the pricing and reserves 

of other mortality-linked products, the planning and resources of social welfare 

programs, industries like care services for the elderly, and life course planning for 

individuals. Planning in all these areas requires institutions and individuals to 

understand and be knowledgeable about the present and the forecasted rates of 

mortality. 

The new mortality forecasting methodology that was implemented by Statistics 

Netherlands for the first time in 2012 resulted in higher long-term life expectancy, 

added non-linearity, and more robust outcomes (fewer changes between 

consecutive forecasts). It is essential that users are aware of the implications of the 

impact this new methodology has. For example, if long-term life expectancy is 

projected to be higher than it was in previous forecasts, users might conclude that 

the reserves for mortality-linked products or payments should be higher for a 

longer period of time, or be delayed to a later date. For instance, retirement 

benefits would have to be paid over a longer period of time if people are expected 

to live longer. If mortality forecasts become more robust, users will have to make 

fewer adjustments to the estimates they rely on. For instance, plans to increase the 

state pension age in the Netherlands, which is linked by law to the forecasted life 

expectancy, will develop more evenly if the forecast is more robust. 

The outcomes of the new mortality forecasts of Statistics Netherlands also affect the 

official population forecasts for the Netherlands issued by Statistics Netherlands, for 

which the mortality forecasts represent an important input. Together with 

assumptions about future migration and fertility, this information (based on the 

cohort component method) will contribute to a comprehensive forecast of the 

future population in the Netherlands. From this forecast, other measures can be 

derived, such as the extent of ageing. If the forecasted life expectancy is higher, the 

extent of ageing will also be higher than previously expected. The greater 

robustness of the mortality forecasts will lead to more robust population forecasts 
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(with respect to mortality) as well. Users should also be aware of how the changes 

in the population forecasts are related to the new methodology for the mortality 

forecasts, because once again this association affects various aspects of life (for 

instance, how many people will receive a pension).

When applying the outcomes of the mortality forecasts (and, subsequently, the 

population forecasts), users should keep in mind that these measures (like life 

expectancy at birth) are averages of the population, and will not apply to all 

segments of the population, as there are very large differences in life expectancy 

based on, for instance, socio-economic status (Mackenbach et al. 2008; Van 

Kippersluis et al. 2010). On average, people with fewer years of education have 

much shorter lives than their better educated counterparts, and some studies have 

even reported a widening of inequalities in life expectancy between different 

socio-economic groups. Thus, the overall life expectancy numbers become less 

informative over time. Users should be aware of this diversity within the 

population. 

A flexible attitude towards the outcomes of mortality forecasts is required of users, 

as the results of a given mortality forecast will change in response to new mortality 

developments, new underlying factors, new knowledge about mortality 

developments, and new methodologies. Moreover, users should be cognisant that 

a degree of uncertainty is inevitable in every forecast.
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Als onderdeel van de bevolkingsprognose publiceert het CBS om het jaar een 

langetermijnprognose voor de sterftekansen en de levensverwachting in 

Nederland. De nieuwste update van deze prognose is op 13 december 2012 

verschenen. Het model voor de sterfteprognose is daarin aangepast. De afgelopen 

jaren waren regelmatig grote bijstellingen in de prognose noodzakelijk. Om tot 

een betrouwbaardere en meer robuuste prognose te komen, wordt in de nieuwe 

methode ook rekening gehouden met de sterfteontwikkelingen in andere West-

Europese landen. Bovendien wordt informatie over ontwikkelingen in het 

rookgedrag op een systematische wijze in de prognose betrokken, wat in het oude 

model op beperktere schaal gebeurde. Waar de oude prognose een sterke 

remming voorzag van het stijgingstempo van de levensverwachting, daalt dit 

volgens de nieuwe prognose geleidelijker. Volgens de nieuwe prognose stijgt de 

periode-levensverwachting bij geboorte tussen 2012 en 2060 voor mannen met 

7,8 en voor vrouwen met 7,0 jaar, om uit te komen op respectievelijk 87,1 en 89,9 

jaar. Ten opzichte van de vorige prognose is dit een verhoging van 2,6 jaar voor 

mannen en van 2,5 jaar voor vrouwen. Op de korte termijn zijn er slechts kleine 

verschillen tussen de prognoses van 2012 en 2010.

A.1. Inleiding

Het CBS publiceert om het jaar een nieuwe bevolkingsprognose voor de lange 

termijn. Een onderdeel van de bevolkingsprognose is de prognose van de 

leeftijdsspecifieke sterftekansen. Deze liggen ten grondslag aan de berekening van 

het verwachte aantal sterfgevallen per jaar. Op basis van de sterftekansen worden 

verder sterftematen zoals de periode- en cohort-levensverwachtingen berekend. 

Deze worden gebruikt door onder meer pensioenverstrekkers en bij 

doorberekeningen van toekomstige overheidsuitgaven.

De prognoses van 2004 tot en met 2010 gebruikten een model dat uitging van 

uitsluitend Nederlandse data en maakten onderscheid naar tien groepen van 

doodsoorzaken (De Jong en Van der Meulen, 2005, Van Duin et al., 2011). Het model 

voor de prognose van 2012 gebruikt in plaats daarvan een onderverdeling naar 

rookgerelateerde en niet-rookgerelateerde sterfte en houdt ook rekening met 

sterfteontwikkelingen in andere West-Europese landen. Deze benadering is 

gebaseerd op de belangrijke rol van roken in de sterftetrends en plaatst de 

geobserveerde sterftefluctuaties voor Nederland in een internationale context. De 

methodologie leidt tot een stabielere trend die vervolgens als basis dient voor de 

projectie. De verwachting is dat hierdoor de bijstellingen tussen opeenvolgende 
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prognoses kleiner zullen worden. De nieuwe methode voor de sterfteprognose is een 

verfijning van de methode gebruikt als onderdeel van de Volksgezondheid Toekomst 

Verkenning 2010 van het RIVM (Janssen en Kunst, 2010, Janssen et al., te verschijnen).

Dit artikel beschrijft, in hoofdlijnen, de inhoudelijke argumentatie achter het 

gekozen sterfteprognosemodel (paragraaf A.1.1–A.1.4) en de schattingen op basis 

van dit model (paragraaf A.2). Paragraaf A.3 beschrijft de uitkomsten van de 

huidige prognose en maakt een vergelijking met de uitkomsten van de prognose 

in 2010. Paragraaf A.4 geeft een korte samenvatting.

A.1.1 Ontwikkelingen in de sterfte

Sinds het midden van de 19e eeuw dalen de sterftekansen in Nederland en andere 

geïndustrialiseerde landen. Vooruitgang in medische kennis en technologie en betere 

hygiëne, voeding en leefomstandigheden leidden ertoe dat het risico om voortijdig 

te overlijden sterk terugliep. Op basis van de sterftekansen in hun geboortejaar 

zouden een Nederlands jongetje en meisje uit 1870 gemiddeld 36 en 39 jaar oud 

zijn geworden. Een eeuw later was de periode-levensverwachting bij geboorte 

opgelopen tot respectievelijk 71 en 77 jaar. Het grootste deel van deze stijging kwam 

door een daling van de sterfte op jonge leeftijden. Meer recent wordt de 

ontwikkeling van de levensverwachting vooral bepaald door sterftedalingen bij de 

hogere leeftijden, aangezien de sterfte op jonge leeftijden al zo laag is dat een 

verdere daling de levensverwachting nog maar weinig beïnvloedt.

De daling van de sterftekansen en de toename in de levensverwachting verlopen 

niet gelijkmatig over de jaren. Periodes van relatieve stagnatie worden gevolgd 

door periodes van versnelde stijging, die later vaak tijdelijk blijken te zijn. Zo is 

tussen 1950 en 1970 de levensverwachting van mannen toegenomen met maar 

0,3 jaar per decennium, terwijl de levensverwachting van vrouwen in die periode 

toenam met 2,0 jaar per decennium (grafiek A.1.1.1). In de periode 1970-2002 

steeg de levensverwachting voor mannen vervolgens met 1,6 jaar per decennium. 

Bij de vrouwen was er in de jaren ’70 nog een sterke toename van 2,7 jaar, maar 

daarna vertraagde de groei tot 0,7 jaar per decennium over de periode 1980-

2002. Vanaf 2002 versnelde de stijgende trend bij zowel mannen als vrouwen 

sterk. De gemiddelde toename per decennium in de periode 2002-2011 bedroeg 

3,5 jaar voor mannen en 2,4 jaar voor vrouwen.

Doordat de toename in de levensverwachting voor mannen anders verliep dan 

voor vrouwen, varieert het verschil in levensverwachting tussen mannen en 

vrouwen over de jaren. In 1950 bedroeg het verschil 2,3 jaar. Door de stagnatie in 

de toename van de levensverwachting van mannen groeide dit naar 6,7 jaar begin 
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jaren ’80. Daarna stagneerde de groei in de levensverwachting van vrouwen, 

waardoor het verschil weer afnam. Ook in de periode vanaf 2002, waarin de 

levensverwachting van zowel mannen als vrouwen sterk toenam, daalde het 

verschil. In 2011 was het teruggelopen tot 3,7 jaar.

De (onverwacht) versnelde stijging van de levensverwachting sinds 2002 

betekende dat de kortetermijnontwikkeling niet aansloot bij de langetermijntrend. 

Dit leidde tot onderschattingen in opeenvolgende CBS-prognoses (grafiek A.1.1.1). 

De levensverwachting die voor 2050 werd voorzien in de prognose van 2002 en 

2004, werd in 2011 al vrijwel bereikt. In de prognoses van 2006 en 2008 werden 

de vooruitzichten voor de levensverwachting naar boven bijgesteld, maar bleek er 

nog steeds een onderschatting te zijn. In de prognose van 2010 werden de 

vooruitzichten voor de levensverwachting verder verhoogd. In 2012 bleek dat de 

prognose van 2010 de levensverwachting voor mannen correct heeft voorspeld, 

maar dat deze voor vrouwen 0,2 jaar te hoog is geschat1).

Het herhaaldelijk onderschatten van de toekomstige levensverwachting door 

prognoses gebeurt niet alleen in Nederland, maar is een wereldwijd fenomeen 

(Oeppen en Vaupel, 2002). Vaak waren onderschattingen een gevolg van de 

aanname dat de levensverwachting een biologisch vastliggende maximum waarde 

naderde en dus niet veel meer kon stijgen. Hoewel in de CBS-prognose uit 2010 

niet zo’n aanname is gedaan, voorzag ook deze prognose een sterke afremming 

van de toename van de levensverwachting.

A.1.2 De rol van roken

Voor Nederland kunnen de historische periodes van stagnatie (vooral voor 

mannen) en de schommelingen in het verschil in levensverwachting tussen 

mannen en vrouwen voor een groot deel verklaard worden door roken. Roken is 

een belangrijke factor voor de levensverwachting (Peto et al., 1996). Met de 

methode die beschreven wordt in paragraaf 2.3 kan de levensverwachting 

gecorrigeerd worden voor het effect van roken. Na deze correctie blijken de 

stagnatie onder mannen in de periode 1950–1970 en de verschillen in de 

ontwikkeling tussen de geslachten grotendeels verdwenen. Over de periode 

1970–2011 bleef het verschil in levensverwachting zonder roken tussen mannen 

en vrouwen rond de 3 jaar (grafiek A.1.2.1).

Het verschil in de totale levensverwachting en de levensverwachting zonder roken 

is verschillend voor mannen en vrouwen, doordat mannen eerder en massaler zijn 

1) We vergelijken met de geraamde levensverwachting voor 2012, op basis van de voorlopige sterftecij-

fers tot en met week 44. Hierop zit nog een onzekerheidsmarge van ongeveer 0,2 jaar
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begonnen met roken (zie ook Lopez et al., 1994). Tot begin jaren ’70 nam de totale 

levensverwachting voor mannen nauwelijks toe, terwijl de levensverwachting 

zonder roken wel toenam (grafiek A.1.2.1). Door de sterke afname van het aandeel 

rokers onder mannen vanaf de jaren ’50 liep de totale levensverwachting voor 

mannen sinds begin jaren ’80 in op de levensverwachting zonder roken.

Ook vrouwen roken momenteel minder dan in de jaren ’70, maar doordat het 

effect van roken vertraagd doorwerkt op de sterfte, is voor vrouwen de totale 

levensverwachting sinds 1980 minder toegenomen dan de levensverwachting 

zonder roken. Veranderend rookgedrag zorgt dus voor een duidelijk niet-lineair 

patroon in de levensverwachting.
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Doordat veranderingen in rookgedrag vertraagd doorwerken in de sterfte, geven 

de huidige rooktrends informatie over wat er in de (nabije) toekomst verwacht 

mag worden. Als gevolg van de daling van het aandeel rokende vrouwen in de 

afgelopen decennia zal de totale levensverwachting van vrouwen weer inlopen op 

de levensverwachting zonder roken, net als bij mannen is gebeurd. Het 

doortrekken van de huidige trend bij vrouwen in de totale sterfte zal daarom 

leiden tot een onderschatting van de levensverwachting op de lange termijn, 

omdat dan geen rekening wordt gehouden met een afname van de sterfte 

gerelateerd aan roken als gevolg van het gedaalde aandeel rokende vrouwen. 

