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The Mendelian rule of equal segregation is one of the
basic principles of biology that is ordinarily taken for
granted. There are, however, genes that cheat against this
rule by biasing segregation in their favor. The existence
of such meiotic drive genes or segregation distorters has
raised questions concerning the stability and evolution of
Mendelian segregation (Sandler and Novitski, 1957).
Indeed, any gene that manages to become overrepre-
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tion (e.g., Liberman, 1976; Eshel, 1985; Lessard, 1985;
Hatcher, 2000).
Most models on general aspects of segregation distor-
tion, in particular models aiming at the evolutionary
stability of Mendelian segregation, focus on populations
without sex differentiation, i.e., on populations with one
sex or with no differences between the sexes. The one-
sex approach has the obvious advantage of analytical



tractability (e.g., Cannings, 1969; Liberman, 1976, 1991;
Nagylaki, 1983; Eshel, 1985; Lessard, 1985). It is impor-
tant to notice, however, that these conceptual models do
not properly represent real-world systems such as the SD
complex of Drosophila melanogaster or the t complex
of the house mouse. In these empirical systems, segrega-
tion distortion is restricted to one sex, a fact that is
hardly surprising in view of the fundamental differences
between spermatogenesis and oogenesis. Since sex speci-
ficity is a prominent feature of most, if not all, real-world
segregation distorters, the analysis of sex-differentiated
populations is required to judge the robustness and
empirical relevance of predictions derived from the
earlier one-sex models.
In contrast to the more general models mentioned
above, sex differentiation is taken into account in many
models aiming at specific segregation distortion systems
(Feldman and Otto, 1991, and references therein).
However, most of these specific models make rather
restrictive assumptions from the beginning (e.g., extreme
fitness effects such as sterility or lethality), making it dif-
ficult to extrapolate their results. For instance, the model
of Bruck (1957) was specifically tailored for a so-called
‘‘lethal’’ t allele that induces lethality in both sexes when
homozygous, and Dunn and Levene (1961) treated the
case of a ‘‘sterile’’ t allele that leads to homozygous male
sterility. Moreover, with a few notable exceptions (e.g.,
Hartl, 1970c; Nagylaki, 1983; Liberman, 1990, 1991;
Stadler, 1996), these models focus on the interaction
between two alleles, the wildtype and a single distorter.
In contrast, well-known systems such as the SD complex
and the t complex are characterized by a broad spectrum
of distorter alleles. This finding is in line with the predic-
tions of our earlier models that a high degree of poly-
morphism is to be expected in segregation distortion
systems (van Boven et al., 1996; van Boven and Weissing
1998, 2000, 2001). It is therefore desirable to develop a
more general, coherent theory for the interaction of
selection and segregation distortion in a sex-differen-
tiated population.
The present paper is a step in this direction. We extend
the classical model for selection at an autosomal locus in
a sex-differentiated population to include segregation
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distortion. The resulting dynamics has been derived
before (Karlin, 1978;Karlin andLessard, 1986;Nagylaki,
1992), but it has been analyzed only for rather specific
parameter configurations. We characterize the equi-
libria, derive conditions for stability of the equilibria,
and investigate the relation between models with and
without sex differentiation. In essence, the present paper
reviews and develops the theory needed to study the
competition between segregation distorter alleles in a
sex-differentiated population. In a companion paper we
show how the general results can be put to good use to
obtain new insights into specific segregation distortion
systems.
The paper is structured as follows. To introduce our
method, we first consider selection and segregation dis-
tortion in a population without sex differentiation. The
main consequence of the inclusion of segregation distor-
tion in the classical Haldane–Fisher–Wright selection
model is that the two alleles within an individual do not
necessarily share a common interest. As a consequence,
fitness has to be viewed from the perspective of the allele
rather than the genotype. Formally, this implies that the
fitness matrix is no longer symmetric, leading to a model
structure that is equivalent to the discrete replicator
dynamics. This dynamics has been intensely studied in
various contexts (e.g., Hofbauer and Sigmund, 1998).
Accordingly, selection and segregation distortion in a
one-sex population is rather well understood. In a
sex-differentiated population, the dynamics of selection
and segregation distortion is inherently more complex
because allele and genotype frequencies differ between
the sexes. We characterize the equilibria and notice that
their calculation, which is straightforward in the one-sex
case, can be quite complicated when the allele frequencies
differ between the sexes (see Lewontin (1968) for the dif-
ficulties already encountered in simple examples). Next,
we derive conditions for internal stability (i.e., stability
with respect to perturbations involving only those alleles
that are already present at equilibrium) and external
stability (i.e., stability with respect to invasion attempts
by newly arising alleles). In general, external stability is
much easier to check than internal stability. In fact,
Lessard’s (1989) extension of the classical Shaw–Mohler
criterion for the invasion prospects of a rare allele
generalizes to the context of segregation distortion. We
also derive a second, equivalent invasion criterion that is
often easier to apply in practical applications.
Throughout, we discuss the special properties of two
extremes: selection in the absence of segregation distor-
tion and segregation distortion in the absence of selec-
tion. Both cases have special symmetry properties that
facilitate the analysis significantly. We also investigate
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the relation between populations with and without sex
differentiation. Motivated by practical applications (see
the companion paper), we focus on the special case in
which the strength but not the direction of selection
and segregation distortion differs between the sexes.
Interestingly, the equilibria of one-sex populations are
inherently less stable than those of a corresponding
two-sex population in which selection and segregation
distortion are restricted to one of the sexes.



Notational Conventions

Throughout, boldface characters such as p and q
denote (column) vectors with elements pi and qi. Specifi-
cally, u is the vector of units, u=(1...1)T, where T
denotes transposition. Boldface capitals such as A orW
denote matrices with elements aij and wij. I=(dij) repre-
sents the identity matrix, where dij is the Kronecker delta
(dij=1 if i=j and dij=0 if i ] j). U denotes the matrix
of units; i.e., uij=1 for all i and j. The action of a matrix
W on a vector p results in a vector with elements (Wp)i=
; j wij pj. The inner product of two vectors a and b is
denoted by Oa, bP=; i aibi, while the Schur product
a p b is the vector with elements (a p b)i=aibi. Finally,
the spectral radius of a matrix A, i.e., the absolute value
of its dominant eigenvalue, will be denoted by r(A).

