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INTRODUCTION

Segregation distorters are genetic elements that disturb
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Mendelian segregation in their favor. In well-known
examples such as the SD complex of Drosophila mela-
nogaster (Temin et al., 1991) and the t complex of the
house mouse (Silver, 1993), the distorter alleles manage
to be present in more than 90% of the gametes of hetero-
zygous males. Nevertheless, these selfish genetic elements
do not spread to fixation since they typically induce
severe negative fitness effects at the individual level.
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Ever since their detection, segregation distorters have
fascinated evolutionary biologists because they exem-
plify selection at a lower level leading to maladaptive
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features at a higher level. The outcome of evolution in
systems in which selection operates at different levels is,
however, still poorly understood. For example, one
might expect that, all other things being equal, the most
‘‘efficient’’ distorter with the highest transmission ratio
should outcompete less efficient distorters. This expecta-
tion is, however, not justified, as was shown in an earlier
simulation study (van Boven et al., 1996). In fact, the



FIG. 1. Outcome of the competition between a wildtype allele A0
and two segregation distorters A1 and A2 as a function of their trans-
mission ratios s1 and s2 (van Boven et al., 1996). When homozygous,
A1 induces lethality in both males and females, while A2 only leads to
male sterility in homozygous condition. Heterozygous A1A2 males are
to some extent viable and fertile, so that the product of relative viability
and relative fertility is 0.1. Heterozygous A1A2 females are fully viable
and fertile. Segregation distortion occurs only in males. Five equilib-
rium outcomes are possible: (1) only the wildtype A0 persists, (2) the
wildtype persists with the first distorterA1, (3) the wildtype persists with
the second distorter A2, (4) the wildtype persists with both distorter
alleles, or (5) both distorter alleles persist without the wildtype.

competition between segregation distorters has a number
of surprising aspects, some of which are exemplified by
Fig. 1:

• A segregation distorter that causes lethality in both
sexeswhenhomozygous can stably coexistwith adistorter
that induces only male sterility in homozygous condition,
even if the ‘‘lethal’’ distorter has a smaller segregation
advantage than the ‘‘sterile’’ distorter.
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• Even ‘‘negative’’ segregation distorters with a
segregation disadvantage (s < 12 in Fig. 1) can stably
persist in a population. Actually, the most efficient
distorters pave the way for the persistence of the least
efficient distorters.
• Coexistence of a second segregation distorter with
an already present first distorter is most difficult to
achieve if the transmission ratio s of the first distorter is
intermediate (say 0.70 < s < 0.90).
In this paper we complement our previous simulation
study by a systematic analytical investigation of
the competition between segregation distorters. This
question is of empirical relevance, because a variety of
distorter alleles are found in well-studied systems (e.g.,
the t complex of the house mouse and the SD complex of
Drosophila melanogaster), both in the lab and in the field.
The standard models for the evolution of segregation
distortion (see Feldman and Otto (1991) and references
therein) are not directly applicable to this situation since
they focus on the interaction of the wildtype with a single
distorter allele. For instance, the classical models of
Bruck (1957) and Dunn and Levene (1961) are designed
to describe the interaction of a single lethal or sterile t
haplotype (t allele) with the wildtype. The few models on
the interaction of several distorter alleles (e.g., Hartl,
1970) make the unrealistic assumption that both sexes
are equally affected by selection and segregation distor-
tion. In a companion paper (Weissing and van Boven,
2001) we have therefore developed some new theory
for the interaction of several distorter alleles in a sex-
differentiated population. Here the theory is applied to
the t complex of the house mouse, thereby illustrating
how the general results can be put into practice.
The paper is organized as follows. We start by a
characterization of the interaction of a wildtype allele A0
with a segregation distorter allele A1. Then we move on
to consider invasion attempts of a rare distorter allele A2
and ask how large the transmission ratio of the second
distorter has to be for successful invasion. Technically,
this amounts to determining whether the resident popu-
lation consisting of the wildtype A0 and the first distorter
A1 is unstable with respect to invasion attempts by A2.
Similarly, we can study the conditions under which A1,
when rare, can invade in a population in whichA0 andA2
are present. It is likely that all three alleles will stably
coexist if they are able to invade when rare. In fact, we
will show that the invasion analysis of the present paper
provides a complete analytical characterization of Fig. 1
and all other equilibrium diagrams of van Boven et al.
(1996) and van Boven andWeissing (1996).

van Boven and Weissing
THE MODEL

Fitness

We focus on a single autosomal locus A with three
alleles A0, A1, and A2. A0 represents the wildtype allele,
while the distorter alleles are labeled A1 and A2. The sex-
specific viabilities of AiAj males and females (i, j=0,
1, 2) are denoted by nmij and n

f
ij. Likewise, the sex-specific



fertilities of AiAj males and females are given by j
m
ij and

jfij. The transmission ratio of Ai in AiAj males and
females (i.e., the fraction of functional Ai gametes
produced by an AiAj individual) is denoted by s

m
ij and

sfij, respectively.
The viability, fertility, and segregation parameters are
combined into a single male and female set of fitness
parametersmij andfij as follows:

mij=n
m
ijj

m
ijs
m
ij and fij=n

f
ijj

f
ijs
f
ij. (1)

The mij and fij represent the male and female fitness of
genotype AiAj viewed from the perspective of allele Ai.
Hence, our model explicitly takes the point of view
of the gene (or rather the allele) rather than that of the
individual (or, more precisely, the genotype).
Throughout, the fitness parameters are assumed to
be nonnegative. Moreover, the viability and fertility
parameters nij and jij are normalized so that the geno-
type AiAj with highest viability or fertility has nij=1 or
jij=1. In the complete absence of viability or fertility
selection this implies that nij=1 or jij=1 for all i and j.
The viability and fertility parameters are assumed to be
symmetric; i.e., they satisfy nij=nji and jij=jji for all i
and j. The segregation parameters sij, on the other hand,
are not symmetric but satisfy sij=1−sji. This reflects
the fact that an individual of genotype AiAj will always
transmit one of the alleles Ai or Aj to its offspring. In the
case of Mendelian segregation, the segregation param-
eters are given by sij=sji=

1
2 . In the complete absence of

viability selection, fertility selection, and segregation
distortion, (1) impliesmij=fij=

1
2 ; the fitness of an allele

in an individual is 12 .

