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Sympatric speciation is a composite phenomenon requiring both ecological differentiation and the evolution of a 
mating structure that induces reproductive isolation. Ecological and sexual selection models have addressed these 
two aspects of sympatric speciation separately. We briefly discuss the recent results of these models and argue 
that the evolution of ecological and mating strategies are mutually dependent processes rather than independent 
phenomena corresponding to incompatible views of sympatric speciation. Then, we consider a combined model 
incorporating ecological interactions and sexual selection. In this model, sympatric speciation is initiated by si-
multaneous evolutionary branching of ecological strategy, leading to ecological differentiation, and mating 
strategies, resulting in assortative mating. Both types of evolutionary branching can be understood as the outcome 
of a competition process in which individuals compete for a spectrum of either ecological resources or mating 
opportunities. Speciation is completed when a linkage disequilibrium between ecological and mating types splits 
the population into two ecologically differentiated and reproductively isolated groups. Using a combined analyti-
cal and individual-based simulation approach, we illustrate the different dynamical regimes and characterize the 
necessary conditions for sympatric speciation in the model. 
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1. Introduction 
 

The recent empirical and theoretical interest in 
sympatric speciation has produced a multitude of 
theoretical models (e.g. Kawecki, 1997; Payne and 
Krakauer, 1997; Van Doorn et al., 1998; Dieck-
mann and Doebeli, 1999; Higashi et al., 1999; 
Kondrashov and Kondrashov, 1999; Drossel and 
McKane, 2000). Some of these models are very 
specific (e.g. Van Batenburg and Gittenberger, 

1996), others are more general, but all of them 
conclude that sympatric speciation is theoretically 
very well feasible (for recent reviews see Turelli et 
al., 2001; Via, 2001). This conclusion is in striking 
contrast to the conclusions based on classical mod-
els of sympatric speciation (e.g. Maynard Smith, 
1966; Felsenstein, 1981; Rice, 1984), which almost 
universally discarded sympatric speciation as a 
plausible mode of speciation (Via, 2001). Yet, 
superficially at least, the recent models are quite 
similar to the classical models.  

This paradox is resolved by two recent theoreti-
cal developments. These developments originate 
from different lines of research, which address two 
longstanding difficulties in the theory of sympatric 
speciation (Kondrashov and Mina, 1986). First, 
sympatric speciation requires, almost by definition,  
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the evolution of a specific mating structure ena-
bling reproductive isolation. Classical models 
(Maynard Smith, 1966; Felsenstein, 1981; Rice, 
1984) had problems to explain the evolution of 
assortative mating under general and plausible 
conditions. More recently (Wu, 1985; Liou and 
Price, 1994; Van Doorn et al., 1998; Higashi et al., 
1999; Takimoto et al., 2000), it has been shown 
that these problems can be overcome if sexual 
selection is the driving force behind the evolution 
of reproductive isolation. Second, reproductive 
isolation is not sufficient to ensure the sympatric 
coexistence of daughter species. In view of the 
ecological principle of competitive exclusion, the 
species can only survive if reproductive isolation is 
associated with ecological differentiation. Only 
recently (Metz et al., 1996; Geritz et al., 1998), 
evolutionary branching theory has provided a plau-
sible mechanism for the evolution of ecological 
polymorphism in the presence of disruptive selec-
tion. 

Based on these new insights, a new generation 
of “ecological” and “sexual selection” models of 
sympatric speciation has been developed. These 
approaches will be briefly reviewed below. Unfor-
tunately, an integration of both research lines has 
not yet been achieved. Ecological speciation mod-
els (reviewed by Schluter, 2001) focus on ecologi-
cal differentiation without much attention for the 
mechanisms underlying the evolution of mating 
structure. Sexual selection models (reviewed by 
Panhuis et al., 2001) focus on the process leading 
to reproductive isolation, usually neglecting eco-
logical divergence. We will argue that both ap-
proaches present mutually dependent rather than 
conflicting explanations of sympatric speciation. 
To provide a conceptual bridge between them, we 
will present and analyze a model that integrates the 
ecological and sexual selection aspects of sympat-
ric speciation. Our main objectives are to investi-
gate the origin of ecological polymorphism and the 
evolution of mating strategies within the same 
formal model, in order to characterize the condi-
tions under which sympatric speciation occurs, to 
investigate the mutual dependence of ecological 
differentiation and the evolution of assortative 
mating, and to identify the common mechanism 
underlying these two aspects of sympatric speci-
ation. 

 

2. The evolution of polymorphism  
in the presence of disruptive selection 

 
The starting point of ecological models is that 
sympatric speciation results from disruptive selec-
tion. However, disruptive selection alone is not 
sufficient for speciation to occur. Consider, for 
example, a species that has access to a range of 
alternative habitats (e.g. from wet to dry) and as-
sume that, due to external factors, individual fit-
ness is highest in the extreme habitat types and 
lower in intermediate habitat types. Accordingly, 
selection is disruptive and one might expect that 
the population will split into two ecotypes, one 
specialized on living under wet conditions, the 
other specialized on living under dry conditions. In 
contrast to this expectation, however, such a popu- 
lation will become monomorphic for one of the 
specialist strategies. In fact, the population will 
only experience disruptive selection if it starts 
exactly at the fitness minimum. If the initial state is 
slightly shifted towards one of the extremes, the 
population will experience directional selection 
enhancing the initial bias.  

Hence, at first sight at least, populations tend to 
evolve away from fitness minima where selection 
is disruptive. This fundamental problem has only 
recently been resolved (Abrams et al., 1993; Metz 
et al., 1996), at least for asexual populations. The 
resolution is based on the insight that selection is 
usually not externally imposed, as in our example, 
but frequency dependent. Moreover, selection 
pressures may vary in strength and direction in the 
course of evolution, as a result of a feedback be-
tween evolutionary and ecological processes. Un-
der such circumstances, evolution may drive the 
population towards a point where it experiences 
disruptive selection (Abrams et al., 1993), which 
subsequently induces polymorphism (Metz et al., 
1996). This phenomenon is named “evolutionary 
branching”. 

To explain this further, we will now consider 
the example of resource competition as a general 
ecological interaction that can give rise to evo-
lutionary branching (Fig. 1). In line with recent  
models (e.g. Metz et al., 1996; Doebeli and Dieck- 
mann, 2000), let us assume that individuals com-
pete for a continuum of ecological resources, dis-
tributed according to some fixed resource distribu-
tion function (shown in gray in Fig. 1). Individuals 
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compete for resources locally in resource space, 
that is to say, individuals do not consume all re-
sources but rather they are specialized to some 
extent on particular resources. This is reflected by 
an individual’s resource utilization function, the 
location of which is determined by a quantitative, 
heritable trait that we will refer to as the individ-
ual’s ecotype. As competition affects fitness, eco-
type is under natural selection, the direction and 
intensity of which depends on the resource distri-
bution and on the frequency and resource utiliza-
tion characteristics of the set of ecotypes present in 
the population.  

Consider a population that is monomorphic for 
a certain ecotype that does not match the ecologi-
cal optimum of maximal resource availability  
(Fig. 1A). Such a population is not evolutionarily 
stable: a mutant that is closer to the ecological 
optimum will be favored by selection because it 

utilizes resources that are more abundant. Eventu-
ally, such a mutant will outcompete the resident 
ecotype, and in a series of such mutation/substi-
tution events, evolution will drive the population 
towards the peak of the resource distribution.  

Once there, however, the population experi-
ences disruptive selection (Fig. 1B): because of the 
specialist resource utilization strategy of the popu-
lation, the resources in the tails of the resource 
distribution are hardly competed for. Mutants that 
utilize the tails of the resource distribution gain a 
competitive advantage, which more than out-
weights the lesser availability of those resources. 
Such mutants can invade the population, which is 
therefore evolutionarily unstable, and, in this 
sense, located at a fitness minimum.  

The population can only escape from this fitness 
minimum if it undergoes evolutionary branching 
and becomes dimorphic for ecotype (Fig. 1C), 
since any monomorphic population would be 
driven back to the ecological optimum again. Evo-
lution eventually leads to a stable situation where 
selection for avoidance of competition with the 
other ecotype balances selection towards the eco-
logical optimum.  

The mechanism sketched above works only for 
ecological specialists, with a narrow utilization 
curve relative to the distribution of available re-
sources. For an ecological generalist (Fig. 1D) the 
competitive advantage of utilizing resources in the 
tails of the resource distribution will be much 
smaller than in the specialist case, since the gener-
alist still competes for those resources rather effi-
ciently. Therefore, a mutant that utilizes resources 
not at the ecological optimum will suffer more 
from the disadvantage of the lesser availability of 
those resources than it benefits from its competi-
tive advantage, and selection will therefore be sta-
bilizing towards the ecological optimum. Conse-
quently no mutants can replace the resident eco-
type at the ecological optimum, and in this sense, 
the monomorphic resident population is evolution-
arily stable. 

