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The importance of mechanisms for the
evolution of cooperation

Pieter van den Berg and Franz J. Weissing

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands

Studies aimed at explaining the evolution of phenotypic traits have often solely

focused on fitness considerations, ignoring underlying mechanisms. In recent

years, there has been an increasing call for integrating mechanistic perspectives

in evolutionary considerations, but it is not clear whether and how mechanisms

affect the course and outcome of evolution. To study this, we compare four

mechanistic implementations of two well-studied models for the evolution of

cooperation, the Iterated Prisoner’s Dilemma (IPD) game and the Iterated

Snowdrift (ISD) game. Behavioural strategies are either implemented by a

1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover,

we consider two different scenarios for the effect of mutations. The same set of

strategies is feasible in all four implementations, but the probability that a given

strategy arises owing to mutation is largely dependent on the behavioural and

genetic architecture. Our individual-based simulations show that this has major

implications for the evolutionary outcome. In the ISD, different evolutionarily

stable strategies are predominant in the four implementations, while in the IPD

each implementation creates a characteristic dynamical pattern. As a conse-

quence, the evolved average level of cooperation is also strongly dependent

on the underlying mechanism. We argue that our findings are of general rel-

evance for the evolution of social behaviour, pleading for the integration of a

mechanistic perspective in models of social evolution.

1. Introduction
There is a long tradition in biology of separating proximate and ultimate

perspectives when explaining phenotypic variation [1,2]. The proximate perspec-

tive is concerned with the mechanisms that directly cause the phenotype (such as

neurological and physiological processes), whereas the ultimate perspective is con-

cerned with the emergence of the phenotype through (adaptive) evolution. In

concordance with this traditional separation, knowledge about the specific mech-

anisms underlying phenotypes has long been regarded as inconsequential to the

question of how phenotypes are shaped by evolution. Accordingly, evolutionary

biologists have a strong focus on the fitness consequences of phenotypic traits,

thereby largely disregarding the underlying mechanisms. Conceptualization of

evolution is often based on the implicit assumptions that genes interact in a

simple way and that there is a one-to-one relationship between genotypes and phe-

notypes. These assumptions are convenient, as they allow a view of selection as a

process directly acting on the genes in the ‘gene pool’ of a population. Although

this view has already been criticized as ‘beanbag genetics’ more than 50 years

ago [3], theoretical approaches to explaining the evolution of phenotypes with

an explicit focus on mechanisms are not very prominent even today.

Verbal discussions of the importance of underlying mechanisms for the

dynamics and outcomes of evolutionary processes started to emerge in the litera-

ture in the 1980s [4]. In particular, the influential book of John Maynard Smith

and Eörs Szathmáry on the ‘Major Transitions in Evolution’ [5] clearly showed

how crucial genetic and phenotypic architecture are for the course of evolution.

This view is now firmly established in the field of ‘evo-devo’ [6,7], where the inter-

play between (developmental) mechanisms and evolution is at centre stage.

Similarly, studies on gene-regulatory networks [8–10] have revealed that

network topology strongly affects both the robustness and evolvability of living

systems, while recent ‘integrative’ models [11–13] reveal that the mechanisms

& 2015 The Author(s) Published by the Royal Society. All rights reserved.
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underlying phenotypic responses can be important for a full

understanding of eco-evolutionary processes.

In line with these general developments, there are now

strong pleas [14–16] to apply ‘mechanistic thinking’ in evol-

utionary studies of animal and human behaviour as well.

Yet, with some notable exceptions [17–22], models for the evol-

ution of behaviour still tend to make the ‘least constraining’

assumptions on the genetic basis and the physiological and

psychological processes underlying behaviour. When the

direction and intensity of selection do not change in time and

when there is a single optimal behaviour, this may not be pro-

blematic. In such a case, one would expect evolution to proceed

towards the single optimum, regardless of underlying mechan-

isms. However, whenever there are multiple equilibria, the

situation is no longer so straightforward. And even in relatively

simple social contexts, the existence of multiple equilibria is

the rule rather than the exception [23–25]. In other words,

the question is not that much ‘which strategy is favoured by

natural selection’ but rather ‘which equilibrium will be

achieved in the course of evolution’ [26–28]. It is conceivable

that, in such a context, the mechanisms underlying behaviour

may be of evolutionary importance, because mechanisms can

affect the probabilities with which phenotypes arise and,

hence, the likelihood of alternative evolutionary trajectories.

Here, we study the evolution of behavioural strategies in two

types of social interaction without clearly delineated optimal be-

haviour. Our question is whether, and to what extent, the

mechanistic implementation of the available strategies affects

the course and outcome of evolution. We consider two prototype

models for the evolution of cooperation: the Iterated Prisoner’s

Dilemma (IPD) game and the Iterated Snowdrift (ISD) game,

which have been the subject of hundreds of earlier studies

(IPD [24,29–34], ISD [33–37]). In both games, the players have

to decide (repeatedly) on whether to cooperate or to defect. For

both players, mutual cooperation is more profitable than

mutual defection. However, mutual cooperation is not easy to

achieve, as defection yields a higher pay-off than cooperation

if the other player cooperates. The games differ in their assump-

tion on whether defect (IPD) or cooperate (ISD) yields a higher

pay-off against a defector. Following the traditions of evolution-

ary game theory ([28,38–45], but see [46]), studies of the

evolution of strategies in these games have overwhelmingly

assumed a one-to-one relationship between genotypes and strat-

egies. Here, we contrast such a one-to-one implementation with

a different implementation where selection does not directly act

on strategies, but on the architecture (a simple neural network)

underlying these strategies. In addition, we consider two genetic

mechanisms that determine the probabilities with which the

mutation of each strategy yields any other strategy. We will

show that the evolutionary dynamics are strongly affected by

both the genetic and the behavioural architecture and discuss

how the different outcomes can be explained on the basis of

the mutational distributions arising from the interplay between

genetics and behavioural mechanisms.

2. The model
(a) Games and strategies
Throughout, we will consider a Prisoner’s Dilemma (PD) game

and a Snowdrift game (SD) with the following pay-off matrices:

PD:
3 0
5 1

� �
and SD:

3 1
5 0

� �
:

The top and bottom rows give the pay-offs of cooperation

and defection, respectively, both for when the opponent

cooperates (first column) and defects (second column). In

the PD, defection always yields a higher pay-off than

cooperation, regardless of the action of the opponent. In the

one-shot version of this game, mutual defection is therefore

the only evolutionarily stable strategy (ESS). In the SD, the

highest pay-off is always attained by choosing the opposite

action than the opponent. In this case, the one-shot game

has an ESS that is characterized by a mixture of cooperation

and defection.

