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The conclusions in the main text are based on general arguments that are supported by 

individual-based simulations. We show here that the corresponding simulation results are 

robust and apply to a broad range of parameter regimes. Throughout we assume that 

individuals follow the basic life cycle that is illustrated by Figure 1a in the main text. In 

our model, a prerequisite for the evolution of animal personalities is a stable 

polymorphism of the exploration trait x . We therefore start by demonstrating that the 

coexistence of superficial and thorough explorers is a stable evolutionary outcome 

whenever the trade-off between current and future reproduction is convex (Section 1). In 

Sections 2 and 3, we study the consequences of this dimorphism in exploration traits on 

the evolution of behavioural strategies in a single anti-predator game and a single hawk-

dove game. Here, as in the subsequent sections, we allow individuals to condition their 

behaviour in these games on their explorative behaviour. For both games the result is that 

in evolutionary equilibrium superficial explorers will always be at least as risk-prone as 

thorough explorers and strictly more risk-prone for a broad range of parameter 

combinations. In Sections 4 and 5, we study the evolution of behavioural correlations 

across games (i.e., one anti-predator and one hawk-dove game) and stable individual 

differences within games (i.e., two hawk-dove games). We demonstrate that personalities 

are stable evolutionary outcomes for a broad range of parameter settings. 
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1. Coexistence of exploration strategies 

As in the main text, we first focus on the situation where individuals play no games. In 

the simulations, we observed the emergence of a dimorphism in exploration strategies: 

the investment in exploration is high (even maximal) for part of the population (thorough 

explorers; 1=hx ) while it is low (even minimal) for the rest (superficial explorers; 

0=lx ). We here show that this is a robust outcome. 

Result 1. The dimorphism ( )1, 0h lx x= =  is a stable evolutionary equilibrium whenever 

1β >  and 2 1l hf f> > , i.e. whenever the trade-off between current and future 

reproduction is convex and the intrinsic benefit hf  of obtaining a high-quality resource is 

high enough to prevent extinction of the population but not high enough to make 

thorough exploration the dominant strategy. 

Proof. Let hn  and ln  denote the density of age 1 individuals with exploration trait 1hx =  

and 0lx = , respectively. Let hF  and lF  be the number of offspring produced by 

individuals feeding on a high- and a low-quality resource, respectively. The population 

dynamics of the dimorphic population ( ),h lx x  is then governed by the equations 
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For 2 1l hf f> >  a positive equilibrium exists, which is always asymptotically stable. 

Let us therefore assume that the dimorphic population ( ),h lx x  has settled on its 

population dynamical equilibrium (2). We now show that this dimorphism is globally 

invasion stable, as long as 1β > . In other words, no rare mutant with an exploration 

intensity 0 1< <x  can grow in the population. The population dynamics of a rare mutant 

with strategy x  is given by 

 ( ) ( )( )ˆ ˆ ˆ( 1) ( ) 1 ( 1) 1 .
β

+ = − + − − +l l hn t n t x F n t x F xF  (3) 

The growth rate ( )λ x  of this mutant is given by the dominant solution of the 

corresponding characteristic equation, which in view of ˆ 1=hF  and 1
2

ˆ =lF  is given by 

 ( ) ( )( ) ( ) ( )2 2 1 1
2 2

ˆ ˆ ˆ1 1 1 1 0l l hx F x F xF x x
β β

λ λ λ λ− − − − + = − − − + = . (4) 

The resident equilibrium is immune against invasion by x if ( )λ x  is smaller than one, the 

growth rate of the two resident strategies. It is well known (e.g., Edelstein-Keshet 2005) 

that the dominant solution of the quadratic equation 2
1 0 0λ λ+ + =a a  is smaller than one 

in absolute value whenever 1 01 2< + <a a . When applied to equation (4), this yields 

1 1
2 2

(1 ) (1 ) 2x x
β− < − <  or, equivalently, 1β > . Hence no mutant strategy 0 1< <x  can 

invade the resident dimorphism if 1β > . This establishes Result 1. 

2. Risk-aversion in a single anti-predator game 

In view of Result 1, from now on we make the simplifying assumption that the 

population is dimorphic with respect to exploration intensity, with 1hx =  and 0lx = . In 

this section we study a situation were each individual plays one anti-predator game 

between year 1 and year 2. In this game, individuals can either be bold or shy. A bold 

individual receives a payoff b  but dies with probability γ  whereas a shy individual 

receives no payoff and always survives. Since the anti-predator game is embedded in a 
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life-history context we imagine b to be relatively small when compared to the life-history 

payoff (i.e., 1
2

ˆ
lb F< = ). 