Daarnaast valt te verwachten dat, wanneer de afname van het percentage rokers 

doorzet, het geslachtsverschil uiteindelijk terugloopt tot rond de 3 jaar, 

overeenkomstig het verschil in levensverwachting voor niet-rokende mannen en 

vrouwen.

A.1.3 Resterende fluctuaties in de levensverwachting

De periodes van stagnatie en sterkere toename van de levensverwachting die 

overblijven na correctie voor roken zijn voor mannen en vrouwen bijna gelijk 

(grafiek A.1.2.1). Eind jaren ’60 was er een stagnatie, waarna er vanaf begin jaren 

’70 een sterke stijging inzette. De toename van de levensverwachting stagneerde 

vervolgens weer in de jaren ’80 en ’90, gevolgd door een sterke toename vanaf 

2002. Onderzoek naar de omslag van stagnatie naar sterke groei in 2002 

suggereert dat de causale factoren onmiddellijk optraden in plaats van met een 

langdurige vertraging: de sterfte nam in bijna alle leeftijdsgroepen gelijktijdig af 

jaren
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(Mackenbach en Garssen, 2011). Van de vier onderzochte categorieën lijken 

veranderingen in de gezondheidszorg de beste kandidaat om de verandering van 

de sterftetrends te verklaren. Voorbeelden van deze veranderingen zijn een 

toename van de uitgaven aan gezondheidszorg en het aantal ziekenhuisopnames, 

beide gevolgen van een versoepeling van budgettaire beperkingen door de 

overheid. Het gepresenteerde bewijs is echter slechts indirect. Er waren geen 

plotselinge veranderingen in de gezondheidstoestand van ouderen, in hun fysieke 

of sociale omgeving of in hun levensstijl die deze omkering zouden kunnen 

verklaren. 

Zoals eerder aangegeven blijken periodes van relatieve stagnatie of versnelde 

stijging later vaak tijdelijk. Dit komt ook naar voren als de ontwikkeling van de 

levensverwachting in Nederland in een internationale context wordt geplaatst.

A.1.4 Nederland in vergelijking met andere  
West-Europese landen

Als gevolg van de schommelingen in de sterftetrends heeft het niveau van de 

levensverwachting in Nederland door de jaren heen een andere positie ingenomen 

dan die in andere geselecteerde landen in West-Europa2). Tot 1970 was de 

levensverwachting in Nederland voor zowel mannen als vrouwen bovengemiddeld 

vergeleken met andere West-Europese landen (grafiek A.1.4.1). Doordat voor 

mannen de jaarlijkse toename na 1970 in deze andere landen doorgaans hoger 

lag, was de levensverwachting in Nederland rond 2000 afgezakt naar het 

gemiddelde. Door de sterke stijging van de levensverwachting voor Nederlandse 

mannen sinds 2002 ligt hun levensverwachting sinds 2005 weer boven het 

gemiddelde niveau voor West-Europese mannen. De levensverwachting van 

Nederlandse vrouwen stagneerde vanaf 1980 in vergelijking met die van West-

Europese vrouwen. De levensverwachting van Nederlandse vrouwen lag daardoor 

rond de eeuwwisseling onder het West-Europees gemiddelde. Sinds 2002 loopt de 

levensverwachting van Nederlandse vrouwen ook iets in, maar de 

levensverwachting blijft nog ruim onder het West-Europese gemiddelde.

Ook andere landen in West-Europa hebben te maken gehad met tijdelijke 

versnellingen en vertragingen in de ontwikkelingen van de levensverwachting 

(grafiek A.1.4.1). De omslagpunten en de duur van periodes met stagnatie of 

herstel verschillen echter per land. Opvallend aan de gemiddelde 

2) Denemarken, Finland, Frankrijk, Duitsland, Italië, Noorwegen, Spanje, Zweden, Zwitserland en 

Engeland&Wales, bron HMD (2012). In het vervolg wordt verwezen naar deze groep als West-Europese 

landen.
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levensverwachting van de geselecteerde West-Europese landen is dat de jaarlijkse 

toename over de periode 1970-2008 nagenoeg constant is en de 

levensverwachting voor mannen en vrouwen een bijna rechte lijn vormt. 

Bovendien neemt de spreiding in levensverwachting tussen de landen niet toe, 

wat betekent dat over de langere termijn de individuele landen de trend van de 

groep volgden. Dit is een logisch gevolg van vooral universele sociaaleconomische 

ontwikkelingen en een over het algemeen gelijke ontwikkeling van medische zorg 

en leefstijl in de West-Europese landen. Daarnaast is er sprake van benchmarking: 

preventie- of behandelmethoden uit beter presterende landen kunnen worden 

overgenomen wanneer blijkt dat de ontwikkelingen op het gebied van 
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sterftereductie in een bepaald land achterblijft. Een voorbeeld is de toegenomen 

aandacht voor zuigelingensterfte in Nederland toen bleek dat de daling hiervan 

achterbleef bij die in andere Europese landen.

In grafiek A.1.4.1 is een prognose opgenomen voor de levensverwachting in de 

West-Europese landen met behulp van het Lee-Carter extrapolatiemodel (Lee en 

Carter, 1992). Hierbij is geen rekening gehouden met de invloed van roken op de 

sterfte. Het Lee-Carter extrapolatiemodel is een in andere landen veelgebruikte 

methode waarbij de historische sterftequotiënten worden geëxtrapoleerd. De 

toename in de levensverwachting van West-Europese mannen daalt volgens dit 

model van de huidige 3,0 jaar per decennium naar 1,4 jaar per decennium na 

2050. Voor West-Europese vrouwen daalt de toename van 2,0 jaar per decennium 

naar 1,2 jaar per decennium.

Het valt op dat de CBS-prognose in 2010, die zich baseert op de relatief minder 

gunstige ontwikkelingen in Nederland, een veel sterkere afname laat zien en 

daardoor divergeert van deze toekomstige trend voor de West-Europese landen. Als 

aangenomen wordt dat de stabiele trend in de sterfteontwikkelingen van de 

West-Europese landen zich in de toekomst doorzet, valt te verwachten dat de 

CBS-prognose de levensverwachting op de lange termijn onderschat.

A.2. Methode

A.2.1 Methode sterfteprognose vóór 2012

Sinds 2004 onderscheidt het CBS verscheidene doodsoorzaken in het 

prognosemodel (De Jong en Van der Meulen, 2005, Van Duin et al., 2011). Dit biedt 

de mogelijkheid om inhoudelijke informatie mee te wegen, bijvoorbeeld over 

determinanten van de sterfte door een bepaalde doodsoorzaak. Ook kunnen 

niet-lineariteiten in het verloop van de sterfte worden gemodelleerd die ontstaan 

doordat bij verschillende doodsoorzaken op verschillende momenten trendbreuken 

optreden. Voor een prognose die regelmatig wordt geactualiseerd, zoals de 

CBS-prognose, heeft deze aanpak als voordeel dat per doodsoorzaak kan worden 

nagegaan in hoeverre de prognose afwijkt van de realisatie, en of er nieuwe 

inzichten zijn over te verwachten ontwikkelingen, waarna gefundeerde 

bijstellingen kunnen worden doorgevoerd. Het nadeel van deze aanpak is dat het 

aantal benodigde veronderstellingen zeer groot is, omdat per doodsoorzaak en per 
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leeftijdscategorie veronderstellingen moeten worden opgesteld over het 

toekomstig verloop van de sterftekans. Dit maakt de methode in de praktijk weinig 

transparant. Daarnaast bleek het in de praktijk moeilijk om gefundeerde 

expertverwachtingen over toekomstige ontwikkelingen per doodsoorzaak te 

verkrijgen, waardoor grotendeels met extrapolatie moest worden gewerkt. 

Bovendien maakte het detailniveau van de prognose het problematisch om 

internationale trends mee te nemen.

Naast deze praktische problemen zijn er meer fundamentele bezwaren tegen het 

oude model. In de literatuur wordt als algemeen nadeel van het maken van een 

sterfteprognose naar doodsoorzaken genoemd dat de doodsoorzaak met de minst 

gunstige ontwikkeling de algehele sterfteontwikkeling gaat domineren (Wilmoth, 

1995). Impliciet veronderstelt een model dat sterfte per doodsoorzaak extrapoleert 

dat toekomstige doorbraken op medisch gebied plaatsvinden bij dezelfde ziekten 

waar in het verleden veel vooruitgang is geboekt, met als gevolg dat die 

doorbraken steeds minder effect hebben. Te verwachten valt echter dat medisch 

onderzoek zich juist meer zal richten op de ziekten die een toenemend aandeel in 

de sterfte hebben. Extrapoleren van trends per doodsoorzaak geeft dan een te 

pessimistisch beeld. Wanneer over een langere periode wordt gekeken, is ook 

zichtbaar dat de stijging van de levensverwachting in het verleden in verschillende 

perioden met vooruitgang in de bestrijding van verschillende doodsoorzaken 

samenhing (Wilmoth, 2000).

Dat de doodsoorzaak met de minst gunstige ontwikkeling de algehele 

sterfteontwikkeling gaat domineren in het prognosemodel naar doodsoorzaken 

verklaart gedeeltelijk de sterke afremming van de stijging van de geprojecteerde 

levensverwachting op de lange termijn. Wat verder meespeelt is dat de 

sterftekansen bij ouderen in Nederland sinds 1970 relatief weinig gedaald zijn ten 

opzichte van die in andere West-Europese landen. Met name in de jaren ‘80 en ‘90 

stagneerde de daling in de sterftekansen van ouderen (Janssen et al., 2004). De 

West-Europese trend in de sterftekansen bij ouderen is gunstiger. Doordat 

Nederland de laatste tien jaar bij deze trend heeft aangehaakt, lijkt de stagnatie in 

Nederland in de jaren ’80 en ’90 tijdelijk te zijn geweest. In de prognose van 2010 

werkten de ongunstige Nederlandse ontwikkelingen van de jaren ’80 en ’90 echter 

sterk door in de sterftetrend bij ouderen, doordat het model werkt met de 

veronderstelling dat het dalingstempo van de sterftekansen bij de verschillende 

leeftijden in de toekomst hetzelfde zal zijn als in het verleden. Dit heeft tot gevolg 

dat op de lange duur de tragere daling bij de hoogste leeftijden de sterftetrend 

gaan domineren, waardoor de stijging van de levensverwachting wordt afgeremd. 
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Door enkel rekening te houden met de ontwikkeling in Nederland leidde dit dus 

tot een extra afremming in de stijging van de geprojecteerde levensverwachting 

(grafiek A.1.4.1).

Samengevat was het voordeel van het oude model dat het een inhoudelijke 

toelichting gaf op de prognose van de levensverwachting. De 

toekomstverwachtingen werden geformuleerd op basis van duiding van recente 

ontwikkelingen en, waar mogelijk, op basis van beargumenteerde verwachtingen 

voor de toekomst. Voor een prognose die kort vooruit kijkt is dat mogelijk een 

goede aanpak, maar voor een langetermijnprognose is het essentieel om tijdelijke 

afwijkingen goed te onderscheiden van structurele ontwikkelingen. Hiervoor is het 

juist van belang om op een hoger niveau te kijken. Het onderscheid naar 

doodsoorzaken had meerwaarde waar het de mogelijkheid gaf om het effect van 

veranderend rookgedrag op de sterfte aan longkanker en COPD te modelleren. Dat 

aspect is in het huidige model gehandhaafd, maar uitgebreid naar een breder 

onderscheid tussen longkankersterfte en overige rookgerelateerde sterfte enerzijds 

en niet-rookgerelateerde sterfte anderzijds.

A.2.2 Methode sterfteprognose 2012

Ten opzichte van de voorgaande sterfteprognoses is er een grote verandering 

aangebracht in de methode die de sterftekansen projecteert. De methode is een 

verfijning van de methode uit de Volksgezondheid Toekomst Verkenning 2010 van 

het RIVM (Janssen en Kunst, 2010, Janssen et al., te verschijnen). Hierin werd een 

nieuwe methodologie gebruikt die rekening houdt met de sterfteontwikkelingen 

in andere Europese landen en die bovendien informatie over ontwikkelingen in 

roken op een systematische wijze in de berekening betrekt. De nieuwe 

methodologie sluit aan bij de inhoudelijke observaties uit paragraaf A.1 over de 

belangrijke rol van roken in de sterftetrends en de plaatsing van de geobserveerde 

sterftefluctuaties voor Nederland in een internationale context.

