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Summary

The social hierarchies observed in natural systems often show a high degree of transitivity.
Transitive hierarchies do not only require rank differentiation within pairs of individuals but
also a higher level ordering of relations within the group. Several authors have suggested that
the formation of linear hierarchies at the group level is an emergent property of individual
behavioural rules, referred to as winner and loser effects. Winner and loser effects occur if
winners of previous conflicts are more likely to escalate the current conflict, whereas the
losers of previous conflicts are less likely to do so. According to this idea, an individual’s po-
sition in a hierarchy may not necessarily reflect its fighting ability, but may rather result from
arbitrary historical asymmetries, in particular the history of victories and defeats. However,
if this is the case, it is difficult to explain from an evolutionary perspective why a low ranking
individual should accept its subordinate status. Here we present a game theoretical model to
investigate whether winner and loser effects giving rise to transitive hierarchies can evolve
and under which conditions they are evolutionarily stable. The main version of the model fo-
cuses on an extreme case in which there are no intrinsic differences in fighting ability between
individuals. The only asymmetries that may arise between individuals are generated by the
outcome of previous conflicts. We show that, at evolutionary equilibrium, these asymmetries
can be utilized for conventional conflict resolution. Several evolutionarily stable strategies are
based on winner and loser effects and these strategies give rise to transitive hierarchies.
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Introduction

In a companion paper (Van Doorn et al., this issue), we investigated the
evolution of conflict resolution strategies in repeated conflicts between iso-
lated pairs of individuals. We demonstrated that asymmetries generated by
the outcome of previous interactions can be used for the resolution of fu-
ture conflicts, even when the outcome of previous conflicts is not related to
differences in resource holding potential (RHP, Parker, 1974). In particular,
evolution may lead to behavioural strategies known as winner and loser ef-
fects (Chase et al., 1994), which, once established, cannot be replaced by
alternative strategies.

Winner and loser effects generate a positive feedback between past perfor-
mance and future probabilities of winning, which will automatically result in
rank differentiation within isolated pairs of players. However, rank differen-
tiation within pairwise relations will not automatically lead to a social hierar-
chy. When dominance within a pair is arbitrarily determined by winner and
loser effects, it need not necessarily be true that, if individual A is dominant
over B, and B is dominant over C, that then also A is dominant over C. In
other words, the resulting social structure would most likely be intransitive,
which is in contrast to the (almost) linear, transitive, social hierarchy that is
observed in many biological systems (a classical example being the pecking
order in a group of chickens, Schjelderup-Ebbe, 1922).

Apparently, it is not arbitrarily determined which of the two individuals
in a pair becomes dominant. A linear hierarchy will arise if this decision
depends not only on the history of interactions within the pairs, but also on
relations with other individuals than the current opponent. Such a depen-
dency could arise if winner and loser effects do not only act within pairs, but
also between pairs. In other words, the individuals in a group would not only
have to behave dominantly when they encounter an individual from which
they previously won, as before, but also when they are dominant over many
other group members. Similarly, individuals would not only have to act sub-
ordinately when they encounter individuals from which they previously lost,
but also when they are subordinate to many other group members. These be-
havioural rules will have the effect that an individual has a higher probability
of becoming dominant if it is already dominant in its relations with other in-
dividuals. Indeed, theoretical models have shown that between-pair winner
and loser effects (or bystander effects) can give rise to stable linear domi-
nance hierarchies (Landau, 1951b; Hogeweg & Hesper, 1983; Bonabeau et
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al., 1996). Moreover, experimental studies (Chase, 1982; Chase et al., 1994,
and references therein) have demonstrated between-pair winner and loser ef-
fects based on various proximate mechanisms (e.g. mediated by hormones
influencing aggressiveness Oliviera et al., 2001).

There are alternative explanations for the transitivity of hierarchies in
natural systems. A certain degree of transitivity could be induced by RHP-
asymmetries between individuals. For example, if an individual has a very
high RHP relative to its competitors, then this individual is likely to become
the highest-ranking individual, since it will win most of its escalated con-
flicts. However, the conclusion that the transitivity of social hierarchies in
natural systems is caused by underlying RHP asymmetries in this direct way
seems implausible. In fact, the probability of finding a linear hierarchy in a
group of modest size, where rank differences are determined directly by RHP
asymmetries, is negligibly small even for high levels of RHP asymmetries
(Landau, 1951a; Mesterton-Gibbons & Dugatkin, 1995; but see Appleby,
1983). Alternatively, social conventions based on RHP assessment (May-
nard Smith & Parker, 1976; Hammerstein, 1981), could lead to transitive
social hierarchies. For example, if individuals adhere to the convention that
larger individuals are always allowed to win, then this will result in a transi-
tive hierarchy in which ranks are directly related to size. However, the idea
that dominance rank is completely determined by individual attributes such
as RHP cannot explain experimental results (in coackroach, Dugatkin et al.,
1994, and cichlid fish, Chase et al., 2002) showing that repeatedly reconsti-
tuting groups of individuals may result in completely different dominance
hierarchies.

Without completely denying the importance of RHP asymmetries, the idea
that social dominance emerges from winner and loser effects within and be-
tween pairs of individuals, immediately implies that dominance status is as-
signed, at least to some extent, arbitrarily. This is quite puzzling, at least
from the perspective of the subordinate individual. If dominance rank is as-
signed arbitrarily, why should a subordinate individual accept its unfortunate
position?