Individuals can condition their behaviour on their exploration intensity x. The strategy 

of an individual is therefore a pair ( , )= h ly y y , where hy  (resp. ly ) is the probability of 

behaving boldly given that the individual has explored its environment with intensity hx  

(resp. lx ). We now derive 

Result 2. The unique invasion proof equilibrium strategy * * *( , )= h ly y y  has the following 

properties: 

(a) Superficially exploring individuals are at least as risk-prone as thoroughly exploring 

individuals, i.e. * *≥l hy y . 

(b) For 1
2

bΓ < < Γ  superficial explorers are always bold whereas thorough explorers are 

always shy: 

 ( )* *1
2

( , ) 0,1Γ < < Γ ⇔ =h lb y y  (5) 

where 
1

γ

γ
Γ =

−
 is a measure for the mortality-risk in the anti-predator game. 

Proof. Consider a resident population playing ˆ ˆ ˆ( , )= h ly y y  at its population dynamical 

equilibrium, with corresponding payoffs ˆ ˆ( , )h lF F . Let us first consider a mutant with 

ˆ( , )= h ly y y , i.e. a mutant only differing from the resident in its probability of being bold 

after having explored the environment thoroughly. Since the mutation has no effect in 

case of superficial exploration we can, without loss of generality, focus on mutants that 

are thorough explorers. The population dynamics of such a mutant is characterised by 

 ( ) ( )( )( )ˆ ˆ( 1) ( 1) 1 1 .γ+ = − − + − +h h h hn t n t y F y F b  (6) 
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The growth rate ˆ( , )λ y y  of this mutant is therefore 

 ( )ˆ ˆˆ( , ) (1 ) .λ γ γ= − − +h h hy y y b F F  (7) 

Note that λ  is a strictly monotonic function in the mutant trait hy . Using 

ˆ1 (1 )ˆ
ˆ1

γ

γ

− −
=

−
h

h
h

y b
F

y
 it is easy to see that the coefficient of hy  in (7) is positive for b > Γ  

and negative for b < Γ , where 
1

γ

γ
Γ =

−
. Hence 1=hy  is the best response to ŷ  for 

b > Γ  (i.e., the strategy y maximising ˆ( , )λ y y ), while 0=hy  is the best response to ŷ  

for b < Γ . As a consequence, * 1=hy  is the unique invasion proof behaviour for b > Γ  

whereas * 0=hy  is the unique invasion proof behaviour for b < Γ . 

Let us now consider a mutant of the form ˆ( , )= h ly y y . In this case we can assume, 

without loss of generality, that the mutant is a superficial explorer. The population 

dynamics of such a rare mutant is now governed by 

 ( ) ( ) ( )( )ˆ ˆ ˆ( 1) ( ) ( 1) 1 1 .γ+ = + − − + − +l l l l ln t n t F n t y F y F b  (8) 

Using 
ˆ1 (1 )ˆ

ˆ2

γ

γ

− −
=

−
l

l
l

y b
F

y
, analogous considerations as above show that * 1=ly  is the 

unique invasion proof behaviour for 1
2

b > Γ  whereas * 0=ly  is the unique invasion proof 

behaviour for 1
2

b < Γ . Taken together, these considerations establish Result 2. 

3. Risk-aversion in a single hawk-dove game 

In this section we study a situation where each individual plays one hawk-dove game 

with a randomly chosen partner between year 1 and year 2. If two doves are matched, 

both get a payoff 2V . If a hawk meets a dove, the hawk gets V while the opponent gets 

0. If two hawks are matched, one gets V  while the opponent gets 0 and moreover dies 

doi: 10.1038/nature05835    SUPPLEMENTARY INFORMATION

www.nature.com/nature 5



  

with probability δ . Now we imagine V  to be relatively small compared to the life-

history payoffs (i.e., 1
2

ˆ
lV F< = ). 

As in the case of an anti-predator game, the strategy of an individual is a pair 

( , )= h lz z z , where hz  and lz  are the conditional probabilities with which an individual 

plays hawk. We now show 

Result 3. Any invasion proof equilibrium strategy * * *( , )= h lz z z  has the following 

properties: 

(a) Superficial explorers are at least as risk-prone as thorough explorers, i.e. * *≥l hz z . 

