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Quality Differences?”
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Models and Derivation of the Evolutionarily Stable Strategies
The Unconditional Queue Model

The Model

Ens et al. (1995) used a separate demographic and game-theoretical model to quantify the evolutionarily stable
queuing strategy. Here we integrate both types of analysis into one coherent model, which—as we show below—
has several crucial advantages. The structure of our model is based on the life-cycle plot in figure 1A. The
change in density from yeart to year of queuers for high- and low-quality territories (nQH andnQL,t � 1
respectively) and of high- and low-quality territory owners (nH andnL, respectively), is described by the
following system of recurrence equations (e.g., Caswell 2001):

∗n 1 � m � a 0 (1� x)(F � m ) (1 � x)(F � m ) nQH QH QH H HN L LN QH     
∗n 0 1� m � a x(F � m ) x(F � m ) nQL QL QL H HN L LN HLp . (A1)∗n a 0 m m n     H QH HH LH H

∗n 0 a m m n     L t�1 QL HL LL L t

The matrix elements correspond to the parameters of the life-cycle plot in figure 1A. The strategic parameterx
reflects the proportion of nonbreeders following the strategy of queuing for a low-quality territory (QLs), while

corresponds to the proportion of nonbreeders that follows the strategy of queuing for a high-quality1 � x
territory (QHs). We assess here the performance of a mutant strategyx in a population consisting of individuals
playing strategyx∗. The established strategyx∗ is indirectly reflected by the annual settlement probabilities in
high- and low-quality habitat ( and , respectively). Equation (A1) corresponds to a system of the form∗ ∗a aQH QL

, wheren is a vector of the numbers of individuals in each state andA(x, x∗) is the projection∗n p A(x, x )nt�1 t

matrix of the population for strategyx in an established population ofx∗. In the long term, the population
projection reaches an equilibrium with a stable stage distribution given by and a growthn p (n , n , n , n )QH QL H L

ratel. We assume that the numbers of suitable high- and low-quality territories are fixed over time by setting
and , respectively, which results in a stationary population ( ). Thereby, we introduce∗ ∗ ∗n p T n p T l p 1H H L L

density-dependent settlement probabilities because breeding territories are a limiting resource and surplus
individuals have to become nonbreeders. By fixing the state variablesnH andnL, equation (A1) reduces to a
system with only two state variables, and we can derive the equilibrium probabilities that a QH or a QL will
ever settle (by setting ):n p nt�1 t

∗a T (1 � m ) � T mQH H HH L LHp (A2a)∗ ∗a � m (1 � x )[T (F � m ) � T (F � m )]QH QH H H HN L L LN

and

∗a T (1 � m ) � T mQL L LL H HLp . (A2b)∗ ∗a � m x [T (F � m ) � T (F � m )]QL QL H H HN L L LN

These equations have a clear-cut interpretation: for example, the probability a QH will ever settle (left-hand



App. A from M. van de Pol et al., “Habitat Choice and Delayed Reproduction”

2

side of eq. [A2a]) depends on the number of vacant high-quality territories divided by the total number of
individuals following the QH strategy (right-hand side of eq. [A2a]). To perform an evolutionary cost-benefit
analysis, we calculated the reproductive values ( ), which can be found by solving (e.g., Taylor 1990):T Tv v p vA

∗ ∗ ∗∗ ∗v p (1 � a � m )v � a v , (A3a)QH QH QHQH QH H

∗ ∗ ∗∗ ∗v p (1 � a � m )v � a v , (A3b)QL QL QLQL QL L

∗ ∗ ∗ ∗ ∗∗ ∗v p (1 � x )(F � m )v � x (F � m )v � m v � m v , (A3c)H HN H HN HH HLH QH QL H L

∗ ∗ ∗ ∗ ∗∗ ∗v p (1 � x )(F � m )v � x (F � m )v � m v � m v . (A3d)L LN L LN LH LLL QH HL H L

