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Abstract

We study the evolution of cooperation in a structured population, combining insights from evolutionary game theory and
the study of interaction networks. In earlier studies it has been shown that cooperation is difficult to achieve in
homogeneous networks, but that cooperation can get established relatively easily when individuals differ largely
concerning the number of their interaction partners, such as in scale-free networks. Most of these studies do, however,
assume that individuals change their behaviour in response to information they receive on the payoffs of their interaction
partners. In real-world situations, subjects do not only learn from their interaction partners, but also from other individuals
(e.g. teachers, parents, or friends). Here we investigate the implications of such incongruences between the ‘interaction
network’ and the ‘learning network’ for the evolution of cooperation in two paradigm examples, the Prisoner’s Dilemma
game (PDG) and the Snowdrift game (SDG). Individual-based simulations and an analysis based on pair approximation both
reveal that cooperation will be severely inhibited if the learning network is very different from the interaction network. If the
two networks overlap, however, cooperation can get established even in case of considerable incongruence between the
networks. The simulations confirm that cooperation gets established much more easily if the interaction network is scale-
free rather than random-regular. The structure of the learning network has a similar but much weaker effect. Overall we
conclude that the distinction between interaction and learning networks deserves more attention since incongruences
between these networks can strongly affect both the course and outcome of the evolution of cooperation.
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Introduction

Cooperation is common in humans, but difficult to explain. The

reason is that defectors have an intrinsic advantage over

cooperators since they can reap the benefits of cooperation

without contributing to the costs of cooperation [1,2]. There is a

huge literature on this topic, both in the biological and human

sciences [3–5]. Two main mechanisms can help to resolve the

paradox of cooperation. The first is based on the idea that

cooperation is conditional and only directed to individuals that (for

whatever reason) have a high tendency to cooperate as well. The

second is based on non-random interactions: if the population is

structured in such a way that cooperators tend to interact with

cooperators while defectors tend to interact with defectors,

defection will also in a short-term perspective not be a successful

strategy.

Both mechanisms can be studied well in network models, which

are based on the idea that individuals interact in local

neighbourhoods [6–8]. In this framework, population structure is

described by an interaction network, the nodes of which represent

the individual agents while the links correspond to the possible

interactions. A network model typically assumes that at each point

in time all agents are endowed with a certain strategy (i.e. they

have a certain tendency to cooperate); that the agents interact with

their interaction partners, thereby employing their strategy; that

this way they accumulate payoffs; and that subsequently they can

change their strategy by comparing their own payoffs with the

payoffs of their interaction partners. It has been shown that under

these assumptions cooperation can get firmly established, even in

situations as the Prisoner’s Dilemma game where defection is the

dominant strategy in a well-mixed population [9,10]. However,

the emergence and spread of cooperation strongly depends on the

learning rules governing the change of individual strategies on the

basis of payoff comparisons [11,12] and on the structure of the

interaction network [13,14]. As a rule of thumb, cooperation can

get easily off the ground if the interaction network is heteroge-

neous (as in scale-free networks; [15]), while it will not easily evolve

in homogeneous networks (e.g. random-regular networks [6]).

With a few exceptions [16–20], most network models implicitly

assume that payoff comparisons with one or more interaction

partners is the only factor inducing agents to change their strategy.

In other words, individuals can only learn from their interaction

partners. In reality, however, individuals can also learn from

teachers, parents, or peers with whom they not necessarily interact
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in a cooperation game. Hence, we have to face the possibility that

interaction and learning neighbourhoods only partly overlap. Only

few studies consider such an incongruence between the interaction

and the learning network. For example, Ohtsuki et al. find that

breaking the congruence of the interaction network and the

learning network undermines the evolution of cooperation [16,17].

Based on a second modelling study, Wu et al. conclude that

cooperation is generally promoted when the learning neighbour-

hood is larger than the interaction neighbourhoods [20].

In spite of the mentioned progress that has been accumulated,

there are situations that still remain less explored. For instance, to

our knowledge, previous investigations paid little attention to the

topological differences between the two networks. Accepting this

point of view, here we perform a systematic study of how the

evolution of cooperation is affected by various degrees of

incongruences between the interaction and the learning network.

