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Evolution of Segregation Distortion: Potential for a High Degree
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By means of a population genetical model, we study the evolution of segregation distortion. Most
models of segregation distortion focus on a single distorter allele. In contrast, we consider the
competition between a large number of distorters. Motivated by systems as the t complex of the house
mouse or the Sd complex of Drosophila melanogaster, we assume that there is some ‘‘complementation’’
between distorter alleles, i.e. that the fitness of individuals heterozygous for two distorter alleles is higher
than the fitness of homozygous individuals. In the presence of complementation, the most efficient
distorter allele with the highest segregation ratio often does not outcompete less efficient distorters. In
fact, our results show that coexistence of a large number of distorter alleles is more typical than the
competitive exclusion of less efficient distorters by a single superior allele. We first consider the
analytically tractable system where all distorters show the same amount of complementation. In this
case, all distorters with a segregation ratio higher than a certain critical value will persist, resulting in
a polymorphic population where the average segregation ratio is only slightly larger than 0.5. If the
degree of complementation varies, there may be more than one stable equilibrium, and the outcome
of competition may depend on the initial conditions. Motivated by empirical examples, we also consider
the case that the distorting ability of an allele is negatively related to its effects on individual fitness.
Interestingly, the outcome of competition depends crucially on details of such a trade-off. We conclude
that verbal arguments are insufficient to predict the evolution of segregation distortion.
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1. Introduction

The evolution of segregation distortion is governed by
selection at different levels. Their segregation
advantage notwithstanding, all known segregation
distorters do not spread to fixation since they induce
severe negative fitness effects at the individual level. If
gamete and individual level are opposed to one
another, the interaction between the wildtype allele
and a distorter allele will often result in a stable
polymorphism. This intuitive prediction is confirmed
by a large number of models, both for an infinite
population (e.g., Bruck, 1957; Lewontin & Dunn,
1960; Petras, 1967; Lewontin, 1968; Hartl, 1970a;

Feldman & Otto, 1991), and for a structured
metapopulation (e.g., Lewontin & Dunn, 1960;
Lewontin, 1962; Nunney & Baker, 1993; van Boven
& Weissing, 1998b).

All these models focus on the dynamics of a single
distorter allele. Therefore, they are not suited to
address questions concerning the long-term evolution
of segregation distortion. It has been conjectured, on
the basis of verbal arguments, that in the course of
evolution more efficient distorters with a high
segregation ratio will replace those with a lower
segregation ratio (e.g., Silver, 1985, 1993). Whether
this hypothesis is reasonable, however, needs to be
tested on the basis of models which explicitly take the
competition between different distorter alleles into
account.
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Recently, van Boven et al. (1996) and Weissing &
van Boven (1998) showed that the outcome of
competition is often not obvious in the case of two
distorter alleles. In particular, a relatively inefficient
distorter allele with a low segregation ratio can easily
coexist with a highly efficient distorter allele with a
high segregation ratio. The main prerequisite for
coexistence is the well-documented phenomenon of
‘‘complementation’’, i.e. the fact that the fitness of
individuals heterozygous for two different distorter
alleles is higher than the fitness of individuals
homozygous for a distorter allele (e.g., Temin et al.,
1991; Lyon, 1991).

Here we extend the analysis of van Boven et al.
(1996) and Weissing & van Boven (1998) by
considering the competition between a large number
of distorter alleles (see also Hartl, 1970b; Liberman,
1991; Godelle & Reboud, 1997). We show that
stable coexistence is not restricted to a small number
of distorter alleles. On the contrary, in the presence
of complementation an unlimited number of alleles
may coexist, resulting in a highly polymorphic
population.

The structure of this paper is as follows. We
present a model for selection and segregation
distortion in an infinitely large randomly mating
population with one sex. To fix ideas, we first consider
the competition between the wildtype and two
distorter alleles. We then show how the analysis can
be extended to the competition between a large
number of distorters. We start by assuming that the
amount of complementation is the same for all
combinations of distorter alleles. In this case, each
parameter configuration results in a unique stable
polymorphism. We give an analytical characterization
of this equilibrium, and show that it typically involves
many alleles. Subsequently, we show by means of a
simple example that the outcome of competition may
be contingent on the initial conditions if the degree of
complementation differs between distorters. Finally,
we study the competition between segregation
distorters in case that there is a negative trade-off
between distorting efficiency and complementing
ability.

The analysis will reveal that the outcome of
evolution is strongly affected by the amount and
pattern of complementation. If there is no comple-
mentation at all, the most efficient distorter
outcompetes all less efficient alleles, while if there is
strong complementation a high degree of polymor-
phism is expected. In the latter case, the evolutionary
success of a segregation distorter may be determined
more by its ability to complement other alleles than
by its segregation ratio.

