
M4M 2009

OOPS: An S5n Prover for Educational Settings

Gert van Valkenhoef1,2

Department of Business and ICT, University of Groningen,
P.O. Box 800, 9700 AV, Groningen, The Netherlands

Elske van der Vaart3

Department of Artificial Intelligence, University of Groningen,
P.O. Box 407, 9700 AK, Groningen, The Netherlands

Theoretical Biology Group, University of Groningen,
P.O. Box 14, 9750 AA, Haren, The Netherlands

Rineke Verbrugge4

Department of Artificial Intelligence, University of Groningen,
P.O. Box 407, 9700 AK, Groningen, The Netherlands

Abstract

We present OOPS, an open source, cross-platform, easy-to-run tableau prover for S5n. OOPS is aimed at
education in modal logics. Thus, it has several features that enable insight into its internal workings.
Specifically, OOPS allows tableaux to be visualized and can generate counter models for formulas that are
not provable. Moreover, the OOPS Graphical User Interface (GUI) increases ease of use and an integrated
general purpose scripting language (Lua) is used to provide convenient and powerful interactions with the
OOPS tableau generator.

Keywords: System Description, Modal Logic, Epistemic Logic, S5n, Tableau Methods, Education,
Visualization

1 Introduction

In this paper, we describe OOPS 5 , an Object Oriented Prover for S5n. It is a
tableau-based theorem prover, aimed at satisfiability checking, that is specifically
designed for use in a classroom setting. Although not as efficient as highly optimized
provers like MSPASS [12] and FaCT [11], or as flexible as highly extensible provers

1 Corresponding author.
2 Email: g.h.m.van.valkenhoef@rug.nl
3 Email: elskevdv@ai.rug.nl
4 Email: rineke@ai.rug.nl
5 http://wiki.github.com/gertvv/oops

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:g.h.m.van.valkenhoef@rug.nl
mailto:elskevdv@ai.rug.nl
mailto:rineke@ai.rug.nl

van Valkenhoef, van der Vaart and Verbrugge

like LoTReC [7] and the Tableau Workbench [1], we believe OOPS offers a unique
combination of features that make it particularly suitable for educational purposes.

First, OOPS offers support for S5n, the logic typically used to model human
reasoning processes. As far as we are aware, there are currently no other theorem
provers which do this. Furthermore, OOPS is capable of visualizing its tableau proofs,
and of generating counter-models to formulas that are false. These two properties
are very useful for educational proof tools, and they are shared by at least two other
systems: LoTReC can display its tableau trees, and the Logics Workbench [10] can
print its derivations in sequent calculi.

Another feature OOPS has in common with LoTReC, as well as MSPASS, but with
few other theorem provers, is its free and convenient distribution. OOPS is packaged
as a ZIP file that includes all dependencies, and once extracted, can be run simply
by double-clicking the resulting oops.jar file. This is true for any operating system,
provided the Java VM is available. In contrast, the Tableau Workbench must be
built from source, FaCT offers binaries only for Linux and Windows, and requires
Lisp otherwise, and the Logics Workbench is not open source, and can be difficult
to install, due to outdated dependencies.

A fifth property that makes OOPS particularly attractive for educational use is
its Graphical User Interface (GUI). Although simple, its GUI allows students to
input formulas in an easy and intuitive format, or to save and load files. LoTReC,
MSPASS and the the Logics Workbench also offer GUI-based access.

OOPS’ final educational attribute is its integrated scripting facility. In our expe-
rience, most student projects involving theorem provers are efforts to model riddles,
or game situations. This requires that students be able to build and extend theo-
ries, using loops and conditionals where necessary. Many proof tools, like the Logics
Workbench, offer custom scripting languages for this purpose. OOPS, by contrast,
integrates the existing Lua 6 scripting language. Lua can be used to call most of
OOPS’ functions, and offers a rich input language.