A possible answer to this question is that it is simply too costly for a low
ranking individual to break the conflict resolution convention that (arbitrar-
ily) assigned it to its subordinate status. A subordinate individual wanting
to break the social convention would have to behave aggressively, despite
its subordinate status. At the same time, its opponent will still treat it as a
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subordinate, and, hence, will behave aggressively as well. Consequently, a
low ranking individual would have to go through many escalated and costly
fights in order to ascend the social hierarchy.

In the companion paper (Van Doorn et al., this issue), we showed that
this argument does indeed apply to within-pair winner and loser effects. In
the present study, we investigate whether the evolutionary validity of this
argument extends to between-pair winner and loser effects. To this end, we
construct a game-theoretical model, in which the evolution of social conflict
resolution strategies can be studied. Specifically, we are interested in the
question whether between-pair winner and loser effects can evolve, and, once
they have evolved, whether they are stable against invasion by alternative
strategies.

Model description and analysis

As in the companion paper, we model conflicts between two individuals by a
slightly modified Hawk-Dove game (Maynard Smith, 1982). For simplicity,
we focus on that version of the model where not only Hawk-Hawk, but also
Dove-Dove interactions create an asymmetry: when two ‘Doves’ meet they
do not divide the resource, but either one of them obtains the resource with
equal probability. Hence, the payoffs for a focal individual are given by

Focal Opponent
Hawk Dove
Hawk V — D, if the focal wins V-D
—C — D, if the focal loses

2

Dove 0 . .
0, if the opponent obtains the resource

{ 1 V, if the focal obtains the resource

The parameter V denotes the value of the resource, C denotes the cost of
losing an escalated fight, and there is a small cost D associated with playing
Hawk. For the sake of our argument, we deliberately restrict ourselves for the
moment to the special case where all individuals have an equal probability of
winning escalated conflicts. This represents a worst-case scenario in which
there are no underlying RHP asymmetries between individuals.

We assume that individuals participate in a large number of conflicts. On
average, individuals interact T times. Individuals can only remember the out-
come of the preceding conflict and have no information about earlier con-
flicts. In the companion paper, we studied in detail how different asymme-
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tries generated by the outcome of the previous conflict between an individual
and its opponent may influence the course of actions in the current conflict.
This aspect of conflict resolution is kept as simple as possible in the cur-
rent paper: with respect to the outcome of the previous conflict, individuals
are assumed to remember only whether they obtained the resource or not.
Instead, the current model explores a different dimension of biological com-
plexity. Individuals may now base their behaviour not only on the preceding
conflict between them and their current opponent, but also on their previous
interaction with another individual (allowing for an effect of overall social
rank on behaviour) or on the previous interaction of their opponent with an-
other individual (allowing for bystander effects, Chase, 1982). To keep things
as simple as possible, let us first focus on a group of three individuals only
(hence, we refer to this model as the three-player model). Individuals remem-
ber whether they obtained the resource or not in the previous conflict with
both of their group members. An individual may therefore be in three states,
which can be interpreted as different social ranks: it may have won from both
other group members (we refer to such an individual as the «-individual), it
may have won one conflict, but may have lost the other (B-individual), or it
may have lost both conflicts (y-individual).

Since the relation between the individuals in a pair is always asymmetric
(by assumption), there can only be two social configurations within a group
of three players. The first one is a transitive hierarchy, where one player is an
a-individual, another is a B-individual and the third player is a y -individual.
The second possible social configuration is an intransitive hierarchy. Intran-
sitive hierarchies occur when the first player won its previous conflict with
the second player, the second player won its previous conflict with the third
player, and the third player won its previous conflict with the first player. In
such a case, all three players are in the same individual state (all three are
B-individuals), but this does not mean that there are no asymmetric relations
within pairs of players. The two possible social configurations are schemat-
ically shown below, with arrows pointing towards the loser of the previous
conflict.

o 8
ﬁ<¢ ﬁ<T
4 B

transitive intransitive
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A transition from a transitive to an intransitive social configuration occurs
when the a-individual loses a conflict from the y-individual. Similarly, an
intransitive social configuration transforms into a transitive one when an
individual wins a conflict with the opponent from which it previously lost.

In a transitive hierarchy, individuals can find themselves in six different
conflict situations, depending on their own rank and on the rank of their op-
ponent. In an intransitive hierarchy, all conflicts are between B-individuals,
but there are nevertheless two different conflict situations: a player could
encounter either the individual from which it previously won or the individ-
ual from which it previously lost. In total, there are therefore eight different
conflict situations. Consequently, a conflict resolution strategy p consists of
eight parameters, each prescribing the probability of playing Hawk for an
individual that finds itself in the corresponding conflict situation:

ﬁ = (pocﬂ PBa Pay Pya PBy Pyp Pptp- pﬂ*ﬂ*)- (1)

The first letter of the subscripts indicates the state of the focal individual and
the second letter the state of its opponent, where ‘+’ (‘—’) is used, when
necessary, to denote the B-individual that won (lost) the previous conflict.
We have supposed that individuals can recognize each other individually,
or at least can accurately remember the outcome of conflicts with each of
their group members. We deliberately made this assumption, since errors
in individual recognition would automatically generate between-pair winner
and loser effects if within-pair winner and loser effects have evolved. In
other words, we will assume, at least initially, that individual recognition
is perfect in order to be to be able to study the evolution of within-pair and
between-pair winner and loser effects independently. Later, we will check
the robustness of the results with respect to errors in individual recognition.
We consider a number of variants of the model that differ in the assump-
tions regarding the cognitive abilities of the players. We assume that individ-
uals belonging to species with low cognitive abilities are unable to process all
available social information, which translates into constraints on the strate-
gic parameters. For example, if individuals remember the outcome of their
previous interaction with all group members, but not the outcome of their op-
ponent’s previous interactions with other group members, then they cannot
distinguish all conflict situations. For instance, the conflict situations
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TABLE 1. The different information levels of the three-player model

