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SAMENVATT ING

Deze dissertatie spitst zich toe op de theoretische studie van competitie over grondstoffen

tussen een groot aantal soorten. Om dit proces te bestuderen maken wij gebruik van het

zogeheten ’nutriëntenopslagmodel’, dat gebaseerd is op competitie tussen algensoorten.

Dit model is zowel relevant voor de ecologie van plankton als het gebied van de ecologische

stoichiometrie. Eerder onderzoek beschouwde steeds maar een klein aantal soorten, wat

in sterk contrast is met de honderden soorten die normaal aanwezig zijn in ecologische

gemeenschappen.

Dankzij analytische en numerieke methoden kunnen we concluderen dat competitiemod-

ellen met grote aantallen soorten en nutriëntenopslag kunnen leiden tot rijke en gecom-

pliceerde dynamica, zoals oscillaties, chaos en de coëxistentie van veel soorten op slechts

een aantal grondstoffen. Voor een groot deel is dit het gevolg van de specifieke ’trade-

offs’ in de consumptiepatronen van soorten, wat ook opgaat voor de wat minder realis-

tische modellen van competitie over grondstoffen. Daarbij laat de vergelijking met an-

dere modellen zien dat er algemene regels zijn die de competitiedynamica tussen vele

soorten bepalen en dat dergelijke regels onafhankelijk zijn van de onderliggende mecha-

nismen. Een dergelijke robuustheid is goed niews voor een niche-gebaseerd perspectief op

de gemeenschapsecologie, waarin soortsdiversiteit het gevolg is van soortseigenschappen.

Echter, de toevoeging van meer mechanistische details, zoals nutriëntenopslag, laat zien

dat de uitkomst van competitie zeer lastig te voorspellen wordt, omdat een zeer kleine

verandering in de biologische parameters of begincondities al kan leiden tot een andere

uitkomst, variërend van coëxistentie in een ecologisch evenwicht, coëxistentie buiten een

ecologisch evenwicht, chaotische dynamiek of competitieve uitsluiting. De implicatie van

deze contrasterende resultaten is dat competitieve gemeenschappen zich consistent kunnen

gedragen vanuit een statistisch oogpunt, maar juist niet wanneer ieder geval afzonderlijk

wordt bekeken.
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SUMMARY

The main focus of this thesis is the study of competition for resources among many species,

from a theoretical position. This is accomplished using the “nutrient storage model” of

algal competition. This model is of considerable relevance in plankton ecology and in the

field of ecological stoichiometry. Unfortunately, previous research considered just a few

species in contrast with the hundreds that are present in real communities.

Thanks to analytical and numerical approaches, we can conclude that multispecies com-

petition models with nutrient storage display a rich and complicated dynamics including

oscillations, chaos and the coexistence of many species on few resources. To a great extent,

the different dynamics are the consequence of specific trade-offs in the species consump-

tion policies, which is also the case for less realistic models of resource competition. In

addition, the comparison with other models reveal that there are general rules governing

the multispecies dynamics, and such rules are independent of the underlying mechanisms.

This robustness is good news for a niche based perspective of community ecology, in which

diversity is the consequence of the species properties. However, the addition of more mech-

anistic detail, like the introduction of nutrient storage, reveals that predictability becomes

rather difficult, not to say pointless, because very small variation in biological parameters or

initial conditions can lead to equilibrium coexistence, nonequilibrium coexistence, chaotic

dynamics, or competitive exclusion. The implication of these contrasting results is that

competitive communities may behave in a consistent way from a statistical perspective, but

not in a case by case basis.
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RESUMEN

El objeto principal de esta tesis es el estudio teórico de la competencia por recursos entre

muchas especies. Esto se logra usando el “modelo de almacenamiento de nutrientes” para

algas. Este es un modelo muy importante en la ecología del plancton y en el campo de

la estequiometría ecológica. Desafortunadamente, hasta ahora los estudios han consider-

ado la interacción de apenas unas pocas especies, en contraste con las muchísimas que se

presentan en comunidades naturales.

Gracias a métodos analíticos y numéricos, podemos concluir que la competencia entre

muchas especies con almacenamiento de nutrientes presenta una dinámica muy variada y

compleja que incluye oscilaciones, caos, y la coexistencia de muchas especies sobre pocos

recursos. En gran parte, las diferentes dinámicas son la consecuencia de trueques específi-

cos en los patrones de consumo de las especies, lo cual también sucede en modelos menos

realistas de competencia por recursos. Además, la comparación con otros modelos muestra

que existen reglas generales que gobiernan la dinámica competitiva, y que tales reglas son

independientes de los detalles microscópicos. Este resultado robusto esta en linea con la

perspectiva de nichos de la ecología de comunidades, donde la diversidad es el resultado

de las propiedades de las especies. Empero, al añadir mas detalles mecanísticos, como el

almacenamiento, nuestra capacidad de predecir se hace cada vez mas difícil, por no decir

inútil, dado que las variaciones mas pequeñas en los parámetros biológicos pueden llevar

a la coexistencia estable, coexistencia alejada del equilibrio, caos, o la exclusión competi-

tiva. Todo esto implica que las comunidades competitivas se comportan de una manera

consistente desde una perspectiva estadística, pero no en casos particulares.
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PREFACE

This dissertation is the result of a PhD project that was part of the research program "The

emergence of biocomplexity: a steady state between physical and biotic evolution?". This

program was initiated by Prof. H. Olff (Community and Conservation Ecology Group) and

Prof. F.J. Weissing (Theoretical Biology Group) and funded by the Computational Life Sci-

ences initiative of the Dutch Science Foundation (NWO). The main goal of the program

was to identify emergent properties in complex ecosystems and to understand these prop-

erties on the basis of interactions at lower levels of organization. The working hypothesis

was that despite their inherent complexity, populations and communities must reflect the

restrictions imposed by physico-chemical laws, which affect all ecological and evolutionary

processes. Hopefully, these effects can to a large extent be captured by relatively simple

and general functional relationships, for example scaling laws.

The research program was divided in two projects. The first project focused on the

ecological implications of spatial complexity, such as the spatial patterns induced by the

feedback between the distributions of resources and their consumers. I was in charge

of the second project, aimed at unraveling the ecological implications of compositional

complexity, i.e. the intricacies induced by the fact that typically a huge number of species

interact in even simple ecosystems. This involved studying the dynamics of multi-species

interactions, in particular resource competition. Throughout I neglected the complications

of spatial complexity (which were covered by the first project) and focused on well mixed

environments.

A major problem to be faced by a multi-species approach is the large number of model

parameters. Not surprisingly, the dynamics of multi-species interaction strongly reflects the

assumptions on these parameters (e.g. Huisman et al., 2001). To arrive at general insights,

it is therefore crucial to have a good underpinning for the choice of parameters, prefer-

ably by deriving these parameters from general underlying principles, like physical and

chemical laws or physiological and stoichiometric constraints. However, such principles

can only be applied in mechanistic models of ecological interactions, where all parameters

have a clear-cut interpretation in terms of a priori measurable biological quantities. As a

first step, I therefore decided to base my modeling strategy not on the semi-mechanistic

models that are typically being used in this field, but on the class of storage models, which

is more firmly rooted in physiology and stoichiometry. Although this class of models is in-

herently more complicated than the traditional ones, I hoped that the increased complexity

could later be reduced by the incorporation of simplifying physiological and stoichiometric

principles.

Before thinking of such simplification, I first had to get firm insights into storage models

and, in particular, into storage models of interspecific competition. It turned out that the

analysis of these models is even more intricate than anticipated. In the end, I spent most

of my thesis work on the analysis of multi-species competition in the presence of resource

storage. The results are documented in this thesis, and I hope that I can convince the

xvii



Preface

reader that these models are worth a study of their own. This thesis will demonstrate

that multi-species resource competition, with and without storage, is governed by a few

general rules that seem quite robust and not dependent on modeling details. Time did not

permit to attack the more general problem of the implications of compositional complexity

in contexts beyond competition for abiotic resources like mineral nutrients or light. In the

final chapter of this thesis (‘Afterthoughts’) I will speculate a bit whether, and to what

extent, my insights on resource competition can be extrapolated to more general ecological

scenarios.

xviii
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introduction

1.1 ecological communities

Ecological communities are complex systems, consisting of many components at different

levels of organization (individuals, populations, guilds). The components of a community

interact in multiple, often non-linear ways, across different temporal and spatial scales. Yet,

despite this complexity, communities display a number of consistent emergent features, like

patterns in the structure of food webs, biomass and energy pyramids, species-abundance

distributions, productivity patterns, to name a few (Begon et al., 2006).

Most ecological models ignore this complexity by focusing on highly simplified systems

with few components and little or no spatial structure. This is not surprising, because com-

plex ecological scenarios are difficult to model in a realistic way; a comprehensive analysis

of complex models is often not feasible; and the results of the analysis can often not be

extrapolated and, hence, does not lead to general insights. As a consequence, ecological

theory has to face a major problem: only relatively simple scenarios can be analyzed in

a robust and comprehensive manner, but it is far from obvious whether, and to what ex-

tent, the conclusions from simple scenarios can be extrapolated to the complexity of real

ecosystems.

One possible way to address this problem consists in abstracting the complexities at each

level of organization into emergent properties, expressed as universal relationships or rules.

Then we could use these rules to justify a reduction in the number of degrees of freedom

at higher levels of organization, making their analysis easier. This is, for example, the

approach taken by the Metabolic Theory of Ecology (Brown et al., 2004), which is based

on the assumption that the complexities of individual metabolism can be summarized in

simple equations (a combination of Kleiber’s law and the Arrhenius equation), and that

these metabolic principles can be expanded to obtain equally simple equations describing

all kinds of biological rates, such as rates of increase, mortality and energy flow. Another

example is the field of Ecological Stoichiometry (Sterner and Elser, 2002), which attempts

to explain individual composition (and, subsequently, population and ecosystem structure)

on the basis of compositional (stoichiometric) rules governing the chemical transformation

of resources into energy and biomass.

The idea that simple laws governing processes at lower levels of organization can help

to understand the complexity at higher levels of organization inspired the initiation of this

thesis. However, when I started to incorporate the simplest physiological assumptions in

models of competitive interactions, I soon had to realize that already the simplest scenario

of 2-species competition presented highly intricate technical problems. During the analysis,

it turned out that solving these problems is both ecologically relevant and mathematically

rewarding and, hence, worth a study in itself. I therefore decided to dedicate my thesis

to unveil the rules governing the dynamics of multispecies competition in models that

explicitly address the physiology of resource storage.

1.2 competition

Figure 1.1 shows a detailed representation of a real food web. The web is structured

as a series of trophic levels corresponding to vertical layers. This vertical axis of inter-

2



1.2 competition

Figure 1.1: Food web of an aquatic ecosystem studied by Martinez (1991).

action, the sequence of consumer-resource interactions, is the subject of many theories

of community organization (Hairston et al., 1960; Carpenter et al., 1985; Cohen et al., 1990;

Williams and Martinez, 2000). But the same food web also illustrates the existence of an-

other important axis of interaction: many species belonging to a trophic level share common

resources, and the finiteness of such resources leads to competition. Competition is expe-

rienced by the species mainly in two ways. As implied by the food web diagram, species

interact indirectly through the exploitation of resources that are important for their com-

petitors; we call this form of interaction exploitative competition or resource competition.

Organisms can also fight more directly for the access to resources, either through physical

contact, like in many animals, or by poisoning each other (allelopathy) as some plants do.

In the latter case we talk about interference competition. Whatever the mechanism, because

of its potential to determine which and how many species can coexist in a community

(Begon et al., 2006), competition is considered a fundamental process shaping the structure

and functioning of ecological systems at all levels of organization (Grover, 1997).

1.2.1 The Lotka-Volterra approach

Broadly speaking, competition can be defined as an interaction in which the survival and

reproduction of individuals is negatively affected by the presence of other individuals. Tra-

ditionally, ecological theory approaches competition from its effects on populations. For

a long time, competitive interactions were modeled by means of Lotka-Volterra equations

(Lotka, 1925; Volterra, 1926), which in case of two species take the form:

3



introduction

Figure 1.2: Competition between the yeast Saccharomyces cerevisiae and Schizosaccharomyces

kephir under aerobic and anaerobic conditions. If the species grow separately,

they attain stable population densities. If they are mixed, competition causes

both species to grow slower and to attain lower equilibrium densities (if they

coexist as in this experiment). The growth curves were fitted according to the

Lotka-Volterra model (1.1). Taken from Gause (1934).

dN1

dt
= N1 {r1 − a11N1 − a12N2}

dN2

dt
= N2 {r2 − a22N2 − a21N1}

(1.1)

Here Ni is the population density of species i = 1, 2. In the absence of its competitor,

the dynamics of each species follows the logistic model, where ri is the intrinsic growth

rate, i.e. the net per capita growth rate at low populations densities, when competition

is negligible. As the population density increases, intra-specific competition slows down

the rate of growth until an equilibrium density or “carrying capacity” is achieved (Fig.

1.2). In the presence of the other species, the growth rate also slows down due to inter-

specific competition, and the final density ends below the carrying capacity. The intensity of

competition is assumed to be proportional to the species densities, and the proportionality

constant is called the competition coefficient. Thus, the intra-specific competition coefficient

aii measures the effect of species i on itself, and the inter-specific competition coefficient

aikmeasures the effect of species k on species i.

According to standard Lotka-Volterra theory, competition has four distinct outcomes:

1) species 1 always outcompetes species 2, 2) species 2 always outcompetes species 1, 3)

depending on the initial conditions either species 1 or species 2 drives its competitor to

extinction, and 4) both species coexist. In all these cases, the system reaches an equilibrium

state, and complex dynamics like oscillations do not occur. Stable coexistence of the two

4



1.2 competition

species requires that a11a22 > a12a21, which can be interpreted as: intra-specific competi-

tion is stronger than inter-specific competition (Gilpin and Justice, 1972; Case, 2000). One

of the major drawbacks of Lotka-Volterra theory is that it is not mechanistic, in the sense

that the competition coefficients can not be derived from first principles. As a consequence,

Lotka-Volterra models are not predictive: in order to predict the outcome of competition,

we need to know the competition coefficients, but the competition coefficients can only be

derived from the observed trajectory of competition.

1.2.2 Resource Competition models

In many cases competitors do not interact by coming in direct contact. Instead, they affect

each other indirectly by exploiting common resources, like nutrients, light or other organ-

isms (e.g. in Fig. 1.1). One of the most studied scenarios involves competition between two

species for two resources, according to the following model:

dN1

dt
= N1{µ1(R1,R2) − m1}

dN1

dt
= N2{µ2(R1,R2) − m2}

dR1

dt
= D(S1 − R1) − f11N1 − f12N2

dR2

dt
= D(S2 − R2) − f21N1 − f22N2

(1.2)

where Ni is again the density of species i, while Rj is the concentration of resource j.

µi(R1,R2) denotes the resource dependent per capita growth of species i, mi is the per capita

loss rate of species i due to mortality and other causes (assumed to be constant), and fji is

the per capita consumption rate of resource j by species i. The resources are supplied from

an external source with a flow rate D and a supply concentration Sj, and in the absence of

the consumers they disappear from the system at the same flow rate.

According to this model, the possible outcome of resource competition is comparable

to that of the Lotka-Volterra model: 1) species 1 wins, 2) species 2 wins, 3) both species

coexist, or 4) depending on the initial conditions, one of the two species wins. Again, the

competitive dynamics will always lead to equilibrium, and the condition for coexistence

can be interpreted by saying that intra-specific competition has to be stronger than inter-

specific competition (Chapter 5). In contrast to Lotka-Volterra theory, however, the outcome

of competition can now be predicted from first principles of consumer-resource interactions.

For example, we can grow each species alone in monoculture, determine their resource

requirements and consumption characteristics, and then use this information to produce

a priori predictions concerning the environmental circumstances allowing both species to

coexist (Fig. 1.3).

5
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Figure 1.3: Competition between the algae Asterionella formosa (A.f.) and Cyclotella menegh-

iniana (C.m.) for two mineral resources, silica (Si) and phosphorous (P). The

resource competition equations (1.2) can be used to predict the resource supply

ratios (S1/S2 = Si/P) for which A.f. wins (left region), C.m. wins (right region),

or both species coexist (middle region). These predictions can be contrasted

with the results of experiments in which A.f. wins (⋆), C.m. wins (�), or both

coexist (•). Taken from Tilman (1977).

1.3 multispecies competition

It is well known that predator-prey interactions can be dynamically complex, often lead-

ing to oscillations and chaos. In fact, the textbook examples for oscillations in ecological

systems are generated by predator-prey interactions, like the lynx-hare cycles (Begon et al.,

2006) or the oscillations in Gause’s (1934) laboratory experiments. On the other hand, it

is a common perception that that competitive interactions lead to much simpler dynamics,

typically leading to an equilibrium state (e.g. Fig. 1.2, Gause (1934); Tilman (1977)).

This perception is perhaps caused by the fact that most theoretical and empirical studies

have considered the special case of two-species competition, where indeed only equilibrium

outcomes are possible. As soon as more than two species are competing with each other,

the situation may be fundamentally different. An extensive body of theory indicates that

already in the case of only three species competitive interactions can generate complex non-

equilibrium dynamics, like oscillations and chaos May and Leonard (1975); Gilpin (1975);

Hofbauer and Sigmund (1988); Zeeman (1990); Huisman and Weissing (1999). In case of

resource competition, the competitive dynamics is the result of trade-offs in resource re-

quirements and consumption patterns (Huisman and Weissing, 2001; Huisman et al., 2001).

Qualitatively, the outcome of competition can be predicted by the following “rules of

thumb” (Huisman and Weissing, 2001):

1. If each species tends to consume most of the resources for which it has the highest

requirements, the system will tend to equilibrium where as many species will coexist

as there are limiting resources.
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2. If each species tends to consume most of the resources for which it has the lowest

requirements, competitive exclusion is to be expected. It depends on the initial condi-

tions which species will outcompete all its competitors.

3. If each species tends to consume most of the resources for which it has intermediate

requirements, competitive oscillations are to be expected. Even in a homogeneous

environment, many more species can stably coexist than there are limiting resources.

Competitive oscillations have been proposed as a possible solution of the "paradox of the

plankton" (Hutchinson, 1961), the observation that hundreds of algal species can coexist

on a handful of mineral resources. Whether this is indeed the case is, however, not yet

clear. In my thesis I will consider one potential problem, namely the fact that the resource

competition model 1.2 is not really realistic when applied to algal competition. By assuming

that algal growth is directly related to the external resource concentrations Rj, the model

neglects important aspects of algal physiology. It is much more realistic to assume that

algal growth reflects the concentrations of stored nutrients, while nutrient uptake is largely

independent of algal growth (Ducobu et al., 1998). For this reason, competition models

including resource storage have been developed (Droop, 1973; Turpin, 1988; Grover, 1997),

which include both the physiology of resource uptake and the physiology of algal growth

in a coherent framework. These storage models are the focus of my thesis.

It is not immediately obvious if storage models promote oscillations. On the one hand,

such models contain many more variables and more non-linearities than standard compe-

tition models. This makes them good candidates for displaying complex dynamics. On

the other hand, the delays caused by the decoupling of uptake and growth might have the

effect of buffering and suppressing oscillations (Huisman and Weissing, 2001).

Unfortunately, the study of resource storage models has been restricted to very

simple cases: a single species growing on a single resource (Lange and Oyarzun,

1992; Oyarzun and Lange, 1994), a single species growing on several limiting resources

(Legovic and Cruzado, 1997; de Leenheer et al., 2006), many species competing for a single

resource (Smith and Waltman, 1994), and two species competing for two resources (Turpin,

1988; Li and Smith, 2007). This restriction is not surprising, since the computational and

mathematical study becomes extremely difficult even for low-dimensional scenarios. Yet,

progress is needed in this field, since storage models are at center stage in some major

new developments in ecological theory, most notably the field of ecological stoichiometry

(Sterner and Elser, 2002; Klausmeier et al., 2008). They may also be crucial for the Metabolic

Theory of Ecology, since they allow insights into the upscaling of metabolic principles from

the individual to the population and even ecosystem level (Hall et al., 2008).

1.4 this thesis

The primary focus of this thesis is the study of multispecies resource competition in sys-

tems where resource uptake is decoupled from resource-limited growth. I try to get some

general insights into the dynamics of such storage models (also called ‘quota models’) and

to answer the question whether, and to what extent, the dynamics and the competitive
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outcome in storage models differs from those of the more classical models of multispecies

competition.

Chapter 2 reports on an extensive simulation study, where the dynamics of competition

in a storage model is systematically compared with that of a ‘corresponding’ model without

storage. As explained above, the dynamics of competition in the model without storage can

be captured by a few rules of thumb that are based on the relationship between resource

requirements and resource consumption. In such simple models, resource requirements

and resource uptake relate to the model parameters in simple and straightforward way. The

situation is much more complicated in storage models, which include many more variables

(the quotas) and model parameters. Resource requirements and resource uptake can again

be characterized by the same type of parameters, but these are now derived parameters with

an intricate relationship to the basic parameters of the storage model. Moreover, there is no

longer a 1-1 relationship between the basic model parameters and the pattern of resource

requirements and resource uptake. While each such pattern fully determines the dynamics

and outcome of competition in a model without storage, there are infinitely many versions

of a storage model leading to an identical pattern. It is therefore not self-evident that the

rules of thumb concerning requirements and uptake extend to storage models. Do storage

models exhibit the same qualitative behaviors as model without storage, in only reflecting

the pattern of resource requirements and uptake? Or does it matter how these patterns

are generated by the interaction between resource consumption and the quota dynamics?