The intuition behind the occurrence of evolu-
tionary branching of ecological strategies in re-
source competition was confirmed, at least for 
asexual populations, by a mathematical formula-
tion based on Lotka–Volterra type population dy-
namics (Metz et al., 1996). In fact, evolutionary 
branching has been shown to occur in a variety of 

FIG. 1. Evolutionary branching in competition models 
Individuals compete for resources that are distributed accord-
ing to a fixed resource distribution function (shown in gray). 
An individual’s ecotype corresponds to the location of its 
resource utilization curve (dashed line), which delimits the 
spectrum of resources that can be utilized. (A) A population 
that is monomorphic for ecotype (solid line) will evolve to-
wards the peak of the resource distribution. (B) In case of an 
ecological specialist, i.e. if the width of the resource distribu-
tion is larger than the width of the resource utilization curve, 
the population experiences disruptive selection once located at 
the peak of the resource distribution. (C) This leads to evolu-
tionary branching, after which the population becomes dimor-
phic for ecological type. (D) In case of an ecological general-
ist, the population will evolve towards the peak of the re- 

source distribution and remain there 
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mathematical models of asexual populations in 
different ecological settings, and can therefore be 
considered a general explanation for the evolution 
of polymorphism in the presence of disruptive 
selection (Doebeli and Ruxton, 1997; Geritz et al., 
1999; Kisdi, 1999). 

 
 

3. The problem of recombination 
 

A solution of the problem of the origin of poly-
morphism under disruptive selection does not solve 
the whole problem of sympatric speciation. In sex-
ual populations, a second problem arises. As soon 
as a polymorphism originates in a sexual popula-
tion, it will immediately be destroyed when mating 
is random. This is because mating between differ-
ent ecotypes will yield intermediary and less fit 
hybrids, and the random recombination of geno-
types will reshuffle co-adapted gene complexes. In 
order to overcome these problems, assortative mat-
ing is required.  

However, it is not self-evident that assortative 
mating will evolve and whether the specific asso-
ciation between ecological and mating type loci 
will develop. These issues were addressed in sev-
eral classical models of sympatric speciation (Fel-
senstein, 1981; Rice, 1984). These models have 
shown that the required association between eco-
logical type and mating type can, in principle, 
evolve, but only under conditions of strong linkage 
or pleiotropy between ecological and mating loci, 
such that, essentially, ecological and mating char-
acters are determined by a single locus or trait. 
Such a scenario may apply to certain biological 
systems, but in general weaker pleiotropic interac-
tions are to be expected (Felsenstein, 1981). For 
weak pleiotropic interactions between ecological 
and mating loci it requires unrealistically strong 
disruptive selection to overcome the randomizing 
effects of recombination. 

Dieckmann and Doebeli (1999) argue that these 
problems can partially be overcome by a stochas-
tic, individual based description of the process. In 
their model, assortative mating did evolve in a 
finite population located at a branching point, lead-
ing to both divergence of ecotypes and reproduc-
tive isolation. This occurred for competitive and 

various other types of ecological interactions (Doe-
beli and Dieckmann, 2000). Hence, it is possible, 
at least in principle, that a sexual population un-
dergoes evolutionary branching. However, selec-
tion for assortative mating is weak in Dieckmann 
and Doebeli’s models, and only acting at the 
branching point. This is because only a phenome-
nological description of mating behaviour is given 
and the mechanism underlying assortative mating 
is not specified. It is more plausible that assortative 
mating is the outcome of the evolution of male and 
female mating strategies. This issue is being ad-
dressed in the recent sexual selection models of 
sympatric speciation.  

 

4. Sexual selection and the evolution 
of assortative mating 

 
Sexual selection models, which explicitly take into 
account the interaction of male and female mating 
strategies, typically assume different male and 
female sex roles: female reproductive success is 
largely determined by the quality of the offspring 
produced, whereas male reproductive success is 
limited by the number of females that can be fertil-
ized. Because of these asymmetries, there will be 
strong competition for fertilizations among the 
males and females will exert mate choice if this 
enables them to mate with a higher quality male 
(Andersson, 1994).  

In the context of speciation, models have fo-
cused on the evolution of female preferences for 
male ornaments by runaway sexual selection. This 
mechanism, originally proposed by Fisher (1930) 
as a verbal argument, and later confirmed by theo-
retical models (O’Donald, 1980; Lande, 1981; 
Kirckpatrick, 1982), proposes that male traits and 
female preferences for those traits will become 
genetically correlated because of non-random mate 
choice. Once this correlation is established, female 
preference for more extreme male traits will result 
in more extreme female preferences, because of a 
correlated selection response. Because of this po- 
sitive feedback, preference and trait coevolve in a 
rapid runaway process, until halted by counteract-
ing natural selection pressures.  
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Runaway sexual selection is interesting for spe-
ciation for two reasons. First, the evolution of 
preferences for male ornaments provides a mecha-
nism of strong pre-zygotic reproductive isolation. 
Second, and in contrast with good genes models, 
the direction of the runaway process is arbitrary. 
This could result in rapid evolution of reproductive 
isolation between allopatric populations (Lande, 
1981). For sympatric speciation however, there 
would have to be simultaneous runaway processes 
in different directions within a single population. 
In a previous model, specifically addressing speci-
ation of cichlid species (Van Doorn et al., 1998), 
we showed that simultaneous runaway processes 
within a single population are attainable. More-
over, Higashi et al. (1999) and Takimoto et al. 
(2000) provided an important proof of principle 
that sexual selection alone is sufficient to split a 
population into two reproductively isolated groups.  

There are, however, a number of problems. 
First, it is not clear how the reproductively isolated 
daughter species can coexist in the absence of eco-
logical differentiation. Second, there is the funda-
mental problem that disruptive sexual selection has 
similar properties as disruptive natural selection, 
and it is a similarly delicate affair to maintain a 
long-term polymorphism in the presence of disrup-
tive sexual selection as it is for disruptive natural 
selection. In the models, this translates for instance 
into neutral stability of relevant equilibria and re-
quirements of symmetric parameter conditions, 
large initial genetic variance of female preference 
and male trait or very strong selection.  

 
 

5. Evolutionary branching of mating strategies 
 

The problem of maintaining polymorphism in the 
presence of disruptive selection is similar for both 
natural and sexual selection. This similarity leads 
one to wonder whether processes analogous to the 
evolutionary branching in the ecological models 
could also occur as a consequence of sexual selec-
tion, resulting in the evolutionary branching of 
mating strategies. In fact, in another paper (Van 
Doorn et al., 2001) we analysed a model in which 
such mating type branching does indeed occur, 
resulting in a stable polymorphism of mating 
strategies. 

In order to explain this further, let us now con-
sider a verbal model in which male and female 
mating strategies are determined by heritable mat-
ing types. Let us also assume the typical sex roles: 
all males compete to fertilize a female, and a fe-
male chooses a male (actively or passively) based 
on the compatibility of male and female mating 
strategies, according to some mate choice or fer-
tilization efficiency function. The model is very 
general and reflects a variety of specific examples 
ranging from female preference (female mating 
type) for male ornaments (male mating type) in 
lekking birds to the interaction between gamete 
recognition proteins in marine broadcast spawners 
(Vacquier, 1998), where sperm proteins (male 
mating type) interact with egg surface proteins 
(female mating type) during fertilization.  

FIG. 2. Evolutionary branching of mating strategies 
In (A), we consider a population that is monomorphic for 
male mating type (solid black line). Males compete to fertilize 
a spectrum of female mating types (shown in gray). Fertiliza-
tion efficiency is highest when male and female mating type 
match, as reflected by the fertilization efficiency function 
(shown as a dashed line). This results in strong selection on 
male mating type, and similar, but much weaker, selection on 
the female mating type distribution, towards optimal matching 
of male and female mating types. (B) If the variation of fe-
male mating types is small, there is a single optimal male 
mating type and the population will experience stabilizing 
selection. (C) When the variation of female mating types 
becomes larger, however, it pays to specialize on females that 
are not that efficiently fertilized by the resident male mating 
type. Then selection becomes disruptive, and the population 
undergoes evolutionary branching (D), inducing further wid-
ening of the female mating type distribution, and the subse-

quent evolution of assortative mating 
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Under these assumptions, selection on males 
will be much stronger than selection on females. In 
Figure 2A we consider an extreme case, in which 
there is a variety of female mating types present in 
the population (gray distribution), and, because of 
stronger selection, just a single male mating type 
(solid black). The spectrum of female mating types 
that can be efficiently fertilized by the male mating 
type is indicated by the dashed line, representing 
the fertilization efficiency function. If we assume 
that fertilization efficiency is highest when male 
and female mating types match, then selection on 
male mating type will drive it towards the maxi-
mum of the female mating type distribution. In 
addition, the distribution of female mating types is 
not fixed, and evolution will act on it towards op-
timal matching with male mating type, although 
the selection pressure on female mating type will 
be much weaker than on male mating type. When 
male and female mating type are matched, selec-
tion will be stabilizing as long as the distribution of 
female mating types is narrow, as in Figure 2B. In 
that case, males can fertilize the full distribution of 
female mating types with reasonable efficiency. 
Hence, the competitive advantage of specializing 
on extreme female mating types does not out-
weight the disadvantage of the lesser abundance of 
those female mating types.  