The interpretation of the reproductive values is straightforward. For example, the reproductive value of an
individual queuing for a high-quality territory ( ) equals the probability of remaining a QH times thevQH

reproductive value of a QH plus the probability of becoming a high-quality territory owner times the
reproductive value of high-quality territory owners ( ). Similarly, the reproductive value of a high-qualityvH

territory owner ( ) is the sum of (1) the number of offspring produced that become QHs times , (2) thev vH QH

number of offspring produced that become QLs times , (3) the probability of staying a high-quality territoryvQL

owner times , and (4) the probability of moving to a low-quality territory times . Equations (A3a) and (A3b)v vH L

can be expressed in simpler form:

∗aQH∗ ∗v p v (A4a)QH H∗a � mQH QH

and

∗aQL∗ ∗v p v . (A4b)QL L∗a � mQL QL

Again, these equations have an intuitive meaning: the reproductive values of individuals queuing for high- or
low-quality territories equal the probability of ever settling in high- or low-quality habitat times the reproductive
value in high- or low-quality habitat, respectively (see also eqq. [11], [12] in EWD). Furthermore, because we
are interested only in comparisons between groups of individuals, we can normalize all reproductive values to
the reproductive value of low-quality territory owners. By inserting equations (A4a) and (A4b) into equations
(A3c) and (A3d), respectively, solving for and and dividing the resulting equations, we findv vH L

∗v (1 � m )p � mLL HLH p , (A4c)∗v 1 � m � m pHH LHL

where .p p (F � m )/(F � m )H HN L LN

Calculating the Evolutionarily Stable Strategy

We can find the evolutionarily stable strategy (ESS) by calculating the value ofx∗ where no mutant strategyx (
can invade. At an ESS, the fitnessl(x, x∗) of each mutant is smaller than the fitnessl(x∗, x∗) of the∗x

predominant strategy. Here,l(x, x∗) is defined as the relative growth rate of a mutantx in the established
populationx∗ and is given by the dominant eigenvalue ofA. At an ESS, the selection gradient has to be 0 (e.g.,
Taylor 1990). This equilibrium condition can be expressed in terms of reproductive values and the deviations of
the elements of matrixA(x, x∗) with respect to the strategic variablex:

∗�l(x, x ) �Aij ∗ ∗∝ v n p 0. (A5)� jiF F( )∗ ∗�x �xijxpx xpx

To check the stability of such an equilibrium, higher-order conditions have to be checked as well, which we
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skip here to avoid technical detail. In our case, all but four terms in equation (A5) vanish, and in view of∗n pH

and , we obtain∗T n p TH L L

∗ ∗(v � v )[T (F � m ) � T (F � m )] p 0, (A6)H H HN L L LNQL QH

from which it can be seen that at an ESS, ; in other words, individuals that decide to queue for high-∗ ∗v p vQH QL

and low-quality habitat can coexist at equilibrium only if they have the same reproductive value. This
corresponds to the result of EWD that at an ESS, both strategies must yield equal fitness payoffs. The ESSx∗

can be found by finding the value ofx∗ where the condition is satisfied. For comparison reasons, we∗ ∗v p vQH QL

first express this equality condition in a form similar to EWD’s. By equating equation (A3a) with equation
(A3b), we find

∗ ∗∗x m (v � v )NL L QLp , (A7)∗ ∗∗1 � x m (v � v )NH H QH

where and , which is equivalent to equation (15) in EWD (although EWD used∗ ∗ ∗ ∗m p (1 � x )a m p x aNH QH NL QL

expected future reproductive success instead of reproductive values). Equation (A7) (also given as eq. [1]) shows
that in evolutionary equilibrium, the ratio of QH individuals to QLs reflects the ratio of the expected benefits of
the two types of strategies. Ens et al. (1995) subsequently calculatedx∗ using settlement probabilities of
nonbreeders derived from field data (mNH andmNL). However, this approach has two important disadvantages.
First, life-history parameters of nonbreeders, such asmNH andmNL, are notoriously difficult to reliably estimate in
the field because of the incomplete site fidelity of nonbreeders in many species. Second, the use of estimates of
settlement probabilities from field data to calculate the ESS is not ideal because these same parameters are also
indirectly used for model validation (i.e., they determine the age of first reproduction and recruitment
probabilities). Therefore, we took a different approach to calculatingx∗, one that takes full advantage of the fact
that we have incorporated population limitation in our model. Because the total number of suitable territories is
fixed, the availability of empty suitable territories for nonbreeders and thereby settlement probabilities can also
be predicted from the behavior of the breeders (see eqq. [A2]). In other words, in our model, settlement
probabilities are generated by the model itself, resulting in an internally consistent model, while this was not the
case in the EWD model. By equating equation (A4a) to equation (A4b) and using equations (A2a), (A2b), and
(A4c), as well as the reparameterization , we findq p T /TH L