2. The Model

We consider selection and segregation distortion at
an autosomal locus in an infinitely large, randomly
mating population with one sex only. Generations are
discrete and non-overlapping. Let us define the fitness
of allele Ai in an AiAj individual by the product of the
viability vij, the (multiplicative) fertility fij, and the
segregation ratio sij of Ai in an AiAj individual:

wij = vijfijsij. (1)

If pi denotes the relative frequency of allele Ai in the
gametes (after segregation distortion has taken place),
the change in allele frequency from one generation to
the next is given by [see e.g., Liberman (1991) or
Weissing & van Boven (1998)]:

p'i = pi
wi(p)
w(p)

. (2)

Here

wi(p)= s
l

wilpl

and

w(p)= s
k,l

pkwklpl

represent the marginal fitness of allele Ai and the
mean fitness of the population respectively.

We make the standard assumption that the viability
and fertility parameters are symmetric (i.e. vij = vji and
fij = fji), while the segregation parameters satisfy
sij + sji =1. In the absence of segregation distortion
(i.e. sij = sji = 1

2 for all i,j), the fitness matrix W=(wij)
is symmetric and (2) corresponds to the classical
Haldane–Fisher–Wright model for selection at an
autosomal locus (e.g., Nagylaki, 1992). In the
presence of segregation distortion, however, W is
asymmetric and wij should be interpreted as the fitness
of an AiAj individual viewed from the perspective of
Ai. In this case, (2) corresponds to the discrete
replicator dynamics (e.g., Hofbauer & Sigmund, 1988;
Weissing, 1991), as was first pointed out by Liberman
(1991).

In the following, we focus on a single wildtype allele
A0 and a number of distorter alleles A1, . . .,An.
Motivated by empirical examples such as the t
complex of the house mouse (e.g., Silver, 1993) or the
Sd complex of Drosophila melanogaster (e.g., Temin
et al., 1991), we assume throughout that segregation
is only distorted in heterozygous AiA0 individuals: the
segregation ratio of Ai (ir 1) in combination with the
wildtype (si0) will be denoted by si. Furthermore, we
assume that the viability and fertility of individuals
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carrying at least one wildtype allele is not impaired
(i.e. vi0 = fi0 =1). As a result, w00 = 1

2, wi0 = si, and
w0i =1− si. The fitness of individuals homozygous
for a distorter allele is assumed to be zero: wii =0
(ir 1). Finally, the parameters wij with i,jr 1 and
i$ j relate to the fitness of an allele in individuals
heterozygous for two different distorters:
wij = 1

2vijfij =wji. We say that Ai and Aj ‘complement’
another if the fitness of AiAj heterozygotes is higher
than that of AiAi or AjAj homozygotes. If there is no
complementation, then wij =0. If there is full
complementation, then wij = 1

2.

3. Competition Between Two Distorters

Let us start by considering the competition between
two segregation distorters [see van Boven et al. (1996)
and Weissing & van Boven (1998) for a more general
analysis]. We will focus on the interaction of a
wildtype allele A0 and two distorter alleles A1 and A2.
In this case, the fitness matrix W=(wij) is given by

W=G
F

f

1
2

s1

s2

1− s1

0
a

1− s2

a

0
G
J

j
. (3)

Here a=w12 (0R aR 1
2) is the amount of complemen-

tation between the distorter alleles A1 and A2.
At an equilibrium of (2), an allele Ai with p*i q 0

satisfies wi(p*)=w(p*). Hence, at equilibrium either
the frequency of an allele is zero, or its marginal
fitness equals the mean fitness of the population. For
the fitness matrix (3), the three border equilibria
(p*0 ,p*1 ,p*2 )T with p*0 =0, p*1 =0, or p*2 =0 are given
by (0,12,

1
2)

T, (2−2s2, 0, 2s2 −1)T, and (2−2s12s1 −1,
0)T, respectively. A straightforward calculation
shows that the fully polymorphic equilibrium
p*= (p*0 ,p*1 ,p*2 )T is given by

p*0 =
a(1− a)+ a(1− s1 − s2)

a(1− a)+ (s1 − s2)2

p*1 =
a(s2 − 1

2)+ (1− s2)(s1 − s2)
a(1− a)+ (s1 − s2)2 (4)

p*2 =
a(s1 − 1

2)+ (1− s1)(s2 − s1)
a(1− a)+ (s1 − s2)2 .