To this end, we consider two standard models for cooperative

interactions in 2-person games, the Prisoner’s Dilemma game

(PDG) and the Snowdrift game (SDG) [14,21–23]. Both games

exemplify that mutual cooperation does not necessarily correspond

to a Nash equilibrium, even though mutual cooperation corre-

sponds to the population state with the highest average payoff. Yet,

both games have a very different strategic structure: the PDG is a

game with one dominant strategy (defection), while the SDG is an

‘evasion game’ where defection is the best response to cooperation,

while cooperation is the best response to defection. Both games are

played by agents whose interaction neighbourhood is character-

ized by an interaction network. Strategy updating occurs like in in

earlier models based on payoff comparisons. However, payoffs are

compared with individuals from the learning neighbourhood, and

the corresponding learning network is not necessarily identical

with the interaction network. We systematically change a

parameter d, which quantifies the incongruence between the two

networks, and ask the question how and to what extent d affects

the degree of cooperation emerging in the course of time. For both

types of networks we consider two variants differing in their degree

of heterogeneity: random-regular networks and scale-free net-

works. As indicated above, cooperation should more easily spread

in scale-free networks, but it is not obvious whether the interaction

or the learning structure is responsible for that.

Model Structure

Overview
To make our results comparable with earlier findings, we largely

follow Santos and Pacheco [15] in their assumptions on network

construction, accumulation of payoffs and the rules for switching

to a new strategy. In our simulations, we consider a population of

n individuals, where n~104 in all results reported. At each point of

time, each individual is in one of two states, corresponding to

cooperation (C) and defection (D), respectively. All simulations

shown were initialized by assigning a randomly chosen state to

each individual, both states having the same probability. In the

course of time, these states can change based on payoff-based

learning. Time proceeds in discrete steps, each step consisting of

an interaction phase followed by a learning phase. Throughout the

interaction phase, each individual uses the same strategy

(corresponding to its state) in all interactions. This strategy (or

state) can only be changed in the learning phase.

The individuals are embedded in an interaction network that

characterizes who interacts with whom. In the interaction phase,

each individual interacts with all ‘neighbours’ to whom it is linked

in the interaction network. Depending on the strategies employed

by the interaction partners, each interaction results in a payoff,

which can be determined from a payoff matrix (see below). All

payoffs thus accrued by an individual i are added, thus yielding a

total payoff Wi for the interaction phase of the time step.

The interaction phase is followed by a phase of social learning,

where individuals can change their state (or strategy) when

encountering individuals having achieved a higher payoff during

the interaction phase. Individuals encounter such ‘models’ in their

learning network. For each individual i, a random model j is

drawn from those individuals to whom it is linked in the learning

network. If the payoff Wj achieved by j in the interaction phase of

the same time step is higher than i’s payoff Wi, individual i will

adopt the strategy of j with a probability f (Wj{Wi) that is an

increasing function of the payoff difference Wj{Wi (see [15] for

details). Otherwise, focal individual i will stick to her previous

strategy.

All simulations were run for 11000 time steps. Simulation

outcomes such as the average frequency pc of cooperators were

scored by taking the average over the final 1000 steps. Simulations

run for much longer time periods revealed that within 10000 time

steps stable levels of the relevant variables were reached that

remained roughly constant over extensive periods of time.

Technically speaking, these stable levels do not correspond to

steady states, since in a finite population fixation on either C or D

will eventually occur due to random drift. For practical purposes,

this can however be neglected in populations of size 104 as

considered here. Therefore the simulation results obtained after

11000 time steps give a good indication of the balance of selective

forces acting on C and D. All the simulation results reported below

are averaged over 100 different realizations of different initial

conditions and networks.

Payoffs
We focus on two paradigm examples for the evolution of

cooperation, the Prisoner’s Dilemma Game (PDG) and the

Snowdrift Game (SDG). In both games, individuals can adopt

one of two strategies: cooperation (C) or defection (D). Cooperation

involves some costs, which we normalize to 1. The benefit of

cooperation is denoted by b. For simplicity, we assume that the

payoff in case of mutual defection is 0 for each player. Under these

assumptions, b is the only free payoff parameter, and the payoff

matrices are given by

Prisoner’s Dilemma Game (PDG):

C D

C

D

b{1 {1

b 0

 !