However, when selection of female mating type 
is sufficiently weak, the distribution of female 
mating types may widen by mutation pressure, 
beyond a point where selection on male mating 
types becomes disruptive (Fig. 2C). Then, mutant 
males that specialize on the extreme female mating 
types can invade, since these are hardly competed 
for by the resident males, and the population will 
undergo evolutionary branching of male mating 
types.  

After evolutionary branching, the distribution of 
female mating types slowly adapts to the dimor-
phic distribution of male mating types, widening 
further, which allows male mating types to sepa-
rate even more, thus lowering competition for ferti-
lizations (Fig. 2D). In the end, assortative mating 
can evolve, as a result of linkage disequilibrium 
between male and female mating type genes.  

Note that there is a biological analogy between 
competition for ecological resources and competi-
tion for fertilizations (as also reflected by the 
analogous choice of notation in Figs 1 and 2), 

which – in the verbal models at least – extends to 
analogous evolutionary dynamics for ecotype and 
male mating type.  

 
 

6. A synthesis of ecological and sexual selection 
models 

 
In order to understand sympatric speciation, we 
will eventually have to analyse the interplay be-
tween ecological and mating type branching. As 
argued above, ecological branching requires assor-
tative mating, the evolution of which might be 
explained by sexual selection. On the other hand, 
sexual selection models require ecological differ-
entiation for the coexistence of incipient species. 
Therefore, it is very likely that in real world sys-
tems, both sexual selection and ecological proc-
esses will play a role in sympatric speciation (Galis 
and Metz, 1998). Based on these arguments, we 
will now proceed by writing a formal model of 
sympatric speciation. The model will incorporate a 
minimal description of mating behavior and eco-
logical interactions, which will allow us to further 
analyze evolutionary branching of mating strate-
gies and ecological branching within the same 
framework. 

 
 

7. General model structure  
 

We consider the evolutionary dynamics of three 
continuous, heritable, phenotypic traits: ecotype 
(denoted x), female mating type (denoted p) and 
male mating type (denoted q). Let us focus on an 
arbitrary female i. When the female is ready to 
mate, all males compete to fertilize her. The prob-
ability that a particular male j succeeds to fertilize 
the female is proportional to the male’s “attrac- 
tivity” for female i, denoted ija . We keep the 
model as general as possible and make no assump-
tions regarding the mechanism of female choice: 
attractivity and mate choice may be based on any 
active or passive process (behavioral, morphologi-
cal or other) that affects the probability that a fe-
male mates with a particular male. We assume that 
attractivity is highest when male and female mat-
ing types match. Moreover, we allow for the possi-
bility that attractivity might also be higher when i 
and j are of similar ecotype, for instance, when 
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individuals occupying similar ecological niches are 
more likely to meet one-another. Therefore, we 
take  

 ( ) ( )ij m i j e i ja g p q g x x= − −  (1) 

where here and henceforth ag denotes a gaussian 
function with mean zero and standard devia-
tion aσ . In particular, the standard deviations of the 
gaussian distributions used here, mσ  and eσ , de-
termine the specificity of mate choice with respect 
to mating type and ecotype differences respectively 
(for an overview of the parameters used in the 
model, consult Table 1). In the limit of large eσ , 
mating probabilities are independent of ecological 
differences and determined solely by male and 
female mating types. Alternatively, in the limit of 
large mσ , mating is assortative with respect to 
ecotype without any dependency on male and fe-
male mating types. 
 

TABLE 1 

Important model parameters and their biological interpretation 

Parameter Biological interpretation 

b birth rate 

ε, η cost of mate choice (ε = η / number of males) 

σK width of the ecological resource distribution 

σc width of the resource utilization function 

σe specificity of mate choice with respect to ecological 

type 

σm specificity of mate choice with respect to mating type 

σn width of the female mating type distribution 

σs strength of viability selection on male mating type 

σν width of the distribution of mutation sizes 

µ population average female mating type 

 
When the female cannot find an attractive male, 

she does not mate. This occurs with a probability 
proportional to h. This parameter determines the 
strength of direct selection on female mating pref-
erence. When η = 0, females will always mate, 
regardless of their mating preference, and hence 
there is no direct selection on female mating type 
p. In contrast, when η > 0, for instance when 
searching for mates is costly, or when sperm is 
limiting, selection will act to match female with 
male mating type. 

Under these assumptions, the probability that 
female i mates with male j, denoted as αij is given 
by 

 

males 

ij
ij

ik
k

a

a
α

η
=

+ ∑
. (2) 

A fertilized female produces b offspring. Offspring 
mortality until reproductive age is determined by 
the intensity of ecological resource competition. 
Individuals compete for a continuum of ecological 
resources distributed according to a fixed gaussian 
function gK(x). The intensity of resource competi-
tion between two individuals i and j is taken to 
decline as a gaussian function gc(xi – xj) of the 
difference between their ecotypes. This reflects the 
assumption that individuals with dissimilar re-
source utilization strategies compete less intensely. 
More precisely, competition induced mortality, 

im , is taken to be directly proportional to the in-

tensity of competition with all other individuals 
and inversely proportional to resource availability  

 

( )

( )

c i k
k

i
K i

g x x
m

g x
γ

−
=
∑

 (3) 

where the parameter γ  scales the carrying capacity 

of the system. As argued before (see Fig. 1), the 
width of the resource utilization function, σc, rela-
tive to the width of the resource distribution, σK, 
determines the competitive regime.  

We also include direct viability selection on 
male mating type as an extra source of mortality 
for males. We normalize male mating type in such 
a way that q = 0  is the optimal mating type for 
survival, and multiply the survival rate, 1 – mi, by 
an extra gaussian factor, ( )sg q , for males.  

Adult males and females die at a constant rate. 
We assume that females reproduce only once dur-
ing their lifetime. Males may reproduce several 
times, by fertilizing multiple females.  

We will analyze the model by combining two 
approaches: individual based computer simulations 
and mathematical analysis. Using the computer 
simulations, we will illustrate the different types of 
dynamical behavior of the model. Subsequently, 
we will try to gain more insight in the processes 
underlying  sympatric  speciation  by  studying  a  
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special case of the model using adaptive dynamics 
methods. In this analysis, we will derive predic-
tions for the parameter conditions under which 
sympatric speciation occurs. Finally, we will test 
the robustness of these predictions in the simula-
tion model again, which will enable us to study the 
effects of stochasticity and more complicated ge-
netics on the model outcome. 

8. Simulation results 
 

Simulations were run with overlap-
ping generations, with the following 
additional assumptions: x, p and q 
are fully heritable traits that are each 
determined by a diploid locus. All 
genes are unlinked and alleles inter-
act additively. Offspring genotypes 
are determined according to normal 
Mendelian genetics. We assume a 
continuum of alleles, that is, the 
phenotypic effect of each allele is a 
continuous quantity. Mutation is 
modeled by altering the phenotypic 
effect of each allele every genera-
tion and independently by a number 
drawn from a normal distribution 
with a narrow width σν.  

We ran simulations for parame-
ter combinations that either pre-
cluded or allowed for evolutionary 
branching. Based on our verbal 
arguments, we may expect branch-
ing of ecotypes (Fig. 1) to occur in a 
specialist resource utilization sce-
nario. Quantitatively, as was shown 
in Doebeli and Dieckmann (2000), 
this means that the width of the 
resource utilization function should 
not exceed the width of the resource 
distribution, that is, σc < σK. More-
over, the specificity of mate choice 
with respect to ecotype, σe, may 
also affect the conditions for eco-
logical branching. We chose to vary 
the width of the ecological resource 
distribution, σK, in order to simulate 
a specialist and a generalist resource 
utilization scenario. Similarly, con-
ditions for mating type branching 

(Fig. 2) are likely to be affected by the width of the 
female mating type distribution relative to the 
width of the fertilization efficiency function, σm. 
This balance is affected by the width of the muta-
tion distribution, σv, the cost of female mate 
choice, η, and, of course σm. The latter parameter 
was varied in order to simulate high and low speci-
ficity of mate choice.  
 

FIG. 3. Scenario 1: speciation 
The three panels show the distribution of ecological and mating types (greyscale) 
during 4,000 generations of evolution. In the first phase of evolution, ecotype 
evolves towards the ecological optimum (dashed line). There, the population 
experiences disruptive selection (the variation of ecological types increases), but 
cannot undergo evolutionary branching, because assortative mating has not yet 
evolved. During this initial stage (<1,500 generations), male and female mating 
type evolve jointly towards the optimum for male survival (dashed line). Several 
times, polymorphisms of mating types originate (arrows), but these are unstable 
due to competitive exclusion and viability selection against extreme male mating 
types. After 1,500 generations, simultaneous branching of ecotype and mating 
strategies repeatedly splits the population into groups that are ecologically differ-
entiated and, at the same time, reproductively isolated. Such branching events 
may therefore be interpreted as sympatric speciation events. Parameters were 
σc = 0.4, σK = 1.2, σe = 0.6, σm = 0.2, σv = 0.02, σs = 1.0, η 1.0, b = 4.0. 
Furthermore,  parameter  4

105
−

⋅=γ   kept  the  population sizes in the simula-

tions close to about 1,000 individuals per species 
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Sympatric speciation occurs only 
under conditions that allow for evo-
lutionary branching of both eco- 
type and male and female mating 
type (Fig. 3). In that case, the popu-
lation splits into distinct clusters, 
where each cluster can be inter-
preted as a species, since it is char-
acterized by a unique combination 
of ecotypes and mating types. 
Within a species, male and female 
mating type match with one an-
other, while there are large differ-
ences in mating types between spe-
cies. Because of these mating type 
differences, species are reproduc-
tively isolated from each other. 
Male and female mating types are 
highly correlated with each other 
across the population, as a result of 
the evolutionary dynamics. This 
effectively results in assortative 
mating to a degree high enough to 
allow for the evolutionary branch-
ing of ecotypes and the simultane-
ous build up of a linkage disequilib-
rium between the ecological and 
mating loci. The same processes 
occur in multilocus simulations 
(data not shown) where ecological 
and mating types are coded by mul-
tiple loci. In that case, assortative mating is strong 
enough to overcome the randomizing effects of 
recombination between ecological loci, which al-
lows for evolutionary branching of ecotypes and 
speciation. 