We consider iterated versions of both games, for which

the determination of all ESSs is much less straightforward

than for their one-shot counterparts (see the electronic sup-

plementary material for a game-theoretical analysis). In our

simulations, agents repeatedly interact for an indefinite

period of rounds; after each round, the game is terminated

with probability 12m. The full strategy space of the iterated

game is infinite-dimensional [30]. Here, we confine the strat-

egy space by only allowing individuals to condition their

behaviour on the outcome of the previous interaction

round. As there are four possible interaction outcomes

(mutual cooperation, mutual defection, and both combi-

nations of cooperation and defection), and a strategy always

prescribes one of two possible actions for each outcome

(cooperation or defection), there are in total 24 ¼ 16 possible

strategies (see table 1 for a complete list). We assume that

individuals are not perfect; they make both perception

errors (with probability 1P, they misinterpret the behaviour

of their opponent as the opposite behaviour) and implemen-

tation errors (with probability 1I, they perform the opposite

behaviour than dictated by their strategy).

(b) Behavioural and genetic architecture
Figure 1 shows a schematic of the behavioural and genetic

architectures considered in this study. We consider a ‘1 : 1’ be-

havioural architecture and an artificial neural network

(ANN) architecture, which can both realize the 16 possible

strategies presented in table 1. The 1 : 1 architecture is the sim-

plest possible architecture, in which behaviour for each of the

four possible outcomes of the previous round is under the

direct control of a single gene locus. Each of these four loci

can only have two values: 1 (for cooperation) or 0 (for defec-

tion). In addition, a separate locus determines an individual’s

behaviour in the first round; this locus can take on any value

of the unit interval, which corresponds to the probability of

cooperation in the first round.

In the neural network architecture ([47]; see figure 1 for a

graphical representation; and see the electronic supplemen-

tary material for a more detailed explanation), behaviour is

determined through a very simple underlying structure that

translates an input (the behaviours of ‘self’ and ‘partner’ in

the previous interaction round) into an output (cooperation

or defection). There are two input nodes, one of which

receives the previous own behaviour (0 for defection, 1 for

cooperation), and the other receives the previous behaviour

of the opponent. The input from both these nodes is fed

into two ‘hidden layer’ nodes, multiplied by the weights of

the connections between the nodes. Each hidden layer node

has a threshold; if the summed input into a hidden layer

node exceeds its threshold, its output equals 1, otherwise

the output is 0. Both hidden layer nodes are connected to
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the output node, which also has a threshold. If the total

output from the hidden nodes (multiplied with the relevant

connection weights) exceeds this threshold, the individual

cooperates. If not, the individual defects. This way, six con-

nection weights and three thresholds determine the strategy

implemented by the network. Accordingly, the ANN is

encoded by nine gene loci (that can take on any real value):

one for each connection weight and one for each threshold.

In addition, a tenth locus determines an individual’s

behaviour in the first round (as in the 1 : 1 implementation).

Even under the highly simplifying assumptions on the

strategy set and their underlying architectures, there are

many ways to implement inheritance. For example, ploidy

level and linkage patterns are of considerable importance

for the genetic transmission of information on strategies in

sexually reproducing organisms. To keep matters as simple

as possible, we here only consider asexual populations of

haploid individuals. In order to study the effect of genetic

factors, we restrict attention to two different mutation

regimes. In both regimes, the gene locus determining the

behaviour in the first round mutates independently (with

probability mF), the mutational step size being drawn from

a normal distribution with mean 0 and standard deviation

sF. Under ‘per-locus mutation’, each of the other loci (four

loci in case of the 1 : 1 architecture and nine in case of the

ANN architecture) has a probability mL of giving rise to a

mutation, independently of what is happening at the other

loci. Under ‘entire-genome mutation’, a mutation event

(occurring with probability mG) affects all these loci, that is,

all these loci mutate at the same time. Under both mutation

regimes, mutation is implemented as drawing a random

number to replace the current value of the locus (in the 1 : 1

architecture, this is done by drawing 0 or 1 with equal prob-

ability; in the neural network architecture, by drawing a

number from a normal distribution with mean 0 and

standard deviation sN).

(c) Simulation set-up and parameters
We simulated a population of 1000 asexual haploid individ-

uals, with discrete and non-overlapping generations. At the

start of each generation, pairs of two individuals are

Table 1. An overview of all possible pure strategies that condition their behaviour on the previous interaction. (The four columns on the left show whether the
strategy cooperates (1) or defects (0), for each of the four possible outcomes of the previous interaction (from left to right: mutual cooperation, having
cooperated while the opponent defected, having defected while the opponent cooperated, and mutual defection). The column on the right shows the name of
the strategy that is used to refer to them in the main text. The two middle columns show the percentage of the genotype space that is associated with each
strategy for the two different behavioural architectures. These percentages were obtained by generating a large number of genotypes (in the same way as
generating a genotype through ‘entire-genome mutation’), and subsequently determining the strategy induced by each genotype (as explained in the electronic
supplementary material).)

behaviour percentage of genotype space

C
C

C
D

D
C

D
D 1 : 1 mapping

neural
network

strategy
name strategy description

0 0 0 0 6.25 40.35 ALLD always defects

0 0 0 1 6.25 1.79 desperate only cooperates after mutual defection

0 0 1 0 6.25 1.75 Acon-D anti-conventional, shifts after playing opposite of

opponent, otherwise defects

0 0 1 1 6.25 1.65 inconsistent plays opposite of previous move

0 1 0 0 6.25 1.75 con-D conventional, stays after playing the opposite of

opponent, otherwise defects

0 1 0 1 6.25 1.65 ATFT anti-tit for tat, plays opposite of opponent’s last

move

0 1 1 0 6.25 0.08 APavlov win, shift; lose, stay

0 1 1 1 6.25 0.98 hopeless only defects after mutual cooperation

1 0 0 0 6.25 0.98 grim only cooperates after mutual cooperation

1 0 0 1 6.25 0.08 Pavlov win, stay; lose, shift

1 0 1 0 6.25 1.65 TFT tit for tat, copies opponent’s last move

1 0 1 1 6.25 1.75 MNG Mr Nice Guy, only defects after ‘being cheated’

( playing C while other plays D)

1 1 0 0 6.25 1.65 consistent repeats its own previous move

1 1 0 1 6.25 1.75 con-C conventional, stays after playing the opposite of

opponent, otherwise cooperates

1 1 1 0 6.25 1.79 willing only defects after mutual defection

1 1 1 1 6.25 40.35 ALLC always cooperates
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formed at random. These pairs interact repeatedly, where a

new round always starts with probability m ¼ 0.99 (leading

to an average interaction length of 100 rounds). In any

given generation, all pairs play the same number of rounds.