Snowdrift Game (SDG):

C D

C

D

b{1=2 b{1

b 0

 !

In contrast to the PDG, in the SDG the costs of cooperation are

shared by mutually cooperating individuals, and the cooperator

receives the benefits of cooperation even in case of being defected.

In a one-shot PDG, defection is a dominant strategy and,

accordingly, the only Nash equilibrium strategy. In a one-shot

SDG with bw1, none of the two pure strategies is a Nash
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equilibrium strategy. Instead, there is mixed Nash equilibrium

strategy, which in a well-mixed population corresponds to

cooperation with probability pc~(2b{2)=(2b{1).

Two types of network
Both for interaction and learning networks, we consider two

types of network: random-regular networks and scale-free

networks. A random regular network [24] is a network whose

links are randomly generated but where every node has the same

degree k (i.e. the same number of ‘neighbours’). All results

reported in this study are based on k~4. A scale-free network [25]

is a network whose degree distribution follows a power law (k{l),

at least asymptotically. Here, for any scale-free network, we first

generated a virtual network via the mechanisms of growth and

preferential attachment as described in [25] and get its degree

sequence. Then, these degrees are randomly given to the nodes of

the target network and linked randomly according to the degree

sequence. Different from the method in [25], we can generate

scale-free networks with the same degree distribution but different

links. All results reported in this study are based on l~3, yielding

an average degree of 4. We used two different methods to achieve

an incongruence d between the interaction and the learning

network. These methods will be explained below.

Simulation Results

Scenario 1: Overlapping interaction and learning
environments

A natural way to study incongruences between interaction and

learning neighbourhoods is to assume that individuals base their

strategy-updating on payoff comparisons with part of their

interaction neighbourhood and some additional individuals

outside of this neighbourhood. To model this, we first constructed

a random regular interaction network with degree k. This

interaction network served as the starting point for constructing

the learning network. For each value of the incongruence

parameter d (where 0ƒdƒ1) a fraction (d) of all connections of

the interaction network was randomly discarded. Subsequently,

the network was randomly completed again, until a regular

network (the learning network) with degree k was obtained. This

way, the learning neighbourhood of an individual consists on

average of (1{d)k of her interaction partners and dk other

individuals.

Fig. 1 illustrates the simulation results. As expected, the

frequency of cooperation at steady state is positively related with

the benefit b of cooperation. In the PDG (left panel), cooperation

only gets a foothold in the population if b is very high, and even in

this case only reaches relatively low frequencies. In the SDG,

cooperation reaches appreciable frequencies even at moderate

values of b, and it often even reaches fixation. The main focus of

our study is the effect of the incongruence d between interaction

and learning network on the evolution of cooperation. Fig. 1

clearly shows that the degree of cooperation decreases with d. For

the range of b-values shown, cooperation in the PDG completely

disappeared for dw0:5, while fixation of cooperation in the SDG

did not occur for dw0:4. Still, the effect of d on the evolutionary

outcome is not really dramatic: an incongruence of, say, 20%

between interaction and learning network (d~0:2) has an effect on

the degree of cooperation, but this effect is relatively small when

compared to the standard scenario where individuals only learn

from their interaction partners (d~0).

The above method for constructing two networks with a given

degree of incongruence is easily applicable to regular networks, but

much less so for other types of network. A certain fraction of

connections of the interaction network can of course be discarded

for all types of network, but it is not straightforward on how to re-

establish links in such a way that a specific type of learning

network results. Since we want to study combinations of networks

of a given type, we will now address incongruences between

interaction and learning network by a different approach.