(b) If the payoff V is sufficiently small, superficial explorers will play hawk with a 

strictly higher probability than thorough explorers: 

 * *.δ< ⇒ >l hV z z  (9) 

Proof. Consider a resident population playing ˆ ˆ ˆ( , )= h lz z z  at its population dynamical 

equilibrium ˆ ˆ ˆ( , , )πh lF F , where π̂  is the frequency of hawks in the resident population. 

Again we consider two types of rare mutants in turn. First consider a mutant strategy of 

the form ˆ( , )= h lz z z . As in the previous section we may assume that the mutant is a 

thorough explorer. This implies that the population dynamics of the rare mutant is given 

by 

 ( )( )ˆ ˆ( 1) ( 1) 1+ = − + −h hawk h doven t n t z E z E  (10) 

where ˆ
hawkE  and ˆ

doveE  is the expected reproductive success of a thoroughly exploring 

individual given that it plays hawk or dove, respectively. These expectations are given by 

 

( )

( )

1 1 1
2 2 2

1
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 ) 1 ( )

ˆ ˆ ˆ1 .

δπ π π π δ

π

= − + − + = + − +

= + −

hawk h h h

dove h

E F V V F V V F

E F V

 (11) 
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The growth rate of the mutant is of the form 

 ( )ˆ ˆ ˆ ˆ ˆˆ( , ) 1 ( ) .λ = + − = + −h hawk h dove dove h hawk dovez z z E z E E z E E  (12) 

Note that λ  is a strictly monotonic function in the mutant trait hz , implying that 1=hz  is 

the best response to ẑ  if ˆ ˆ>hawk doveE E , while 0=hz  is the best response if 

ˆ ˆ<hawk doveE E . The difference ˆ ˆ−hawk doveE E  is proportional to ˆπ̂δ− hV F . Using the fact 

that in population dynamical equilibrium ( )1 1
2 2

ˆ ˆ ˆˆ ˆ1 (1 ) (1 )π δπ= − + − −h h hF V z z , a 

straightforward calculation yields that ˆ ˆ>hawk doveE E  whenever 2 2ˆ ˆ2 0
δ

π π+ − <C , where 

1 1
2

= −
V

C . From this we can conclude: 

 ( ) 2ˆ ˆ ˆ0 , 2hawk dove hE E T V C Cπ δ δ− > ⇔ < = − + + . (13) 

Hence 1=hz  is the best response to the resident strategy if π̂ , the frequency of hawks in 

the resident population is below the threshold value hT , and 0=hz  is the best response if 

π̂  is above that value. 

Next consider a rare mutant strategy of the form ˆ( , )= h lz z z . In this case we may 

assume that the mutant is a superficial explorer. As a consequence, the population 

dynamics of the mutant is given by 

 ( )( )ˆ ˆ ˆ( 1) ( ) ( 1) 1+ = + − + −l h hawk h doven t n t F n t z E z E  (14) 

with 

 

( )

1
2

1
2

ˆ ˆ ˆˆ ( )

ˆ ˆ ˆ1 .

π δ

π

= + − +

= + −

hawk l l

dove l

E F V V F

E F V

 (15) 
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Using the fact that ( )1 1
2 2

ˆ ˆ ˆˆ ˆ1 (1 ) (2 )π δπ= − + − −l l lF V z z , we now get ˆ ˆ>hawk doveE E  

whenever 2 4ˆ ˆ2 0
δ

π π+ − <C , where again C is given by 1 1
2

= −
V

C . This yields: 

 ( ) 2ˆ ˆ ˆ0 , 4hawk dove lE E T V C Cπ δ δ− > ⇔ < = − + + . (16) 

Hence 1=lz  is the best response to the resident strategy if π̂  is below the threshold 

value lT , and 0=lz  is the best response if π̂  is above that value. 

Using (13) and (16) we can now characterise the equilibrium structure of the hawk-

dove game. Note that 0 h lT T< <  since 0δ > . If δ>V , both thresholds are larger than 

one and (13) and (16) imply that hawk is the dominant strategy, irrespective of the 

exploration behaviour. Hence ( )* *( , ) 1,1=h lz z  is the only invasion proof equilibrium 

strategy. 