Dynamics

Consider an infinitely large population. Mating occurs
at random, and generations are discrete and nono-
verlapping. The allele frequency dynamics is given by the
following set of recurrence equations for the allele
frequencies in male and female gametes, pi and qi:

p −i=
Mi

m̄
(2)

Competition at the Mouse t Complex
q −i=
Fi
f̄
.

The numerators are given by Mi=
1
2 pi ; l milql+

1
2 qi ; l mil pl and Fi=

1
2 pi ; l filql+

1
2 qi ; l fil pl, respec-

tively. The denominators m̄=;k Mk and f̄=;k Fk
represent the mean fitness of the male and female
subpopulations, respectively. A derivation of the model
is presented in the companion paper (Weissing and van
Boven, 2001; see also Karlin, 1978; Karlin and Lessard,
1986; Nagylaki, 1992).
In the special case of no differences between the sexes
(mij=fij=wij), the allele frequencies in males and
females are equal after one generation (p −i=q

−

i). From
then on the dynamics is given by the following set of
recurrence equations:

p −i=
piwi
w̄
. (3)

Here wi=; l wil pl represents the marginal fitness of
allele Ai, while w̄=;k, l pkwkl pl is the mean fitness of the
population.

Equilibria and Their Stability

The equilibria of the simplified model (3) are found by
putting p −i=pi=p

g
i . Hence, at equilibrium either the

frequency of an allele is zero (pgi=0) or its marginal
fitness equals the fitness of the population (wg

i=w̄
g).

Hence, the marginal fitnesses of all alleles present at
equilibrium are identical (wg

i=w
g
j for all i and j). The

equilibria are readily calculated, even if a large number of
alleles are involved, since they are given by a set of linear
equations (see the companion paper).
The equilibria of the more general model (2) are given
by the relations pgi m̄

g=Mg
i and q

g
i f̄

g=Fg
i , unless

pgi=q
g
i=0. In contrast to the model given by (3),

determination of the equilibria is a formidable task, even
in those cases where only a small number of alleles are
involved (see Lewontin (1968) for a specific example). In
the special case of a so-called symmetric equilibrium, i.e.,
an equilibrium where the allele frequencies are identical
in male and female gametes, the analysis is greatly
simplified. In this case qgi=p

g
i , and the equilibrium

conditions are given by the relations ; l mil p
g
l=m̄

g

unless pgi=0, again leading to a set of linear equations
for pgi (see the companion paper).
The stability of an equilibrium is determined by the
linear approximation of the allele frequency dynamics at
the equilibrium. An equilibrium is stable if the eigen-
values of the Jacobian are smaller than one in absolute
value. To facilitate the stability analysis, we will distin-
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guish between two types of stability: internal stability
and external stability. Internal stability refers to stability
with respect to perturbations of the alleles that are
present at equilibrium. In contrast, external stability
refers to stability with respect to invasion attempts by
alleles that are not yet present. Often, determination of
the internal stability of an equilibrium is a formidable
task. In contrast, determination of the external stability
of an equilibrium is usually feasible.



In the case of a symmetric equilibrium (i.e., qgi=p
g
i for

all i), the invasion prospects of a newly arising allele are
particularly easy to determine. Symmetric equilibria
occur whenever selection and segregation distortion are
the same in both sexes or whenever selection and
segregation distortion are restricted to one of the sexes.
In case of a symmetric equilibrium, invasion of a rare
allele can be judged on the basis of a Shaw–Mohler
criterion (Shaw and Mohler, 1953). A symmetric equi-
librium where the alleles A0 and A1 are present can be
invaded by a rare alleleA2 if

1
2
1; l m2l p

g
l

; l mil p
g
l

+
; l f2l p

g
l

; l fil p
g
l

2 > 1 (4)

for either of the resident alleles i=0 or i=1. In other
words, allele A2 will spread if it has a higher fitness in
males and females than the resident alleles. Examples 1,
2, and 3 below provide examples of an invasion analysis
based on the Shaw–Mohler criterion (4). In the case of an
asymmetric equilibrium (qgi ] p

g
i ), determination of the

invasion prospects of a rare allele is more difficult but
still possible (Example 4).

THE t COMPLEX OF THE HOUSE MOUSE

Motivated by the t complex of the house mouse, we are
particularly interested in the interaction of a wildtype A0
with two distorter alleles A1 and A2 in a situation where
the male and female fitness matrices M=(mij) and
F=(fij) are of the form

M=
A0
A1
A2

R
A0 A1 A2
1
2 1−s1 1−s2
s1 d1 a

s2 a d2

S ,

F=
A0
A R

A0 A1 A2
1
2

1
2

1
2

1 e b S .

(5)

346
1

A2
2 1
1
2 b e2

The interpretation of these matrices is as follows (see van
Boven et al. (1996), van Boven (1997), and van Boven
and Weissing (2000) for a biological justification). Indi-
viduals bearing the wild-type allele A0 have the highest
product of viability and fertility, which is normalized
to 1. In the absence of segregation distortion, this value is
multiplied by 1

2 , the ratio of Mendelian segregation.
Segregation distortion occurs in heterozygous A0A1 and
A0A2 males only. The transmission ratios of A1 and A2 in
combination with the wildtype are denoted by s1 and s2,
respectively (0 [ s1, s2 [ 1).
In the case of the t complex, males homozygous for a
distorter allele suffer from severely impaired viability or
fertility. Specifically, homozygous A1A1 or A2A2 males
are (nearly) always sterile, leading to d1=d2=0. Males
that are heterozygous for two different distorter alleles
may be at least partially fertile (0 [ a < 12) if the distorter
alleles complement each other with respect to fertility,
i.e., if the fitness of aA1A2 heterozygote is higher than the
fitness ofA1A1 andA2A2 homozygotes. Formally,A1 and
A2 are said to complement each other if a >max(d1, d2).
Complementation with respect to male fertility is well
documented (Lyon, 1991).
The distorter alleles at the t complex (the t haplotypes)
may have no effect on female fitness (‘‘male sterile’’ t
haplotypes or simply ‘‘sterile’’ t haplotypes) or they may
lead to lethality in the homozygous condition in both
females and males (‘‘lethal’’ t haplotypes). In case of two
lethal t haplotypes, we have, in addition to d1=d2=0,
e1=e2=0. Lethal t haplotypes are said to complement
each other if b > 0 or a > 0, i.e., if the fitness of females
or males heterozygous for two different distorter alleles is
higher than the fitness of one of the homozygotes.
Complementation with respect to viability is also well
documented (Klein et al., 1984). In fact, at the t complex
there are at least 16 so-called ‘‘complementation groups’’
which are defined by the occurrence of complementation
with respect to viability.