Scenario 2: Internal and external learning environments
In a second scenario, we start with two networks that are

created separately. The first of these networks is the interaction

network, while the second network corresponds to the additional

sources of information individuals might use for updating their

strategies (e.g. teachers, parents, peers). This second network will

be called the ‘external learning network’, while the ‘internal

learning network’ is identical with the interaction network. In

scenario 2, payoffs are accrued due to interactions in the

interaction network. Payoff-based learning takes place as follows:

with probability 1{d individuals base their choice on whether to

switch to another strategy on the payoff comparison with a

randomly chosen member of their internal learning neighbour-

hood (i.e., with a randomly chosen interaction partner); with

probability d the payoff comparison is being made with a member

of the external learning neighbourhood. Since both networks are

generated separately, we can now consider various combinations

of regular random and scale-free networks. The simulation results

for these combinations are illustrated in Fig. 2 for the PDG and in

Fig. 3 for the SDG.

Let us first consider Fig. 2. The upper left panel corresponds to

a situation where both the interaction network and the external

learning network are random-regular networks with degree k~4.

Not surprisingly, the outcome resembles that in the left panel of

Fig. 1, where both the interaction and the learning network were

also random-regular with the same degree. Yet, cooperation is

achieved under a broader range of d-values in scenario 2 than in

scenario 1. This can be explained as follows. Take for example the

case d~0:25, where on average one learning event takes place

outside the interaction network. In scenario 1 (Fig. 1), on average

three of the k~4 interaction partners are ‘earmarked’ as learning

partners, while each individual has on average one additional

(fixed) learning partner. In scenario 2 (Fig. 2) all four interaction

partners can act as learning partners (in case of internal learning),

while there are four different learning partners in case of external

learning. We presume that the possibility of payoff-based learning

with all interaction partners is mainly responsible for the fact that

cooperation is more easily achieved in scenario 2. This does not

only apply to the PDG but also to the SDG (compare the left panel

of Fig. 1 with the upper right panel of Fig. 3).

In all four panels of Fig. 2 and Fig. 3 the frequency of

cooperation is positively related to the benefits b of cooperation

and negatively related to the incongruence d between interaction

and learning environments. In addition, the type of network has a

marked effect on the evolution of cooperation. In both games, a

much higher frequency of cooperation is achieved when the

interaction network is scale-free than when it is random-regular.

This is fully in line with earlier results indicating that cooperation

is favoured by network heterogeneity [6,13,14,26–28]. The

structure of the external learning network has a similar - be it

markedly weaker - effect: for the same values of the parameters b

and d a higher frequency of cooperation is achieved when the

external learning network is scale-free than when it is random

regular. If both networks are scale-free, cooperators can dominate

the population (pcw0:5) in the PDG even for a high degree of

incongruence (dw0:8), while this never happened even for high

Incongruence between Interaction and Learning Environments
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values of b and in the absence of incongruence (d~0) when the

networks were random-regular.

Qualitatively, the same conclusions can be drawn as for scenario

1: incongruences between the interaction and the learning network

are unfavourable for the establishment of cooperation, but the

effect is mainly noticeable in case of strong incongruence. In fact,

in case of scale-free interaction networks the incongruence has

been quite large (dw0:5) before ‘outside learning’ has a strong

effect on the evolution of cooperation.

Analytical Results: Pair Approximation Dynamics

Since it is useful to complement individual-based simulations with

a mathematical analysis, we will now extend the pair approximation

method, which has successfully been applied in the special case

where the learning network is identical with the interaction network

Figure 1. Degree of cooperation achieved in a Prisoner’s Dilemma game (PDG, left) and in a Snowdrift game (SDG, right) as a
function of the benefit b of cooperation and the incongruence d between the interaction and the learning network. The simulation are
based on scenario 1, where interaction and learning network overlap and both are random-regular networks with degree k~4.
doi:10.1371/journal.pone.0090288.g001

Figure 2. Frequency of cooperation achieved in a Prisoner’s Dilemma game as a function of the benefit b of cooperation and the
incongruence d between the interaction and the external learning network. The simulations are based on scenario 2. Both networks can
either be random-regular or scale-free. Cooperation is strongly favoured when the interaction network is scale-free (bottom row) and weakly
favoured when the external learning network is scale-free (right column).
doi:10.1371/journal.pone.0090288.g002
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[23,29]. The pair approximation method tracks the frequency

distribution of all possible strategy pairs s1s2 (where s1 and s2 are

either cooperation c or defection d), that is the frequency of all

network links where one player employs strategy s1 while the other

player employs strategy s2. This way, the method accounts for at

least some of the spatial structure emerging in a network.