Roken verklaarde voor een groot deel de historische stagnaties en de verschillen in 

de ontwikkeling in de sterfte tussen mannen en vrouwen. Daarnaast liet roken een 

duidelijk niet-lineair patroon zien als gevolg van de toename en afname van het 

percentage rokers in Nederland, eerst voor mannen en vervolgens voor vrouwen 

(zie ook paragraaf A.1.2). Het is belangrijk om deze niet-lineaire patronen te 

onderscheiden van de algehele sterfteontwikkelingen. De resterende niet-

rookgerelateerde sterfte is stabieler en kan hierdoor beter gebruikt worden voor 

de projectie (Janssen en Kunst, 2007). De niet-lineaire ontwikkelingen in de 

rookgerelateerde sterfte dienen daarnaast afzonderlijk te worden voorspeld.
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Na correctie voor roken blijven er periodes van stagnatie en sterkere toename 

aanwezig in de sterfteontwikkelingen in Nederland. Een eenduidige verklaring 

ontbreekt echter en dergelijke fluctuaties – die ook in andere West-Europese 

landen voorkomen – blijken achteraf vaak tijdelijk. Over het algemeen is een 

duidelijke toename van de levensverwachting in alle West-Europese landen te 

zien, door overeenkomstige sociaaleconomische ontwikkelingen, medische 

vooruitgang en leefstijl. De stabiele ontwikkelingen van een groep met landen 

geven daarom een betere indicatie van de toekomstige ontwikkelingen in de 

niet-rookgerelateerde sterfte. Daarnaast valt te verwachten dat Nederland ook in 

de toekomst niet langdurig uit de pas zal lopen met andere West-Europese landen. 

Voor de projectie van de niet-rookgerelateerde sterfte wordt daarom aangenomen 

dat de ontwikkeling voor de afzonderlijke geslachten in Nederland op de lange 

termijn parallel zal lopen aan de sterfteontwikkeling in vergelijkbare landen voor 

de afzonderlijke geslachten.

Voor de projectie van de niet-rookgerelateerde sterfte wordt aangenomen dat de 

daling van de leeftijdsspecifieke sterftekansen in West Europa in hetzelfde tempo 

doorzet als in de periode sinds 1970. Er wordt dus niet verondersteld dat deze 

kansen al dicht bij een ondergrens liggen en om die reden niet veel verder zouden 

kunnen dalen. Vroegere prognoses die wel een dergelijke ondergrens 

veronderstelden, met uiteenlopende inhoudelijke argumentaties, zijn steeds te 

conservatief gebleken (Wilmoth, 2000). Omdat sterftekansen op hoge leeftijden in 

het verleden echter minder snel zijn gedaald dan op jonge en middelbare 

leeftijden, en dit ook voor de toekomst is te veronderstellen, wordt de toekomstige 

groei van de levensverwachting in de sterfteprognose van 2012 alsnog afgeremd. 

Naarmate meer mensen de hoge leeftijden bereiken, gaat het tragere 

dalingstempo van de sterfte op hoge leeftijden domineren, waardoor de stijging 

van de levensverwachting afzwakt. Dit wordt rectangularisatie genoemd. Dit is een 

duidelijk verschil ten opzichte van extrapolatiemodellen die de stijging in de 

levensverwachting lineair doortrekken, want deze modellen nemen impliciet aan 

dat de sterftedalingen bij de hogere leeftijden zullen versnellen. De methode voor 

de sterfteprognose 2012 neemt in dat opzicht een meer conservatief uitgangspunt: 

dat het waargenomen gemiddelde dalingstempo uit het verleden in de toekomst 

doorzet. Dit is in lijn met de huidige praktijk bij andere statistische bureaus 

(Stoeldraijer et al., ingediend). Omdat er geen consensus is dat deze zogenoemde 

rectangularisatie in de toekomst blijft optreden (Oeppen en Vaupel, 2002), is het 

mogelijk dat de gekozen methode voor de sterfteprognose 2012 alsnog te 

pessimistisch is.

De nieuwe methode voor de CBS-sterfteprognose 2012 bestaat uit drie belangrijke 

onderdelen: 1) het opsplitsen van de totale sterfte in niet-rookgerelateerde en 
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rook-gerelateerde sterfte met behulp van een indirecte schattingsmethode voor de 

sterfte gerelateerd aan roken, 2) de projectie van de niet-lineaire ontwikkelingen 

in rookgerelateerde sterfte door middel van een projectie van de 

longkankersterfte, en 3) de toevoeging van sterfteontwikkeling in andere landen 

aan de projectie van niet-rookgerelateerde sterfte waarin de trends uit het 

verleden worden doorgetrokken.

A.2.3 Beschrijving methode sterfteprognose 2012

De methode voor de sterfteprognose 2012 is opgedeeld in vier stappen. Deze 

worden grafisch weergegeven in grafiek A.2.3.1 en worden hieronder toegelicht 

(zie ook Bijlage A voor de formules). De methode start met het opdelen van de 

totale sterfte uit het verleden in twee groepen: de doodsoorzaak longkanker en 

alle andere doodsoorzaken (‘overig’). In stap 1 wordt de groep overig opgesplitst 

in rookgerelateerd en niet-rookgerelateerd aan de hand van een indirecte 

schattingsmethode op basis van de waargenomen longkankersterfte. Stap 2 is de 

projectie van de longkankersterfte en stap 3 een projectie van de overig niet-

rookgerelateerde sterfte. Hieruit volgen dus toekomstige waarden voor deze twee 

groepen. Met behulp van de toekomstige waarden uit stap 2 en 3 en opnieuw de 

indirecte schattingsmethode die ook in stap 1 is gebruikt, kunnen vervolgens in 

stap 4 de toekomstige waarden van de overig rookgerelateerde sterfte worden 

uitgerekend. Door optellen volgt dan de totale sterfte in de prognoseperiode.

A.2.3.1    Stappen CBS-sterfteprognose 2012
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Voor de berekeningen is globaal gebruik gemaakt van de leeftijdsintervallen 0, 

1–4, 5-9, …, 90–94, 95+ en de jaren 1970–2011. Welke data en leeftijdsintervallen 

precies per stap zijn gebruikt, staat in bijlage A. De leeftijdsspecifieke sterftekansen 

worden uit de sterftekansen per leeftijdsinterval afgeleid en gefit aan de raming 

van 2012.

Stap 1: Schatting overig rookgerelateerde en overig niet-rookgerelateerde sterfte

De eerste stap in het maken van de sterfteprognose is het uitrekenen van de sterfte 

die toe te kennen is aan roken. Idealiter zouden hiervoor data over rookgedrag en 

sterfte worden gebruikt zodat het verhoogde risico van rokers kan worden 

uitgerekend, maar uitgebreide gegevens zijn hierover niet beschikbaar. In plaats 

daarvan wordt een indirecte methode (Rostron, 2010) gebruikt om een schatting te 

maken van het aantal sterfgevallen dat niet zou plaatsvinden als rokers dezelfde 

sterftecijfers zouden hebben als nietrokers. Hierbij wordt aangenomen dat 

rookgedrag de enige factor is die het risico van longkankersterfte van rokers ten 

opzichte van niet-rokers verhoogt. De methode gebruikt een statistisch 

regressiemodel om de relatie tussen longkankersterfte en sterfte aan andere 

doodsoorzaken in ontwikkelde landen tussen 1950 en 2003 te schatten. Aan de 

hand van deze relatie kan worden uitgerekend hoeveel sterfgevallen er zouden 

zijn gegeven de waargenomen longkankersterfte in de populatie en hoeveel 

sterfgevallen er zouden zijn als de longkankersterfte het niveau van een niet-

rokende populatie zou hebben. Het verschil tussen deze aantallen, gedeeld door 

het geschatte aantal sterfgevallen gegeven de waargenomen longkankersterfte in 

de populatie, geeft het aandeel rookgerelateerde sterfte. De methode is 

toepasbaar op verschillende populaties. Naast de totale sterftecijfers zijn alleen 

gegevens over longkankersterfte nodig.

De schatting wordt uitgevoerd voor Nederland en voor de West-Europese landen 

Denemarken, Duitsland, Engeland en Wales, Finland, Frankrijk, Italië, Noorwegen, 

Spanje, Zweden en Zwitserland. De in deze stap verkregen ‘overig niet-

rookgrelateerde sterfte’ wordt vervolgens geprojecteerd in stap 3.

Stap 2: Projectie longkankersterfte

De longkankersterfte wordt geprojecteerd met behulp van het zogenaamde 

Age-Period-Cohort-model (APC-model). Dit model is populair in de epidemiologie 

met verscheidene toepassingen in de sterfte naar doodsoorzaken en ziekte-

incidentie en wordt ook binnen de demografie toegepast op historische sterftedata 

(Bonneux et al., 2003, Barendregt et al., 2002).
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Het APC-model beschrijft (de log van) de sterftecijfers als een som van effecten van 

leeftijd (Age), periode (Period) en geboortejaar (Cohort). Zo wordt onderscheid 

gemaakt tussen effecten met een duidelijke periode-signatuur, zoals de invoering 

van maatregelen die stoppen met roken stimuleren, of het beschikbaar komen van 

nieuwe behandelmethoden, en historische factoren die gedurende de rest van het 

leven doorwerken, zoals structurele stijgingen of dalingen van het aantal jongeren 

dat begint met roken.

Voor de projectie wordt gebruik gemaakt van de aanname dat de huidige trends in 

de toekomst zullen voortzetten. Daarbij wordt aangenomen dat de toename van 

longkankersterfte vooral veroorzaakt is – en bij vrouwen nog zal worden 

veroorzaakt – door een cohortpatroon en dat de afname van de longkankersterfte 

een periodepatroon volgt. Aangenomen wordt dat de longkankersterfte van 

mannen in de projectieperiode verder zal dalen, terwijl de longkankersterfte van 

vrouwen voor de meeste leeftijden zal stijgen tot het niveau van mannen is bereikt 

en vervolgens gelijk met de mannen zal dalen. Voor deze aanname is gebruik 

gemaakt van het algemene rookepidemiemodel van Lopez et al. (1994) en 

ervaringen in Engeland en Denemarken. De aanname spoort bovendien met de 

ontwikkelingen in de longkankersterfte bij vrouwen onder de 50, waar de omslag 

van stijgende naar dalende sterfte al heeft plaatsgevonden. In bijlage B is een 

grafiek met de resultaten opgenomen.

Stap 3: Projectie overig niet-rookgerelateerde sterfte

De niet-rookgerelateerde sterfte in Nederland wordt geprojecteerd door rekening 

te houden met de sterfte ontwikkelingen in andere landen in West-Europa (Janssen 

en Kunst, 2010). Hiertoe wordt het Li-Lee-model gebruikt (Li en Lee, 2005). Dit 

model is een uitbreiding van de Lee-Carter-methodologie (Lee en Carter, 1992), die 

ervan uitgaat dat de dynamiek van de sterftecijfers in de tijd wordt aangedreven 

door een enkele tijdsafhankelijke parameter. Het Lee-Carter-model veronderstelt 

een constant dalingstempo van de leeftijdsspecifieke sterftecijfers, waarbij het 

tempo wel tussen leeftijden kan verschillen. Door het verwijderen van de niet-

lineaire rookgerelateerde sterfte uit de totale sterfte, wordt de fit van het model 

aan de waarnemingen verbeterd, wat tot betere parameterschattingen en een 

stabielere extrapolatie leidt.

De Li-Lee-methodologie is ontwikkeld met het idee dat de sterftetrends van 

verschillende landen in de toekomst niet langdurig zullen divergeren. Hierbij 

worden verschillen in de sterfte op korte termijn behouden, maar op de lange 

termijn zijn de leeftijdspecifieke sterftecijfers beperkt tot een constante verhouding 

met elkaar. In de praktijk komt het erop neer dat de Lee-Carter-methodologie twee 
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keer wordt toegepast: eerst op de sterfte in de totale populatie om de 

gemeenschappelijke trend in leeftijdsspecifieke sterftecijfers te bepalen, en 

vervolgens op de residuen voor ieder land afzonderlijk om de afwijking ten 

opzichte van de gemeenschappelijke trend te bepalen.

Als totale populatie wordt gekozen voor de eerder genoemde West-Europese 

landen (inclusief Nederland) per geslacht. De gekozen landen hebben een 

vergelijkbaar (relatief hoog) sociaaleconomisch ontwikkelingsniveau. De overige 

niet-rookgerelateerde sterfte uit stap 1 wordt hiertoe gewogen naar de bevolking 

van deze landen. De geslachten worden afzonderlijk bekeken omdat de 

levensverwachtingen voor mannen en vrouwen verschillen. Het samenvoegen van 

de geslachten in een model leidt daardoor bijna automatisch tot een convergentie. 

Deze aanname willen wij niet doen. Bovendien is de trend in de overige niet-

rookgerelateerde sterfte voor mannen en vrouwen afzonderlijk robuust genoeg.

Deze stap geeft vervolgens als uitkomst de projectie van de overige niet-

rookgerelateerde sterftecijfers per geslacht voor de totale groep West-Europese 

landen en voor Nederland.