THE WILDTYPE AND A SINGLE

DISTORTER ALLELE

Dynamics

Let us first consider the interaction of the wildtype A0
with a single distorter allele A1. In this case, the fitness

van Boven and Weissing
matrices (5) reduce to

M=1
1
2

s1

1−s1
d1
2 , F=1

1
2
1
2

1
2

e1
2 . (6)

The dynamics of the system is essentially determined
by the recurrence equations for p1 and q1, the allele
frequencies of A1 in males and females, respectively. A



straightforward calculation shows that the numerators
M1 andF1 in (2) are given by

M1=
1
2 s1(p1+q1−2p1q1)+d1 p1q1

F1=
1
4 (p1+p1−2p1q1)+e1 p1q1,

while the mean fitnesses in males and females take the
form

m̄=1
2 (1−p1q1)+d1 p1q1

f̄=1
2 (1−p1q1)+e1 p1q1.

As a consequence, the allele frequency dynamics is
characterized by

p −1=
s1(p1+q1−2p1q1)+2d1 p1q1

1−p1q1+2d1 p1q1

q −1=
1
2 (p1+q1−2p1q1)+2e1 p1q1

1−p1q1+2e1 p1q1
.

(7)

Equilibria

In addition to the border equilibria pg1=q
g
1=0 and

pg1=q
g
1=1, the A0A1 system admits potentially an

interior equilibrium 0 < pg1 , q
g
1 < 1 that is characterized

by p −1=p1=p
g
1 and q

−

1=q1=q
g
1 . Solving these equilib-

rium equations boils down to finding the roots of a
third-order polynomial. It is therefore not surprising that—
even in this simple scenario—an explicit calculation of
the equilibrium frequencies is only feasible for some
special cases.
In the special case that selection and segregation
distortion occur in males only (e1=

1
2), the equilibrium

frequencies are the same in males and females. The equi-
librium frequency ofA1 in males and females is given by

pg1=q
g
1=
2s1−1
1−2d1

, (8)

while qg0=p
g
0=1−p

g
1 . In the case of a male sterile dis-

torter (d1=0), the equilibrium frequencies reduce to
those of the classical model of Dunn and Levene (1961).
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In the case of a lethal distorter (d1=e1=0), a
straightforward calculation shows that the equilibrium
frequency ofA1 in males and females is given by

pg1=s1 11−=
1−s1
s1
2

qg1=
1
2
11−=1−s1

s1
2 ,

(9)
while the mean fitness in males equals the mean fitness in
females:

m̄g=f̄ g=1
4+

1
2`s1(1−s1).

It is not difficult to check that pg1 and q
g
1 correspond with

the equilibrium frequency of a lethal t haplotype pre-
dicted by the model of Bruck (1957). Bruck, however,
focused on the allele frequencies in adults, before
segregation distortion has taken place.

Instability of the Border Equilibria

The border equilibrium pg1=q
g
1=0, where only the

wildtype is present, is stable if and only if the distorter
allele A1 cannot invade when rare. According to a
Shaw–Mohler criterion analogous to (4), A1 will spread
when rare if

1
2
1m10
m00
+
f10
f00
2=1
2
(2s1+1) > 1.

Obviously, this is equivalent to

s1 >
1
2 ;

i.e., A1 will invade whenever it has a segregation advan-
tage.
The border equilibrium pg1=q

g
1=1, in which only the

distorter allele is present, is stable if and only if the
wildtype allele A0 cannot invade when rare. A0 will
invade when rare if

1
2
1m01
m11
+
f01
f11
2=1
2
11−s1
d1
+

1
2

e1
2 > 1

or, equivalently, if

s1 < 1−d1 12−
1
2e1
2 .
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Accordingly, fixation of the distorterA1 is stable only if

s1 > 1−d1 12−
1
2e1
2 ;

i.e., if the segregation advantage outweighs the negative
fitness effects at the individual level.



Existence and Stability of the A0A1 Equilibrium

It is easy to see that the border equilibria pg1=q
g
1=0

and pg1=q
g
1=1 cannot both be stable. If one of the

border equilibria is stable while the other is unstable, the
system converges to the stable equilibrium. If both
border equilibria are unstable it is plausible that the
system converges to a polymorphic equilibrium in which
both alleles are present. In Appendix A we show that the
polymorphic equilibrium—if it exists—is stable:

Result 1 (Stable Coexistence of the Wildtype and
a Single Distorter). A polymorphic equilibrium
0 < pg1 , q

g
1 < 1 of the dynamics given by (7), where both

alleles are present, exists if and only if the inequalities

1
2
< s1 < 1−d1 12−

1
2e1
2 (10)

are satisfied. Whenever a polymorphic equilibrium
exists, it is stable.

INVASION OF A RARE DISTORTER ALLELE

With a characterization of the interaction of the wild-
type with a single distorter allele at hand, we move on to
consider the interaction between three alleles. In partic-
ular, we focus on the question under which conditions a
rare second distorter allele can invade in a population in
which a wildtype allele A0 and a resident distorter allele
A1 are present. We consider four examples of increasing
complexity.

Example 1 (No Differences between the Sexes). Let
us start with the simplest case of no sex differences. In
this case the male and female fitness matrices are identi-
cal,

M=F=W=R
1
2 1−s1 1−s2
s1 d1 a

s2 a d2

S (11)
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(i.e., mij=fij=wij for all i and j). After one generation
the allele frequencies in males and females are equal
(q −i=p

−

i for all i) and the allele frequency dynamics is
given by (3).
First, we focus on the A0A1 system. A polymorphic
equilibrium (pg0 , p

g
1 ) exists if

1
2 < s1 < 1−d1. The poly-

morphic equilibrium is given by (8) Analogously to
Result 1, it can be shown that the polymorphic equilib-
rium is stable whenever it exists.
The invasion prospects of the rare distorter allele A2
are given by the Shaw–Mohler criterion (4). Since the
allele frequencies in males and females are identical, the
Shaw–Mohler criterion reduces to

C
l
w2l p

g
l >C

l
wil p

g
l

for i=0 or i=1. In other words, the rare allele A2 will
invade if its marginal fitness wg

2=; l w2l p
g
l exceeds the

marginal fitness wg
i=; l wil p

g
l of the resident alleles.

Insertion of the fitness parameters (11) in the above
inequality shows that the rare distorter A2 will spread
whenever

s2 p
g
0+ap

g
1 > s1 p

g
0+d1 p

g
1 .