We apply the pair approximation method to the special case

where the interaction and the learning network are both random-

regular, and where learning individuals learn from a randomly

chosen interaction partner with probability 1{d and from a

randomly chosen individual from the (external) learning network

with probability d. Hence the approach taken corresponds to

scenario 2 considered above. Moreover, we derive the equations

for the special case k~4, but we include k in the equations in

order to make them more transparent.

Let ps1s2
denote the expected frequency of s1s2 pairs (where

s1s2~cc,cd,dc,dd ) in a population. Accordingly the frequency of

cooperators and defectors are given by pc~pcczpcd and

pd~pdczpdd~1{pc, respectively. Following the treatment of

Hauert and Doebeli (see the supplementary information to [23]),

we will now derive differential equations for the change in ps1s2

over time. A change in strategy pairs can only occur in the event

that a player (let us call her A) changes her strategy as the result of

learning from another player B. Such a change in strategy can

only occur if the two players differ in strategy, that is, if either A
used C and B used D or vice versa. The probability that a potential

learning event takes place in such a configuration is in both cases

given by pcd~pdc. The rate of change of ps1s2
due to such learning

event is given by this probability times the probability that player

A adopts player B’s behaviour times the net change in the number

of s1s2 pairs caused by the switch in A’s behaviour. As indicated in

the Overview section above, the probability that A adopts B’s

behaviour is given by f (WB{WA), where f is an increasing

function of the payoff difference between players B and A. We will

now consider four different cases.

(a) B belongs to the interaction network of A (which we

symbolize by L~I ); A used C and B used D in the interaction

phase. As indicated in Fig. 4(a) defector B had one cooperating

neighbour (A) and three other neighbours with strategies u, v and

w. Each of these strategies is either C (with conditional probability

pdc=pd ) or D (with conditional probability pdd=pd ). The payoff of B
is given by wd (C,u,v,w), which indicates the payoff of a defector

confronted with the given configuration of neighbours. Similarly,

A had one defecting neighbour (B) and three other neighbours

employing strategies x, y, and z. These strategies are either C (with

conditional probability pcc=pc) or D (with conditional probability

pcd=pc), and the payoff of cooperator A is given by wc(D,x,y,z).
For each neighbour configuration, player A will switch from C to

D with probability f (wd (C,u,v,w){wc(D,x,y,z)). Let nc(x,y,z)
denotes the number of cooperators among those neighbours of A
that are not identical with B. Then A was involved in nc(x,y,z)
CC-pairs and in k{nc(x,y,z) CD-pairs before the change in

behaviour. By switching from C to D, this changes into nc(x,y,z)
CD-pairs and in k{nc(x,y,z) DD-pairs. Hence the change in A’s

behaviour results in a loss of nc(x,y,z) CC-pairs and a net change

of nc(x,y,z){(k{nc(x,y,z))~2nc(x,y,z){k CD-pairs. Since we

distinguish between pcd and pdc (in line with [23]), half of the

change in CD-pairs (i.e. nc(x,y,z){k=2) ascribed to the configu-

Figure 3. Frequency of cooperation achieved in a Snowdrift game as a function of the benefit b of cooperation and the
incongruence d between the interaction and the external learning network. The simulations are based on scenario 2. Both networks can
either be random-regular or scale-free. Cooperation is strongly favoured when the interaction network is scale-free (bottom row) and weakly
favoured when the external learning network is scale-free (right column).
doi:10.1371/journal.pone.0090288.g003
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ration CD and half to the configuration DC. Summarizing all this,

the expected change in the frequencies of CC and CD pairs due to

a potential learning event of a cooperator A confronted with a

defector B is given by:

Change in pcc:

FL~I
C?D(cc)~

pcd

(pc)3:(1{pc)3
:
X
x,y,z

X
u,v,w

pcxpcypczpdupdvpdw

:f (wd (C,u,v,w){wc(D,x,y,z)):({nc(x,y,z))