Stap 4: Berekenen projectie totale sterfte

In de laatste stap worden de geprojecteerde longkankersterfte en de 

geprojecteerde overige nietrookgerelateerde sterfte gebruikt om de overige 

rookgerelateerde sterfte uit te rekenen. Hiervoor wordt weer de methode van 

Rostron (2010) uit stap 1 gebruikt, maar dan in omgekeerde volgorde. Door 

optelling van de longkankersterfte, niet-rookgerelateerde sterfte en 

rookgerelateerde sterfte ontstaat de totale sterfte.

A.2.4 Aannames

In het voorgaande is een aantal aannames langsgekomen die aan de prognose ten 

grondslag liggen. Deze paragraaf vat deze voor de helderheid samen.

Verondersteld wordt dat de stabiele dalende trend in de leeftijdsspecifieke 

sterftekansen in West-Europese landen in hetzelfde tempo doorzet, en dat de 

tempoverschillen tussen de verschillende leeftijdsgroepen blijven bestaan. Daarbij 

lopen de niet-rookgerelateerde sterfteontwikkelingen voor Nederlandse mannen 

en vrouwen op de lange termijn parallel aan de niet-rookgerelateerde 

sterfteontwikkelingen voor mannen en vrouwen in de geselecteerde West-

Europese landen.
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De periode 1970–2011 wordt gebruikt als basisperiode voor de projectie. Dit is een 

subjectief element in de prognose, maar omdat de sterfte wordt opgesplitst in 

rookgerelateerd en niet-rookgerelateerd en er rekening wordt gehouden met 

internationale trends, is dit element minder van belang vanwege de stabielere 

historische trend.

Er wordt aangenomen dat de huidige daling in de longkankersterfte van mannen 

zal doorzetten. Voor de vrouwen wordt verondersteld dat de stijging van de 

longkankersterfte in de verschillende leeftijdscategorieën doorzet tot het niveau 

bij mannen is bereikt, waarna een daling zal inzetten, zoals ook bij de mannen is 

gebeurd. Dit vertaalt zich in soortgelijke toekomstige trends voor mannen en 

vrouwen voor de rookgerelateerde sterfte. Omdat de rookgerelateerde sterfte 

vertraagd reageert op veranderingen in rookgedrag, rechtvaardigen het dalende 

aandeel rokende mannen en de toename van het aandeel rokende vrouwen dat 

gevolgd werd door een daling in de afgelopen decennia deze aannames 

kwalitatief voor ongeveer de komende twintig jaar. Voor de veronderstelde 

langeretermijndaling van de longkankeren rookgerelateerde sterfte moet de 

dalende trend in het percentage rokers ook in de toekomst doorzetten, of moet 

roken minder schadelijk worden.

De indirecte schattingsmethode voor de rookgerelateerde sterfte berust op de 

aanname dat de relatie tussen veranderingen in de longkankersterfte en de 

rookgerelateerde sterfte aan andere doodsoorzaken dan longkanker over de tijd 

stabiel is. Daarnaast is aangenomen dat roken geen invloed heeft op de sterfte 

voor mannen onder de 40 en voor vrouwen onder de 45 jaar.

A.3. Resultaten

A.3.1 Levensverwachting bij geboorte en op leeftijd 65

De levensverwachting bij geboorte stijgt volgens de nieuwe prognose tot 87,1 jaar 

voor mannen en 89,9 jaar voor vrouwen in 2060 (grafiek A.3.1.2). Ten opzichte van 

de raming van 2012 betekent dit een toename van 7,8 jaar bij mannen en 7,1 jaar 

bij vrouwen. Het verschil in levensverwachting tussen mannen en vrouwen loopt 

volgens de prognose terug van 3,6 jaar op dit moment tot 2,8 jaar in 2060.



200    

A.3.1.2    Levensverwachting bij geboorte
jaren a.   mannen
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A.3.1.1 Toename in de levensverwachting bij geboorte per decennium
 

Mannen Vrouwen
  

Nederland West-Europa 1) Nederland West-Europa 1)

 

 

1970–1980 1 ,7 2 ,0 2 ,7 2 ,6
1980–1990 1 ,4 2 ,2 0 ,9 2 ,2
1990–2000 1 ,7 2 ,7 0 ,5 2 ,1
2000–2010 3 ,2 2 ,8 2 ,1 1 ,9
2010–2020 2 ,0 1 ,9 1 ,1 1 ,7
2020–2030 1 ,8 1 ,8 1 ,3 1 ,6
2030–2040 1 ,6 1 ,6 1 ,7 1 ,4
2040–2050 1 ,5 1 ,5 1 ,6 1 ,3
2050–2060 1 ,4 1 ,4 1 ,4 1 ,2
  

1) Denemarken, Finland, Frankrijk, Duitsland, Italië, Noorwegen, Spanje, Zweden, Zwitserland en Engeland&Wales, bron 
Human Mortality Database. De trend van de West-Europese landen is doorgetrokken met een Lee-Carter-model.
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Voor vrouwen is een duidelijk niet-lineair patroon te zien in de toekomstige 

levensverwachting bij geboorte als gevolg van de toenemende sterfte door roken. 

Vergeleken met het West-Europese gemiddelde zal de levensverwachting voor 

Nederlandse vrouwen de komende periode minder snel stijgen (tabel A.3.1.1). 

Wanneer de sterfte door roken gaat dalen, neemt de levensverwachting weer 

sterker toe. Daarnaast remt bij beide geslachten de stijging van de 

levensverwachting op de lange termijn af, doordat de minder gunstige 

sterftetrends bij de hoge leeftijden het beeld steeds meer gaan domineren 

naarmate mensen gemiddeld ouder worden.

Verwacht wordt dat de levensverwachting op 65-jarige leeftijd over de periode 

2012 – 2060 voor mannen zal toenemen met 5,9 jaar en voor vrouwen met 5,1 

A.3.1.3    Levensverwachting op leeftijd 65
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jaar (grafiek A.3.1.3). Het verschil in levensverwachting tussen mannen en vrouwen 

zal naar verwachting afnemen van 2,9 jaar nu tot 2,1 jaar in 2060. Ook op oudere 

leeftijd is het niet-lineaire patroon in de levensverwachting van vrouwen 

overduidelijk te zien.

A.3.2 Bijstellingen ten opzichte van de vorige prognose

Vergeleken met de CBS-prognose 2010 komt de levensverwachting bij geboorte in 

2060 voor mannen 2,6 jaar hoger uit en voor vrouwen 2,5 jaar hoger, als gevolg 

van de aangepaste methodologie en daaraan gerelateerde aannames 

(grafiek A.3.1.2). De nieuwe prognose ligt daarbij op de bovenste rand van het 

67-procent-interval uit de prognose van 2010. Op de korte termijn zijn er voor 

mannen echter nauwelijks verschillen tussen de prognoses en voor vrouwen ligt de 

levensverwachting bij geboorte zelfs iets lager.

De levensverwachting op 65-jarige leeftijd komt voor mannen 2,2 jaar en voor 

vrouwen 1,8 jaar hoger uit vergeleken met de vorige prognose (grafiek A.3.1.3). 

Net als de levensverwachting bij geboorte, komt de levensverwachting op 

65-jarige leeftijd uit op de bovenste rand van het 67-procent-interval van de 

prognose uit 2010.

Grafieken A.3.2.1 en A.3.2.2 tonen de sterftekansen voor mannen en vrouwen in 

verschillende leeftijdscategorieën volgens de huidige prognose en die uit 2010. De 

bijstellingen hebben vooral betrekking op de leeftijden boven de 50 jaar. De 

sterftekansen voor mannen liggen in deze leeftijdscategorieën onder het niveau 

uit de prognose in 2010. De sterftekans voor vrouwen in de leeftijd van 70-79 jaar 

ligt de eerste 20 jaar boven het niveau van de vorige prognose en is op oudere 

leeftijd ongeveer gelijk. Daarna treedt een sterkere afname op.
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A.3.3 Evaluatie van de effecten van de verschillende 
componenten

Grafiek A.3.3.1 toont een vergelijking van de levensverwachting bij geboorte 

volgens de prognose en drie varianten. De eerste variant is een model waarin het 

effect van roken op de sterfte niet wordt meegenomen. Voor vrouwen krijgt de 

geprojecteerde levensverwachting in deze variant een meer lineair verloop 

doordat geen rekening wordt gehouden met de aanstaande omslag van stijgende 

naar dalende rookgerelateerde sterfte door veranderingen in het rookgedrag. Rond 

A.3.2.1 Sterftekansen van mannen en vrouwen 0–79 jaar per leeftijdsgroep
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2030 ligt de levensverwachting bij geboorte van vrouwen volgens deze variant 

ongeveer een half jaar lager dan volgens de prognose en in 2060 een kwart jaar 

lager. De levensverwachting voor mannen komt met deze variant over de hele 

prognoseperiode lager uit (tot een half jaar lager in 2060). Dit komt doordat de 

sterftetrend van de totale sterfte minder goed was dan voor de niet-

rookgerelateerde sterfte ten opzichte van de Europese landen.

De tweede variant neemt wel het effect van roken mee, maar houdt geen rekening 

met de trends in andere West-Europese landen. Voor zowel mannen als vrouwen 

komt de levensverwachting met deze variant lager uit. In 2060 bedraagt het 

verschil 1,5 jaar voor mannen en 1,0 jaar voor vrouwen. De laatste variant is een 

model waarin noch roken noch de West-Europese trends zijn meegenomen. Dit 

A.3.2.2 Sterftekansen van mannen en vrouwen 80-plus per leeftijdsgroep
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komt neer op een Lee-Carter-schatting op basis van alleen de Nederlandse 

sterftecijfers sinds 1970. Deze variant geeft de laagste prognose van de 

levensverwachting: in 2060 ligt deze 2,0 jaar lager voor mannen en 1,7 jaar lager 

voor vrouwen. De uitkomsten van deze variant liggen dicht bij de CBS-prognose uit 

2010. 

Bovenstaande laat zien dat voor het berekenen van de levensverwachting bij 

geboorte het meenemen van Europese landen belangrijker is dan het onderscheid 

tussen roken en niet-roken. Het meenemen van de invloed van rookgedrag heeft 

vooral invloed op de kortetermijnontwikkeling bij vrouwen. Het relatieve belang 

van de componenten verschilt echter per leeftijd.

A.3.4 Cohort-levensverwachting

De periode-levensverwachting bij geboorte geeft een sterke onderschatting van de 

werkelijke levensduur, omdat in de berekening wordt verondersteld dat de 

sterftekansen in het geboortejaar gedurende het hele leven gelden. Profijt van 

bijvoorbeeld medische vooruitgang wordt dus buiten beschouwing gelaten. Uit de 

geprognosticeerde sterftekansen tot en met 2060 kan echter de cohort-

levensverwachting worden berekend voor generaties met een geboortejaar tot en 

met 1960. Van de jongere generaties zal een belangrijk deel na 2060 nog in leven 

zijn, zodat zonder extra aannames op basis van de prognose niets kan worden 

gezegd over de levensverwachting van deze groepen.

A.3.3.1 Levensverwachting bij geboorte, alternatieve methoden
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Grafiek 3.4.1 toont de cohort-levensverwachting bij geboorte voor de 

geboortecohorten vanaf 1900. De generatie uit 1900 had een werkelijke 

levensverwachting van ongeveer 52 jaar voor mannen en 58 jaar voor vrouwen. 

Mannen die in 1960 zijn geboren leven naar verwachting gemiddeld 80 jaar en 

vrouwen bijna 84 jaar. Dit betekent dat de levensverwachting ten opzichte van de 

generatie uit 1900 voor mannen 28 jaar hoger ligt en voor vrouwen 26 jaar; 

ongeveer een half jaar winst per cohort. De toename is voor een groot deel het 

gevolg van dalende sterftekansen op jonge leeftijden.

De periode-levensverwachting in 1960 was 71,4 jaar voor mannen en 75,3 jaar 

voor vrouwen. Het verschil met de cohort-levensverwachting is daarmee voor 

zowel mannen als vrouwen ruim 8,5 jaar. Dit betekent dat de personen geboren in 

1960 naar verwachting 8,5 jaar langer zullen leven dan de 

periodelevensverwachting aangeeft. 

Vergeleken met de prognose uit 2010 is de geschatte cohort-levensverwachting bij 

geboorte in 1960 voor mannen 1,0 jaar hoger en voor vrouwen 0,8 jaar hoger. Bij 

oudere geboortecohorten zijn de verschillen kleiner. Omdat de bijstelling van de 

sterfteprognose vooral de lange termijn betreft, werkt het effect daarvan met 

name door in de levensverwachting van jongere geboortecohorten.
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A.4. Conclusie

De nieuwe methode van de CBS-sterfteprognose 2012 houdt rekening met de 

sterfteontwikkelingen in andere West-Europese landen. Bovendien wordt 

informatie over ontwikkelingen in roken er op een systematische wijze in 

betrokken. Volgens de nieuwe prognose stijgt de periode-levensverwachting bij 

geboorte tussen 2012 en 2060 met 7,8 jaar voor mannen en met 7,0 jaar voor 

vrouwen, om dan uit te komen op respectievelijk 87,1 en 89,9 jaar. Ten opzichte 

van de vorige prognose is dit een verhoging van 2,6 jaar voor mannen en een 

verhoging van 2,5 jaar voor vrouwen. Op de korte termijn zijn er echter nauwelijks 

verschillen tussen de twee prognoses.