The answers to these questions are of general relevance, since they provide important clues

about the robustness of the results derived in classical resource competition theory.

In case of multispecies models, simulations such as those presented in Chapter 2 have the

disadvantage that even with large efforts only a small fraction of the parameter range can be

investigated. To get the full picture, analytical results are required. Chapter 3 is an attempt

to perform a mathematical analysis of storage models, with a focus on the classification

of equilibria and their stability. Until now, results are only available for low-dimensional

special cases (a single species growing on m resources; n species competing for a single

resource; two species competing for two resources). I take on the more difficult task of

characterizing equilibria and their stability for the general case of n species competing for

m resources, which is characterized by a system of n + m + n × m differential equations.

Some progress will be booked along two different lines. First, the stability problem is

decomposed into more manageable parts by distinguishing between external stability (i.e.,

stability against the invasion of new species) and internal stability (i.e., stability against

perturbations of the set of coexisting species). Second, the jacobian matrix characterizing

internal stability will be decomposed into block matrices, whose properties can be related to

stability. One of the main questions of this chapter is whether the results of the simulation

study in Chapter 2 are confirmed (and perhaps generalized) by the mathematical analysis.

Chapter 4 reveal finer details about the global dynamics of the multispecies storage

model, which are very difficult to identify under brute force simulation (Chapter 2), or

by the exhausting analysis of all equilibria (Chapter 3). This is done by tracking (numer-

ically) the transitions in the stability of all equilibria as the consumption parameters vary

along a continuum (bifurcation and continuation analysis), for a storage model of three

species competing for three resources. In order to reduce the number of parameters to an

8



1.4 this thesis

essential minimum, an assumption of cyclic symmetry with respect to the consumption

and growth is made. This makes very easy to prove the existence of multiple limit cycles

and unstable limit cycles, which are also present in simpler models of multispecies compe-

tition. Although the assumption of cyclic symmetric does not manifest in the real world,

such ideal scenario belongs to the more general non-symmetric case. Thus, one has to be

prepared to see the same complex dynamics in mode general scenarios.

My work on Chapters 2, 3 and 4, made me realize that the multispecies storage model

displays similar dynamics as other models which are less mechanistic, or which lack any

mechanism at all. For this reason Chapter 5 reviews the equilibrium and stability proper-

ties of three competition models: the Lotka-Volterra model (non-mechanistic), the resource

competition model without storage (mechanistic), and the resource competition model with

storage (more mechanistic). The chapter starts by treating the simple scenarios of compe-

tition between two species (and two resources), and discussing to which extent the non-

mechanistic and mechanistic models can be related to each other. The multispecies sce-

nario is considered later, by addressing the rules for the existence of community equilibria

and stability. Such rules are the same for all the three models, independently of their mi-

croscopic details, and they can be given simple geometric interpretations. A important

common feature in all three models, is the big jump in complexity that occurs from the two-

species to the three-species scenario, and in resource competition from the two-resources to

the three-resources scenario.

Chapter 6 departs strongly from the primary focus on resource competition. There I

study the indirect effects between competing plants, which arise as a consequence of their

interactions with the organisms of the soil community. The soil community is a combination

of plant parasites, consumers, symbionts, etc. The feedback, positive or negative, that the

plants receive from the interaction with the soil have the potential to modify the outcomes

of plant competition. This model is not mechanistic at all (is just a modification of the

two-species Lotka-Volterra model 1.1), but it highlights the importance of considering the

effects of other trophic levels. By means of graphical methods and invasion analysis, it

is possible to obtain a rather complete description of the global dynamics for this system.

An interesting feature of the model is that it allows competitive oscillations between two

species, in contrast with the minimum of three species required in standard models. Also,

the model allows for multiple coexistence equilibria between two species, in contrast with

the classical Lotka-Volterra model, which only allows one coexistence equilibrium between

two species.

Finally in Chapter 7, I start reviewing the most important results from the previous chap-

ters, before placing them in a wider context. In this thesis, I focused on purely competitive

systems, such that the interactions inside the trophic levels above or below the competitors

do not represent any influence at all (but we can see Chapter 6 as an exception). Thus, I

feel compelled to speculate about the dynamics of multispecies competition under more

realistic contexts, where the species belong to a food web. In a food web, competitive in-

teractions take place simultaneously with predator-prey interactions. Knowing that both

types of interactions can generate oscillations, it remains an open question which kind of

dynamics would result from the coupling of predator-prey and competitive oscillations. In

the rest of the chapter, I try to return to the original problem of understanding emergent
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properties of ecosystems. I outline some preliminary attempts at integrating resource com-

petition theory into the Metabolic Theory of Ecology (MTE). In doing so, it becomes evident

that ecosystem level properties are sensitive to many mechanistic details, with the potential

to obscure patterns predicted by the MTE.
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2
NONEQUIL IBR IUM COEX I STENCE IN A COMPET IT ION MODEL

WITH RESOURCE STORAGE

Tomás A. Revilla and Franz J. Weissing

Resource competition theory predicts that, in equilibrium, the number of coex-

isting species cannot exceed the number of limiting resources. In some compe-

tition models, however, competitive interactions may result in nonequilibrium

dynamics, allowing the coexistence of many species on few resources. The rele-

vance of these findings is still unclear, since some assumptions of the underlying

models are unrealistic. Most importantly, these models assume that individ-

ual growth directly reflects the availability of external resources, whereas real

organisms can store resources, thereby decoupling their growth from external

fluctuations. Here we study the effects of resource storage by extending the well-

known Droop model to the context of multiple species and multiple resources.

We demonstrate that the extended Droop model shows virtually the same com-

plex dynamics as models without storage. Depending on the model parameters,

one may obtain competitive exclusion, stable equilibrium coexistence, periodic

and non-periodic oscillations, and chaos. Again, nonequilibrium dynamics al-

lows for the coexistence of many species on few resources. We discuss our

findings in the light of earlier work on resource competition, highlighting the

role of luxury consumption, trade-offs in competitive abilities and ecological

stoichiometry.

Keywords: Resource competition, Monod model, Droop model, resource uptake, oscil-

lations and chaos, supersaturation, trade-offs, ecological stoichiometry, Redfield ratios,

luxury consumption.

Published in Ecology (2008) 89:865-777
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2.1 introduction

Many resource competition models have the property that – in a homogeneous environ-

ment and at equilibrium – the number of coexisting species is limited by the number

of limiting resources (Grover, 1997). As noticed already by Hutchinson (1961) this cre-

ates the paradox of how to explain the coexistence of many species on a small number

of resources. Traditional attempts to resolve the paradox tend to invoke spatial hetero-

geneity or externally imposed fluctuations (e.g. seasonal variation in nutrient supply or

oscillations induced by predator-prey or host-parasite interactions) in order to create the

nonequilibrium conditions required to maintain high levels of biodiversity (Hutchinson,

1961; Armstrong and McGehee, 1980).

More recently, Huisman and Weissing (1999, 2001, 2002) demonstrated that even in a ho-

mogeneous and constant environment multispecies competition does not necessarily lead

to equilibrium. In fact, the competition process itself may generate oscillations and chaos.

Such nonequilibrium conditions allow ’supersaturation’ (Schippers et al., 2001), i.e. the co-

existence of many more species than there are limiting resources. It crucially depends on the

relationship between resource requirements and resource consumption patterns whether

competition leads to equilibrium or to ongoing fluctuations (Huisman and Weissing, 2001;

Huisman et al., 2001). If species tend to consume most of the resources for which they have

low resource requirements, competitive exclusion will result where the initial conditions

decide upon who will win the competition. If species tend to consume most of those re-

sources for which they have high resource requirements, then equilibrium coexistence is to

be expected, where the number of species does not exceed the number of resources. Finally,

oscillations and supersaturation are to be expected if species tend to consume most of those

resources for which they have intermediate requirements. These results are supported by

mathematical analysis (Huisman and Weissing, 2001; Li, 2001; Li and Smith, 2003) and nu-

merical simulations (Huisman et al., 2001).

The conclusions of Huisman and Weissing were based on the Monod model, which is one

of the standard models of resource competition theory (León and Tumpson, 1975; Tilman,

1982; Grover, 1997). However, this model employs some unrealistic assumptions, making

it difficult to judge the empirical relevance of the above predictions. Most importantly,

the model assumes that individual growth reflects the external availability of resources,

whereas many organisms are able to store resources and hence are more dependent on

their individual internal resource content, called quota. Much recent work on multiple

nutrient limitation (Legovic and Cruzado, 1997; Klausmeier et al., 2004b), dynamic energy

budgets (Kooijman, 2000) and ecological stoichiometry in phytoplankton (Klausmeier et al.,

2004a) shows the importance of a more mechanistic description of resource uptake, internal

resource storage, and quota-dependent growth. The so-called quota models describe the

dynamics of resource acquisition and population growth separately and they often provide

a better description of competition than models without storage, in particular in fluctuating

environments (Grover, 1997; Ducobu et al., 1998). On the other hand, quota models contain

many more parameters and dynamic variables, making their analysis much more difficult.

It is therefore not surprising that quota models have never been as popular as Lotka-Volterra

models or Monod-type of models for resource competition.
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Still it is important to investigate whether the conclusions of classical resource competi-

tion theory are robust with respect to plausible extensions of the underlying models, e.g. by

taking storage and quota-dependent growth into account. In particular, it is by no means

self-evident that the results of Huisman and Weissing still apply in the presence of nutrient

storage. One might argue that storage will diminish the effects of external resource short-

age and therefore help to protect numerically abundant species against invaders. Since re-

peated invasions are crucial for competition-induced oscillations and supersaturation, one

might conjecture that nonequilibrium conditions are of minor importance in quota models.

On the other hand, quota models have more degrees of freedom, they contain more non-

linearities, and they incorporate implicit time delays caused by the separation of uptake and

growth. Since all these factors favour nonequilibrium conditions, one might conjecture that

just quota models have a higher potential for oscillations and supersaturation. To settle this

issue, we here study the Droop model (Droop, 1973; Tilman, 1977; Legovic and Cruzado,

1997; Grover, 1997), which is currently viewed as the standard quota model of resource

competition. By means of a simulation approach, we ask the question whether and to what

extent the conclusions of Huisman and Weissing (2001) are affected by nutrient storage. Is

it, for example, more or less likely that oscillations and supersaturation do occur in the

presence of nutrient storage?

2.2 models and definitions

2.2.1 The Multispecies Monod model

Huisman and Weissing (1999, 2001) studied the multispecies extension of a classical re-

source competition model (León and Tumpson, 1975; Tilman, 1982) where the densities Ni

(individuals per volume) of n species and the concentrations Rj (mass per volume) of k

resources are governed by a system of ordinary differential equations:

dNi

dt
= Ni(µi(R1, . . . ,Rk) − mi) (2.1a)

dRj

dt
= D(Sj − Rj) −

n∑

i=1

cjiµi(R1, . . . ,Rk)Ni (2.1b)

where D is the resource flow rate, Sj is the input concentration of resource j, and cji

the fixed content of resource j in species i (mass per individual). In this system, the spe-

cific growth rate of species i ((1/Ni)dNi/dt) is given by the difference between the specific

growth rate µi and the specific mortality rate mi. Mortality rates are assumed to be con-

stant, while the growth rates are functions of the (external) levels of resources R1, . . . ,Rk.

Usually µi is assumed to be given by a combination of Monod’s (1950) equation and Liebig’s

(1840) law of the minimum:

µi(R1, . . . ,Rk) = ri min
j

(

Rj

Hji + Rj

)

(2.2)

where ri is the maximal specific growth rate of species i under resource saturation, and

Hji is the half-saturation constant of resource j for species i. For brevity, we will call the
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system defined by (2.1) and (2.2) the Monod model. The properties of this system are well

known (e.g. Tilman 1982; Huisman and Weissing 2001). To a large extent they depend

on the resource supply point S = (S1, . . . , Sk), the consumption vectors ci = (c1i, . . . , cki)

and the minimal resource requirements R∗
i = (R∗

1i, . . . ,R
∗
ki) of the various species. Here,

the resource requirement R∗
ji of species i with respect to resource j is that concentration

of resource j for which mortality is just balanced by growth (mi = µi), given that all

other resources are present in excess. In brief, Huisman and Weissing (2001) arrived at the

following conclusions:

1. At equilibrium, each species is limited by a different resource. Accordingly, no more

species can coexist than there are limiting resources.

2. If each species tends to consume most of that resource for which it has the lowest

requirement (i.e., the lowest R∗
ji), species-poor equilibrium systems are to be expected

where a single competitor excludes all others.

3. If each species tends to consume least of that resource for which it has the lowest re-

quirement, then saturated equilibrium systems are to be expected, where the number

of coexisting species corresponds to the number of limiting resources.

4. If species tend to consume most of the resources for which they have intermediate re-

quirements, then oscillations and chaos allowing supersaturation (i.e. the coexistence

of more species than limiting resources) are to be expected.

2.2.2 The Multispecies Droop model

In the Monod model, all species are assumed to have fixed resource contents (cji) and

species growth is directly dependent on the external resource concentrations. In case of

micro-organisms (e.g. phytoplankton), for which the Monod model was designed, it is

more plausible to assume that the internal resource content can fluctuate (e.g. due to stor-

age) and that growth more reflects internal resource concentrations than external resource

availabilities. To model this, we use an extension of the variable stores model of Droop

(1973) to n consumers and k resources. This model considers a third set of variables in

addition to the species and resources: the internal resource content or quota Qji of resource

j for species i. The quota is the variable equivalent of the fixed resource content cji in

the Monod model, both having units of mass of resource per individual. The dynamical

equations are:

dNi

dt
= Ni(µi(Q1i, . . . ,Qki) − mi) (2.3a)

dQji

dt
= fji(Rj) − µi(Q1i, . . . ,Qki)Qji (2.3b)

dRj

dt
= D(Sj − Rj) −

n∑

i=1

fji(Rj)Ni (2.3c)

Notice that the equations for population growth (2.3a) correspond to equations (2.1a) of

the Monod model, with the sole difference that the growth functions µi do not depend
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on external resource concentrations but on internal quotas. The resource equations (2.3c)

correspond to equations (2.1b) of the Monod model, but now the specific resource uptake

is described by functions fji(Rj) rather than fixed consumption vectors. Equations (2.3b)

characterizes the quota dynamics, which is governed by the resource uptake per individual

(i.e. fji(Rj)) and dilution of quota due to growth and/or reproduction (accounted for by

the term µiQji).

Following Tilman (1977) and Legovic and Cruzado (1997) we assume that the growth

rate µi is governed by a combination of Liebig’s law of the minimum and Droop’s (1973)

formula relating growth and quotas:

µi(Q1i, . . . ,Qki) = ri min
j

(

1 −
qji

Qji

)

(2.4)

ri is the maximum growth rate under quota saturation and qji the minimum subsistence

quota for resource j: for Qji > qji the growth rate is positive, but it is set to zero if Qji < qji.

According to equation (2.4) at any given moment the growth of species i depends only on

the nutrient having the smallest internal content relative to the subsistence quota.

Uptake of resources from the external medium is assumed to be an increasing and satu-

rating function of the external resource concentration:

fji(Rj) =
vjiRj

Kji + Rj

(2.5)

where vji and Kji are the maximum uptake rate and the uptake half-saturation constant for

resource j by species i, respectively.

For brevity, we will call the system defined by (2.3, 2.4, 2.5) the Droop model for the rest

of the paper.

At first sight, the Monod and the Droop model seem to share many properties. It is,

however, important to be aware of some crucial differences:

1. Although the dependence of µi on Rj for the Monod model (2.2) and fji on Rj for

the Droop model (2.5) are topologically identical functions, they describe different

(though related) processes. In fact, fji can be given the same kind of mechanistic un-

derpinning (based on handling time arguments) as a “functional response” of Holling

type II (Aksnes and Egge, 1991). In contrast, the Monod terms in (2.2) correspond to

a “numerical response” of consumer density towards changes in resource availability.

Since metabolism is much more complex than resource uptake there is at present no

general and simple theory providing a mechanistic underpinning for the numerical

response. Accordingly, the Monod-type numerical response (2.2) in the Monod model

and the Droop-type numerical response (2.4) in the Droop model both represent em-

pirical relationships that are not yet linked to underlying mechanisms.

2. Although there is an obvious correspondence between some of the variables and pa-

rameters of the two models, the relationship between the models is less straightfor-

ward than one might think. For example, the parameter ri corresponds to maximum

growth rates in both models. Still there is an important difference. In the Monod

model ri corresponds to the growth rate of species i achieved asymptotically when
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all resources are overabundant. In the Droop model this is not the case. Here an

infinite availability of all resources saturates the uptake but not the growth rate. Even

if uptake rates are maximal, the quotas do not exceed some limit values, leading to

growth rates µi that can be substantially smaller than ri.

3. For the reason indicated above, the simpler Monod model is not just a special case of

the more complex Droop model. Burmaster (1979) derived a mapping between both

models, but it only holds for the characterization of the community equilibrium in

case of a single consumer growing on a single resource. In case of more than one

resource the relationship between the models is rather intricate, even if the quota

dynamics is rather fast and quotas are at a quasi-steady state all the time.

2.2.3 Resource requirements and consumption patterns

As indicated above, the dynamics of the Monod model is governed to a large extent by the

relation between resource requirements and resource consumption patterns. We therefore

start by defining the same concepts for the Droop model. In contrast to the Monod model,

we now have to distinguish between external and internal resource requirements, while the

consumption pattern of a species is no longer characterized by a fixed consumption vector.

The internal requirement Q∗
ji of species i for resource j is defined as the quota Qji for which

mortality is just balanced by growth (mi = µi), given that the quota of all other resources

are not limiting growth. In view of eq. (2.3a) and (2.4) Q∗
ji is given by:

Q∗
ji = riqji/(ri − mi) (2.6)

We can now define the external requirement R∗
ji of species i for resource j as that resource

concentration Rj just allowing to achieve the quota Q∗
ji, given that the quota of all other

resources are not limiting growth. R∗
ji is obtained by setting (2.3b) equal to zero, given that

µi = mi and Qji = Q∗
ji. This implies fji(R

∗
ji) = miQ

∗
ji or equivalently:

R∗
ji =

KjimiQ
∗
ji

vji − miQ
∗
ji

(2.7)

As in the Monod model, the parameter R∗
ji summarizes the competitive ability of species

i for a given resource j. Whenever the resource concentration Rj is below R∗
ji, species i will

decline. Hence if competition occurs for a single resource only, the species with the lowest

requirement will exclude all the others (Smith and Waltman, 1994) which is known as the

R∗-rule (Grover, 1997).

In resource space the set of external resource requirements R∗
ji define the nullcline (or

zero net growth isocline) of species i: Rj > R∗
ji implies that µi > mi and species i can grow;

while i decreases for Rj < R∗
ji. In case of two resources, the resource space (R1,R2) is two-

dimensional, and the nullclines are L-shaped, indicative of a sharp switch in the identity

of the limiting resource (Fig. 2.1A). This concept can be extended to higher dimensional

resource spaces (R1. . . . ,Rk) where the planes Rj = R∗
ji define the nullclines.

The consumption vector (or consumption pattern) of species i is given by i’s specific con-

sumption rates fji(Rj) of the different resources. In the Monod model the consumption
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vector of species i is given by ci = (c1i, . . . , cki) and hence independent of the resource

availabilities. In the Droop model, however, the direction of the consumption vector

fi(R) = (f1i(R1), . . . , fki(Rk)) strongly reflects the external resource concentrations. Figure

2.1A illustrates this change in the direction of the consumption vectors in a two dimen-

sional resource space. If we keep resource 1 fixed at its requirement (R1 = R∗
1i) and if we

increase the level of resource 2 above its requirement (R2 > R∗
2i) then the component of

the consumption vector corresponding to resource 2 increases with respect to the one of

resource 1. The same applies mutatis mutandis for changes in resource 1. This behavior is

associated with the accumulation of higher levels of non-limiting resources at equilibrium,

a phenomenon known as luxury consumption (Grover, 1997).

2.2.4 Community equilibrium

A Droop system is at equilibrium if all rate equations (2.3a,2.3b,2.3c) are equal to zero:

dNi/dt = dQji/dt = dRj/dt = 0. Dynamic variables at equilibrium will be indicated by

a hat (^). An equilibrium will be called a community equilibrium if n > 2, k > 2 and all

dynamical variables are positive N̂i > 0, Q̂ji > 0, R̂j > 0. Such a state, stable or not, exists

if the following conditions are met:

First, the nullclines of all coexisting species have to intersect in a single point in re-

source space (see Fig.2.1B). This implies that at most k species can coexist at equilibrium,

since generically more than k nullclines will not have a common intersection point in k-

dimensional resource space. Let us therefore assume from now on that n = k. Moreover,

all n nullclines can only intersect if each species is limited by a different resource (see Fig.