After the last round of each repeated interaction, individuals

reproduce. The probability of reproducing is directly pro-

portional to the pay-off individuals accumulate over the

entire repeated interaction. Population size was kept constant.

After reproduction, a new cycle starts.

At the beginning of each simulation, the loci of all indi-

viduals were initialized at random: initial values for the

locus that determines the behaviour in the first round were

drawn from a normal distribution with mean 0.5 and stan-

dard deviation 0.1; the four binary loci in the 1 : 1

architecture were assigned a 0 or a 1 with equal probability;

and the nine loci encoding the connection weights and

thresholds in the neural network architecture were assigned

values that were drawn from a normal distribution with

mean 0 and standard deviation sN. Each simulation was

run for 100 000 generations. We ran 100 replicate simulations

for all four combinations of the two behavioural architectures

(1 : 1 and neural network) and the two mutation regimes

(per-locus mutation and entire-genome mutation). Resulting

cooperation levels and strategy frequencies were calculated

by averaging over all interactions in the last generation of

each simulation, and then averaging those averages over

all replicates.

In all simulations reported here, the perception error eP

and the implementation error 1I were both set to 0.01;

mutation probabilities (mL, mG and mF) were all set to

0.001, and mutational step sizes for all continuous loci

(sN and sF) were set to 0.1. In the electronic supplementary

material, we consider different values of these parameters

in order to check for the robustness of our results.

3. Results
(a) Effect of architecture on the average cooperation

level
We studied the evolution of cooperation in two games (the

ISD and the IPD), with four different implementations

(figure 1) of behavioural strategies, reflecting two scenarios

concerning the underlying behavioural architecture (1 : 1

versus neural network), and two scenarios concerning the

mutation regime (per-locus versus entire-genome). Figure 2

shows that in both games, the evolved cooperation level is

strongly affected by both the genetic and the behavioural

architecture. In fact, in both games, average cooperation

levels were 0.4 or lower for one implementation and 0.8

or higher for another implementation. Cooperation levels

were higher for the 1 : 1 architecture when compared with

the neural network architecture in all scenarios, but the

effect of the mutation regime was different between the two

games. In the IPD, per-locus mutation was associated with

higher levels of cooperation than whole-genome mutation,

whereas the opposite was true in the ISD. To understand

the causes underlying these large differences, we next zoom

in on the evolutionary dynamics of the 16 strategies that
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Figure 1. A schematic of the four implementations of the 16 strategies considered in this study. The top row shows illustrations of the two behavioural architectures.
In the 1 : 1 architecture, individuals have four gene loci that each determine the behaviour (cooperate or defect) in a given round for one of the four possible
outcomes of the previous round. These four loci are represented by boxes (in the example shown, black boxes represent cooperation and white boxes represent
defection). In the neural network architecture, individuals have nine loci, determining the (continuous) values of six connection weights ( purple) and three
thresholds (orange). The network processes the input (the behaviour of ‘self ’ or ‘partner’ in the previous round) into an output (cooperate or defect). In the
bottom row, the two mutation regimes are illustrated for both behavioural architectures, representing the four implementations considered in this study.
Under per-locus mutation, each locus mutates independently (illustrated by single loci turning yellow after the arrow). In case of whole-genome mutation, all
loci mutate in the event of a mutation (illustrated by all loci turning yellow after the arrow).
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were considered in this study (see table 1 for a complete list

and an explanation of strategy names).

(b) Evolutionary dynamics in the Iterated Snowdrift
game

A game-theoretical analysis of the 16 strategies in the

ISD reveals that there are three ESSs (see the electronic sup-

plementary material for details). ESS 1 consists of 83.3%

con-D (conventional defector, a strategy that sticks with its

previous behaviour if it played the opposite as its opponent

in the previous round, and defects otherwise), together

with 16.7% ALLD. ESS 2 consists of the pure strategy

Pavlov. ESS 3 involves three pure strategies: 96.8% MNG
(Mr Nice Guy, which always cooperates, except if it

cooperated while the interaction partner defected in the pre-

vious round), 2.2% inconsistent (which always plays the

opposite to its previous move) and 1.0% Acon-D (unconven-

tional defector, a strategy that changes behaviour if it

played the opposite as its opponent in the previous round,

and defects otherwise).

In our simulations, we recover the three ESSs above. Typi-

cally, a simulation stays at one of the ESSs for extensive

periods of time, followed by a rapid shift to another ESS. In

most simulations across all scenarios, ESS 1 evolved first. In

some of the simulations, ESS 1 was invaded by Pavlov, lead-

ing to the establishment of ESS 2. In a subset of those cases,

ESS 2 was ultimately invaded by MNG, establishing ESS 3.

ESS 3 was almost never invaded, but in very rare cases

could be followed by a new establishment of ESS 1. The prob-

ability of transition between two ESSs and, accordingly, the

probability to find the population in any of the three ESSs

strongly depends on the behavioural architecture and

mutation regime (figure 3): in case of a 1 : 1 architecture,

ESS 3 is the dominant state in case of per-locus mutation,

while the simulations switch between ESS 2 (attained 81%

of the time) and 3 (19%) in case of whole-genome mutation.

In case of a neural network architecture, the simulations

either end up in ESS 1 (55%) or 3 (45%) in case of per-locus

mutation and in ESS 1 (38%) and 2 (62%) in case of whole-

genome mutation. In other words, the four implementations

differ in their likelihood of attaining each of the ESSs, and this
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Figure 2. Cooperation levels in the IPD (top) and the ISD (bottom) for all four mechanistic implementations of the 16 strategies. The bars show average cooperation
levels over all interactions in the last generation, across all replicates. Error bars show standard error of the mean.
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Figure 3. Simulation outcomes in the ISD, for all four mechanistic implemen-
tations. The three line graphs (top) show time series (2500 generations) of
typical simulation runs, each illustrating the attainment of one of the three
ESSs of this game (see the electronic supplementary material, table S1). The
bar graphs (bottom) show for each scenario the fraction of 100 replicate
simulations for which the last generation was in each of the three ESSs.
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difference is reflected in the average cooperation levels

observed in figure 2 (as each ESS induces a different

cooperation level; see electronic supplementary material,

table S1).

