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Supporting Information 
 
Here we derive the analytical results that we have given in the main text. In Section 1 we 

investigate the coexistence of responsive and unresponsive strategies. To this end we 

analyze the one-stage game depicted in Figure 1 in the main text. We show that whenever 

the payoffs of the two options L and R are negatively frequency dependent, then also the 

benefits of responsiveness are negatively frequency dependent (Result 1). As argued in 

the main text, this favors the coexistence of responsive and unresponsive strategies. In 

Section 2 we address the question why individuals are consistent in their responsiveness. 

To this end we analyze the two-stage game described in the main text. We assume that 

positive feedbacks act on responsiveness; that is, responsiveness is less costly (or more 

beneficial) for individuals that have been responsive before. We show that under this 

assumption, at any ESS, individuals that are responsive in the first stage have a higher 

tendency to be responsive in the second stage than individuals that are unresponsive in 

the first stage (Result 2). As a result individuals differ consistently in their 

responsiveness.  

 

1. Coexistence of responsive and unresponsive individuals 
Consider the one-stage game depicted in Figure 1 in the main text. A strategy in this 

game is a quadruple 0 1( , , , )rp p l l l= , where 

rp    is the probability that an individual is responsive, 

l     is the probability that an unresponsive individual chooses option L and 

il    is the probability that a responsive individual chooses option L in state 0,1i = . 

We consider a monomorphic population where each individual is responsive with 

probability rp . We assume that for any given level rp  of responsiveness, individuals 

show the corresponding ESS behavior * * *( , , )l l l0 1 . Selection increases the level of 

responsiveness rp  whenever the benefits of responsiveness exceed the costs of 

responsiveness C. The benefits of responsiveness are given by the expected excess payoff 
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E  of a responsive over an unresponsive individual. In state i, a responsive individual 

plays strategy *
il  and obtains the payoff ( )* *1i i i il a l b⋅ + − ⋅ , an unresponsive individual 

plays *l  and obtains the payoff ( )* *1i il a l b⋅ + − ⋅ . The payoff difference in state i is 

therefore ( ) ( )* *
i i il l a b− ⋅ −  and the benefits of responsiveness are thus given by  

 ( ) ( )* *
r i i i

i
E p s l l= ⋅ − ⋅Δ∑  (1) 

where  
 i i ia bΔ = −  (2) 

gives the excess payoff of option L over R in state i. Note that ( ) 0rE p ≥  since a 

responsive individual can always achieve a payoff at least as high as unresponsive 

individual. 

Result 1: If the excess payoff iΔ  of choosing L over R in state i is negatively frequency 

dependent, that is, if iΔ  decreases with the frequency of individuals if  that choose option 

L in state i, then the benefits of responsiveness are also negatively frequency dependent. 

Technically,  

 Δ 0 0i

i r

d dE
df dp

< ⇒ <  (3) 

as long as 0E > . 

Proof. Note that 

 ( )
* *

* * i i
i i i i i i

i i ir r r r

d dldE dls l l s s
dp dp dp dp

Δ
= ⋅ − ⋅ + ⋅Δ ⋅ − ⋅ ⋅Δ∑ ∑ ∑  (4) 

which simplifies to 

 ( )* * i
i i

ir r

ddE s l l
dp dp

Δ
= ⋅ − ⋅∑  (5) 

since the last two terms in (4) equal to zero. This can be seen at follows. The expected 

payoffs of a responsive and an unresponsive individual are given by Δi i i
i

s l⋅ ⋅∑  and 

Δi i
i

l s⋅ ⋅∑ , respectively. From this follows that at any ESS * * *( , , )l l l0 1 , 
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1 for Δ 0
1 for Δ 0

and
0 for Δ 0 0 for Δ 0

i i
i i

i
i i i

i

s
l l

s

⎧ ⋅ >
>⎧ ⎪= =⎨ ⎨< ⋅ <⎩ ⎪

⎩

∑

∑
 (6) 

which implies that the last two terms in (4) equal to zero since either 0iΔ =  or 

 
* *

0 0,i i i
i

r i r

dl dl d
dp d dp

Δ
Δ ≠ ⇒ = ⋅ =

Δ
 (7) 

and either 0i i
i

s ⋅Δ =∑  or 

 
* * ( )

0 0.
( )

i i
i

i i
i r i i r

i

d s
dl dls
dp d s dp

⋅Δ
⋅Δ ≠ ⇒ = ⋅ =

⋅Δ

∑
∑ ∑

 (8) 

To show Result 1 we thus have to show that whenever the excess payoff Δi  of choosing 

