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In this paper a general model for growth and competition in a light gradient is developed. The model
is based on a few qualitative assumptions: (i) biomass is continuously distributed over depth; (ii) the
light gradient is one-dimensional and uni-directional; (iii) photosynthesis is positively related to the local
light intensity; and (iv) biomass growth is governed by the carbon balance. By introducing the concept
of *quantum return”, it is shown that growth can be quantified directly in terms of the light gradient.
In menoculture, growth leads to a globally stable equilibrium, at which the light intensity at the bottom
of the light gradient is reduced to a “critical light intensity” I%,. I, is not affected by the background
turbidity but negatively related to the light supply. When all species are similarly distributed over the
light gradient, the outcome of competition can be inferred from this monoculture characteristic: the
species with lowest I'%, will competitively exclude all other species. In contrast, spatial differentiation of
the competitors may lead to a completely different situation: several species may co-exist, and the species
with lowest 1%, may be competitively displaced by species with a better position in the light gradient.

Introduction

Light is a major determinant of the structure and
dynamics of terrestrial and aquatic plant communi-
ties. While the fundamental importance of light is
generally acknowledged, resource competition theory
has centered arcund nutrient-limited growth (re-
viewed by Tilman, 1982; Waltman, 1990; DeAngelis,
1992}, There are, however, two basic differences be-
tween nutrients and light. First, light cannot be
recycled. Hence a continual influx of light is required
for the maintenance of phototrophic growth. Second,
light is never distributed homogeneously but forms a
gradient over biomass, In fact, competition for light
is mediated by shading and, thus, by the spatial
heterogeneity created by the competitors themselves.

If species compete for homogeneously distributed
nutrients, resource competition theory predicts that:

» The outcome of competition for one nutrient can
be inferred from monoculture characteristics: the
species that is able to reduce the nutrient concen-
tration to the lowest level (R *) will competitively
exclude all other species.
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o The *‘critical nutrient concentration”, R*, does
not depend on the rate at which the nutrient is
supplied.

» At equilibrium the number of co-existing species
cannot exceed the number of limiting nutrients.

By means of a simple model we could show that
similar principles may apply to competition for light
in well-mixed aquatic environments (Huisman &
Weissing, 1994). Here, the growth dynamics of a
species can be characterized by a “‘critical light inten-
sity” I},. I} corresponds to the equilibrium light
intensity at the bottom of a water column when the
species is grown in monoculture. Our model predicts
that I*, plays a similar role for light competition as
R* does for nutrient competiticn: if light is the only
limiting factor, the species with the lowest I, compet-
itively excludes all other species. If species are limited
by light and one nutrient, at most two species can
co-exist in stable equilibrium. In contrast to R*,
however, I¥, is not independent of the resource
supply. In fact, I'¥%, is negatively related to the
light supply. As a consequence, the outcome of
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competition for light may depend on the light
supply.

The present paper aims at investigating the robust-
ness of these predictions. Our earlier model was based
on a number of standard assumptions such as
Lambert-Beer's law of light absorption, a Monod
equation for carbon uptake and a constant specific
carbon loss rate. We intend to show that our main
results do not reflect these specific assumptions, but
that they can be derived from a couple of fairly
general principles.

We extend the scope of our model to terrestrial
vegetations and to aquatic environments that are not
well mixed. In this context, spatial considerations may
become prevalent, since a position on top of the light
gradient is inherently advantageous. We are therefore
confronted with the question how the ouicome of
competition is affected by the distribution of the
competitors over the light gradient.

Model Structure and Basic Assumptions

The framework for our analysis is depicted in
Fig. 1. We focus on a biomass compartment with a
cross section of one unit area. A vertical position
within this compartment is indicated by its depth s,

oy = - — - —

f - Light intensity =
Fic. 1. Mustration of the model structure: Light with intensity
L, is supplied from above. The light intensity 7 at depth s results
from light absorption by the cumulative biomass w(s) above depth

s. Light that has not been absorbed leaves the compartment with
an intensity [,,.

where s runs from 0 (top) to z (bottom). The biomass
compartment is illuminated from above by a constant
light supply with intensity [,. The incident light is
partly absorbed by biomass. As a consequence, the
light intensity f at a certain depth s depends on the
amount of biomass w(s) above this depth (Fig. 1).
Light that has not been absorbed leaves the compart-
ment with an intensity I,,,. In a terrestrial system, [,
represents the light intensity penetrating through the
canopy. In a vessel with algae illuminated from above,
I, corresponds to the light intensity leaving the vessel
at the bottom.

Under light-limited conditions, biomass growth is
governed by the balance between carbon uptake and
carbon losses. The difference between carbon uptake
and losses will be called the “carbon gain”. The
carbon gain rate depends on the local light intensity.
Owing to shading, the local carbon gain rate varies
with depth. Integration of the carbon gain rate over
depth yields the total carbon gain rate of the whole
biomass compartment. We assume that the total
carbon gain rate determines the growth rate of total
biomass.

Given the model structure outlined above, we must
make assumptions concerning the biomass distri-
bution, the light gradient, the light-dependent carbon
gain rate, and the relation between carbon gain and
biomass growth.

THE BIOMASS DISTRIBUTION

In our previous paper (Huisman & Weissing, 1994),
we dealt with a well-mixed water column. Accord-
ingly, we assumed that biomass was uniformly dis-
tributed over depth with density «. In the present
paper, we remove this restriction, We only assume the
following:

Assumption 1

The biomass density at depth s, e(s), is given by a
continuous function « of depth.

Although the continuity of w is mainly a technical
requirement, it excludes the possibility that the com-
plete biomass gets concentrated in an infinitely thin
layer on top of the light gradient. In an infinitely thin
biomass layer, shading might become negligibie. In
practice, however, such extreme biomass concen-
trations seldom occur.

