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1. Basic set-up of the model 

Consider the model as described in the main text. Individuals within an evolving 

population are engaged in a large number of rounds of pairwise interactions. In each 

round, individuals in the population are randomly matched in pairs. Within any 

interaction between a focal individual and its opponent, each of the two individuals can 

adopt one out of two actions. Payoffs are obtained according to the payoff matrix  

 11 12

21 22

action 1 action 2

action 1

action 2

a a

a a

 (1) 

such that aij represents the payoff to a focal individual that played action i against an 

opponent that played j.  Throughout, we assume that 

 21 11 12 22and .a a a a   (2) 

to ensure that a mixed-strategy ESS exists for the single-shot game. 

Individuals can either adopt a responsive or an unresponsive strategy. The strategy of 

unresponsive individuals is given by a single number p , 0 1p   that determines the 

probability with which an individual chooses action 1 in each of its interactions. 

Responsive individuals take into account the last interaction of their partner and choose 

their behaviour according to a simple eavesdropping strategy: “choose action 1 if 

opponent chose action 2 in its last interaction, otherwise choose action 1”. 

Responsiveness is costly and reduces the payoff of responsive individuals per interaction 

by c . 
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2. Payoffs 

At each point in time, our population can be characterized by the tuple ( , ( ))f θ p , where f 

gives the frequency of responsive individuals in the population and ( )θ p  gives the 

frequency distribution of unresponsive strategies in that population. For any distribution 

( )θ p , we denote its expected value by ( )E p  and its variance by ( )Var p . 

The expected payoff of an unresponsive individual with strategy p  in a resident 

environment  ˆ ˆ ˆ, ( )f θ p  is given by 

    ˆ ˆ, ,
ˆ ˆ ˆ ˆ, , 1u u r u uW p f θ f w f w      (3) 

per interaction, where ˆ,u i
w  are the expected payoffs to an unresponsive individual 

dependent on whether it interacts with a responsive or an unresponsive individual. These 

payoffs are given by: 

 

       

       
       

1 1

ˆ, 11 12 21 22

0 0

11 12 21 22

ˆ, 12 22 11 21

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 ( ) 1 1 ( )

ˆ ˆ ˆ ˆ( ) 1 ( ) 1 ( ) 1 ( )

1 1 1 .

u u

u r

w p p a p a θ p dp p p a p a θ p dp

p E p a E p a p E p a E p a

w p p a p a p p a p a

            

            

            

 
 (4) 

The expected payoff of a responsive individual in the resident environment  ˆ ˆ ˆ, ( )f θ p  is 

given by: 

    ˆ ˆ, ,
ˆ ˆ ˆ ˆ, 1r r r r uW f θ f w f w c       (5) 

per interaction, where ˆ,r i
w  are the expected payoffs to an unresponsive individual 

dependent on whether it interacts with a responsive or an unresponsive individual. These 

payoffs are given by: 
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where Φr  is the proportion of responsive individuals that chose action 1 in their last 

round, which changes according to the difference equation: 

      1ˆ ˆ ˆΦ 1 Φ 1 1 ( ) .t t
r rf f E p      � �  (7) 

The unique stable equilibrium solution of this recurrence relation is given by: 
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3. Evolutionary Equilibrium 

Responsive individuals invade a population of unresponsive individuals 

Consider a population of unresponsive individuals, that is ˆ 0f  . We assume that this 
population is at its evolutionary equilibrium. At that point, the frequency distribution of p 
is constrained by the fact that both actions achieve equal payoff. 
The expected payoff to action 1 is given by 

 11 12ˆ ˆ( ) (1 ( )) ,E p a E p a     (9) 

the expected payoff to action 2 by 

 21 22ˆ ˆ( ) (1 ( )) .E p a E p a     (10) 

At evolutionary equilibrium, the frequency distribution of p thus satisfies 

   1
12 22ˆ( )E p a a δ    (11) 

where    12 22 21 11δ a a a a    . 

Consider the invasion prospects of a rare responsive mutant in such a population. With 

equations (3) and (5), the payoff difference ˆ,Δr u  between this mutant and the 

unresponsive resident is given by 

 ˆ ˆ ˆ ˆ, , ,Δr u r u u uw w c    (12) 

per interaction, which, with equations (4) and (6), simplifies to 

 ˆ( ) .δ Var p c   (13) 

Responsive individuals can thus invade a population of unresponsive individuals 

whenever the variation present in this population is large enough, that is 

 ˆ( ) .
c

Var p
δ

  (14) 
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Responsive individuals do not go to fixation 

Consider the invasion prospects of a rare unresponsive mutant with strategy p in a 

population of responsive individuals, that is ˆ 1f  . With equations (3) and (5), the payoff 

difference between this mutant and the responsive resident is then given by: 

 ˆ ˆ ˆ ˆ, , ,Δ ( )ur r ur r r rp w w c    (15) 

per interaction, which, with equations (4), (6) and (8) reduces to 

  2
ˆ, 21 12

1 1
Δ ( ) .