Rearrangement and insertion of the equilibrium
frequencies (8) yields:

Result 2a (No Differences between the Sexes). In a
population with no differences between the sexes, a rare
distorter allele A2 will successfully invade an internally
stable equilibrium consisting of a wildtype A0 and a
resident distorterA1 if and only if

s2 > s1−1s1−
1
2
2 a−d1
1−s1−d1

. (12)

Result 2a is illustrated by Fig. 2. Notice that for a=d1
invasion is possible if and only if A2 has a higher trans-
mission ratio than A1 in combination with the wild-type
allele (i.e., s2 > s1). If, however, a is larger than d1 (i.e.,
A1 and A2 complement one another), A2 may spread
despite s2 < s1. In fact, if s1 is large enough (s1 >

1
2 (1−

a+`(1−a)2+2(a−d1))), A2 will spread irrespective of
its transmission ratio s2!

Example 2 (Two Sterile t Haplotypes). Now con-
sider the case in which selection and segregation distor-
tion are restricted to one sex, the males. In this case, the
fitness matricesM and F are given by

van Boven and Weissing
M=R
1
2 1−s1 1−s2
s1 d1 a

s2 a d2

S , F=R
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

S . (13)

If d1=0, the resident distorter A1 corresponds to a sterile
t haplotype. If both d1=0 and d2=0, this scenario
corresponds to the competition between two sterile t
haplotypes.



FIG. 2. Minimal transmission ratio required for succesful invasion
of a rare second distorter in a population without sex differentiation.
The fitness of individuals homozygous for the resident distorter allele is
d1=0.1 in (A) and d2=0.2 in (B). A polymorphic equilibrium of the
wild type and the resident distorter exist only if s1 < 1−d1. As soon as
there is some complementation (i.e., a > d1) it is possible to find a
second distorter which is inferior with respect to its transmission ratio
(s2 < s1) but is nevertheless able to invade the population (Result 2a).
The same applies to a population where selection and segregation
distortion are restricted to one of the sexes, as in the case of two sterile t
haplotypes (Result 2b).

The analysis of the A0A1 system is relatively easy: The
polymorphic equilibrium given by (8) exists if 12 < s1 <
1−d1. Result 1 guarantees that the equilibrium is stable.
The invasion prospects of A2 are found by insertion of
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the fitness parameters and equilibrium frequencies into
the Shaw–Mohler criterion (4). A simple calculation
shows that the invasion prospects of the rare distorter A2
are identical to the invasion prospects in a population
where there are no differences between the sexes
(Result 2a):

Result 2b (Competition between Sterile t Haplotypes).
In a population where selection and segregation distor-
tion are restricted to one of the sexes, the invasion
prospects of a rare distorter allele A2 in a population
consisting of a wild type A0 and a resident distorter A1
are determined by the invasion criterion (12).

The fact that the invasion prospects of A2 are identical
in a population with no sex differentiation and in a pop-
ulation with selection and segregation distortion acting
in one sex only is derived more generally in the compa-
nion paper. In fact, Result 10 of the companion paper
shows that results of Scenario 1 (no differences between
the sexes) are directly applicable to Scenario 2 (selection
and segregation distortion in one sex only) and vice
versa.

Example 3 (A Sterile Resident t Haplotype). Con-
sider now the case in which selection and segregation
distortion in the resident population are restricted to one
sex. Themale and female fitness matrices take the form

M=R
1
2 1−s1 1−s2
s1 d1 a

s2 a d2

S , F=R
1
2

1
2

1
2

1
2

1
2 b

1
2 b e2

S (14)

(i.e., e1=
1
2). In other words, the rare distorter allele A2

may have fitness effects in females, but the resident dis-
torter allele A1 does not. Hence, if we choose d1=0, A1
corresponds to a sterile t haplotype, while A2 is an
as yet unspecified distorter since no specific values are
assigned to d2 and e2.
With respect to the A0A1 system, nothing has changed.
The only nontrivial equilibrium is symmetric (qgi=p

g
i )

and given by (8). The equilibrium is stable whenever
1
2 < s1 < 1−d1.
The external stability of (pg0 , p

g
1 ) is again judged on the

basis of the Shaw–Mohler criterion (4). A rare allele A2
will invade whenever the arithmetic average of the
marginal fitness of A2 in males and females as compared
to the marginal fitness of the resident alleles is larger than
1. A comparison of the marginal fitness of the invading
distorter with themarginal fitness of the resident distorter
(4) shows that the rare distorter will invade if
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1
2
1 s2 pg0+apg1
s1 p

g
0+d1 p

g
1

+
1
2 p

g
0+bp

g
1

1
2

2 > 1.

After insertion of the equilibrium frequencies pg0 and p
g
1

(8), a simple calculation yields:

Result 3 (A Sterile Resident t Haplotype). In the
system defined by (14), a rare distorter allele A2 will
successfully invade an internally stable equilibrium



consisting of a wildtype A0 and a resident distorter allele
A1 if and only if

s2 > s1−1s1−
1
2
2 1 a−d1
1−s1−d1

−
(1−2b)(2s1(1−s1)−d1)
(1−2d1)(1−s1−d1)

2 . (15)

Notice that for b=1
2 (15) reduces to (12). In the case of

a sterile resident t haplotype, we may safely assume that
d−1=0. Under this assumption, (15) simplifies to

s2 > s1−1s1−
1
2
2 1 a
1−s1

−2s1(1−2b)2 . (16)

Figure 3 illustrates (16) for b=1
2 (Fig. 3A) and b=0

(Fig. 3B). Again, a less efficient distorterA2 (i.e., s2 < s1)
can easily invade the population if its fitness effects in
females are not too drastic (b not too small) and if at
least some complementation betweenA1 andA2 occurs in
males (a > d1).