Since the denominators are positive, this interior
equilibrium exists whenever

aQ 2− s1 − s2, s1 q s2 −
s2 − 1

2

1− s2
a,

s2 q s1 −
s1 − 1

2

1− s1
a. (5)

It is easy to show that these conditions for the
existence of a polymorphic equilibrium are actually
equivalent to the conditions for instability of the
border equilibria with respect to an invasion attempt
of the allele not present at equilibrium. In other
words, the external instability of all border equilibria
guarantees the existence of a fully polymorphic
equilibrium with p*i q 0 for i$40,1,25. Moreover, it
can be shown that this polymorphic equilibrium, if it
exists, is always stable (Weissing & van Boven,
unpublished).

Using the relations (5), we can now classify for
which parameter combinations a fully polymorphic
equilibrium exists (in which case it is the only stable
equilibrium). In the same manner, we can determine
for which parameter combinations the equilibria
involving only one allele or two alleles are stable. The
results are given in Fig. 1. For a given amount of
complementation (a=0.05), this figure shows which
alleles will coexist as a function of the segregation
parameters s1 and s2. If both distorters have a
segregation disadvantage (s1 Q 1

2 and s2 Q 1
2), only the

wildtype will persist. If both distorters have a very
high segregation ratio, they may coexist without the
wildtype. If one distorter is moderately efficient (e.g.,
s1 =0.75) and the other is relatively inefficient (e.g.,
s2 =0.60), only the more efficient distorter will
coexist with the wildtype. Coexistence of all three

F. 1. Outcome of competition between a wildtype allele A0 and
two segregation distorters A1 and A2 as a function of the
segregation ratios s1 and s2. The fitness matrix W is given by eqn
(3) with a=0.05. Five equilibrium outcomes are possible: only the
wildtype persists (A0), the wildtype reaches a stable equilibrium
with one distorter allele (A0A1 and A0A2), the wildtype reaches a
stable equilibrium with both distorters (A0A1A2), or both distorters
reach a stable equilibrium without the wildtype (A1A2).
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alleles may occur if the segregation ratios of the two
distorters are similar (s1 1 s2), or if one distorter has
a particularly high segregation ratio. The latter case
may seem surprising, but can be understood as
follows. Imagine a very efficient distorter A1 with a
high segregation ratio that is present in a wildtype
population. Such a distorter will reach a high
frequency which is related to its segregation ratio
(p*1 =2s1 −1). Consider now an invasion attempt by
a second distorter allele. Since the efficient distorter is
prevalent in the population, the fate of the second
distorter is mainly determined by its interaction with
the first distorter allele. As soon as there is some
complementation between the two distorter alleles,
the second distorter may hike along with the first
distorter, even if it has no segregation advantage. In
other words, the fate of a second distorter may be
determined more by its ability to complement the
efficient distorter than by its efficiency to exploit the
wildtype (which is present in low frequency). If the
segregation ratio of the first distorter is very high
(here s1 q 0.9756), the segregation ratio of the second
distorter even becomes irrelevant for its ability to
persist stably.

4. Competition Between Many Distorters:
Equal Complementation

Let us now consider the competition between a
large number of segregation distorters. We assume
that there is a fixed amount of complementation
between all distorter alleles, and focus on the
evolution of the segregation ratio. More precisely, we
focus on the competition between a wildtype A0 and
n distorter alleles A1, . . ., An, where the fitness matrix
W is given by

W=G
G

G

F

f

1
2

s1

s2

*
sn

1− s1

0
a

*
a

1− s2

a

0
...
...

...

...

...

...
a

1− sn

a

*
a

0

G
G

G

J

j

. (6)

Here, the fitness of allele Ai or allele Aj in a compound
AiAj individual is denoted by wij = a for all i$ j
(i,jr 1).

Figure 2 shows the outcome of competition
between 11 distorter alleles. The segregation ratios of
the distorters are spread evenly in the interval [0,1]. In
(a) there is no complementation (a=0), in (b) there
is some complementation (a=0.125), and in (c) and
(d) there are even higher degrees of complementation
[a=0.25 in (c), and a=0.375 in (d)]. At t=0, all

alleles are present in equal frequencies. The figure
shows that complementation is a potent force
enhancing the coexistence of segregation distorters.
Without complementation (a), the most efficient
distorter (i.e. s=1.0) outcompetes all other alleles,
while if there is strong complementation (d), all
distorter alleles (even those with si Q 1

2) will persist
stably. Still, the most efficient distorters with the
highest segregation ratios reach the highest frequen-
cies. This is validated in the Appendix by showing
that, at equilibrium, differences in allele frequencies
are related to the segregation ratios in the following
manner:

p*i − p*j =(si − sj)
p*0
a

. (7)

Hence, the differences in allele frequences are
proportional to the differences in respective segre-
gation ratios. Moreover, these differences are
positively related to the equilibrium frequency of the
wildtype, and inversely related to the amount of
complementation. We may conclude that if the
amount of complementation is equal for all distorters,
the segregation ratio is an indicator of the relative
success (i.e. the frequency) of a segregation distorter.