The light availability at a given depth depends on
the light intercepted by the biomass above this depth.
The “‘cumulative biomass” above depth s, w(s), is
given by

w(s)=jsw(a) do. (1)

0
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Notice that the biomass density at depth s can be
expressed as the change of cumulative biomass with
depth:

S =0k @

The total biomass in the whole compartment will be
denoted by W:

W=w(z)=jzm(s)ds. 3)
0

LIGHT ABSORPTION

Our previous model assurned that light absorption
is governed by Lambert-Beer’s law. Accordingly, the
light intensity 7 below a cumulative biomass w was
given by

Hw)=1I,e™™, C

where [, is the incident light and k& is the light
extinction coefficient of biomass. Although Lambert-
Beer’s law is a rather standard assumption, it provides
at best an approximation of underwater light fields
{Kirk, 1983; Gordon, 1989) or the light availability in
terrestrial vegetations (Monsi & Saeki, 1953; Thorn-
ley & Johnson, 1990). In the present paper, we use a
more general description of the light gradient that
includes alternative formulations of light availability
such as the light absorption function proposed by
Reynolds & Pacala (1993):

I

I(w)=——l e

(%)

Assumption 2.1,

The light intensity [ at a certain depth is a
continuously differentiable function ¢ of the light
supply I, and the product of the light extinction
coefficient £ and the cumulative biomass w above this
depth:

I(w) = o, kw). (6)

I is positively related to the light supply (ie.
¢ [0f, > 0) and negatively related to cumuiative
biomass (i.e. dg/d(kw) < 0).

As indicated by eqn (6), I, and k are viewed as
parameters, whereas w is considered a variable. The
inclusion of the light extinction coeflicient in the
formalism makes the treatment of growth in a mono-
culture a bit more cumbersome, but it will be useful
in the context of competition.

In view of the interpretation of I, the function ¢
has to satisfy the compatibility requirement;

£ =1(0) = @Iy, 0). (7

The light intensity at the bottom of the biomass
compartment,

Lo =1(W) = o (In, kW), (8)

is a function of total biomass. Since I is negatively
related to biomass, I, decreases with increasing total
biomass:

dZ,.

=2 < 0. 9

aw )
In addition to Assumption 2.1, we postulate that the
incident light is completely absorbed if total biomass
tends to infinity:

lim I, =0. (10)

W-w
Notice that our model does not specify any particu-
lar light absorption function. Accordingly, Assump-
tion 2.1 might also apply to other resource gradients
generated by biomass. Water-limited growth in a
vertical soil moisture gradient might be an example.

A UNI-DIRECTIONAL LIGHT FLUX

We make an additional assumption on the light
gradient which is not really essential, but which
simplifies the analysis considerably. Basically, we
assume that the light flux is “uni-directional™.

Imagine that a certain amount of biomass w is split
into two parts, w = u + v, where u is located on top
of v (see Fig. 2). If light flows in one direction, the
incident light intensity F, is first reduced by u to the
level I(u) = ¢ (I, ku). Subsequently, the light inten-
sity I{u) is further reduced by v to the level
I(u +v) = @(I(u), kv). On the other hand, light re-
duction by the combined biomass u + v is given by
Hu+v)y=0(,, k(u +v)). Thus, we are led to:

Assumption 2.2

The light flux is uni-directional, i.e. the function ¢
has the property:

o, k{u +0)) = ¢lo Ly, ku), kv).  (11)

In essence, Assumption 2.2 states that the light supply
for v only depends on the light intensity that leaves u,
and not directly on the amount u itself. The most
important consequence of this assumption is that
light absorption per unit biomass, df/dw, only de-
pends on the local light intensity F and that it can be
writien in the form

drs

T = —kall), (12)
where a is a positive function of the light intensity I,
This result is derived in Appendix A.
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FiG. 2. The light flux through two consecutive biomass compart-
ments, » and v. If the light flux is uni-directional, the light intensity
I{u) left by u provides the light supply for v. Hence, the light
intensity at the bottom of the light gradient is given by
Fu +v) = (), ko).

Lambert-Beer’s law is, of course, the most
prominent example describing a uni-directional light
flux:

Iu+v)=Le et =L e e = [(y)e,

But Assumption 2.2 also includes other functions, for
example, Monteith’s (1965) binomial light absorption
model and the linear expression [ =1, —kw. The
latter is probably not a good description of a light
gradient, but it might well describe other resource
gradients generated by biomass. Assumption 2.2 does
not apply to the light absorption function (5) con-
sidered by Reynolds & Pacala (1993). However, even
this function can be included in our formalism (sece
Appendix B).

THE CARBON BALANCE

The specific { = per unit biomass) carbon gain rate,
g, is defined as the difference between the specific
carbon uptake rate and the specific carbon loss rate.
In our previous paper, the dependence of specific
carbon uptake on light intensity was described by a

Monod equation, while specific carbon losses, £, were
assumed to be constant:

2) = Proas (13)

I
H+T ‘-
Although the Monod equation is one of the simplest
expressions for the relation between light intensity
and photosynthesis, other light-response curves are
physiologically more plausible (Marshall & Biscoe,
1980; Sakshaug ef al., 1989) or yield a better fit to the
data (Jassby & Platt, 1976). Furthermore, the photo-
synthetic parameters need not be constant over depth,
but may adapt to the local light availability (e.g.
Cullen & Lewis, 1988). The assumption that the
specific carbon loss rate is constant may also be
unrealistic. Losses due to photorespiration, for
example, are directly coupled to photosynthesis and
may therefore depend on light intensity. Carbon
losses will also be light-dependent in the context of
carbon allocation; If we assume that a fraction 4 of
the specific carbon uptake rate p(J) is allocated to
non-photosynthetic tissues, the losses due to allo-
cation become a function of local light intensity:
£() = Ap(I).