Example 4 (A Lethal Resident t Haplotype). Let us
now turn to the general case of selection and segregation
distortion differing in both sexes, but let us for simplicity
assume that d1=e1=0. In this case the resident distorter
corresponds to a lethal t haplotype. The male and female
fitness matrices look as follows:

M=R
1
2 1−s1 1−s2
s1 0 a

s2 a d2

S , F=R
1
2

1
2

1
2

1
2 0 b
1
2 b e2

S . (17)

The fact that selection in the resident population is not
restricted to one of the sexes complicates the analysis, as
the frequencies of the alleles now differ between the
sexes. In particular, the equilibria are not symmetric any
more (qgi ] p

g
i ). In fact, the polymorphic equilibrium

0 < pg1 , q
g
1 < 1 is given by (9). Result 1 guarantees that

the equilibrium is stable.
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With respect to the invasion prospects of a rare second
distorter allele, the analysis is also more intricate than
in the earlier examples. However, in Appendix B we
show that it is still possible to derive an explicit invasion
criterion:

Result 4 (A Lethal Resident t Haplotype). In the
system defined by (17) with b=1

2 , a rare distorter
allele A2 will successfully invade an internally stable
FIG. 3. Invasion of a rare second distorter in a population in
which the resident distorter affects only males (Result 3). Hence, the
resident distorter corresponds to a sterile t haplotype. As in Fig. 2, it is
possible to find an ‘‘inferior’’ second distorter (i.e., s2 < s1) which is
nevertheless able to invade the population if there is some complemen-
tation (i.e., a > 0). In (A) heterozygous A1A2 females are fully viable
and fertile (b=1

2), while in (B)A1A2 females have zero fitness (b=0).

equilibrium consisting of a wildtype A0 and a resident
distorterA1 if and only if

s2 > s1−1s1−
1
2
2 a+`s1(1−s1)
1−s1+`s1(1−s1)

. (18)

van Boven and Weissing
Result 4 is illustrated by Fig. 4. As before, a weaker
distorter (s2 < s1) can easily invade if there is at least
some complementation (i.e., a > 0 or b > 0). Notice that
in the special case a=0 and b=1

2 (no complementation
in males and full complementation in females), a second
distorter A2 can always invade if s2 > 0.61. In the more
plausible scenario a=1

2 and b=
1
2 (full complementation

in both males and females), a second distorter can always
invade if it confers the slightest segregation advantage



FIG. 4. Invasion of a rare second distorter in a population in
which the resident distorter has zero fitness in homozygous males and
females. Hence, the resident distorter corresponds to a lethal t haplo-
type. In (A) heterozygous A1A2 females are fully viable and fertile
(b=1

2 , Result 4), while in (B) A1A2 females have zero fitness (b=0,
invasion criterion not shown).

(s2 >
1
2) and often even if it has a segregation disadvan-

tage (s2 <
1
2). Such a scenario applies to the competition

between lethal t haplotypes that belong to different
complementation groups, i.e., that carry recessive lethal
alleles at two different loci within the t complex
(e.g., Klein et al., 1984).
Notice that this example represents the most general
case with selection in both sexes and segregation distor-
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tion differing between the sexes. In general, the analysis
of such a model is a forbidding task, even in the simplest
case of two alleles (cf. Hartl, 1970). That it is still possible
in this particular case to find a simple expression for the
equilibrium frequencies and a pleasant-looking invasion
criterion hinges on the fact that selection does not differ
between the sexes (i.e., jmij n

m
ij=j

f
ijn
f
ij for all i and j). As a

result, the mean fitness in males equals the mean fitness
in females.
STERILE VERSUS LETHAL t

HAPLOTYPES: A COMPARISON

All the invasion criteria for a rare mutant distorter
share a number of features. First, for a given s1, the
threshold for invasion functions is negatively related to a
and b. In other words, the invasion chances of a rare
second distorter are always enhanced by a higher degree
of complementation. Second, none of the invasion cri-
teria depend on the fitness that the rare distorter has in
homozygous condition (d2 and e2). This is not surprising
since a rare distorter A2 will almost never occur in the
homozygous condition. Hence, in the case of the t
complex the invasion prospects of rare sterile and rare
lethal t haplotypes should be identical.
For a more specific comparison of the invasion criteria
let us confine ourselves to the case d1=0 (sterility or
lethality of resident A1A1 males) and b=

1
2 (full comple-

mentation of A1 and A2 in females). If A1 corresponds to
a sterile t haplotype (e1=

1
2), the threshold function for

the spread ofA2 is (Result 3)

Tsterile(s1, a)=s1−1s1−
1
2
2 a
1−s1

. (19)

If, on the other hand, A1 corresponds to a lethal t haplo-
type (e1=0), the threshold function is given by Result 4:

Tlethal(s1, a)=s1−1s1−
1
2
2 a+`s1(1−s1)
1−s1+`s1(1−s1)

.

(20)

The threshold functions Tsterile(s1, a) and Tlethal(s1, a) are
illustrated in Fig. 5.
First, notice that bothTsterile andTlethal satisfy

T(s1, a) < s1 for a > 0.

In other words, in the presence of the slightest amount of
complementation (a > 0), there always exist distorters
which can successfully invade the population despite
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s2 < s1. This shows that the intuitive explanation that
more efficient distorters will outcompete less efficient
ones is not justified.
Second, it is easy to see that both Tsterile and Tlethal have
the property

T(s1, a) >
1
2 if s1 < 1−a

T(s1, a) <
1
2 if s1 > 1−a.



FIG. 5. A comparison of the invasion functions Tsterile and Tlethal. If
the transmission ratio of the resident distorter is low (s1 < 1−a), inva-
sion is more difficult to achieve in case of a sterile resident distorter,
while if the transmission ratio is high (s1 < 1−a), invasion is harder to
achieve in case of a lethal resident distorter. Notice, moreover, that if
the transmission ratio of the resident distorter is high (s1 > 1−a),
invasion is possible even for distorters with a segregation disadvantage
(s2 <

1
2).

Hence, if the transmission ratio of the resident distorter
is high enough (s1 > 1−a) then all positive distorters
(i.e., s2 >

1
2) can invade the population. Moreover, for

s1 > 1−a there always exist some distorters which can
invade even if they confer a segregation disadvantage
(s2 <

1
2).

Third, both invasion functions attain a single
maximum at an intermediate transmission ratio. Conse-
quently, segregation distorters with intermediate trans-
mission ratios provide the best protection against
invasion attempts of novel distorters (see also van Boven
and Weissing, 1999). It is interesting to notice that
transmission ratios of wild-caught mice carrying a t
haplotype typically lie between 0.70 and 0.90 (Petras,
1967; Bennet et al., 1983; Lenington et al., 1988; Ardlie
and Silver, 1996), which is lower than the segregation
ratios of some t haplotypes in the laboratory ( % 0.99;
e.g., Lyon, 1991).
On the other hand, there is also a quantitative differ-
ence between the threshold functionsTsterile andTlethal:

T (s , a) > T (s , a) > 1 if s < 1−a
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sterile 1 lethal 1 2 1

Tsterile(s1, a) < Tlethal(s1, a) <
1
2 if s1 > 1−a.