Let us therefore from now on assume 0 V δ< < , which implies 1<hT . Now ( )* 1,1=z  

is no longer an invasion proof equilibrium, since * * 1= =h lz z  implies ˆ 1π = > hT , which in 

view of (13) implies that a mutant with 0=hz  could invade the population. ( )* 0,0=z  is 

also not invasion proof, since ˆ 0π = < <h lT T  implies that the hawk strategy could invade 

irrespective of the exploration strategy. Any mixed strategy with * *0 1< = <h lz z  can also 

not be an invasion proof equilibrium, since equality would have to hold in both (13) and 

(16) (i.e., π̂ = =h lT T ), which is impossible in view of <h lT T . We can conclude that *
hz  

and *
lz  differ at equilibrium. In view of (13) and (16), superficial explorers have a higher 

tendency to play hawk than thorough explorers. Hence, we can conclude that * *
l hz z> . 

Summarising, we have shown that 

 

* *

* *

1l h

l h

V z z

V z z

δ

δ

> ⇒ = =

< ⇒ >
 (17) 

which establishes Result 3. 
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With similar arguments as those given in the proof above one can furthermore show that 

there exist two thresholds 1 20 ( , ) ( , )δ δ δ< < <S V S V  with the following properties: 

 

* *
2

* *
1 2

* *
1

1, 1

1, 0

0 0, 0.

δ< < ⇒ = <

< < ⇒ = =

< < ⇒ > =

l h

l h

l h

S V z z

S V S z z

V S z z

 (18) 

The explicit characterisation of these thresholds is rather intricate, but they are readily 

calculated numerically. This is illustrated by Supplementary Figure 1, where the 

equilibrium structure of the hawk-dove game is represented as a function of V . 

 

 

Supplementary Figure 1. Equilibrium strategies in the hawk-dove game as a function of 

V , for 3.5, 3.0h lf f= =  and 0.5δ = . Superficial explorers (red line) are always at least 

as risk-prone as thorough explorers (blue line). For V δ<  superficial explorers play 

hawk with a strictly higher probability than thorough explorers, for V δ>  playing the 

pure strategy hawk is a dominant strategy. 
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4. Evolution of behavioural correlations 

Up to now our analysis has confirmed the life-history principle that individuals with 

higher fitness expectations (in our case: thorough explorers) should behave in a more 

cautious way. We here show that the same principle gives rise to the evolution of 

behavioural syndromes, i.e. correlated behavioural traits across two different games. 

Consider the scenario where each individual sequentially plays one anti-predator game 

and one hawk-dove game between years 1 and 2. Individuals can condition their 

behaviour on their exploration intensity and a strategy is now a quadruple of the form 

( , , , )= h l h ls y y z z . We here only sketch how to derive the invasion proof equilibrium 

strategies of the model. To this end, we consider a resident population with strategy 

ˆ ˆ ˆ ˆ ˆ( , , , )= h l h ls y y z z  at its population dynamical equilibrium ˆ ˆ ˆ( , , )πh lF F , where π̂  is the 

frequency of hawks in the population. Then we consider four types of rare mutants, each 

differing in only one component from the resident strategy ŝ . Take, for example, a 

mutant of the form ˆ ˆ ˆ( , , , )= h l h ls y y z z . As above, we may assume without loss of 

generality that the mutant is a thorough explorer. The population dynamics of this mutant 

is then given by 

 ( )( )ˆ ˆ( 1) ( 1) 1+ = − + −h bold h shyn t n t y E y E  (19) 

where ˆ
boldE  and ˆ

shyE  is the expected reproductive success of a thoroughly exploring 

individual given that it plays bold or shy, respectively. The expected payoff from the 

hawk-dove game is 1 1 1
2 2 2

ˆ ˆ ˆˆ ˆ ˆ(1 ) (1 )(1 ) (1 ) .π π π− + − − = + −h h hz V z V z V  Therefore these 

expectations are given by 

 

( )1 1
2 2

1 1
2 2

ˆ ˆˆ ˆˆ ˆ(1 ) (1 )( ) (1 )

ˆ ˆˆ ˆˆ ˆ(1 ) (1 ) .