Why do the behavioural and the genetic architecture have

such a strong effect on the evolutionary outcome? This can be

illustrated by considering the transition from ESS 1 to ESS 2.

In ESS 1, Pavlov has a slight selective disadvantage when rare,

but as soon as it occurs in higher frequencies, it achieves a

higher pay-off than the strategies in ESS 1 (because the

pay-off of Pavlov against itself is high). Therefore, if Pavlov
increases enough against the selection gradient owing to

mutation and genetic drift, it can invade, and ESS 2 becomes

established. Clearly, the probability that Pavlov results

from mutation of the strategies in ESS 1 is a crucial factor

in this regard. As shown in table 1 (and explained in the

electronic supplementary material), Pavlov occupies a much

larger part of the genotype space (6.25%) in the 1 : 1 archi-

tecture than in the neural network architecture (0.08%).

As a result, Pavlov almost never invades ESS 1 in the

neural network architecture, whereas this often happens in

the 1 : 1 architecture.

(c) Evolutionary dynamics in the Iterated Prisoner’s
Dilemma game

A game-theoretical analysis of the 16 strategies in the IPD

reveals two ESSs, both containing only a single strategy:

ALLD and grim (see the electronic supplementary material

for details).

In our simulations, there indeed were extended periods of

time in which either ALLD or grim are dominant in the popu-

lation. However, in most cases, the evolution of strategies was

very dynamic and often irregular. This is in line with earlier

studies which also conclude that the evolutionary dynamics

in an IPD is often chaotic and off-equilibrium [48–50]. Like

in the ISD, both the behavioural and the genetic architecture

had a strong effect on the evolutionary dynamics (figure 4).

In the case of 1 : 1 mapping with per-locus mutation, steady

cycles of grim, TFT, MNG and Pavlov were observed for all

replicate simulations (this is consistent with earlier findings

by Nowak & Sigmund [48]). For whole-genome mutation,

the patterns look less consistent (yet highly dynamic), includ-

ing longer spells of ALLD domination (this explains the

relatively low cooperation levels in this scenario). In the

neural network architecture, per-locus mutation led to very

dynamic yet fairly consistent patterns, mostly involving

TFT and MNG, and infrequent ALLD domination spells.

Entire-genome mutation typically led to long ALLD domina-

tion spells interspersed by short periods with both cyclical

dynamics involving various strategies including TFT, ALLC,

ALLD, grim, and MNG and non-cyclical coexistence of TFT
and inconsistent.

The effect of underlying mechanisms on the evolutionary

dynamics can be explained by the fact that different mechan-

isms induce differences in the ‘mutational distance’ between

strategies, that is, the likelihood that a mutation in a strategy

gives rise to a given alternative strategy. As an example, con-

sider the extended periods of dominance of grim that were

frequently observed. Those periods are typically ended by

the invasion of TFT. TFT obtains a slightly worse pay-off

against grim than grim obtains against itself. However, TFT
does obtain better pay-offs when it happens to be paired

with itself. In other words: if TFT can increase enough against

the selection gradient because of genetic drift and mutation, it

gains a selective advantage and can invade. The probability

1:1 mapping

neural network

per-locus

genome

per-locus

genome

0000 (ALLD)

0001 (desperate)

0010 (Acon-D)

0100 (con-D) 1000 (grim) 1100 (consistent)

1101 (con-C)
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1001 (Pavlov)

1010 (TFT)
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0110 (APavlov)
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Figure 4. Time series of typical simulation runs in the IPD, for all four mechanistic implementations. In each case, a time period of 2500 generations is shown. The
coloured lines represent the frequencies of the 16 different strategies.
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that this occurs depends on the implementation: in the 1 : 1

architecture with per-locus mutation, a mutation of grim
produces TFT with probability 1/4. In the case of whole-

genome mutation, this probability is only 1/16—this makes

it considerably less likely that TFT obtains appreciable

frequencies, and explains the extended spells of grim domina-

tion (figure 4) and the lower degree of cooperation (figure 2)

in this case.

4. Discussion
Our study demonstrates that behavioural architecture and

mutation regime are of considerable importance for the

dynamics and outcome of social evolution. In the IPD, we

observed three types of dynamic behaviour (predictable

cycles; fast and chaotic dynamics; spells of ALLD or grim
domination) whose occurrence crucially depended on both

behavioural architecture and mutation structure. Likewise,

the prevalence of and the transitions between the three

ESSs in the ISD were strongly determined by both architec-

ture and mutation structure. In both games, the differences

in evolutionary dynamics resulted in substantial differences

in the average level of cooperation. These conclusions are

not specific to the parameters considered in our simulations;

they also hold for different pay-off configurations of both

games, and for a lower degree of stochasticity in the

simulations (see the electronic supplementary material).

The effect of mechanisms on the evolutionary dynamics

was not caused by ‘hard’ constraints (the inability of mechan-

isms to produce all phenotypes), as all 16 strategies of the

game were feasible in all four implementations. Yet, the

mechanisms induced some ‘soft’ constraints on evolution,

by strongly affecting the probabilities with which strategies

arise by mutation (see figure 5 for a schematic overview of

mutation probabilities for each scenario considered in this

study). Even in case of small mutation rates, the mutational

distribution has a strong effect on the type of variation that

can be expected to be present in a given situation. Some

strategies only gain a selective advantage once they have

increased beyond a certain frequency, and mutation probabil-

ities determine the probability that this will happen. In the

1 : 1 architecture considered in this study, each strategy has an

equal probability to result from a randomly generated geno-

type, whereas in the neural network architecture, some

strategies (notably ALLD and ALLC) are much more likely to

arise owing to mutation than others (table 1). In the case of

entire-genome mutation, the strategy of a mutant individual

is independent of the strategy of its parent, and mutation prob-

abilities therefore only depend on the behavioural architecture.

In the case of per-locus mutation, the parental strategy partly

determines the strategy of their mutant offspring.