In the present paper, we do not specify an explicit
carbon uptake or loss function. We only assume the
following (see Fig. 3):

Assumption 3
The specific carbon gain rate, g(J), is given by
a monotonically increasing function g of the light
intensity:
dg

>0 (14)

The specific carbon gain rate is negative if no light is
available:

g(0) <0. (15)

Specific carbon gain rate

FiG. 3. The specific carbon gain rate g as an increasing function
of the light intensity 7 (Assumption 3). By definition, g is zero at
the compensation point J.
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Assumption 3 applies to almost all light response
curves proposed in the literature. However, it does
not include photo-inhibition where the carbon gain
rate decreases at high light intensities. Yet, the
monotonicity assumption is not really crucial. In
contrast, the assumption that the specific carbon gain
only depends on the local light availability is essential
for our modeling approach. We shall return to this
point in the discussion.

The light intensity at which the specific carbon up-
take is exactly balanced by the specific carbon losses
is defined as the “compensation point” I (Fig. 3}

gllc)=0. (16)

Notice that the compensation potnt is independent of
the light supply £, since g is, by assumption, indepen-
dent of Z,.

The “local carbon gain rate” at depth s is given by
the product g(J(s))ew(s) of the specific carbon gain
rate at depth s and the biomass density at depth 5. The
“total carbon gain rate” G is obtained by integrating
the local carbon gain rate over all depths:

G= ng(I(W(S)))W(S)dS- (17

. The notation g(J{(w(s))) illustrates the nested struc-
ture of the model, where g depends on 1, 7 depends on
w, and w depends on s,

THE GROWTH DYNAMICS

In our previous model, we assumed that the change
in total biomass is proportional to the total carbon
gain rate:

— =al. (18)

In general, growth may be linked to carbon gain in a
nonlinear way:

Assumption 4

The change in total biomass is positively related to

the total carbon gain rate:

dw

— = F((), 1

3 =@ (19)
where F is a strictly increasing function of G. There
is no growth if the total carbon gain is zero, i.e.
F0)=0.

Notice that Assumption 4 formulates the dynamics
of toral biomass in terms of the rotal carbon gain rate.
Since photosynthesis takes place at a local level, it
might be more plausible to focus on the local biomass
density (s, ¢) at depth s and time 7. We now justify
Assumption 4 on the basis of such local considerations.

In our previous model, eqn (19) was simply the
consequence of complete mixing. Without complete
mixing, there are several ways to derive Assumption 4
from the local biomass dynamics dw /87, In particular,
we have two scenarios in mind:

(i) Consider an even-aged stand of highly inte-
grated plants where each individual has its leaves
distributed over the whole light gradient. Suppose
that local growth is governed by allocation decisions
taken by the whole plant on basis of its total carbon
gain. In this case, we may assume that the change in
local biomass density is a function of the total carbon
gain rate and the position of a leaf in the light
gradient:

dw
& (s, 1) =S(G,s). (20)

In view of (3), we immediately arrive at Assumption
4

%f= . %? (s, 1)ds = Lf(G, 5)ds = F({).
In fact, many models simulating agricultural crop
growth are implicitly based on these kinds of argu-
ments (cf. Thornley & Johnson, 1990).

(i1) Alternatively, consider a large phytoplankton
population where growth is fully governed by local
processes. In this scenario, the local dynamics will be
determined by the local carbon gain rate and, in
addition, by the displacement of phytoplankton cells
due to transport processes. Now the change in local
biomass density can be described by a partial differen-
tial equation:

2 (5,1 = o6, Dols, N — o2 (5,0, Q1)

where the first term, ag(/)w, represents local growth
whereas the second term, —&J/ds, represents local
transport processes. The “flux” J(s, ¢) corresponds to
the number of phytoplankton cells crossing a hori-
zontal section of the compartment at depth s
Examples for such a flux include diffusion, convec-
tion, and migration (e.g. Edelstein-Keshet, 1988). If
the compartment is closed, no cells can enter or leave
the compartment at the boundaries:

J(0, 1) = J(z, 1) =0.

Together with these boundary conditions, the local
growth dynamics (21) again leads to Assumption 4:

diw [“dw
E——J‘o 'E'(S, 1) ds

=a rg(l(s, (s, ryds — 'rgi (s,f)ds
0 o BS
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= ol7 —[J(Z, t)_J(Or t)]
= a(,

Growth in Monoculture

In this section, we investigate the implications of
Assumptions 14 for light-limited growth in a mono-
culture. Notice that we implicitly assume that light
is only absorbed by biomass (Assumption 2.1}. Of
course, in reality, light is also absorbed by other
substances such as water, detritus, or litter. In the next
section, these inanimate light absorbers will be in-
cluded in our formalism (see Result 7).

TOTAL CARBON GAIN AND TOTAL BIOMASS

The total carbon gain rate G has been defined in
terms of the biomass distribution @(s). Substituting
(2) into (17), we obtain:

z d
G =I gUOw(s)) - ds.

Hence, G may be viewed as a function of total
biomass:

Gw) =J‘ g(w)) dw. (22)

0

G has the following properties (sce Fig, 4):

Result 1

The total carbon gain rate G is a concave function
of total biomass. G is maximal if the light intensity at
the bottom of the light gradient equals the compen-
sation point, With increasing total biomass, G be-
comes negative.

q"-n-__---__

*
Lou

—> &
Total biomass

Total carbon gain rate

FiG. 4, The total carbon gain rate G as a function of total
biomass. G is zero at the globally stable equilibrium W™*. G is also
illustrated in terms of the light intensity I, at the bottom of the
light gradient, [, decreases from left to right. G is maximal at
fow=1Ic and G is zero at [, =1%,.