A POPULATION WITHOUT SEX

DIFFERENTIATION

The Model

Let us first consider an infinite population without
sex differentiation. Generations are discrete and non-
overlapping andmating occurs at random.We consider a
single autosomal locus with allelesAi (i=1, 2, ..., n). Let
pi represent the relative frequency of allele Ai in the
gametes (after segregation distortion has taken place).
Since random mating is in our case equivalent to the
random union of gametes (Karlin, 1978), the ordered
genotype frequencies at the zygote stage are given by
pi pj.
The viability and fertility of AiAj individuals will be
denoted by nij and jij, respectively (nij=nji \ 0 and
jij=jji \ 0). We assume that fertilities are multiplica-
tive; i.e., the fertility of the mating pair Aij×Akl is given
by the product jijjkl. The segregation ratio or fraction of
Ai gametes contributed by AiAj individuals is given by sij
(sij \ 0, sij+sji=1). We define the fitness wij of allele
AiAj individual as the product of the viability nij, the
fertility jij, and the segregation ratio sij; i.e.,
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wij=nijjijsij. (1)

With this notation, the representation of allele Ai in
the gamete pool of the next generation is given by (e.g.,
Liberman, 1991)

p −i=pi
wi(p)
w̄(p)

, (2)
where

wi(p)=(Wp)i=C
l
wil pl (3)

represents the marginal fitness of alleleAi, while

w̄(p)=C
k
pkwk(p)=

1
2 C
k, l
pknkljkl pl (4)

denotes the mean fitness of the population. Notice that
w̄(p) does not depend on the segregation parameters sij.
The dynamics (2) can be written more compactly using
the Schur product as follows:

pŒ=
p pWp
Op,WpP

. (5)

As was noticed by Nagylaki (1983) and Liberman
(1991), Eq. (5) corresponds to the discrete replicator
dynamics that is widely used in evolutionary game theory
to describe the dynamics of evolutionary games with pay-
off matrix W (e.g., Taylor and Jonker, 1978; Weissing,
1991). If segregation is Mendelian (i.e, sij=sji=

1
2

for all i and j), the fitness matrixW=(wij) is symmetric
and (5) boils down to the classical selection equation of
Haldane, Fisher, and Wright that has been extensively
studied (e.g., Kingman, 1961; Cannings, 1969; reviewed
in Karlin, 1978; Nagylaki, 1992). In game theoretical
terms, a symmetric fitness matrix represents a ‘‘part-
nership game’’ (Hofbauer and Sigmund, 1998), i.e., a
game in which the interests of both players coincide. In
fact, in the absence of segregation distortion, both alleles
Ai and Aj have the same ‘‘interest’’ in the survival and
reproduction of individuals of genotypeAiAj.
In the absence of selection (wij=sij), the fitness
matrix satisfies W+WT=U; i.e., W is skew-symmetric
up to the matrix of units U. In game theoretical terms,
such a matrix represents a ‘‘constant-sum game,’’ i.e., a
strictly competitive game in which the two players have
opposed interests. As with partnership games, the special
structure of constant-sum games facilitates the analysis
considerably (Nagylaki, 1983; Akin and Losert, 1984;
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Weissing, 1991; Hofbauer and Sigmund, 1998).
In this paper, we will focus on the interaction of
selection and segregation distortion, which is harder to
analyze and less well understood (e.g., Taylor and
Jonker, 1978; Weissing, 1991; Hofbauer and Sigmund,
1998). In this case, wij should be interpreted as the fitness
of an individual of genotype AiAj viewed from the per-
spective of allele Ai. Hence, our model explicitly takes the
point of view of the allele instead of that of the genotype.



Equilibria

The equilibrium points pg of (5) are characterized by

wi(pg)=w̄(pg) unless pgi=0 (6)

for all i. Hence, at equilibrium, either the frequency of
allele Ai is zero or its marginal fitness equals the mean
fitness of the population. At times we will also use the
shorter notationwg

i=wi(p
g) and w̄g=w̄(pg).

Calculation of the equilibria is straightforward (e.g.,
Cannings, 1969). For example, a fully polymorphic
equilibrium (i.e., pgi > 0 for all i) is a positive solution of
the vector equation Wpg=w̄gu. In the special cases
W=WT (no segregation distortion) and W+WT=U
(no selection), a fully polymorphic equilibrium also
satisfies WTpg=w̄gu, a fact that simplifies the stability
analysis considerably.

Linearization

To investigate the stability of an equilibrium, we con-
sider the linear approximation of the allele frequency
dynamics (5) at pg. This is given by xŒ=JWx, where JW

denotes the Jacobian matrix evaluated at equilibrium,
and x=p−pg is the vector of deviations from
equilibrium. The Jacobian is given by

JW=1
“p −i
“pj
:
p*

2=1 “
“pj

piwi(p)
w̄(p)
:
p*

2 , (7)

where the notation indicates that the derivatives are
evaluated at equilibrium. A straightforward calculation
shows that the elements of the Jacobian are given by

aij=dij
wg
i

w̄g+
pgi
w̄g
1wij−wg

j −C
k
pgkwkj 2 . (8)

In matrix notation, the action of JW is given by

JWx=
1
w̄g [x pWpg+pg

pWx−Ox, (W+WT) pgP pg].

(9)
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In the case of a fully polymorphic equilibrium (i.e.,
pgi > 0 for all i), the equilibrium condition (6) implies
Wpg=w̄gu and hence Ox,WpgP=0. As a result, (9)
simplifies to

JWx=x+
1
w̄g [p

g
pWx−Ox,WTpgP pg]. (10)
In the two special casesW=WT andW+WT=U, (9) is
simplified even further by the fact that Ox,WTpgP=0:

JWx=x+
1
w̄g pg

pWx. (11)

Stability

Throughout we will consider generic cases only: sta-
bility (or instability) should henceforth be interpreted as
hyperbolic stability (or instability). pg is a (hyperboli-
cally) stable equilibrium if all eigenvalues of the Jacobian
are smaller than 1 in absolute value. In other words, pg is
stable if and only if the spectral radius of the Jacobian is
smaller than 1, i.e, iff r(JW) < 1. In the degenerate case
r(JW)=1, the equilibrium may still be stable, but then
higher order conditions have to be verified (e.g., Lessard
andKarlin, 1982).
Strictly speaking, only those eigenvalues of JW that
belong to right eigenvectors from the invariant subspace
S0={x |; xi=0} which describes the deviations x=
p−pg from equilibrium should be taken into account.
However, it is easy to see that the vector of units
u=(1, ..., 1) is a left eigenvector of JW with respect to the
eigenvalue 0. As a consequence (e.g., Gantmacher, 1966),
all right eigenvectors of JW corresponding to nonzero
eigenvalues are perpendicular to u and thus belong to S0.
In other words, 0 is the only eigenvalue with a right
eigenvector not belonging to S0, and this eigenvalue does
not contribute to the spectral radius.
In selection models, it is useful to distinguish two kinds
of stability: internal stability and external stability
(Liberman, 1991). Internal stability of an equilibrium pg

refers to perturbations which involve only alleles that are
already present at equilibrium. In contrast, external sta-
bility refers to stability with respect to invasion attempts
of rare alleles that are not yet present at equilibrium.