2.1B). Let us therefore assume that species 1 is limited by resource 1, species 2 by resource

2, and so on. Then the equilibrium in resource space is given by:

R̂ = (R̂1, . . . , R̂n) = (R∗
11, . . . ,R

∗
nn) (2.8)

Second, the common intersection point in resource space must be attainable. This is

only possible if the resource supply point S = (S1, . . . , Sn) is located in the positive cone

that is attached at the resource equilibrium R̂ and spanned by the consumption vectors

f̂i = fi(R̂) = (f1i(R
∗
11), . . . , fni(R

∗
nn)) at this equilibrium (see Huisman and Weissing 2001

for a detailed justification). Figure 2.1B visualizes this cone as a wedge in a two-dimensional

resource space.

The special case of two species competing for two resources has for the Droop model been

studied graphically by Turpin (1988). This is depicted in Figure 2.1B, where each species

consumes comparatively more of the resource for which it has the highest requirement, a

situation leading to stable coexistence. If, on the other hand, each species consumes more

of the resource most required by the other species (corresponding to the situation where the

two consumption vectors f̂1 and f̂2 in Fig. 2.1B were interchanged), competitive exclusion

will result where the winner may depend on the initial conditions. Hence for n = k = 2

the graphical analysis is very similar to that of the simpler Monod model. Notice, however,

that the slopes of consumption vectors are fixed in the Monod model, whereas they are

dependent on the position in resource space in the Droop model (as illustrated in Fig.

2.1A).
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nonequilibrium coexistence in a competition model with resource storage

Notice further that the equilibrium values R̂j and Q̂ji are in general not equal to resource

requirements R∗
ji and Q∗

ji. The “star values” are consumer properties that are derived under

the assumption that the given resource j is limiting. In contrast the “hat values” are system

properties reflecting the state of the system at equilibrium. Star and hat values only coincide

for those resources that happen to be limiting at the community equilibrium, i.e. R̂i = R∗
ii

and Q̂ii = Q∗
ii. For the non-limiting resources (j 6= i) we have instead R̂j > R∗

ji, Q̂ji > Q∗
ji,

corresponding to luxury consumption.

2.3 results

In a separate attempt, we show how the local stability of the community equilibrium can

be characterized analytically (Revilla & Weissing, submitted). Because of the high dimen-

sionality of the Droop model, already a local analysis is difficult, although it turns out that

– as in the Monod model – the consumption patterns at equilibrium fi(R̂) plays a crucial

role. We have little hope that global and nonequilibrium dynamics of the Droop model

can be characterized analytically. Therefore we see no alternative than to rely on numerical

simulations.

To get a representative picture of the dynamics, we performed tens of thousands simu-

lations, each covering an extensive period of time. Details about parameters choice, initial-

izations and the numerical integration technique are given in Appendix A. The parameters

used in our figures are given in Appendix B. In the majority of simulations we focused on

chemostat-like conditions where mi = D. Moreover we usually set ri = r for all species.

See the discussion for a justification of these assumptions.

2.3.1 Competition for two resources

In the Monod model, competition for two resources always results in the convergence

of the system to a stable equilibrium where at most two species can stably coexist

(Huisman and Weissing, 2001). Oscillations do never occur. To check whether the same

holds true for the Droop model, we ran extensive simulations of two species competing for

two resources. Without exception, we found the same three dynamical scenarios that are

well-known from the Monod model:

1. Species 1 always wins when it is the better competitor for both resources (i.e. R∗
11 <

R∗
12 and R∗

21 < R∗
22); species 2 always wins when the opposite holds true (i.e. R∗

12 <

R∗
11 and R∗

22 < R∗
21).

2. The two species stably coexist at equilibrium if the nullclines intersect and at the

intersection point each species consumes most of the resource for which it has the

highest requirement (i.e. Fig. 2.1B).

3. Either species 1 or species 2 wins (depending on the initial condition) if the nullclines

intersect and each species consumes at the intersection point most of the resource for

which it has the lowest requirement (i.e Fig. 2.1B, but with f̂1 and f̂2 interchanged).

18



2.3 results

R*
1i

R*
2i

f2

f1 1 wins

1 wins

2 wins

2 wins
co

ex
ist

en
ce

Resource 1

R
es

o
u

rc
e 

2

µi > mi 

R*
12

R*
22

R*
11

R*
21

fi=(f1i,f2i)
µi < mi 1

2

A B

^

^

Figure 2.1: Two-dimensional resource space illustrating competition for two limiting re-

sources. (A) For each species i an L-shaped nullcline divides the resource space

into an area where net growth occurs (µi > mi) and an area where species i

does decline (µi < mi). The nullcline is determined by the minimal resource

requirements R∗
1i and R∗

2i. The consumption vector fi = fi(R1,R2) of species

i depends on the resource concentrations. The slope of fi increases along the

vertical segment of the nullcline and decreases along the horizontal segment.

(B) A two species community equilibrium exists if the two nullclines cross and

the supply point falls inside the wedge defined by the consumption vectors f̂1
and f̂2 of the two species at the intersection point. If each species consumes

most of the resource limiting its own growth (the configuration shown here),

the community equilibrium is stable.
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In all simulations, the system approached a steady state, and oscillations did not occur.

This conclusion does not depend on the chemostat assumption (mi = D) or the equality of

the ri-values.

2.3.2 Competition for three resources

Also in case of more than two resources, the dynamics of competition strongly depends

on the relationship between resource requirements and consumption patterns. However,

a full characterization of the system behaviour seems a forbidding task. In fact, there

are (k!)2k qualitatively different configurations of resource requirements and consumption

patterns (Huisman and Weissing, 2001), giving a huge number (46656) already for n = k =

3. Huisman and Weissing therefore restricted their analysis to some important special cases.

In case of three resources they were able to derive clear-cut predictions for the following

three scenarios:

1. Each species consumes most of the resource for which it has the highest requirement.

Prediction: stable equilibrium coexistence.

2. Each species consumes most of the resource for which it has the intermediate require-

ment. Prediction: species oscillations.

3. Each species consumes most of the resource for which it has the lowest requirement.

Prediction: competitive exclusion where the winner depends on the initial condition.

In case of the Droop model there are even more degrees of freedom since the consumption

patterns are not fixed but variable. The three scenarios above can, however, be implemented

by focusing on the consumption vectors f̂i = fi(R̂) at equilibrium (see Appendix A). The

three scenarios and the predictions based on the Monod model are summarized in Table

2.1.

Figure 2.2 shows some simulations of the Droop model whose outcome is fully in line

with the predictions derived on basis of the Monod model. When all species consume most

of the resource for which they have the highest requirements, the three species coexist sta-

bly at equilibrium (Fig.2.2A). The same result was obtained by all 100000 simulations for

scenario 1. When all species consumes least of the resource for which they have highest

requirements, one of the three species outcompetes the other two (Fig.2.2B). In all simu-

lations based on scenario 3 we similarly obtained competitive exclusion with the winner

depending on the initial conditions.

Nonequilibrium outcomes were obtained for scenario 2, where each species consumes

most of the resource for which it has intermediate requirements. We obtained regular

limit cycles with a constant period as in Figure 2.2C or oscillations with increasing period

as in Figure 2.2D. The latter type corresponds to a heteroclinic orbit connecting the three

monoculture equilibria.
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Figure 2.2: Three species competing for three resources. (A) Equilibrium coexistence:

species 2 invades the monoculture of species 1, the resulting two species equilib-

rium is invaded by species 3 and the resulting three species equilibrium is stable.

(B) Competitive exclusion: here the initial condition favors species 3. (C) Species

oscillations: convergence to a limit cycle. (D) Species oscillations of increasing

period; convergence to a heteroclinic cycle.
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Requirements scenario 1 scenario 2 scenario 3

R∗
11 > R∗

12 > R∗
13

R∗
22 > R∗

23 > R∗
21

R∗
33 > R∗

31 > R∗
32

f̂11 > f̂12 > f̂13

f̂22 > f̂23 > f̂21

f̂33 > f̂31 > f̂32

f̂12 > f̂13 > f̂11

f̂23 > f̂21 > f̂22

f̂31 > f̂32 > f̂33

f̂13 > f̂12 > f̂11

f̂21 > f̂23 > f̂22

f̂32 > f̂31 > f̂33

Prediction equilibrium coexistence oscillations exclusion

Table 2.1: The dynamics of competition for 3 resources strongly depends on the relation-

ship between resource requirements (quantified by R∗-values) and consumption

patterns (quantified by the elements of the consumption vectors at equilibrium

f̂ji = fji(R̂j)). For a cyclic configuration of resource requirements (where in all

cases species i has the highest requirement for resource i), the table shows three

different configurations of consumption patterns and the outcome predicted on

basis of the Monod model. In the first scenario species i consumes most of re-

source for which it has the highest requirement; in the second scenario all species

consume most of the resource for which it has the intermediate requirement; and

in the third scenario each of them consumes most of the resource for which its

requirement is the lowest.

Figure 2.3 illustrates that the competition induced oscillations are somewhat different

than those of the Monod model. In this figure the dynamics of a Droop model (left panels)

are compared with those of the “corresponding” Monod model, i.e. a Monod model with

the same community equilibrium, the same external resource requirements R∗
ji and the

same consumption patterns ci = 1
mi

fi(R̂) = 1
D
fi(R̂). In line with many similar simulations,

the Monod model displays a much higher oscillation frequency (notice the time scale).

Apart from this, the oscillations of external resource concentrations and species densities

look rather similar in both models, despite oscillations of the resource contents in the Droop

model (in the Monod model the resource contents are constant by definition). However, in

the Droop model the pattern of oscillations tends to be somewhat more complex at the

resource level and somewhat less complex at the level of species densities. Interestingly,

the oscillations of consumer densities are more pronounced than in the Monod model,

despite of the (presumably) buffering effect of nutrient storage.

To investigate whether the outcomes in Figures 2.2C, 2.2D and 2.3 are representative,

we again ran many simulations. In 20-25% of all cases (depending on the search window

in parameter space) we obtained regular oscillations as in Figure 2.2C, where all species

stayed well above zero in density. In about 60% of all cases we obtained either oscillations

involving very low species densities (<10−4) or heteroclinic cycles as in Figure 2.2D. In a

heteroclinic cycle the system stays close to a monoculture equilibrium for increasingly long

periods of time, once in a while rapidly switching from one monoculture to another. Hence

for long periods of time two of the three species have very low densities. Accordingly,

in a real-world system such a situation would lead to the extinction of two of the three
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Figure 2.3: Dynamics of consumers, quotas and resources for a Droop model and an equiv-

alent Monod model, i.e. a model with the same resource requirements, quotas

and uptake rates as the Droop model has at equilibrium. Resources are indi-

cated by colors (1: red, 2: green, 3: blue) and consumers by line patterns (1:

solid, 2: dash, 3: dots). For the Monod model, the fixed resource contents cji

are shown for comparison with the quotas Qji.
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Figure 2.4: Competitive chaos for five species competing for five resources. (A) Time series

illustrating how an apparently stable period is followed by violent fluctuations.

(B) The chaotic attractor for the same series plotted for species 1, 3 and 5 for t =

10000 - 20000.

species, corresponding to competitive exclusion. In contrast with the Monodmodel, we also

obtained “theoretical competitive exclusion” in 15-20% of our simulations. In these cases,

the system converged to an asymptotically stable monoculture equilibrium. To understand

this, notice that the scenarios in Table 2.1 are only valid at the community equilibrium. In

contrast to the Monod model, the hierarchy of consumption patterns may change in time,

leading, for example, to a switch from the “Rock-Scissors-Paper” scenario 2 to a scenario

favoring competitive exclusion. In conclusion, nutrient storage and luxury consumption

change the rules of the game, making oscillations (slightly) less likely than in the Monod

model.

2.3.3 Competition for more than three resources

With the same reservations as in the case n = k = 3, the results of Huisman and Weissing

(2001) seem to extend to more than three resources. With four species and four resources

(results not shown) our simulations revealed stable equilibrium coexistence if at equilibrium

each species consumes most of the resource for which it has the highest requirement; and

competitive exclusion if each species consumes most of the resource for which it has the

lowest requirement. We also found oscillations with either constant or increasing period

when consumption is higher on resources for which the requirements are intermediate.

In some cases, as in Huisman and Weissing (2001), if each species consumes most of the

resource for which it has the second-highest requirement, one species pair displaces the

other species pair; the winning pair depending on the initial conditions.

With five species competing for five resources competitive oscillations with switching

partners occur if each species consumes most of the resource for which it has the second-
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highest requirement. But if each species consumes most of the resource for which it has

the intermediate requirement, the system can generate chaos. In Figure 2.4 we show one

of these chaotic time series, which displays an apparent period of stabilization followed by

violent fluctuations again. For a given set of physiological and environmental parameters

the system may have alternative attractors. This is exemplified by Figure 2.5, where the

system may – depending on the initial conditions – end up in a limit cycle, a heteroclinic

cycle or a non-periodic attractor.

2.3.4 More species than resources: supersaturation

In light of the previous results the question arises whether, as in the Monod model, inter-

nally generated nonequilibrium conditions allow supersaturation, i.e. the coexistence of

more species than the number of resources (Huisman and Weissing, 1999). The answer is

yes. Figure 2.6 shows oscillatory coexistence of four, five, and six species on three resources.

These oscillations can have low or high amplitudes. Figure 2.6A is particularly interest-

ing, here the invasion of a fourth species actually leads to a reduction in the amplitude of

oscillations, making the system look more “equilibrium-like”.

2.4 discussion

Storage-based models proved able to display as rich dynamics as their constant resource

content counterparts (e.g. the Monod model). This is a new confirmation that multispecies

competition can display sustained oscillations, with no need of externally imposed fluctu-

ations. The mechanism is the same in both models: non-transitivity in competitive domi-

nance (Huisman and Weissing, 2001). If species dominance relationships are not transitive

(A beats B, B beats C, but C beats A) the community equilibrium is unstable, so that oscil-

lations or chaos occur. Moreover many if not all of the boundary equilibria of the commu-

nity are unstable, preventing species from going extinct and promoting high diversity and

supersaturation (Fig. 2.6). It is worth to notice that a variety of modeling approaches

(May and Leonard, 1975; Gilpin, 1975; Huisman and Weissing, 1999; Laird and Schamp,

2006) point towards the general conclusion that non-transitivity in competitive hierarchy

promotes coexistence, or alternatively, delays competitive exclusion, enhancing biodiver-

sity.

Mathematical analysis of the Monod model (Huisman and Weissing, 2001; Li, 2001) re-

vealed that the stability of the community equilibrium is crucially dependent on the con-

sumption pattern, i.e. the matrix of consumption terms cji. In a separate paper (Revilla

and Weissing, submitted), we show analytically that the same is true for storage models in

general. In line with a recent study of Li and Smith (2007), who perform a global analysis

for the special case n = k = 2, we arrive at the conclusion that the dynamic behaviour of

both types of model is qualitatively very similar close to equilibrium.
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Figure 2.6: Nonequilibrium coexistence of 4, 5 and 6 species on three limiting resources.

(A) High amplitude oscillations of three species allows the invasion of a fourth

species (introduced at t = 6000). The system ends up displaying low amplitude

oscillations. (B) Oscillations of five species competing for three resources. (C)

Oscillations of six species competing for three resources (species 6 invades at t

= 5000).
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Still there are important differences between both types of model. Most importantly, the

consumption terms in the Droop model are no longer fixed but functions fji(Rj) of the

external resource concentrations. Accordingly, it is not possible to separate resource re-

quirements and consumption patterns, as in the Monod model. In the Monod model, the

positive cone in resource space allowing stable coexistence (like the wedge in Fig. 2.1B),

looks the same irrespective of the position of the resource equilibrium R̂. In the Droop

model, luxury consumption of non-limiting resources has the effect that the correspond-

ing cone (spanned by the consumption vectors fji(R)) gets smaller and smaller when the

resource equilibrium R̂ is approached from the direction of the resource supply point. Ac-

cordingly, luxury consumption results in a decrease of the zone of stable coexistence. Thus,

the multispecies quota models seems to be more likely to end up displaying unstable com-

munity equilibria. When the community equilibrium is unstable the resulting dynamics

could be nonequilibrium coexistence or competitive exclusion.

According to our simulations, the Droop model has a lower tendency for oscillations

than the Monod model, because the consumption pattern at equilibrium may change as

the system evolves, as well as the identity of the resource that causes growth limitation for

a given species. Theoretically, such changes might allow oscillations in cases where such

oscillations cannot occur in the Monod model. We never encountered a simulation corre-

sponding to this possibility, perhaps because we focused on the cases k = 3, 4 and 5. There is

however, another potential mechanism that may cause oscillations in models with nutrient

storage. In fact, damped oscillations occur in the single-species Droop model if the mortal-

ity rate m is large enough when compared to the flow rate D (Clodong and Blasius, 2004),

this will never happen if m = D (Lange and Oyarzun, 1992; Oyarzun and Lange, 1994;

Legovic and Cruzado, 1997). It was for this reason that we made the chemostat assump-

tion, since we were mainly interested in competition-induced oscillations. Since we ran

only few simulations with mi > D, it is an open problem whether or not such fluctuations

of physiological origin could interact synergisticaly with competitive-induced oscillations,

enhancing the chances of nonequilibrium coexistence.

Toward a realistic theory of trade-offs

We have seen that the occurrence of nonequilibrium dynamics strongly depends on trade-

offs between resource requirements and consumption rates. In the context of the Monod

model, it is difficult to develop a mechanistic theory of such trade-offs, since already the

underlying growth equation (2.2) (corresponding to a numerical response) lacks a mecha-

nistic underpinning. In contrast, the uptake function (2.5) (corresponding to a functional

response of Holling (1959) type II) of the Droop model can be justified mechanistically

in terms of physiological and environmental factors (e.g., transporter properties, cell size,

medium viscosity, temperature).

For example, Aksnes and Egge (1991) have shown that the maximum uptake rate vji for

a given nutrient is directly proportional to the number nji of nutrient-specific transporters.

If each transporter occupies an area aji on the surface of the cell membrane, a natural

constraint arises, since
∑

ajinji 6 Ai, where Ai denotes the total surface available. If we

further assume that surface area scales with cell mass wi with a certain allometric exponent
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Figure 2.7: Change in uptake hierarchies due to mechanistic constraints. If the maximum

uptake rate vji and the half-saturation constant Kji are positively correlated, as

predicted by mechanistic theory, the resource uptake functions of three species

can easily cross. As a consequence the ranking of the species with respect to

resource uptake (as in Table 2.1) changes with the resource concentration.

ρ (i.e. Ai ∝ w
ρ
i ), we get an allometric constraint for the maximum uptake rates of the form

∑
ajivji 6 kw

ρ
i . Thus, raising the maximum uptake vji for resource j may be associated

by a decrease in the maximum uptake of other resources, unless the cell size is increased

too. An increase in cell size would in turn have other metabolic costs, reflected as increased

threshold requirements qji.

To illustrate the use of a mechanistic interpretation of trade-offs, consider the following

argument. For the second scenario in Table 2.1 we obtained competitive exclusion in a con-

siderable number of cases where an equivalent Monod model would predict oscillations.

When we looked at these cases in detail, it turned out that the vji and Kji yielded uptake

functions that cross each other, like in Figure 2.7. This means that the consumption hier-

archies can change as the system evolves, leading, for example, to a hierarchy inducing

competitive exclusion. A situation as in Figure 2.7 can easily arise if the parameters vjiand

Kji happen to be positively related. This is precisely what the model of Aksnes and Egge

predicts, since both vji and Kji are proportional to the handling time needed to pass a nutri-

ent molecule through the membrane. In our simulations, we unintendedly also introduced

a positive correlation among vji and Kji (see Appendix A). Accordingly, we encountered a

relatively large number of situations were the rules of the competitive game at equilibrium

change drastically when moving away from equilibrium. If vji and Kji were negatively

correlated instead, the consumption hierarchies of Table 2.1 are more likely remain stable,

as in the Monod model.

Stoichiometry

For both the Monod and the Droop model oscillations can only occur if species differ in

their resource requirements and in their resource uptake characteristics in a specific and

contrasting way (e.g. scenario 2 in Table 2.1). In nature, variation in resource contents

and requirements occur within the limits allowed by the stoichiometry of the underlying

biochemical reactions. One may therefore wonder whether our theoretical considerations

are compatible with such stoichiometric constraints.

29



nonequilibrium coexistence in a competition model with resource storage

First, one might think that species cannot differ too much in their hierarchy of resource

requirements R∗
ji or in their hierarchy of quotas at equilibrium Q̂ji. It is, for example,

well known that organisms cannot have a lower content (grams or moles) of carbon (C)

than their contents of nitrogen (N) or phosphorous (P), no matter how flexible the variable

quotas are. For algae, the canonical stoichiometric reference are the Redfield (1958) ratios for

atomic composition, C:N:P = 106:16:1. However, recent work (Legovic and Cruzado, 1997;

Klausmeier et al., 2004a,b) indicates that Redfield ratios are not cast in stone but actually

quite variable. Due to this flexibility, it is not unrealistic that each resource has a different

hierarchy across species with respect to either resource contents or resource requirements.