γ δπ π

δπ π

= − − + + + −

= − + + −

bold h h h

shy h h h

E z F b z V

E z F z V

 (20) 
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The growth rate of the mutant 

 ( )ˆ ˆ ˆ ˆ ˆˆ( , ) 1 ( )λ = + − = + −h bold h shy shy h bold shys s y E y E E y E E  (21) 

is again a strictly monotonic function in the mutant trait hy . If ˆ ˆ>bold shyE E , 1=hy  is the 

best response to ŝ , while 0=hy  is the best response if ˆ ˆ<bold shyE E . Analogous 

considerations characterise the best responses with respect to the other three traits.  

 Having derived the best response structure, all invasion proof equilibrium strategies 

can be calculated. Each such equilibrium *
s  has to be a best response to itself, i.e. each of 

the four strategy components of *
s  has to be a best response to the resident environment 

*ˆ =s s .  

Based on these conditions we numerically calculated the evolutionary equilibria 

* * * * *( , , , )= h l h ls y y z z  as a function of the payoff in the hawk-dove game V and the payoff 

in the anti-predator game b (Supplementary Figure 2). First note that behavioural 

correlations across the two games are only possible if there is behavioural variation in 

both games. We know from Results 2 and 3 that variation in a single anti-predator game 

occurs for 1
2

bΓ < < Γ  and in single hawk-dove game for V δ< . The corresponding area 

in parameter space is bordered by red lines in the figure. The blue area indicates the 

parameter combinations for which we find behavioural syndromes, i.e. behavioural 

correlations across the two games. The white area in the figure corresponds to payoff 

configurations where all individuals play the same pure strategy in at least one of the two 

games, irrespective of their exploration behaviour.  

We stress that these results are in perfect agreement with the individual-based 

simulations that we performed. 
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Supplementary Figure 2. The combinations of payoffs in the anti-predator and the 

hawk-dove game that result in the evolution of behavioural syndromes, i.e. positive 

behavioural correlations across two different games (blue area). For payoff combinations 

where we did not find positive correlations, at least one of the games had a dominant pure 

strategy, precluding behavioural variation in relation to exploration behaviour. 

Evolutionary equilibria were calculated numerically for 3.5, 3.0, 0.1h lf f γ= = =  and 

1
2

δ = , where ( )1γ γΓ = − . The red lines border those payoff combinations for which 

thorough and superficial explorers differ in equilibrium behaviour in both of the 

individual games. 

5. Evolution of time-consistent behaviour 

Our approach for analysing the evolution of stable behavioural differences within the 

same game follows the approach described in the preceding section. We here consider the 

scenario where each individual plays two hawk-dove games between years 1 and 2. A 

strategy is now a quadruple of the form ,1 ,1 ,2 ,2( , , , )h l h ls z z z z= . The resident population 

at its population dynamical equilibrium is now characterised by 1 2
ˆ ˆ ˆ ˆ( , , , )h lF F π π  where 

1π̂  ( 2π̂ ) is the population frequency of hawks in the first (second) hawk-dove game. As 

above, we derive the best response structure by considering four types of rare mutants. 

Based on these conditions we numerically calculated the evolutionary equilibria 
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* * * * *
,1 ,1 ,2 ,2( , , , )h l h ls z z z z=  as a function of the payoff 1V  in the first hawk-dove game and 

the payoff 2V  in the second hawk-dove game (Supplementary Figure 3). 

First note that, analogously to the results in Section 4, stable behavioural differences 

are only possible if there is behavioural variation in each of the hawk-dove games. We 

know from Result 3 that variation in a single hawk-dove game occurs for V δ< . The 

corresponding area in parameter space is bordered by red lines. The blue area indicates 

the parameter combinations for which we find stable behavioural differences, i.e. positive 

behavioural correlations across the two hawk-dove games. The white area in the figure 

corresponds to payoff configurations where all individuals play the same pure strategy in 

at least one of the two games, irrespective of their exploration behaviour. Again, these 

results are in perfect agreement with the individual-based simulations that we performed. 

 

 

Supplementary Figure 3. The combinations of payoffs that give rise to stable 

behavioural differences within contexts, i.e. positive correlations in two subsequently 

played hawk-dove games (blue area). For payoff combinations where we did not find 

positive correlations, at least one of the games had a dominant pure strategy, precluding 

behavioural variation in relation to exploration behaviour. Evolutionary equilibria were 

calculated numerically for 3.5, 3.0h lf f= =  and 1
2

δ = . The red lines border those 

payoff combinations for which thorough and superficial explorers differ in equilibrium 

behaviour in both of the individual hawk-dove games. 
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