Level Constraints Interpretation

1 Pop = PPa = Pay = Pya = No information about any previous
PBy = Pyp = Pgtp- = Pg-p+ conflict is used

2 Pop = Pay = DBy = Pgtg- Only the outcome of the previous
PBa = Pya = Py = Pg-p+ conflict between the focal and its

opponent is used

33 Pop = Pays Pye = Dyp Individuals base their decision on their
PBa = Ppy = Pptp- = Pg-p+ own rank

3b PBa = Pya> Pay = PBy Individuals base their decision on their
Pap = Pyp = Ppg+p- = Pg-p+ opponent’s rank

42 Pap = Pay, PBy = Pg+p- Individuals disregard their opponent’s
PBa = Pg-p+> Pya = Dyp relation with the bystander

4 PBa = Pya> Pap = Pg+p- Individuals disregard their own relation
Pyg = Pg—p+: Pay = PBy with the bystander

5 none All available social information is used

opponent opponent
focal N N and focal 0
bystander bystander

would be indistinguishable for the focal individual. The fact that individ-
uals cannot discriminate between two conflict situations implies that their
behaviour must be the same in both situations. Therefore, we must impose a
constraint on the strategic parameters (pg, = pg-p+ for this example).

Different assumptions regarding the complexity of the information used
by individuals result in seven model variants characterized by different ‘in-
formation levels’ (Table 1). The seven variants of the model allow us to inves-
tigate how social information, besides the information obtained from previ-
ous interactions with the current opponent, may influence conflict resolution
strategies. In particular, we are interested in the question whether conflict
resolution strategies may evolve that give rise to between-pair winner and
loser effects.

As in the companion paper, the evolution of the system was investigated
by means of an adaptive dynamics approach (see the Appendix for details).
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Equilibria of the model

For each information level, we ran a large number of simulations from ran-
dom initial conditions until convergence to an equilibrium. At most levels,
multiple stable equilibria exist. The equilibria can be classified into five cat-
egories (Table 2). The first category (hereafter labelled by ‘M’, for ‘mixed’)
contains the mixed strategy equilibrium, in which no social information is
used. Equilibrium strategies belonging to the second category (labelled by
‘D’, for ‘dominance’) are characterized by winner and loser effects. They
lead to more or less stable transitive hierarchies. The third category (labelled
by ‘A’, for ‘alternating’) contains equilibrium strategies that result in very
unstable hierarchies, in which individuals continuously switch their social
positions. The fourth category (labelled by “T’, for ‘triangular’) consists of
equilibrium strategies that lead to stable intransitive social configurations.
The final category contains hybrid strategies, which combine features of
dominance, alternating and triangular strategies.

The distinguishing properties of dominance, alternating and triangular
equilibria are further explained in Fig. 1. An overview of all the equilibria
that were found in the simulations is presented in Fig. 2. In order to illustrate
the social dynamics corresponding to the different equilibrium types, we
generated time series of the decisions and ranks of the three players. These
will be discussed below.

The simplest equilibrium type is the mixed equilibrium. This occurs only
at information level 1, where no information about previous conflicts is used.
Consequently, the game is equivalent to a simple Hawk-Dove game, and all
strategic parameters evolve towards the evolutionarily stable probability of
playing Hawk

V —-2D 5

P=—"(c " )

Since no social information is used, the time series of ranks (upper rows)

and decisions (lower rows) of the three players shows no obvious structure.

It is given here to allow for a comparison with the time series for dominance,
alternating and triangular strategies.

playerl: 8 y B yy B « By BBap yB By...
player 2: B aa Bap B BaByvyvy BB oo...
player3: B BB afpf y BBBuopBa apf yB...

player 1: 0ddddOhO0h0dddddhO0dddOhdddO00dh... 3

player2: dd00ddddO0hd0d0ddd00ddh0d0ddOh...
player3: d0dd0d0dhdO0Oh0d00ddhO0h0h0dddhoO...
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Dominance

Fig. 1. Characteristics of the different types of equilibria. Within the framework of our
three-player model, conflicts are possible between «- and S-individuals, between «- and y -
individuals, between - and y-individuals, and, finally, between two S-individuals in case of
an intransitive hierarchy. For dominance (D), alternating (A) and triangular (T) equilibrium
strategies (explained in the text), these four conflict types are represented by four squares.
Moreover, the stability of the corresponding social relations is indicated by the grey-scale
colouring of the square: white indicates that the social relation changes after every interaction
(unstablerelation), grey indicates that the social relation will have a low probability of chang-
ing after an interaction (stable social relation). The relation between «- and S-individual, for
example, is quite stable in a dominance convention. This is because the a-individual always
plays Hawk (indicated by the thick arrow), whereas the S-individual plays Hawk far less of-
ten (indicated by the thin arrow). Very unstable social relations, as, for example, the relation
between a- and y-individual in a triangular strategy, occur when the individual that previ-
ously won, never plays Hawk (dashed arrow), whereas it’s opponent always plays Hawk,
leading to a reversal of the social relation. The stability of the social relations in a domi-
nance hierarchy is a common feature of dominance strategies that distinguishes them from
the alternating strategies: in alternating strategies, at least one, but usually more than one rela-
tion in the transitive social configuration is unstable. There are several alternating strategies,
each corresponding to a different possible combination of stable and unstable relations (see
Table 2). For example, and as indicated by the two alternative representations of the corre-
sponding square, the relation between - and B-individual may either be stable or unstable
in alternating strategies. Triangular strategies are characterized by the fact that the relations
in an intransitive hierarchy are stable, whereas the relation between a- and y-individual is
unstable.
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TABLE 2. Equilibria of the three-player model