4 2ur r p δ p p p a a c
              
   

 (16) 

From this follows directly that an unresponsive mutant with 1
2p   obtains a higher 

payoff than the resident since 

 1
ˆ, 2Δ ( ) 0,ur r c   (17) 

which shows that a population of responsive individuals is not evolutionarily stable. In 

fact, whenever 12 21a a , all unresponsive mutants with 1
2p   obtain a higher payoff than 

the resident since ˆ,Δ ( )ur r p  is a strictly convex function in p, that is 
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and  
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Similarly, whenever 12 21a a , all unresponsive mutants with 1
2p   obtain a higher 

payoff than the resident. 

 

Coexistence of unresponsive and responsive strategies 

From the last two sections follows directly that, at any evolutionary equilibrium, both 

responsive and unresponsive strategies coexist, that is 

 *0 1.f   (20) 
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Unresponsive individuals adopt pure strategies 

At an evolutionary equilibrium, unresponsive individuals will always adopt one of the 

pure strategies, that is 0p   or 1p  . To see this, consider that an internal evolutionary 

equilibrium, 0 1p  , is characterized by a vanishing selection gradient, 0udW dp   

(no directional selection), and a negative second derivative 2 2 0ud W dp   ( p  is a local 

ESS) at that equilibrium. From this follow directly that an internal p can never be a local 

ESS since 

 
2

2
ˆ2 0.ud W
f δ

dp
     (21) 

Dimorphisms are evolutionarily unstable 

It follows from the above analysis that there are three candidate evolutionary equilibria 

left: two dimorphic equilibria at which responsive individuals coexist with one 

unresponsive type ( 0p   or 1p  ) and a trimorphic equilibrium at which responsive 

individuals coexist with two unresponsive types ( 0p   and 1p  ).  

Let 1f  and 2f denote the frequency of individuals that always choose action 1 ( 1p  ) and 

2 ( 0p  ), respectively, and 1 21rf f f    the frequency of responsive individuals in the 

population. Dependent on  1 2, ,rf f f  the payoffs to these three behavioural types per 

interaction are given by 
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 (22) 

where 

      22
, 22 12 21 11Φ Φ 1 Φ 1 Φr r r r r rw a a a a         � � � �  (23) 

gives the expected payoff of an responsive individuals when encountering another 

responsive individual, and Φ r� the proportion of responsive individuals that chose action 

1 in their last round, which is, with equation (8), given by 

 2Φ .
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We now show that, whenever 

 12 21a a  (25) 

neither of the two dimorphic equilibria is evolutionarily stable. The proof for 12 21a a  

runs analogously. 

Consider first a dimorphic candidate equilibrium with 1 0f  . At that candidate, 

individuals that adopt the pure strategy 2 obtain the payoff 

 2 2 22 21.rW f a f a     (26) 

Compare this with the payoff to an unresponsive mutant that always adopts action 1 

which is given by 

 1 2 12 12 12rW f a f a a      (27) 

which, since 12a  is the maximal payoff that can be obtained, is always higher than that of 

the unresponsive resident individual. A dimorphic candidate with 1 0f   is thus never 

evolutionarily stable. 

Consider next a dimorphic candidate equilibrium with 2 0f  . At that candidate, 

individuals that adopt the pure strategy 1 obtain the payoff 

 1 1 11 12rW f a f a     (28) 

Compare this with the payoff to an unresponsive mutant that always adopts action 2 

which is given by 

 2 1 21 21 21.rW f a f a a      (29) 

The payoff difference between the unresponsive mutant and the unresponsive resident is 

thus given by 

 2 1 21 11 11 12( ).rW W a a f a a       (30) 

The unresponsive mutant can invade if and only if this payoff difference is positive, that 

is, whenever 

 21 11

12 11
r

a a
f

a a





 (31) 
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at that candidate. The unresponsive mutant can thus invade if and only if the frequency of 

responsive types at the candidate is not too large. We now show that condition (31) is in 

fact always true at our candidate. 

To simplify matters, we make use of the fact that we can always rescale our payoff matrix 

(1) by multiplying all elements with the same number and/or adding the same number to 

all elements without changing the equilibrium properties (1) of our game. In particular we 

first subtract 11a  from all elements and then divide all elements by  12 11a a . Our new 

payoff matrix is thus given by 

 

21 22

action 1 action 2

action 1 0 1

action 2 a a 
 (32) 

where 
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
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
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and 
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a a
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



  (34) 

with, in view of our assumptions (2) and (25), 

 210 1a   (35) 

and  
 22 1.a   (36) 

 
At the candidate, the payoff differences between the responsive resident and the 

unresponsive resident type is given by 

  
2

, 1 0
Δr u r f

W W


   (37) 

which is strictly decreasing in the frequency rf  of responsive individuals in the 

populations since 
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Notice that the responsive mutant can invade if and only if 

 21rf a   (40) 

At that threshold the payoff difference between the responsive resident and the 

unresponsive resident type is given by 

  
21

3 4
, 21 22 21Δ 1

r
r u f a

a a a


   


    (41) 

which, in view of (35) and (36) is always negative. Since the payoff difference is strictly 

decreasing in the frequency rf  of responsive individuals in the populations and all 

resident types have to achieve equal payoff at an equilibrium, the equilibrium frequency 

of responsive types at the candidate equilibrium must always satisfy (41). From this 

follows that the unresponsive mutant that always adopts action 2 obtains a higher payoff 

than the unresponsive resident (see equation (30)). The candidate is thus never an 

evolutionary equilibrium. 
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