To summarize, our contribution is a proof system, OOPS, designed to support
education in logics, specifically in multi-agent reasoning. For this purpose, OOPS
features a tableau prover for S5n that is capable of visualizing its tableau proofs
and counter-models for formulas that are false. Furthermore, OOPS is platform
independent and easy to install. Finally, OOPS offers a Graphical User Interface
(GUI) and an integrated scripting language (Lua) that enables easy but powerful
interactions with the prover.

In the rest of this paper, we first offer a technical description of OOPS, including
its proof system, its formal properties, its implementation in Java, and the details
of its input language (Section 2). This is followed by a more detailed descrip-
tion of OOPS’ educational properties (Section 3), as well as a worked-out example
(Section 4). We conclude with a discussion of current limitations and future work
(Section 5).

6 http://www.lua.org/

van Valkenhoef, van der Vaart and Verbrugge

2 Technical description

In this section, we will first give a brief description of the tableau method used in
OOPS and summarize the formal properties (soundness, completeness, complexity)
of the system. Then, we explain how the tableau system is implemented in Java.
Finally, we describe the input language for modal formulas that is provided by OOPS.

2.1 OOPS tableaux

The OOPS tableau system for S5n is a Java [8] implementation of the proof system
ELtap [4,3]. ELtap, in turn, draws on [5] and [2]. [9] provides a good review of
tableau methods for modal logics. Here, we summarize how tableaux are formalized
in OOPS. For a complete description, see [15].

When we construct a tableau, we do so with the aim of creating a Kripke model
in which a formula ϕ is satisfied. This is done by assuming ϕ is true and then
systematically working out the implications of this assumption. Specifically, OOPS
generates a collection of branches that each represent alternative ways of working
out these implications. A branch B consists of a number of nodes. A node γ is a
combination of a formula ψ and a label σ. A label is a systematically chosen name
for a world in the Kripke model that is being constructed. Branches are created
and expanded by the application of rules to existing nodes on a branch. A rule R
consists of:

• A precondition pre(R), written above a horizontal bar, which is a node containing
variables;

• A postcondition post(R), written below the horizontal bar, which is a list of nodes
containing variables. There are two types of postconditions:
· Linear: add nodes to the current branch, written top-to-bottom;
· Branching: create a number of new branches, written left-to-right, separated

by a vertical bar.
• Zero or more constraints, which restrict the values variables may take.

The rules employed by OOPS are given in Table 1. A rule R is applicable to a branch
B, if there is a node γ ∈ B that matches pre(R), such that no constraints are
violated and R has not previously been applied to γ.

In the case of modal rules, after the precondition pre(R) has matched, we may
either need to create a new world (add a label part) or to match existing worlds
(labels). In the first case, we create a label part that is uniquely identified, through
a function p·q that encodes formulas as valid label parts. In the latter case, the
postcondition will contain a variable as a placeholder for one of the label parts.
Such a postcondition must be applied to all labels that its label matches to.

A branch B is closed if there is a label σ and a formula ψ, such that both
(σ, ψ) ∈ B and (σ,¬ψ) ∈ B. A branch B is open if it is not closed and no more
rules can be applied to it. Thus, an open branch corresponds to a successful attempt
to satisfy ϕ, whereas a closed branch corresponds to a failed attempt to satisfy ϕ.
Specifically, for an open branch B, the labels determine the set of worlds and the
accessibility relations in the corresponding Kripke model. For each label, the set of
formulas given for that label determines the valuation in the corresponding world

van Valkenhoef, van der Vaart and Verbrugge

Double Negation
Rule

¬¬
σ ¬¬ϕ
σ ϕ

Conjunctive
Rules

∧∧ ∧∨
σ ϕ ∧ ψ
σ ϕ

σ ψ

σ ¬(ϕ ∨ ψ)
σ ¬ϕ
σ ¬ψ

Disjunctive
Rules

∨∧ ∨∨
σ ¬(ϕ ∧ ψ)