Type2 Label* Level Values of strategic parametersl’3

Pap  Ppa  Pay Pya Ppy Py Pptp- Pp-p*t

M; 1 025 025 025 0.25 025 025 0.25 0.25
D D, 2,42 1 022 1 02 1 022 1 0.22
D» 32 1 046 1 0 046 0 0.46  0.46
D; 3b 1 033 1 033 1 1 1 1
Dy 5 1 042 1 0 1 022 022 1
A Al 2,42, 45 0 1 0 1 0 1 0 1
As 33 0 0 0 1 0 1 0 0
Az 3b 0 1 0 1 0 0 0 0
A4 5 1 0 0 1 0 1 0 1
As 5 0 1 0 1 1 0 0 1
As 5 1 0 0 1 1 0 0 1
A; 5 0 1 1 0 0 1 0 1
T T, 5 1 0 0 1 1 0 1 0
T, 5 1 0 0 1 0 1 1 0
T3 5 0 1 0 1 1 0 1 0
T4 5 0 1 0 1 0 1 1 0
hybrid DA; 5 0 1 1 0 1 0.65 0 1
DA, 5 1 034 1 0 0 1 0 1
DT 4b;5 1 031 1 031 1 0 1 0
AT 5 0 1 1 0 0 1 1 0
DAT 5 1 022 1 017 0 1 1 0

1200 simulations were started for every level from random initial conditions and continued
until convergenceto an equilibrium. The values of the strategic parameters were kept between
0.025 and 0.975 (see the Appendix). For convenience, the values 0 and 1 are used to represent
these extreme values. Parameters were: V = 0.3, C = 1.0, D = 0.025, T = 50.

2 Equilibria were classified into five categories: M (mixed), D (dominance), A (alternating),
T (triangular) and hybrids of these types.

3 Boldface indicates the equilibria that were used to construct the example time series shown
in the text.

4 Label used in Figs 2 and 3 and text.

Time series (3) shows the social ranks of the three players and their decisions
in a series of pairwise conflicts. The decision ‘play Hawk’ is denoted by ‘h’
and the decision ‘play Dove’ by ‘d’. We assume that all players start as -
individuals in their first interaction. Dashed lines indicate transitions between
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different hierarchies and a ‘0’ indicates the player that does not take part in
the conflict (i.e. the bystander).

The dominance equilibria are characterized by the emergence of a more
or less stable dominance hierarchy where the probability of playing Hawk
increases with higher social rank. This is illustrated by the following typical
time series corresponding to the dominance strategy D4 (see Table 2) of
level 5 (all available information is used):

player 1: By B o B y
player2: B« o B o o
player3: B B Y Y Y B

playerl: d0dO0OhO0OhdhdOhOhRhhOhOhRhhOhhO0dddoO--- “)

player22 hhhhOhOhORhORRORORROORKROROROR---
player3: 0h0dhdd0d0ddd0dddd0dddOhdhOhh---

As can be seen from time series (4) and from Table 2, the «-individual always
plays Hawk. The B-individual always plays Hawk against the y -individual,
and usually Dove against the «-individual. Finally, the y-individual plays
Hawk with low probability when playing against the B-individual and Dove
otherwise. This results in social dominance relations that may persist for
quite some time.

Social stability is lacking when an alternating strategy has evolved. For ex-
ample, in a population playing strategy A, the social configuration changes
after every conflict

playerl: BByyBByyyBBByvBaBBaaByByBBaBy -
player2: By BaByBapBapBBaaBByyBaaBaaByyp -
player3: BoaaBBaaBaByBaByyBaByyBBByBBaa -
player : 0d0h0d00h00d0hhdOh0OddhdhOhddh ---
player2: dhhddhhdOhdOh0dOdOhhO0dhOddOhO ---
player3 h0dO0hO0dhddhhddOhhddOhO00OdhOhOd ---

(%)

Without any constraints, there are five possible alternating strategies (A; and
A4-A7). All of them occur with approximately equal frequency in level 5,
where individuals use all available social information (Fig. 2).

The triangular strategies are similar to the alternating strategies in the
sense that they are also pure strategies. They exist only in level 5 (all avail-
able information). Triangular strategies occur when (a) the y-individual al-
ways plays ‘hawk’ against the a-individual, which results in a triangular
social configuration, and (b) the social relations in a triangular configuration
are stable. There are four possible configurations, which, effectively, do not
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Level 3a Level 4a D1

I L L T T |

Fig. 2. Equilibria of the three-player model. For every information level, 200 simulations
were run, starting from random initial conditions, until convergence to an equilibrium. The
pie diagrams show the different equilibria that were found at an information level as well as
the proportion of simulations in which they were reached by evolution. As explained in the
text, unique labels indicating the strategy type (M, D, A, T, or combinations for hybrid types)
were assigned to every equilibrium. These labels can also be found in Table 2, which shows
the values of the eight strategic parameters for every equilibrium. The simulation parameters
were chosen as follows: V = 0.3, C = 1.0, D = 0.025, T = 50.

differ (differences only arise when a player makes a mistake). A typical time
series is shown below

player I: B BBy B B B Byy...
player 2: B By B B B B BBa...
player 3: B Baa B B B Bap... ©)
player 1: h 0 d 0dh d, 0 h h, d o0 h dOh...
player 2: d, hor O dh0 h dor 0 0 h dor 0 0rO...
player 3: 0d h/)ydO0d 0 h d/Jih 0 h djy;ddd...