Internal versus External Stability
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Consider an equilibrium pg with the alleles A1, ..., Am
present in positive frequencies (pgi > 0 for i=1, ..., m).
The internal stability of pg can be judged on the basis of
the m×m matrix AW which results from JW by dropping
all rows and columns that do not belong to the support of
pg (i.e., for which pgi=0).

pg is (hyperbolically) internally stable if all eigenvalues
of the matrix AW are smaller than 1 in absolute value, i.e,



iff r(AW) < 1. In view of the equilibrium condition (6),
the matrix elements simplify to (see (10))

aij=dij−p
g
i+
pgi
w̄g
1wij−C

k
pgkwkj 2 .

Instead of AW we may just as well consider the matrix
ÃW, given by

ãij=dij+
pgi
w̄g
1wij−C

k
pgkwkj 2 . (12)

In fact, AW and ÃW act identically on the invariant sub-
space S0 which describes the deviations from equilib-
rium. The only eigenvector of AW and ÃW not belonging
to S0 corresponds to the eigenvalue 0. This eigenvalue
does not contribute to the spectral radius of AW or
ÃW: r(ÃW)=r(AW).
In the two special cases W=WT (no segregation dis-
tortion) andW+WT=U (no selection), internal stability
can be determined on the basis of the spectral radius of
the matrix ÂW=(âij) (see (11)), where

âij=dij+p
g
i

wij
w̄g .

In the special caseW+WT=U (no selection) the analy-
sis is relatively easy. In fact, Liberman (1990) has shown
that a polymorphic equilibrium (i.e., m \ 2) can never be
internally stable. The other special case, W=WT (no
segregation distortion), is more complex, but still amen-
able to analysis. Selection in the absence of segregation
distortion has been studied extensively in the past (e.g.,
Scheuer and Mandel, 1959; Kingman, 1961), and a
number of equivalent criteria for internal stability have
been derived (see Karlin, 1978, or Nagylaki, 1992, for a
review). Such a classification is still missing in the more
difficult general case (e.g., Taylor and Jonker, 1978;
Hofbauer and Sigmund, 1998).
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Suppose that the equilibrium pg is internally stable
(i.e., r(AW) < 1), and consider an invasion attempt of a
rare mutant allele Am+1. The linear approximation of
A1, ..., Am+1 near pg is governed by the recurrence
equations

1pŒ−pg

p −m+1
2=1AW

0
B

am+1, m+1
2 1p−pg

pm+1
2 . (13)
Here am+1, m+1 is given by (8)

am+1, m+1=
“

“pm+1

pm+1wm+1(p)
w̄(p)
:
p*
=
wg
m+1

w̄g .

The spectral radius of the blockmatrix in (13) is given by

r 51AW

0
B

am+1, m+1
26=max[r(AW), am+1, m+1].

(14)

In view of our assumption that the equilibrium pg is
internally stable we have r(AW) < 1, and (14) implies
that pg is destabilized by the advent of Am+1 if and only if
am+1, m+1 > 1. In view of the equilibrium condition (6),
this implies

Result 1(Liberman, 1991). An internally stable
equilibrium pg is unstable against invasion of a rare
mutant allele Am+1 if and only if the marginal fitness of
Am+1 at equilibrium is larger than the mean fitness at
equilibrium, i.e., iff

wg
m+1 > w̄

g (15)

or equivalently iff

wg
m+1 > w

g
i for any i ¥ {1, ..., m}. (16)

Notice that wg
i is a linear function of the components

of pg, while w̄g is a quadratic form. Therefore, the inva-
sion criterion (16) is in practice easier to check than the
equivalent criterion (15).

A SEX-DIFFERENTIATED POPULATION

The Model

We now turn to the case of a sex-differentiated popu-
lation. Again we consider a single autosomal distorter
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locus in an infinite, randomly mating population with
discrete nonoverlapping generations. Let pi and qi
represent the frequencies of Ai in male and female
gametes after segregation distortion has taken place.
Random mating is equivalent to the random union of
gametes, and the ordered genotype frequencies at the
zygote stage are given by 12 (piqj+qi pj). Notice that, at
the zygote stage, the genotype frequencies do not differ
between the sexes.



Let us denote the sex-specific viability of AiAj males
and females by nmij and n

f
ij (nij=nji \ 0 in both sexes), the

sex-specific fertility of AiAj males and females by j
m
ij and

jfij (jij=jji \ 0 in both sexes), and the segregation ratio
of Ai in AiAj males and females by s

m
ij and s

f
ij (sij=

1−sji \ 0 in both sexes). The fitness of allele Ai in AiAj
males and females is again defined as the product of the
viability, fertility, and segregation ratio and will be
denoted bymij andfij, respectively:

mij=n
m
ijj

m
ijs
m
ij and fij=n

f
ijj

f
ijs
f
ij. (17)

As in case of a population without sex differentiation
(henceforth called one-sex population), the fitness
measure proposed here explicitly takes the point of view
of the allele rather than that of the genotype. In the
absence of segregation distortion the fitness matrices of
males or females are symmetric; i.e.,M=MT or F=FT.
In the absence of selection the fitness matrices are skew-
symmetric up to the constant matrixU; i.e.,M+MT=U
or F+FT=U. In most—if not all—empirical examples,
e.g., the t complex of the house mouse (Silver, 1993) or
the SD complex of D. melanogaster (Temin et al., 1991),
segregation distortion takes place in one sex only, often
the males. As a consequence, F=FT. Sometimes, females
are not even affected by selection. In this case, the female
fitness matrix simplifies further to F=FT=1

2 U. We will
demonstrate below and in the companion paper that
such special forms of the fitness matrices F simplify the
analysis considerably.
The allele frequency dynamics of the two-sex model is
given by (e.g., Karlin, 1978)

p −i=
Mi(p, q)
m̄(p, q)

q −i=
Fi(p, q)
f̄(p, q)

,

(18)

where

Mi(p, q)=
1
2 (pi(Mq)i+qi(Mp)i)
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and

Fi(p, q)=
1
2 (pi(Fq)i+qi(Fp)i)

correspond to piwi(p), the product of the allele frequency
and the marginal fitness in the one-sex model (2), while

m̄(p, q)=C
k
Mk(p, q)=

1
2 C
kl
pkn

m
klj

m
klql (19)
and

f̄(p, q)=C
k
Fk(p, q)=

1
2 C
kl
pkn

f
klj

f
klql

represent the mean fitness of the male and female sub-
population, respectively. Notice that the mean fitness
of males and females is again independent of the
segregation parameters smij and s

f
ij.

In compact matrix notation, the allele frequency
dynamics is given by (see (5))

pŒ=
p pMq+q pMp

Op,MqP+Oq,MpP

qŒ=
p p Fq+q p Fp

Op, FqP+Oq, FpP
.

(20)

This dynamics has been derived before by Karlin (1978)
(see also Karlin and Lessard, 1986; Nagylaki, 1992), but
it has been analyzed for some specific cases only. Karlin
(1978) and Lessard (1989) treat the special caseM=MT

and F=FT (i.e., absence of segregation distortion in both
sexes), while Liberman (1990) considers the case M+
MT=U and F+FT=U (i e., absence of selection in both
sexes).