σ ¬ϕ σ ¬ψ
σ ϕ ∨ ψ

σ ϕ σ ψ

Possibility
Rules

(where i 6= j)

M2 M3

σ.ki ¬2jϕ

σ.ki.p¬ϕqj ¬ϕ
σ.ki 3jϕ

σ.ki.pϕqj ϕ

Possibility
Rules∗

M2∗ M3∗
σ.ki ¬2iϕ

σ.p¬ϕqi ¬ϕ
σ.ki 3iϕ

σ.pϕqi ϕ

Basic Necessity
Rules

(where i 6= j)

K2 K3

σ.ki 2jϕ

σ.ki.hj ϕ

σ.ki ¬3jϕ

σ.ki.hj ¬ϕ

Basic Necessity
Rules∗

K2∗ K3∗
σ.ki 2iϕ

σ.hi ϕ

σ.ki ¬3iϕ

σ.hi ¬ϕ

Special Necessity
Rules

(where i 6= j)

T2 T3

σ.ki 2jϕ

σ.ki ϕ

σ.ki ¬3jϕ

σ.ki ¬ϕ

Special Necessity
Rules∗

R2∗ R3∗
σ.ki 2iϕ

σ ϕ

σ.ki ¬3iϕ

σ ¬ϕ

Table 1
Tableau Extension Rules (see Section 2.2 for an explanation of how OOPS applies these rules.)

in the Kripke model. A tableau for ϕ is closed if all branches are closed, otherwise
it is open.

Now, for any proof system, it is important that its proofs correspond exactly
to the semantics of the logic. The proof system used by OOPS has been shown to
be both sound and complete for S5n [15]. Furthermore, in the same work, the
implementation (Section 2.2) was shown to correspond to the formal description of
the proof method. Unfortunately, this work also shows that the algorithm used by
OOPS needs exponential time in the worst case, whereas satisfiability for S5n is known

van Valkenhoef, van der Vaart and Verbrugge

Connective ¬ ∧ ∨ → ↔ 2i 3i

OOPS Symbol ˜ & | > = # i % i

Precedence 1 2 3 4 4 1 1

Table 2
OOPS Connectives.

to be pspace-complete [9]. However, we believe that for educational purposes the
functionality offered by OOPS (see Section 3) easily makes up for this shortcoming.
Moreover, the implementation of these features does not depend on the specific
proof algorithm used. Thus, as future work, the current algorithm may be replaced
by one that is in pspace.

2.2 Implementation

In order to ensure the exhaustive, but non-redundant application of Table 1’s rules,
OOPS employs two data structures: the match queue and the necessities list. When-
ever a node is added to the current branch, we attempt to match every possible
rule to that node. The resulting matches are placed on the match queue. Now,
the Basic Necessity rules (Table 1) pose a specific problem: the postcondition may
apply to labels that have not been generated yet. To address this, partially matched
postconditions of these rules are stored in the necessities list. Whenever a new label
is generated, any matches from this list to the new label are added to the match
queue. These data structures are specific to a branch, i.e., when a new branch is
created, it receives a copy of the current match queue and necessities list.

For reasons of efficiency, the match queue is a priority queue and rules can
be given a numeric priority value, which specifies the order in which matches are
applied to the tableau. In this way, we may define a strategy to close branches as
soon as possible. For example, it is preferable to execute all possible non-branching
propositional rules before attempting to execute any other rules.

The rules are implemented in such a way that they are easily replaceable by
a different ruleset. Moreover, the tableau generator allows the generation process
to be monitored. This enables the decoupled implementation of such features as
tableau visualization and counter-model construction (see Section 3).

2.3 Input language

OOPS employs an input language for formulas implemented using the SableCC [6]
compiler generator for Java. Propositions are input as strings of characters and
digits, starting with a lowercase character. Agent identities are represented by nat-
ural numbers. OOPS uses the widely understood infix notation for logical formulas.
Table 2 shows OOPS ascii equivalents for different logical operators, as well as their
precedences; lower numbers indicate stronger bindings.