This is illustrated by the following table, showing for three species resource contents coming

close to Redfield ratios:

Species 1 Species 2 Species 3

C 1045 1060 1053
N 165 160 171
P 11 10 9

C:N:P 95:15:1 106:16:1 117:19:1

In this example species 1 has the highest content of P, species 2 of C and species 3

of N. Similarly, we can build any hierarchy for resource requirements. We can conclude

that stoichiometric principles like the Redfield ratios only imposes mild constraints on the

hierarchies of requirements and quotas.

Second, one might think that – even if hierarchies differ between species – for each given

species the hierarchy of resource requirements should roughly match the hierarchy of re-

source consumption. In fact, one might argue that scenario 1 in Table 2.1 is much more

likely than the other two scenarios: according to equation (2.7) external (R∗
ji) and internal

(Q∗
ji) requirements are positively related, implying, that the hierarchy of R∗- and Q∗-values

are not to be different. Because of f̂ji = miQ̂ji, the hierarchy of uptake patterns f̂ji should

roughly match the hierarchy of equilibrium quotas Q̂ji, at least if the mi are not too dif-

ferent (as in a chemostat, where mi = D). Doesn’t this not imply that the hierarchies of

R∗-values should correspond to the hierarchy of f̂-values, as in scenario 1 of Table 2.1? The

answer is no. First, luxury consumption causes a mismatch between Q∗
ji and Q̂ji, imply-

ing that the relationship between R∗
ji and Q̂ji is far from obvious. Second, already the

relationship between R∗
ji and Q∗

ji is not really obvious, since the parameters vji and Kji in

equation (2.7) are both species and resource specific. According to theories like those of

Aksnes and Egge (1991) these parameters depend on many details that are not related with

the rules of internal metabolism or the stoichiometry underlying biochemical reactions. Ac-

cordingly, we do not see a reason for stoichiometry to prevent specific patterns of resource

requirements and resource consumption.

Conclusion

Our simulations show that multispecies resource competition models with storage dynam-

ics like the Droop model can display the competitive oscillations that are common in other

models (May and Leonard, 1975; Gilpin, 1975; Huisman and Weissing, 1999). In addition
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they can also generate coexistence of more species than the number of resources. The mech-

anism behind the oscillations is the sequence of replacements of species due to the lack

of absolute winners in the total ensemble of species as in the “Rock-Scissors-Paper” game,

a condition that results from trade-offs between resource requirements and consumption

patterns. The implicit delay by which a species responds to resource fluctuations in the

external medium does neither cause nor enhance these oscillations. In fact, it retards the

oscillations considerably, leading to periods that are one or more orders of magnitude

longer than those in corresponding models without storage. Moreover, in a considerable

percentage of cases oscillations do not occur in models with storage, while they are to be

expected on basis of the corresponding models without storage. This discrepancy is caused

by luxury consumption that may destroy the intransitivity causing oscillations (as in the

Rock-Scissors-Paper game) as soon as the system is sufficiently far from equilibrium. Stor-

age models are considerably more complex than purely phenomenological models like the

Lotka-Volterra models or less detailed semi-mechanistic models like the Monod model. But

physiological models accounting for storage have the big advantage that the all-important

trade-offs can be given a much better interpretation.
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appendix a : simulation details

The multi-species Droop model (2.3,2.4,2.5) contains a large number of parameters and,

hence, has many degrees of freedom: the maximum growth rates ri and the mortality rates

mi of the n species; the minimum subsistence quotas qji; the maximum uptake rates vji and

the half saturation constants for uptake Kji; the flow rate D and the resource supply rates

Sj. It can be shown analytically (Revilla and Weissing, submitted) that the dynamics of the

Droop model depends crucially on the ranking of the species with respect to resource re-

quirements R∗
ji and consumption patterns f̂ji at equilibrium (see Table 2.1). For this reason

we wanted to consider different scenarios regarding resource requirements and consump-

tion. To this end, we started by imposing a certain sign pattern of the R∗
ji values and on the

matrix f̂ji = fji(R̂j) as in Table 2.1. To achieve such patterns the model parameters were

chosen by a “reverse engineering” approach along the lines indicated below:

1. We set the flow rate D, maximum growth rates ri and the mortality rates mi. In most

simulations, all ri were equal: ri = r and all mortality rates were set equal to D (see

the text for a motivation).

2. Resource requirements were randomly chosen from an interval (R∗
low,R∗

high) and

arranged to form a matrix R∗
ji with the structure depicted in Table 2.1. Subsequently,

the resource levels at equilibrium are set by R̂j = R∗
jj.
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3. Consumption rates at equilibrium were randomly chosen from an interval

(f̂low, f̂high) and arranged to give a f̂ji matrix with a given hierarchy as in Table

2.1.

4. The half saturation constants Kji were chosen at random, with the sole restriction that

Kji > 0.

5. The maximum uptake rates vji were determined from eqn (2.5): vji = (1 + Kji/R̂j)f̂ji

where R̂j = R∗
jj. Notice that this results in a positive correlation between the parame-

ters vji and Kji, leading to resource uptake functions fji(Rj) that tend to intersect as

in Fig. 2.7.

6. Internal resource requirements are obtained from (2.7) as Q∗
ji = vjiR

∗
ji/mi(Kji + R∗

ji).

7. The minimum subsistence quotas are now obtained from (2.6) as qji = (1−mi/ri)Q
∗
ji.

8. Positive equilibrium densities N̂i were chosen at random.

9. The supply rates Sj were obtained by setting the right-hand side of eqn (2.3c) equal

to zero: Sj = R̂j + (1/D)
∑

f̂jiN̂j.

The alternative approach of starting by choosing all parameters at random has two disad-

vantages. First, many combinations would result in a system without community equilib-

rium or a system where the community equilibrium is not attainable. In our approach

steps 2, 8 and 9 guarantee that a community equilibrium exists and that the supply point

fall inside the wedge in Fig. 2.1B, implying that the community equilibrium can be reached.

Second, and more importantly, the huge number ((k!)2k) of qualitatively different config-

urations of resource requirements and consumption patterns implies that any new set of

parameter combinations would lead to a system falling into a new category. Accordingly

an astronomic number of simulations would be required in order to draw any general

conclusion on the system dynamics.

The system was initialized at the community equilibrium plus a random perturbation

on the resources, i.e. Ni(0) = N̂i, Qji(0) = Q̂ji, Rj(0) = R̂j + εj. For each scenario, we

replicated the above procedure 10000 to 50000 times, and we performed the corresponding

numerical integration for t = 10000 to 50000 days.

Numerical integration was performed in the C programming language (source code

at http://www.esapubs.org/archive/ecol/E089/050/) using the 4th order Runge-Kutta

solver from the GNU Scientific Library (http://www.gnu.org/software/gsl/). Each time

unit of the simulation (day) is fractioned into 1000 time steps by default unless adaptive

step size control takes place with absolute error tolerance of 10−6. The minimum operator

of (2.4) is evaluated for each single time step. We checked the robustness of the numerical

procedure by rerunning a large number of simulations with different time steps and error

tolerances, and by replacing the minimum operator in (2.4) by a differentiable function.

appendix b: parameter values

Parameter values are listed in the following order:
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Appendix B: Parameter values

1. Flow rate D, maximum growth rate r and resource supplies Sj.

2. The parameters Kji, vji and qji are given by three matrices K,V and Q, where the

rows indicate resources and columns indicate species.

3. Initial conditions for the species densities. If the species is a late invader, the time of

invasion is placed between parentheses.

Figure 2.2:

D = 0.50, r = 1, S1 = S2 = S3 = 10

A B C D

0.47 0.66 0.73 0.43 0.21 0.24 0.43 0.21 0.24 0.47 0.75 0.84

K 0.41 0.78 0.21 0.29 0.52 0.25 0.29 0.52 0.25 0.10 0.56 0.51

0.16 0.82 0.16 0.41 0.31 0.46 0.41 0.31 0.46 0.54 0.43 0.21

2.17 2.09 1.43 1.88 1.57 2.28 1.76 2.25 1.71 1.28 2.45 2.24

V 1.24 2.48 1.68 2.34 1.96 1.61 1.75 1.83 2.29 1.59 1.33 2.21

1.64 1.48 1.86 1.74 2.37 1.91 2.49 1.78 1.78 2.24 1.88 1.12

1.70 1.45 0.83 1.50 1.38 1.84 1.40 1.97 1.38 1.00 1.63 1.22

Q 0.88 1.71 1.48 1.82 1.50 1.38 1.36 1.40 1.97 1.44 1.00 1.65

1.48 0.81 1.70 1.36 1.80 1.50 1.95 1.35 1.40 1.65 1.32 1.00

Initial conditions: A: N1 = 2,N2(t = 500) = 0.1,N3(t = 2500) = 0.1; B: N1 = 0.8,N2 =

0.8,N3 = 1.2; C: N1 = 0.1,N2 = 0.1,N3 = 0.1; D: N1 = 0.1,N2 = 0.11,N3 = 0.12

Figure 2.3:

D = 0.5, r = 1, S1 = S2 = S3 = 10

The first column corresponds to a Droop model with species parameters:

K V Q

0.96 0.28 0.96 2.21 2.22 2.35 1.40 1.88 1.20

1.07 0.72 0.32 2.44 2.00 2.49 1.18 1.40 2.04

0.60 0.84 0.86 2.71 2.25 2.11 1.93 1.21 1.40

The second column corresponds to a Monod model that results in the same community

equilibrium as the Droop model (N̂i, Q̂ji = cji, R̂j):

H C

1.67 1.58 1.00 2.80 3.80 3.00

1.01 1.69 1.44 2.98 2.80 4.20

1.48 0.97 1.70 4.00 3.00 2.80

Initial conditions: are set equal to the species equilibrium values N1 = 1.03,N2 = 0.99,N3 =

1.00 in both cases.

Figure 2.4:

D = 0.25, r = 1, S1 = 8, S2 = 12, S3 = 14, S4 = 9, S5 = 10
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K V Q

1.51 1.50 1.80 0.50 1.60 1.52 1.50 2.80 1.50 1.50 0.51 0.47 0.86 0.38 0.30

1.60 1.51 1.50 1.70 0.50 1.50 1.52 1.50 2.80 1.50 0.30 0.51 0.47 0.86 0.38

0.50 1.60 1.50 1.50 1.71 1.50 1.50 1.53 1.50 2.80 0.38 0.30 0.51 0.47 0.86

1.70 0.50 1.60 1.51 1.50 2.80 1.50 1.50 1.51 1.50 0.86 0.38 0.30 0.50 0.47

1.50 1.70 0.50 1.60 1.51 1.50 2.80 1.50 1.50 1.51 0.47 0.86 0.38 0.30 0.50

Initial conditions: N1 = 0.1,N2 = 0.11,N3 = 0.12,N4 = 0.13,N5 = 0.14

Figure 2.5:

D = 0.25, r = 1, S1 = 8, S2 = 12, S3 = 14, S4 = 9, S5 = 10

K V Q

1.51 1.50 1.80 0.50 1.60 1.38 1.36 2.55 1.36 1.36 0.51 0.47 0.86 0.38 0.30

1.60 1.51 1.51 1.70 0.50 1.36 1.38 1.36 2.55 1.36 0.30 0.51 0.47 0.86 0.38

0.50 1.60 1.50 1.15 1.71 1.36 1.36 1.39 1.36 2.55 0.38 0.30 0.51 0.47 0.86

1.70 0.50 1.60 1.51 1.50 2.55 1.36 1.36 1.37 1.36 0.86 0.38 0.30 0.50 0.47

1.50 1.70 0.50 1.60 1.51 1.36 2.55 1.36 1.36 1.37 0.47 0.86 0.38 0.30 0.50

Initial conditions: N1 = N2 = N3 = N4 = 1 but in A: N5 = 0.9; B: N5 = 1.5; C: N5 = 1.8

Figure 2.6:

D = 0.25, r = 1, S1 = 6, S2 = 10, S3 = 14

A B C: insert i=5 in B(*)

0.11 0.02 0.08 0.15 0.22 0.26 0.24 0.07 0.05 0.06

K 0.05 0.13 0.08 0.04 0.25 0.33 0.23 0.10 0.01 0.12

0.07 0.01 0.13 0.16 0.26 0.01 0.10 0.35 0.04 0.06

0.21 0.30 0.20 0.57 0.26 0.49 0.27 0.48 0.09 0.14

V 0.37 0.44 0.49 0.45 0.56 0.63 0.67 0.52 0.71 0.27

0.67 0.41 0.56 0.95 0.98 0.42 0.51 1.26 0.63 0.28

0.48 0.83 0.33 1.20 0.47 0.79 0.24 1.20 0.23 0.28

Q 0.73 0.95 1.17 1.14 0.47 0.95 1.14 1.09 2.01 0.60

1.65 1.14 1.20 1.39 1.55 1.10 1.18 1.16 1.68 0.56

Initial conditions: A: N1 = 0.1,N2 = 0.11,N3 = 0.12,N4(6000) = 0.1; B: N1 = 0.1,N2 =

0.11,N3 = 0.12,N4 = 0.13,N5 = 0.14; C: N1 = 0.1,N2 = 0.11,N3 = 0.12,N4 = 0.13,N5 =

0.14,N6(5000) = 0.1 (*: Insert this column between columns 5 and 6 in part B).
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3
THE DYNAMICS OF MULT I SPEC IES COMPET IT ION WITH

NUTR IENT STORAGE

Tomás A. Revilla and Franz J. Weissing

Multispecies competition can display a rich dynamic behavior, including non

equilibrium coexistence. In this article we show that multispecies nutrient stor-

age models can be used to explain these dynamics, in the same way as less

realistic models do, and one should expect: coexistence when species consume

most of those resources for which they have high requirements, competitive ex-

clusion when species consume most of those resources for which they have low

requirements, and oscillations when species consume most of those resources

for which they have intermediate requirements. Although both simpler and

complex resource competition models share many properties, we also found

that predictability under nutrient storage is more difficult to asses because the

rules of the competitive game, stated as relationships between resource require-

ments and consumption characteristics, are not rigid ones but instead dependent

on the continuous feedback between the species and the environment.

Keywords: resource competition, storage, quota, equilibrium, internal stability, exter-

nal stability, oscillations.
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the dynamics of multispecies competition with nutrient storage

3.1 introduction

Resource competition theory (Tilman, 1982; Grover, 1997) is well supported by mathemat-

ical models. These models describe the dynamics of competing populations and their re-

sources explicitly. In one of the most common formulations, the interaction of two species

competing for two abiotic resources is modeled using the following set of ordinary differ-

ential equations:

dNi

dt
= (µi(R1,R2) − mi)Ni

dRj

dt
= D(Sj − Rj) −

∑

i

cjiµi(R1,R2)Ni (3.1)

in which Ni represents the population density of species i = 1, 2 and Rj is the concentration

of resource j = 1, 2. The net growth of species i is the result of the balance between its

specific growth rate µi, which is an increasing function of the resource concentrations, and

its specific mortality rate mi which is constant. cji is the content of resource j per species

i, and is also a proportionate measure of the consumption impact of species i on resource j.

In the absence of consumers, resources follow a linear dynamics, where D is the turnover

rate, and Sj the supply concentration.

Basic insight on the dynamics of competition can be achieved by means graphical ap-

proaches (León and Tumpson, 1975; Tilman, 1980, 1982), combining the following elements:

resource requirements: described by the nullclines µi(R1,R2) = mi, i.e. lines in the

plane R1R2 indicating resource combinations for which the net growth of species i is

zero.

consumption vectors: fi = (c1iµi, c2iµi), which describe the consumption pattern of

species i.

supply point: S = (S1, S2), the steady state condition of the resources in the absence of

the consumers.

The main results from the graphical approach are summarized in Figure 3.1. In principle,

all the necessary elements, like growth rates, resource contents and resource turnover rates,

can be measured or controlled in the laboratory (Tilman, 1977), before the species actually

interact. This makes resource competition theory a predictive theory, in contrast with the

Lotka-Volterra approach which is phenomenological and not predictive Grover (1997).

However, the reality is that the instantaneous growth of a population does not respond

to the level of resources in the environment, i.e. the specific growth rate µi is not a direct

function of Ri. Instead, the growth rate responds to the internal resource contents or quotas

(Droop, 1973), that is, the variable amount of resources that individuals are able to take

from the external environment. This has important implications, specially for competition

among microorganisms like bacteria and algae (Ducobu et al., 1998). The corresponding

nutrient storage models are more complex, since they consider a new set of variables, the

nutrient quotas. In case of two species and two resources, we must consider four quotas

36



3.1 introduction

A

-f1

-f2

R1

R2

1 wins

1 wins

2 wins

2 wins
coexistence

B

-f1

-f2

R1

R2

both extinct

1 wins

1 wins

2 wins

2 wins
1 or 2 wins

both extinct

Figure 3.1: In standard resource competition theory, the outcomes of competition between

two species for two resources depend on the geometry of nullclines (solid curve

for species 1, dashed for species 2), the consumption vectors fi, and the position

of the resource supply point S in the resource plane R1R2. A community equi-

librium exists only for supply points located in the “wedge” or “conic” shaped

region formed by the projections of consumption vectors at the nullcline inter-

section, otherwise species 1 or 2 always wins, or both go extinct. (A) If the

community equilibrium exists, it will be stable if each species consume a high

proportion of its most limiting resource, as indicated by the slopes of the con-

sumption vectors (species 1 and 2 are more limited by resources 1 and 2 respec-

tively). (B) But if each species consume a high proportion of the most limiting

resource of its competitor, the community equilibrium will be unstable, and

either species 1 or 2 wins depending on the initial conditions. If the nullclines

never cross (not shown here) a community equilibrium is not possible at all, and

the species whose nullcline is closer to the origin always wins the competition.
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(of two resources per species), in addition to the two species densities and the two resource

concentrations; this leave us with eight differential equations. And in general, for n species

and m resources there are n× m quotas, for a total n + m + n × m differential equations.

Whereas in classical models the number of variables increase additively with the number

of species and resources, in storage models they increase in a multiplicative way. Naturally,

the number of parameters that control the dynamics also increases.

Only recently, the scenario of two species and two resources has been fully studied ana-

lytically (Li and Smith, 2007), but for a particular class of storage models and under chemo-

stat conditions (mi = D). In addition, the mathematics involved (monotone dynamical

systems Smith, 1995) is far from the grasp of most biologists. The graphical approach,

which is much more useful for shaping our intuition, has been seldom applied (Turpin,

1988; Hall et al., 2008), and limited to conditions prevailing in chemostats. However, it is

not immediately obvious that the graphical approach is applicable to storage models. On

the one hand, like in standard models, the resource supplies and the consumption vectors

are defined in the resource planes. On the other hand, the growth rates are not dependent

on the external resources, and thus, the species nullclines cannot be defined in the resource

planes. In addition, it is known that under non-chemostat conditions (mi > D) the tran-

sient behavior of simple quota models can be different from that in chemostat conditions

(Clodong and Blasius, 2004).

In this article we make a systematic analysis of a simple but generic model of competition

that includes resource storage. We discuss to what extent resource requirements, consump-

tion patterns and resource supplies still govern the dynamics of the competitive system.

We explore to what extent the graphical approach can be applied to storage based models,

and the link between the graphical approach and the stability of equilibria. Finally, the

insights gained from the graphical approach are applied to higher dimensional scenarios,

illustrating the advantages and also the limitations.

3.2 the model

The model discussed in this article is a multiple species and multiple resources extension

of the nutrient storage, or quota model for microorganisms (Droop, 1973; Grover, 1997). It

describes the competition among n species with population densities Ni (i = 1, . . . ,n) for

m essential resources with densities Rj (j = 1, . . . ,m). Its main distinction with standard

models is that it follows the dynamics of the quota Qji of resource j in species i, i.e. the variable

content of resource j in an individual of species i:

dNi

dt
= (µi(Q1i, . . . ,Qmi) − mi)Ni (3.2a)

dQji

dt
= fji(Rj) − µi(Q1i, . . . ,Qmi)Qji (3.2b)

dRj

dt
= φj(Rj) −

n∑

i=1

fji(Rj)Ni (3.2c)

Some equations in this model resemble the equations of the standard model in the in-

troduction (3.1). However, in the storage model the specific growth rate of species i is a

38



3.2 the model

Function Generic Properties Special case

Growth rate

µi(Q1i, . . . ,Qmi)

∂µi/∂Qji > 0 for all j

µi = 0 if Qji = 0 for at least

one j

Droop-Liebig growth

µi = ri min

(

1 −
qji

Qji

)

Resource consumption

fji(Rj)

dfji/dRj > 0

fji(0) = 0

Holling type II uptake

fji(Rj) =
vjiRj

Kji + Rj

Resource turnover

φj(Rj)

dφj/dRj < 0

φj(Sj) = 0 for Sj > 0

Chemostat turnover

φj(Rj) = D(Sj − Rj)

Table 3.1: Generic assumptions on the competition model with resource storage and a spe-

cial case implementation used in some examples.

function of the resource quotas µi(Q1i, . . . ,Qmi) instead of the external resources Rj. The

specific growth rate mi is, as before, constant. The quota dynamics is determined by re-

source uptake at rate fji(Rj) and “dilution by growth” (Grover, 1997), i.e. the distribution

of quotas among offspring in the case of reproduction. Since dilution is coupled to repro-

duction, the dilution term is typically assumed to be proportional to the specific growth

rate (Grover, 1997). In the absence of consumers, the resource dynamics is governed by a

turnover rate φj(Rj). In the presence of consumers. resources are depleted by consumption

where fji(Rj)Ni corresponds to the uptake of resource j by the population of species i.