Equilibria

The characterization of the equilibria and the deter-
mination of their stability is much harder than in the case
of a population without sex differentiation, and only
partial results exist even for the case of Mendelian
segregation (Cannings, 1969; Karlin, 1978). Already in
low-dimensional cases (e.g., two alleles) the equilibrium
conditions

2m̄gpg=pg
pMqg+qg

pMpg

2f̄gqg=pg
p Fqg+qg

p Fpg
(21)

often lead to intricate polynomial equations that can be
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solved only numerically (e.g., Lewontin, 1968; Hartl,
1970a,b). This is illustrated in the companion paper by
means of some simple but realistic examples.

Linearization

The stability of an equilibrium (pg, qg) is again
determined by the linear approximation of the allele



frequency dynamics at (pg, qg). The Jacobian matrix JMF

is a block-matrix of the form

JMF=1
P
R

Q
S
2=R

“p −i
“pj
“q −i
“pj

“p −i
“qj
“q −i
“qj

S :
(p*, q*)

, (22)

where P,Q, R, and S are n×nmatrices of the derivatives
of the allele frequency dynamics, evaluated at equilib-
rium. A straightforward calculation shows that the
elements of JMF are given by

Pij=
“p −i
“pj
:
(p*, q*)

=
1
2m̄*
(dij(Mqg)i+q

g
i mij

−pgi (Mqg)j−p
g
i (M

Tqg)j)

Qij=
“p −i
“qj
:
(p*, q*)

=
1
2m̄g (dij(Mpg)i+p

g
i mij

−pgi (Mpg)j−p
g
i (M

Tpg)j)

Rij=
“q −i
“pj
:
(p*, q*)

=
1
2f̄g (dij(Fqg)i+q

g
i fij

−qgi (Fqg)j−q
g
i (F

Tqg)j)

Sij=
“q −i
“qj
:
(p*, q*)

=
1
2f̄g (dij(Fpg)i+p

g
i fij

−qgi (Fpg)j−q
g
i (F

Tpg)j),

(23)

where m̄g=m̄(pg, qg) and f̄g=f̄(pg, qg).
The action of JMF can therefore be described by

JMF
1x

y
2=1Px+Qy

Rx+Sy
2 , (24)

where

Px=
1

g [x pMqg+qg
pMx−Ox, (M+MT) qgP pg]
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2m̄

Qy=
1
2m̄g [y pMpg+pg

pMy−Oy, (M+MT) pgP pg]

Rx=
1
2f̄g [x p Fqg+qg

p Fx−Ox, (F+FT) qgP qg]

Sy=
1
2f̄g [y p Fpg+pg

p Fy−Oy, (F+FT) pgP qg].

(25)
Notice that in the special case M+MT=U and
F+FT=U (i.e., absence of selection in both sexes) con-
sidered by Liberman (1990), the Jacobian is simplified
considerably since m̄g=f̄g=1

2 , and the last terms in (25)
vanish (e.g., Ox, (M+MT) qgP=0).
The equilibrium (pg, qg) is (hyperbolically) stable if
and only if all eigenvalues of JMF are smaller than 1 in
absolute value: r(JMF) < 1. Strictly speaking, one has, as
in the one-sex model, to consider only the action of JMF

on the invariant subspace S0, 0={(x, y) |; i xi=; i yi=
0} which includes the deviations (x, y)=(p−pg, q−qg)
from equilibrium. However, eigenvalues belonging to
right eigenvectors not belonging to the invariant sub-
space S0, 0 are zero and therefore do not contribute to the
spectral radius of JMF In fact, it is readily verified that the
vectors z1=(1, ..., 1, 0, ..., 0) and z2=(0, ..., 0, 1, ..., 1)
consisting of n zero entries and n entries of ones are left
eigenvectors with respect to the eigenvalue 0. As a con-
sequence, all right eigenvectors of JMF corresponding to
nonzero eigenvalues are perpendicular to z1 and z2, and
they belong to S0, 0. In other words, 0 is the only eigen-
value with right eigenvectors not belonging to S0, 0, and
this eigenvalue does not contribute to the spectral
radius.

Internal versus External Stability

Consider an equilibrium (pg, qg) where the alleles
A1, ..., Am are present in positive frequencies (p

g
i > 0 or

qgi > 0 for 1 [ i [ m). The internal stability of (p
g, qg) is

again determined by the spectral radius of the matrix
AMF which results from JMF by deleting all rows and
columns corresponding to alleles Ak (k > m) not present
at equilibrium. (pg, qg) is internally stable if and
only if

r(AMF) < 1. (26)

Now suppose that (26) is satisfied and that a new allele
A is introduced in low frequency. Following Lessard
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m+1

(1989), the first-order approximation of the augmented
systemA1, ..., Am+1 near (pg, qg) can be written as

R
pŒ−pg

qŒ−qg

p −m+1
q −m+1

S=1AMF

0
B

Cm+1
2 R

p−pg

q−qg

pm+1
qm+1

S , (27)



where the 2×2 ‘‘invasion matrix’’ Cm+1 is of the form
(see (23))

Cm+1=R
“p −m+1
“pm+1
“q −m+1
“pm+1

“p −m+1
“qm+1
“q −m+1
“qm+1

S :
(p*, q*)

=R
(Mqg)m+1
2m̄g

(Fqg)m+1
2f̄g

(Mpg)m+1
2m̄g

(Fpg)m+1
2f̄g

S . (28)

The spectral radius of the block matrix in (27) is given by
(cf. (14))

r 51AMF

0
B

Cm+1
26=max[r(AMF), r(Cm+1)]. (29)

The equilibrium (pg, qg) is externally stable against
invasion by a rare mutant allele Am+1 iff r(Cm+1) < 1. In
contrast, the rare allele Am+1 will spread (at a geometric
rate) iff r(Cm+1) > 1. For a 2×2 matrix C, r(C) < 1 is
equivalent to |tr(C)| < 1+det(C) < 2 (e.g., Edelstein–
Keshet, 1988). In our case, the trace of Cm+1 is positive.
Hence, we arrive at

Result 2. The invasion prospects of a rare mutant
allele Am+1 of the two-sex dynamics (20) can be deduced
from the invasion matrix Cm+1 (28). Am+1 will success-
fully invade an internally stable equilibrium (pg, qg) if
and only if

det(Cm+1) > 1 or tr(Cm+1) > 1+det(Cm+1). (30)

Lessard (1989) takes a different approach to judge the
invasion prospects of a rare allele. Although his analysis
was originally intended for the symmetric case M=MT

and F=FT, the analysis extends to the general case since
it does not depend on symmetry considerations. Lessard
(1989) shows that r(Cm+1) is given by
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r(Cm+1)=
1
2
1mg

m+1

m̄g +
fg
m+1

f̄g
2 ,

where

mg
m+1=z(Mqg)m+1+(1−z)(Mpg)m+1

fg
m+1=z(Fqg)m+1+(1−z)(Fpg)m+1

(31)
denote the marginal male and female fitness of Am+1 at
equilibrium. The weighing factor z corresponds to the
relative asymptotic frequency of Am+1 in males; i.e.,
(z, 1−z) is the normalized dominant right eigenvector of
Cm+1. Hence, we obtain a Shaw–Mohler criterion (Shaw
and Mohler, 1953) for the invasion prospects of a rare
alleleAm+1:

Result 3 (Lessard, 1989). A rare mutant allele Am+1
of the two-sex dynamics (20) will successfully invade an
internally stable equilibrium (pg, qg) if and only if the
average of the marginal fitness of the mutant in males
and females compared to the mean fitness in males and
females exceeds one:

1
2
1mg

m+1

m̄g +
fg
m+1

f̄g
2 > 1. (32)

Here the marginal fitness of Am+1 in males and females is
given by (31).