In addition to this, the language allows the input of variables as placeholders for
either (sub-)formulas or agent identities. This is useful in the definition of rules and
allows one to create template formulas that can be instantiated in different ways,
by substitution. Variables are strings of characters and digits that start with an

van Valkenhoef, van der Vaart and Verbrugge

uppercase character.

3 Functionality

In this section, we highlight a number of features of OOPS that we believe are
important in an educational setting. Even though other systems may share some
of OOPS’ features, there is no other system that possesses all of them.

3.1 Integrated Scripting

In order for a theorem prover to be truly useful, it is not sufficient to be able to
answer ‘true’ or ‘false’ given an input formula. Rather, our experience has shown
that students will need to formulate and extend theories. Doing this by hand by
editing a single large formula quickly becomes unmanageable. Moreover, we want
to have a powerful toolbox to assist us in the formulation of larger theories. This
toolbox should include general programming constructs such as loops and condi-
tionals. Some other tools, such as the Logics Workbench, provide custom scripting
languages for this purpose. The advantage of this approach is that the language can
be tailored specifically to common usage of the prover. The disadvantage, however,
is that developing a custom language is costly. Therefore, that the resulting lan-
guage is likely to be lacking in expressive power. Furthermore, the user has to learn
a language that has no application outside of the prover and for which support (i.e.,
documentation, user community and bug fixes) may be limited.

To address these concerns, OOPS integrates the general-purpose scripting lan-
guage Lua. Lua has been designed specifically to be an embeddable language and is
widely used both as an extension language and as a front-end for libraries written
in other languages. Thus, Lua enables us to define an environment that is tailored
to the needs of theorem proving, while avoiding the concerns associated with im-
plementing a custom language. See [13] for a good introduction to programming
in Lua. Currently, most of OOPS’ functionality is available from Lua and more
extensive support is being worked on.

The above outlines our reasons for integrating OOPS with Lua. Now we briefly
describe how OOPS can be used through its Lua interface. All OOPS methods are
encapsulated in the oops namespace. The basis for interaction with OOPS through
Lua is the theory concept. A theory is, simply put, a collection of formulas. The
following example code creates a theory and adds a formula to it:
th = oops . Theory ()
th : add ("#_1 p")

We define a number of operations on theories: checking of consistency, provability
of a formula within a theory and satisfiability of a formula within a theory:
print (th : c o n s i s t e n t ()) −− t rue
print (th : provable ("#_2 #_1 p")) −− f a l s e
print (th : s a t i s f i a b l e ("~#_2 p")) −− t rue

where −− starts a comment, here used to indicate the output produced by the print

statement. Now, to aid in the construction of theories, we allow the explicit creation
of formulas, on which we have defined the operation of substitution. For example:

van Valkenhoef, van der Vaart and Verbrugge

Figure 1. The OOPS Graphical User Interface.

th = oops . Theory ()
f = oops . Formula ("#_A V")
for i =1 ,4 ,1 do

th : add (f : s u b s t i t u t e ({V = "p | q" } , {A = i }))
end
print (th)

which expresses that each of the agents 1, 2, 3 and 4 ‘knows’ (p ∨ q). The resulting
output is:
[# 4 (p | q) , # 3 (p | q) , # 1 (p | q) , # 2 (p | q)]

This completes our description of how OOPS is called from Lua. It must be
noted that Lua is a very powerful and complete language and that much more can
be achieved than is suggested by the above examples. For example, command-line
interaction with the user is readily available through Lua.