In order to prove this result note that, in view
of (22), the derivative of G with respect to W is
given by:

dG _ T(WN=g(l (23)

W‘g( ( ))“g( out)'
In other words, the change of total carbon gain with
total biomass corresponds to the specific carbon gain
rate at the bottom of the light gradient. As a conse-
quence, G is increasing with total biomass for
g{l,.) >0 and decreasing for g(f,, ) <0. Hence, G
is maximal for g(I,,)=0. In view of (16), this
maximum corresponds to I, = I..

The second derivative of G with respect to W is
negative;

¢ d

dg df,,
v aw aaw <0

ardw

Thus, the total carbon gain rate is a concave function
of total biomass. Furthermore, in view of (10) and
(15), G will decrease with W when total biomass
becomes large, i.e.

glow) =

. dG .
lim F‘V = p{'l_l.l:a g(Iou[) <0,

W oo

Since G is concave, G will decrease beyond all bounds:

lim G(W)= —o0. O

W

TOTAL CARBON GAIN AND THE LIGHT GRADIENT

Up to now, the total carbon gain rate has been
viewed as an integral over depth [eqn (17)], or as
an integral over cumulative biomass [eqn (22))].
These representations reflect two prominent ap-
proaches in aquatic and terrestrial ecology, respect-
ively. Integration over depth is often used in models
of algal photosynthesis (¢.g. Sverdrup, 1953; Kirk,
1983), while integration over cumulative biomass
is commonly used in models of plant canopy photo-
synthesis (e.g. Monsi & Saeki, 1953; Johnson &
Thornley, 1984). Here we outline a third approach.
We argue that a better intuitive understanding of
light-limited growth can be obtained if the total
carbon pgain rate is not interpreted in terms of
depth or biomass but directly in terms of the light
gradient.

If light absorption is governed by Lambert-Beer’s
law, such an approach is straightforward (Johnson et
al., 1989; Huisman & Weissing, 1994), because light
absorption per unit biomass is proportional to the
local light intensity:

dr_
dw

—kI.
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As a consequence, the total carbon gain rate can be
written as an integral over light intensity:

G= ng(l(w)) dw = jw gdlw) dI

—KI(w) dw
- .[ REAOFY, 24)

The minus sign is accomodated by exchanging
the integration boundaries. The integrand in
(24), g(D}kl, has been called the “quantum return”
{Huisman & Weissing, 1994). It corresponds to the
carbon gain per unit biomass divided by the light
absorption per unit biomass. Hence, the quantum
return has a clear-cut physiological interpretation: it
is the carbon gain per unit of light {i.c. per quantum)
absorbed.

We now show how this approach extends to
our general framework. In general, we define the
“quantum return” as

_ g
= " drjaw

In view of (12), the quantum return only depends on
the local light intensity I

- D
a =3 @)

Hence the total carbon gain rate can be written as:

G= _[Wg(l(w)) dw = J'Wg(f(w)) ar
0 ¢

dIjdw dw

= j “

Tow

Result 2

In a uni-directional light flux, the total carbon gain
rate can be represented as an integral of quantum
return over the light gradient. Therefore G can be
viewed as a function of I ,:

Iin

G (Lo =JA g(ndi. (26)
]oul

The quantium return, g, only depends on the local

light intensity. ¢([) is positive for 7 > I, and negative

for I < I..

The properties of the function G derived above (see
Fig. 4) become transparent if the integral (26) is split
into two terms:

Gllon) = j " dl + j “endr @

1

ont

If I, > I > I, the first term corresponds to the part
of the light gradient where the quantum return is
positive, while the second term corresponds to light
intensitics where the quantum return is negative.
Hence eqn (27) shows again that G([,,,) is decreasing
for I, < I, and that the total carbon gain is maximal
for I, =I..

THE DYNAMICS OF LIGHT LIMITED GROWTH

Assumption 4 implies that toial biomass will grow
if the total carbon gain is positive and that it will
decay if total carbon gain is negative. It is obvious
that growth is only possible if the light supply exceeds
the compensation point. We therefore assume that
I.>1.. In this case, the total carbon gain rate is
positive for low biomass and negative for high
biomass (Fig. 4). Since G is concave with respect to
total biomass, there is a unique nontrivial intersection
point with the W -axis:

G(W*)=0, or equivalently, G{¥,)=0. (28)

In view of Assumption 4, W* is an equilibrium of
the biomass dynamics. This equilibrium is globally
stable since total carbon gain is positive when total
biomass is below W* and negative when above W*,
Tn view of {28), the equilibrium is characterized by
the light intensity 7%, at the bottom of the light
gradient. [*, is a “critical light intensity” since
biomass will increase if I, > I*, and decrease if
o < 13-

Notice that the positive and the negative term in
eqn (27) exactly balance in equilibrium. As a conse-
quence, 1*, is always smaller than I. (see Fig. 4}.
Summarizing, we have shown:

Result 3

Total biomass can only grow if the light supply
exceeds the compensation point. If I, exceeds I, a
globally stable biomass equilibrium W?* will be
reached. At this eqguilibrium,

In>Ic> 13, (29)

Thus, the light intensity at the bottom of the
light gradient is reduced beyond the compensation
point.

Notice that the equilibrium of total biomass does
not reflect steady state conditions at the local level. In
the top of the light gradient, above the compensation
point, the carbon gain is always positive. On the other
hand, carbon losses exceed carbon uptake at the
bottom of the light gradient. It is the balance between
these non-equilibrium processes at the local level that
leads to a steady state of the total biomass.
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DEPENDENCE ON THE LIGHT SUPPLY

We now investigate the dependence of the equi-
librium characteristics on the light supply. We shall
show

Result 4

The equilibrium biomass B* is positively related to
the light supply f,,. The critical light intensity 7%, is
negatively related to [,.