Lessard’s approach has the advantage that (32) makes
it quite transparent and intuitively plausible when and
why a new allele can spread in a population. It has,
however, the disadvantage that the weighing factor z in
(31) and, hence, the marginal fitness values of Am+1 are
difficult to calculate. In practical applications (see the
companion paper), the invasion criterion (30) is usually
checked more easily than the Shaw–Mohler criterion
(32).

Symmetric Equilibria

The analysis is simplified considerably in the case of a
‘‘symmetric’’ equilibrium (pg, pg), i.e., an equilibrium
with identical allele frequencies in male and female
gametes are identical. In the case of a symmetric equilib-
rium, the equilibrium conditions (21) reduce to

(Mpg)i=m̄g

(Fpg)i=f̄g,
(33)

unless pgi=0.
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Symmetric equilibria occur only under rather special
restrictions on the matrices M and F. To see this, con-
sider a fully polymorphic equilibrium pg > 0, which is
given by Mpg=m̄gu and Fpg=f̄gu. As a consequence,
the vectorsM−1u and F−1u have to be collinear, a condi-
tion that will hold only for rather specific relations
between M and F. Nevertheless, symmetric equilibria
play an important role in practical applications, as will be
demonstrated below and in the companion paper.



Insertion of qg=pg into (23) and comparison of the
result with (25) shows that the Jacobian matrix JMF is of
the form

JMF=
1
2
1JM

JF

JM

JF

2 , (34)

where JM and JF are the Jacobians at the equilibrium pg

of the two one-sex dynamics induced by the fitness
matricesW=M andW=F, respectively. In Appendix A
it is shown that the spectral radius of this 2n×2n matrix
is the same as the spectral radius of the n×n matrix
1
2 (JM+JF):

r(JMF)=r(
1
2 (JM+JF)). (35)

Hence, we obtain

Result 4. A symmetric equilibrium (pg, pg) of the
two-sex dynamics (20) is (internally and externally)
stable if and only if

r[12 (JM+JF)] < 1, (36)

where JM and JF denote the Jacobians of the one-sex
dynamics induced byM and F.

As a consequence, the condition for internal stability
can now be checked by replacing JM and JF in (36) byAM

and AF, i.e., by dropping all rows and columns that
belong to alleles not present at equilibrium. Further-
more, the criterion (32) for external instability is easy to
check, because the marginal fitnesses at equilibrium are
now given by

mg
i=(Mpg)i and fg

i=(Fpg)i.

In view of this, and the equilibrium conditions (33), we
arrive at

Result 5. A rare mutant allele Am+1 will successfully
invade an internally stable equilibrium (pg, pg) of the
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two-sex dynamics (20) if and only if

1
2
1 (Mpg)m+1
(Mpg)i

+
(Fpg)m+1
(Fpg)i
2 > 1 for any i ¥ {1, ..., m},

(37)

i.e., if and only if the relative fitness of Am+1 in males and
females is, on average, larger than 1.
POPULATIONS WITH AND WITHOUT SEX

DIFFERENTIATION: A COMPARISON

The Model

Most studies of segregation distortion are based on the
one-sex model (5) or extensions thereof. The two-sex
model (20) is much harder to analyze but more realistic
since segregation distortion typically differs between the
sexes. It is therefore interesting to consider those cases
where both models are comparable and to investigate
whether the insights obtained from the one-sex model
also apply in the two-sex context. To this end, we will
consider the special case where only the strength but not
the direction of selection and segregation distortion
differs between the sexes. More precisely, we assume that
the male and female fitness parameters are of the form

M=W and F=aW+bU; (38)

i.e., mij=wij and fij=awij+b. The parameters a and b
are assumed to be nonnegative: a, b \ 0.
Insertion of (38) in (20) shows that the allele frequency
dynamics is given by

pŒ=
p pWq+q pWp

Op,WqP+Oq,WpP

qŒ=
a[p pWq+q pWp]+b(p+q)
a[Op,WqP+Oq,WpP+2b]

.

(39)

Let us for a moment consider the special case b=0,
i.e., selection and segregation distortion the same in both
sexes. In this case, qŒ=pŒ; i.e., the allele frequencies are
the same in males and females after one generation.
From then on, the dynamics is given by

pŒ=
p pWp
Op,WpP

,
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i.e., by the one-sex dynamics induced byW.
The other special case a=0, i.e., no selection and
segregation distortion in females, (39) reduces to

pŒ=
p pWq+q pWp

Op,WqP+Oq,WpP

qŒ=1
2 (p+q).

(40)



Notice that this is in contrast with the claim of Karlin
and Lessard (1986, p. 65) that qŒ=p.

Equilibria

The equilibrium points (pg, qg) of (39) are charac-
terized by the relations

2w̄gpg=pg
pWqg+qg

pWpg

2(aw̄g+b) qg=a(pg
pWqg+qg

pWpg)

+b(pg+qg),

(41)

where 2w̄g=Opg,WqgP+Oqg,WpgP. Insertion of the
first line of (41) into the second line yields

(2aw̄g+b) qg=(2aw̄g+b) pg,

implying that qg=pg (unless 2aw̄g+b=0). In other
words, all equilibrium points are symmetric and given by
the equilibrium conditions for a population without sex
differentiation. Hence, we arrive at our next result:

Result 6. All equilibria of the two-sex dynamics
generated by M=W and F=aW+bU are symmetric.
There is a one-to-one correspondence between the sym-
metric equilibria (pg, pg) of the two-sex dynamics and the
equilibria pg of the one-sex dynamics generated byW.

Stability

Consider an equilibrium pg of the one-sex dynamics
and the corresponding equilibrium (pg, pg) of the two-
sex dynamics. The natural question to ask is whether pg

and (pg, pg) have the same stability properties. With
respect to external stability, the answer is simple: the one-
and two-sex dynamics are fully congruent. This can be
seen as follows. In view of Result 5, a rare mutant allele
Am+1 will invade the internally stable equilibrium (pg, pg)
if and only if

1
2
1wg

m+1

w̄g +
awg

m+1+b
aw̄g+b
2 > 1.
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It is easy to see that this inequality is equivalent to
wg
m+1 > w̄

g, the criterion for the spread of Am+1 with
respect to the one-sex dynamics (Result 1). Hence, we
obtain

Result 7. An internally stable equilibrium (pg, pg) of
the two-sex dynamics induced byM=W and F=aW+
bU is externally stable against invasion by a rare mutant
allele Am+1 if and only if the equilibrium pg of the one-sex
dynamics induced by W is externally stable against
invasion byAm+1 as well.