However, the segregation ratio per se does not yet
predict whether a distorter can or cannot persist. As
shown in the Appendix, a rare distorter allele An+1

will successfully invade a population in which n
distorter alleles are already present if and only if

sn+1 q s−

a

n
(s− 1

2)+Var(s)

1− s− a01−
1
n1

. (8)

Here

s=
1
n

s
n

k=1

sk

and

Var (s)=
1
n

s
n

k=1

(sk − s)2

represent the unweighted mean and variance of the
segregation ratios in the population. In view of (8), a
rare distorter allele may invade even if its segregation
ratio is smaller than that of the resident distorters.
Furthermore, (8) indicates that the invasion prospects
of a rare distorter are enhanced by a high degree of
complementation, and by a large variance in the
segregation ratios of the resident alleles.

In case that a large number of distorters is already
present in the population, (8) can be used to
determine the minimal segregation ratio that a rare
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F. 2. Competition between the wildtype allele A0 (bold line), and a number of distorter alleles Ai (i=1, . . ., 11). The segregation ratios
of the distorter alleles are given by si =(i−1)/10 (i.e. the segregation ratio is increased from 0 to 1 with stepsize 0.1). In (a) there is no
complementation (i.e. wij =0 for i,jr 1), while there is an increasing amount of complementation in the other panels: wij =0.125 in (b),
wij =0.25 in (c), and wij =0.375 in (d). In homozygous condition all distorters have zero fitness: wii =0. At t=0 all alleles are present
in equal frequencies.

distorter allele needs for successful invasion. As
shown in the Appendix, this minimal segregation
ratio smin is given by (see Fig. 3)

smin(a)=1−3a. (9)

This equation shows again that complementation
facilitates the persistence of segregation distorters.
Notice that for aq 1

6, distorters can be found that
have a segregation disadvantage (sQ 1

2) but are still
able to invade. Moreover, for aq 1

3, all distorters will
successfully invade, regardless of their segregation
ratio.

At equilibrium, the (weighted) mean segregation
ratio in the population is given by

p*s= s
n

i=1

p*i si.

In a highly polymorphic population there is a simple
relation between the degree of complementation
and the mean segregation ratio (Appendix; Fig. 3):

p*s=1− a. (10)

Accordingly, the (weighted) mean segregation ratio
approaches the Mendelian value 1

2 if there is full
complementation (a= 1

2). But even if a is relatively
small, this need not imply that segregation distortion
occurs frequently. In fact, since the frequency of the
wildtype is usually quite low [see eqn (A.6)], most
individuals will be heterozygous for two distorter
alleles, and in these individuals segregation is
Mendelian.

In principle, eqns (9) and (10) only apply if the
number of distorters is infinitely large. However,
simulations show that (9) and (10) already accurately
predict smin and p*s if the number of resident distorter
alleles is rather small (nr 5, data not shown).

5. Competition Between Three Distorters:
Unequal Complementation

Let us now illustrate, by means of a simple
example, how the results may be affected if the
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amount of complementation is not equal for all
distorter alleles. To this end, we consider the
competition between a wildtype and three distorter
alleles. In this example, the fitness matrix W is given
by

W=G
G

G

F

f

1
2

s1

s2

s3

1− s1

0
a

0

1− s2

a

0
0

1− s3

0
0
0

G
G

G

J

j
(11)

Here the distorter alleles A1 and A2 complement
another to some degree a, while the third distorter A3

does not show any complementation in combination
with A1 or A2.

Consider first an equilibrium population of the
wildtype A0 and the third distorter allele A3

(p*3 =1− p*0 =2s3 −1). Such a population will be
destabilized by an invasion attempt of A1 whenever
the marginal fitness of A1 exceeds the marginal fitness
of A3. Since w1(p*)= s1p*0 and w3(p*)= s3p*0 [see eqn
(A.2) with a=0], it is clear that a rare distorter A1 will
increase in frequency if and only if it is superior with
respect to its segregation ratio: s1 q s3. Similarly, a
rare allele A2 will increase if and only if s2 q s3. Hence
the resident population can be destabilized by A1 or
A2 if and only if

s3 Qmax4s1,s25. (12)

On the other hand, an equilibrium population
consisting of the wildtype and two complementing
distorters A1 and A2 can be invaded successfully by A3

whenever, at equilibrium, the marginal fitness of A3 is
larger than that of any of the resident alleles
(w3(p*)qwi(p*) for i$40,1,25; see (A.2)). Since
w3(p*)= s3p*0 , a simple calculation shows that A3 will
invade whenever

s3 q s+
a

2
1− p*0

p*0
, (13)

where s= 1
2(s1 + s2).