The brackets are used to abbreviate a repeated series of interactions.

Apart from the equilibria belonging to these categories, a number of equi-
librium strategies are hybrids of the different types. For example, a time se-
ries corresponding to the strategy DT shows prolonged periods of a triangular
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social configuration, as in (6), alternating with periods of linear dominance
hierarchies as in (4). Switches between these qualitatively different types of
social dynamics occur with low probability, that is, when individuals make
a mistake. Other interesting hybrid strategies are DA; and DA,, where the
rank differences between «- and y-individual and B- and y-individual are
stable, but o- and B-individuals alternate ranks (DA1), or where the rank dif-
ferences between «- and B-individual and «- and y -individual are stable, but
B- and y-individuals alternate ranks (DA).

Evolutionary pathways

Up to here, we have separately analysed the variants of the model for indi-
viduals with different cognitive abilities (corresponding to the different in-
formation levels). However, it is likely that the complexity of information
used in conflict resolution strategies will change in the course of evolution.
When selection removes the constraints imposed in the different information
levels, and cognitive abilities increase, strategies shift from one information
level to another. For example, the ability to remember the outcome of the
previous conflict with an opponent could evolve first (corresponding to a
transition from level 1, where no information is used, to level 2, where deci-
sions are based only on the previous interaction with the current opponent).
This could then be followed by a further elaboration of mental abilities, such
that the information from relations with other individuals (level 4*) and fi-
nally the full complexity of social relations within the group (level 5) is taken
into account when deciding on the choice of action in a conflict. A second
possible pathway would proceed from level 1 (no information is used) via
level 3* (decisions are based on one’s own rank) and level 4* (decisions are
based on one’s own rank and on the relation with the current opponent) to
level 5 (all information is used). Two final, biologically less likely, pathways
proceed from level 1 (no information) via level 2 (decisions are based on the
relation with the current opponent) or 3° (decisions are based on opponent’s
rank) to level 4° (decisions are based on opponent’s rank and on the relation
with the current opponent) and finally to level 5 (all information is used).

In order to investigate the evolution of conflict resolution strategies along
these evolutionary pathways, we simulated the following transitions between
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information levels (Fig. 3):

level 3* — level 4%
/! /!
levell — level 2 level 5.
N N

level 3° — level 4°

In most cases, simulations started close from an equilibrium in a lower level
converge to a unique equilibrium of the same type in the next level. This
result shows that most strategies are robust against changes in the amount
or detail of social information that is used to base decisions on. There are
two exceptions to this rule. First, simulations do not converge to a unique
equilibrium, but converge with equal probability to two different equilibria in
the transitions from level 1 (no information is used) to higher levels. Second,
there is a change of equilibrium type (D;/D3 — DT — Ty, see Fig. 3) along
the pathways via level 4° (decisions are based on opponent’s rank and on the
relation with the current opponent). Along these pathways, individuals base
their behaviour on their opponent’s rank before using information about their
own rank, which, on the proximate level, does not seem very likely.

If individuals use information about their own social rank before they use
information about their opponent’s rank (pathways along levels 2, 3* and 4?),
there is a dichotomy between dominance and alternating strategies. This di-
chotomy occurs already in the first transition along the pathway, implying
that already very simple strategies allow for dominance conventions. More-
over, these considerations suggest that, although there are many different
equilibria at information level 5 (all information is used), only two of these
equilibria (D4 and A;) seem relevant as possible outcomes of long term bio-
logical evolution.

Asymmetries in resource holding potential

The equilibria of level 2 (decisions are based on the relation with the cur-
rent opponent), 3* (decisions are based on one’s own rank) and 3P (decisions
are based on opponent’s rank) are reached with equal probability from the
mixed strategy ESS of level 1 (no information is used). This is because the
mixed equilibrium of level 1 is exactly located at the boundary separating
the initial conditions from which the alternative equilibria of levels 2, 3* and
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——————— » D, —— DT

Fig.3. Transitions between information levels. In the course of evolution, species may shift
from lower to higher information levels, as increasingly detailed information is processed.
To investigate the effect of a transition between two information levels (say a transition from
level x to level y), we ran 200 simulations with initial conditions slightly perturbed from an
equilibrium of information level x, until convergence to an equilibrium of level y. In most
cases, all simulations starting from a particular equilibrium converged to a single equilibrium
at the higher information level. This is indicated in the figure by the solid arrows between
equilibria at the different information levels (grey rectangles). However, in the transitions
from the mixed equilibrium of level 1 (where no information is used) to higher information
levels, multiple alternative equilibria can be reached (as indicated by dashed arrows). Para-
meters as in Fig. 2.

3® are reached (shown for the transition from level 1 to level 3* in Fig. 4).
This feature disappears as soon as there are RHP asymmetries between the
players (Fig. 5). Due to these RHP asymmetries, the boundary plane between
the domains of attraction of the dominance and alternating equilibrium shifts
slightly. The mixed equilibrium of level 1 is no longer on the border between
the two domains of attraction, but in the interior of the domain of attraction of
the dominance equilibrium. In our deterministic model, the alternating equi-
librium can now no longer be reached from the mixed equilibrium of level 1.
However, even with large RHP asymmetries (as in Fig. 5), the mixed equi-
librium of level 1 is still very close to the border between the two domains
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Fig.4. The dichotomy between dominance strategies and other conventions. At information
level 32, individuals base their decision on their own rank. Consequently, there are three
strategic variables (the probability of playing Hawk when in rank «, 8 and y, respectively),
which are represented by the three axes of the plot. At information level 1, individuals use no
information, and only the overall tendency of playing Hawk can change through evolution.
Therefore, if constrained to information level 1, evolution will proceed along the thick black
diagonal towards the mixed strategy equilibrium of level 1 (equilibria are represented by
black spheres). However, the mixed strategy equilibriumis unstable with respect to movement
away from the diagonal, so after a transition to level 3 (where individuals behave differently
depending on their own rank), evolution converges to either the dominance (lower right) or
alternating equilibrium (upper left). Since the mixed equilibrium of level 1 is exactly located
on the plane separating the domains of attraction of the stable equilibria of information
level 32, both equilibria are attained with equal probability. The thin black lines represent
deterministic evolutionary trajectories of the model at information level 3%. Parameters as in
Fig. 2.