L over R is negatively frequency dependent, then also 

 ( )* * 0i
i i

ir r

ddE s l l
dp dp

Δ
= ⋅ − ⋅ <∑  (9) 

or, equivalently 

 ( )* * 0.i i
i i

ir i r

d dfdE s l l
dp df dp

Δ
= ⋅ − ⋅ ⋅ <∑  (10) 

The frequency of individuals if  that chooses option L in state i is given by 
* *(1 )i r i rf p l p l= ⋅ + − ⋅  and thus ( )

* *
* * 1i i
i r r

r r r

df dl dll l p p
dp dp dp

= − + ⋅ + − ⋅ . Note that from 

equations (1) and (6) follows that whenever ( ) 0rE p >  then 0iΔ ≠  in both states and 

therefore 
*

0.i

r

dl
dp

=  Consequently,  

 ( )
*

* * 1i
i r

r r

df dll l p
dp dp

= − + − ⋅ . (11) 

We now distinguish two cases. 

Case 1: Unresponsive individuals play a pure strategy, i.e. * 1l =  or * 0l = . In this case, 

0i i
i

s Δ ≠∑  and thus 
*

0
r

dl
dp

= . But this implies with equation (10) and (11) that 

 ( )2* * 0i
i i

ir i

ddE s l l
dp df

Δ
= ⋅ − ⋅ <∑  (12) 

since 0i

i

d
df
Δ

< . 
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Case 2: Unresponsive individuals play a mixed strategy, i.e. *0 1l< < . In this case, 

0i i
i

s Δ =∑  and 0i
i

i r

ds
dp
Δ

=∑ . This, in combination with the facts that i i i

r i r

d d df
dp df dp
Δ Δ

= ⋅  

and 
* *
i i

i i

r rl l

df df
dp dp

= =

>
1 0

 implies that 0i

r

d
dp
Δ

>  in one state and 0j

r

d
dp
Δ

<  in the other state.  

From this follows that 

 * *sign( ) sign i
i

r

dl l
dp
Δ

− = −  (13) 

and thus ( )* * 0i
i i

ir r

ddE s l l
dp dp

Δ
= ⋅ − ⋅ <∑ . This establishes Result 1. 

 

Calculating the benefits of responsiveness for specific applications. As argued in the 

main text, both the responsive and the unresponsive strategy can spread when rare 

whenever 

 (0) (1)E C E> >  (14) 

leading to the coexistence of both strategies. For any particular application at hand we 

might thus want to know (0)E  and (1)E .  

Consider first the benefits of responsiveness (1)E  in a population of responsive 

individuals. We distinguish three cases. First, if responsive individuals play a mixed ESS 

in both states (i.e., *0 1il< < ), as in the patch choice and hawk dove game in the main 

text, the frequency dependent payoffs between the two choice L and R will be equalized 

in both states (i.e., 0iΔ = ) and thus  

 (1) 0.E =  (15) 

Second, when responsive individuals mix in one of the states but not in the other, 
* *0 0i il lΔ ≠ ⇒ − =  and thus, as above, (1) 0E = . Third, when responsive individuals do 

not mix in any of the two states (i.e., play a pure strategy in both states) we get 

(1) min( , )E s s= ⋅ Δ ⋅ Δ0 0 1 1 . 

Consider next the benefits of responsiveness (0)E  in a population of unresponsive 

individuals. In such a population, unresponsive individuals will typically play a mixed 

strategy. Using the facts that in this case 0i i
i

s ⋅Δ =∑  and iΔ  is positive in some state 

(i.e., * 1il = ) and negative in the other (i.e., * 0il = ) we get  
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 ( ) 0 10E s s= ⋅ ⋅Δ  (16) 

where i
i

Δ = Δ∑  is a measure for the environmental asymmetry in such a population that 

can be readily calculated. For example, in case of the hawk-dove game considered in the 

main text 1
2 V VΔ = ⋅ −0 1 . In case of the patch choice game considered in the main text, 

i i iA A B BΔ = −  where ( )X X A B= +  and 0 0 1 1X s X s X= ⋅ + ⋅  for ,X A B= .  

 

2. Consistent individual differences in responsiveness 

Consider the two-stage game described in the main text. Both, in the first and in the 

second stage, individuals face a situation as depicted in Figure 1 in the main text. Both 

stages might either represent the same context at different points in time (e.g., patch 

choice early and late in the season) or different contexts (e.g., patch choice and 

aggressive encounters, as in the main text). For simplicity we assume that the 

environmental states in both stages are uncorrelated. The total payoff of an individual is 

given by the sum of payoffs this individual obtains in both stages. 