Under conditions that preclude the occurrence 
of ecological branching, the different mating types 
cannot stably coexist, because competition for 
ecological resources will drive all but one of the 
mating types to extinction (Fig. 4). Alternatively, if 
there is no polymorphism of mating types, indi-
viduals mate randomly. In that case, the evolution 
of distinct, reproductively isolated ecotypes is pre-
vented (Fig. 5). Nevertheless, random mating does 
not preclude the evolution of ecological polymor-
phism, as evidenced by the broadening of the dis-
tribution of ecological types after the ecological 
optimum has been reached (Fig. 5). This observa-
tion is in line with other models (Kisdi and Geritz, 

1999), which suggest for our single locus simula-
tion that disruptive selection at the ecological op-
timum should result in the evolution of distinct 
allele types and a stable polymorphism of geno-
types. Note that, in our simulations, we do not 
observe a polymorphism of discrete types (as in 
Kisdi and Geritz, 1999), but a broad continuous 
distribution of ecotypes. This is explained by the 
smearing that occurs as a result of a rather strong 
mutation pressure. In multilocus simulations a 
similarly broad distribution is observed, even un-
der weak mutation pressure, due to recombination. 

In order to get more insight in the process of 
speciation, we need to study the underlying proc-
esses of evolutionary branching of ecotype and 
mating types in more detail. In the next section, we 
will attempt to find the conditions that are required 
for both types of evolutionary branching by con-
sidering a special case of the simulation model, 

FIG. 4. Scenario 2: competitive exclusion 
In this simulation, parameters are as in Figure 3, except that σK = 0.6. Now, 
individuals are ecological generalists and branching of ecological type does not 
occur. Because of this, polymorphisms in mating types (arrows) cannot per-

sist, due to competitive exclusion 
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which will allow us to use the methods of adaptive 
dynamics.  

 
 

9. Adaptive dynamics approximation 
 

In our simulations, the variation of female mating 
types is typically larger than the variation of male 
mating types (Figs 3 to 5). This can be understood 
by realizing that the selection pressures on male 
and female mating types are qualitatively different. 
For males, the number of females fertilized is the 
main determinant of fitness, and therefore there is 
strong competition for fertilizations. Selection is 
strongly frequency dependent, since a male’s re-
productive success depends not on his own mating 
type per se, but rather on its performance in com-

petition relative to the other male 
mating types present. For females, 
reproductive success is independent 
of the strategies of other females 
and depends solely on the compati-
bility between female mating type 
and the male mating types present. 
If, as we assumed, females are not 
severely limited by the availability 
of suitable males (i.e. η is small), 
then selection pressures on female 
mating type will be weak. Conse-
quently, the distribution of female 
mating types will be wider than the 
distribution of male mating types. 

As an approximation of this 
situation, we will now consider a 
model in which female mating types 
vary according to some continuous 
distribution and where male mating 
type and ecological type are mono-
morphic. In order to keep the analy-
sis of the model tractable, we fur-
thermore restrict ourselves to a spe-
cial case of the simulation model, 
where traits x, p and q are coded by 
a single locus haploid genotype. As 
in the simulation model, individuals 
reproduce sexually, allowing for 
recombination between genotypes. 
We assume that population size is 
sufficiently large to allow for a de-
terministic description of the evolu-

tionary dynamics. Later, we will show that impor-
tant qualitative as well as some quantitative results 
derived for this special case apply in general.    

 
 

9.1. Invasion-proofness and attainability 
 

We apply standard adaptive dynamics theory 
(Metz et al., 1996; Geritz et al., 1998) and consider 
the dynamics of a rare mutant, which differs in 
either male mating type or ecological type from the 
resident population. The question is under what 
conditions this mutant can invade the resident 
population. The answer to this question will de-
pend on the mutant phenotype (denoted as y), but 
also on the resident phenotype (denoted ŷ ), re-

flecting the effect that the resident has on the biotic 

FIG. 5. Scenario 3: random mating 
When male and female mating types do not undergo evolutionary branching, as 
in this simulation, branching of ecological type is excluded. This is because 
mating is random without polymorphisms of mating types, and random recombi-
nation of ecological type genes prevents evolutionary branching. Note that selec-
tion on ecological types is still disruptive after convergence to the point of high-
est resource abundance, as evidenced by the large variance of ecological types. 

Parameters are as in Figure 3, except that σm = 0.4 
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and abiotic environment in which the mutant in-
vades. Formally, the invasion prospects of a rare 
mutant depend on the mutant’s long term per cap-

ita growth rate ( )ˆ,y yλ , also referred to as inva-

sion fitness (Metz et al., 1996; Geritz et al., 1998). 

If ( ) ( )ˆ ˆ ˆ, ,y y y yλ λ> , the mutant can invade and a 

new population dynamical equilibrium will be 
established, where, usually but not always, the 
resident is replaced by the mutant. Otherwise, the 
resident population is proof against invasion by y. 
If we assume that mutations occur only rarely and 
in small, discrete steps, this will result, on a longer 
timescale, in an evolutionary dynamics that con-
sists of a series of such invasion events each fol-
lowed by the establishment of a new population 
dynamical equilibrium. 

In case that mutants are only slightly phenotypi-
cally different from the resident, the evolutionary 
dynamics can be derived from the local behavior of 
the invasion fitness function. In order to do so, we 
compute the selection gradient 

 ( ) ( )
ˆ

ˆ,
ˆy

y y

y y
y

y

λ
λ

=

∂
=

∂
 (4) 

which can be interpreted as follows: if the selection 
gradient is positive (negative), mutant types that 
have a higher (lower) phenotypic value than the 
resident will have a higher fitness, and therefore a 
selective advantage with respect to the resident. 
Such a mutant can invade the population and re-
place the resident. This process is repeated when 
new mutants arise, and, in a series of muta-
tion/substitution events, evolution will proceed in 
the direction of the selection gradient.  

Interesting resident strategies are those strate-
gies for which directional selection is absent, i.e. 
strategies for which the selection gradient is zero. 
Such strategies are referred to as evolutionarily 
singular strategies (Metz et al., 1996). In generic 
cases, an evolutionarily singular strategy either 
cannot be invaded by any mutant strategy, or, al-
ternatively, it can be invaded by all mutants. In the 
former case, all mutant strategies will have a lower 
fitness than the evolutionarily singular strategy, 
which can therefore be characterized mathemati-
cally as a fitness maximum with respect to the 
mutant strategy. In other words, an evolutionarily 
singular strategy y  is invasion-proof, when 
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∂
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In the latter case, when the evolutionarily singular 
strategy can be invaded by all mutants, y  corre-
sponds to a fitness minimum with respect to the 
mutant strategy and the sign in (5) is reversed. 

In the literature, an invasion-proof strategy is 
often called an evolutionarily stable strategy (ESS; 
Maynard Smith and Price, 1973). However, an 
ESS is not necessarily stable in the dynamical 
sense (Eshel, 1983; Metz et al., 1996; Taylor, 
1996; Weissing, 1996). In fact, condition (5), 
which characterizes invasion proofness, does not 
ensure that the ESS will actually be attainable as 
the endpoint of a series of mutation/substitution 
events. There are examples of systems, in which 
arbitrarily small perturbations away from an ESS 
will cause the evolutionary dynamics to diverge 
from that ESS. Therefore, in addition to the inva-
sion-proofness, we also need to distinguish attain-
able (or “convergence stable” sensu Taylor, 1996) 
singular points (evolutionary attractors) from dy-
namically unstable singular points. An evolutionar-
ily singular strategy y  is attainable if evolution 

proceeds towards higher ŷ  when ŷ y< , and to-

wards lower ŷ  when ŷ y> . Since the direction 
of evolution is given by the sign of the selection 
gradient, equation (4), attainable evolutionarily 
singular points can be characterized by the condi-
tion 
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ˆ
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ˆ
y

y y

d y
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λ
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Using conditions (5) and (6), the local evolutionary 
dynamics around any resident strategy ŷ  can be 
classified (Geritz et al., 1998). An interesting phe-
nomenon occurs when an evolutionarily singular 
strategy is attainable but not invasion-proof. That 
is to say, a series of mutation/substitution events 
converges to the evolutionarily singular strategy, 
but at that strategy, the population can be invaded 
by all mutants. In that case, the population is 
trapped at a fitness minimum, from which it can 
only escape when it undergoes evolutionary 
branching and becomes dimorphic, since any 
monomorphic population would be driven back to 
the evolutionarily singular point again (Metz et al., 
1996).  
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9.2. Conditions for ecological branching 
 