We are not the first to point out that the genotype–

phenotype mapping and the induced mutation structure

are important for the course of evolution. In fact, the formal

frameworks for modelling evolutionary dynamics can, to a

certain extent, take these complexities into account. For

example, the ‘canonical equation’ of adaptive dynamics

theory includes a mutational covariance matrix [51,52],

which characterizes the likelihood that a combination of

phenotypic traits (like a conditional strategy) arises and

potentially invades the current resident strategy. Likewise,

the multivariate selection equation of quantitative genetics

[53,54] can be written in a form that it includes a matrix char-

acterizing the covariance in phenotypic traits between

parents and offspring [55]. Sean Rice has worked out formally

1:1 mapping
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Figure 5. Mutational distance between the most relevant strategies in the Prisoner’s Dilemma (top) and the ISD (bottom), for both behavioural architectures and
the case of per-locus mutation. An arrow pointing from one strategy to another indicates that a mutation of the former strategy has probability of larger than 0.001
to yield the latter strategy. A probability of more than 0.05 is indicated by a solid arrow (the thickness of the arrow is proportional to the probability). In the 1 : 1
model, each strategy can mutate to four other strategies with equal probability, so the arrows in the mutation maps for the 1 : 1 model all represent a probability of
0.25. To calculate these probabilities, we first generated a large number of random genotypes (in the same way as generating a genotype through ‘entire-genome
mutation’), and determined their corresponding strategy. Then, for each strategy, we mutated all corresponding genotypes many times, and again determined the
resulting strategies.
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how these covariances arise and determine the course of

evolution when phenotypic traits are the outcome of (develop-

mental) mechanisms [55,56]. We are not aware of attempts to

actually derive the covariance matrices of adaptive dynamics

of quantitative genetics theory on the basis of a concrete

mechanistic model. Instead, theoretical studies tend to make

simplifying assumptions, such as replacing the covariance

matrix by the identity matrix (e.g. [25]). Already in the case

of frequency-independent selection and in the absence of

stochasticity, assumptions like these are not unimportant, as

the covariance structure largely determines which peak of a

multi-peaked fitness landscape will be reached.

There are two main reasons why we think that phenoty-

pic covariances and, hence, the mechanisms underlying

the development of phenotypes are of particular importance

for social evolution. First, selection will virtually always be

frequency-dependent in this case. As a consequence, the suc-

cess of each strategy will strongly depend on the context, and,

in particular, on the presence of selectively favoured compe-

titors. Accordingly, a given architecture will contribute to the

stability of a given equilibrium if it makes the production of

selectively favoured alternatives less likely, and it will have

a destabilizing effect if the opposite is the case. Second, in

case of social interactions, there are typically many alternative

Nash equilibria and ESSs. This is already illustrated in the

IPD and the ISD with highly restricted memory considered

here. Relaxing the restrictions on the strategy set would

lead to a rapid increase in the number of equilibria. In fact,

the Folk theorem of game theory [23,57] implies quite gener-

ally that in repeated games the set of Nash equilibrium

strategies is so large that virtually any ‘reasonable’ outcome

(in case of our IPD: any outcome between 0 and 5; in case

of our ISD: any outcome between 1 and 5) can be achieved

as the average outcome of an equilibrium. But also non-

repeated games typically have several (and often a large

number of) Nash equilibria and ESSs [58]. In all these

cases, it is to be expected that the evolutionary dynamics

will be affected in a similar way by mechanisms as in

this study.

We have here focused on situations where the evolution-

ary game dynamics [42] are relatively simple. For the pay-off

structure considered, the IPD and the ISG have a small

number of ESSs, and these are the only attractors of the repli-

cator equation (see the electronic supplementary material).

Accordingly, mechanisms will mainly affect the transition

between ESSs, as described above. It is conceivable that

mechanisms have an even stronger effect in the presence of

limit cycles or other non-equilibrium attractors. Such attrac-

tors regularly occur in evolutionary games (such as variants

of the Rock–Scissors–Paper game; [59]), and it has been

shown that seemingly small differences in the genetic

implementation of strategies can have major effects on the

evolutionary outcome [60]. In the electronic supplementary

material, we show that non-equilibrium attractors can also

occur in the IPD (for slightly different pay-off parameters),

but a thorough investigation of the interplay of genetic or

behavioural architecture and non-equilibrium dynamics is

beyond the scope of this study.

Our results should be mainly viewed as proof of principle

that mechanisms matter for the course and outcome of social

evolution. It would be premature to conclude that one of the

four implementations considered in our study is more ‘realis-

tic’ than the others. On purpose, we kept our assumptions on

architecture as simple as possible, as this allowed us to

develop a sound intuitive understanding of our results

(figure 5). Because of this understanding, we are confident

that our findings are of general relevance. The development

of truly ‘realistic’ models remains a major challenge, as the

actual genetic, physiological, neurological and psychologi-

cal mechanisms behind social behaviour are still largely

terra incognita for virtually all organisms and virtually all

interaction types. For this reason, it would be premature

to abandon the standard 1 : 1 genotype–phenotype mapping

assumption in favour of (for example) a neural network

implementation. However, whatever the implementation

chosen, researchers should be aware that it may have

considerable implications for the course and outcome

of evolution.

The evolution of social behaviour is often an intricate

process, with many feedbacks at work, and many possible

outcomes. We have shown that underlying mechanisms are

of decisive importance in determining which outcome even-

tually emerges in evolution. Therefore, it is of importance

that we focus more on mechanisms when trying to explain

the evolution of social behaviour. Both empirical work

focused on understanding mechanisms and theoretical

work investigating their importance for the dynamics and

course of evolution have a vital role to play in this regard.
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1. Implementation of strategies by a neural network  

All sixteen strategies listed in Table 1 can be realized by our neural network architecture. To give some 

more insight in how a neural network configuration implements a strategy, Figure S1 gives an example of 

one of the many possible networks implementing Pavlov. Pavlov cooperates after mutual cooperation or 

mutual defection, and defects otherwise. The implementation of Pavlov in the neural network architecture 

depends on a relatively precise relationship between the weights and thresholds of the network. For 

example, the sum of w5 and w6 must exceed t3, but neither of the two should exceed t3 alone. Also, w1 and 

w3 must together exceed t1, and only one of those two weights must exceed t1 alone, while the other must 

not. The same necessary relationships hold for weights w2 and w4 and threshold t2. In addition, both t1 and 

t2 must be negative. The relatively restrictive conditions needed for a network to correspond to Pavlov 

give an intuitive understanding of why only a small percentage of the genotype space is associated with 

this strategy (see Table 1). 