(1 � m � m p)(1 � m � m q)HH LH LL HL∗x p , (A8)
[(1 � m )(1 � m ) � m m ](1 � pq)HH LL HL LH

(also given as eq. [2]), which shows that the evolutionarily stable queuing strategyx∗ is dependent on the
relative—rather than absolute—number of territories ( ) as well as on the relative—rather thanq p T /TH L

absolute—influx of new nonbreeders from high- and low-quality territories ( ). Morep p (F � m )/(F � m )H HN L LN

importantly,x∗ is expressed as a function of several life-history parameters of breeders, which can be more
reliably estimated than those of nonbreeders (as in eq. [A7]). The average time it takes a successful QH to
acquire a high-quality territory is given by (EWD). From this, we can calculate the predicted age∗1/(a � m )QH QH

at first reproduction of successful QHs by adding the age of sexual maturity to this value (similar for QLs).

The Conditional Queue Model

The Model

We extend the previous model by allowing nonbreeders born in high- (NH) or low-quality territories (NL) to
make an independent choice of which strategy to follow (xH or xL; see fig. 1B). In addition, we incorporate a
new parameter,c, that represents differences in competitive abilities between NH and NL. We now get the
following set of recurrence equations:
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nQH(H) 
nQL(H)

nQH(L) p
nQL(L) nH

n L t�1

∗1 � m � ca 0 0 0 (1� x )(F � m ) 0 nQH QH H H HN QH(H)   ∗0 1� m � ca 0 0 x (F � m ) 0 nQL QL H H HN QL(H)
∗0 0 1� m � a 0 0 (1� x )(F � m ) nQH QH L L LN QH(L) ,∗0 0 0 1� m � a 0 x (F � m ) nQL QL L L LN QL(L)

∗ ∗   ca 0 a 0 m m nQH QH HH LH H
∗ ∗0 ca 0 a m m n   QL QL HL LL L t

(A9)

wherenQH(H) refers to nonbreeders born in high-quality territories that follow a QH strategy, and so forth. When
, there are no competitive asymmetries; when , NH are competitively superior to NL, so that they havec p 1 c 1 1

a c times higher annual probability of acquiring a high- or low-quality territory; the opposite holds when .c ! 1
Reproductive values are now given by

∗ ∗ ∗ ∗ca q(1 � m ) � m � (1 � x )(F � m )a /(a � m )QH HH LH L L LN QH QH QH∗ ∗ ∗v p v p v , (A10a)QH(H) H H∗ ∗ca � m (1 � x )(F � m )qQH QH H H HN

∗ ∗ ∗ ∗ca 1 � m � m q � x (F � m )a /(a � m )QL LL HL L L LN QL QL QL∗ ∗ ∗v p v p v , (A10b)QL(H) L L∗ ∗ca � m x (F � m )qQL QL H H HN

∗ ∗ ∗ ∗a q(1 � m ) � m � (1 � x )(F � m )qca /(ca � m )QH HH LH H H HN QH QH QH∗ ∗ ∗v p v p v , (A10c)QH(L) H H∗ ∗a � m (1 � x )(F � m )QH QH L L LN

∗ ∗ ∗ ∗a 1 � m � m q � x (F � m )qca /(ca � m )QL LL HL H H HN QL QL QL∗ ∗ ∗v p v p v , (A10d)QL(L) L L∗ ∗a � m x (F � m )QL QL L L LN

∗ ∗ ∗ ∗v 1 � m � x (F � m )a /(a � m )LL L L LN QL QL QLH p . (A10e)∗ ∗ ∗ ∗v m � (1 � x )(F � m )a /(a � m )LH L L LN QH QH QHL