It is not surprising that the equilibrium biomass is
positively related to 7. In fact, W™ is given by the
equilibrium equation

G, Wh = Jw'g(fp(lim kw))dw =0, (30)
[

where the notation makes the dependence of G on [,
explicit. Implicit differentiation of eqn (30) yields

oG oG dw*

*
ar (os W)+ 30 (s W~ =0,
which leads to
oG
dW* — aIm (Im, W ) (31)
AT
oW

The numerator in (31) is positive since the integrand
of (30), g{e(f,, kw)), is positively related to £,. The
denominator corresponds to the slope of the function
& with respect to W, which is negative in W* (see
Fig. 4). Hence dW*/dI,, is indeed positive.

It is perhaps more surprising that the sign of the
relationship between 1%, and I can be inferred from
our general assumptions. We write the equilibrium
equation G(I*,) = 0 in the form (27) in order to make
the dependence of J'(,ul on [, more explicit:
ic

gy di =0.
(32)

Implicit differentiation of this equation with respect
to I, yields

Gy, I3) = q(f) dT+J~

Tue

dz3,
dar,

q(Fn) — g3, =0,

which leads to

dig, _ 9Ui)
dIin q(Iout .

Now it i1s obvious that I'%, is negatively related to [,
since g(J,,) >0 and ¢(7* ) <0.

A closer look at eqn (32) reveals the intuition
behind Result 4: an increase of the light supply I,

(33)

leads to an increase of the total quantum return above
the compensation point (the first integral in (32)]. At
equilibrium, the increased positive quantum return
above I must be balanced by an increased negative
quantum return betow I.. This is only possible if the
second integral in (32) becomes more negative, 1.e. if
the light gradient below /.. is extended to a lower light
intensity I,

Competition for Light

We have thus far assumed that light is only ab-
sorbed by the biomass of a single species. Since this
species generated its own light regime, depth became
a dummy variable. Accordingly, it was not necessary
to specify the distribution of biomass over depth. In
this section, we introduce other light absorbers like
water, detritus, and competing species. Now the
relative positions of the species in the light gradient
become important since a species growing on top of
the gradient has an enormous positional advantage.

The present paper does not address the question
how the biomass distributions over depth are gener-
ated. Instead, we consider the relative positions of the
competing species as given and focus on the question
how a given positional relation affects the cutcome of
competition. First, we investigate competition in the
absence of spatial differentiation, i.e. the situation
where all species have a similar distribution over
the light gradient. This scenario will be contrasted
with a situation where some species have a positional
advantage over their competitors.

BASIC ASSUMPTIONS

We assume that light-limited growth in a mixture
is governed by similar principles as light-limited
growth in monoculture, We consider a number of
light absorbers which are indicated by the subscripts
[ and j, For inanimate light absorbers (e.g. water or
litter), we assume that the specific carbon gain rate is
zero, i.e. they neither grow nor decay. For each living
species i, g, is again a monotonic function of the local
light intensity I, and its total carbon gain rate is still
given by:

a=£amm@mm. (34)

We still assume that the change in total biomass of

species [ is governed by its total carbon gain rate:
dw,

= = FiG), (39)

where F, is an increasing function of G;, and F,(0) = 0.

This formulation implies that the growth rates of the
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competing species only depend on the light avail-
ability. In other words, there is no direct interference,
there are no toxic interactions, and growth is not
limited by other resources. The species only interact
via shading. Mutual shading is again characterized by
a light absorption function ¢:

Assumption 2’

The light intensity 7 at depth s is a positive function
¢ of the light supply I, and the cumulative amounts
w;(s) of all light absorbers above depth s:

sy = oI, X ks, (36)

where k; is the light extinction coefficient of light
absorber j. As before (Assumption 2), the function ¢
is increasing in its first component, decreasing in its
second component, and it describes a uni-directional
light flow.

COMPETITION IN THE ABSENCE OF SPATIAL
DIFFERENTIATION

Parallel distributions

In this section, we assume that there is no spatial
differentiation, i.c. that all light absorbers have a
similar distribution over depth. More formally, two
light absorbers i and j are said to be “distributed in
parallel” if the ratio of their local densities,
w,(s)/w;(s), is the same at all depths. If two light
absorbers are distributed in parallel, the ratio of their
local densities is reflected by the ratio of their total
biomass:

a(s) wis) W,

(s} wils) W,

for all . 37

The shape of the distribution w; can be character-
ized by the relative distribution w,(s)/#,. If all light
absorbers are distributed in parallel, these relative
distributions are identical. The common relative dis-
tribution will be denoted by p:

@(s)
W,

pls)= for all . (38)

As a consequence, the relative cumulative biomasses,
w;(s)/W,, are also identical and given by the integral:

wils)
W,

i

r(s) =J. ployde = for all i
0
We say that there is no “spatial differentiation” if
all light absorbers are distributed in parallel or,
equivalently, if their relative biomass distributions are
identical.

Partitioning of the light gradient

In the absence of spatial differentiation, light ab-
sorption in a mixture is very similar to light absorp-
tion in a monoculture. In fact, the light gradient
can be written in terms of the common relative
distribution r:

I= ‘P(I'm, zkjwj) = @(Iins K”); (39)
where
k=3 kW, (40)
is a measure for total light absorption. Formally,
the light gradient (39) corresponds to a gradient
induced by a single species with cumulative biomass
r(s) and (time-dependent) light extinction x. This
correspondence has important implications:

Result 5

In the absence of spatial differentiation, the total
carbon gain rate of species i in mixture, G, can
be expressed in terms of the quantum return of
species i:

kW fin
mix = S AN dl. 41
G, i Sk W, L g;(1)dl. (41)

Equation (41) has a clearcut interpretation: The

first term, &, W;/Zk, W, describes the relative contri-

bution of species i to the total light absorption. The
second term,

Iin
Gi,mono = j q:(l) dI’ (42)
IOIII
corresponds to the total carbon gain that species /
would have obtained in the same light gradient when
grown in monoculture. Thus (41) just states which
fraction of the total light absorption is available for
the carbon pain of species i.
In order to prove Result 5, we shall apply eqn (12)
to the light gradient described by (39). In view of
drids = p(s), we obtain:

df drid
=55 = —kaDp(s).