To investigate consistency in responsiveness we allow that individuals can make their 

responsiveness in the second stage dependent on their responsiveness in the first stage. A 

strategy in the two-stage game is a tuple ( , , , )r r rr ur
p p p p l= , where 

rp    is the probability that an individual is responsive in the first stage, 

r r
p  ( r ur

p )  is the probability that an individual that is responsive (unresponsive) in the 

first stage is responsive in the second stage, 

l    is a vector that specifies the behavior in the L vs. R choice situations, both 

in the first and in the second stage. 

The expected net payoff of a rare mutant with strategy p in a resident population with 

strategy p̂  is given by 

( ) ( ), , , ,ˆ( , ) (1 ) (1 ) (1 )r r r r r r ur r r ur r r ur urr r ur ur
w p p p p w p w p p w p w= ⋅ ⋅ + − ⋅ + − ⋅ ⋅ + − ⋅  (17) 
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where , , ˆ( , )j i j iw w p p=  is the expected net payoff of an individual with responsiveness j = 

r,ur in the first stage and i = r,ur in the second stage (r = responsive, ur = unresponsive). 

These payoffs are given by 

 , ˆ ˆ ˆ( , ) ( , ) ( , )j i j i j
w p p w p p w p p= +  (18) 

where jw  is the expected first-stage net payoff of an individual with first-stage 

responsiveness j = r,ur and i j
w  is the expected second-stage net payoff of an individual 

with first-stage responsiveness j = r,ur and second-stage responsiveness i = r,ur.  

Positive feedbacks on responsiveness. We say that positive feedbacks act on 

responsiveness whenever 

 ˆ ˆ ˆ ˆ( , ) ( , ) and ( , ) ( , )r r ur urr ur ur r
w p p w p p w p p w p p≥ ≥  (19) 

with at least one inequality being strict. In words, either the expected second-stage net 

payoff of being responsive is higher for individuals that were responsive in the first-stage 

or the expected second-stage net payoff of being unresponsive is higher for individuals 

that were unresponsive also in the first stage. Such feedbacks might be the result of 

increased benefits of responsiveness or decreased costs of responsiveness for individuals 

that are consistently responsive.  

Positive feedbacks via a reduction of costs. In the main text we assumed that the cost of 

responsiveness in the second-stage is lower for individuals that are responsive in the first 

stage ( rC ) than for individuals that are unresponsive in the first stage ( urC ): 

 .r urC C<  (20) 

Note that this is a special case of positive feedbacks on responsiveness (19) since (20) 

implies that for an individual with strategy p in a resident population with strategy p̂ : 

 ˆ ˆ( , ) ( , ) 0.r r ur rr ur
w p p w p p C C− = − >  (21) 
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Result 2. Whenever positive feedbacks act on responsiveness, at any ESS *p̂ , individuals 

that are responsive in the first stage have a higher tendency to be responsive in the second 

stage than individuals that are unresponsive in the first stage, that is 

 * * .r rr ur
p p≥  (22) 

The inequality being strict when, at the ESS, both responsive and unresponsive 

individuals occur in the second stage. 

Proof. The expected net payoff of a rare mutant with strategy p in a resident population 

with strategy p̂  is given by (equation (17)): 

 ( ) ( ), , , , , ,ˆ( , ) ( ) (1 ) ( ) ,r r ur r r r r ur r ur ur r ur r ur urr ur
w p p p w p w w p w p w w= ⋅ + ⋅ − + − ⋅ + ⋅ −  (23) 

or, equivalently (with (18)), 

 ( ) ( ), ,ˆ( , ) ( ) (1 ) ( ) .r r ur r r ur r ur ur r r urr r ur urr ur
w p p p w p w w p w p w w= ⋅ + ⋅ − + − ⋅ + ⋅ −  (24) 

Now note that from the definition of positive feedbacks (19) follows that 

r ur r urr r urur
w w w w− > − . To see that Result 2 follows from this consider the following 

three possibilities. (1) 0r urr r
w w− < . This implies that 0r urur ur

w w− < . At such an 

ESS, * * 0r rr ur
p p= = , being unresponsive is a dominant strategy in the second stage. (2) 

0r urr r
w w− = . This implies that 0r urur ur

w w− < . At such an ESS * 0r r
p ≥  and 

* 0r ur
p = . (3) 0r urr r

w w− > . In this case r urur ur
w w−  might either be positive, zero or 

negative. At any ESS with 0r urur ur
w w− > , * * 1r rr ur

p p= = , being responsive is a 

dominant strategy in the second stage. At any ESS with 0r urur ur
w w− = , * 1r r

p =  and 
* 1r ur

p ≤ . At any ESS with 0r urur ur
w w− < , * 1r r

p =  and * 0r ur
p = . This establishes 

Result 2. 

 