Karlin and Lessard (1986) give a proof of Result 7 for
the special case of a symmetric matrix W (see their dis-
cussion preceding Theorem 7.2). Although their proof is
rather indirect, it is in principle also applicable in the
present context since the conditions for external stability
are not affected by symmetry considerations.
With respect to internal stability, the relation between
the one-sex and the two-sex dynamics is less clear. As
shown earlier (Result 4), the (internal) stability of
(pg, pg) depends on the location of the eigenvalues of
1
2 (JM+JF). In Appendix B it is shown that on the
invariant subspace S0, the Jacobian JF=JaW+bU is given
by

JaW+bU=
aw̄g

aw̄g+b
JW+

b
aw̄g+b

I. (42)

Hence, 12 (JM+JF) is of the form

1
2 (JM+JF)=tJW+(1−t) I, (43)

where

t=
1
2
11+ aw̄g

aw̄g+b
2 . (44)

Notice that 12 [ t [ 1.
To obtain the one-sex dynamics that corresponds to
the two-sex dynamics generated byM=W andF=aW+
bU, one may argue as follows (S. P. Otto, personal
communication): Since males and females contribute
genetically to offspring in equal proportions, the margi-
nal fitness of an allele is simply the arithmetic average of
its fitness in males and females when these are stan-
dardized to have the same mean fitness. To standardize
fitnesses in the two-sex population male fitness should be
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divided by w̄g (mean male fitness at equilibrium), while
female fitness should be divided by aw̄g+b (mean female
fitness at equilibrium). Hence, the one-sex fitness matrix
W̃ corresponding to the two-sex population induced by
M=W and F=aW+bU is given by

W̃=
1
2
1W
w̄g+

aW+bU
aw̄g+b
2= t
w̄g W+(1−t) U. (45)



It is not difficult to see that the equilibrium pg of W̃ has
the same stability properties as the equilibrium (pg, pg) of
the two-sex dynamics generated byM=W andF=aW+
bU, since (42) applied to W̃ yields

JW̃=tJW+(1−t) I=1
2 (JM+JF). (46)

Result 8. The symmetric equilibrium (pg, pg) of the
two-sex dynamics generated by M=W and F=aW+
bU is (internally and externally) stable if and only if pg is
stable with respect to the one-sex dynamics generated by
W̃ (45).

The two-sex population therefore corresponds to a one-
sex population with fitness matrix W̃, where—due to the
term (1−t) U—the combined action of selection and
segregation distortion is weaker than in a one-sex popu-
lation with fitness matrixW. It is known (Weissing, 1991)
that weaker selection and segregation distortion prevent
overshooting and therefore tend to stabilize the system.
Accordingly, symmetric equilibria have a higher degree
of stability than the corresponding one-sex equilibria,
since weaker selection in one sex (b > 0) leads to weaker
selection in the overall population, and weaker selection
has a dampening effect. In fact:

Result 9. If the equilibrium pg of the one-sex dyna-
mics induced by W is (internally and/or externally)
stable, then the corresponding symmetric equilibrium
(pg, pg) of the two-sex dynamics generated by M=W
and F=aW+bU is stable as well. In contrast, the sta-
bility of (pg, pg) does not necessarily imply the stability
of pg.

The proof is easy: In view of (43), the eigenvalues lMF

of 12 (JM+JF) are of the form

lMF=tlW+(1−t), (47)

where lW is an eigenvalue of JW. It is easy to see that
|lW | < 1 implies that |lMF | < 1. In fact, 0 [ t [ 1 and
lW tl+1−t maps the open unit disk D1 onto an open
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disk Dt with radius t around the point 1−t (see Fig. 1).
It is obvious that the latter disk is contained in the open
unit disk. That the converse is not true in general can be
seen as follows. Consider the case where selection and
segregation distortion is acting only in males: M=W
and F=bU. In this case, t=1

2 , and it is conceivable that
lW tl+1−t maps values of l (=lW) from outside the
open unit disk to values (=lMF) inside the open unit
disk.
FIG. 1. The function jt: lW tl+1−t maps the eigenvalues lW

with respect to the one-sex dynamics to the eigenvalues of the two-sex
dynamics. jt maps the complex unit disk D1 onto the disk Dt, which is
centered at 1−t and which has radius t. Since 0 [ t [ 1, Dt is con-
tained in D1 and lW ¥ D1 implies jt(lW) ¥ Dt ı D1. The disk D1/t is
centered at 1− 1t and has radius

1
t . This disk contains all l which are

mapped by jt onto the unit disk: jt(l) ¥ D1 Z l ¥ D1/t.

To give an example, set b=1 and take the fitness
matrix

W=R 1 a(1−s) a(1+s)
a(1+s) 1 a(1−s)
a(1−s) a(1+s) 1

S (48)

considered by Liberman (1991). Here s (0 [ s [ 1) is a
distortion parameter (so that no segregation distortion
occurs if s=0) and a is a selection parameter (so that if
a < 1 there is underdominance, while for a > 1 there is
some form of overdominance). Figure 2 shows that an

g
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equilibrium p of the one-sex dynamics may be internally
unstable (Fig. 2A), whereas if selection and segregation
distortion act in one sex only, the corresponding equilib-
rium (pg, pg) of the two-sex dynamics is internally stable
(Fig. 2B).
The example shows that already in the simple and
rather special case of selection and segregation distortion
acting in one sex (i.e., a=0 and the dynamics given by
(40)), the stability of pg is not necessarily implied by the



FIG. 2. Different outcomes of selection and segregation distortion
in (A) a one-sex population with fitness matrix W, and (B) a two-sex
population with selection and segregation distortion in only one sex
(M=W, F=U). The matrix W is given by (48) with a=2 and s=1.
The central equilibrium is a global attractor for the two-sex dynamics,
but a global repeller for the one-sex dynamics (seeWeissing, 1991).

stability of (pg, pg). On the other hand, the stability cri-
teria for pg and (pg, pg) coincide for the other special case
b=0 (i.e.,M=W andF=aW), since in this case the two-
sex dynamics (39) essentially reduces to the one-sex
dynamics after one generation.
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There are two other exceptions to the rule that stability
with respect to the one-sex dynamics is more difficult to
achieve than stability with respect to the two-sex dyna-
mics. If only two alleles are present at equilibrium, the
state space of the one-sex dynamics (5) is one dimen-
sional. Since the one-sex dynamics is a diffeomorphism
(Akin and Losert, 1984), it follows that (5) is a monotone
mapping. This implies that the only relevant eigenvalue is
a positive real number, but for a real positive eigenvalue
lW, (47) implies that lW < 1 if and only if lMF < 1. Hence,
we are led to

Result 10. If only two alleles are present at equilib-
rium, pg is (internally and/or externally) stable with
respect to the one-sex dynamics induced byW if and only
if (pg, pg) is stable with respect to the two-sex dynamics
induced byM=W and F=aW+bU.