In the following sections we will discuss the assumptions made on the functions µi, fji

and φj. All assumptions are summarized in Table 3.1.

3.2.1 Growth rate

The contents of the various resources in an individual of species i is characterized by a

quota vector Qi = (Q1i, . . . ,Qmi). The set of all possible quota vectors will be called the

quota space of species i. We assume that the rate µi(Qi) is a non-decreasing function of the

quotas. Since resources are essential, the growth rate µi(Qi) is zero if the quota of at least

one resource is zero. We will only consider species where µi(Qi) > mi for at least some

Qi.

Special case. For simplicity, resource competition theory often focuses on perfectly essen-

tial resources, that is on a situation where the lack of one resource cannot be compensated by

the overabundance of another resource. In such a case, the specific growth rate µi follows

Liebig’s law of the minimum (Von Liebig, 1840; Tilman, 1977, 1982; Grover, 1997):

µi(Q1i . . . ,Qmi) = min(µ1i(Q1i), . . . ,µmi(Qmi)) (3.3)

where µji is the growth rate of species i when only resource j is limiting (i.e. all other

quotas have a very high level). If the growth rate is given by (3.3), growth is determined by

only a single resource at any time, the so called limiting resource.

In most studies, the functions µji are modeled explicitly using Droop’s (1973) empirical

formula:
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µji(Qji) = ri

(

1 −
qji

Qji

)

(3.4)

Here ri is the maximum specific growth rate (which does not depend on j), and qji is a

threshold level such that for 0 6 Qji 6 qji the growth is assumed to be zero.

3.2.2 Resource consumption

The specific consumption or uptake rate fji of resource j by species i is a continuous increasing

function of the resource concentration Rj. Obviously, the uptake should be zero if the

resource is absent: fji(0) = 0. The consumption pattern of species i can be characterized

by its consumption vector fi = fi(R) = (f1i(R1), . . . , fmi(Rm)), where R = (R1, . . . ,Rm) is

the resource vector. As illustrated in Figure 3.2B and 3.2D, consumption vectors can be

symbolized by arrows in resource space (the set of all possible resource vectors). The overall

consumption pattern of the community can be described by a consumption matrix F = F(R) =

(fji(Rj))j,i, that is a matrix the columns of which are given by the consumption vectors of

the species.

It is also acknowledged that resource uptake is also a negative function of the quotas, i.e.

∂fji/∂Qji < 0 Morel (1987). We decided not to consider this fact, because it involves a great

deal of mathematical complication. Nevertheless, in the final discussion we justify why our

main results are not affected by this omission.

Special case. Most studies assume that consumption rates follow a Holling type II func-

tional response, where vji is the maximum uptake rate of resource j and Kji is a half-

saturation constant:

fji(Rj) =
vjiRj

Kji + Rj
(3.5)

In contrast to Droop’s purely phenomenological formula (3.4), the uptake function (3.5)

can be given a mechanistic interpretation (Aksnes and Egge, 1991).

3.2.3 Resource turnover

We assumed the turnover rate φj of resource j is a continuous decreasing function of Rj.

In the absence of consumers, resource j attains a steady state concentration Rj = Sj, at

which φj(Sj) = 0. The turnover dynamics is characterized by resource turnover vectors

Φ(R) = (φ1(R1), . . . ,φm(Rm)), which correspond to arrows in resource space shown in

Figure 3.2B and 3.2D (Grover, 1997). The turnover vector is zero at the resource supply point

S = (S1, . . . , Sm).

Special case. The simplest model for φj is the linear function

φj = D(Sj − Rj) (3.6)

where D is the resource flow rate. This form of turnover dynamics can be realized in

chemostats, and it is a good approximation for many aquatic systems (Grover, 1997).
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3.3 resource requirements

The species dynamics depends directly on the amount of stored resources Qji: low quotas

result in µi < mi and high quotas in µi > mi. Thus, there is a boundary in quota space

where µi = mi. As the actual values of Qji are determined by the consumption dynamics

(3.2b), µi depends indirectly on Rj: if resources in the environment are scarce, quotas

will eventually decrease, leading to µi < mi; if resources are overabundant, quotas will

eventually increase, leading to µi > mi. Accordingly, there is a boundary for species i

in the space of external resources, which determines resource combinations leading to net

growth or decrease in the long term. In this section we characterize these boundaries. in

other words minimum resource requirements for growth, in quota space and in resource

space.

3.3.1 General case

The nullcline of species i Q0
i , is a (m − 1)-dimensional surface in m-dimensional quota space.

It corresponds to those quota vectors Qi for which

µi(Qi) = mi (3.7)

In the case of two resources, the nullcline of species i is a 1-dimensional surface (a line)

in a 2-dimensional quota space, as in Figure 3.2A. For quota vectors below the nullcline,

species i will decline (µi < mi), for quota vectors above the nullcline it will grow (µi > mi).

Let us assume for the moment that the system is at a positive equilibrium, i.e. with

Ni,Qji,Rj > 0. In this case µi = mi, thus the quotas of species i lie on Q0
i . As

Q̇ji = fji(Rj) − miQji = 0 in (3.2b), each quota Qji is associated to a particular resource

concentration Rji. Using this relationship, we can map the nullcline Q0
i in quota space

to a (m − 1)-dimensional surface R0
i : µi(fi(R)/mi) = mi in resource space. We call this

boundary a quasi-nullcline in resource space, since µi < mi below R0
i and µi > mi above

R0
i .

We would like to stress that R0
i is not a nullcline in the technical sense of the word,

since the relations µi < mi, µi = mi and µi > mi only hold under under the equilibrium

assumption made above. Since the specific growth rate µi depends on the quotas (and

not on the external resource concentrations), µi(Qi) can be large even for small resource

concentrations Ri, due to storage in the past. However, for a resource vector below R0
i ,

the quota Qi will eventually drop below Q0
i , leading to the decline of species i. Similarly,

for resources vector above, quotas will eventually increase to values above Q0
i , allowing

population growth.

The nullclines in quota species and quasi-nullclines in resource space are illustrated in

Figure 3.2. The nullcline Q0
i belongs to the “private” quota space of species i, thus it cannot

be used to predict the outcomes of competition, which takes place in the “public” space

of external resources. We can only make predictions about competition by considering the

geometry of quasi-nullclines R0
i .
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A. Quota space: general B. Resource space: general

C. Quota space: Liebig D. Resource space: Liebig

instantaneus: µi>mi

instantaneus: µi<mi

long term: µi>mi

long term: µi<mi

instantaneus: µi>mi

instantaneus: µi<mi

long term: µi>mi

long term: µi<mi

Figure 3.2: Quota space (A,C) and external resource space (B,D) for two essential resources.

The nullcline Q0
i separates the quota space into regions of positive net growth

(µi > mi above the nullcline) and negative net growth (µi < mi below the null-

cline). The quasi-nullcline R0
i separates resource space in regions for which the

net growth rate is positive or negative, but in the long term. In the special case

of Liebig’s law (C,D), the nullclines are specified by quota requirements Q∗
ji and

the quasi-nullclines the external resource requirements R∗
ji. Nullclines are most

easily derived for quota space. External resource space has the advantage that

it allows the simultaneous representation of the resource turnover vector field

Φ (pointing towards the resource supply point S) and the resource-dependent

consumption vectors fi. Note that the consumption vectors tend to align with

the resource Rj axis if Rj is increasing while keeping all other resource concen-

trations fixed.
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3.4 equilibria

3.3.2 Liebig’s law

In the special case of Liebig’s law (3.3), nullclines and quasi-nullclines have a particularly

simple description in terms of m minimal requirements for Qji (respectively Rj).

The internal resource (or quota) requirement of resource j for species i is that quota Qji = Q∗
ji

for which the specific growth rate is balanced by the specific loss rate, given that the other

resources are not limiting growth

µji(Q
∗
ji) − mi = 0 (3.8)

Figure 3.2C illustrates how the vector Q∗
i = (Q∗

1i,Q
∗
2i) determines the L-shaped nullcline

in quota space for the special case of two resources. This basic principle extends to higher

dimensions (m > 2).

The external resource requirement of resource j for species i is that resource concentration

Rj = R∗
ji just allowing to achieve the quota Q∗

ji given that the quotas of all other resources

are not limiting. In view of (3.2b), R∗
ji is implicitly given by

fji(R
∗
ji) − miQ

∗
ji = 0 (3.9)

Figure 3.2D shows (for m = 2) how the vector R∗
i = (R∗

1i,R
∗
2i) determines the L-shaped

quasi-nullcline of species i in external resource space. Again, this result extends to any

number of resources (m > 2).

Special case. If µji and fji are specified by (3.4) and (3.5), Q∗
ji and R∗

ji are given by

Q∗
ji =

riqji

ri − mi
(3.10)

R∗
ji =

KjimiQ
∗
ji

vji − miQ
∗
ji

=
Kjimiriqji

vji(ri − mi) − miriqji

(3.11)

3.4 equilibria

In general, our model has many equilibrium points. With the exception of the trivial case

(all Ni = 0) the feasibility of an equilibrium requires certain conditions regarding resource

requirements and consumption. In this section we will demonstrate that this conditions

have a clear representation in the geometry of the quasi-nullclines, consumption vectors

and resource supply vectors.

3.4.1 General case

For n species, a positive equilibrium (dNi/dt = dQji/dt = dRj/dt = 0 for all Ni > 0)

requires all resource equilibrium concentrations R̂j to be part of all the quasi-nullclines. In

other words the quasi-nullclines of all species in external resource space must intersect in a

common resource equilibrium vector

R̂ = (R̂1, . . . , R̂m)
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Figure 3.3: (A) Nullclines and their intersection points (R̂) for two species competing for

two essential resources. If resource turnover is described by the chemostat equa-

tion, a two-species equilibrium is feasible only if the supply point (or the re-

source turnover vector Φ̂) lies in the cone formed by the species consumption

vectors at R̂. (B) For perfectly essential resources, nullclines can only intersect

at a single point. The consumption vectors at the intersection point define loca-

tions of the supply points for which the two species can coexist, and for which

one species excludes the other.

In generic cases, the intersection of the n (m − 1)-dimensional quasi-nullclines will be

a set of dimension m − n. If the number of species equals the number of resources

(m = n), the quasi-nullclines will intersect (if they intersect at all) in one or several points

(0-dimensional), as illustrated in Figure 3.3A. The intersection will typically be lines (1-

dimensional) for m = n + 1 (e.g. two species competing for three resources), surfaces

(2-dimensional) for m = n + 2, and so on. If m < n the intersection will in generic cases

be empty. In other words: at equilibrium the number of coexisting species does not exceed the

number of resources (n 6 m), which corresponds to the well known Principle of Competitive

Exclusion (Grover, 1997).

For a given resource equilibrium vector R̂, the species equilibrium densities N̂i are

the solutions of a linear system of m equations in n unknowns that results from setting

dRj/dt = 0 in (3.2c):

φj(R̂j) =

n∑

i=1

fji(R̂j)N̂i (3.12)

In Appendix A we prove that this equation has a unique positive solution (all N̂i > 0)

if and only if the resource turnover vector Φ̂ = (φ1(R̂1), . . . ,φm(R̂m)) falls in the cone spanned

by the consumption vectors f̂i = (f1i(R̂1), . . . , fmi(R̂m)) of the species. The same result was ob-

tained earlier by Huisman and Weissing (2001), for the corresponding resource competition

model without nutrient storage.
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3.4 equilibria

For the special case of a chemostat (3.6), this corresponds to the requirement that the

resource supply point S = (S1, . . . , Sm) falls into the cone that is formed by the n consump-

tion vectors and attached to the resource equilibrium vector R̂, which appears as a “wedge”

in Figure 3.3.

Once R̂ and N̂ are determined, the equilibrium quotas Q̂ are obtained by setting

dQji/dt = 0 in (3.2b)

Q̂ji =
fji(R̂j)

mi
(3.13)

The case of a monoculture (m > n = 1) deserves special attention. In a monoculture the

“cone” collapses into a semi-line, the slope of which is given by the consumption vector at

R̂. Logically, this time R̂ cannot be a quasi-nullcline intersection (there is only one species!).

Instead R̂ corresponds to the point in the quasi-nullcline where the consumption vector

and the turnover vector are parallel. This fact will be extremely useful when exploring the

stability of monocultures against invaders.

3.4.2 Liebig’s law

Consider an equilibrium (a monoculture or a community) where species i is limited by

resource j, thus µi(Q̂i) = µji(Q̂ji) = mi. According to (3.8) the equilibrium level Q̂ji

corresponds to the quota requirement Q∗
ji of species i for j: Q̂ji = Q∗

ji. In view of equation

(3.9), this implies R̂j = R∗
ji. In other words, the equilibrium concentration R̂j of resource j

matches species i external resource requirement R∗
ji for the limiting resource j.

In generic cases, different species will differ in their values R∗
ji. As a consequence, in a

community equilibrium, each species i has the highest requirement (compared to others) for

the resource j limiting its own growth. To see this, consider another species k with a higher

requirement for resource j: R∗
jk > R∗

ji = R̂j. This, however, is impossible, since R∗
jk > R̂j

would imply that the external resources are below the quasi-nullcline of species k, which

accordingly, decreases. In other words, species k cannot be in equilibrium with species

i. Thus, in a community equilibrium each species i has the highest requirement (compared to the

other species) for the resource limiting its own growth. The same result was obtained earlier by

Huisman and Weissing (2001), for the corresponding resource competition model without

nutrient storage.

Summarizing, in an equilibrium if species i is limited by resource j then R̂j = R∗
ji. If

this happens to be a community equilibrium, then no other species k 6= i has a higher

requirement for that resource j, i.e. R∗
jk < R∗

ji = R̂j. Ergo, in a community equilibrium no

other species but i determines the equilibrium level of resource j. In other words, there is a

one-to-one relationship between n species and their n limiting resources.

Thus, given n species, without loss of generality we can label the resources in such a way

that species i has the highest requirement for resource i, thus R̂i = R∗
ii. In particular for

m = n the resource equilibrium vector is

R̂ = (R̂1, . . . , R̂i, . . . , R̂n) = (R∗
11, . . . ,R

∗
ii, . . . ,R

∗
nn) (3.14)
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the dynamics of multispecies competition with nutrient storage

If m > n, there will be m − n resources in the R̂ vector that are non-limiting; by defini-

tion the equilibrium concentrations of such resources must higher than any of the species

requirements (R̂j(non−limiting) > R∗
ji).

3.5 stability

If n species are competing for m resources, the competitive dynamics is described by

n + m + n × m = (n + 1)(m + 1) − 1 differential equations. Because of the high number

of dimensions, the stability of equilibria is difficult to characterize. The stability of an

equilibrium X̂ = (N̂, Q̂, R̂, ) can be determined by investigating the eigenvalues of the cor-

responding jacobian matrix J(X̂) (Murray, 2002). This is a difficult task, because already

for n = m = 2, J(X̂) is an 8 × 8 matrix, while it is a 15 × 15 matrix for n = m = 3. At

the moment, only the chemostat scenario (mi = D) for m = n = 2 has been analysed

(Li and Smith, 2007), and it displays the same outcomes as standard competition models.

More general results, however, are not available. In this section we give an overview of our

partial stability analysis, relating the stability conditions to the resource consumption pat-

terns at equilibrium, i.e. to the geometry of the consumption vectors. (the lenghty details

of our analysis can be read in Appendix B).

3.5.1 External vs internal stability

Some progress can be made by distinguishing between internal and external stability. To this

end, we distinguish between those species that are present at equilibrium (those i for which

N̂i > 0) from those that are absent (those i for which N̂i = 0). The former will be called

resident species and the latter invader species. By relabeling the n species, we can assume

without loss of generality that the first nk species i = 1, . . . ,nk are residents, while the last

nl = n− nk species are invaders. The concept of internal stability refers to the stability of X̂

with respect to small perturbations involving the community of resident species. External

stability refers to the stability of X̂ with respect to the invasion of (a set) invader species

that appear with low densities.

In Appendix B.1 we prove that: the equilibrium X̂ is stable if and only if, it is both internally

and externally stable. Hence, a full stability analysis can be decomposed into the simpler task

of considering the analysis (lower dimensional) of internal and external stability.

3.5.2 External stability

External stability is relatively easy to characterize. In fact, it suffices to address each of the

nl invader species in isolation. In Appendix B2. we prove that: a community of nk residents

is externally stable if none of the nl invaders is able to grow when rare. To put this in graphical

terms: the resident community is externally stable, if and only if the equilibrium level of

resources R̂ set by the residents happens to be below the quasi-nullclines of all possible

invaders.
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3.5 stability

The reader will immediately recall that instantaneous growth does not depend on exter-

nal resources but on the quotas. It might happen that the invaders come very high quotas,

so they initially grow even if R̂ lies below their quasi-nullclines. However, this does not in-

validate the consequences of our claim: since they have very low densities, invaders cannot

have a noticeable effect on external resource abundances, and simultaneously their quotas

rapidly dilute following the initial growth. Thus, invaders are always doomed to extinction

if R̂ lies below their quasi-nullclines. The most correct statement regarding external stabil-

ity would be: a community of nk residents is externally stable if none of the nl invaders can grow

when rare in the long term.

3.5.3 Internal stability

Internal stability is a much more challenging problem, because the variables of the resident

populations are interdependent. The situation is somewhat simplified in case of Liebig’s

law of the minimum, since the growth rate of each species is only dependent on a single

resource. As a consequence, the jacobian matrix has a simpler structure. In Appendix

B.3, we show that this allows to deduce a simple but important stability requirement if

resources are perfectly essential, an equilibrium X̂ can only be internally asymptotically stable if

the determinant of the consumption matrix F̂ of the resident species is positive:

det(F̂) > 0 (3.15)

This determinant criterion has simple geometrical interpretations, for a single species, for

two, and for many. In the trivial case of a resident community consisting of one species, i.e.

a monoculture, the determinant is equal to the consumption rate of its limiting resource at

equilibrium, which by definition is always positive. The internal stability requirement is

always hold for monocultures. In Appendix B.4 we prove that in fact: all monocultures are

internally stable (previously demonstrated by Legovic and Cruzado 1997, for mi = D).

In the scenario of two species competing for two resources, if we label the species ac-

cording to our convention in equation (3.14), the stability (3.15) requirement can be writen

as:

f22(R∗
22)

f12(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

(3.16)

in other words, the consumption vector species 2 is steeper than the consumption vector

of species 1 (provided R1 is the horizontal axis and R2 the vertical axis) at the intersection

point of the quasi-nullclines. Thus, for two species competing for two resources internal

stability requires that at equilibrium: each species consume comparatively more of the resource

for which it has the highest requirement.

In higher dimensions (n = m > 2), the geometrical interpretation of (3.15) is that the

consumption vectors of the resident species are positively oriented (Weinstein, 2003) with

respect to the external resource axes. For example, see that in Figure 3.4A, f1 tends to be

“horizontal” like the R1 axis, and f2 tends to be “vertical” like the R2 axis: the vectors are

positively oriented. In contrast, see that in Figure 3.4B, f1 is tends to be vertical and f2
tends to be horizontal: the vectors are negatively oriented. In higher dimensions, positive
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the dynamics of multispecies competition with nutrient storage

orientation means that fi tends to be more “aligned” to the Ri axis than to any other axis.

Thus, each species becomes associated with one resource (the one limiting its own growth),

and we interpret condition (3.15) in words as follows: stability requires that species tend to

consume relatively more of those resources for which they have the highest requirements.

Although conceptually interesting and computationally useful, the criterion (3.15) is (for

more than two resources) by far not sufficient to characterize internal stability. In contrast,

the invasion analysis, on which external stability is based, is relatively easy to perform. In

the next section we show that invasion analysis can also give important clues concerning

internal stability. In brief, a community equilibrium is often internally stable if all border

equilibria are externally unstable. The latter corresponds to the concept of mutual invadibil-

ity: a set of species is expected to coexist stably if each species can invade any combination

of resident species.

3.6 two limiting resources

In the introduction we said that the outcomes in competition models without storage is

closely related to the geometry of nullclines, consumption vectors, and resource supply

points. These elements have been considered in the study of the storage model of two

species competing for two resources (Tilman, 1977; Turpin, 1988; Hall et al., 2008), but only

for the special case of the chemostat, in which real mortalities mi are replaced by the

chemostat flow rate D.

In the last section we showed that in general, i.e. not just for the chemostat, both the

existence of the community equilibrium and its internal stability, are strongly dependent

on the properties of quasi-nullclines, supply points, and the consumption matrix (the “cone

rule” and the “determinant rule”). However, a complete criterion of internal stability is still

lacking. In this section, we will show that the consumption patterns at the community

equilibrium, given by the matrix F̂, will tell us if the monocultures are externally stable

against invasion. Thus, even if the graphical approach cannot address the full stability of

the system, it can show whether or not two species competing for two resources can coexist.