Bijlage A Methode
Deze bijlage beschrijft de methode van de CBS-sterfteprognose 2012. Alle 

berekeningen zijn uitgevoerd in het programma R (www.r-project.org/).

Naast gegevens over Nederland zijn gegevens opgenomen over Denemarken, 

Duitsland, Engeland en Wales, Finland, Frankrijk, Italië, Noorwegen, Spanje, 

Zweden en Zwitserland. Voor deze landen zijn de gegevens over longkanker 

verkregen van de World Health Organization (WHOSIS, 2012). De gegevens over de 

totale sterfte en populatie zijn overgenomen uit de Human Mortality Database 

(HMD, 2012). De gegevens voor Nederland zijn verkregen via Statline. De data zijn 

uitgesplitst naar jaar, geslacht en 5-jaars leeftijdsgroepen. Voor het omzetten van 

de sterftekansen van 5-jaars leeftijdsgroepen naar 1-jaarsgroepen is de 1-jaars-

sterftekans voor de jaren 2010 en 2011 van Statline gebruikt.

Notatie

 sterftecijfer overige doodsoorzaken, leeftijd x en jaar t

 niet- rookgerelateerde sterftecijfer overige doodsoorzaken,  

 leeftijd x en jaar t

 sterftecijfer longkanker, leeftijd x en jaar t
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Stap 1: Schatting overig rookgerelateerde en overig niet-rookgerelateerde sterfte

In stap 1 wordt de niet-rookgerelateerde sterfte geschat met behulp van de 

methode van Rostron (2010). Hiervoor wordt een fractie berekend met behulp van 

de longkankersterfte en de coëfficiënten uit het artikel (tabel A.1).

De coëfficiënten uit Rostron (2010) zijn het resultaat van een regressie van de (log) 

overige sterfte op de longkankersterfte en enkele sets van dummyvariabelen voor 

leeftijd, jaar en het land. De regressie ziet er als volgt uit (let op: de notatie uit het 

artikel van Rostron is hier overgenomen):

waarin 

 : sterftecijfer overige doodsoorzaken

 : sterftecijfer longkanker

 : set van dummyvariabelen voor iedere leeftijdsgroep

 : set van dummyvariabelen voor ieder jaar

 : set van dummyvariabelen voor ieder land

 : jaar (als een lineaire variabele)

Aan de hand van deze relatie kan worden uitgerekend hoeveel sterfgevallen er 

zouden zijn gegeven de waargenomen longkankersterfte in de populatie en 

hoeveel sterfgevallen er zouden zijn als de longkankersterfte het niveau van een 

niet-rokende populatie zou hebben. Dit verschil, gedeeld door het geschatte aantal 

sterfgevallen gegeven de waargenomen longkankersterfte in de populatie, geeft 

A.1 Coëfficiënten voor longkankersterfte (Rostron, 2010) en 
longkankersterfte voor niet-rokers (Thun et al., 1997) per 
leeftijdsgroep

 

Coëfficiënten Longkankersterfte niet-rokers
  

Mannen Vrouwen Mannen Vrouwen

 

 

per 1 000 per 100 000

  

50–54 0 ,348 0 ,707 5 ,5 5 ,8

55–59 0 ,174 0 ,510 5 ,3 7 ,2

60–64 0 ,113 0 ,382 11 ,6 12 ,3

65–69 0 ,079 0 ,218 21 ,5 16 ,7

70–74 0 ,060 0 ,137 34 ,9 30 ,5

75–79 0 ,046 0 ,061 52 ,0 32 ,5

80+ 0 ,028 0 ,013 89 ,2 57 ,6
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het aandeel rookgerelateerde sterfte. Deze procedure is gelijk aan het toepassen 

van de volgende formule:

 

waarbij  de som  van , en  (naar leeftijdsgroep) uit vergelijking (1) 

is en  de longkankersterfte voor niet-rokers (Thun et al., 1997, zie tabel A.1). 

Het aandeel  geeft dus per leeftijdsgroep en per jaar het gedeelte van 

de overige sterfte dat gerelateerd is aan roken.

De fractie wordt vervolgens gebruikt om de overige doodsoorzaken op te splitsen 

in niet-rookgerelateerd en rookgerelateerd met behulp van de volgende formule:

 

De berekening van de fracties en de opsplitsing in rookgerelateerd en niet-

rookgerelateerd worden voor ieder land in de prognose berekend voor de jaren 

1970-2011 (of het meest recent beschikbare jaar). Doordat de coëfficiënten uit 

Rostron (2010) beschikbaar zijn voor de leeftijden 50–54, 55–59,…,80+, wordt de 

fractie voor de leeftijdsgroep 80+ toegepast op de leeftijdsgroepen 80–85, 85–90, 

90–95 en 95+, en de coëfficiënt voor de leeftijdsgroep 50–54 op de leeftijden 

40-45 en 45-50 voor mannen en 45-50 voor vrouwen. Alle sterfte onder leeftijd 40 

voor mannen en leeftijd 45 voor vrouwen wordt gerekend als niet-rookgerelateerd 

(fractie is hier dus gelijk aan nul), omdat op de jongere leeftijden rookgerelateerde 

sterfte nauwelijks voorkomt. De waargenomen fracties worden weergegeven in 

grafiek C.1 in bijlage C. 

Stap 2: Projectie longkankersterfte

Stap 2 is de projectie van de longkankersterfte met behulp van een Age-Period-

Cohort-model (APC–model). De longkankerdata uit de periode 1950-2009 wordt 

hiervoor omgezet naar vijfjaarsperioden. De leeftijden voor mannen zijn 40–44, 

45–49,.., 80+ voor mannen en 45–49,…, 80+ voor vrouwen.

Het APC-model heeft de volgende vorm:

 

De parameters  en  stellen de leeftijd, periode en cohort-effecten voor 

en is een driftterm voor de periode. Deze driftterm geeft het lineaire effect weer 

van de periode. Om het model identificeerbaar te maken, worden de eerste en 



210    

laatste parameters van de periode en cohort-effecten op nul gezet. Het model 

wordt geschat met behulp van een poisson-regressie.

Voor mannen is puur de projectie van de afname nodig. Daarom wordt het APC-

model eerst geschat om de data vanaf het maximale cohort te kunnen bepalen en 

vervolgens nogmaals met deze nieuwe dataset (data vanaf cohort 1910) om de 

afnemende trend te berekenen. De projectie voor mannen heeft de volgende 

vorm:

Voor vrouwen is de methode iets ingewikkelder, omdat eerst nog een stijging in de 

longkankersterfte wordt verwacht als gevolg van de toename van het aandeel 

rokers in het verleden, en daarna pas een daling. Het model voor de stijging heeft 

de volgende vorm:

 

Vervolgens wordt het omslagpunt vanwaar de daling inzet uitgerekend met behulp 

van de projectie van mannen. Het jaar waarin  voor vrouwen per leeftijd 

hoger is dan de waarde van mannen is het omslagpunt. Wanneer  de waarde voor 

vrouwen hoger is dan de waarde van mannen in het jaar ervoor, wordt de waarde 

voor vrouwen aangepast aan die van mannen in het jaar ervoor. De daling verloopt 

vervolgens met dezelfde trend als bij mannen vanaf het omslagpunt. De geschatte 

driftterm  uit het model van mannen wordt dus toegepast vanaf het omslagpunt 

bij de vrouwen.

De keuze voor het omslagpunt volgt uit de observaties bij de jongere leeftijden 

waar de longkankersterfte van mannen en vrouwen elkaar al hebben gekruist, op 

basis van het epidemiemodel van Lopez et al. (1994) en op basis van een 

vergelijking met Engeland en Denemarken. Het maximum aan de toename van 

vrouwen wordt net na de kruising met mannen ingesteld omdat er door het 

gebruik van vijfjaarsdata anders een enorme toename ten opzichte van mannen 

kan optreden als het punt net voor de kruising al bijna gelijk is.
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Als laatste wordt de 5-jaarsprojectie omgezet naar een 1-jaarsprojectie met behulp 

van een spline en gefit aan de laatste waarneming (2011). In principe kan de 

projectiemethode op alle landen worden toegepast , maar voor de sterfteprognose 

van Nederland is dit alleen noodzakelijke voor de longkankersterfte in Nederland.

Stap 3: Projectie overig niet-rookgerelateerde sterfte

Stap 3 is de projectie van de niet-rookgerelateerde sterfte met behulp van een 

Li-Lee-methode (Li en Lee 2005). Hiervoor wordt meerdere keren een Lee-Carter-

model (Lee en Carter 1992) geschat met behulp van Singular Value Decomposition. 

Alle schattingen worden gedaan voor mannen en vrouwen afzonderlijk.

De gebruikte periode in deze stap is 1970-2011. Doordat voor enkele landen de 

meest recente gegevens (nog) niet beschikbaar zijn, worden de sterftecijfers voor 

de totale groep over 2009–2011 geschat met het Lee-Carter-model. Daarna wordt 

de Li-Lee-methode toegepast op deze aangevulde dataset.

Als eerste wordt het model geschat met de Nederlandse data:

 

Dit geeft , de leeftijdsverdeling van de sterftecijfers die constant is over de 

tijd.  is een leeftijdsspecifieke constante die de verandering over de tijd 

weergeeft en  de onderliggende tijdsverandering.  is de fout. Uit deze 

schatting is alleen  nodig.

Vervolgens wordt het Lee-Carter-model geschat voor de totale groep landen:

 

Dit geeft , de verbeteringen in de sterftecijfers per leeftijdsgroep, en , de 

algemene trend.  wordt vervolgens geëxtrapoleerd met een random walk met 

drift-model.

Als laatste wordt een schatting gemaakt voor de afwijking van Nederland ten 

opzichte van de groep. Hiervoor wordt eerst de schatting met de coëfficiënten van 

hiervoor uitgerekend en een Lee-Carter-model opgezet voor het verschil ten 

opzichte van de Nederlandse observaties:

   



212    

Hierin wordt het leeftijdspatroon van Nederland genomen ( ) en niet dat van 

de totale groep, omdat dit element niet tot divergentie leidt en het dus niet voor 

alle landen hetzelfde hoeft te zijn. De schatting geeft  en . 

wordt geëxtrapoleerd met een AR(1)-model. Indien de coëfficiënt hiervan groter is 

dan 1 (oftewel, er is divergentie op de lange termijn), dan wordt  voor de 

toekomst constant gehouden aan de schatting van het laatste waarneemjaar.

De toekomstige waarden voor de niet-rookgerelateerde sterfte overige 

doodsoorzaken worden als volgt berekend:

Stap 4: Berekenen projectie totale sterfte

Stap 4 is het berekenen van de projectie van de totale sterfte. Hiervoor wordt eerst 

de fractie nietrookgerelateerde sterfte van de overige doodsoorzaken uitgerekend 

voor de projectieperiode met behulp van de geprojecteerde longkankersterfte:

 

De geprojecteerde fracties worden weergegeven in grafiek C.1 in bijlage C.

Vervolgens kan de totale sterfte overige doodsoorzaken uitgerekend worden met 

de geprojecteerde rookgerelateerde fractie en de geprojecteerde niet-

rookgerelateerde sterfte overige doodsoorzaken:

 

De laatste stap is het optellen van de sterfte overige doodsoorzaken en de 

longkankersterfte:

 

Omzetten naar 1-jaars-sterftekansen

Het patroon van de sterftekansen in 2010–2011 wordt toegepast op het 

leeftijdsverloop binnen de vijfjaarscategorieën. Vervolgens worden de log-

sterftekansen glad gemaakt met een 5-punts lopend gemiddelde. De kansen voor 

de twee laagste leeftijdscategorieën worden daar niet bij betrokken.
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Bijlage B  
Projectie van de longkanker
Grafiek B.1 geeft de longkankerprojectie weer. Hierin is te zien dat de toekomstige 

longkankersterfte voor mannen zal afnemen en voor vrouwen eerst zal toenemen, 

maar daarna ook zal afnemen nadat de trend van mannen is gekruist.
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B.1    Projectie longkankersterfte per leeftijdsgroep
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Bijlage C  
Fractie rookgerelateerde sterfte
Grafiek C.1 geeft de fractie rookgerelateerde sterfte weer van de overige 

doodsoorzaken per leeftijdsgroep voor mannen en vrouwen in de periode 1950–

2060. Deze fractie wordt berekend op basis van de waargenomen en 

geprojecteerde longkankersterfte en de methode van Rostron (2010).
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The aim of the current PhD research was to evaluate mortality forecasting in the 

context of non-linear past mortality trends. Having accurate and high-quality 

mortality forecasts has become increasingly important due to the general increase 

in life expectancy and the social consequences of this (ageing, health care, 

housing, social security, pensions).