Note that if competitive asymmetries affected nonbreeder mortality ( ), for example, because of competition′m /cQH

over food, this would result in qualitatively the same reproductive values as in the case of competitive
asymmetries in settlement probabilities ( and ); this is a matter of rescaling.∗ ∗ca caQH QL

Calculating the Evolutionarily Stable Strategy

We now have to evaluate the selection gradients for both strategic parameters,xH andxL, simultaneously:

∗�l(x , x )H H ∝ (v � v )T (F � m ) p 0 (A11a)H H HNQL(H) QH(H)F
∗�x x pxH H H

and

∗�l(x , x )L L ∝ (v � v )T (F � m ) p 0. (A11b)L L LNQL(L) QH(L)F
∗�x x pxL L L

At an interior equilibrium ( , ), both conditions have to be satisfied, yielding∗ ∗0 ! x ! 1 0 ! x ! 1 v p vH L QH(H) QL(H)

and . These conditions can be rewritten using equation (A10):v p vQH(L) QL(L)

∗ ∗v ca ca � mQL QH QHH p (A12a)∗ ∗v ca � m caQL QL QHL
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and

∗ ∗v a a � mQL QH QHH p . (A12b)∗ ∗v a � m aQL QL QHL

When , these conditions are identical; consequently, both fitness functions are simultaneously optimized.c p 1
Proceeding as before, we can show that both equation (A12a) and equation (A12b) imply that

(1 � m � m p)(1 � m � m q)HH LH LL HL∗ ∗x p � pqx (A13)L H(1 � m )(1 � m ) � m mHH LL LH HL

(also given as eq. [3]). When , there is no asymmetry in the model parameters between NH and NL; hence,c p 1
the strategy space is overparameterized, which results in a line of neutral equilibria of many different
combinations of and . We verified whether the two conditional strategies and yield the same queuing∗ ∗ ∗ ∗x x x xH L H L

strategy at the population level as the unconditional model (x∗) by describing the population strategy in the
conditional model as a weighted average of the conditional strategies:

∗ ∗ ∗ ∗x N � x N x � pqxL L H H L H∗x p p . (A14)
N � N 1 � pqL H

If we insert from equation (A13) in equation (A14), we return to thex∗ from the unconditional queue∗xL

model (eq. [A8]), thereby demonstrating that all different combinations of and in the conditional model∗ ∗x xH L

yield the same population strategyx∗ as in the unconditional model. In the absence of competitive differences,
there is no mathematical reason to assume that one combination of and is more likely than any other.∗ ∗x xH L

However, starting out with a monomorphic population that plays strategyx∗, there is no selection pressure that
results in being different from in the unconditional model without competitive asymmetries (i.e.,∗ ∗ ∗x x x pH L H

).∗ ∗x p xL

When , there is an asymmetry in competitive abilities that directly affects the settlement probabilities inc ( 1
both types of habitat. When an asymmetry is included, the two conditions required for an interior equilibrium
(eqq. [A12a], [A12b]) cannot be simultaneously met, and their solutions will be generically different if .c ( 1
Hence, we recover the principle that asymmetric conflicts do not allow a completely mixed ESS (Maynard Smith
and Parker 1976). At an ESS, either have to play a pure strategy (i.e., or ) or have to play∗ ∗ ∗ ∗x x p 0 x p 1 xH H H L

a pure strategy (i.e., or ), resulting in four candidate ESSs. If plays a pure strategy, the∗ ∗ ∗x p 0 x p 1 xL L H

selection gradient is not required to be 0. Instead, will be stable if∗ ∗[�l(x , x )/�x ]F x p 0∗H H H x px HH H

(i.e., selection favors smaller values ofxH); the corresponding ESS can be found by∗ ∗[�l(x , x )/�x ]F ! 0 xH H H x p0 LH

solving . Similarly, will be stable if (i.e., selection∗ ∗ ∗[�l(x , x )/�x ]F p 0 x p 1 [�l(x , x )/�x ]F 1 0∗ ∗L L L x px ;x p0 H H H H x p1L L H H

favors larger values ofxH); the corresponding ESS can be found by solving .∗ ∗x [�l(x , x )/�x ]F p 0∗ ∗L L L L x px ;x p1L L H

The ESS conditions for and are analogous.∗ ∗x p 0 x p 1L L