First of all, If the quasi-nullclines never cross, the outcome of competition is trivial: the

species with lowest requirements always wins the competition because it can to grow when

the level of external resources are below the requirements of other species. So, from here

onwards we will assume the nullclines always cross.

Let us then assume that the quasi-nullclines of species 1 and 2 cross, so an equilibrium

will be possible for certain combinations of resource supplies S1, S2. Following our labeling

convention (3.14), species 1 has the highest requirement for resource 1, and species 2 the

highest for resource 2:

R∗
11 > R∗

12,R
∗
22 > R∗

21 (3.17)

Hence the species quasi-nullclines cross at the resource equilibrium vector R̂ = (R∗
11,R

∗
22),

where species 1 is limited by resource 1 and species 2 is limited by resource 2. All these

details appear in Figure 3.4. Now we proceed to use this graphical information in order to

predict the outcomes of competition.
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Figure 3.4: Outcomes of the competition between two species for two perfectly essential

resources in the nutrient storage model. In contrast with the standard model

(Fig. 3.1), the quasi-nullclines (solid for species 1, dashed for species 2) replace

the nullclines in the space of external resources. See the main text for a detailed

explanation.

(1) Coexistence. Let us assume that at the nullcline intersection the slopes of the con-

sumption vectors and the resource turnover vector are related in the form shown in Figure

3.4A

f22(R∗
22)

f12(R∗
11)

>
φ2(R∗

22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

(3.18)

i.e. the consumption vector of species 2 is steeper than the consumption vector of species 1,

and the slope of the turnover vector lies in between. In consequence, by the “cone rule” a

community equilibrium (N̂1, N̂2 > 0) exists, and by the “determinant rule”, in the form of

(3.16), we cannot rule out that this equilibrium is stable.

Now consider the following. First, according to (3.18) the slope of the consumption vector

of species 1 is smaller than the slope of the turnover vector at R̂. Second, in the monoculture

equilibrium of species 1, the slopes of these vectors must be equal, i.e. parallel, in a point

R̃ = (R̃1, R̃2) of the L-shaped quasi-nullcline of species 1. The relative position R̃ in the

quasi-nullcline of species 1 could be (see Fig. 3.4A):

• In the horizontal branch where R̃1 > R∗
11 and R̃2 = R∗

21. This means that R̃2 < R∗
22.

However, this cannot be true, because in such a point the slope of f1 is smaller than in

R̂ and the slope of Φ is much bigger (properties of consumption and turnover vectors,

see Fig. 3.2).
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the dynamics of multispecies competition with nutrient storage

• In the vertical branch where R̃1 = R∗
11, and R̃2 < R∗

22. This also must be ruled out,

because it makes Φ more steeper than f1, compared to the situation at the quasi-

nullcline intersection.

• In the vertical branch where R̃1 = R∗
11, and R̃2 > R∗

22. This last alternative is correct,

because only by raising R2 above R∗
22 we have that the slope of f1 increases and that

of Φ decreases, making both vectors parallel.

Thus, if the slopes of the consumption and turnover vectors at the quasi-nullcline inter-

section relate as in (3.16), we conclude that in the monoculture of species 1: R̃1 = R∗
11

and R̃2 > R∗
22. In consequence, the monoculture of species 1 is unstable against invasion.

Mutatis mutandis, the same is true for the monoculture of species 2.

Thus, if at the community equilibrium each species consumes comparatively more of its limit-

ing resource, then both monocultures are locally unstable and both species persist. A series

arguments lead us to conjecture that such coexistence is stable. First, under conditions of

parameter symmetry, the community equilibrium is in fact internally stable. Second, all

simulations so far indicate that the configuration described by (3.18) always converges to

stable equilibrium coexistence.

(2) Competitive exclusion. Let us assume that at the nullcline intersection the slopes of

the species consumption vectors and the resource turnover vector are related in the form

shown by Figure 3.4B

f22(R∗
22)

f12(R∗
11)

<
φ2(R∗

22)

φ1(R∗
11)

<
f21(R∗

22)

f11(R∗
11)

(3.19)

i.e. a configuration in which the slope of the consumption vectors is the opposite of that

in (3.18). The slope of the turnover vector lies between that of both consumption vectors,

thus the community equilibrium is feasible. However, this equilibrium is unstable because

(3.19) contradicts (3.16). By comparing the slopes of consumption and turnover vectors

in monocultures as before, we conclude that under (3.19) the monocultures are externally

stable against invasion.

Thus, if at the community equilibrium each species consumes comparatively less of its limiting

resource, then both monocultures are locally stable and both species exclude each other.

Condition (3.19) describes a system where both monocultures are local attractors and the

community equilibrium is a saddle point. Depending on the initial conditions either species

1 or species 2 exclude the other species and wins the competition.

Competitive dominance. The slopes of the consumption and resource turnover vectors at

the quasi-nullcline intersection can also be related either as

φ2(R∗
22)

φ1(R∗
11)

>
f22(R∗

22)

f12(R∗
11)

,
f21(R∗

22)

f11(R∗
11)

(3.20)

or

φ2(R∗
22)

φ1(R∗
11)

<
f22(R∗

22)

f12(R∗
11)

,
f21(R∗

22)

f11(R∗
11)

(3.21)

50
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In both cases the slope of the turnover vector in higher or smaller that the slopes of both

consumption vectors, thus by the “cone rule”, the community equilibrium is not feasible.

Again, using the quasi-nullcline intersection as referencem and comparing the slopes of a

single species against the turnover vector, we will conclude that in the first alternative (3.20)

species 2 meets the invasion criterion but species 1 does not, thus species 2 always wins.

The second alternative (3.21) is the opposite, species 2 is always excluded by species 1. In

contrast with the mutual exclusion case, one species is always the winner, not depending

on the initial conditions.

Although our analysis concerned perfectly essential resources (L-shaped quasi-

nullclines), it is possible to show graphically that in general, if quasi-nullclines, consump-

tion vectors and turnover vectors have the same geometries of Figure 3.4, the same pre-

dictions will be obtained. Thus, we conclude that for two species and two resources, the

graphical methodology used for standard models without storage (Fig. 3.1) can be extrap-

olated to the nutrient storage model.

3.7 three limiting resources

In models without storage like in the introduction (3.1), there are only a few outcomes in

case of two resources, while the dynamics of competition can be highly complex in case of

three or more resources (Zhang, 1991; Huisman and Weissing, 1999, 2002; Baer et al., 2006).

For m = 2, we have just seen that the number of outcomes is also rather limited for the

storage model. On the other hand, with three or more resources, the dynamics of the

storage model is as complex (Revilla and Weissing, 2008) as in standard models without

storage.

One interesting result is the emergence of competitive oscillations as in the example of

Figure 3.5A: three species take turns trying to exclude each other, as in the game of Rock-

Scissors-Paper (RSP: Rock crushes Scissors, Scissors cuts Paper, Paper wraps Rock). Also

interesting is the widespread occurrence of alternative states. Already for m = n = 2

we have alternative stable states, but they only concern monocultures, whereas in higher

dimensions they can involve communities, as Figure 3.5B shows. In other words, even if

coexistence is possible, it may not manifest for certain initial conditions.

Previous analysis of models without storage (Huisman and Weissing, 2001), indicate that

the configuration of nullclines and consumption vectors play an important role in the origin

of the complex dynamics of multispecies resource competition. The purpose of this section

is to prove that this is also the case for nutrient storage models. Since the number of possi-

ble configurations for quasi-nullclines and consumption vectors for more than two species

and resources is hopelessly high, we limit our exposition to some representative cases. We

will only consider scenarios in which an equilibrium between three species always exists,

i.e. the quasi-nullclines cross and the “cone rule” holds. For this community equilibrium,

we consider a given arrangement of consumption vectors. Then, using the properties of the

consumption and turnover vectors (see Fig. 3.2), will deduce if the two-species equilibria

and the monocultures, are externally stable. This, along with the determinant rule (3.15),

will give us a rather robust picture of the corresponding dynamics. Although this method-
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Figure 3.5: (A) Limit cycle of three species competing for three resources. (B) Alternative sta-

ble states: at time 10000 species 1 invades the community of species 2 and 3, the

outcome can be coexistence or the extinction of species 2 and 3 (inset), depends

on the initial density of the invader. The triangular graphs below each time plot

represent the corresponding equilibria and their stability: monocultures are the

vertices, two-species equilibria lie on the edges, and the three-species equilib-

rium is in the interior. For part A, the monocultures form a heteroclinic cycle

around the unstable equilibria, this explains the oscillations. For part B, the

three-species community and monoculture of species 1 are localy stable. If a

small fraction of species 2 is replaced by species 1, the system coverges to coexis-

tence. If a small fraction of species 3 is replaced by species 1, species 1 excludes

both residents. The parameters for the simulations are in Appendix E.
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3.7 three limiting resources

ology can in principle be applied to any resource type, we will limit it to perfectly essential

resources for the sake of simplicity.

To ensure that the quasi-nullclines cross, if each species must have the highest require-

ment for one resource. Without loss of generality, we follow our early convention (3.14) in

which species i has the highest requirement for resource i. The other resource requirements

(R∗
ji, , j 6= i) could be related in other ways, tough. Thus, with some loss of generality, we will

assume that external resource requirements are related in a cyclic fashion

R∗
11 > R∗

12 > R∗
13

R∗
22 > R∗

23 > R∗
21

R∗
33 > R∗

31 > R∗
32

(3.22)

Thus, all quasi-nullclines intersect at R̂ = (R∗
11,R

∗
22,R

∗
33). We will examine under which

conditions the species trio (1) coexist, (2) mutually exclude each other, or develop (3) com-

petitive oscillations.

(1) Coexistence. Our results from the last section tell us that species 1 and 2 can invade

each other if (3.18) holds. Then by symmetry, any monoculture can be invaded by any of

the two invaders, if all the following inequalities hold at the nullcline intersection point

R̂ = (R∗
11,R

∗
22,R

∗
33):

f22(R∗
22)

f12(R∗
11)

>
φ2(R∗

22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

(3.23a)

f33(R∗
33)

f13(R∗
11)

>
φ3(R∗

33)

φ1(R∗
11)

>
f31(R∗

33)

f11(R∗
11)

(3.23b)

f33(R∗
33)

f23(R∗
22)

>
φ3(R∗

33)

φ2(R∗
22)

>
f32(R∗

33)

f22(R∗
22)

(3.23c)

Accordingly, all two-species equilibria exist. Using geometrical analysis in resource space,

this arrangement (3.23) places the resource turnover vector in the cone formed by the con-

sumption vectors at R̂, thus the three species community equilibrium N̂1, N̂2, N̂3 > 0 also

exists. In Appendix C we prove that all two-species border equilibria are externally unsta-

ble, i.e. they can be invaded by the third species. Thus, if all inequalities in (3.23) hold and

all species are always limited by the resource for which they have the highest requirement,

then all monocultures and all two-species equilibria are externally unstable: no species can

be excluded, thus all three species persist.

In Appendix D, we show that the consumption pattern (3.23) also met the internal sta-

bility requirement (3.15). However, we cannot simply rule out the possibility that the com-

munity equilibrium is indeed unstable, and that the three species may develop some form

of non-equilibrium dynamics. The pattern of resource requirements (3.22), together with

the consumption pattern (3.15), simply says that coexistence through invasion is possible when

each species tends to consume comparatively more of those resources for which it has the highest

requirements. Nothing more.

(2) Competitive exclusion. This time consider that all six inequalities in (3.23) are changed

to:
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f22(R∗
22)

f12(R∗
11)

<
φ2(R∗

22)

φ1(R∗
11)

<
f21(R∗

22)

f11(R∗
11)

(3.24a)

f33(R∗
33)

f13(R∗
11)

<
φ3(R∗

33)

φ1(R∗
11)

<
f31(R∗

33)

f11(R∗
11)

(3.24b)

f33(R∗
33)

f23(R∗
22)

<
φ3(R∗

33)

φ2(R∗
22)

<
f32(R∗

33)

f22(R∗
22)

(3.24c)

This is likely to happen when each species consumes comparatively less of those re-

sources for which it has the highest requirement.

As before, all two species equilibria and the three species equilibrium still exist, since

the supply vector remains in the cone formed by the consumption vectors. All two-species

equilibria have the same configuration of consumption and resource turnover vectors as in

(3.19) or Figure 3.4B. Hence, they are internally unstable and all monocultures are in turn

externally stable. If the monocultures cannot be invaded, this is because they leave a level of

external resources that is below the quasi-nullclines of the invaders. In consequence, a two-

species equilibrium leaves an even smaller amount of external resources: all two-species

equilibria are externally stable, they cannot be invaded. Finally, in Appendix D we prove

that the three-species equilibrium is internally unstable.

Summarizing, under (3.24) the two-species equilibria are saddle points (internally unsta-

ble, but externally stable), the community equilibrium is unstable, and all monocultures

are stable. In consequence, depending on the initial conditions, the system evolves toward

the monoculture of species 1, 2 or 3. Thus, competitive exclusion will happen when each species

tends to consume comparatively less of those resources for which it has the highest requirements.

(3) Oscillations. Competitive oscillations can happen when the competitive hierarchy

among species is intransitive. For three species this means that they relate as in a Rock-

Scissors-Paper (RPS) game (Weissing, 1991). In such a game each species i can invade

monoculture j = i − 1 and can be invaded by species k = i + 1 when in monoculture. For

example species 1 can be invaded by species 2 but not by species 3, species 2 can be in-

vaded by species 3 but not by species 1 and species 3 can be invaded by species 1 but not

by species 2. According to our results for competitive dominance and given the scheme of

resource requirements (3.22), this scenario can be generated by the following arrangement

of turnover and consumption vector slopes:

φ2(R∗
22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

,
f22(R∗

22)

f12(R∗
11)

(3.25a)

φ1(R∗
11)

φ3(R∗
33)

<
f13(R∗

11)

f33(R∗
33)

,
f11(R∗

11)

f31(R∗
33)

(3.25b)

φ3(R∗
33)

φ2(R∗
22)

>
f32(R∗

33)

f22(R∗
22)

,
f33(R∗

33)

f23(R∗
22)

(3.25c)

For this configuration, one can show graphically that the turnover vector falls in the

cone formed by the three consumption vectors at R̂, thus the three-species equilibrium

exists. However, none of the two-species equilibria exists, (compare with inequalities (3.20)).
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Summarizing, the consumption pattern (3.25) describes a situation of three monocultures

connected by heteroclinic orbits, 1 → 2 → 3 → 1, surrounding a three-species equilibrium.

If all species start with non-zero densities, they will oscillate. Because of the way in which

they are written, we cannot use inequalities (3.25) to judge the stability of the three-species

equilibrium. However, if the consumption vector slopes relate as in (3.23), the community

equilibrium may be stable and oscillations will dampen out. But if the consumption vector

slopes relate as in (3.24), the community equilibrium will be unstable (Appendix D) and

the oscillations will persist.

When competitive oscillations do not damped out, they can develop into two types: limit

cycles and heteroclinic cycles. This has important consequences. In the first case, oscilla-

tions attain uniform amplitude and period, thus the species can coexist provided that the

minimum densities attained in these cycles are sufficiently far from zero, like in Figure

3.5A. In the second case however, population densities become closer and closer to zero for

increasing periods on time. Under realistic scenarios, sooner or later one of the species will

get extinct due to stochastic events, and the cycle will break, leaving one winner.

Bear in mind that our examination of coexistence, exclusion and competitive cycles was easy,

because the cyclic arrangement of resource requirements like (3.22) is often sufficient to

ensure that each species is limited by the same resource for all equilibria. This is not

always the case, in nutrient storage models, and also for models without storage (Zhang,

1991). The fact that the orientation of the consumption vectors are resource dependent, is

another reason by which resource limitation can differ among the different equilibria for

the same species. Thus in general, it is in practice very difficult to predict the outcomes

of competition for three or more resources based on the configuration of consumption and

turnover vectors at the quasi-nullcline intersections. A good example is given by Figure

3.5B: the parameters for this simulation are such that species i has the highest requirement

for resource i, and the consumption vectors at the intersection of the quasi-nullclines R̂ =

(R∗
11,R

∗
22,R

∗
33) are related like in (3.25). The system display damped oscillations around

the three-species equilibrium as predicted, but depending on the initial conditions, this

equilibrium may be achievable or not.

3.8 discussion

The multispecies storage model behaves in a qualitatively similar way as the much simpler

multispecies competition models without storage. Despite the increased complexity of the

storage model because of the more state variables and parameters, the competitive dynam-

ics mainly reflects the competitive hierarchy among the species, rather than microscopic

(e.g. physiology) details causing these hierarchies. These hierarchies can be represented

as orderings of resource requirements and consumption vectors, allowing us to apply the

graphical analyses used for models without storage. In the case of two species and two

resources, the outcomes of competition are the same as in classical resource competition

models: coexistence, mutual exclusion and competitive dominance. For three species and

three resources, graphical insights and local stability analysis reveals a strong match be-

tween the patterns of resource consumption and the global dynamics, i.e. the “rules of

thumb” of multispecies resource competition (Huisman and Weissing, 1999, 2001, 2002):
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the dynamics of multispecies competition with nutrient storage

(1) expect stable coexistence when species consume relatively much of those resources for

which they have high requirements, (2) expect competitive exclusion when species consume

relatively much of those resources for which they have low requirements, and (3) expect

oscillations when species consume much of those resources for which they have intermedi-

ate requirements. These expectations are in line with our previous numerical exploration

of the multispecies storage model (Revilla and Weissing, 2008).

It is important to stress the way in which we treat the graphical analysis: as a tool to

judge external stability instead of internal stability. Only the computation of eigenvalues,

a tough problem, can tell us if an equilibrium is internaly stable or not. We simply use a

reference point, the quasi-nullcline crossing, and the geometric properties of turnover and

consumption vectors (Fig. 3.2), to infer what is the state of the resources left by one species

in monoculture. Then we ask: is that amount above the quasi-nullcline of the invader(s)?

That is why the graphical approach works, it does not mater if we are considering nullclines

(models without storage) or quasi-nullclines (with storage).

Although much of our results rely heavily on invasion and graphical analyses. this does

not rest merit to our partial result concerning internal stability. The stability requirement,

in the form of inequality (3.15), has a very simple but important interpretation: stable equi-

librium coexistence requires that each species has a higher consumption impact for its most

needed resources, rather than on the most needed resources of others. In other words, sta-

ble coexistence requires that intraspecific competition is stronger than interspecific competition,

a general rule applicable from Lotka-Volterra type of models (Gilpin and Justice, 1972) to

resource competition models (León and Tumpson, 1975). Thus, multispecies competition

models seem to have common stability rules, independent of the amount (or lack) of mech-

anistic underpinning. It is interesting to see that this result is equally valid for chemostat

(mi = D) and non-chemostat conditions. Unfortunately, this result is restricted to perfectly

essential resources, i.e. Liebig’s law.

It is well known that resource uptake slows down and eventually halts due to the accumu-

lation of nutrients (Morel, 1987; Grover, 1997). This is modelled by decomposing fji(Rj,Qji)

as the product of two monotone functions: gji(Rj) which is monotonically increasing on Rj

(as in the original fji(Rj)) and hji(Qji) = uji − wjiQji which is linearly decreasing on Qji.

We did not considered this level of realism, which would have made our analysis much

more difficult. However our most important results, concerning equilibria, invasion and

stability, still hold. This is because under the equilibrium condition, the quota dynamical

equation becomes gji(Rj)(uji − wjiQji) − miQji = 0, resulting in a positive relationship

between Rj and Qji. Thus the nullcline in quota space can be mapped one-to-one into a

quasi-nullcline in resource space as we did before. The same requirements for the existence

of equilibria will follow, i.e. the crossing of quasi-nullclines and the “cone rule”. Finally, in

Appendix B.5 we show that both the external stability conditions, and the requirement for

internal stability (3.15) still hold in the presence of quota dependent uptake.

Our graphical and analytical approaches covered simple cases, i.e. cyclical arrangements

of resource requirements and consumption vectors. This leaves out an important number of

scenarios, not covered by the rules of thumb (e.g. like in Fig. 3.5B). However, this problem is

not exclusive of nutrient storage models. For example, in the much simpler Lotka-Volterra

model, the number of possible outcomes is impressive just for three species (Zeeman, 1993,

56



3.8 discussion

lists 33 different phase plots like those in Fig. 3.5). And in standard models of competi-

tion for three or more perfectly essential resources, the number of configurations for three

species becomes very high, because pairs of species can display more than one coexistence

equilibrium (Zhang, 1991). Thus, although competition models become complicated by the

incorporation of mechanistic detail (storage in the present case), the dynamics becomes

more complicated mainly because the dimensionality of the system increases.