The second exception is less obvious and, in fact,
claims to the contrary can be found in the early literature
(Cannings, 1969; Karlin, 1978):

Result 11. In the absence of segregation distortion
(i.e.,W is a symmetric matrix), pg is an (internally and/or
externally) stable equilibrium of the one-sex dynamics
induced byW if and only if (pg, pg) is an internally stable
equilibrium of the two-sex dynamics induced byM=W
and F=aU+bW.

This result was noticed earlier by Karlin and Lessard
(1986, p. 223). Here we give a simple proof that makes
use of the fact that mean fitness is a Lyapunov function
when the fitness matrix W is symmetric (e.g., Nagylaki,
1992): In view of Result 8, (pg, pg) is stable with respect
to the one-sex dynamics induced by the (symmetric)
fitness matrix W̃ (45). As well known from classical
selection theory, the latter condition is equivalent to
mean fitness w̄t(p)=

t
w̄*;kl pkwkl pl+1−t being maxi-

mized at p=pg. But pg maximizes w̄t(p) if and only if it
maximizes w̄1(p), and the latter is equivalent to pg being
an internally stable equilibrium with respect to the fitness
matrixW.

CONCLUSIONS

Our study was motivated by the question whether and
when several segregation distorter alleles can stably
coexist. The obvious approach would be to characterize
all equilibrium points and to investigate their stability.
However, this approach seems feasible only for specific
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cases (the one-sex model, the two-sex model with
selection and segregation distortion identical in both
sexes, or the two-sex model with selection and segrega-
tion distortion in one sex only). In essence, a complete
analysis of the two-sex model seems possible only in
those cases for which the equilibria are symmetric, i.e.,
if the frequencies in male and female gametes do not
differ. In the case of asymmetric equilibria, already
the calculation of the interior equilibria is a daunting



task (see Manos et al., 2000, for a specific example).
Accordingly, we have little hope that an analytical
characterization of the equilibria and their stability can
be accomplished.
To obtain at least a partial characterization of the
equilibria, the problem of stability of the equilibria is
split by separate consideration of the internal and exter-
nal stabilities. Internal stability refers to stability with
respect to perturbations of alleles that are already present
at equilibrium. In contrast, external stability refers to
stability with respect to invasion attempts of alleles that
are not yet present. Hence, internal stability may be
thought of as being concerned with the relatively short
population dynamical time scale, while external stability
deals with the longer, evolutionary time scale on which
new mutant alleles may arise. While the problem of
internal stability is difficult and cannot be solved in
general, we have shown that the determination of the
external stability of the equilibria is still manageable.
Notice, however, that this conclusion hinges on the
assumption that equilibria, if they exist, are internally
stable.
It is tempting to speculate that mutual invadability will
result in stable coexistence, i.e., that all alleles will stably
coexist if they are able to spread when rare. Unfortu-
nately, this is not true in general. Take the one-sex model,
which is formally equivalent to the discrete replicator
dynamics (Liberman, 1991). For this dynamics it is well
known that mutual invadability does not preclude the
possibility that the frequency of one or more alleles
approaches zero (Hofbauer and Sigmund, 1998). In
principle this can already happen in the context of
three alleles (Fig. 2A; see also Weissing, 1991; Stadler,
1996).
Nevertheless, in practical applications the situation
may not be as grim as sketched above. In practice, the
aforementionedproblemsplayaminorrole,duetonatural
restrictions on the fitness matricesM and/or F. Take, for
instance, the t complex of the house mouse. The so-called
t haplotypes strongly distort Mendelian segregation in
heterozygous males. Females, however, are unaffected
by segregation distortion. As a consequence, the female
fitness matrix is symmetric (F=FT). Furthermore,
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certain variants of the t haplotypes induce only male
sterility, so that females are unaffected by selection. In
this case, the female fitness matrix is simplified even
further (F=FT=U). As we have shown, the analysis of
these special cases is still within reach. And even the case
of a lethal t haplotype that leads to homozygous lethality
in both males and females may still be amenable to
analysis, as the expression of selection does not differ
between the sexes (M+MT=F+FT), so that male
fitness equals female fitness. Illustrations that apply to
the t complex are given in the companion paper.

APPENDIX A

Stability of a Symmetric Equilibrium

For a symmetric equilibrium (pg, pg) the Jacobian JMF

is given by the blockmatrix (34)

JMF=
1
2
1JM

JF

JM

JF

2 .

The eigenvalues of JMF are the roots of the characteristic
polynomial q(l) of JMF:

q(l)=det 1
1
2 JM−lI
1
2 JF

1
2 JM

1
2 JF−lI
2 . (A1)

Since the matrices 12 JM−lI and 12 JM commute we may
use Schur’s formula (e.g., Gantmacher, 1966) to express
the characteristic polynomial of JMF in terms of JM

and JF:

q(l)=det[( 12 JF−lI)( 12 JM−lI)− 12 JF
1
2 JM]

=det[−12 JFlI−lI 12 JM+l2I]

=(−1)n det[12 (JM+JF)−lI]. (A2)

Since the second term of (A2) is just the characteristic
polynomial of the matrix 12 (JM+JF), it is evident that the
eigenvalues of JMF either are 0 (with multiplicity n) or are
equal to the eigenvalues of 12 (JM+JF) (see (35)). This
result was derived by Cannings (1969) for some special
cases and is stated in general, but without proof, in
Karlin (1978).

APPENDIX B

The Relation between JW and JaW+bU

Consider the fitness matrix F=aW+bU and an equi-
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librium pg of the one-sex dynamics induced by F. The
action of the Jacobian JF=JaW+bU on the invariant sub-
space S0={p−pg |; (pi−pgi )=0} which describes the
deviations from equilibrium is given by (9)

JaW+bUx=
1

aw̄g+b
[x p Fpg+pg

p Fx

−Ox, (F+FT) pgP pg], (B1)



where x ¥ S0. On S0 we have the identities Ux=0,
Upg=u, and Ox, uP=0 and, as a consequence,

x p Fpg=ax pWpg+bx

pg
p Fx=apg

pWx

Ox, (F+FT) pgP=aOx, (W+WT) pgP.

(B2)

Insertion of (B2) into (B1) and use of (9) yield

JaW+bUx=5 aw̄
g

aw̄g+b
JW+

b
aw̄g+b

I6 x. (B3)

In other words, the action of JaW+bU on S0 is identical
with the action of aw̄*aw̄*+b JW+

b
aw̄*+b I on S0.