After these general arguments, let us now proceed 
to derive the adaptive dynamics of ecotype and 
male mating type in our model. As is derived in 
detail in Appendix A, the growth rate of an eco-

logical type mutant ( )ˆ,x q , in a resident population 

( )ˆ ˆ,x q  is given by the expression (approximated 

for weak selection on females) 

( ) ( ) 






 −−−+−≈
)(

)ˆ()ˆ(
2

4

1
1ˆ,

xg

xgxxg
bbxx c

κ

κλ  

 )).ˆ(1( xxge −+  (7) 

This equation can best be understood by consider-
ing the two extreme regimes of small and very 
large birth rates. When b is small, the population 
can just sustain itself, and in that case the reduction 
of mate encounter rate caused by ecological differ-
ences governs the evolution of ecotype. Indeed, in 
that case equation (7) reduces to  

 ( ) ( )1 1
ˆ ˆ, , for 2

2 2 ex x g x x bλ ≈ − + − ≈ . (8) 

As a consequence, ( ) ( )ˆ ˆ ˆ, ,x x x xλ λ< . Selection 

will act against all mutant strategies, since all mu-
tant males will suffer from reduced mate encounter 
rates. 

In the regime of a very large birth rate the ex-
pression for the mutant growth rate reduces to 

( ) ( ) ( )
( )
ˆ ˆ

ˆ, 1 for large c K

K

g x x g x
x x b

g x
λ

−
∝ − . (9) 

Note that the sign of the invasion fitness, and 
therefore the fate of the mutant, is completely de-
termined by the competitive advantage of the mu-
tant relative to the resident.  

In the general case (7), the evolutionarily singu-
lar ecotypes can be found by computing the selec-
tion gradient  
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By checking the signs of the selection gradient for 
positive and negative x̂ , or according to condition 
(6), it can be seen that the ecological strategy 

0x =  is an evolutionary attractor (i.e. an attain-
able evolutionarily singular point), provided that 
the population is viable (b>2). Biologically, this 
means that a monomorphic population evolves 
towards the ecotype that matches the most abun-
dant resources. In order to determine the invasion-
proofness of this strategy, we compute, again ap-
proximated for weak selection on female mating 
type, the second order derivative 
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(all these results are derived in detail in Appendix 
A). From this equation, it follows that evolutionary 
branching of ecological type occurs when  
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In the limit where mating probabilities are inde-
pendent of ecological differences (infinite eσ ), 
this expression reduces to the criterion c Kσ σ<  
(Doebeli and Dieckmann, 2000; see also Fig. 1). In 
the general case, branching of ecological type oc-
curs when the width of the resource utilization 
function is sufficiently smaller than the width of 
the resource distribution – “sufficiently” depending 
on the influence of ecological differences on mate 
encounter rates (Fig. 6). 

 
 

9.3. Conditions for mating type branching 
 

As is also derived in Appendix A, the invasion 

fitness, ( )ˆ,q qλ  of a male mating type mutant 

( )ˆ,x q  in a resident population of type ( )ˆ ˆ,x q  is 

given by the expression 

 ( ) ( )
( )

( )
( )

ˆ,1 1
ˆ,

ˆ ˆ ˆ2 2 ,
s

s

g q Q q q
q q

g q Q q q
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Recall that the gaussian function ( )sg q  represents 

viability selection on male mating type. The func-

tion  ( )ˆ,Q q q   denotes  the expected number of 
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q -type offspring, produced by an arbitrary female, 
which is proportional to the probability that a fe-
male chooses a q -type male to mate with and 
which depends on the distribution of female mat-
ing types in the population. Here this dependency 
is not made explicit: for details regarding this and 
all other results derived in this section, the reader is 
referred to Appendices A and B. 

In particular, male mating type mutants can in-
vade when  

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,s sg q Q q q g q Q q q>  (14) 

which has a straightforward biological interpreta-
tion: evolution will maximize the product of male 
survival and reproductive success. This is also 
reflected by the selection gradient 

( ) ( )2 2
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2 2s mq q
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∂
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where the first term represents the stabilizing effect 
of viability selection on male trait, and the second 
term represent selection for an optimal match with 
female mating type ( µ denotes the population 
average female mating type). Therefore, the evolu-
tion of male mating type will converge towards a 
compromise value between the optimum for viabil-
ity selection ( ˆ 0q = ) and the optimum for mate 

competition ( q̂ µ= ). This latter optimum is not 

constant in the course of evolution, however, since 
the distribution of female mating types is itself 
under weak directional selection towards optimal 
matching with male mating type. So eventually, 
both q̂ and µ  will converge to zero, the optimum 

for viability selection. 
Again, the invasion proofness of this endpoint 

of monomorphic evolution can be checked by con-
sidering the second derivative of the invasion fit-
ness  
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where 2
pσ denotes the variance of female mating 

types present in the population. According to this 
expression, evolutionary branching of male mating 
type occurs when 
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differences on mate encounter rates becomes more important. 
Then, ecological branching occurs only when the width of  
the resource  utilization  function, σc, becomes increasingly 
smaller than the ecological resource variation σK. Further-
more, branching occurs for a wider range of parameters when 
the birth rate is larger. The dashed lines correspond to the  

analytical predictions resulting from equation (12) 

 
In the simplest case, when viability selection on 
male mating type is absent ( sσ → ∞ ), evolution-

ary branching occurs only when the width of the 
female mating type distribution, σp, exceeds the 
width of the fertilization efficiency function, mσ . 

One would expect this to occur when selection on 
female mating type is weak and when the mutation 
rate of the female mating type gene is higher. In-
deed, numerical and analytical analysis (Fig. 7, 
Appendices A and B), taking into account the full 
evolutionary dynamics of female mating type, have 
confirmed this expectation. Note that, in the gen-
eral case, conditions for evolutionary branching 

become more restrictive for smaller 2
sσ , that is, for 

stronger viability selection on males.  
As mentioned before, there is an analogy be-

tween competition for ecological resources and 
competition for fertilizations. This analogy extends 
to the conditions for evolutionary branching: in the 
simplest case ( ,s eσ σ→ ∞ → ∞ ), conditions 
(12) and (17) reduce to c Kσ σ<  and m pσ σ< , 
highlighting the analogy between resource uti-

FIG. 6. Conditions for branching of ecological type 
The solid straight lines delimit the region of evolutionary 
branching of ecological type for different values of birth rate 
b. To the right on the  22 / eK σσ -axis,  the  effect  of  ecological 
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lization function and mate choice kernel (σc and 
σm) and between resource distribution and female 
mating type distribution (σK  and σp). Note that, 
notwithstanding the analogy, an important distinc-
tion between the two types of competition lies in 
the fact that the distribution of ecological resources 
is fixed, whereas the distribution of female mating 
types evolves in response to the male mating 
type(s) present in the population. 

 
 

9.4. Conditions for sympatric speciation 
 

It is important to realize that the occurrence of both 
ecological and mating type branching is necessary 
but not sufficient for sympatric speciation. Besides 
polymorphism of mating types and ecotypes, it is 
also required that, during speciation, linkage dis-
equilibrium develops between ecological and mat-
ing strategies (Felsenstein, 1981). Only then will 
evolutionary branching of ecotype and mating type 
result in the evolution of reproductively isolated 
and – at the same time – ecologically differentiated 
species.  

We investigated the development of linkage 
disequilibrium after evolutionary branching by a 

FIG. 7. Conditions for branching of male mating type 
Along the horizontal axis, the cost of female mate choice 
varies (the parameter ε  is a dimensionless quantity defined as 
η  divided by the number of males, see Appendix A). The 
solid black line delimits the region of evolutionary branching 
of male mating type. As can be seen from the figure, branch-
ing occurs when selection on females is weak enough (as 
quantified by a small value of ε) and when the mutation rate of 
the female mating type gene is high enough relative to the 
mate choice specificity (upwards on the σv / σm-axis). The 
solid gray lines are lines of equal σp / σm. Note that the 
line σp / σm = 1, approaches the boundary of the branching 
region for small ε, that is to say, when selection on female 
mating type is weak, male mating type undergoes evolutionary 
branching as soon as the width of the female mating type 
distribution exceeds the width of the mating kernel. All solid 
lines result from numerical analysis of equations (24) and 
(39). Also shown, as dashed lines, are the corresponding ana-
lytical approximations, resulting from equations (48) and 

(35). This figure was computed for σs / σm = 5.0  
 
 

FIG. 8. Conditions for sympatric speciation 
When ecotype and male mating type are both dimorphic, 
correlations may develop between ecotype and mating types, 
resulting in the evolution of reproductively isolated and ecol-
ogically differentiated species. In an infinite population, such 
a correlation develops only in a limited region of parameter 
space (inset). This region is delimited by a straight line border-
ing the region of evolutionary branching (filled symbols) and 
another line (open symbols), which can be computed by con-
sidering the adaptive dynamics of a population dimorphic for 
both ecotype and male mating type (see the main text and 
Appendix C for details). In the remaining part of the parameter 
space where ecological branching is possible, correlations can 
only evolve in finite populations. All solid lines result from 
numerical analysis. The dashed lines represent the correspond-
ing analytical predictions (resulting from equations (12) and

(53) where 
ex σ= ) 

 



 SYMPATRIC SPECIATION BY ECOLOGICAL AND SEXUAL SELECTION 31 

  

technique similar to the one used above. Under the 
assumption that the resident population is dimor-
phic for both male mating type and ecotype, one 
again writes down the invasion fitness of a mutant 
and solves for the attractors of the dimorphic evo-
lutionary dynamics. Together with equations for 
the evolution of female mating types, this is a 
complete description of the adaptive dynamics, 
from which the expected correlation between eco-
type and male mating type (which is a measure for 
the linkage disequilibrium) can be derived (Ap-
pendix C). The results of this analysis show that 
there is a region in parameter space where male 
mating type and ecotype become correlated with 
another (Fig. 8). On the other hand, Figure 8 also 
illustrates that evolutionary branching indeed not 
inevitably results in sympatric speciation since, in 
the complementary region of parameter space, 
linkage disequilibrium does not build up.  