of attraction. Due to stochastic fluctuations, which are likely to be present
under natural conditions, the alternating equilibrium may therefore still be
attainable in practice.
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Fig.5. Effects of RHP differences. This figure is identical to figure 4, except for the fact that
this figure is based on an extended version of our model in which hidden RHP asymmetries
between individuals were included. To be precise, we assumed that there were two equally
frequent RHP classes, representing strong and weak individuals. In an escalated conflict
between a strong and a weak individual, the strong individual had a high probability of
winning the conflict (8§7.5%). Due to these RHP asymmetries, the boundary plane between
the domains of attraction of the stable equilibria of information level 3% (decisions based
on own rank) has shifted slightly, such that the mixed equilibrium of information level 1
(no information is used) is now in the interior of the domain of attraction of the dominance
equilibrium. Formally, this implies that further evolution from the equilibrium of information
level 1 will always converge to the dominance equilibrium, as shown by the deterministic
trajectory leading from the mixed equilibrium to the dominance equilibrium.

Interactions in larger groups and the effects of errors in individual
recognition

Up to here, we have restricted ourselves to a fixed group size of three individ-
uals and assumed that players had complete information about the outcome
of previous conflicts. We refrain from relaxing these assumptions within our
deterministic model framework, but instead, we use stochastic individual
based simulations to extend our model to arbitrary group size and to check
the validity of our results with respect to the assumption that the players can
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Fig. 6. Individual based simulations. Individual based simulations (see the Appendix for
details) were used to extend the model to arbitrary group sizes and to vary our assump-
tions on the quality of individual recognition. We simulated a population of 50 groups, each
consisting of 5 individuals. Errors in individual recognition occurred frequently (individu-
als made mistakes in 50% of the cases). Transitions to higher information levels occurred
at generation 2000 and 20000. The two panels of the figure show the values of the strate-
gic parameters in two replicate simulations, differing only in the seed used to initialise the
random number generator. In the upper panel, evolution leads to a dominance strategy, in
which higher-rankingindividuals behave more aggressively. In the lower panel, the outcome
of evolution is an alternating strategy, in which the lowest ranking individuals are most ag-
gressive. The labels shown in the plots denote groups of constrained strategic parameters:

A A A A
Pa = Pap = Pay> PB = PBa = PBy = Pptp— = Pp=—p*t: Py = Pya = Pyp, Ppt = Ppy =
Pgtp—> Pp- 2 Ppa = pg-p+- Payoffs and other parameters were as in Fig. 2.

accurately remember the outcome of previous conflicts between all players
in the group.

There are different ways in which the three-player model can be general-
ized to arbitrary group sizes. We choose an option that deviates as little as
possible from the original model. We assume that an individual bases its de-
cision in a conflict on (1) its relation with its current opponent, (2) its relation
with one bystander, which is randomly selected from the other group mem-
bers, and (3) the relation between its opponent and a (potentially different)
bystander, which is also randomly selected from the other group members.
Individuals can now find themselves in eight qualitatively different social
situations, which can be interpreted exactly as in the original three-player
model. The different information levels of the three-player model can simi-
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Fig. 6. (Continued).

larly be translated directly to the model with arbitrary group size. We varied
the amount of social information that could be accurately remembered by
an individual by changing the likelihood of errors in individual recognition.
Individuals could either mistake their opponent or the bystander for an arbi-
trary other individual in the group.

Figure 6 shows the results of two individual based simulations, which dif-
fered only in the seed used to initialise the random number generator. In
these simulations, groups consisted of five individuals, and errors in individ-
ual recognition were quite frequent (50% of the cases). As can be seen from
Fig. 6, there are two different evolutionary equilibria. The equilibrium that
is attained in the simulation represented in the upper panel is a dominance
equilibrium: the a-individual almost always plays Hawk, the B-individual
usually plays Hawk against the y-individual, but hardly ever against the a-
individual, and the y-individual never plays Hawk. The simulation shown in
the lower panel of Fig. 6 converges to an equilibrium that corresponds to an
alternating equilibrium of the three-player model: this time the y-individual
is the most likely to play Hawk, leading to unstable social configurations.

These results, together with the other simulations we performed, indicate
that the presence of multiple qualitatively different conflict resolution con-
ventions is a robust phenomenon. For all combinations of group size (4, 5,
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8, 10) and probabilities of errors in individual recognition (0%, 25%, 50%,
100%) tested, we found dominance and alternating equilibria. The analogues
of triangular strategies, in which all individuals have exactly the same social
rank, never evolved. This is because the maintenance of such maximally in-
transitive hierarchies in larger groups requires complete social information.
In our simulation model, complete social information is unattainable by de-
finition, since the relation with only one of the bystanders is considered in
a conflict decision. Replicates of the simulations shown in Fig. 6 moreover
indicate that the alternative conventions are reached with equal probability
from the mixed equilibrium of level 1 (8 out of 20 replicates converged to the
dominance convention). Inclusion of hidden RHP-differences between indi-
viduals (as in Fig. 5) biases the outcome towards convergence to the domi-
nance convention (18 out of 20 replicates, data not shown).