When considering the network in Figure S1, it also becomes easier to understand why the strategies 

ALLD and ALLC are so likely to result from a random configuration of the network. If the value of t3 in 

this network is changed from 4 to 6, then this threshold can never be exceeded, meaning this network will 

always defect. More generally, all networks for which 3 5 6t w w   and 3 0t  implement ALLD, 

regardless of the values of the other weights and thresholds. Similarly, all networks for which 3 5 6t w w   

and 3 0t  implement ALLC. However, this only one of many ways that the network in Figure S1 could 

mutate towards a network implementing ALLD. For example, since both t1 and t2 must be exceeded for 

this network to cooperate, any mutation that increases the value of either of these two thresholds so that it 

cannot be exceeded by the preceding weights would result in an ALLD network. 
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Figure S1. A neural network corresponding to the Pavlov strategy. The network on top shows the 

values of all the weights (w1 – w6) and thresholds (t1 – t3); green lines depict positive values, red lines 

depict negative values, and their thickness indicate their absolute values. The input nodes receive the 

previous own decision (top) and the previous decision of the interaction partner (bottom); 1 for 

cooperation and 0 for defection. The four networks on the bottom show in detail how the output of the 

network is generated for each of the four possible outcomes of the previous round. The values of the input 

nodes are multiplied with weights w1 to w4 ; the resulting values are summed and fed into the hidden layer. 

If the summed values exceed the respective threshold values of the hidden layer, their output is 1; 

otherwise, it is 0. Those values are then multiplied with weights w5 and w6, and the sum of the resulting 

values is fed into the output node. If this value exceeds the threshold of the output node, the network 

cooperates; otherwise, it defects.  
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2. ESS Analysis of the IPD and the ISD 

Repeated games like the Iterated Prisoners’ Dilemma game (IPD) or the Iterated Snowdrift Game (ISD) 

have a huge strategy set, and even for games as simple as these a full game theoretical analysis has not yet 

been achieved. Such an analysis is a formidable task, since the number of Nash equilibria is huge [a]. In 

fact, the ‘Folk Theorem’ of game theory implies that any reasonable outcome can be realized by a Nash 

equilibrium of the iterated game (for details see [b]). On the other hand, no pure strategy is evolutionarily 

stable in the IPD or the ISD (e.g. [c]). 

Here, we consider simpler versions of the IPD and the ISD where the strategy set is restricted to 16 pure 

strategies with limited memory (only the moves in the previous round are memorized). These versions of 

the IPD and the ISD have been the subject of many studies, but to our best knowledge a full 

characterization of all Nash equilibria or all evolutionarily stable strategies (ESS) has never been given. 

This is understandable, since even under the restriction to 16 pure strategies the game theoretical analysis 

remains a challenge. Here we show how to classify all ESSs with support 1, 2 and 3 of the two repeated 

games for the payoff configuration considered in the main text. A Mathematica file with all calculations is 

available upon request. An overview of all ESSs with support 1, 2 and 3 is shown in Table S1. By means 

of numerical iterations based on the replicator equation, we demonstrate that most likely there are no 

other ESSs with a larger support. 

Construction of the 16x16 payoff matrix 

As a first step, we determine the payoff matrix of the game by calculating the expected payoffs for any 

pair of pure strategies. Any such pair of strategies induces a sequence of transitions between the four 

different ‘cooperation states’ of a game round (mutual cooperation, mutual defection, cooperation-

defection, defection-cooperation). In the absence of errors, this sequence would be deterministic and 

mainly dependent on the combination of moves in the first round. The inclusion of perception and 

implementation errors, however, turns the transition between states into a stochastic process with a well-

defined 4x4-matrix of transition probabilities between cooperation states. The right eigenvector 

corresponding to the dominant eigenvalue of this matrix (which is typically the only positive eigenvalue 

of the matrix) is proportional to the stationary distribution over states generated by the interaction of the 

two pure strategies. The four elements of the (normalized) eigenvector correspond to the fraction of time 

spent in each of the four cooperation states in an infinitely repeated interaction. Weighing the four 

elements of the payoff matrix of the one-shot game by these elements and summing up the results 

therefore yields the expected per-round payoff for each of the two strategies. Notice that this pair of 

payoffs does not depend on the initial pair of moves (these are irrelevant from a long-term perspective), 
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but reflects the perception and implementation errors made by the players (both were kept at 0.01, as in 

the simulations). All subsequent ESS calculations are based on the 16x16 payoff matrix that results by 

applying the above recipe to all pairs of pure strategies. 

Determination of all pure-strategy ESSs 

It is straightforward to characterize all pure-strategy Nash equilibria: A pure strategy i is a Nash 

equilibrium if no alternative pure strategy j attains a higher payoff against i than i attains against itself. If i 

is a ‘strong’ Nash equilibrium (any alternative pure strategy j attains a lower payoff against i than i attains 

against itself), then i is an ESS [b, d-g]. It turned out that the IPD has two pure-strategy Nash equilibria 

(grim and ALLD), which both are strong Nash equilibria and therefore an ESS. The ISD has a single pure-

strategy Nash equilibrium (Pavlov), which again is a strong Nash equilibrium and an ESS. 

Determination of all ESSs with two coexisting pure strategies 

To calculate all ESSs with support two, we first determined all those pairs of pure strategies i and j that 

can mutually invade each other: j has a higher payoff against i than i has against itself; and i has a higher 

payoff against j than j has against itself. This condition of mutual invadability is equivalent to the 

existence of a mixed-strategy ESS of the restricted game with only these two pure strategies [f,g]. This 

ESS can easily be calculated on the basis of the condition that the fitness of both pure strategies needs to 

be identical at the ESS [d]. The ESS thus found is an ESS of the full game (with all 16 strategies) if all 

other strategies have a lower payoff at this two-strategy equilibrium than the two equilibrium strategies 

[h]. It turned out that the IPD has no ESS with support two, while the ISD has one such ESS: 83.3% con-

D and 16.7% ALLD. 

Determination of all ESSs with three coexisting pure strategies 

The calculation of all ESSs with support three is more tedious. For each triplet i, j, and k of pure strategies 

we first checked whether the three strategies can coexist at equilibrium. This was done by checking 

whether the system of linear equations specifying fitness equality of the three strategies in the restricted 

three-strategy game has a positive solution. This solution specifies a candidate-ESS. In a second step, the 

‘internal’ stability of this candidate-ESS (i.e., its evolutionary stability in the restricted three-strategy 

game) was checked, making use of a criterion for evolutionary stability in 3x3 games [f,g]. In a third step, 

the ‘external’ stability of the candidate-ESS was determined by checking whether all other 13 pure 

strategies of the full 16-strategy game have a lower payoff at the candidate-ESS than the three strategies 

being part of the candidate-ESS [h]. It turned out that the IPD has no ESS with support three, while the 

ISD has one such ESS: 96.8% MNG, 2.2% inconsistent, and 1.0% Acon-D. 
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Table S1. The evolutionarily stable strategies (ESS) identified by the game theoretical analysis of 

the IPD and the ISD. In case of the ISD, the three ESSs are numbered in line with the three equilibrium 

outcomes of the simulations described in the main text. The last column gives the average cooperation 

level in each equilibrium. A full description of all the strategies can be found in Table 1 of the main text. 