As a consequence, the total carbon gain rate (34) can
be written as an integral over light intensity:

G .= | &) df - [ DW,
W Jy —xa(Dp(s) ds L xa(l)

Using the definition of quantum return [eqn (25)], this
reduces to:

k W gi(I) ki'pV; ’
Cimix = mka([) }:kw o

out

g dl.
O
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Light requirements for growth

Species i will increase if its total carbon gain in
mixture, G, is positive. Result 5 implies that G, ;.
has the same sign as the total carbon gain rate in
monoculture, G, ... We have already seen that the
sigt of Gjpone 18 determined by the critical light
intensity I}, ; of species i: G, ., 18 positive if and only
if the light intensity at the bottom of the light gradient
exceeds 1%, ;. Hence, we obtain

Result 6

In the ahsence of spatial differentiation, the critical
light intensity of species i in monoculture specifies
when this species will grow in mixture: Species I will
increase if 1, > I}, , it will decrease if I, < I3, and
it will remain stationary if I, =7%, ..

This result has also implications for growth in
monoculture. When talking about a monoculture of
species ¢, we have thus far assumed that light is only
absorbed by the species itself, In practice, light is also
absorbed by other substances like water or detritus.
Suppose that, in the absence of specics /, these
inanimate light absorbers would reduce the light
intensity at the bottom of the light gradient to the
“background level” I, ,,. In view of Result 6, species
i will only be able to grow in mixture with these light
absorbers if the background level exceeds its critical
light intensity I%, . If 1,4, > I}, species i will grow
until it has reduced the light availability at the bottom
of the light gradient to its critical light intensity:

Result 71

In the presence of inanimate light absorbers, dis-
tributed in parallel, a monoculture of species i will
reduce [, to the same critical light intensity I, , as
in the absence of these light absorbers.

Competitive exclusion

Result 6 provides the key for understanding compe-
tition for light in the absence of spatial differentiation,
First, Result & implies that several species can only
coexist in equilibrium if they have identical critical
light intensities. Such a situation is rather unlikely and
structurally unstable. Hence, the possibility of equi-
librium co-existence can be neglected. Second, Result
6 shows that the species with the lowest critical light
intensity can always invade the monoculture of any
other species, On the other hand, no other species can
invade the monoculture of the species with lowest I¥,,.
Accordingly, there is exactly one stable equilibrium,
the monoculture of the species with lowest 7*,. In
Appendix C, it is shown that this equilibrium is
globally stable. In other words, light absorption is
maximized by competition for light:

Resuit 8

In the absence of spatial differentiation, the species
with the lowest critical light intensity /%, will compet-
itively exclude all other species. Since 7%, depends on
I, the outcome of competition may depend on the
light supply.

COMPETITION IN THE PRESENCE OF SPATIAL
DIFFERENTIATION

Up to now, we have assumed that all species have
a similar distribution over the light gradient. In most
aquatic and terrestrial systems, however, the relative
positions of the competitors are at least partly deter-
mined by processes such as differential growth, allo-
cation, phototropism, or dispersal. These processes
typically lead to spatial differentiation of the competi-
tors. In this paper, we do not investigate how spatial
differentiation develops. But by means of a simple
example we can illustrate that, in the presence of
spatial differentiation, the position of a species in the
light gradient may become prevalent:

Result 9
In the presence of spatial differentiation:

(i) Equilibrium co-existence of several species
may occur,
(if) Co-existence may depend on the light supply.
(iii) The species with lowest critical light intensity
may be competitively excluded by species with
better positions in the light gradient.

In order to prove Result 9, we examine the most
extreme form of spatial differentiation. Consider two
species wherc species 1 grows completely above
species 2. One might think of a phytoplankton species
under a canopy of floating water plants, or of mosses
and ferns on a forest floor. We assume that the light
supply I, exceeds the compensation point f; of
species 1. Species 1 is not affected by species 2. Hence,
species 1 will grow until its monoculture equilibrium
is reached. At this equilibrium, the light intensity
penetrating through the biomass of species 1 is given
by I}... The light intensity I3, provides the light
supply for species 2. As a consequence (see Result 3),
specics 2 is able to grow whenever:

I3y > Ics. (43)

Hence, the two species will stably co-exist if the
compensation point of species 2 is low enough to
satisfy this condition. Analogously, n species will
co-exist in n distinct layers if IX > I, for all i.

In view of Result 4, 7%, | is negatively related to .
On the other hand, I, is independent of I,. Hence,
it is conceivable that (43) is satisfied at a low [, while
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it is not satisfied at a high [_. In this simple scenario
at feast, the likelihood of co-existence is reduced by an
increase of the light supply.

According to Result 3, the critical light intensity of
species 2 (as measured in monoculture) is lower than
its compensation point: I, > I}, ,. For this reason, it
is easy to comstruct specific examples where the
critical light intensity of species 1 falls between the
compensation point and the critical light intensity of
species 2:

Iea> Iy > I (44)

In this case, (43) is not satisfied and species 2 is not
able to grow in the shade of species 1. This demon-
strates that the species with lowest 7%, may be com-
petitively excluded by a species with a better position
in the light gradient. In other words, the superior light
competitor in the absence of spatial differentiation
can be competitively displaced in the presence of
spatial differentiation.

Discussion
ROBUSTNESS OF THE MODEL PREDICTIONS

Recently, we investigated a simple model for light-
limited growth and competition among phytoplank-
ton species in a well-mixed aquatic environment
(Huisman & Weissing, 1994), This model was based
on a few standard assumptions:

» a uniform biomass distribution;

» a light gradient described by Lambert-Beer’s law;

e a Monod equation for carbon uptake and a
constant specific carbon loss rate;

o a linear relation between biomass growth and
total carbon gain.