Discussion

The outcome of conflicts between individuals in a social group automati-
cally generates historical asymmetries between individuals. Such asymme-
tries may either pertain to previous conflicts between a focal individual and
its opponent, or to previous conflicts with other group members. For exam-
ple, in a social group in which a linear hierarchy has been established, there
are at least two qualitatively different asymmetries between the highest- and
lowest-ranking individual. First, there is a direct asymmetry: the highest-
ranking individual is obviously dominant over the lowest-ranking one. Sec-
ond, there is an indirect asymmetry: the highest-ranking individual is domi-
nant over other group members, which, in their turn, are dominant over the
lowest-ranking individual. Our results show that both these direct and indi-
rect asymmetries can be used as cues for conventional conflict resolution,
leading to within- and between-pair winner and loser effects, respectively.
Within-pair winner and loser effects lead to rank differentiation within pairs
of individuals, between-pair winner and loser effects lead to the ordering
of social relation within the group into a transitive hierarchy. Winner and
loser effects may evolve even when the historical asymmetries, generated by
the outcomes of previous conflicts between individuals, hold no information
about differences in resource holding potential.
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Apart from strategies that give rise to transitive dominance hierarchies,
our analysis reveals that there are other possible evolutionarily stable con-
flict resolution strategies. Contrary to the dominance strategies, which are
characterized by within- and/or between-pair winner and loser effects, these
alternating strategies are comparable to the paradoxical strategies described
by Maynard Smith (1982), in the sense that the loser rather than the winner of
previous fights is most likely to escalate. This leads to a constantly changing,
egalitarian social configuration. In addition to the alternating strategies, evo-
lution may lead to strategies that lock onto an intransitive social configura-
tion that gives equal payoff to all group members (triangular strategies). The
occurrence of both alternating and triangular strategies, next to the ‘common-
sense’ dominance strategies is in accordance with game theoretical results,
which state that any asymmetry between players (a) must be used for con-
ventional conflict settlement, and (b) can be used in both a paradoxical and
common-sense way (Maynard Smith & Parker, 1976; Hammerstein, 1981;
Selten, 1980; see also the discussion of the companion paper, Van Doorn et
al., this issue).

The triangular strategies do not seem relevant within the context of bio-
logical evolution, since they are sensitive to errors in individual recognition
and can only evolve when individuals have access to complete social in-
formation. The alternating strategies, however, are robust against errors in
individual recognition. They can evolve even when individuals have access
to only limited social information. In line with the results of previous game
theoretical models, paradoxical strategies (alternating and triangular) are less
likely to evolve than the common-sense strategies (dominance) if there are
underlying RHP asymmetries (Hammerstein, 1981). However, the bias to-
wards evolution of dominance strategies is small, even when the underlying
RHP asymmetries are large. The latter finding may change considerably as
soon as individuals base their decisions in conflicts not on a single previous
conflict (as we assumed for simplicity) but on a large number of previous
interactions. The same may be true when the probabilities of interaction be-
tween individuals are not fixed (as assumed in our model) but modified by
spatial self-structuring (Hemelrijk, 2000).

Together with the companion paper, the present study provides a proof of
principle that evolutionarily stable dominance relationships need not neces-
sarily reflect intrinsic differences between individuals, such as RHP asymme-
tries, but that they may result from arbitrary historical asymmetries. The ac-
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knowledgement of the potential of social conventions, which could, in princi-
ple, be based on quite arbitrary asymmetries, can help to understand several
aspects of social dominance that are difficult to explain with an approach
focusing only on intrinsic differences between individuals. Yet, for a full un-
derstanding of social dominance and social hierarchy formation these two
approaches should not be opposed to one another but combined. In this, and
the companion paper, we made only a small step towards this end. Certainly
more work is needed to fully integrate social dominance conventions relating
to intrinsic differences between individuals, such as direct assessment of the
opponent’s RHP, and the conventions relating to arbitrary asymmetries, such
as winner and loser effects.
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Appendix: Analytical and numerical analysis and individual based simulations
The payoff function

The average expected payoff W (g, p) of a rare mutant playing strategy ¢ against resident
individuals that play strategy p can be derived from the transition probabilities between the
different situations in which the mutant individual can find itself. Every mutant individual is
in a group with two resident individuals. From here on, we will arbitrarily label the resident
individuals as ‘resident 1’ and ‘resident 2’, and we will define the eight possible social
situations as follows

resident 1 resident 1
/! /!
mutant N mutant N 4
~ resident 2 resident 2
social situation 1 social situation 2
resident 1 resident 1
mutant N mutant 4
N\ . N .
resident 2 resident 2
social situation 3 social situation 4 -
resident 1 % resident 1
mutant N mutant N 4
N\ resident 2 resident 2

social situation 5

social situation 6

resident 1 resident 1
mutant N mutant 4
N . N .
resident 2 resident 2

social situation 7

social situation 8
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with the arrows pointing towards the loser of the previous fight.