The majority of current methods of mortality forecasting are extrapolative in 

nature; that is, they extend a past mortality trend by assuming that both age 

patterns and trends remain regular over time. Compared with other forecasting 

approaches, the extrapolative methods are highly objective; i.e., they reduce the 

role of subjective judgment involved in mortality forecasting. However, particularly 

in situations in which past trends have been non-linear, like in the Netherlands, the 

use of an objective extrapolative method will be more problematic. Among the 

potential approaches for improving mortality forecasts when the trends are 

non-linear trends are making explicit adjustments for the distorting effects of 

smoking on mortality trends, and using the more linear trends of other countries as 

the underlying long-term mortality trend. However, both of these approaches 

require the inclusion of more subjective information in the mortality forecast. 

Whether only “objective” extrapolation methods should be employed even in cases 

of non-linearity, or whether it is preferable to include additional information, even 

if doing so introduces additional subjectivity, is an important topic of debate. To 

address this question, it is essential to evaluate mortality forecasting approaches in 

the context of non-linear past mortality trends. 

Most previous studies employed purely quantitative evaluations of mortality 

forecasting models that focused solely on their accuracy, or they evaluated purely 

objective forecasting approaches that are less relevant for non-linear trends. 

Moreover, most of these studies did not evaluate the sensitivity of future mortality 

to explicit assumptions; i.e., to the specific choices that are explicitly stated in a 

method, such as the choices of the length of the fitting period and of the jump-off 

rates.

This PhD research evaluates mortality forecasting methods and forecasting 

approaches, both from a quantitative and qualitative perspective. Furthermore, the 

sensitivity of future mortality based on different explicit assumptions is assessed. 

Moreover, different elements of a mortality forecasting approach that deals with 

non-linear past mortality trends are evaluated (e.g., the forecasting of smoking-

attributable mortality, a model that forecasts mortality coherently). 

This PhD thesis includes a careful study of past mortality trends. Although the focus 

of the thesis is mainly on the Netherlands, mortality trends in other Northwest 
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European countries are also studied to create a broader empirical basis. The 

emphasis here is on how different mortality trends (especially linear versus 

non-linear trends) were affecting the performance of different mortality forecasting 

methods, both quantitatively and qualitatively. 

This PhD thesis not only contributes to the debate on the degree of subjectivity in 

mortality forecasting, but the findings of this research are used to evaluate, 

validate, and further improve the mortality forecasts of Statistics Netherlands. 

The study is guided by the following research questions:

1) In a context in which mortality trends are non-linear, how does the choice of the 

mortality forecasting method and the explicit assumptions affect future 

forecasted mortality?

2) How can future levels of smoking-attributable mortality be formally estimated?

3) Which model should be used when the goal is to forecast mortality coherently , 

namely by taking into account the mortality experiences of other countries?

4) How can mortality forecasts be adjusted to take into account more recently 

observed data? 

After the introductory chapter, the empirical chapters 2 through 5 address the 

research questions above. In Chapter 6, the main findings of the PhD thesis as a 

whole are summarised and discussed. 

Chapter 2 reviewed the different mortality forecasting methods and their 

assumptions in Europe, and assessed their impact on projections of future life 

expectancy for the Netherlands. More specifically, (i) the current methods used in 

official mortality forecasts in Europe were reviewed; (ii) the outcomes and the 

assumptions of different projection methods within the Netherlands were 

compared; and (iii) the outcomes of different types of methods for the Netherlands 

using similar explicit assumptions, including the same historical period, were 

compared. The findings of a review of the current methods indicated that most 

statistical offices in Europe use simple linear extrapolation methods, but that 

countries with less linear trends employ other approaches or different assumptions. 

The approaches employed in the Netherlands include the use of explanatory 

models, the separate projection of smoking- and non-smoking-related mortality, 

and the projection of the age profile of mortality. There are, however, clear 

differences in the explicit assumptions used in these approaches, and the resulting 

e0 in 2050 varies by approximately six years. Using the same historical period 

(1970-2009) and the observed jump-off rates, the findings generated by different 

methods result in a range of 2.1 years for women and of 1.8 years for men. For 

e65, the range is 1.4 years for men and 1.9 years for women. These findings 
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suggest that the choice of explicit assumptions is more important than the choice 

of the forecasting method.

In Chapter 3, a formal estimation of future levels of smoking-attributable mortality 

up to 2050 was proposed for the total national populations of England and Wales, 

Denmark, and the Netherlands. An update and an extension of the descriptive 

smoking epidemic model were provided in the estimation. A two-step method for 

estimating the future smoking-attributable mortality fraction was presented: (i) 

lung cancer mortality was projected by extrapolating age-period-cohort trends 

(1950-2009), while using the observed convergence among men and women of 

smoking prevalence and past lung cancer mortality levels as input; and (ii) other 

causes of death attributable to smoking were added by applying a simplified 

version of the indirect Peto–Lopez method to the projected levels of lung cancer 

mortality. The smoking-attributable mortality fractions (SAF) for men in 2009 were 

found to be 19% (44,872 deaths) in England and Wales, 22% (5,861 deaths) in 

Denmark, and 25% (16,385 deaths) in the Netherlands. In our projections, these 

fractions declined to 6%, 12%, and 14%, respectively, in 2050. The SAF for women 

peaked at 14% (38,883 deaths) in 2008 in England and Wales, and is expected to 

peak in 2028 in Denmark (22%) and in 2033 in the Netherlands (23%). By 2050, 

declines to 9%, 17%, and 19%, respectively, are foreseen. The use of different 

indirect methods for estimating the SAF in 2050 yielded ranges of 1–8% in England 

and Wales, 8–13% in Denmark, and 11–16% in the Netherlands for men; and of 

7–16%, 12–26%, and 13–31%, respectively, for women. 

In Chapter 4, different coherent forecasting methods were evaluated in terms of 

their accuracy (fit to historical data), robustness (stability across different fitting 

periods), subjectivity (sensitivity to the choice of the group of countries), and 

plausible outcomes (smooth continuation of trends from the fitting period). The 

coherent forecasting methods we investigated were as follows: the co-integrated 

Lee-Carter (CLC) method, the Li-Lee (LL) method, and the coherent functional data 

(CFD) method. The methods were applied to data from France, Italy, the 

Netherlands, Norway, Spain, Sweden, and Switzerland in order to generate 

forecasts up to 2050; and the results were compared to those of the individual 

Lee-Carter (LC) method. Of the three coherent forecasting methods evaluated, the 

CFD method was found to perform best on the accuracy measures. However, after 

the CFD method’s higher number of parameters was controlled for, the differences 

disappeared. Both the CLC and the LL methods were found to be robust. The CLC 

method (for women) and the LL method (for men) were shown to be the least 

sensitive to the choice of the group of countries. The LL method generated the most 

plausible results, as it showed a convergence of future life expectancy levels that 

was in line with the fitting period and the smooth pattern of age-specific 
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improvements. This finding could imply that the LL method, which performed best 

in terms of robustness, subjectivity, and plausibility, provided a better fit than the 

CFD method, which had better accuracy (model fit).

Finally, in Chapter 5, six different options for the jump-off rates were evaluated and 

their effects on the robustness and the accuracy of the mortality forecasts were 

examined. As the jump-off rates, we examined the use of the model values, the 

observed values in the last year, and the averaged over the last couple of years for 

data from eight European countries (Belgium, Finland, France, the Netherlands, 

Norway, Spain, Sweden, and United Kingdom, 1960-2014 period). The future life 

expectancy at age 65 was calculated for different fitting periods and jump-off rates 

using the Lee-Carter model, and the accuracy (mean absolute error) and the 

robustness (standard deviation of the change in projected e65) of the results were 

examined. The findings of the analysis showed that which jump-off rates were 

chosen clearly influenced the accuracy and robustness of the mortality forecast, 

albeit in different ways. For most of the countries, using the last observed values as 

the jump-off rates resulted in the most accurate method, due in part to the 

estimation error of the model in recent years. The most robust method was 

obtained when using an average of observed years as jump-off rates. The more 

years that were averaged, the higher the degree of robustness; but the level of 

accuracy decreased with more years averaged. These results imply that the best 

strategy for matching mortality forecasts to the most recently observed data 

depends on the goal of the forecast, the country-specific past mortality trends, and 

the model fit.

The results of the empirical chapters of this thesis show that for countries with 

non-linear mortality trends, like the Netherlands, mortality forecasting approaches 

and assumptions were used that differ from the simple linear extrapolation 

methods that are commonly used by national statistical offices. The choice of the 

explicit assumptions proved more important than the choice of the forecasting 

approach. Because the inclusion of additional information on the smoking 

epidemic or on the mortality experiences of other countries is generally known to 

diminish the effect of the length of the historical period, doing so is expected to 

result in a more robust forecast. One way that additional information on the 

smoking epidemic could be included was by separately forecasting smoking-

attributable mortality. The age-period-cohort methodology developed in this thesis 

– informed by assumptions derived from the smoking epidemic model and a 

careful study of past trends – proved valid for this purpose. When the mortality 

experiences of other countries by means of coherent mortality forecasting is 

included, it was found that the Li-Lee method outperformed the co-integrated 

Lee-Carter method and the coherent functional data method in terms of robustness, 
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subjectivity, and plausibility. Another important explicit assumption was the choice 

of the jump-off rates. It was found that the choice of the jump-off rates clearly 

influenced the accuracy and the robustness of the mortality forecast, albeit in 

different ways. Therefore, it was concluded that which strategy was best depended 

on the goal of the forecast, the country-specific past mortality trends, and the 

model fit.

All in all, this PhD thesis found that forecasting mortality when the trends were 

non-linear involved more than the direct (linear) extrapolation of past mortality 

trends. Even though including additional information (like data on the smoking 

epidemic and/or on the mortality experiences of other countries) made the method 

more subjective, it also made the method less dependent on an important explicit 

assumption: namely, the historical period. This insight is important, because this 

PhD thesis has also demonstrated that explicit assumptions play an essential role in 

mortality forecasts. However, before any information is added to mortality 

forecasting models, a careful examination of past trends should be undertaken, 

and a careful assessment of the pros and cons of its inclusion should be performed.

The results of this PhD thesis have a number of implications for mortality 

forecasting in general. First, the strong effect of explicit assumptions (including the 

main group of countries that will be included in coherent mortality forecasting) 

should be underlined. A more important role must be assigned to explicit 

assumptions than is currently the case. Ideally, stochastic forecasts should also 

incorporate the levels of uncertainty associated with different explicit assumptions. 

Furthermore, new forecasting methods should be evaluated based not only on 

their accuracy, but on other more qualitative criteria, such as the robustness, 

subjectivity, and plausibility of their outcomes. It should be noted that the most 

appropriate method can differ depending on the forecasting application/goal. For 

example, a long-term forecast requires a different approach than a forecast for the 

short term. It is therefore advisable to explicitly mention the forecasting 

application/goal. In addition, it is essential to remain flexible when forecasting 

mortality. Both mortality trends and their determinants are constantly changing, as 

is our knowledge of them. Moreover, new forecasting methodologies are 

constantly being developed. These developments are important to take into 

account when forecasting mortality. 

As a result of the research within this PhD thesis, several components of the 

mortality forecasting approach of Statistics Netherlands were closely evaluated, 

validated, and – if necessary – improved. Based on this thesis, the following 

components were validated: (i) the projection of smoking-attributable mortality by 

means of the age-period-cohort model applied to lung cancer mortality; (ii) the 
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use of the Li-Lee method over the other coherent forecasting methods. This 

validation does not apply exclusively to the mortality forecast of Statistics 

Netherlands, but also more generally. The forecasting method used for smoking-

attributable mortality can be applied as well to other countries in the final stage of 

the smoking epidemic. As a result of the findings in this PhD thesis, the jump-off 

rates are modified in the mortality forecast by Statistics Netherlands since 2014 to 

improve both the accuracy and the robustness of the mortality forecast. More 

generally, the findings of this PhD research demonstrate how important it is that 

the mortality forecasts of Statistics Netherlands are adjusted in response to 

scientific developments and recent mortality trends, not only in the Netherlands, 

but in surrounding countries as well.

Including data on the smoking epidemic and on the mortality experiences of other 

countries in the mortality forecasts by Statistics Netherlands resulted in higher 

future life expectancy values, and – especially for women – added non-linearity in 

the future mortality trends. The first observation can be linked to the impact of the 

smoking epidemic on the historical increase in life expectancy and because the 

recent non-smoking-attributable mortality trends in the Netherlands have been less 

positive than the average trends in certain other countries. The latter is the result of 

a projected increase in smoking-attributable mortality, followed by a decline. In 

addition, the mortality forecasting methodology by Statistics Netherlands is more 

robust resulting in fewer changes between the outcomes of the yearly published 

forecasts. 