A number of testable predictions were derived from
these assumptions: (i) The light requirements of a
phytoplankton species can be characterized by its
critical light intensity I'%,; (ii) I'*, is not affected by the
presence of other light absorbers and can be measured
in monoculture; (iii) the species with the lowest F*,
will competitively exclude all other species; (iv) I*, is
negatively related to the light supply; and (v) the
outcome of competition may depend on the light
supply.

The present paper intended to investigate the ro-
bustness of these predictions. For this purpose, we
developed a model formulated in more general terms.
In essence, we only assumed:

» a biomass distribution that is continuous over depth
but otherwise quite arbitrary (Assumption 1)

+ a light gradient that is one-dimensional and uni-
directional (Assumption 2);

e 2 carbon gain rate that is positively related to the
local light intensity (Assumption 3);

e a growth dynamics that is determined by the
carbon balance (Assumption 4).

We have shown that these qualitative assumptions
are sufficient to derive all the predictions mentioned
above. However, we had to postulate that all species
have a similar distribution over the light gradient.
Spatial differentiation of the competitors may lead to
a completely different situation: the critical light
intensities of the competitors are no longer sufficient
to predict the outcome of competition, and equi-
librium co-existence of several species on a single
resource may OCCur,

Summarizing, we conclude that the results of our
previous paper are quite robust. They do not depend
on specific assumptions such as Lambert-Beer’s law
or the Monod equation, but reflect far more general
principles of light-limited growth. However, competitive
exclusion crucially depends on the parallel distribution
of the competitors as externally imposed by mixing.

LIMITATIONS OF THE MODEL ASSUMPTIONS

It is obvious that several important aspects of
light-limited growth and competition have not been
addressed. For example, our model neglects the daily
and seasonal fluctuations in the light supply, the
spectral distribution of light, time delays in the adap-
tation to local light availability, seedling establish-
ment under a dense canopy, and the spatial
stochasticity of light gaps in forest vegetations. Here
we discuss some aspects that are more closely related
to our model assumptions.

The assumption that the light flux is uni-directional
(Assumption 2.2) makes the nature of the light gradi-
ent more transparent. This assumption made it poss-
ible to introduce the concept of “quantum return”
and to formulate light-limited growth directly in
terms of the light gradient. A direct interpretation in
terms of light availability contributes to a better
intuitive understanding of light limitation, and our
main results (Results 4, 5, and 8) follow easily from
this formulation. However, although Assumption 2.2
simplifies the analysis, it can be shown that Assump-
tion 2.1 is sufficient to derive all our results. The only
exception is Result 4: if the light flux is not uni-
directional, the relation between I*, and I, need not
be negative (but see Appendix B).

We have focused on a light gradient in one dimen-
sion. However, processes such as scattering and reflec-
tion may lead to a muiti-dimensional light field. As
long as the vertical component of the light flux is
prevalent, the conclusions of our model will hardly be
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affected (cf. Iehana, 1983; Gordon, 1989). If other
dimensions cannot be neglected, the formalism be-
comes more involved (e.g. Kirk, 1983; Evers, 1991).
In this case, it is not obvious whether a single
parameter, analogous to %, , is able to summarize the
light requirements of a species. Even in a multi-di-
mensional light field, however, we conjecture that
competitive exclusion still holds in the absence of
spatial differentiation.

We have assumed that the specific carbon gain
rate is positively related to the local light inten-
sity. When our formalism is applied to a non-motonic
light-response curve (e.g. photo-inhibition), the
global stability of the equilibria is no longer guaran-
teed. Instead, several stable equilibria may exist, and
the outcome of competition may depend on the
initial conditions (see Butler & Wolkowicz, 1985,
for a similar situation in the context of nutrient
inhibition).

The assumption that the specific carbon gain rate
depends onfy on the local light intensity is not always
justified. In uni-cellular algae, the specific carbon gain
may not only depend on light availability but also on
cell biomass, for example, if carbon uptake is deter-
mined by the cell surface area whereas carbon losses
are determined by the cell volume {cf. Metz er al.,
1988). In the context of higher plants, the carbon
allocation strategy may be influenced by global as-
pects such as total biomass or the light supply. If g is
affected by the light supply, our results still hold. The
only exception is, again, Result 4: if g is a function
of I and I, the relation between I%, and I, need
not be negative. In contrast, it is not obvious which
of our results remain to hold if g also depends on
biomass.

SPATIAL HETEROGENEITY AND SPATIAL
DIFFERENTIATION

Many studies conclude that equilibrium co-existence
on a single, homogeneously distributed resource is not
possible (e.g. Armstrong & McGehee, 1980; Tilman,
1982). In contrast, several species may co-exist on a
single resource in a spatially heterogeneous environ-
ment {(e.g. Jiger et al., 1987; Ives, 1988; Tilman, 1994).
The spatial heterogeneity of a light gradient may be
a major factor contributing to the species diversity
observed in aquatic and terrestrial plant communities
(c.g. Hudon & Bourget, 1983; Terborgh, 1985;
Kohyama, 1993). We have shown, however, that the
spatial heterogeneity in resource availability per se is
not sufficient to explain co-existence. Our model still
predicts competitive exclusion if the species have a
similar distribution over the light gradient. This
demonstrates that the spatial heterogeneity in light

availability must be combined with spatial differen-
tiation of the competitors in order to explain species
co-existence.