3.2 Graphical User Interface

As is discussed above, Lua provides a convenient scripting interface to OOPS. How-
ever, modern computer users do not expect to run applications from the command-
line. Even if they are used to this concept, it is not always the most convenient
method of interaction. Therefore, OOPS includes a very simple Graphical User In-
terface (GUI), in which scripts can be displayed, edited and executed (Figure 1).
In addition, scripts can be loaded from and saved to a file. For those who prefer to
use an external editor (e.g., there are many editors that offer syntax highlighting
for Lua), a single key combination reloads a modified file from the file system. The
application consists of two panels: the top panel shows the current script and the
bottom panel shows the output.

Though minimal, the GUI greatly enhances the convenience with which OOPS
can be used. Firstly, script and output are shown in one place, allowing for easy
cross-referencing. Second, scripts are run through a single key combination (or
invocation from the menu). Finally, the load, save and refresh functionalities give
the user the freedom to use the integrated editor or an external editor of choice with
equal convenience.

van Valkenhoef, van der Vaart and Verbrugge

Figure 2. Visualization of the tableau that checks provability of ϕ, by attempting to satisfy ¬ϕ, where
ϕ = ((�1p ∨ �1¬p) → �1(p ∨ ¬p)). In this case, the tableau is closed (i.e. ϕ is provable), as indicated
by the = (m, n) under each branch, where m and n indicate the line numbers at which two contradicting
formulas are found.

3.3 Free and Convenient Distribution

As we noted in Section 1, most current proof tools have problems related to either
platform dependence, aging dependencies, lack of maintenance or difficult instal-
lation procedures. OOPS addresses these problems in several ways. First, OOPS is
implemented in pure Java, which means that OOPS will run on any operating sys-
tem for which a Java virtual machine is available. This is true for most operating
systems available today. Second, OOPS is distributed as a ZIP file that includes
all dependencies. No installation is needed, one simply extracts the ZIP file and
double-clicks the resulting oops.jar file. Hence, OOPS is platform independent and
easy to run, having no dependencies apart from the Java VM and what is provided
in the OOPS distribution.

The concern of continued maintenance is harder to address. To ensure that OOPS
can be used and extended in the future by anyone who wishes to do so, we provide
the full source code 7 under the GNU General Public License (GPL). It is our hope
that others will contribute extensions to OOPS.

3.4 Visualization of Tableaux

When a student is learning to work with modal logics, a prover can often give
surprising results. He or she may encounter undesirable outcomes when constructing
a theory and would like to be able to ‘debug’ the theory by inspecting the proof
process. Moreover, inspecting generated tableaux may enhance understanding of
tableau methods and the semantics of modal logics in general. To support this, OOPS
includes a visualization module for labeled tableaux. Figure 2 shows an example
of such a visualization. The tableau is drawn as a tree. In the tree, nodes are
numbered in the order in which they are added (left-most on each line). After the
node number, the label is shown, followed by the formula. Finally, the rule that
resulted in the creation of the specific node and the node number to which the rule
matched are given.

The visualization is implemented as an observer on the tableau generator (see
Section 2.2). The Lua code to generate Figure 2 is as follows (note that the
command-line output will be true):
oops . a t tachTab l eauVi sua l i z e r ()

7 http://github.com/gertvv/oops

van Valkenhoef, van der Vaart and Verbrugge

print (oops . Theory () : provable (
"(#_1 p | #_1 ~p) > #_1(p | ~p)"))

3.5 Visualization of Countermodels

In addition to being able to view the tableau, it may be helpful to be able to
inspect a model that the tableau corresponds to. In case the tableau is open,
the generated model will generally be more insightful, as it does not contain any
redundant information. As is the case for tableau visualization, visualization of
(counter-)models may enhance understanding of the semantics of modal logics.

Figure 3 is generated by the following Lua code (note that the command-line
output will be false):
oops . attachModelConstructor ()
print (oops . Theory () : provable ("#_1 p | #_1 ~p"))
oops . showModel ()

As the reader will notice, the invocation of the model visualization is done differently
from the tableau visualization. This is because we treat models as entities in their
own right. In fact, the call oops.getModel() can be used to retrieve the most recently
constructed model, if the last invocation of the tableau generator resulted in an
open tableau. The Lua print function will output a textual representation of the
model. However, further programmatic manipulation and inspection of models is
future work.