Based on the above findings, this PhD thesis offers the following recommendations 

for the various users of mortality forecasts, including the government, planning 

bureaus, and actuarial companies. First, it is essential that users are aware of the 

implications of the new mortality forecasting methodology by Statistics 

Netherlands. For example, if long-term life expectancy is projected to be higher 

than it was in previous forecasts, users might conclude that the reserves for 

mortality-linked products or payments should be higher for a longer period of 

time, or be delayed to a later date. The outcomes of the new mortality forecasts of 

Statistics Netherlands also affect the official population forecasts for the 

Netherlands issued by Statistics Netherlands. For example, if the forecasted life 

expectancy is higher, the extent of ageing will also be higher than previously 

expected. When applying the outcomes of the mortality forecasts (and, 

subsequently, the population forecasts), users should keep in mind that these 

measures (like life expectancy at birth) are averages of the population, and will not 

apply to all segments of the population, as there are very large differences in life 

expectancy based on, for instance, socio-economic status. Users should be aware of 

this diversity within the population. A flexible attitude towards the outcomes of 
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mortality forecasts is required of users, as the results of a given mortality forecast 

will change in response to new mortality developments, new underlying factors, 

new knowledge about mortality developments, and new methodologies.

The data-driven approach of this PhD thesis, as well as the extensive evaluation, 

have led to important new insights on mortality forecasting. For future research on 

mortality forecasting in the context of non-linear mortality trends, the evaluation 

of other countries with non-linear mortality trends, such as Eastern European 

countries, would be important. Furthermore, attention is needed for other potential 

sources of non-linearity in addition to the smoking epidemic, which might 

influence current and future mortality trends. Examples include excessive alcohol 

consumption (Eastern Europe) or obesity. In addition, future research might explore 

a wider range of mortality forecast outcome measures (such as the variability of 

the age at death) not only in order to evaluate the mortality forecasts more 

comprehensively, but to improve upon the methods themselves. Moreover, it would 

be an important way forward in mortality forecasting if more attention is paid to 

heterogeneity within populations. While important advances in mortality 

forecasting have been made, mortality forecasts that are disaggregated beyond 

age, sex, and region are almost non-existent. Finally, closer collaboration between 

the academic and practical world, but also between different disciplines (such as 

demographic and actuarial sciences), is important to further develop the field of 

mortality forecasting. 
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sterfteontwikkelingen: 
toekomstige sterfte bij niet-lineaire 
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Nederlandse
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Het doel van dit proefschrift is om de voorspelling van de toekomstige sterfte te 

evalueren in de context van niet-lineaire sterfteontwikkelingen in het verleden. 

Een goede en nauwkeurige voorspelling van de toekomstige levensverwachting en 

sterfte wordt steeds belangrijker door de algehele toename van de 

levensverwachting en de maatschappelijke consequenties hiervan (vergrijzing, 

gezondheidzorg, woningbouw, sociale zekerheid, pensioenen).

De meeste huidige methoden voor het voorspellen van de toekomstige sterfte zijn 

gebaseerd op directe (lineaire) extrapolatie, het doortrekken van bestaande 

sterfteontwikkelingen. Deze methoden worden zo min mogelijk beïnvloed door 

persoonlijke meningen. Wanneer de sterfteontwikkelingen niet-lineair zijn, zoals 

in Nederland, zijn deze meer objectieve methoden minder geschikt. De 

sterfteprognose bij niet-lineaire sterfteontwikkelingen kan worden verbeterd door 

rekening te houden met het verstorende effect van roken op de 

sterfteontwikkelingen en gebruik te maken van sterfteontwikkelingen in andere 

landen. Hiermee wordt echter meer subjectieve informatie meegenomen in de 

sterfteprognose. De keuze voor objectieve of subjectieve prognosemethoden is 

daarom een belangrijk onderwerp van debat. Moeten alleen objectieve methoden 

worden toegepast, hoewel ze minder geschikt zijn bij niet-lineaire 

sterfteontwikkelingen? Of heeft het toevoegen van aanvullende informatie de 

voorkeur, ondanks de extra subjectiviteit? Deze vragen vereisten een evaluatie van 

de sterfteprognose in de context van niet-lineaire sterfteontwikkelingen in het 

verleden.

In de meeste eerdere evaluaties van sterfteprognosemethoden werd de 

nauwkeurigheid van prognoses vergeleken, een puur kwantitatieve benadering. 

Bovendien waren deze meestal gericht op puur objectieve methoden die minder 

relevant zijn voor niet-lineaire sterfteontwikkelingen. Hierbij ontbrak een evaluatie 

van de sensitiviteit van de toekomstige sterfte als gevolg van specifieke in de 

methodes benoemde keuzes (expliciete veronderstellingen), bijvoorbeeld voor de 

lengte van de schattingsperiode3) en de jump-off rates4). 

3)  De historische periode die gebruikt wordt om het model op te schatten.

4)  De sterftekansen die gebruikt worden als startwaarden van de sterfteprognose.
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In dit proefschrift worden verschillende prognosemodellen en –methodes 

geëvalueerd, zowel vanuit een kwantitatief als kwalitatief perspectief. Ook is 

beoordeeld hoe sensitief de toekomstige sterfte is voor het gebruik van 

verschillende expliciete veronderstellingen. Daarnaast zijn verschillende elementen 

van een sterfteprognose geëvalueerd, die rekening houdt met niet-lineaire 

sterfteontwikkelingen in het verleden, bijvoorbeeld door aan roken gerelateerde 

sterfte te voorspellen en een model te gebruiken waarbij sterfteontwikkelingen 

van verschillende landen worden meegenomen.

Dit proefschrift omvat een zorgvuldige studie van sterfteontwikkelingen in het 

verleden. Het onderzoek is vooral op Nederland gericht. Maar om een bredere 

empirische basis te genereren, zijn ook de sterfteontwikkelingen in andere 

Noordwest Europese landen bestudeerd. Hierbij ligt de nadruk op hoe 

verschillende sterfteontwikkelingen (met name lineair versus niet-lineair) de 

prestaties van verschillende sterfteprognosemodellen beïnvloeden, zowel 

kwantitatief als kwalitatief. 

Dit proefschrift draagt niet alleen bij aan het debat over de mate van subjectiviteit 

in een sterfteprognose, maar wordt ook gebruikt om de sterfteprognose van het 

Centraal Bureau voor de Statistiek (CBS) te evalueren, valideren en – uiteindelijk – 

te verbeteren.

In deze studie worden de volgende onderzoeksvragen beantwoord:

1) Wat is, in de context van niet-lineaire sterfteontwikkelingen, de impact van de 

keuze van het sterfteprognosemodel versus expliciete veronderstellingen op de 

sterfteprognose?

2) Hoe kan de toekomstige aan roken gerelateerde sterfte op een formele manier 

worden geschat?

3) Welk model kan het beste worden gebruikt om de sterfte op een coherente 

manier te voorspellen, d.w.z. door rekening te houden met de 

sterfteontwikkelingen in andere landen?

4) Hoe kan de sterfteprognose het beste aansluiten op recent waargenomen data? 

Na een eerste inleidend hoofdstuk behandelen de empirische hoofdstukken 2 tot 

en met 5 onderwerpen die helpen bij het beantwoorden van de hierboven 

genoemde onderzoeksvragen. Hoofdstuk 6 sluit het proefschrift af met een 

samenvatting en algemene discussie van de bevindingen.

In hoofdstuk 2 worden verschillende Europese sterfteprognosemethoden en hun 

veronderstellingen besproken, alsook de impact hiervan op prognoses van de 

toekomstige levensverwachting in Nederland. In het bijzonder zijn hierbij (i) de 
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huidige methoden die werden gebruikt voor de officiële sterfteprognoses in 

Europa onderzocht, (ii) de uitkomsten en veronderstellingen van verschillende 

prognosemethoden voor Nederland vergeleken en (iii) de uitkomsten voor 

Nederland van verschillende soorten methodes met dezelfde expliciete 

veronderstellingen - waaronder dezelfde historische periode - vergeleken. Uit de 

evaluatie van de huidige methoden blijkt dat statistische bureaus in Europa 

meestal eenvoudige lineaire extrapolatiemodellen gebruiken. Landen met minder 

lineaire sterfteontwikkelingen hanteren echter andere benaderingen of 

veronderstellingen. Binnen Nederland worden verklarende modellen, de 

afzonderlijke projectie van rook- en niet-rook-gerelateerde sterfte, en de projectie 

van het leeftijdsprofiel van de sterfte gebruikt. Voor Nederland verschilt de 

levensverwachting bij geboorte in 2050 gegeven deze methoden – met ook 

duidelijke verschillen in de gebruikte expliciete veronderstellingen – met ongeveer 

zes jaar. Door gebruik te maken van dezelfde expliciete veronderstellingen 

(historische periode 1970-2009 en de laatst waargenomen sterftekansen als 

jump-off rates) zijn de verschillen tussen de methoden slechts 1,8 jaar voor 

vrouwen en 1,8 jaar voor mannen. Voor de levensverwachting op 65-jarige leeftijd 

is het verschil respectievelijk 1,4 en 1,9 jaar. De resultaten laten zien dat de keuze 

voor de expliciete veronderstellingen belangrijker is dan de keuze van de 

prognosemethode.

In hoofdstuk 3 wordt een voorstel gedaan voor een projectie tot 2050 van de 

toekomstige aan roken gerelateerde sterfte voor Engeland en Wales, Denemarken 

en Nederland. Het beschrijvende model voor de rookepidemie is hiervoor 

bijgewerkt en uitgebreid. Om de toekomstige aan roken gerelateerde sterfte te 

schatten behandelt het hoofdstuk een methode in twee stappen: (i) de 

longkankersterfte wordt geprojecteerd met behulp van de leeftijd-periode-cohort-

methodologie (periode 1950-2009). Hierbij wordt gebruikgemaakt van de 

waargenomen convergentie van rookprevalenties en overeenkomsten in 

longkankersterfte in het verleden tussen mannen en vrouwen; (ii) andere aan 

roken gerelateerde doodsoorzaken worden toegevoegd aan de geprojecteerde 

longkankersterfte door een versimpelde versie van de indirecte Peto-Lopez 

methode toe te passen. Het aandeel van sterfte dat is toe te schrijven aan roken 

(de rook-gerelateerde attributieve fractie (RAF)) was  voor mannen in 2009 gelijk 

aan 19% (44 872 overledenen) in Engeland en Wales, 22% (5 861 overledenen) in 

Denemarken en 25% (16 385 overledenen) in Nederland. In onze projecties namen 

deze fracties af tot, respectievelijk, 6, 12 en 14% in 2050. De RAF voor vrouwen 

bereikte in Engeland en Wales in 2008 een piek van 14% (38 883 overledenen) en 

zal naar verwachting in 2028 een piek bereiken in Denemarken (22%) en in 2033 

in Nederland (23%). Tegen 2050 is een daling naar respectievelijk 9, 17 en 19% 

voorzien. Verschillende indirecte schattingsmethodes van de RAF in 2050 leveren 
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een bereik op van 1–8% (Engeland en Wales), 8–13% (Denemarken) en 11–16% 

(Nederland) voor mannen, en 7–16%, 12–26% en 13–31% voor vrouwen. 

In hoofdstuk 4 worden verschillende coherente prognosemethoden geëvalueerd in 

termen van nauwkeurigheid (fit op historische data), robuustheid (stabiliteit over 

verschillende schattingsperiodes), subjectiviteit (gevoeligheid voor de keuze van 

de groep van landen) en plausibele resultaten (goede aansluiting met de 

ontwikkelingen in de schattingsperiode). De onderzochte coherente 

prognosemethoden zijn een co-geïntegreerde Lee-Carter-methode (CLC), de 

Li-Lee-methode (LL) en de Coherent-Functional-Data-methode (CFD). De methoden 

zijn toegepast op gegevens uit Frankrijk, Italië, Nederland, Noorwegen, Spanje, 

Zweden en Zwitserland, met prognoses tot 2050. De resultaten zijn ook vergeleken 

met de individuele Lee-Carter-methode (LC). Van de drie geëvalueerde coherente 

prognosemethoden blijkt de CFD-methode het best te presteren op 

nauwkeurigheid. De verschillen verdwijnen echter als er wordt gecontroleerd voor 

het aantal parameters. Zowel de CLC- als LL-methode blijken robuust. De CLC-

methode (voor vrouwen) en de LL-methode (voor mannen) zijn het minst gevoelig 

voor de keuze van de groep landen. De LL-methode levert de meest plausibele 

resultaten op, met een convergentie van de toekomstige levensverwachting die 

vergelijkbaar is met de schattingsperiode en een regelmatig patroon van 

leeftijdsspecifieke verbeteringen. Dit kan betekenen dat de LL-methode, die het 

best presteert op robuustheid, subjectiviteit en plausibiliteit, gebruikt kan worden 

in plaats van de CFD-methode, waarvan de nauwkeurigheid beter is.