It is conceivable that A3, although superior with
respect to its distortion ability, is nevertheless not able
to invade a population where A1 and A2 are already
present. This may happen whenever

max4s1,s25Q s3 Q 1
2(s1 + s2)+

a

2
1− p*0

p*0
. (14)

In such a situation (which is favoured by a high
degree of complementation between A1 and A2, and a
low wildtype frequency) there are two stable
equilibria, one involving the wildtype and the efficient
distorter A3, and one involving the wildtype and A1

and A2. Consequently, the outcome of competition
may depend on the initial conditions in these cases.
This is illustrated by Fig. 4 where at t=0 three
distorters are introduced with equal frequency into a
wildtype population. The first and second distorters
A1 and A2 do not have a high segregation ratio
(s1 =0.70, s2 =0.75) but complement another fully
(w12 = 1

2), while the third distorter A3 has a high
segregation ratio (s3 =0.95), but does not comp-
lement the other alleles (w13 =w23 =0). In (a) the
initial frequency of all distorters is 0.01, while it is 0.02
in (b). Initially all three distorters increase in
frequency at the expense of the wildtype. The most
efficient distorter with the highest segregation ratio,
however, increases more rapidly than the two less
efficient ones. In Fig. 4(a) this leads to the competitive
exclusion of the two distorters with a lower
segregation ratio. In Fig. 4(b), on the other hand, the
initial frequency of all distorters is somewhat higher,
and this allows the two complementing distorters to
increase further in frequency after the initial phase.
Here, the more efficient distorter is outcompeted by
the joint action of the less efficient ones.

6. Trade-offs Between Distortion Efficiency and
Individual Fitness

Up to now, we considered complementation as a
factor that is independent of segregation distortion.
This assumption may not be realistic. For the t
complex of the house mouse and the Sd complex of
Drosophila melanogaster, empirical evidence suggests
that the negative fitness effects at the individual level

F. 3. Outcome of competition between a large number of
distorter alleles as a function of the amount of complementation.
All distorter alleles complement another to the same degree: wij = a
(i,jr 1, i$ j). The hatched area represents the range of distorters
that are able to invade the population when a large number of
distorters is already present. The minimal segregation ratio smin(a)
needed for successful invasion is given by eqn (9).



1.00

0.25

0 50 100

Generation

F
re

q
u

en
cy

7525
0.00

0.50

0.75

(b)

1.00

0.25

0 50 100

Generation

F
re

q
u

en
cy

7525
0.00

0.50

0.75

(a)

2 = 0.75

1 = 0.70

3 = 0.95

3 = 0.95

    137

F. 4. Dependence of the outcome of competition on the initial
conditions. Two distorters of intermediate efficiency (s1 =0.70,
s2 =0.75) that complement another well (w12 =0.50) and an
efficient third distorter (s3 =0.95) that does not show any
complementation (w13 =w23 =0) are introduced simultaneously
into the population with low frequency. The initial frequency of all
distorters is 0.01 in (a), and 0.02 in (b).

2wij =(1− sk
i )(1− sk

j ) (15)

and

2wij =1− sk
i s

k
j , (16)

that will be called the ‘‘multiplicative fitness model’’
and the ‘‘epistatic fitness model’’, respectively. In both
models, a distorter with s=0.0 does not depress
fitness at all, while a distorter with s=1.0 depresses
fitness maximally. It is obvious that smaller values of
the parameter k lead to more severe negative fitness
effects than larger values of k. The main difference
between the two models is that for two given
segregation ratios the amount of complementation is
always higher in the epistatic fitness model (16) than
in the multiplicative fitness model (15).

Let us start by considering the competition between
two distorter alleles. As indicated above, the two
distorters will stably coexist whenever they are able to
spread when rare. The invasion criterion (5) [or (8)
with n=1] shows that this is the case if

s2 q s1 −
s1 − 1

2

1− s1
w12 and s1 q s2 −

s2 − 1
2

1− s2
w12,

or equivalently,

s1 − 1
2

1− s1
q s1 − s2

w12
q s2 − 1

2

1− s2
. (17)

Insertion of eqns (15) or (16) into eqn (17) yields the
parameter combinations for which stable coexistence
of all three alleles is possible. Figure 5 shows the
results for the multiplicative [(a) and (b)] and for the
epistatic [(c) and (d)] model in case of severe [k= 1

2,
(a) and (c)] and less severe [k=2, (c) and (d)] fitness
reduction. Notice that coexistence of the distorter
alleles depends strongly on the details of the trade-off
between distortion efficiency and individual fitness. In
the multiplicative model with its stronger negative
fitness consequences, only positive distorters (i.e.
si q 1

2) can stably persist, and stable coexistence of two
distorter alleles is only possible if the two segregation
ratios do not differ much. In contrast, stably
coexistence is easily achieved in the epistatic model:
Here a negative distorter may well persist stably with
a highly efficient distorter. In extreme cases it is even
possible that a negative distorter (e.g., s=0.10) may
profit from decreasing its segregation ratio even
more (e.g., to s=0.0) to increase the amount of
complementation in combination with an efficient
distorter [Fig. 5(c)].