Hence, for relatively low transmission ratios (s1 < 1−a)
invasion is easier if the resident distorter induces
homozygous lethality in both sexes, while for high
transmission ratios (s1 > 1−a) invasion is easier if the
resident distorter leads to male sterility. It is tempting to
speculate that the reported higher transmission ratios of
lethal t haplotypes (0.89 versus 0.80, Petras, 1967; but
see Ardlie and Silver, 1996) might be related to this
difference.

INVASION OF A RARE WILDTYPE ALLELE

Up to now, the analysis was concerned with the inva-
sion prospects of a rare distorter allele. The obvious next
thing to do is to shift the focus of attention from compe-
tition between distorter alleles to competition between
wildtype alleles and ask whether a rare mutant wildtype
that is less prone to exploitation by the resident distorter
can invade. The transmission ratio of the mutant wild-
type in combination with the distorter is denote by y1
(y1 < s1).
Differential sensitivity of wildtype alleles to segrega-
tion distortion is well documented at the t complex (e.g.,
Gummere et al., 1986) and in particular at the SD
complex of D. melanogaster (e.g., Temin et al., 1991).
However, resistant wildtype alleles usually do pay a cost,
in terms of a reduction in fertility (e.g., Temin et al.,
1991) or in terms of a segregation disadvantage in com-
bination with the resident wildtype (e.g., Lyon and
Zenthon, 1987). Since the precise molecular mechanism
of segregation distortion at the t complex is still not
unraveled (although considerable progress has recently
been made; Herrmann et al., 1999; see also Schimenti,
2000; Lyon, 2000), we will here consider a simple sce-
nario in which the relative fitness of individuals
heterozygous for the two wildtype alleles is c (0 [ c [ 1

2).
If c=1

2 , the invading wildtype has maximal fitness, while
if c=0, the invading wildtype induces complete lethality
or sterility in combination with the resident wildtype.
For simplicity, we consider a population in which only
males are affected by selection and segregation distor-
tion. The fitness matrices of the males and females are
given by

M=R
1
2 1−s1 c

s1 d1 y1

c 1−y1 d2

S , F=R
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

S . (21)
The analysis proceeds along the same lines as in Sce-
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nario 1. The stable equilibrium (pg0 , p
g
1 ) of the A0A1

system is given by (8). Insertion of the fitness parameters
(21) into the Shaw–Mohler criterion (4) shows that A2
will successfully invade if

cpg0+(1−y1) p
g
1 >

1
2 p

g
0+(1−s1) p

g
1 .

After inserting the equilibrium frequencies pg0 and p
g
1 (8),

we are led to the following result:



FIG. 6. Minimal fitness c of heterozygous wildtype individuals
needed for successful invasion of a rare wildtype allele (Result 5). The
fitness of individuals homozygous for the resident distorter allele is
fixed at d1=0.1, while the segregation advantage of the distorter in
combination with the rare wildtype is given by c1 (0 [ c1 [ s1).

Result 5 (Invasion of a Rare Wildtype). In the
system defined by (21), a rare wildtype allele A2 will suc-
cessfully invade an equilibrium population consisting of
a resident wildtype allele A0 and a segregation distorter
A1 if and only if

c >
1
2
−
1
2
(s1−y1)

2s1−1
2(1−s1−d1)

. (22)

Result 5 is illustrated by Fig. 6. The figure shows that a
rare mutant wildtype may successfully invade even if the
fitness of individuals carrying two different wildtype
alleles is reduced (c < 12). Invasion attempts of a rare wild
type allele are especially likely to be successful if the
transmission ratio s1 of the distorter in combination with
the resident wildtype is high. Moreover, if the difference
between the transmission ratios of the resident and the
mutant wildtype, s1−y1, is large enough, the mutant
wildtype can invade even if its fitness in combination
with the resident wildtype is zero! This will happen
whenever s1− y1 >

2(1−s1 −d1)
2s1 −1

.
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DISCUSSION

Mutual Invadability and Stable Equilibrium

Coexistence

The most direct approach to studying the competition
between three alleles at a segregation distorter locus
would be to characterize all equilibrium points and to
investigate their stability. Unfortunately, this approach
is only possible in the specific cases where selection and
segregation distortion are restricted to one sex or where
selection and segregation distortion are the same in both
sexes. If selection and segregation distortion differ
between the sexes, the space of perturbations is already
four-dimensional. Moreover, the coordinates of the
equilibria depend on the parameters in a complicated
way. Accordingly, we have little hope that a full analyti-
cal characterization of the equilibrium where all three
alleles are present can be accomplished.
Therefore we followed a different strategy. We
characterized the conditions under which an allele, when
rare, can successfully invade a population in which two
other alleles are present. It is plausible to assume that a
protected polymorphism of all three alleles will occur
when each of the alleles is able to spread when rare. In the
context of a population without differences between the
sexes or with selection and segregation distortion in one
sex only, this claim can be justified in general: The
external instability of all three border equilibria where
two alleles are present is in fact equivalent to the exis-
tence and stability of a polymorphic equilibrium where
all three alleles are present (F. J. Weissing and M. van
Boven, unpublished). In general, however, this claim
need not hold true. Convergence to a so-called hetero-
clinic cycle or more complex attractor may also occur
(see the companion paper).
For the examples considered in this paper (i.e, for the
dynamics induced by the fitness matrices (5)), such
complications do not arise. In fact, the internal stability
and external instability of the border equilibria where
only two alleles are present precludes the possibility of an
allele that is able to invade when rare but that
nevertheless reaches an infinitesimally small frequency in
the long run. Therefore, the invasion criteria in the
present paper provide a complete analytical charac-
terization of the equilibrium diagrams of van Boven et al.
(1996). In particular, the equilibrium diagram of Fig. 1
corresponds to the invasion functionsTsterile (19) andTlethal
(20) derived above.
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Inherent Advantage of Rare Alleles

Our study was motivated by the simulation results of
van Boven et al. (1996) and van Boven and Weissing
(1998), which suggested that a high degree of polymor-
phism is to be expected if several complementing distor-
ters arise in the same population. To explain this result,
we have here considered a class of examples that
resemble well-studied empirical systems such as the t



complex of the house mouse (e.g., Lyon, 1991) or the SD
complex of D. melanogaster (e.g., Temin et al., 1991).We
focused on the invasion prospects of rare alleles in
(internally stable) equilibrium populations consisting of
a single wildtype and a single segregation distorter. In
line with the simulation results, our invasion analysis
shows that rare segregation distorters are inherently
favored (Results 2–4, Figs 2–5). Invasion by a rare dis-
torter is often possible even if it has inferior fitness char-
acteristics (lower transmission ratio, lower fitness in
homozygous condition) compared with both the wild-
type and the resident distorter.
Intuitively, this rareness advantage can be explained as
follows. As long as a distorter is rare, it will hardly ever
occur in the homozygous condition. Accordingly, its
fitness disadvantages when homozygous do not matter.
When heterozygous with the wildtype allele, the rare dis-
torter is favored if it has a segregation advantage: s2 >

1
2 .