Two processes will determine whether linkage 
disequilibrium can develop. On the one hand, 
competition within ecotype (i.e. between individu-
als of identical ecotype) will tend to eliminate 
polymorphism of male mating type within ecotype 
and enlarge the correlation between ecotypes and 
mating types. On the other hand, mating between 
ecotypes will tend to destroy any linkage disequi-
librium. Because of this, one would intuitively 
expect that linkage disequilibrium would develop 
more easily when the encounter rate between indi-
viduals of different ecological types is reduced 
(smaller σe). Then, mating between different eco-
types will occur only rarely, even if individuals are 
of matching mating type. Indeed, Figure 8 shows 
that correlations develop only for sufficiently small 
σe. Here, “sufficiently small” relates to the eco-
logical separation between ecotypes after ecologi-
cal branching, x∆ : in the region where linkage 
disequilibrium develops, we have e xσ < ∆ , and at 

its border σe = ∆x.  
Simulations indicate that the region of parame-

ter space where a linkage disequilibrium does build 
up corresponds to those conditions under which 
male mating type branching results in a bimodal 
female mating type distribution (as suggested in 
Fig. 2D) and, correspondingly, in a high degree of 
assortative mating. For parameters outside this 
region, male mating type branching usually results 
in a broad unimodal distribution of female mating 

types. The evolution of a bimodal female mating 
type distribution, corresponding to branching in 
female mating types, requires diversifying fre-
quency dependent selection on female mating type. 
In our case, this is caused by the association be-
tween mating types and ecological type, giving 
extreme mating types an advantage due to compe-
tition avoidance. We conjecture that other forms of 
frequency dependent selection will have similar 
effects, but this requires further investigation.  

 

FIG. 9. A comparison of the analytical predictions  
with individual based simulations 

A large number of simulations were run for different combi-
nations of the parameters ec σσ ,  and Kσ , thus varying the 

ecological selection regime. For these parameter combina-
tions (other parameters as in Fig. 3), the figure shows the 
association between ecological type and mating type. This is 
measured as the correlation between these traits (averaged 
over 1,000 generations) and indicated on a gray scale with 
contour lines at the values 0, 0.2, 0.4, 0.6 and 0.8 (white 
indicates high, black indicates low correlation). Also shown in 
thick black lines are the analytical predictions for the bounda-
ries of the branching region and the region where a correlation 
between ecological type and mating type exists (also shown in 
Fig. 8). These analytical predictions are based on a large 
population approximation where stochasticity is ignored. The 
region where a strong association between mating types and 
ecotype evolves – this is the light gray/white area – falls 
within the analytically predicted region, but does not com-
pletely fill it, particularly not for small 22 / eK σσ . Another 

striking feature is that speciation occurs for a considerably 
larger range of parameters than would be predicted from the 
deterministic approximation of the population dynamics. As 
in the Figures 3 to 5, population sizes in the simulations were 

about 1,000 individuals per species 
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10. Generalization of the mathematical results 
to diploid/multilocus genetics and small  

population size 
 
The results presented in the previous section are 
strictly valid only for single locus haploid genetic 
systems and for sufficiently large populations 
(such that stochasticity can be ignored). In order to 
check whether the analytical results hold in a more 
general context of multilocus genetics we ran 
simulations with different genetic systems underly-
ing the traits, each for a large number of parameter 
combinations, and we measured the correlation 
between ecological and mating types as an indica-
tor of the occurrence of speciation. Figure 9 shows 
the result of one such experiment, where we as-
sumed single locus diploid genetics underlying all 
traits. The conditions for branching of mating types 
are predicted well by the theory (data not shown). 
For ecological branching and subsequent speci-
ation we find that there are two important qualita-
tive differences between theoretical predictions 
and simulation results.  

First, conditions for branching are more restric-
tive than predicted when mate encounter rates are 
not affected by ecological  differences  (for large 

eσ ). This observation is in accordance with the 
results of Dieckmann and Doebeli (1999), who 
noted that the conditions for branching agree well 
with predictions based on an asexual model when 
mating probabilities depend on ecological type, but 
are more restrictive when mating probabilities are 
independent of ecological traits, instead depending 
on a neutral marker trait (in our model male and 
female mating type).  

Second, the parameter region in which mating 
types and ecological type become correlated with 
another – this is the region where sympatric speci-
ation occurs – is much larger than predicted. This 
discrepancy can partly be explained by the fact that 
the population sizes in our simulations are not so 
large that stochasticity can be ignored, as we as-
sumed in the mathematical analysis. In the simula-
tions, random fluctuations of the linkage disequi-
librium between ecological and mating type loci 
occur, caused by the stochasticity of demographic 
processes in finite populations. Due to the evolu-
tionary dynamics, such small fluctuations may be 
enlarged, if they exceed a certain threshold, result-
ing in a larger linkage disequilibrium and eventu-

ally speciation. This effect was also described by 
Dieckmann and Doebeli (1999). Another factor 
that may explain why speciation seems to occur for 
a wider range of parameters than expected, is that 
there is some amount of genetic variation of male 
mating type in the individual based simulations 
(which was neglected in the adaptive dynamics 
approximation). This genetic variation enlarges the 
“assortativeness” of mating, which may facilitate 
speciation. 

For larger populations and many locus genetics, 
results are similar, except that the waiting time 
until speciation increases. For a very large number 
of loci, results were also checked using a quantita-
tive genetics approximation. Again, sympatric 
speciation occurred for a wide range of parameters 
(similar to Fig. 9). 

 
 

11. Discussion 
 

Our model represents a first step towards under-
standing the multitude of entangled processes that 
underly sympatric speciation. We have focused on 
the interplay between ecological interactions as a 
source of biological diversity and sexual selection 
as the mechanism underlying reproductive isola-
tion. The results of our analysis show that ecologi-
cal differentiation and the evolution of assortative 
mating are mutually dependent processes that are 
both required for sympatric speciation. Ecological 
differentiation arises naturally from evolutionary 
branching of competitive strategies (as determined 
by ecotype). Assortative mating results from evo-
lutionary branching of mating strategies (male 
mating type) automatically followed by the genetic 
association of matching male and female mating 
types. Sympatric speciation is completed when, in 
addition, a linkage disequilibrium develops be-
tween ecotypes and mating types, giving rise to 
reproductively isolated and, at the same time, ecol-
ogically differentiated daughter species. 

On an abstract level, ecological and mating type 
branching can both be understood as the outcome 
of a competition process in which the optimal 
competitive strategy is determined by the distribu-
tion of resources (ecological resources or mating 
opportunities, respectively) and by the competitive 
behavior of other individuals. At first sight, it 
might seem an optimal competitive strategy to 
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specialize on the most abundant resource. How-
ever, it might also pay to specialize on less abun-
dant resources, thus avoiding competition with 
other individuals. The latter applies particularly 
when the variation of resources is large. These 
considerations translate into a feedback between 
ecological and evolutionary processes, which 
drives a monomorphic population towards the op-
timum of the resource distribution, but may there 
induce disruptive selection resulting in evolution-
ary branching. For ecological resource competition 
and mate competition alike, this occurs only when 
the variation “resources” (ecological resources or 
female mating types, respectively) is large enough. 
For ecological competition, this implies that indi-
viduals should be ecological specialists rather than 
generalists. For mate competition, it implies that 
mate choice should be sufficiently specific or that 
selection on female mate choice should be weak.  

In very large populations, the required linkage 
disequilibrium between ecotype and mating types 
will only develop when individuals that differ 
ecologically also have a lower probability of mat-
ing with each other. This mate choice with respect 
to ecotype has to be specific enough in order to 
establish a linkage disequilibrium, but not too spe-
cific, since, in that case, evolutionary branching of 
ecotype would be prohibited. In small populations, 
however, the conditions for sympatric speciation 
are far less stringent, as a result of stochasticity. 
Small random fluctuations of genetic correlations 
between ecotype and mating types can be enlarged 
by the ecological dynamics to a strong linkage 
disequilibrium. This important effect of stochastic-
ity was also noted by Dieckmann and Doebeli 
(1999), and it illustrates the usefulness of a com-
bined computer simulation and analytical ap-
proach.  