In hoofdstuk 5 worden zes verschillende opties voor de jump-off rates geëvalueerd 

en de effecten ervan op de robuustheid en nauwkeurigheid van de sterfteprognose 

onderzocht. We hebben de volgende jump-off rates onderzocht: de 

modelwaarden, de waarden in het laatste waargenomen jaar en een gemiddelde 

over de laatste paar waargenomen jaren. Op basis van gegevens uit acht Europese 

landen (België, Finland, Frankrijk, Nederland, Noorwegen, Spanje, Zweden en 

Verenigd Koninkrijk, periode 1960-2014) is de toekomstige levensverwachting op 

65-jarige leeftijd (e65) berekend voor verschillende schattingsperioden en jump-

off rates met behulp van het Lee-Carter-model. De e65 is onderzocht op 

nauwkeurigheid (gemiddelde absolute fout ten opzichte van de waarnemingen) 

en robuustheid (standaardafwijking van de verandering in de toekomstige e65). De 

analyse toont aan dat de keuze voor de jump-off rates duidelijk de 

nauwkeurigheid en de robuustheid van de sterfteprognose beïnvloedt, op 

verschillende manieren. Voor de meeste landen geldt dat de laatste geobserveerde 

waarden als jump-off rates tot de meest nauwkeurige methode leidt. Dat is 

gerelateerd aan de fout dat het model in de afgelopen jaren maakt. Het blijkt de 

meest robuuste methode om een gemiddelde van geobserveerde jaren als jump-



232    

off rates te gebruiken. Hoe meer jaren gemiddeld worden, hoe beter de 

robuustheid. Aan de andere kant neemt de nauwkeurigheid af als meer jaren 

worden gemiddeld. De beste strategie voor het aansluiten van de sterfteprognose 

op de meest recent waargenomen gegevens is afhankelijk van het doel van de 

prognose, de waargenomen land specifieke sterfteontwikkelingen in het verleden 

en de fit van het model, zo impliceren de resultaten.

De resultaten van de empirische hoofdstukken van dit proefschrift laten ziet dat in 

prognoses voor niet-lineaire sterfteontwikkelingen, zoals die van Nederland, 

verschillende benaderingen en veronderstellingen worden gebruikt en zich daarin 

onderscheiden van eenvoudige lineaire extrapolatiemethoden bij de meeste 

nationale bureaus voor de statistiek. De keuze voor de expliciete 

veronderstellingen blijkt belangrijker dan de keuze van de methode voor de 

sterfteprognose. Omdat bekend is dat het opnemen van aanvullende informatie 

over de rookepidemie of de sterfteontwikkelingen uit andere landen – op zijn 

minst – het effect van de lengte van de historische periode vermindert, zal dit 

waarschijnlijk resulteren in een robuustere prognose. Het afzonderlijk voorspellen 

van de rook-gerelateerde sterfte is een manier om aanvullende informatie over de 

rookepidemie op te nemen. De in dit proefschrift ontwikkelde leeftijd-periode-

cohort-extrapolatiemethode – gebaseerd op aannames afgeleid van het 

rookepidemie-model en een zorgvuldige studie van historische ontwikkelingen 

– blijken geschikt voor dit doel. De Li-Lee-methode blijkt de voorkeursmethode om 

de sterfteontwikkelingen uit andere landen mee te nemen door middel van 

coherente prognosemethoden. Deze methode presteerde namelijk beter dan de 

co-geïntegreerde Lee-Carter-methode en de Coherent Functional Data-methode in 

termen van robuustheid, subjectiviteit en plausibiliteit. Een andere belangrijke 

expliciete veronderstelling is de keuze van de jump-off rates. Deze keuze blijkt 

duidelijk de nauwkeurigheid en de robuustheid van de sterfteprognose te 

beïnvloeden, zij het op verschillende manieren. De beste strategie bij het kiezen 

van de jump-off rates hangt af van het doel van de prognose, de waargenomen 

nationale sterfteontwikkelingen in het verleden en de model fit.

Al met al houdt de prognose van sterfte in de context van niet-lineaire 

sterfteontwikkelingen meer in dan directe (lineaire) extrapolatie van 

waargenomen sterfteontwikkelingen. Hoewel het opnemen van aanvullende 

informatie (zoals de rookepidemie en/of de sterfteontwikkelingen in andere 

landen) automatisch resulteert in een meer subjectieve methode, resulteert dit ook 

in een methode die minder afhankelijk is van een belangrijke expliciete 

veronderstelling: de historische periode. Dit is belangrijk, omdat expliciete 

veronderstellingen een essentiële rol blijken te spelen in de prognose van de 

sterfte. De aanvullende informatie die bij de sterfteprognose wordt gebruikt, moet 
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wel gebaseerd zijn op zorgvuldig onderzoek van historische sterfteontwikkelingen 

en accuraat voorspeld kunnen worden. Een zorgvuldige afweging van de voor- en 

nadelen van de aanvullende informatie is dan ook essentieel.

Dit proefschrift heeft ook implicaties voor de sterfteprognose in het algemeen. 

Allereerst dient het enorme belang van de expliciete veronderstellingen 

(waaronder ook de keuze van de landengroep bij een coherente sterfteprognose) 

onderstreept te worden. Aan expliciete veronderstellingen dient een belangrijkere 

rol toegekend te worden dan nu gebruikelijk is. Idealiter moeten deze ook 

meegenomen worden bij de bepaling van de onzekerheid van de sterfteprognose. 

Daarnaast dienen nieuwe prognosemethoden niet alleen te worden beoordeeld 

op nauwkeurigheid, maar ook op meer kwalitatieve criteria zoals robuustheid, 

subjectiviteit en plausibele resultaten. Hierbij dient opgemerkt te worden dat het 

doel van de prognose bepalend is voor de keuze van de beste methode. Een 

prognose voor de lange termijn vergt bijvoorbeeld een andere benadering dan een 

prognose voor de korte termijn. Het is dan ook goed dit altijd te expliciteren. 

Daarnaast is het belangrijk om flexibiliteit te hanteren bij de sterfteprognose. 

Zowel de sterfteontwikkelingen zelf, als de achterliggende factoren, onze kennis 

hierover en de methodologie om sterfteprognoses te maken, zijn voortdurend in 

beweging. Dit is belangrijk om mee te nemen in toekomstige sterfteprognoses.

In dit proefschrift zijn verschillende componenten van de CBS-sterfteprognose 

nauwgezet geëvalueerd, gevalideerd en – indien nodig – verbeterd. Op basis van 

het proefschrift, blijken de onderstaande componenten van de CBS prognose 

gevalideerd: (i) de projectie van de aan roken gerelateerde sterfte aan de hand 

van de leeftijd-periode-cohort-extrapolatiemethode toegepast op 

longkankersterfte; (ii) het gebruik van de Li-Lee-methode ten opzichte van andere 

coherente sterfteprognosemethoden. Deze validatie geldt overigens niet 

uitsluitend voor de CBS-prognose, maar ook meer in het algemeen. Zo kan de 

extrapolatiemethode voor aan roken gerelateerde sterfte ook makkelijk toegepast 

worden op andere landen die in het finale stadium van de rookepidemie zitten. Op 

basis van de resultaten uit dit proefschrift zijn de jump-off rates in de CBS-

prognoses vanaf 2014 aangepast om de robuustheid en nauwkeurigheid van de 

prognose te verbeteren. Meer algemeen toont het onderzoek in dit proefschrift aan 

hoe belangrijk het voor de CBS-prognose is om wetenschappelijke ontwikkelingen 

en recente sterfteontwikkelingen nauw in de gaten te houden, niet alleen in 

Nederland, maar ook in andere West-Europese landen.

Het tegelijkertijd meenemen van het effect van de rookepidemie en de 

sterfteontwikkelingen in andere landen heeft in de CBS-sterfteprognose geleid tot 

een hogere toekomstige levensverwachting en – vooral voor vrouwen – meer 
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niet-lineariteit in de toekomstige sterfte. Het eerste wordt verklaard door de 

negatieve invloed van de rookepidemie op de historische toename van de 

levensverwachting en doordat de afname in niet-rook-gerelateerde sterfte in 

andere landen hoger is dan in Nederland. Het laatste komt vooral doordat rook-

gerelateerde sterfte bij vrouwen naar verwachting eerst nog zal toenemen, 

alvorens het zal afnemen. Daarnaast is de methode robuuster geworden en zijn er 

daardoor minder veranderingen tussen de prognoses die jaarlijks worden 

gepubliceerd.

Op basis van bovenstaande bevindingen doen we de volgende aanbevelingen voor 

de verschillende gebruikers van sterfteprognoses, waaronder de overheid, 

planbureaus en actuariële instanties. Allereerst moeten gebruikers zich realiseren 

dat de verhoging van de levensverwachting van de nieuwe CBS-sterfteprognose 

verschillende aspecten beïnvloedt. Producten gekoppeld aan de sterfteprognose 

vereisten bijvoorbeeld een hogere reserve en pensioenen moeten langer worden 

uitbetaald wanneer verwacht wordt dat mensen langer leven. De nieuwe 

uitkomsten van de CBS-sterfteprognose werken ook door in de nationale 

bevolkingsprognose van het CBS. De mate van veroudering wordt bijvoorbeeld 

hoger geprognosticeerd dan eerst werd verwacht. Het is daarnaast goed voor 

gebruikers om zich te realiseren dat de uitkomsten van de sterfteprognose (en de 

bevolkingsprognose; zoals de levensverwachting bij geboorte) betrekking hebben 

op de gemiddelde bevolking en niet van toepassing zijn op alle segmenten van de 

bevolking. Zo leven bijvoorbeeld personen met minder onderwijsjaren gemiddeld 

korter. Het wordt daarom aanbevolen om aandacht  te hebben voor deze 

diversiteit binnen de bevolking. Bij het plannen voor de toekomst is het belangrijk 

om te beseffen dat zowel de uitkomst als de methode van de sterfteprognose kan 

veranderen. Flexibiliteit is dan ook geboden.

De data-gedreven benadering van dit proefschrift, alsook de omvangrijke 

evaluatie, hebben geleid tot belangrijke nieuwe inzichten wat betreft de 

sterfteprognose. Voor toekomstig onderzoek op het gebied van sterfteprognoses 

bij niet-lineaire sterfteontwikkelingen is het belangrijk om andere landen met 

niet-lineaire sterfteontwikkelingen mee te nemen in de evaluatie, zoals landen in 

Oost-Europa. Ook is aandacht gewenst voor andere oorzaken van niet-lineariteit 

naast de rookepidemie, die nu of mogelijk in de toekomst van invloed kunnen zijn. 

Voorbeelden hiervan zijn overmatige alcoholconsumptie (Oost-Europa) of obesitas. 

Daarnaast is het belangrijk om een breder scala aan uitkomstenmaten 

(bijvoorbeeld de variatie in de leeftijd bij overlijden) te onderzoeken om de 

sterfteprognoses vollediger te evalueren en wellicht te verbeteren. Bovendien zou 

het een belangrijke stap vooruit zijn in onderzoek naar sterfteprognoses als er 
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meer aandacht komt voor de heterogeniteit binnen populaties. Hoewel er 

vooruitgang is geboekt in de voorspelling van de sterfte, worden sterfteprognoses 

vaak nog puur uitgesplitst naar geslacht, leeftijd en regio. Als laatste is een nadere 

samenwerking tussen de academische en praktische wereld, maar ook tussen 

verschillende disciplines (zoals demografische en actuariële wetenschappen), 

belangrijk om het onderzoek naar en de praktijk van de sterfteprognose nog verder 

te ontwikkelen.
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Mortality forecasting in the context of non-linear 
past mortality trends: an evaluation
 

Having accurate and high-quality mortality forecasts has become 

increasingly important due to the general increase in life expectancy and 

the social consequences of this.

The aim of this dissertation was to evaluate mortality forecasting in the 

context of non-linear past mortality trends. In this way, it contributes to 

the debate on the degree of subjectivity in mortality forecasting, but also 

to the evaluation, validation, and further improvement of the mortality 

forecasts of Statistics Netherlands (CBS). 

When making mortality forecasts, different approaches and assumptions 

are used, in which additional, often subjective, information is included 

to deal with non-linear mortality trends. A careful examination of past 

trends, and a careful assessment of the pros and cons of including 

additional information, is therefore important. The mortality forecast 

in the context of non-linear past mortality trends may be improved 

by making explicit adjustments for the distorting effects of smoking 

on mortality trends and the use of mortality developments in other 

countries. The specific choices that are explicitly stated in a method 

proved more important than the choice of the forecasting approach.

The methods used by CBS to include mortality trends from other countries 

in the forecast and to project smoking-attributable mortality, proved 

valid. The matching of the forecast to recent observations has been 

adjusted. 

Both the mortality developments themselves and the underlying factors, 

our knowledge hereof and the mortality forecasting methodology are 

constantly changing. Flexibility in both making mortality forecasts and 

interpreting his outcomes is therefore required.
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