When heterozygous with the resident distorter, it is
favored if complementation occurs. Hence a positive
distorter will spread if the wildtype allele is present in
high frequency, and a complementing distorter will
spread if the resident distorter is prevalent.
It is conceivable that in view of their rareness advan-
tage, inferior distorters may persist with superior dis-
torters. However, this is only possible if complementa-
tion occurs, i.e., if the fitness (viability times fertility) of
individuals heterozygous for two distorter alleles is
higher than that of individuals homozygous for the resi-
dent distorter. Complementation is well documented for
the t complex of the house mouse (Lyon, 1991) and for
the SD complex of D. melanogaster (Temin et al., 1991).
In both systems, the mechanisms leading to segregation
distortion and male sterility are closely intertwined (cf.
van Boven andWeissing, 1998). In fact, there seems to be
a negative relation between distorting ability on the one
hand and complementing ability on the other (Lyon,
1991; Johnson et al., 1995). We suspect that such a trade-
off can play an important role in the evolution of
segregation distorters. Anyhow, a one-sided focus on the
transmission ratio is certainly too simplistic.
In addition, rare wildtype alleles are also inherently
favored: A rare wildtype allele that is less prone to
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exploitation can successfully invade even if its viability or
fertility in combination with the resident wildtype is
reduced (Result 5, Fig. 6). Invasion by such a rare wild-
type allele is especially likely to be successful if the
transmission ratio of the distorter with the resident wild-
type is high, i.e., if the resident wildtype is efficiently
exploited. On the other hand, a rare wildtype that has
higher fitness in combination with the resident wildtype
can also easily invade, even if it is more efficiently
exploited by a segregation distorter (results not shown).
This is especially likely to happen if the resident wildtype
has a small segregation disadvantage in combination
with the distorter.
These phenomena can be understood as follows. If the
resident wildtype is efficiently exploited, a segregation
distorter will typically reach a high frequency in the
population. As a result, the interaction of a rare mutant
wildtype with the distorter is more important than its
interaction with the resident wildtype, and the rare
wildtype will invade if it is less easily exploited by the
distorter. If, on the other hand, the resident wildtype is
not efficiently exploited (i.e., the transmission ratio of the
distorter with the resident wildtype is low), the resident
wildtype will be the predominant allele in the population.
As a consequence, a rare mutant wildtype allele will suc-
cessfully invade if it does well in combination with the
resident wildtype, i.e. if the fitness of heterozygous indi-
viduals carrying the resident andmutant wildtype is high.

Implications for the t Complex

How do the above predictions relate to the situation in
the field and in particular to the t complex of the house
mouse? There is one notable difference between our
deterministic models and the empirical data that needs
closer scrutiny: The distorter frequencies predicted by
our models (e.g., (8) or (9)) are invariably much higher
than those observed in the field. For instance, the models
predict an equilibrium frequency in adults of 0.80 for a
sterile distorter and 0.33 for a lethal distorter if the
transmission ratio is 0.90, while recent evidence suggests
that the overall frequency of t haplotypes in the field may
be as low as 0.05 (Ardlie and Silver, 1998). This problem
is shared by many deterministic models of segregation
distortion (e.g., Bruck, 1957; Dunn and Levene, 1961; see
van Boven and Weissing, 2000, for a discussion of
possible explanations).
On the one hand, the fact that the t haplotype
frequencies in the field are low implies that the invasion
prospects of rare mutant t haplotypes that complement
the resident t haplotype are in fact rather bleak. In par-
ticular, our prediction that even negative segregation
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distorters can invade if they complement a highly effi-
cient resident distorter may not hold true, as it rests on
the assumption that an efficient resident distorter will
reach a high frequency in the population. On the other
hand, the fact that the frequency of the wildtype is much
higher than predicted by the models implies that there
should be ample opportunities for mutant t haplotypes
with a segregation advantage to invade. Likewise, the
invasion prospects of rare mutant wildtype alleles will be



determined more by their interaction with the resident
wildtype than by their interaction with the distorter.
In short, the main selection pressure on rare mutant
alleles will be to do well in combination with the resident
wildtype, as this is by far the predominant allele in the
population (% 95%). Hence, mutant t haplotypes will
predominantly be selected to efficiently exploit the wild-
type, while mutant wildtype alleles will be selected to
have high fitness in combination with the resident wild-
type. One may therefore argue that the selection pressure
on mutant wildtype alleles to be resistant against exploi-
tation by t haplotypes is of secondary importance. Even a
rare mutant wildtype that is considerably more resistant
against exploitation and that has only a slightly reduced
fitness may not be able to invade.

Stability of Mendelian Segregation

We have seen that highly efficient distorters do not
necessarily outcompete less efficient ones. On the
contrary, all alternative distorter alleles with a certain
complementing ability can invade if they face a very effi-
cient resident distorter. In this sense, efficient distorters
open invasion opportunities for less efficient ones. As a
consequence, it is not at all obvious that an evolutionary
trend toward increasing transmission ratios is to be
expected. In other words, the stability of ‘‘honest’’
Mendelian segregation might be less difficult to explain
than appears at first sight (Haig andGrafen, 1991).
Of course, a coherent theory of the evolution and
stability of Mendelian segregation has to take modifiers
of segregation into account. Current modifier theory
(Eshel, 1985; Lessard, 1985) explains the apparent
ubiquity of Mendelian segregation by the fact that
modifiers that are not linked to the distorter will increase
in frequency only if they shift the transmission ratio
closer to 12 . In other words, the ‘‘parliament of genes’’ is
expected to act to keep segregation honest. However, the
situation is different for modifiers that are linked to a
distorter allele. One might expect that such a modifier
could spread only if it enhanced the expression of segre-
gationdistortion. In linewith the conclusionsofLiberman
(1976), our model shows that this is not necessarily the
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case. Strictly speaking, our model applies only to the one-
locus context. Still, it may also shed some light on the
evolution at closely linked modifier loci, since perfectly
linked modifiers may be viewed as mutant alleles at the
distorter locus. Viewed this way, our results imply that a
modifier allele at a modifier locus that is closely linked to
a distorter locus may spread not only if it increases
the transmission ratio but also if it decreases the trans-
mission ratio. However, the latter will occur only if
the modifier-induced reduction in distortion ability is
associated with a certain degree of complementation.