In the absence of spatial differentiation, the light
requirements of the competitors are decisive for the
outcome of competition, It seems unlikely, however,
that a paralle} distribution can be maintained if it is
not externally imposed by mixing. In fact, processes
such as differential growth or diffusion may easily
lead to spatial differentiation. These processes have
not been ¢xplicitly addressed in this paper. Instead,
we have considered the relative positions of the
competitors as given. The next logical step would be
to study how spatial patterns are generated. As soon
as spatial patterns emerge, a slightly better position in
the light gradient may provide an enormous competi-
tive advantage. Accordingly, the allocation and mi-
gration strategics of the competitors may become as
important for the outcome of competition as their
minimal light requirements.

We would like to thank Jelte van Andel, Michiel van
Boven, Bruno Ens, and especially Hans Metz for their
helpful comments. The research of Jef Huisman was sup-
ported by the Life Sciences Foundation (SLW), which is
subsidized by the Netherlands Organization for Scientific
Rescarch (NWO).
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APPENDIX A

Properties of a Uni-directional Light Flux

In this appendix, we show that, in case of a
uni-directional light flux, the light absorption per
unit biomass, df/dw, only depends on the local light
intensity f = ¢ (Z,, kw). In other words, it does not
depend on the light supply I, and the cumulative
biomass w by which the local light intensity is
induced.

LEMMA

If light absorption is governed by [ = ¢(I,, kw),
where ¢ satisfies Assumption 2, light absorption per
unit biomass can be written as

dr
a = —kﬂ(!),

where a is a positive function of the light intensity 1.

Proof

In order to make the proof as transparent as
possible, we denote the first argument of ¢ by x
(i.e. x = I)) and the second by y (i.e. y = kw). Light
absorption per unit biomass can then be written as

] d 0
@ X, 7) y @

df de
— =—(l,, kw) = — ==k
dw dw (T, k) dy Y dw dy

If we can show that d¢/dy only depends on I, our
lemma is proved since the function ¢ may then be
defined by

(x,»).

d
al) = —a—f 7). (A1)

a(l) is positive in view of dg/dy <0 (Assumption
2.1).

We now show that dp/dy only depends on [
and not on the combination of x and y by which
I'=¢(x,y) is induced. Consider two different
combinations (x, y) inducing the same light intensity:

=@ (X1, 1) = @(x2,02)- (A.2)

The required relation

d d
2 x ) =22 (x5, ) (A3)
dy dy

is a direct consequence of Assumption 2.2; in view of
(11), the identity

@(p(xi, ) 4¥) = @(@(x, y2), 4y)
leads to
@(x, ¥+ Ay) = @(x;, y2 + 4y).
Together with (A.2), this implies

plx, y+4y) - e(x,»)
dy

_ 9,y t+4y) — @06, y2)
4y

Equation (A.3) is obtained by taking limits on both
sides (Ay —0). m|

Note that Assumption 2.2 resembles the group
property of an autonomous dynamical system with
kw as time and [, as initial condition. Hence the
lemma restates that such a dynamical system is gener-
ated by an autonomous differential equation (see, for
example, Hirsch & Smale, 1974).
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APPENDIX B

Alternative Formulations of the Light Gradient

Under certain special conditions, our formalism
can be extended to light absorption functions that do
not describe a uni-directional light flux in the sense of
Assumption 2.2. As an example, consider the light
absorption function proposed by Reynolds & Pacala
(1993):

I(w) =@y, kw) = (B.1)

1 + k
It is casily verified that this function does not satisfy
Assumption 2.2. Accordingly, light absorption per
unit biomass, df/dw, does not only depend on the
local light intensity but also on the light supply:

dr Fy r

n

Notice, however, that eqn (B.2) is of the form

A k),

T (B.3)

where g and b are both positive functions. In other
‘words, the dependence on the light supply I, can be
separated from the dependence on the local light
intensity I. As a consequence, the total carbon gain
rate can still be written as an integral over the light
gradient:

fn g(I)
ka(I}

G(,,)= b )J‘ di. (B.4)
It is easy to see that all our conclusions, including
Results 4 and 5, can also be derived from eqn (B.4).
In other words, even if a light absorption function
does not describe a uni-directional light flux, it is still
captured by our formalism if it satisfies eqn (B.3).

APPENDIX C

Competitive Exclusion

We shall now prove that, in the absence of spatial
differentiation, the species with the lowest critical

light intensity I, competitively excludes all other
species (Result 8). A similar proof for competitive
exclusion is given by Armstrong & McGehee (1980:
appendix D) in the context of nutrient competition.

Consider n species that are distributed in parallel.
We assume that species 1 has the lowest critical light
intensity:

I:)kut! <I:ut,i fori=2,...,n,

and that species 1 is able to grow in monoculture:
I, > I, . Our goal is to show that, independent of the
1nlt1al value of I, the system will always converge to
the monoculture equilibrium of species 1, at which
Iout = I:ut,l .

In view of Result 6, species 1 will increase if I, is
above its critical light intensity. In other words,
Low > I3, implies

d,
dr

If, on the other hand, I, is below the critical light
intensity of species 1, all species will decrease and I,
will increase. More precisely, I, < I'¥,, implies

Ioul aIOutdW
de "Zaw T

with equality only at the monoculture equilibrium of
species 1.

Suppose for the moment that I, remains below
I%,, for all time. In this case, I, remains to increase
[sece (C.2)] and thus converges to its upper bound
I%.,. Hence, I, may be viewed as a Lyapunov
function, and the system approaches the monoculture
equilibrium of species 1. We now suppose that [,
becomes larger than I3, , . Equation (C.2) shows that,
once I, is larger than I, |, it will remain larger than

I}, for all time. Hence the set given by [, > I}, is
positively invariant. W, is a Lyapunov function on
this set; in view of {(C.1), W, will remain to increase
and converge to its upper bound, the monoculture
equilibrium of species 1.

Hence, independent of the initial value of I,
species 1 will always converge to its monoculture
equilibrium, at which I, = I'%,, and all other species
are extinct.

>0. (C.1)

(C2)