4 Example

To illustrate the educational potential of OOPS, we present a worked-out example
that we have assigned to students of multi-agent systems in the past, at the De-
partment of Artificial Intelligence at the University of Groningen. It is inspired by
Hans van Ditmarsch’ Cluedo exercises [14], designed to be solved with the Logics
Workbench. Our example concerns a variant of the Wise Men’s Riddle, and the
students’ task is to check the riddle’s solution, after formalizing it with OOPS. This
is the variant in question, of unknown origins:

There once was a wise queen, who was a perfect logician. For advice, she relied on
three wise men, who were likewise perfect logicians. This was common knowledge
among the four of them, as was the fact that none of them would ever lie or cheat.

Figure 3. Visualization of a counter-model for ϕ = (21p ∨ 21¬p). The ‘main’ world is indicated in blue.

van Valkenhoef, van der Vaart and Verbrugge

One day, the queen wanted to demonstrate to her people just how wise her wise
men were. She announced that she would place a hat on each of their heads, and
that each of the wise men would be able to see the hats of the other two, but not
his own.

The queen then announced that she had three red hats and two blue hats total,
and that each wise man was to determine the color of his own hat. The queen
then placed the hats, and said: “Each wise man who knows the color of his hat,
must now step forward.”

After this statement, no wise man stepped forward. So the queen repeated it,
and still no wise man stepped forward. Yet, after she made her announcement a
third time, all wise men stepped forward at once. What were the colors of the
wise men’s hats?

When we present this assignment to students, we ask them to model the riddle
in steps, and to check the epistemic consequences of different hat color distributions.
Eventually, this leads to an OOPS script that models the situation with three red
hats. By taking the perspective of one of the wise men, a very minimal script
is sufficient to prove that he can derive the color of his hat after observing the
consequences of two announcements by the queen.

This minimal OOPS script is reproduced below, with informal explanations in the
comments. The relevant propositions are defined as follows: Let r1 mean that wise
man 1 has a red hat, r2 that wise man 2 has a red hat, and r3 that wise man has
a red hat. Let b1, b2, b3 express the same relationships between wise men and
hats, but for blue ones.
th = oops . Theory ()

−− t h e r e are only two b l u e hats :
th : add ("#_1 #_2 #_3 (((b1 & b2) > ~b3) & ((b1 & b3) > ~b2))")

−− a wise man has e x a c t l y one hat :
th : add ("#_1 #_2 #_3 ((b1 = ~r1) & (b2 = ~r2) & (b3 = ~r3))")

−− a wise man sees the hats o f the o ther two :
th : add ("#_1 (#_2 b1 | #_2 r1)")
th : add ("#_1 #_2 (#_3 b1 | #_3 r1)")
th : add ("#_1 #_2 (#_3 b2 | #_3 r2)")

−− wise man 1 sees two red hats :
th : add ("#_1 (r2 & r3)")

−− a f t e r the f i r s t announcement :
th : add ("#_1 ~#_2 r2")

−− a f t e r the second announcement :
th : add ("#_1 #_2 ~#_3 r3")

−− wise man 1 knows h i s hat i s red :
print (th : provable ("#_1 r1"))

This example demonstrates the kind of assignment that can be designed with
OOPS. It gives students the experience of using a theorem prover, and lets them
experiment with different assumptions, providing insight into the formal logic that
underlies a familiar riddle. This can all be done quickly and easily due to OOPS’s
integrated scripting facility and intuitive GUI.

van Valkenhoef, van der Vaart and Verbrugge

5 Conclusions and Further Work

In this paper, we have presented OOPS, a cross-platform, easy to install and open
source tableau prover for S5n. OOPS provides users with a graphical user interface, an
integrated scripting language, tableau visualization and counter-model generation.
We believe these features make OOPS more suited for educational use than other
similar systems.