Although we have chosen for a rather general 
modeling approach, we would like to stress that we 
have imposed a number of restrictions, the allevia-
tion of which provides ample opportunities for 
future research. For example, in our analysis we 
have treated ecological branching and mating type 
branching as largely separate processes, assuming 
that the coupling between ecotype dynamics and 
mating type dynamics becomes important only 
later, when the linkage disequilibrium between 
ecotype and mating types establishes itself. This 
approach has been motivated and checked by nu-

merical studies, but from a methodological point of 
view, it is important to note that this leaves out of 
consideration modes of evolutionary branching 
that result from the coupling of ecotype and mating 
type dynamics. The theory of such higher dimen-
sional branching is rather complicated and is sub-
ject of current theoretical research.  

A number of key parameters of our model were 
assumed to be constant and not subject to evolu-
tion. This may not be adequate, particularly not for 
the parameters cσ and mσ , since resource utiliza-
tion characteristics ( cσ ) and the specificity of 
mate choice ( mσ ) are themselves likely to be sub-
ject to evolutionary change. It would therefore be 
interesting to consider as a second step models that 
include more of the mechanisms and trade-offs 
associated with resource utilization and mate 
choice characteristics. 

Other elaborations may include the modeling of 
different ecological interactions or other mecha-
nisms of mate choice. Moreover, a spatial version 
of the model may be used to gain insight in the 
influence of spatial pattern formation on sympatric 
speciation. In order to study sympatric speciation 
in its purest form, models usually consider only 
well-mixed populations. This excludes the possi-
bility of spatial pattern formation, which is all but 
absent from most biological systems. In addition, 
from a theoretical viewpoint, it is well concievable 
that adding a small spatial component may greatly 
enlarge the potential for sympatric speciation. This 
is, for instance, because the stochasticity of local 
interactions with a limited number of neighbors 
may greatly facilitate the development of linkage 
disequilibrium required for speciation or because 
spatial heterogeneity may enhance evolutionary 
branching. 
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APPENDIX 
 

Conditions for evolutionary branching 
 

To find the invasion fitness of a mutant ( ),x q in a 

resident population ( )ˆ ˆ,x q , we write a differential 

equation describing the dynamics of the number of 
mutants when rare 

 { ( ) ( )1 1 2
2 2

death
production and survival of male mutants production and survival of female mutants

ˆ ˆ ˆ ˆ ˆ ˆ( ) 1 ( , ) ( , , , ) 1 ( , ) ( , , , ) ( )M F

dn
n n S q M x x Q x q x q n M x x Q x q x q O n

dt
= − + − + − +

144444424444443 1444442444443
 (18) 
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where n denotes the density of the mutant before 
selection, and QM (QF) denotes the number of mu-
tant offspring produced per mutant male (female). 
Analogously to the stochastic simulation model, 
S(q) = gs (q) represents direct viability selection on 
male mating type and ˆ( , )M x x  defines density 
dependent mortality due to ecological resource 
competition: 

 
ˆ( ) ( )

ˆ( , )
( )

M F c

K

N N g x x
M x x

g x
γ + −=  (19) 

where NM and NF are the densities of resident 
males and females. 

Formally, we should have written more compli-
cated equations for the mutant dynamics, at least, 
when we want to consider mutants that differ from 
the resident in both mating type and ecological 
type. Such double mutants can, however, be ne-
glected, since we will consider only single mutants 

( ),x q  where either ˆx x=  or ˆq q= . 

Now, let us define the mutant per capita birth 
rates QM and QF. The probability that a mutant 

male of type ( ),x q mates with a female of type 

( )ˆ ˆ,x q  and female mating type p is given by the 

expression 

( ) ( )
( ) =

−+
−−
qpgN

xxgqpg

mM

em

ˆ

ˆ

η  

 ( ) ( )
( )qpg

qpg

N
xxg

m

m

M

e ˆ
1ˆ

−+
−−=

ε  (20) 

where ε = η /NM. Formally, NM  depends on x̂  and 
q̂ , but since ε will generally be small we will ig-

nore these higher order dependencies and treat ε as 
a parameter from here on. 

To find QM, the mating probability (20) has to 
be multiplied by the density of mating type p fe-
males, and integrated over all possible female mat-
ing types. If we denote the frequency distribution 
of female mating types in the population as f(p), 
then 

 ( )ˆ ˆ ˆ ˆ( , , , ) ( ) ,F
M e

M

N
Q x q x q g x x Q q q

N
= −  (21) 

where  

 ( ) ( )
( )

ˆ, ( )
ˆ2

m

m

g p qb
Q q q f p dp

g p qε
∞

−∞

−
=

+ −∫ . (22) 

The function ( )ˆ,Q q q  can be interpreted as the 

expected number of q-offspring that will be pro-
duced by an average resident female. In particular, 
we will use that, if selection on females is weak, 

( )ˆ ˆ, 2Q q q b≈ . This corresponds to saying that 

females will produce close to b offspring when 
they mate with a resident male. 

Similarly, to find QF, the probability that a mu-
tant female mates, is integrated over all possible 
female mating types, weighted with respect to their 
frequency, which yields 

 ( ) ( )ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ( , , , ) ( ) ,

ˆ ˆ2 ( ) ( )
M m e

F
M m e

N g p q g x xb
Q x q x q f p dp Q q q O

N g p q g x x
ε

η
∞

−∞

− −= = +
+ − −∫ . (23)

Equation (18) can now be rewritten using equa-
tions (21) and (23) together with ˆ/ ( )M F sN N g q= , 

to give ˆ ˆ( , , , )x q x qλ , the per capita growth rate of 

the mutant in the resident population ( )ˆ ˆ,x q : 

         ( )( ) ( ) ( ) ( )( )1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) 1 1 , ( ) , ,

ˆ2 ( )
s

e
s

g qdn
x q x q M x x g x x Q q q Q q q O

n dt g q
λ ε

 
= = − + − − + + 

 
. (24) 

We assume that the resident population is in popu-
lation dynamical equilibrium, which implies that a 

“mutant” ( )ˆ ˆ,x x q q= =  should have a per capita 

growth rate equal to zero. According to equations 
(19) and (24), this condition implies that  

 
ˆ( ) 1

1
ˆ ˆ( , )

Kg x
N

Q q qγ
 

= − 
 

. (25) 

To find the invasion fitness of an ecological type 
mutant, we substitute ˆq q=  into equation (24), 
which yields 
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 ( ) ( )( )ˆ ˆ( ) ( )1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) 1 ( , ) ( , ) 1 ( ) 1

2 ( )
c K

e
K

g x x g x
x q x q Q q q Q q q g x x O

g x
λ ε

 −= − + − − − + + 
 

. (26) 

For small ε , this equation becomes independent of 
q̂ , and approaches equation (7), which is inter-

preted biologically in the main text. 
For a male mating type mutant, the invasion fit-

ness reduces to 

 
( )
( )

ˆ( ) ,1 1
ˆ ˆ ˆ( , , , )

ˆ ˆ ˆ2 2 ( ) ,
s

s

g q Q q q
x q x q

g q Q q q
λ = − +  (27) 

which is independent of x̂  and identical to equa-
tion (13). 

Up to now, we have ignored the dynamics of the 
frequency distribution of female mating types f(p). 
As it turns out, we do not need to know the full 
distribution f(p). Instead, we can suffice with the 
functions 0 1 2, andm m m , where 

( ) ˆ( )
ˆ ˆ( ) ( )

ˆ( )
k m

k
m

g p q
m q p q f p dp

g p qε
∞

−∞

−= −
+ −∫ . (28) 

As will be shown in detail in Appendix B, where 
the dynamics of f(p) is treated, we have for all :q̂  

 q
qm

qm
ˆ

)ˆ(

)ˆ(

0

1 −= µ    and   2

0

2

)ˆ(

)ˆ(
pqm

qm σ≈ . (29) 

These expressions can be interpreted as the first 
and second moment of the distribution of mating 
opportunities, which turn out to be related to the 

mean ( µ ) and variance ( 2
pσ ) of the female mating 

type distribution (Appendix B).  

To find the evolutionary attractors ( , )x q  of the 
monomorphic dynamics, we need to compute the 
selection gradients 

( ) ( ) =
∂

∂=
==

=
qqq

xx
x x

qxqx
qx

ˆ
ˆ

ˆ,ˆ,,
,ˆ

λλ  

 
( )

2
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ˆ
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qqQ
x

σ
−−  (30) 

and 

    ( ) ( )
qq
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q q

qxqx
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ˆ,ˆ,,
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==∂

∂= λλ  

 ( )
22

1
ˆ

2

11
ˆ

2

1

ms

qq
σ

µ
σ

−+−=  (31) 

where we have used the expression (29) for the 
first moment of the distribution of mating opportu-
nities.  