Change in pcd :

FL~I
C?D(cd)~

pcd

(pc)3:(1{pc)3
:
X
x,y,z

X
u,v,w

pcxpcypczpdupdvpdw

:f (wd (C,u,v,w){wc(D,x,y,z)):(nc(x,y,z){
k

2
)

(b) B does again belong to the interaction network of A (L~I ),

but now A used D and B used C in the interaction phase. The

calculations are completely analogous to case (a) above. Now

defector A had nc(x,y,z)z1 cooperating neighbours and was

therefore involved in nc(x,y,z)z1 DC-pairs and in

k{nc(x,y,z){1 DD-pairs during the interaction phase. By

switching from D to C, this changes into nc(x,y,z)z1 CC-pairs

and in k{nc(x,y,z){1 CD-pairs. Hence the change in A’s

behaviour results in a gain of nc(x,y,z)z1 CC-pairs and a net

change of (k{nc(x,y,z){1){(nc(x,y,z)z1)~k{2nc(x,y,z){2
CD-pairs. As before, half of the latter change (i.e.

k=2{nc(x,y,z){1) is ascribed to the configuration CD and half

to the configuration DC. Taken together, all this results in:

Change in pcc:

FL~I
D?C(cc)~

pcd

(pc)3:(1{pc)3
:
X
x,y,z

X
u,v,w

pdxpdypdzpcupcvpcw

:f (wc(D,u,v,w){wd (C,x,y,z)):(nc(x,y,z)z1)

Change in pcd :

FL~I
D?C(cd)~

pcd

(pc)3:(1{pc)3
:
X
x,y,z

X
u,v,w

pdxpdypdzpcupcvpcw

:f (wc(D,u,v,w){wd (C,x,y,z)):(
k

2
{nc(x,y,z){1)

(c) Now B does no longer belong to the interaction network of A

(which we symbolize by L=I ); A used C and B used D in the

interaction phase. The configuration L=I is illustrated in Fig. 4(b):

A and B are no longer interaction partners and instead have

interaction partners playing strategies x, y, z, s (player A) and u, v, w,

t (player B), respectively. Consider again the case that A used C and

B used D in the interaction phase. When nc(x,y,z,s) denotes the

number of cooperating interaction partners of A, A was represented

in nc(x,y,z,s) CC-pairs and in k{nc(x,y,z,s) CD-pairs. If A switches

from C to D, this results in nc(x,y,z,s) CD-pairs and in k{nc(x,y,z,s)
DD-pairs. Hence the change in A’s behaviour results in a loss of

nc(x,y,z,s) CC-pairs and a net change of

nc(x,y,z,s){(k{nc(x,y,z,s))~2nc(x,y,z,s){k CD-pairs. As

above, we can now summarize the expected change in the

frequencies of CC and CD pairs due to a potential learning event

of a cooperator A confronted with a defector B who not interacted

with A:

Change in pcc:

FL=I
C?D(cc)~

pcd

(pc)4:(1{pc)4
:
X

x,y,z,s

X
u,v,w,t

pcxpcypczpcspdupdvpdwpdt

:f (wd (u,v,w,t){wc(x,y,z,s)):({nc(x,y,z,s))

Change in pcd :

FL=I
C?D(cd)~

pcd

(pc)4:(1{pc)4
:
X

x,y,z,s

X
u,v,w,t

pcxpcypczpcspdupdvpdwpdt

:f (wd (u,v,w,t){wc(x,y,z,s)):(nc(x,y,z){
k

2
)

Figure 4. Diagrams illustrating a potential learning event. In (a) the focal individual A learns from an individual B that is part of A’s interaction
network (L~I ). Since k~4, both A and B have three other interaction partners, whose strategy (C or D) is indicated by x, y, z(A) and u, v, w(B),
respectively. In (b) A learns from an individual B that does not belong to A’s interaction network (L=I ). Now both A and B have four different
interaction partners.
doi:10.1371/journal.pone.0090288.g004
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(d) B does not belong to the interaction network of A (L=I ), but

now A used D and B used C in the interaction phase. Completely

analogous calculations to those before yield:

Change in pcc:

FL=I
D?C(cc)~

pcd

(pc)4:(1{pc)4
:
X

x,y,z,s

X
u,v,w,t

pdxpdypdzpdspcupcvpcwpct

:f (wc(u,v,w,t){wd (x,y,z,s)):nc(x,y,z,s)

Change in pcd :

FL=I
D?C(cd)~

pcd

(pc)4:(1{pc)4
:
X

x,y,z,s

X
u,v,w,t

pdxpdypdzpdspcupcvpcwpct

:f (wc(u,v,w,t){wd (x,y,z,s)):(
k

2
{nc(x,y,z,s))

Taking all four cases together and considering that B belongs to

A’s interaction network (cases (a) and (b)) with probability 1{d,

while B is external to A’s interaction network (cases (c) and (d))

with probability d, we now have derived the desired system of

differential equations:

_ppcc~

(1{d):(FL~I
C?D(cc)zFL~I

D?C(cc))zd:(FL=I
C?D(cc)zFL=I

D?C(cc))
ð1Þ

_ppcd~

(1{d):(FL~I
C?D(cd)zFL~I

D?C(cd))zd:(FL=I
C?D(cd)zFL=I

D?C(cd))
ð2Þ

Taking into consideration the symmetry condition pdc~pcd ,

plus the constraint the constraint pcczpcdzpdczpdd~1, the

above equations can be treated by setting _ppcc~ _ppcd~0 and solving

for pcc and pcd , thus the equilibrium density of cooperators can be

obtained from pc~pcczpcd .

Thus, we can investigate how cooperation is affected by the

incongruence between networks, d, and by the main payoff

parameter b. As illustrated by Fig. 5, the pair approximation

approach yields qualitatively the same conclusions as our earlier

simulations: cooperation is favoured by large values of b but

hampered by a larger incongruence between the learning and the

interaction network. Quantitatively, the pair approximation

method predicts a lower degree of cooperation than the

simulations. This is understandable, since the evolution and

maintenance of cooperation reflects the emergence of spatial

structure (clusters of cooperators). This structure can be potentially

quite rich, and only part of it may be captured by the pair

approximation method.

General Conclusions

In this paper, we aimed to investigate the influence of

incongruence between the interaction network and learning

network on the cooperation evolution. In both the PDG and the

SDG it turned out that cooperation is hampered if these two

networks do not coincide. This is easy to understand: cooperation

can be maintained once clusters of cooperative individuals have

formed. Individuals from such a cluster will only change her

strategy if they encounter a defector, and such a change is unlikely

unless the defector has a high payoff. If the individuals of a cluster

of cooperators learn from each other, they are not inclined to

change their strategy, since they will not meet defectors. This is

different if these individuals can also learn from ‘outsiders’. Once

one individual in a cluster of cooperators has switched to defection,

this can have a snowball effect, since this individual can serve as a

model for its neighbours as well. In view of this, the most

interesting conclusion of our study is perhaps that a rather strong

incongruence between the networks is required before the degree

of cooperation drops to considerably lower levels.

For the standard model where individuals learn from their

interaction partners it is well established that the type of network

has a considerable effect on the degree of cooperation. In general,

Figure 5. Equilibrium level of cooperation as predicted by the analytical pair approximation method. As before, the degree of
cooperation achieved in a Prisoner’s Dilemma game (PDG, left) and in a Snowdrift game (SDG, right) is shown as a function of the benefit b of
cooperation and the incongruence d between the interaction and the learning network. Since the pair approximation method is based on scenario 2,
the panels should be compared with the simulation results shown in the upper left panels of Figs 2 and 3, respectively.
doi:10.1371/journal.pone.0090288.g005
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cooperation can be more easily achieved in heterogeneous

networks (like scale-free networks) than in homogenous networks

(like random regular networks) [15]. Our results confirm this

finding and indicate that the heterogeneity of the interaction

network is much more important than the heterogeneity of the

learning network. In both kinds of network, a switch from a

random regular network to a scale-free network results in a higher

degree of cooperation, but the effect size is much larger when the

interaction network is more heterogeneous than when the learning

network is more heterogeneous.
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