Hence, in case of two distorter alleles coexistence
may or may not be possible, depending on the precise
form of the trade-off between segregation advantage
and negative fitness effects at the individual level. Let

(mainly male sterility) are a direct consequence of the
phenomenon of segregation distortion (Temin et al.,
1991; Lyon, 1991). In both systems, a high distorting
ability seems to induce more severe negative fitness
consequences at the individual level. Loosely speak-
ing, the distorter alleles manage to disable competing
gametes (typically the spermatozoa). Individuals
homozygous for a distorter or heterozygous for two
distorters produce gametes that harm each other,
hence leading to a reduced fitness (usually male
fertility).

The details of the trade-off between segregation
distortion and individual fitness (i.e. viability times
fertility) are not yet well understood [but see Hurst
(1993) for a speculative mechanistic model]. There-
fore, we will here consider two simple scenarios. We
assume that the individual fitness 2wij (viability times
fertility) of an AiAj individual (i,jr 1, i$ j) is
negatively related to the segregation ratios si and sj.
More specifically, we consider the two models
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us now consider the implications of a trade-off for the
competition between several distorter alleles. Figure 6
shows the outcome of competition between 11
distorter alleles that all enter the population with the
same frequency. The panels of this figure correspond
to those of Fig. 5. In the multiplicative model [(a) and
(b)] more efficient distorters quickly outcompete less
efficient ones, and ultimately a population results
where only the most efficient distorter is present. In
case of severe individual selection (a) this is not
unexpected, since for this scenario already two
distorters can coexist only under very special
circumstances [Fig. 5(a)]. The outcome in Fig. 6(b) is
less obvious, since Fig. 5(b) has shown that under less
severe selection coexistence is, at least in principle,
possible. That the most efficient distorter (s=1.0) is
also dominant in this case is explained by the fact that
this distorter cannot be complemented by any of its
competitors [wij =0, see (15)] and that it is therefore

immune against invasion. If this extreme distorter is
excluded from consideration, and the range of
segregation ratios is limited to, say 0.0 to 0.90, no
distorter allele is competively dominant. However,
only a rather moderate degree of polymorphism
results, and the allele with the highest segregation
ratio reaches by far the highest frequency (results not
shown).

In case of an epistatic trade-off [Figs 6(c) and (d)],
the outcome of competition is fundamentally
different. Here, populations result with a high degree
of polymorphism. In (c) the most efficient distorter
still reaches the highest frequency, but a number of
complementing distorters (with si Q 1

2) may also
persist with appreciable frequencies. In (d), the
frequencies of all distorters are more equal, and the
segregation ratio is only of marginal importance for
the evolutionary success of any specific distorter
allele. In fact, distorters with segregation ratios of

F. 5. Outcome of competition between distorters when there is a trade-off between the segregation ratios si and sj, and fitness
wij =wij(s1, s2). (a) and (b): multiplicative fitness model (13), and (c) and (d): epistatic fitness model (14). In (a) and (c) k= 1

2, i.e. a small
increase in the segregation ratio leads to a considerable reduction in fitness. In (b) and (d) k=2, i.e. a small increase in the segregation
ratio reduces fitness to a lesser extent.
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F. 6. Outcome of competition between the wildtype (bold line), and a number of distorter alleles (n=11) when there is a trade-off
between distorting ability, and fitness in combination with other distorters. The segregation ratio is increased with a stepsize of 0.1 (cf.
Fig. 2). The panels correspond to those of Fig. 5. At t=0 all alleles are present in equal frequencies.

0.50–0.70 reach the highest frequencies. Panel (d)
resembles a self-incompatibility system, where every
new rare allele is favoured by selection (e.g.,
Uyenoyama, 1993).

One might question the robustness of the results of
Fig. 6 since, as we have seen in Fig. 4, it is not at all
obvious that the outcome of competition is indepen-
dent of the initial conditions. However, simulations
show that the complications of Fig. 4 do not arise for
the scenarios of Fig. 6 (results not shown): the
outcome of competition is always the same, regardless
of the order in which the alleles are introduced.