Now, it is time to stress the differences between competition models with and without

storage. In models without nutrient storage like (3.1), the resource requirements and the

consumption rates relate with the model parameters in simple and direct ways. In these

models the growth rates tipically follow the Monod (1950) equation, µji = riRj/(Hji + Rj),

making resource requirements proportional to the half-saturation constants for growth Hji,

and consumption rates proportional to fixed resource contents cji (Huisman and Weissing,

2001, 2002). This means that resource requirements and resource consumption can be

treated independently. The story is very different for nutrient storage models. Resource

requirements and the consumption rates relate with the model parameters in complex and

non-linear ways, like in equations (3.9) and (3.5), and cannot be treated independently. In

consequence, the small variation in a single parameter (e.g. qji, vji,Kji) can trigger impor-

tant qualitative changes for all equilibria, compared with the variation a single parameter

in models without storage. Now consider that the present model could be more complex:

we did not include negative feedback in consumption rates (de Leenheer et al., 2006), and

there must be trade-offs between parameters (Grover, 1991). Thus, prediction in terms of

life-history parameters becomes unpractical, there are simply too many parameters and

trade-offs.

Another important difference between models without storage and with storage can be

easily appreciated in the graphical analysis. For models like (3.1) it is often the case that

the consumption vectors have the same orientation at all points in resource space (but see

Tilman (1982) for exceptions), thus the consumption pattern is the same at monocultures,

two-species equilibria, three-species equilibria and so on. For the resource storage model,

the orientation of the consumption vectors is different at all equilibria. In the case of two

species and two resources this do not lead to important changes in the prediction of out-

comes. In case of three or more species and resources, the situation can be radicaly different,

because the limiting resource for a species can change among the different equilibria. In

consequence, predictability becomes more localized: the structure of the consumption ma-

trix at the quasi-nullcline intersection can tell us if the system has the tendency to approach

the equilibrium or not, or to oscillate, but that will be often insufficient to inform us about

the long term dynamics. For example, using simulation (Revilla and Weissing, 2008), we

found that in a high number of cases where competitive oscillations where predicted, the

oscillations did occur, but in the long term the system approached a monoculture. In these

monocultures the limiting resources and the consumption patterns where different than

in the three-species equilibrium. These changes are more easy to appreciate by means of

bifurcation analysis (chapter 4).
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Appendix B: Local stability of equilibria

appendix a : existence of a community

In this appendix we proceed to prove the “cone rule”: that a community equilibrium exists

if the supply vector falls inside the positive cone formed by the consumption vectors. For

this, let start by considering any matrix A with column vectors a1, . . . an. The set

C = {

n∑

i=1

aixi|xi > 0} (3.26)

is the positive cone spanned by those vectors (Strang, 1988). Hence a vector b with m

elements has a representation b =
∑n

i=1 aixi, with xi > 0 for all i, if and only if b belongs

to the cone C. If we apply this to b = Φ̂, A = F̂ and xi = N̂i (see equation 3.12 in the main

text), we conclude that a community equilibrium with all N̂i > 0 does exists if and only if

the Φ̂ lies inside the positive cone formed by the columns of F̂.

appendix b: local stability of equilibria

As in the main text, we consider any community equilibrium X̂ = (N̂, Q̂, R̂, ) in which some

or all possible n species are present. This equilibrium will be locally stable if and only if all

the eigenvalues of the jacobian matrix J evaluated at X̂ have negative real parts (May, 1974).

This jacobian matrix is

J =







∂Ṙ
∂R

∂Ṙ
∂Q

∂Ṙ
∂N

∂Q̇
∂R

∂Q̇
∂Q

∂Q̇
∂N

∂Ṅ
∂R

∂Ṅ
∂Q

∂Ṅ
∂N






(3.27)

where ∂Ẋ
∂Y = {∂Ẋx

∂Yy
}, Xx, Yy = Ni,Qji,Rj are matrix blocks, and the dot on top is a shorthand

for the time derivative Ẋx = dXx/dt. The jacobian has m + n + m×n rows and columns.

The eigenvalues of J are roots λ of the characteristic equation

det(J− λI) = 0 (3.28)

where I is the identity matrix. The degree of (3.28) is equal to the number rows (or columns)

of J. Just in the simple scenario n = m = 2, this is an 8th order equation, for which the

application of analytical stability criteria is according May (1974) a pointless exercise (and

so forth for m,n > 2).

B.1 External vs internal stability

Equation (3.28) can be factorized as two characteristic equations of lesser degree. This will

allow an easier characterization of the stability conditions of the competitive system.

Our first step is to acknowledge that the community equilibrium represented by X̂ con-

sists of a set K = {i = k|N̂k > 0} of nk resident species, and a set L = {i = l|N̂l > 0} of nl

invader species. The total number of species, residents plus invaders is n = nk + nl.
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The rows and columns containing the quotas and densities of the invaders can be moved

to the bottom and to the right of the jacobian respectively, without any effect on the eigen-

values (the only rule is: move row r one position below, then move column c one position

to the right). After such rearrangement, the jacobian has the following block structure

J =



















∂Ṙ
∂R

∂Ṙ
∂QK

∂Ṙ
∂NK

∂Ṙ
∂QL

∂Ṙ
∂NL

∂Q̇K

∂R
∂Q̇K

∂QK

∂Q̇K

∂NK

∂Q̇K

∂QL

∂Q̇K

∂NL
∂ṄK
∂R

∂ṄK
∂QK

∂ṄK
∂NK

∂ṄK
∂QL

∂ṄK
∂NL

∂Q̇L

∂R
∂Q̇L

∂QK

∂Q̇L

∂NK

∂Q̇L

∂QL

∂Q̇L

∂NL
∂ṄL
∂R

∂ṄL
∂QK

∂ṄL
∂NK

∂ṄL
∂QL

∂ṄL
∂NL



















=

[

JK M1

M2 JL

]

(3.29)

The block JK has m + m× nk + nk rows and columns. JK has the same structure of the

original jacobian in (3.27) and in fact it is a jacobian matrix of an equilibrium that only

contains the resident species. On the other hand, the block JL has m × nl + nl rows and

columns. JL only contains elements belonging to the invaders, and looks like the jacobian of

a system lacking the differential equations of the resources. That is precisely the situation

from the perspective of the invaders: they cannot affect the external resources.

There are many zero blocks in J that arise from the model definition: (1) external re-

sources are not affected by quotas, quotas are not affected by species densities, and species

densities are not affected by external resources; (2) densities and quotas are species specific;

and (3) the residents are at equilibrium ∂Ṅk/∂Nk = µ̂k − mk = 0. Thus, the blocks of J

have block structures

JK =









∂Ṙ
∂R 0 ∂Ṙ

∂NK
∂Q̇K

∂R
∂Q̇K

∂QK
0

0 ∂ṄK
∂QK

0









, JL =

[

∂Q̇L

∂QL
0

∂ṄL
∂QL

∂ṄL
∂NL

]

,M1 =







0 ∂Ṙ
∂NL

0 0

0 0






,M2 =

[

∂Q̇L

∂R 0 0

0 0 0

]

(3.30)

The eigenvalues λ of the jacobian are the roots of the characteristic equation (3.28). Due

to the special structure of the jacobian, i.e. (3.29) and (3.30), we can employ Schur’s formula

(Weinstein, 2003) and factorize the characteristic equation as

det(J− λI) = det(JK − λI)× det(JL − λI) = 0 (3.31)

i.e. a product of two characteristic equations. The eigenvalues of JK determine the stabil-

ity of X̂ with respect to small perturbations in the resident species, they say whether X̂ is

internally stable or not. The eigenvalues of JL determine the stability of X̂ against the intro-

duction of invader species with very small densities, they say whether X̂ is externally stable

or not.

According to equation (3.31) all the eigenvalues of J have negative real parts, if and only

if, all eigenvalues of JK and JL separately, have negative real parts. Thus, a community

equilibrium X̂ is stable, if and only if, it is both externally and internally stable.
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B.2 External stability

JL is a block triangular matrix, thus, its eigenvalues are those of ∂Q̇L

∂QL
and ∂ṄL

∂NL
. Notice that

the entries of ∂Q̇L

∂QL
are of the form

∂Q̇jl

∂Qil

= −Q̂jl
∂µl

∂Qil

− δjiµ̂l

where δji is Kroneker’s delta (δji = 1 if i = j, δji = 0 if j 6= i), and µ̂l denotes the invader’s

specific growth rate evaluated at X̂. Accordingly, the characteristic equation of ∂Q̇L

∂QL
can be

rewritten as

det

(

∂Q̇L

∂QL
− λI

)

= det(−E− (µ̂l + λ)I) = 0 (3.32)

where E = Ql · ∇µ̂l is the scalar product of the invader’s quota vector Ql =

(Q̂1l, . . . , Q̂ml)
T , and the is the invader’s gradient of its specific growth rate ∇µ̂l =

(∂µl/∂Q1l, . . . , ∂µl/∂Qml). Ql is a m × 1 column vector, and ∇µ̂l is a 1 × m row vector,

thus E is a m×m matrix.

Now consider the following equation

E ·Ql = Ql · ∇µ̂l ·Ql (3.33)

The scalar product ∇µ̂l ·Ql in the right-hand-side has the same terms of E, but in reverse

order. Thus σ = ∇µ̂l ·Qi is a 1× 1 matrix, i.e. a scalar. Because Ql > 0 and ∂µl/∂Ql > 0,

we conclude that σ > 0.

Equation (3.33) can be written as E ·Ql = Qlσ, where Ql and σ are respectively, an

eigenvector and its associated eigenvalue, of E. By definition, the other eigenvectors x are

orthogonal with respect to Ql, i.e. x ∈ Q⊥
l with Q⊥

l = {x|x ·Ql = 0}. In consequence

x · E = x ·Ql · ∇µ̂l = 0 · ∇µ̂l = (0, . . . , 0)

In other words, the eigenvalues associated with the other eigenvectors x, of E, are zero.

Therefore, the eigenvalues of E are (σ, 0, . . . , 0
︸ ︷︷ ︸

m×nl−1 times

). Going back to (3.32) the eigenvalues

of ∂Q̇L

∂QL
are λ = (−σ− µ̂l, −µ̂l, . . . ,−µ̂l︸ ︷︷ ︸

m×nl−1 times

), and all of them are negative. The matrix ∂Q̇L

∂QL
cannot

tell us whether X̂ is externally stable or not.

Now, let us check the matrix ∂ṄL
∂NL

. Because dNl/dt does not depend on other species

densities but Nl, this matrix is diagonal, and its eigenvalues are the diagonal entries: λ =

∂Ṅl/∂Nl = µ̂l − ml, i.e. species l net specific rate of increase when rare. Since they can be

positive or negative, only the eigenvalues of ∂ṄL
∂NL

can tell us whether X̂ is externally stable

or not: a community equilibrium X̂ is externally stable if and only if none of the invaders can grow

when rare.
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B.3 Internal stability

The characteristic equation of JK is much more difficult to factorize, but we can obtain

some results if resources follow Liebig’s law. Following our convention that species i is

limited by resource i, the quotas QK can be split into Q= corresponding to the Qii and Q 6=

corresponding to the Qji (j 6= i). The same applies for the external resources R, where R=

corresponds to taking derivatives to or with respect to resources that are limiting, and R 6=

for the resources which do not cause limitation to any resident. JK can be rearranged (by

moving rows and columns as we before) as the following block-triangular matrix

JK =





















∂Ṙ=

∂R=
0 ∂Ṙ=

∂N 0 0

∂Q̇=

∂R=

∂Q̇=

∂Q=
0 0 0

0 ∂Ṅ
∂Q=

0 0 0

∂Ṙ 6=

∂R=
0

∂Ṙ 6=

∂N

∂Ṙ 6=

∂R 6=
0

∂Q̇6=

∂R=

∂Q̇6=

∂Q=
0

∂Q̇6=

∂R 6=

∂Q̇6=

∂Q6=





















=

[

J1 0

J3 J2

]

where the sub-blocks ∂Q̇=

∂R 6=
= ∂Q̇=

∂Q6=
= ∂Ṅ

∂Q6=
= 0 because R 6=,Q 6= are correspond to non-

limiting resources, and ∂Ṙ=

∂R 6=
= 0 because of the independence among external resources.

Thus the eigenvalues of JK at those of the block:

J1 =







∂Ṙ=

∂R=
0 ∂Ṙ=

∂N
∂Q̇=

∂R=

∂Q̇=

∂Q=
0

0 ∂Ṅ
∂Q=

0






(3.34)

together with those of

J2 =





∂Ṙ 6=

∂R 6=
0

∂Q̇6=

∂R 6=

∂Q̇6=

∂Q6=



 (3.35)

where J1 is of size (2nk + n2
k) × (2nk + n2

k) and J2 is of size (m − nk)(nk + 1) × (mk −

n)(nk + 1).

First we look at J2. According to (3.2c) the small block
∂Ṙ 6=

∂R 6=
is (m − nk)× (m − nk) and

diagonal with

∂Ṙj

∂Rj

= φ(R̂j) −
∑

i

∂fji(Rj)

∂Rj

N̂i = −aj < 0

and according to (3.2b) the dynamics of Qji is affected by Qii and Qji but not by the other

quotas 6= i, j, thus
∂Q̇6=

∂Q6=
is a (m − nk)nk × (m − nk)nk diagonal block with

∂Q̇ji

∂Qji
= −µi(Q̂ii) = −mi
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along its diagonal, m − 1 times for resident. Thus, J2 is triangular and its characteristic

equation is

det(J2 − λI) =
∏

j 6=i

(aj + λ)×
∏

i

(mi + λ)m−1 = 0 (3.36)

which has all negative real roots. Thus the internal stability depends only on the eigenval-

ues of J1.

In J1 the small block ∂Ṙ=

∂N is nk × nk with elements
∂Ṙj

∂Ni
= −fji(R̂j). This is the negative

of the consumption matrix at equilibrium F̂, but only for the limiting resources; in other

words, with the with rows j > nk removed. The other four non-zero blocks of J1 are also

of size nk ×nk but they are all diagonal because:
∂Ṙ=

∂R=
: resource i cannot be affected by resources 6= i. The diagonal elements are

∂Ṙi

∂Ri
= φi(R̂i) −

∑

k

∂fik(Ri)

∂Ri
N̂k = −ai < 0 (3.37)

∂Q̇=

∂Q=
: the quotas of one species cannot affect the quotas of another species. The diagonal

elements are

∂Q̇ii

∂Qii
= −

∂(µi(Qii)Qii)

∂Qii
= −bi < 0 (3.38)

∂Q̇=

∂R=
: species i quota for resource i cannot be affected by external resources 6= i. Thus

∂Q̇ii

∂Ri

=
∂fii(Ri)

∂Ri

= ci > 0 (3.39)

∂Ṅ
∂Q=

: The growth of species i only depends on its quota for resource i. The diagonal

elements are

∂Ṅi

∂Qii
=

∂µi(Qii)

∂Qii
N̂i = di > 0 (3.40)

Thus the characteristic equation of J1 is

det(J1 − λI) = det

[

A(λ) −F̂

B(λ) C(λ)

]

= 0

A(λ) = [ −diag(ai + λ) 0 ]

B(λ) =

[

diag(ci) −diag(bi + λ)

0 diag(di)

]

C(λ) =

[

0

diag(−λ)

]

and by application of Schur’s formula:

62



Appendix B: Local stability of equilibria

det(J1 − λI) = det(B(λ))det(−F̂−A(λ)B(λ)−1C(λ)) = 0

det(B(λ) =
∏

i cidi > 0, and Schur’s complement AB−1C is a diagonal matrix:

A(λ)B(λ)−1C(λ) = diag

(

λ(λ + ai)(λ + bi)

cidi

)

Accordingly, the eigenvalues of J1 are the solutions of the determinant equation:

det(F̂+ Zi(λ)) = 0 (3.41)

Zi(λ) = λ(λ + ai)(λ + bi)/cidi

where Zi(λ) is a polynomial of degree 3 in λ. The equilibrium is internally stable if all the

roots of (3.41) have negative real parts.

We can prove that a necessary but not sufficient condition for the negativity of all the real

parts of the roots of (3.41) is that

det(F̂) > 0 (3.42)

Proof. The polynomials Zi(λ) are zero at zero (Zi(0) = 0) and they increase monotonically

to infinity for λ > 0. From (3.41) we get that the equilibrium cannot be asymptotically stable

if det(F̂) = 0, since in that case λ = 0 would be an eigenvalue of the jacobian. Suppose that

det(F̂) < 0 and consider the function χ(λ) = det(F̂+ diag(Zi(λ))). Then χ(0) = det(F̂) < 0.

If λ > 0 is big enough χ(λ) will be positive, since it is the determinant of a diagonally

dominant matrix with a positive diagonal. Hence by continuity there exists a λ+ > 0 that

satisfies χ(λ+) = 0. In other words the jacobian has a positive eigenvalue λ+ and X̂ cannot

be stable.

B.4 Monocultures

The stability of monocultures in nutrient storage models has been analysed many

times (Lange and Oyarzun, 1992; Oyarzun and Lange, 1994; Legovic and Cruzado, 1997;

de Leenheer et al., 2006), but for the chemostat scenario, i.e. φj = D(SJ − RJ) and mi = D.

In case of one species and one resource, the monoculture can display damped oscillations

around the equilibrium, when the mortality rate is high enough compared with the resource

turnover rate (Clodong and Blasius, 2004). Thus, it is not immediatly clear if monocultures

are stable under more general conditions.

In case of a monoculture m > n = 1, a positive equilibrium of a species i corresponds

to the only point R̃ in the quasi-nullcline of i, where according to (3.12) the consumption

vector fi and the turnover vector Φ are parallel. In case of Liebig’s law, this point R̃

lies in one of the two branches of the L-shaped quasi-nullcline in Figure 3.3, or “hyper-

planes” if m > 2, to be more general. Without loss of generality, let us assume that R̃

lies in the Ri = R∗
ii hyper-plane, thus the corresponding consumption vector is f̃i(R̃). This

monoculture is internally stable if all the roots of the characteristic equation (3.41):

f̃ii + λ(λ + ai)(λ + bi)/cidi = 0
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have negative real parts. In this equation f̃ii corresponds to the consumption matrix F̃ in

which the rows of the non-limiting resources have been removed, leaving us a single scalar:

the consumption rate f̃ii = fii(R
∗
ii). All the coefficients of this polynomial have the same

sign; thus all roots have negative real parts if and only if (Routh-Hurwitz criterion, May

1974, Appendix):

(ai + bi)aibi > cidif̃ii (3.43)

Using the definitions of a,b, c,d in (3.37,3.38,3.39,3.40) respectively, and the fact that

µi = mi and f̃ii = miQ̃ii at equilibrium, inequality (3.43) becomes

(

−
∂φi

∂Ri

+
∂fii

∂Ri

Ñi + mi + Q̃ii
∂µi

∂Qii

)(

−
∂φi

∂Ri

+
∂fii

∂Ri

Ñi

)(

mi + Q̃ii
∂µi

∂Qii

)

>
∂fii

∂Ri

∂µi

∂Qii

ÑimiQ̃ii

In the left-hand-side of this inequality we have all the terms (underlined) that appear as

the product in the right-hand-side. Thus, if the left-hand-side is expanded, it will produce

the product of the right-hand-side, plus other terms which are all positive (remember that

∂φi/∂Ri < 0). Thus, the left-hand-side is bigger than the right-hand-side and the stability

requirement (3.43) is true. Conclusion: monocultures are internally stable.

B.5 Quota dependent uptake

Let us consider that the resource uptake fji, is a decreasing function of Qji (and no other

quotas)

∂fji

∂Qji
< 0 (3.44)

and see how the stability requirements change.

According to appendix B.2, external stability depends on the eigenvalues of the matrix

JL in (3.30), and the eigenvalues of this matrix are are those of ∂Q̇L

∂QL
and ∂ṄL

∂NL
. This time the

entries of the diagonal block ∂Q̇L

∂QL
become

∂Q̇jl

∂Qil
= −Q̂jl

∂µl

∂Qil
− δji

(

µ̂l −
∂fjl

∂Qil

)

Because of (3.44), and following exactly the same procedures we conclude that all the

eigenvalues of the ∂Q̇L

∂QL
are real and negative (they are the same negative eigenvalues plus

the derivatives of uptake rates with respect to quotas, which are also negative). Thus, only

the eigenvalues of ∂ṄL
∂NL

, for which the resource uptake does not play a role, will determine

external stability. We conclude again that a community is stable against invasion if and only if

none of the invaders can grow when rare.

According to appendix, B.3 internal stability depends on the eigenvalues of the matrices

J1 (3.34) and J2 (3.35). With quota dependent uptake J1 changes into
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J1 =









∂Ṙ=

∂R=

∂Ṙ=

∂Q=

∂Ṙ=

∂N
∂Q̇=

∂R=

∂Q̇=

∂Q=
0

0 ∂Ṅ
∂Q=

0









where the nk × nk block ∂Ṙ=

∂Q=
is a diagonal matrix with

ei = −
∂fii

∂Qii
N̂i > 0

along its diagonal, all positive because of (3.44). Following the same steps as before, the

characteristic equation of J1 is similar to (3.41), where the polynomial Zi becomes

Zi(λ) = λ (ciei + (λ + ai)(λ + bi)) /cidi

Since this polynomial is zero at λ = 0 and is monotonically incresing with λ, we will

arrive to same internal stability requirement as before (3.42), in which det(F) > 0.