 

Game ESS Strategies Fraction Cooperation 

IPD 
1 ALLD 1.000 0.010 

2 grim 1.000 0.013 

ISD 

1 
con-D 0.833 

0.180 
ALLD 0.167 

2 Pavlov 1.000 0.943 

3 

MNG 0.968 

0.698 inconsistent 0.022 

Acon-D 0.010 

 

Numerical iterations based on the replicator equation 

To check whether the equilibria identified in the game theoretical analysis are actually attainable and 

dynamically stable, and whether any other attractors are present in the system, we performed extensive 

numerical iterations using the replicator equation [f,g]. To do this, we used the same 16x16 payoff 

matrices calculated for the game theoretical analysis of both games (described above). Starting from 

around 6*107 different initial population constitutions, we iterated the replicator equation until an attractor 

was reached. For each iteration, the minimum frequency of each strategy was set to 0.001 so that invasion 

of any strategy was always in principle possible. The outcome of these iterations was congruent with the 

game theoretical analysis; all iterations (for both of the games) ended up in one of the ESSs in Table S1, 

and each of the ESSs was commonly attained (depending on the initial conditions). The oscillating 

behaviour commonly observed in the individual-based simulations of the IPD was never observed in the 

(deterministic) numerical iterations. This suggests that those observations correspond to transient (‘away 

from equilibrium’) behaviour driven by the stochastic component of the individual-based simulations.  
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3. Sensitivity analysis 

In the main text, we have shown that the mechanisms underlying the strategies of an evolutionary game 

can be of substantial importance for the evolutionary dynamics and the evolutionary outcome. For ease of 

representation, all simulations were conducted for one set of parameters. In this section, we show that our 

main conclusion also holds for a number of altered parameter settings. Specifically, we consider versions 

of our model with a reduced mutation rate and with an altered payoff configuration in both games. 

Reduced mutation rate 

The simulations of the IPD discussed in the main text commonly exhibited highly dynamical behaviour, 

even though no non-equilibrium attractors were identified in the game theoretical analysis or numerical 

iterations of the replicator equation (see SI section 2). It is likely that this discrepancy is caused by the 

stochastic component of the simulations. The degree of stochasticity can be reduced by increasing the 

population size or by decreasing the mutation rate. Here, we investigate how our evolutionary simulations 

are affected by a reduction of the mutation rate from 10-3 to 10-4. In addition, we also give an idea of how 

replicate simulation runs can differ from each other. 

Figure S2 shows typical simulation runs of the IPD for each of the scenarios (behavioural architecture and 

mutation regime), for both mutation rates. The game theoretical analysis identified two pure-strategy 

ESSs for this game: ALLD and grim (see Table S1). Most simulation runs consist of periods of stasis 

(with one or two strategies in an equilibrium-like situation), followed by periods of strong fluctuations. 

As a rule, the periods of stasis are longer in case of a lower mutation rate, but even in that case, highly 

dynamical periods are common. During the periods of stasis, one of the two ESSs (ALLD or grim) is 

typically the predominant strategy. However, many simulation runs included prolonged periods of stasis 

dominated by the non-ESS strategies Pavlov or MNG, or con-D or static periods where TFT and 

inconsistent coexisted in almost equal frequencies. Interestingly, these deviations from the game 

theoretical ESS predictions were mainly observed in simulations with a low mutation rate. 

Besides these effects of a lowered mutation rate on the simulation dynamics, Figure S2 clearly shows that 

lowering the mutation rate does not change our main conclusion that underlying mechanisms strongly 

affect the evolutionary outcome. For example, ALLD domination was more commonly observed in the 

simulations with the neural network implementation, whereas grim domination was more common for the 

1:1 mapping.   
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Figure S2. Typical simulation runs for the IPD, for different behavioural architectures, mutation 

regimes, and mutation rates. For each parameter combination, excerpts of five replicate simulation runs 

are shown. Each excerpt comprises a time period of 2,000 generations. The excerpts were chosen from 

100 replicate simulation runs (comprising 100,000 generations each) to give an impression of the ‘typical’ 

dynamics observed for each parameter combination. Graphs of all 100 replicate simulation runs for each 

parameter combination are available upon request.  

 

The game theoretical analysis of the ISD identified three ESSs (see Table S1). Irrespective of the 

mutation rate, most simulations quickly converged to one of these ESSs; transitions between ESSs 

occurred, but only on rare occasions. When transitions occurred, ESS 1 was generally attained first, 

eventually succeeded by ESS 2, and finally followed by ESS 3 in some simulations. As expected, such 

transitions were less frequent in case of a lower mutation rate. 
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Figure S3 shows how frequently each of the three ESSs was attained after 100,000 generations in 100 

replicate simulations of the ISD, for each behavioural architecture, mutation regime, and mutation rate. In 

all cases, ESS 1 was observed more often for low mutation rate than for high mutation rate (except for the 

1:1 mapping with entire genome mutation, where this ESS was never the outcome, regardless of the 

mutation rate). Similarly, ESS 3 was always observed more often for the higher mutation rate (except for 

the neural network with entire genome mutation, where this equilibrium was never observed). Besides 

these effects, lowering the mutation rate does not alter our main conclusion: also in the ISD the 

underlying mechanisms strongly affect the outcome of evolution. 

  

Figure S3. Evolutionary outcome of the simulations of the ISD for the different mechanistic 

implementations and mutation rates. The left bars of each pair show high mutation rates (H,  = 

0.001), bars on the right show low mutation rates (L,  = 0.0001). Bars indicate the fraction of 100 

replicate simulations ending up in each of the three ESSs of the ISD (Table S1) after 100,000 generations. 
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Alternative payoff configurations 

A full sensitivity analysis concerning the effect of the payoff parameters of the IPD or the ISD on the 

evolutionary outcome is beyond the scope of this study. As mentioned above, even an ESS analysis or an 

analysis of the attractors of the replicator equation as a function of the payoffs is quite a challenge. This is 

exemplified by the game theoretical analysis in section 2 of this SI, which shows that the 16x16 payoff 

matrix of the two games does not have a straightforward relationship with the payoffs of the underlying 

one-shot game. Instead of conducting a comprehensive analysis of the effect of payoffs, we he here just 

give an illustration, by redoing our analysis for one alternative payoff configuration for each of the games. 