7. Discussion

Most studies for the evolution of segregation
distortion consider a distorter locus with a wildtype
allele and a single distorter allele, and investigate
under what conditions modifiers of the segregation
ratio will spread (e.g., Prout et al., 1973; Liberman,
1976; Eshel, 1985; Lessard, 1985). In this paper, we
take a different approach. We restrict attention to the

distorter locus and consider the competition between
a large variety of distorter alleles. Hence, we focus on
the struggle among distorters, and not on the
response of the rest of the genome to segregation
distortion.

A crucial assumption of our model is that different
distorter alleles may complement another, i.e. that the
fitness of individuals heterozygous for two different
distorters is higher than that of individuals ho-
mozygous for a distorter. In the absence of
complementation, only the most efficient distorter will
persist in the long run. In contrast, complementation
often leads to a systematic advantage of rare distorter
alleles, resulting in a high degree of polymorphism. In
particular, weak segregation distorters with a low
segregation ratio may stably coexist with strong
distorters. We showed that if the amount of
complementation is fixed, all distorters with a
segregation ratio above a certain threshold value will
persist, resulting in a population where segregation
distortion is virtually absent. If the amount of
complementation varies, the outcome of competition
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may be contingent on the initial conditions. If
complementation is causally related to distortion, the
outcome of competition depends crucially on the
details of the trade-off between distortion efficiency
and complementing ability.

The occurrence of complementation and a trade-off
between distortion efficiency and individual fitness are
well-documented (e.g., Temin et al., 1991; Lyon,
1986, 1991). However, other aspects of our simple
model are not particularly realistic when confronted
with real-world segregation distortion systems such as
the Sd complex of Drosophila melanogaster, or the t
complex of the house mouse. For instance, our model
predicts very high distorter frequencies (typically over
0.80), often resulting in a low population fitness. The
problem of an unrealistically high distorter frequency
is shared by many deterministic models of segregation
distortion [but see Petras (1967) and Lewontin
(1968)]. For the Sd complex the discrepancy between
expected and observed distorter frequencies is usually
explained by taking fitness disadvantages in het-
erozygous condition (e.g., Temin et al., 1991) or the
genetical structure of Sd into account (Charlesworth
& Hartl, 1978; Wu & Hammer, 1991). For the t
complex, factors such as inbreeding (Petras, 1967),
fitness effects in heterozygous condition (e.g.,
Johnston & Brown, 1969), reproductive compen-
sation or kin selection (Charlesworth, 1994), selection
at the level of the mating pairs (e.g., Lenington &
Heisler, 1991), or group selection (e.g., Lewontin,
1962; Nunney & Baker, 1993; van Boven & Weissing,
1998b) are usually invoked. It remains to be seen how
the outcome of evolution is affected under more
realistic scenarios which take these factors into
account (van Boven & Weissing, 1998a).

Our study sheds some light on the current
controversy on the relevance of evolutionary stability
in the context of long-term evolution (e.g., Weissing,
1996; Marrow et al., 1996). In essence, the ESS
approach towards adaptive evolution considers
evolution as a series of gene substitution events.
According to this view, a monomorphic wildtype
population is repeatedly challenged by single mutants.
Implicitly, it is assumed that mutants with a fitness
disadvantage will be wiped out of the population,
while mutants that confer a fitness advantage will
invade and spread to fixation. If this view were
correct, one would expect that the population should
either continue to switch between alternative states
(e.g., Liberman, 1991; Stadler, 1996; Godelle &
Reboud, 1997), or converge to a monomorphic ESS
population. For instance, Godelle & Reboud (1997)
arrived at this conclusion when they applied the gene
substitution approach in the context of segregation

distortion. However, these authors a priori excluded
the phenomenon of complementation and focused on
pairwise interactions between distorter alleles where
one of the contestants is always superior over the
other. Our study shows the limitations of this
approach. In fact, our analysis indicates that rare
alleles are systematically favoured, while common
alleles are always prone to exploitation. As a result,
we expect a high degree of polymorphism instead of
the competitive superiority of one distorter allele over
all others. Our results furthermore suggest that the
complementing ability of a distorter allele may be at
least as important as the segregation ratio in
determining the outcome of evolution. In contrast to
the approach taken by Godelle and Reboud, our
model does not permit the integration of both intra-
and inter-individual fitness into a single measure that
determines the outcome of evolution. In our opinion,
this may well be the rule in systems where selective
forces are acting at different levels.
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APPENDIX