We may now compute the transition matrix M(g, p), the elements (m; ;) of which give
the transition probability from social situation j to social situationi (i, j = 1, ..., 8). For
example, a transition from social situation 1 to social situation 3 occurs when there is a
conflict between mutant and resident 1 (which occurs with probability 1/3) and when the
mutant loses this conflict. The latter may occur with probability 1/2 after both mutant and
resident 1 play Hawk, or after the mutant plays Dove and resident 1 plays Hawk, or with
probability 1/2 after both mutant and resident play Dove. In social situation 1, the mutant is
the a-individual, whereas its opponent is the B-individual. Therefore, the mutant plays Hawk
with probability g4, and resident 1 plays Hawk with probability p g, . Consequently, we find

1/1 1
m3 1 = g(zpﬂaqaﬂ t ppa(l — gop) + 5(1 — ppa)(1 — qaﬂ)>~ (8)

In the same way, the transition probability from social situation 1 to social situation 2 is given
by

ma 1 = %(%pyﬂpﬂy + pyﬂ(l - pﬂy) + %(1 - pyﬂ)(l - pﬂy)>~ )
Note that this transition probability is independent of the mutant strategy, since a transition
from social situation 1 to 2 occurs only after a conflict between the two resident individuals.

After having computed the other elements of M(g, p) in a similar way, we also need to
calculate the expected costs ¢(g, p) and benefits l;((} , ) (to the mutant) associated with every
social situation. For example, in social situation 1, the expected benefit from the previous
conflict is 2/3V. This is because the mutant was involved in the previous conflict with
probability 2/3 (it was a mere bystander in 1/3 of the cases). However, if the mutant was
involved in the last conflict, it certainly obtained the resource (corresponding to a benefit V).
This follows from the fact that the mutant is the «-individual in social situation 1 and, hence,
gained the resource in its last conflict with both other group members. In the other social
situations the benefits to the mutant are as follows

B(&,ﬁ):(zv 2y ivlvooiy lv). (10)
33 3 3 3 3

The expected costs ¢(g, p) in a given social situation pertain to the expected costs of the
next conflict. The next conflict may occur between the mutant and resident 1, between the
mutant and resident 2, or between the two residents. In the latter cases, the mutant incurs no
costs. In the former two cases, there are costs if the mutant plays Hawk and when the conflict
escalates and the mutant loses. To be precise, the expected cost ¢(g, p) to a mutant that plays
Hawk with probability ¢ in a conflict with another individual playing Hawk with probability
pisc(q, p)=1/2pqC + qD. Averaging over all possible conflicts that may occur in a social
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situation, we find

E(qaﬂ» pﬂa) + E(qay» pya)
E(Qaﬂ» PBa) + E(Qa;u Pya)
c(GBas Pap) T c(qpy, Pyp)
c(GBas Pap) T c(qpy, Pyp) an
E(qya»pay)+5(4yﬂ»pﬂy) ’
E(Qyou Pay) + E(Qyﬂ» PBy)
c(qptp- Pp-p+) T clap-p+. Pprp-)
c(qptp- Pp-p+) T cap-p+. Pprp-)

W] =

(. p)

Next, we define vectors ii,, (¢, p), which contain the probabilities that the mutant finds itself
in each of the eight possible social situations in the n-th conflict. The vectors ii,, (¢, p) satisfy

ln(q, p) =M(q, p) lin-1(q. P)- (12)

We assume that the players start in an intransitive hierarchy. Hence,
Lo 11\’
uo(q, p) = 00000055 . (13)

Equations (12) and (13) together uniquely determine the sequence iug(q, p), i1(q, p),
i2(g, p), ... which determines the average expected payoff, W (g, p), of an individual play-
ing strategy ¢ against opponents playing strategy p.

In order to find W (g, p), we must first calculate the expected payoff w, (g, p) to the
mutant in the n-th conflict. This quantity is given by

The first term in equation (14) measures the expected benefit to the mutant in the n-th conflict.
The second term is the expected cost to the mutant incurred in reaching the current social
situation from the (n — 1)-th conflict.

Under the assumption that every pair of individuals interact 7 times on average, the
average expected payoff W(g, p) can now be calculated as

1 ) 1 n—1

W, p) = — 1 - — q, p)- 15

G, p) 3TZ:< 3T> wn (§. p) (15)
n=

The factor (1 — 1/(3T))" ! is necessary to weigh the expected payoff of the n-th conflict

with the probability that this conflict will actually occur.

Evolutionary dynamics

Under the assumption that evolution proceeds in small steps at a rate and in the direction
determined by the magnitude and sign of the selection gradient (Hofbauer & Sigmund, 1998,
Chapter 9), the evolution of the strategy p can be described by

ap oW (g, p
b _ WG p

= 16
ot aq (16)
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In this equation, the rate constant « depends on the population size and the rate of mutations.
The matrix G is a mutational variance-covariance matrix, which we used to implement the
constraints corresponding to the different information levels, as explained in the companion
paper. We imposed that all strategic parameters are within the range [§, 1 — 4], in order to
exclude evolution towards equilibrium strategies that are sensitive to occasional errors in
decision-making (‘trembling hand’ approach, Selten, 1975). Throughout this paper, we took
8 = 0.025.

Individual based simulations

In the individual based simulations, individuals were distributed at the start of every genera-
tion (generations were discrete) into N groups, each consisting of G individuals. Individuals
then engaged in repeated Hawk-Dove interactions with other individuals from their group.
On average, every pair of individuals interacted 7' times. At the end of every generation, in-
dividuals from all groups were collected in one big mating pool. Offspring was generated by
sexual reproduction, and the number of offspring produced by an individual was proportional
to the total payoff gained in interactions throughoutits lifetime. We furthermore assumed that
the strategic parameters of an individual’s conflict resolution strategy were each determined
by a diploid locus. We assumed normal mendelian inheritance, free recombination between
loci and additive interactions between alleles. Mutations, altering the phenotypic effect of an
allele slightly (by 1%) occurred at a low frequency (1% per allele per generation).