Given this, we now identify several directions for further work on OOPS. First of
all, although the implementation currently allows new rule sets to be implemented
relatively easily, this requires extending the Java source code and recompiling OOPS.
To remedy this, we would like to implement rule sets as Lua modules and provide
such modules for several logics. We would also like to implement an algorithm that
allows the S5n tableau to be generated in pspace, as our current implementation
may require an exponential amount of space.

Furthermore, we would like to have a more complete set of tools to interact
with theories, formulas and Kripke models. For example, it should be possible to
simplify formulas and theories. In the case of Kripke models, we would like to be able
to construct and alter models ourselves and to perform operations such as model
checking and bisimulation. Finally, the GUI should allow users to provide keyboard
input to Lua scripts (through ‘standard in’) so that one can develop interactive
OOPS scripts.

References

[1] Abate, P. and R. Goré, The Tableau Workbench, Electronic Notes in Theoretical Computer Science
231 (2009), pp. 55–67.

[2] Beckert, B. and R. Gore, Free variable tableaux for propositional modal logics, Automated Reasoning
With Analytic Tableaux Related Methods 1227 (1997), pp. 91–106.

[3] de Boer, M., “Praktische Bewijzen in Public Announcement Logica,” Master’s thesis, University of
Groningen, Groningen, the Netherlands (2006).

[4] de Boer, M., KE tableaux for Public Announcement Logic, in: B. Dunin-Kepliçz and R. Verbrugge,
editors, FAMAS’007, 2007, pp. 56–69.

[5] Fitting, M. and R. Mendelsohn, “First-Order Modal Logic,” Synthese Library 277, Kluwer Academic
Publishers, 1999.

[6] Gagnon, É., “SableCC, an Object-Oriented Compiler Framework,” Master’s thesis, McGill University,
Montreal, Quebec, Canada (1998).

[7] Gasguet, O., A. Herzig, D. Longin and M. Sahade, LoTReC: Logical Tableaux Research Engineering
Companion, in: B. Beckert, editor, TABLEAUX 2005 (2005), pp. 318–322.

[8] Gosling, J., B. Joy, G. L. Steele and G. Bracha, “The Java Language Specification,” The Java Series,
Prentice Hall PTR, 2005, third edition.

[9] Halpern, J. Y. and Y. Moses, A guide to completeness and complexity for modal logics of knowledge
and belief, Artificial Intelligence 54 (1992), pp. 319–379.

[10] Heuerding, A., G. Jäger, S. Schwendimann and M. Seyfried, The Logics Workbench LWB: A snapshot,
Euromath Bulletin 2 (1996), pp. 177–186.

[11] Horrocks, I., The FaCT system, in: H. de Swart, editor, TABLEAUX 1998 (1998), pp. 307–313.

[12] Hustadt, U. and R. Schmidt, MSPASS: Modal reasoning by translation and first-order resolution, in:
R. Dyckhoff, editor, TABLEAUX 2000 (2000), pp. 67–71.

van Valkenhoef, van der Vaart and Verbrugge

[13] Ierusalimschy, R., “Programming in Lua,” Lua.org, 2006, 2nd edition.

[14] van Ditmarsch, H., Logics Workbench: Multi-agent systems (unknown),
http://www.ai.rug.nl/mas/documents/multiagent.pdf.

[15] van Valkenhoef, G., Elaborations on OOPS – project report (2008),
http://www.ai.rug.nl/˜valkenhoef/oops/elaborations.pdf.

	Introduction
	Technical description
	OOPS tableaux
	Implementation
	Input language

	Functionality
	Integrated Scripting
	Graphical User Interface
	Free and Convenient Distribution
	Visualization of Tableaux
	Visualization of Countermodels

	Example
	Conclusions and Further Work
	References