Consider an allele frequency equilibrium p* where
the wildtype allele A0 and n distorter alleles are
present with positive frequencies (p*i q 0 for i=0,
. . ., n). At equilibrium, all resident alleles have the
same marginal fitness: wi(p*)=wj(p*) for all i,j$40,
. . ., n5. If the fitness matrix W is given by (6), the
marginal fitnesses can be written as

w0(p*)=1− 1
2p*0 − s

n

k=1

p*k sk (A.1)

and

wi(p*)= p*0 si + a(1− p*0 − p*i ), (A.2)

where i=1, . . .,n. For i,j$41, . . .,n5, the identity
wi(p*)=wj(p*) implies

wi(p*)−wj(p*)= a(p*j − p*i )+ (si − sj)p*0 =0,

or, equivalently

p*i − p*j =(si − sj)
p*0
a

. (A.3)

Let us now express the equilibrium frequencies in
terms of the unweighted mean and variance of the
segregation ratios s1, . . ., sn:

s=
1
n

s
n

k=1

sk

Var(s)=
1
n

s
n

k=1

(sk − s)2 =
1
n

s
n

k=1

s2
k − s 2.

To this end, rewrite (A.3) as

p*i = p*j +(si − sj)
p*0
a

,

and take the (unweighted) average of the r.h.s. over
all j=1, . . .,n to obtain

p*i =
1
n

s
n

j=1

p*j +(si − s)
p*0
a

=
1
n
(1− p*0 )+ (si − s)

p*0
a

. (A.4)
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Multiplying both sides with si and summing over
i=1, . . .,n yields

s
n

i=1

p*i si =(1− p*0 )s+
p*0
a 0s

n

i=1

s2
i −0s

n

i=1

si1s1,
or

s
n

i=1

p*i si =(1− p*0 )s+
np*0
a

Var(s). (A.5)

Inserting (A.5) into (A.1), equating (A.1) and (A.2),
and taking the sum over i=1, . . .,n gives the
equilibrium frequency of the wildtype allele

p*0 =

1− s− a01−
1
n1

1
2 +

n
a

Var(s)− a01−
1
n1

, (A.6)

and, upon insertion into (A.4) also the equilibrium
frequency of the distorter alleles.

Consider now a rare allele An+1 that is not present
at equilibrium (p*n+1 =0). This allele will spread in the
population if its marginal fitness

wn+1(p*)= sn+1p*0 + a(1− p*0 ) (A.7)

is larger than w1(p*)= . . .=wn(p*), the marginal
fitness of the resident distorter alleles. Taking the
unweighted mean of the r.h.s. of eqn (A.2), we can
express the marginal fitness of the resident alleles as

wi(p*)= sp*0 + a01−
1
n1(1− p*0 ). (A.8)

Hence, the invasion criterion wn+1(p*)qwi(p*)
becomes

sn+1 q s−
a

n
1− p*0

p*0
. (A.9)

Insertion of (A.6) into (A.9) leads to criterion (8) for
invasion of a rare distorter allele An+1:

sn+1 q s−

a

n
(s− 1

2)+Var(s)

1− s− a01−
1
n1

. (A.10)

Relation (A.10) can be used to derive the minimal
segregation ratio smin(a) needed for successful
invasion into a highly polymorphic population.
Assume that all distorter alleles with a segregation
ratio higher than smin(a) can persist, while those with

a lower segregation ratio cannot. If n is large, smin(a)
is given by

smin(a)= s−
Var(s)

1− s− a
. (A.11)

The unweighted mean and variance s and Var(s) of
the resident alleles correspond to the mean and
variance of the uniform distribution over the interval
[smin(a), 1]:

s=
1+ smin(a)

2
, Var(s)= 1

12 [1− smin(a)]2. (A.12)

Insertion of (A.12) into (A.11) yields (9):

smin(a)=61−3a

0
for aR 1

3

for aq 1
3

. (A.13)

Insertion of (A.13) into (A.12) gives the (unweighted)
mean and variance of the segregation ratio,

s=61− 3
2a

1
2

for
for

aR 1
3

aq 1
3

Var(s)=63
4a

2

1
12

for
for

aR 1
3

aq 1
3

. (A.14)

The weighted mean of the segregation ratio, p*s, is
given by (A.5). Since lim

n : a
p*0 =0, [see eqn (A.6)], the

weighted mean segregation ratio is given by

p*s= s
n

k=1

p*k sk = s+
np*0
a

Var(s). (A.15)

Insertion of (A.14) into (A.6) shows that the product
np*0 is given by

np*0 =6 2
3

6a(1−2a)
for
for

aR 1
3

aq 1
3

. (A.16)

Finally, inserting (A.14) and (A.16) into (A.15) leads
to (10), the weighted mean segregation ratio in a
highly polymorphic population

p*s=1− a. (A.17)