As will become clear, even this relatively small alteration qualitatively changes the equilibrium structure 

of both games, but does not affect our main conclusion that underlying mechanisms strongly affect the 

outcome of social evolution.  

In this analysis, we replaced the payoffs for defecting while the interaction partner cooperates from 5 to 4 

in both games, yielding the following payoff matrices: 

PD: 
3 0

4 1

 
 
 

;     SD: 
3 1

4 0

 
 
 

. 

First, we performed a game theoretical ESS analysis on the iterated versions of these games (as described 

in section 2 of this SI); all ESSs with support 1, 2 or 3 are shown in Table S2. In case of the IPD, the 

game theoretical analysis identifies the same pure-strategy ESSs as in the original game (ALLD and grim), 

but also identifies a third (Pavlov). As in the original game, there are no ESSs with 2 or 3 coexisting 

strategies in this game. In the ISD, we also find the same pure-strategy ESS as in the original game 

(Pavlov). In addition, we find another pure-strategy ESS: con-D. This ESS is relatively similar to ESS 1 

of the original model (that equilibrium also consisted of mostly con-D, but also included a relatively low 

frequency of ALLD; see Table S1). These two pure-strategy ESSs are the only ESSs identified by the 

game theoretical analysis; ESS 3 (or a similar ESS) was not identified in this version of the ISD.  

To check whether there are any other attractors in the system, we also did extensive numerical iterations 

of the replicator equation (see section 2 of this SI for details). It turned out that all the ESSs described 

above were commonly attained; and that there is apparently no alternative stable equilibrium. 

Interestingly, a non-equilibrium attractor appeared in the replicator dynamics of the IPD: about 18% of all 

iterations converged to the stable limit cycle shown in Fig. S4. This cyclical attractor includes most of the 

16 pure strategies. The most prominent role is for TFT, followed in time by con-C (and, in lower 

frequencies, willing and ALLC), then by a mix of strategies including ATFT, desperate, con-D, grim, 

ALLD, and Pavlov, to be followed by TFT again. After this second peak of TFT, a similar mix of 
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strategies follows as after the first peak, although ATFT is absent this time, there is a small peak of 

inconsistent, and there is a longer period of a mix of ALLD and grim before the cycle starts over again. 

Except for this last stretch, a small frequency of MNG is present throughout. Only a minority of strategies 

do not play a role in this cyclical attractor: Acon-D, APavlov, hopeless, and consistent.  

 

Table S2. ESSs identified by the game theoretical analysis of the IPD and ISD for the alternative 

payoff configuration. The last column gives the average cooperation level in each equilibrium. Note that 

there is also a fourth cyclical attractor in the IPD, of which the dynamics are illustrated by Fig. S4. A full 

description of all strategies can be found in Table 1 of the main text. 

 

Game ESS Strategies Fraction Cooperation 

IPD 

1 ALLD 1.000 0.010 

2 grim 1.000 0.013 

3 Pavlov 1.000 0.943 

ISD 
1 con-D 1.000 0.206 

2 Pavlov 1.000 0.943 

 

 

Figure S4. A cyclical attractor in the IPD with alternative payoff matrix. Note that some of the 

colours associated with the strategies are different than in the other graphs.  
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Figure S5 shows typical behaviour of simulations of the IPD for the altered payoff configuration. These 

simulations were run for all mechanistic implementations, and also for high (10-3) and low (10-4) mutation 

rates. It is apparent that in comparison to the original game the periods of stasis are more pronounced, 

while the periods of fluctuation tend to be much shorter. For example, the 1:1 mapping with per-locus 

mutation now typically converges to the ESS Pavlov, while strong fluctuations were the rule in the 

original game (Fig. S2). The reduced tendency to cycle is somewhat surprising, since the altered IPD has 

a cyclic attractor (Fig. S4) while the original game only had two pure-strategy attractors (Table S1).   

As in the original model, behavioural architecture and mutation regime strongly affect the outcome and 

dynamics of evolution. For instance, in the 1:1 mapping, the Pavlov equilibrium is a much more common 

outcome than in the neural network implementation. The Pavlov equilibrium was never observed to be 

invaded by any other strategy in any of the replicate simulations across all implementations. This suggests 

that given enough time, all simulations should end up in this equilibrium, the waiting time until this 

happens being determined by the mechanistic implementation. Consistently with this, the Pavlov 

equilibrium was more frequently observed for higher mutation rates. As for the original payoff 

configuration, the incidence of highly dynamic periods is lower for reduced mutation rates (especially in 

the neural network implementation). Some of the simulation dynamics bear some resemblance to the 

cyclical attractor that was identified for this payoff configuration (periods with many subsequent peaks of 

TFT).  
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Figure S5. Typical simulation runs for the IPD with altered payoff matrix, for different behavioural 

architectures, mutation regimes, and mutation rates. As in Fig. S2, representative excerpts of 100 

replicate simulation runs are shown for each parameter combination. Graphs of all 100 replicate 

simulation runs for each parameter combination are available upon request. 

 

Figure S6 shows the equilibria that were attained in the simulations of the ISD with alternative payoff 

configuration, again for all mechanistic implementations. This altered version of the ISD has two pure-

strategy ESSs: con-D and Pavlov (similar to ESSs 1 and 2 in the original game). From the figure, it is 

obvious that the mechanistic implementation has a strong effect on the simulation outcome; in the 1:1 

mapping, ESS 2 was by far the most common outcome, whereas in the neural network, ESS 1 was more 

common. The mutation regime also affected the outcome, especially in the neural network 
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implementation, where ESS 2 was more common for entire-genome mutation than for per-locus mutation. 

As in the original game, ESS 2 was observed to succeed ESS 1, but never vice versa. Accordingly, one 

would expect to find ESS 2 more frequently in case of a higher mutation rate (since a higher mutation rate 

should lead to a faster transition from ESS 1 to ESS 2). Indeed, ESS 2 was observed less frequently for 

the lower mutation rate across all implementations. However, this effect is not very pronounced except 

for the neural network implementation with entire-genome mutation.  

 

 

 

Figure S6. Evolutionary outcome of the simulations of the ISD with alternative payoff 

configuration, for the different mechanistic implementations and mutation rates. The left bars of 

each pair show high mutation rates (H,  = 0.001), bars on the right show low mutation rates (L,  = 

0.0001). Bars indicate the fraction of 100 replicate simulations ending up in each of the three ESSs of the 

ISD (Table S2) after 100,000 generations. 
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