When ˆ( , ) 0x x qλ > , selection acts to increase 

x̂ . Alternatively, when ˆ( , ) 0x x qλ < , selection 

acts to decrease x̂ . With similar conditions for q̂ , 

where we additionally postulate that m → 0 in the 
course of evolution (see Appendix B), it follows 
that ( , )x q  must satisfy ( , ) 0x x qλ =  and 

( , ) 0q q xλ = , implying that ( , ) (0,0)x q = . This 

evolutionarily singular point is an evolutionary 
attractor when 

 

 

2 2
ˆ 0 ˆ 0

ˆ( ,0)ˆ( ,0) (0,0) 1 1 1
0 and 0

ˆ ˆ 2

2
2

( )
( )

( )

qx

x K sq

m

m

qx Q

x q

b
g p

f p dp
g p

λλ
σ σ

ε

= =

∞

−∞

∂∂ −= − < = − < ⇔
∂ ∂

> ≈

+∫

 (32) 

the latter condition implying that there should be a 
viable population.  

Evolutionary branching occurs only when the 
population at ( , ) (0,0)x q =  is located at a fitness 
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minimum with respect to the mutant strategy, in 
other words, when 

 
2

2
ˆ
ˆ

ˆ ˆ( , , , )
( , ) 0xx

x x x
q q q

x q x q
x q

x

λλ
= =
= =
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and 

 
2
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ˆ
ˆ

ˆ ˆ( , , , )
( , ) 0qq

x x x
q q q

x q x q
q x

q

λλ
= =
= =

∂= >
∂

. (34) 

Substituting the evolutionary attractor 
( , ) (0,0)x q =  into equation (34) yields the fol-
lowing condition for branching of male mating 
type 

   ( )
( )

2
2 2 4

0

01 1 1 1
(0,0) 0

2 0qq
s m m

M

M
λ

σ σ σ
 

= − − + >  
 

. (35) 

Equations (29) and (35), approximated for small 
mutation rates, combine into the condition (17) 

 
2

2 2
2

1 m
p m

s

σσ σ
σ

 
> + 

 
. (36) 

Consequently, male mating strategy undergoes 
evolutionary  branching  when  the variation of fe- 

male mating strategies exceeds a threshold of the 
order of mσ , the scale that determines the specific-
ity of mate choice.  

Furthermore, branching of ecological type 
x occurs when  

    ( ) ( ) +







−−=

22

11
10,0

Kc
xx Q

σσ
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2

1
2

>++ ε
σ

O
e
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with (0,0)Q Q= . 
In the limit of infinite eσ , the condition for 

branching reduces to the well-known form 

c Kσ σ< . In the general case, we find condition 
(12). 

 
2 2 2

2 2 2

1 1
1 ( ) 1

2 ( 1) 2
K K K

c e e

O
Q b

σ σ σε
σ σ σ

> + + ≈ +
− −

. (38) 

 
 

B) Dynamics of female mating type 
 

If female mating type p is determined by a single 
locus haploid genotype, then ( )f p  must satisfy 

 

contribution via
contribution via female parentmale parent

ˆ( )1 1
( ) ( ) ( )

ˆ ˆ ˆ2 2 ( , ) 2 ( )
m

v v
m

g p qb
f p g f p g f p

Q q q g p qε
 −= ⊗ + ⊗  + − 14243 14444444244444443

 (39) 

where vg denotes the mutation kernel  

 
2

2

1 1
( ) exp

22
v

vv

p
g p

σσ π
 

= − 
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 (40) 

and ⊗ denotes the convolution operator  

 ( ) ( ) ( )u v p u z v z p dz
∞

−∞
⊗ = −∫ . (41) 

Let us now write ( )f p  as a series expansion.  

3

( ) ( ) 1p n n
n p

p
f p g p H

µµ α
σ

∞

=

  −= − +      
∑ . (42) 

The functions ( )nH p are so-called Hermite poly-
nomials, defined as 

 ( )
2 21 1

2 2( ) 1
n

p pn

n n

d
H p e e

dp

−
= − . (43) 

In particular, 0 ( ) 1H p = , 1( )H p p=  and 
2

2 ( ) 1H p p= − . It can be shown that the series at 
the right-hand side of equation (42) converges 
uniformly towards ( )f p . 

Multiplying both sides of equation (39) with  

( )( )pσ/µpH1 −   and integrating over all p  yields  
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( )
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( )
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m

m

m

m

g p q
p f p dp

g p q

g p q
f p dp

g p q

ε
µ

ε

∞

−∞
∞

−∞

−
+ −

=
−

+ −

∫

∫
 (44) 

which is an expression that relates the first moment 
of the distribution of mating opportunities to the 
average female mating type [equation (29)]. Sta-
tionary solutions f(p) are obtained only when 

q̂µ = . Here we omit the mathematical proof, but 

this result can explained biologically by the fact 
that only one directed selection pressure acts on the 
female mating type distribution, and this will lead 
towards exact matching of the mean of the female 
mating type distribution with the resident male 
mating type. In deriving equation (44), we have 
used equation (42) as an approximation for f(p) 
together with the orthogonality property of Her-
mite polynomials  

21

2( ) ( ) 0 if
p

n mH p H p e dp n m
∞

−

−∞

= ≠∫ . (45) 

Similarly, multiplying both sides of equation (39) 
with ( )( )pσµ /pH2 −  and integrating over all p 

gives an expression for 2
pσ  

( )2

2 2
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ˆ ( )
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2
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∫
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Now it also follows immediately that 

( ) ( ) 2 2 2
2 0 2p v pm q m q σ σ σ= − ≈  [equation (29)].  

In order to express pσ  in the parameters of the 

model, we can make the following approximation 
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ε −

 −−   
 ≈

+ ∫  (47) 

where ( )εln2σ −= mϑ  and β is an unimportant 

proportionality constant. Under this approximation  

and neglecting the higher order Hermite polyno-
mial terms in equation (42), it can be derived that 
σp  satisfies 
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2
1

22 1
4

2 1
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4
2

3 22 1 14 2
2
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p

e
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σ
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σ ϑ
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+

 
 
 
 + 

=
+

%

%

%

%

%%
%

%
 (48) 

with ( )2ln , andp p m v v mϑ ε σ σ σ σ σ σ= − = =% % % .  

Figure 7 shows the parameter region in which 
branching occurs, following from equation (48) as 
well as numerically calculated from equations (24) 
and (39).  

 
 

C) Dimorphic dynamics 
 

Suppose that the resident population is dimorphic 
for ecological type and male mating type with 
character values 1x , 2x , 1q  and 2q . Moreover, con-

sider the female mating type distributions , ( )i jf p  

for genotype ( , )i jx q . Because of the symmetry of 

the model, we will consider only symmetric cases 
here, and therefore denote 

 

1 2

1 2

1,1 2,2

1,2 2,1

-

ˆ ˆ ˆ

ˆ ˆ ˆ

( ) 2 ( ) 2 ( )

( ) 2 ( ) 2 ( )

with ( ) ( )  =1

q q q

x x x

f p f p f p

f p f p f p

f p f p dp

+

−

∞

+ −∞

= = −
= = −

= = −
= = −

+∫

 (49) 

As a measure of correlation between ecological 
and male mating type, we define 

 ( )f p dpρ
∞

+−∞
= ∫ . (50) 

A derivation similar to the one presented in Ap-
pendix A, enables us to find the invasion fitness of 

a rare mutant ( ),x q  in a resident population con-

sisting of the types ( )ˆ ˆ,x q , ( )ˆ ˆ,x q− , ( )ˆ ˆ,x q− and 

( )ˆ ˆ,x q− − . Analogously to equation (24), we find  

. 
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with 
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Attractors ( ),x q of the dimorphic dynamics satisfy 
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with 
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× 

× 

× 

× 

× 

× 



G. S. VAN DOORN and F. J. WEISSING 40 

Note that for 1 2ρ = , ( ) ( )0 0L q L q=% .  

We can describe the dynamics of ( )f p+  and ( )f p−  by deriving equations for the genotypes ( ),i jx q  

similar to equation (39) 

( ) ( )
{ }
{ }

( )

( ) ( ) ( ) ( ) ( )

, , ,
, , , ,

1,22
1,2

, , , , ,
, , , , ,

1
( ) , , ,
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, , , , ,
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i j v k l k l i l
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f p g T p z T z p T p z
Q q x

T z p T p z T z p T p z T z p dz

∞

∈ −∞
∈

= ⊗ + + +

+ + + +

∑ ∫
 (55) 

where the terms ( ),
, 1 2,k l

i jT p p denote the contributions by a mating of a ( )1, ,i jp x q female with a 
( )2 , ,k lp x q  male:  

( ) ( ) ( ) ( ) ( ) ( ) ( )((
( ) ( )) ( ) ( ) ( ) ( )( ))

,
, 1 2 , 1 , 2 1 1

1

ˆ ˆ, 2
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i j
k l i j k l m l e i k m e i

e i m e i e i

T p p f p f p g p q g x x g p q g x x

g x x g p q g x x g x x

ε ρ

ρ ρ ρ

= − − + − −

+ − + + + + + − −
 (56) 

In order to investigate the conditions under which a 
correlation between ecological types and mating 
types develops, equations (53) and (55) can be 

solved numerically, yielding the equilibrium distri-
butions of female mating types, from which ρ can 
be calculated [equation (50)].  
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