ACKNOWLEDGMENTS

We thank Sarah Otto and an anonymous reviewer for their insightful
comments on an earlier version of the manuscript. The research of
M.v.B. was supported by the Life Sciences Foundation (SLW), which is
subsidized by the Netherlands Organization for Scientific Research
(NWO).

REFERENCES

Akin, E., and Losert, V. 1984. Evolutionary dynamics of zero-sum
games, J.Math. Biol. 20, 231–258.

Bruck, D. 1957. Male segregation ratio advantage as a factor in main-
taining lethal alleles in wild populations of house mice, Proc. Natl.
Acad. Sci. USA 43, 152–158.

Cannings, C. 1969. The study of multiallelic genetic systems by matrix
methods,Genet. Res. 14, 167–183.

Dunn, L. C., and Levene, H. 1961. Population dynamics of a variant

340
t-allele in a confined population of wild house mice, Evolution 15,
385–393.

Edelstein-Keshet, L. 1988. ‘‘Mathematical Models in Biology,’’
RandomHouse, NewYork.

Eshel, I. 1985. Evolutionary genetic stability of Mendelian segregation
and the role of free recombination in the chromosomal system, Am.
Nat. 125, 412–420.

Feldman, M. W., and Otto, S. P. 1991. A comparative approach to the
population-genetics theory of segregation distortion, Am. Nat. 137,
443–456.

Gantmacher, F. R. 1966. ‘‘Matrizentheorie,’’ Springer-Verlag, Berlin.
Hartl, D. L. 1970a. A mathematical model for recessive lethal segrega-
tion distorters with differential viabilities in the sexes, Genetics 66,
147–163.

Hartl, D. L. 1970b. Analysis of a general population genetic models of
meiotic drive,Evolution 24, 538–545.

Hartl, D. L. 1970c. Population consequences of non-Mendelian
segregation amongmultiple alleles,Evolution 24, 415–423.

Hofbauer, J., and Sigmund, K. 1998. ‘‘Evolutionary Games and
PopulationDynamics,’’ CambridgeUniv. Press, Cambridge, UK .

Karlin, S. 1978. Theoretical aspects of multilocus selection balance, I,
in ‘‘Studies in Mathematical Biology II: Populations and Commu-
nities’’ (S. A. Levin, Ed.), pp. 503–587, Math. Assoc. of America,
Washington.

Karlin, S., and Lessard, S. 1986. ‘‘Theoretical Studies on Sex Ratio
Evolution,’’ PrincetonUniv. Press, Princeton, NJ.

Kingman, J. F. C. 1961. A mathematical problem in population
genetics,Proc. Cambridge Philos. Soc. 57, 574–582.

Lessard, S. 1985. The role of recombination in the modifier theory of
autosomal segregation distortion,Theor. Popul. Biol. 28, 133–149.

Lessard, S., and Karlin, S. 1982. A criterion for stability-instability at
fixation states involving an eigenvalue one with applications in
population genetics,Theor. Popul. Biol. 22, 108–126.

Lessard, S. 1989. Resource allocation in Mendelian populations:
Further in ESS theory, in ‘‘Mathematical Evolutionary Theory,’’
(M. W. Feldman, Ed.), pp. 207–246, Princeton Univ. Press,
Princeton, NJ.

Lewontin, R. C. 1968. The effect of differential viability on the popula-
tion dynamics of t-alleles in the house mouse, Evolution 22,
262–273.

Liberman, U. 1976. Modifier theory of meiotic drive: Is Mendelian
segregation stable?,Theor. Popul. Biol. 10, 127–132.

Liberman, U. 1990. Mendelian segregation: A choice between ‘‘order’’
and ‘‘chaos’’, J.Math. Biol. 28, 435–449.

Liberman, U. 1991. On the relation between the instability of ESS in
discrete dynamics and segregation distortion, J. Theor. Biol. 150,
421–436.

Manos, H., Liberman, U., and Feldman, M. W. 2000. On the product
mean fitness and population growth in sexual and asexual popula-
tions,Evol. Ecol. Res. 2, 525–545.

Nagylaki, T. 1983. Evolution of a large population under gene conver-
sion,Proc. Nat. Acad. Sci. USA 80, 5941–5945.

Nagylaki, T. 1992. ‘‘Introduction to Theoretical Population Genetics,’’
Springer-Verlag, NewYork.

Sandler, L., and Novitski, E. 1957. Meiotic drive as an evolutionary
force,Am. Nat. 91, 105–110.

Scheuer, P. A. G., and Mandel, S. P. H. 1959. An inequality in popula-
tion genetics,Heredity 13, 519–524.

Shaw, R. F., andMohler, J. D. 1953. The selective advantage of the sex
ratio,Am. Nat. 87, 337–342.

Silver, L. M. 1993. The peculiar journey of a selfish chromosome:
Mouse t haplotypes andmeiotic drive,Trends Genet. 9, 250–254.

Stadler, B. M. R. 1996. Heteroclinic cycles and segregation distortion,

Weissing and van Boven
J. Theor. Biol. 183, 363–379.
Taylor, P. D., and Jonker, L. B. 1978. Evolutionarily stable strategies
and game dynamics,Math. Biosci. 40, 145–156.

Temin, R. G., Ganetzky, B., Powers, P. A. Lyttle, T. W., and
Pimpinelli, S. et al. 1991. Segregation distortion in Drosophila
melanogaster: Genetic and molecular analyses, Am. Nat. 137,
287–331.

van Boven, M., and Weissing, F. J. 1998. Evolution of segregation dis-
tortion: Potential for a high degree of polymorphism, J. Theor. Biol.
192, 131–142.



van Boven, M., and Weissing, F. J. 2000. Evolution at the mouse t
complex: Why is the t haplotype preserved as an integral unit?,
Evolution 54, 1795–1808.

van Boven, M., and Weissing, F. J. 2001. Competition at the mouse t
complex: Rare alleles are inherently favoured,Theor. Popul. Biol. 60,
341–356.

Selection and Segregation Distortion
van Boven, M., Weissing, F. J., Heg, D. and Huisman, J. 1996. Com-
petition between segregation distorters: Coexistence of ‘‘superior’’
and ‘‘inferior’’ haplotypes at the t complex,Evolution 50, 2488–2498.

Weissing, F. J. 1991. Evolutionary stability and dynamic stability in a class
of evolutionary normal form games, in ‘‘Game EquilibriumModels. I.
Evolution andGameDynamics’’ (R. Selten, Ed.), pp. 29–97.

341


	INTRODUCTION
	A POPULATION WITHOUT SEX DIFFERENTIATION
	A SEX-DIFFERENTIATED POPULATION
	POPULATIONS WITH AND WITHOUT SEX DIFFERENTIATION: A COMPARISON
	FIG. 1
	FIG. 2

	CONCLUSIONS
	APPENDIX A
	APPENDIX B
	ACKNOWLEDGMENTS
	REFERENCES