Evolutionary Trends toward Polymorphism

In recent years, long-term evolution has often been
imagined as a sequence of allele substitution events
(e.g., Eshel, 1996; Hammerstein, 1996; Weissing, 1996).
According to this view, a monomorphic population is
challenged by single, newly arising mutants. Only
mutants which confer a fitness advantage will success-
fully invade. Implicitly, it is typically assumed that
successful mutants will spread to fixation, thereby
leading to a new, monomorphic resident population.
In the case of segregation distortion, such a scenario is
unrealistic and it might actually be misleading. If
rareness is advantageous per se, it is conceivable that a
resident population can be invaded by mutants with
adverse fitness effects. Moreover, no single population is
evolutionarily stable against invasion by all possible
mutant alleles (van Boven andWeissing, 1998).
Examples of a systematic minority advantage are
by no means uncommon. In addition to segregation
distortion, they include phenomena such as marginal
overdominance due to pleiotropy or spatiotemporal
variability (e.g., Lewontin, 1974), genetic incompatibility
(e.g., Uyenoyama, 1993), negative assortative mating
and preference for rare mates (e.g., Partridge, 1988),
competition avoidance due to deviation from the popu-
lation standard (e.g., Chesson, 1985), apostatic selection
mediated by predators (e.g., Allen, 1988), or the arms
race between infectious agents their hosts (e.g., May,
1985). In all these systems fitness considerations alone
are not sufficient to predict the outcome of evolution,
and a high degree of polymorphism is to be expected.

APPENDIX A

Stability of the A0A1 Equilibrium

The internal stability of the equilibrium (pg1 , q
g
1 )
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generated by (7) is determined by the Jacobian matrix
A at equilibrium. A is given by the matrix of partial
derivatives of (7):

A=R
“p −1
“p1
“q −1
“p1

“p −1
“q1
“q −1
“q1

S :
(pg1 , q

g
1 )

.



The equilibrium (pg1 , q
g
1 ) is (hyperbolically) internally

stable if and only if |tr(A))| < 1+det(A) < 2 (e.g.,
Edelstein-Keshet, 1988). After insertion of the fitness
parameters (6), it can be shown that these conditions are
always satisfied (F. J. Weissing and M. van Boven,
unpublished). The calculations, however, are unwieldy.
Therefore we here focus on the special case of a lethal
distorter (i.e, d1=e1=0).
In the case of a lethal distorter, a simple calculation
shows that the JacobianA is given by

A=
1

(1−pg1q
g
1 )
2
1s1(1−qg1 )2
1
2 (1−q

g
1 )
2

s1(1−p
g
1 )
2

1
2 (1−p

g
1 )
2
2 .

It is obvious that det(A)=0. Hence, only we have to
show that tr(A) < 1. This is equivalent to

s1(1−q
g
1 )
2+12 (1−p

g
1 )
2 < (1−pg1q

g
1 )
2. (A1)

If we insert the equilibrium frequencies (9) into (A1), we
get the following condition for s1:

1+2s21 < 3s1+(2s1−1)`s1(1−s1).

If the condition for a polymorphic equilibrium,
1
2 < s1 < 1, is satisfied, the second term on the righthand
side is positive and 1+2s21 < 3s1. Hence, tr(A) < 1, and
the polymorphic equilibrium is internally stable.

APPENDIX B

External Instability of the Equilibrium (9)

The invasion prospects of a rare mutant allele A2 in an
equilibrium population where A0 and A1 are present is
determined by the linearized dynamics of the rare allele
A2 near the equilibrium (9). As shown in the companion
paper, the fate of the mutant allele is determined by an
‘‘invasionmatrix’’C:

; l m2lq
g
l ; l m2l p

g
l
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C=R 2m̄g

; l f2lq
g
l

2f̄ g

2m̄g

; l f2l p
g
l

2f̄ g

S . (B1)

The rare allele A2 will invade whenever the largest eigen-
value in absolute value of C exceeds one. Since the trace
of C is positive, this implies that either det(C) > 1 or
tr(C) > 1+det(C). In the case of a wildtype A0 and a
resident lethal t haplotype A1, insertion of (p
g
1 , q

g
1 ) (9)

intoC yields

C=
1

1−pg1q
g
1

1s2qg0+aqg1
1
2 q

g
0+bq

g
1

s2 p
g
0+ap

g
1

1
2 p

g
0+bp

g
1

2 .

We will first shows that the determinant of C is always
smaller than 1 in absolute value. Then we will show that
the second inequality yields the invasion criterion (18).
To reduce the calculations, we focus on the special case
b=1

2 . The trace and determinant ofC are given by

tr(C)=
1
2m̄g
11
2
+s2+(a−s2) q

g
1
2

det(C)=1 1
2m̄g
22 1
2
(s2−a)(p

g
1 −q

g
1 ).

(B2)

Notice that, since 12 < s1 < 1

0 < pg1 −q
g
1=1s1−

1
2
2 11−=1−s1

s1
2 < 1
2
.

Since |s2−a| < 1we get

1
2 |s2−a| (p

g
1 −q

g
1 ) <

1
4 . (B3)

Moreover, 2m̄g > 12 and therefore

1 1
2m̄g
22 < 4. (B4)

Together, (B3) and (B4) imply

|det(C)| < 1.

On the other hand, tr(C) > 1+det(C) is equivalent to

2m̄g( 12+aq
g
1+s2(1−q

g
1 )) > (2m̄

g)2+12 (s2−a)(p
g
1 −q

g
1 ).

If we take terms with s2 to the lefthand side, we get
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s2(2m̄g(1−qg1 )−
1
2 (p

g
1 −q

g
1 ))

> (2m̄g)2−(2aqg1+1) m̄
g− 12 a(p

g
1 −q

g
1 ).

Insertion of pg1 , q
g
1 , and m̄

g yields

s2(1−s1+`s1(1−s1))

> s1(1−s2)−
1
2 a+

1
2`s1(1−s1),



which leads to the invasion criterion (18)

s2 > s1−1s1−
1
2
2 a+`s1(1−s1)
1−s1+`s1(1−s1)

. (B5)
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