Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation
Given that the global fleet of coal-fired power plants is mostly new, coal–biomass co-firing power plants with retrofitted carbon capture and storage (CBECCS) are regarded as a promising option for CO2 emissions reduction. However, the effectiveness of CBECCS remains largely unexplored. Here we develop a comprehensive assessment framework featuring a macro power system combined with spatially explicit biomass sources, coal-fired units and geological storage sites. We apply this framework to investigate the spatiotemporal deployment of CBECCS in China. The results indicate that a transition to CBECCS in 2025 could supply 0.97 GtCO2 yr–1 sequestration potential, with 90% at a levelized cost between $30 and $50 tCO2 –1. A higher CO2 mitigation of 1.6 Gtyr–1 could be achieved in 2040 by increasing the unit utilization hours, corresponding to a cumulative contribution of 41.2 GtCO2 over the period 2025–2060. This study provides a useful reference for transforming coal-dominated power systems.
Last modified: | 27 February 2024 11.05 a.m. |
More news
-
24 March 2025
UG 28th in World's Most International Universities 2025 rankings
The University of Groningen has been ranked 28th in the World's Most International Universities 2025 by Times Higher Education. With this, the UG leaves behind institutions such as MIT and Harvard. The 28th place marks an increase of five places: in...
-
05 March 2025
Women in Science
The UG celebrates International Women’s Day with a special photo series: Women in Science.
-
16 December 2024
Jouke de Vries: ‘The University will have to be flexible’
2024 was a festive year for the University of Groningen. In this podcast, Jouke de Vries, the chair of the Executive Board, looks back.