With respect to J2 we have

J2 =





∂Ṙ 6=

∂R 6=

∂Ṙ 6=

∂Q6=

∂Q̇6=

∂R 6=

∂Q̇6=

∂Q6=





which is not block-triangular anymore, and in consequence, there is not a simple way to

determine if this matrix is stable or not. However, this uncertainty does not rest invalidate

the internal stability requirement (3.42).

appendix c : three-species coexistence through invasion

As motivated in the main text let us assume that three species have resource requirements

related as in (3.22):

R∗
11 > R∗

12 > R∗
13

R∗
22 > R∗

23 > R∗
21

R∗
33 > R∗

31 > R∗
32

(3.45)

so, the quasi-nullcline intersection point is R̂ = (R∗
11,R

∗
22,R

∗
33). We will prove that the

consumption patterns (3.23), (3.24) and (3.25) at result in coexistence, competitive exclusion

and oscillations, respectively.

(1) Coexistence. Let the slopes of the resource turnover vector and the consumption vectors

be related according to (3.23):

f22(R∗
22)

f12(R∗
11)

>
φ2(R∗

22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

f33(R∗
33)

f13(R∗
11)

>
φ3(R∗

33)

φ1(R∗
11)

>
f31(R∗

33)

f11(R∗
11)

(3.46)

f33(R∗
33)

f23(R∗
22)

>
φ3(R∗

33)

φ2(R∗
22)

>
f32(R∗

33)

f22(R∗
22)
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The ordering of slopes (3.47) indicates that the turnover vector falls in the cone formed

by the consumption vectors, not only at R̂, but also when this point is represented in all the

resource planes R1R2,R1R3 and R2R3. In consequence, the three-species equilibrium, and

all three two-species equilibria exist.

Let us examine the equilibrium of species 1 and 2. In view of the resource requirements,

species 1 must be limited by resource 1 and species 2 by resource 2. The resource concen-

trations in this equilibrium will be: R1 = R∗
11, R2 = R∗

22 and R3 > R∗
31,R

∗
32 (we prove later

that they cannot be limited by resource 3). Because species 1 and 2 display the same coexis-

tence configuration of Figure 3.4A, they can invade each other. Appealing to symmetry, all

species can invade any monoculture. What is left is to prove that any species can invade a

two-species equilibrium.

From the perspective of species 3, we can view species 1 and 2 as a single competitor

called “1-2”, that is limited by resources 1 and 2 simultaneously. This allow us to represent

the interaction of species 3 against species “1-2”, in the R1R3 plane. In such representation,

the combined consumption rate of species 1 and 2 is given by

v = f1N1 + f2N2

and the quasi-nullcline of “1-2” is the same as the quasi-nullcline of species 1, defined

by R∗
11 and R∗

31 (because between species 1 and 2, those are the highest requirements for

resources 1 and 3). The intersection of species “1-2” quasi-nullcline and that of species 3

occurs at the point R̂ = (R∗
11,R

∗
33). At this point, according to the resource equilibrium

conditions (3.12), the following vector sum holds:

Φ = v+ f3N3

Now, according to (3.46) the slope of the turnover vector is smaller than the slope of the

consumption vector of species 3 (
f33(R∗

33)

f13(R∗
11)

>
φ3(R∗

33)

φ1(R∗
11)

), at R̂. In consequence, the slope of v

must be the smallest among the three vectors, as shown by the following diagram:

R3 R0
3

R*
33

R*
31

R1R*
11

φ

R0
(1-2)

R*
13

-f3N3

-V
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This diagram corresponds to the scenario of coexistence described in the main text, Figure

3.4A. Thus, the community of species 1 and 2, or “1-2”, is unstable against invasion by

species 3 (and since species 3 can invade, R3 > R∗
33 > R∗

31 > R∗
32 in the equilibrium between

species 1 and 2: our assumption that species 1 and 2 are not limited by resource 3 is correct).

By symmetry, any species can invade a two-species equilibrium.

Since each species can invade any monoculture and two-species equilibria, all three

species coexist.

(2) Competitive exclusion. The opposite outcome, exclusion, will result if the signs of all

the inequalities are changed, like in (3.24):

f22(R∗
22)

f12(R∗
11)

>
φ2(R∗

22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

f33(R∗
33)

f13(R∗
11)

>
φ3(R∗

33)

φ1(R∗
11)

>
f31(R∗

33)

f11(R∗
11)

(3.47)

f33(R∗
33)

f23(R∗
22)

>
φ3(R∗

33)

φ2(R∗
22)

>
f32(R∗

33)

f22(R∗
22)

In this case, we can repeat the previous analysis (species 3 against “1-2”), and we will

find that the community of species 1 and 2 is externally stable against invasion by species 3,

that the community of species 1 and 2 is internally unstable, and that the monocultures of

species 1 and 2 are externally stable (e.g. like in Fig. 3.4B). In addition, Appendix D shows

that the three species equilibrium is internally unstable. For such a pattern of resource

consumption, the only stable states are the monocultures, thus coexistence is not possible.

(3) Oscillations. Finally, let us consider the inequalities in (3.25)

φ2(R∗
22)

φ1(R∗
11)

>
f21(R∗

22)

f11(R∗
11)

,
f22(R∗

22)

f12(R∗
11)

φ1(R∗
11)

φ3(R∗
33)

<
f13(R∗

11)

f33(R∗
33)

,
f11(R∗

11)

f31(R∗
33)

(3.48)

φ3(R∗
33)

φ2(R∗
22)

>
f32(R∗

33)

f22(R∗
22)

,
f33(R∗

33)

f23(R∗
22)

Due to the cyclic symmetry of the resource requirements and vector slopes, we are left

with a system in which there cannot be any two-species equilibria, since the turnover vector

falls outside the cone formed by the consumption vectors, for any species pair considered

separately. In consequence, the only outcome between two species is competitive domi-

nance: species 2 wins against 1, 1 wins against 3, and 3 wins against 2. Thus, there is a

heteroclinic cycle connecting the three monocultures, and in consequence competitive oscil-

lations are possible. As stated in the main text, such oscillations can dampen out, become

limit cycles or heteroclinic cycles.
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appendix d : three species stability

For n = m = 3, the characteristic equation for the internal equilibrium (3.41) can be ex-

panded as

Z1(λ)Z2(λ)Z3(λ) +
∑

f∗iiZj(λ)Zk(λ) +
∑

MiZi(λ) + det(F̂) = 0 (3.49)

where f∗ji = fji(R
∗
jj), and Mi = f∗jjf

∗
kk − f∗jkf∗kj are the 2× 2 minors along the diagonal of F̂.

Since Zi(λ) = λ(λ + ai)(λ + bi)/cidi are polynomials of degree 3 in the eigenvalues λ, the

substitution of Z1,Z2 and Z3 in (3.49) produces a characteristic equation of degree 9 in the

eigenvalues.

According to the Routh-Hurwitz criterion, a necessary but not sufficient condition for

stability is that all the coefficients of the characteristic equation have the same sign. On the

one hand, in (3.49), the products Z1Z2Z3 and f∗iiZjZk (i 6= j 6= k) result in polynomials with

positive coefficients, because by definition ai,bi, ci,di, f
∗
ii > 0 (Appendix B.3). On the other

hand, Mi and F̂ can be positive or negative since they are determinants. Thus, whether or

not all the coefficients of (3.49) have the same sign, depends on
∑

Mi and F̂, giving us two

necessary but not sufficient conditions for stability:

• criterion I:
∑

Mi > 0

• criterion II: det(F̂) > 0

The positivity of F̂ has the biological interpretation that, in the internal equilibrium, the

three species tend to consume most of the resources for which they have the highest re-

quirements. The positivity of Mi has the same interpretation, but with respect to border

equilibria involving two species. Now, let us see if we can use the above criteria to decide

upon the stability, or instability, of equilibria displaying the consumption patterns proposed

in the main text.

(1) Coexistence: By inspection of (3.46) we see that all Mi > 0, thus criterion I holds. The

consumption ratios alone do not provide enough information to asses whether criterion

II holds or not, because F̂ is a 3 × 3 matrix. However, if the consumption rates (not the

slopes!) are arranged in the same way as the resource requirements (3.45), i.e. f∗11 > f∗12 >

f∗13, f∗22 > f∗23 > f∗21, f∗33 > f∗31 > f∗32, criterion II is fulfilled. Proof: consider the matrix Γ

in which each row element of the matrix F̂ is divided by the smallest element in the row.

The determinant of matrix Γ has the same sign as det(F̂), since

Γ =
F̂

f∗13f∗21f∗32

and from the order of the f∗ji we note that Γ is of the form

Γ =





1 + y1 1 + x1 1

1 1 + y2 1 + x2

1 + x3 1 1 + y3





where yi > xi > 0. Accordingly, the determinant of Γ can be written as
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det(Γ) = x1x2x3 + x1x2 + x1x3 + x2x3 + y1y2y3 + y1(y2 − x2) + y2(y3 − x3) + y3(y1 − x1)

which is always positive. Thus, if the consumption rates are ordered in the same way as the

resource requirements, det(F̂) is positive and criterion II holds.

(2) Competitive exclusion: By inspection of (3.47) all Mi < 0, thus criterion I does not hold,

the three species equilibrium is unstable.

(3) Oscillations: The arrangement in (3.48) does not indicate what could be the signs of

Mi and F̂. If we assume the consumption vector slopes have the same order as in (3.47),

then criterion I does not hold, the three species equilibrium is unstable (see (2) Competitive

exclusion), and the oscillations will increase. But if the consumption ratios are arranged as

in (3.46), then both criterion I and II may hold not (see (1) Coexistence), and the oscillations

can either increase or decrease.

appendix e: simulations

The simulations in Figure 3.5 employ the special formulas in Table 3.1 (equations 3.4, 3.5 and

3.6) and Liebig’s law (3.3). In part A the parameter values are: D = 0.5, ri = 1.2,mi = 0.9,

S1 = 32.84, S2 = 39.88, S3 = 43.30,

vji =





0.63 5.13 1.94

3.01 2.16 5.35

6.45 2.83 1.72



 , Kji =





0.67 0.65 0.23

0.96 0.81 0.46

0.50 0.97 0.48



 , qji =





0.15 1.25 0.49

0.60 0.50 1.32

1.56 0.58 0.43





where row:resources and columns:species. In part B: D = 0.5, ri = 2.0,mi = 0.5, S1 =

23.33, S2 = 35.97, S3 = 25.17,

vji =





3.15 3.86 2.41

4.16 5.15 5.81

3.81 2.44 3.46



 , Kji =





0.76 0.68 0.27

0.12 0.71 1.00

0.58 0.36 0.30



 , qji =





4.05 5.00 3.39

6.05 6.83 7.02

4.96 3.35 4.90




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4
L IMIT CYCLES IN THE DROOP MODEL OF MULT I SPEC IES

COMPET IT ION

Tomás A. Revilla and Franz J. Weissing

The dynamics of three species competing for three resources based on Droop’s

equation and Liebig’s law of the minimum is explored. Under continuous

changes in model parameters the system shows transitions from competitive

exclusion, oscillations and stable coexistence, associated to contrasting modes

of consumption. The three-species community undergoes a sub-critical Hopf

bifurcation, and depending on the parameter choices and initial conditions, os-

cillations converge to the community equilibrium, increase in amplitude to be-

come stable limit cycles, or approach an heteroclinic cycle formed by the species

monocultures. Certain scenarios of competitive exclusion that prevent rock-

paper-scissor dynamics do also display oscillations, before ending up with a

single winner that depends on the initial conditions.

Keywords: resource competition, quota model, law of the minimum, consumption pat-

terns, competitive oscillations, rock-paper-scissors dynamics, bifurcations
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limit cycles in the droop model of multispecies competition

4.1 introduction

Competition among three or more populations displays a rich variety of outcomes

(Buss and Jackson, 1979; Sinervo and Lively, 1996; Kerr et al., 2002) in comparison with the

two species case. In the framework of Lotka-Volterra theory these outcomes correspond to a

great extend to different configurations of the so called “community matrix” formed by the

“competition coefficients” of the model. One would expect coexistence when intra-specific

competition (coefficients) is (are) stronger than inter-specific (coefficients) competition, and

competitive exclusion when intra-specific competition is weaker than inter-specific competi-

tion (but see Strobeck 1973); in both cases the system attains a stable equilibrium with high

or low diversity respectively. On the other hand, non-equilibrium dynamics like oscilla-

tions can only occur between these extreme scenarios, due to nontransitive relationships of

competitive hierarchy among the species, as shown by Gilpin (1975) and May and Leonard

(1975).

Lotka-Volterra theory is phenomenological and non-mechanistic. Whether competition

coefficients are big or small can only be known after competition took place since they can-

not be obtained from first principles, an issue that undermines its utility for understanding

the causes of diversity. In contrast, for certain systems resource competition theory (Grover,

1997) allows the necessary mechanistic interpretation through the explicitly consideration

of resource dynamics along with those of consumers. The standard model of resource com-

petition predicts the outcome of the interaction between two species competing for two

resources in terms of their resource requirements, their consumption ratios and resource

abundances in the environment (León and Tumpson, 1975; Tilman, 1977, 1980, 1982). Ex-

tending this model for multiple species and resources Huisman and Weissing (1999, 2001,

2002) found that the outcomes of competition are the result of trade-offs in consumption

characteristics, summarized in the following “rules of thumb”

coexistence. If species have high consumption rates for resources for which their re-

quirements are higher, we should expect stable coexistence. In ecological terms inter-

specific competition is very weak, a requisite for coexistence in classical competition

models.

exclusion. If species have low consumption rates for resources for which they have the

highest requirements, competitive exclusion will occur, with a single winner that de-

pends on the initial conditions. This is a scenario of very strong interspecific competi-

tion, making coexistence unattainable.

oscillations. If species have high consumption rates for resources for which they have

intermediate requirements, a non-transitive hierarchy emerges leading to competitive

oscillations. The fate of the community depends on the nature of such oscillations.

Oscillations can dampen out leading to coexistence at stable densities or they can

become limit cycles, in both cases all species persist. But they can also have very

large amplitudes where densities attain very low values for very long periods of time,

ultimately leading to extinctions and non-invadable monocultures.

These trade-offs can be stated explicitly terms of the parameters of the “Monod type” of

models frequently used in limnology and microbiology. Thus for example a high “half-
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4.2 competition model

saturation constant for growth” on a given resource corresponds to a high requirement for

that resource and vice versa; and a high “resource content” of a given resource corresponds

to a high consumption rate for that resource and vice versa. Indeed, the magnitudes of these

parameters can be used to compare the species competitive performance (Grover, 1997)

The same “rules of thumb” work in the multispecies extension of the variable resource

content model, the “quota model” (Revilla and Weissing, 2008). Quota models are interest-

ing because they acknowledge the delay that exists between resource consumption and the

processes of growth and reproduction, they are more suitable for describing competition

under fluctuating resource conditions (Passarge et al., 2006), and they are important tools

in the field of ecological stoichiometry (Klausmeier et al., 2004a). An attractive feature of

them is that the consumption rate parameters, “maximum consumption rates” and “half-

saturation constants for consumption” (not to be confused with half-saturation for growth),

can be derived from first principles of chemistry and physiology (Aksnes and Egge, 1991).

In contrast with models based on the Monod equation, resource requirements and con-

sumption rates in quota models are variable quantities that depend on many parameters.

As a consequence, the same species display different consumption patterns under different

equilibrium conditions, and so do the rules of competition. In the present contribution we

explore the parametric dependence of competitive interactions in the multispecies quota

model based on Droop’s (1973) equation. The structure of this work is as follows, Section

2 is contains the model specification (2.1) and the conditions that allow the existence of

biologically feasible equilibria (2.2). Section 3 presents our results in the form a bifurcation

analysis of equilibria with respect to variation in a few parameters (3.1), an analysis of the

causes of competitive oscillations (3.2), and the sensitivity of our results with respect to the

simultaneous variation in many parameters (3.2).

4.2 competition model

4.2.1 System equations

Our model describes the competition among 3 species with population densities Ni (i =

1, . . . , 3) for 3 perfectly essential resources with densities Rj (j = 1, . . . , 3). It also keeps track

of the variable resource content of j per cell of i or quota Qji

dNi

dt
= Ni(µi(Q1i,Q2i,Q3i) − mi) (4.1a)

dQji

dt
= fji(Rj) − µi(Q1i,Q2i,Q3i)Qji (4.1b)

dRj

dt
= φj(Rj) −

3∑

i=1

fji(Rj)Ni (4.1c)

i, j = 1, 2, 3

Species i per capita growth rate is a function of quotas according to a combination of

Droop’s (1973) empirical formula and Liebig’s law of the minimum
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limit cycles in the droop model of multispecies competition

µi(Q1i,Q2i,Q3i) = min(µji(Q1i),µ2i(Q3i),µ3i(Q3i)) (4.2)

µji(Qji) = ri

(

1 −
qji

Qji

)

where below the quota threshold qji growth is defined as zero, and ri is the growth rate

under quota saturation. The per capita loss rate (e.g. mortality or flush rate in chemostats)

mi is constant. Cell division split quotas uniformly among the offspring, thus Qji decrease

with the per capita growth rate, in a “dilution by growth” process (Grover, 1997). The

quotas are renewed with specific resource consumption rates fji(Rj)

fji(Rj) =
vjiRj

Kji + Rj

(4.3)

The mechanistic justification of this equation is similar to Holling’s type II functional

response (Aksnes and Egge, 1991), being vji and Kji the maximum consumption rate and

half-saturation constant respectively. The external resources are depleted in proportion of

the abundance of the consumers times their uptake rates. In the absence of consumers, the

dynamics of resource j is governed a linear turnover function

φj(Rj) = D(Sj − Rj) (4.4)

where the resource supply point S = (S1, . . . , S3) is the steady steady state condition of the

pristine resources.

4.2.2 Equilibria

According to equation (4.2) the instantaneous growth rate of species i is a function of one

resource at a time, the “limiting resource”. If j is the limiting resource there is a quota level

that balances growth and losses µi = µ1i(Q
∗
1i) = mi, this quota requirement is

Q∗
ji =

riqji

ri − mi
(4.5)

In equilibrium there is an external resource level that corresponds to the quota require-

ment, which is found by setting fji(R
∗
ji) − miQ

∗
ji = 0 in (4.1b) and using (4.3) to solve for

the external resource requirement of j for species i

R∗
ji =

KjimiQ
∗
ji

vji − miQ
∗
ji

=
Kjimiriqji

vji(ri − mi) − miriqji
(4.6)

The three planes R1 = R∗
1i,R2 = R∗

2i,R3 = R∗
3i with Rj > R∗

ji on each of them, form the

zero net growth isocline ZNGI (Tilman, 1982) of species i in the space of external resources

R1R2R3. In the region above the ZNGI (Rj > R∗
ji for all j) species i increases; in the region

below (Rj < R∗
ji for at least one j) it decreases. The relation between the species ZNGI

determines the feasibility of the different equilibria in the model, as follows.

The species equilibrium densities are the solutions of a linear system that results from

the equilibrium condition Ṙj = 0 of the resources in equation (4.1c)
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4.2 competition model

φ1(R1) = f11(R1)N1 + f12(R1)N2 + f13(R1)N3

φ2(R3) = f21(R1)N1 + f22(R1)N2 + f23(R1)N3 (4.7)

φ3(R3) = f31(R1)N1 + f32(R1)N2 + f33(R1)N3

The trivial equilibrium (all consumers absent) always exist, for which Rj = Sj. The

different monoculture (one species) and multispecies equilibria exist (with non-negative

species densities) if and only if the following two conditions hold

i. The resource levels lie on the ZNGI of the species whose equilibrium is considered.

ii. The resource turnover vector Φ = (φ1,φ2,φ3) is parallel and opposite to the total con-

sumption vector
∑

fiNi at the ZNGI of the species whose equilibrium is considered,

being fi = (f1i, f2i, f3i) species i per capita consumption vector.

4.2.2.1 Monocultures

In species i monoculture equilibrium (denoted by ~) condition (I) means that the resource

level point R̃ = (R̃1, R̃2, R̃3) lies in one of the planar faces of i’s ZNGI; thus R̃j = R∗
ji for the

limiting resource, and R̃k > R∗
ki for the non-limiting resources k 6= j. The resource turnover

vector Φ always points toward the supply point S, and the consumption vector field flows

towards the origin; thus, condition (II) holds if and only if the resource supply point S lies

above the nullcline of i. There is only one point in the ZNGI of i where the turnover and

consumption vectors are parallel and opposite, R̃ = (R̃1, R̃2, R̃3). This is shown for the R1R2

plane in Figure 4.1A. The equilibrium density of the monoculture Ñi satisfies all equations

in (4.7) for N6=i = 0

φj(R̃j) = fji(R̃j)Ñi (4.8)

but Ñi is obtained from the equation of the limiting resource j as Ñi = φj(R
∗
ji)/fji(R

∗
ji). This

of course requires us to knowwhich one is the limiting resource in the first place. According

to Legovic and Cruzado (1997) the limiting resource is that resource which results in the

smallest value of Ñi, thus in our three resource model

Ñi = min

(

φ1(R∗
1i)

f1i(R
∗
1i)

,
φ2(R∗

2i)

f2i(R
∗
2i)

,
φ3(R∗

3i)

f3i(R
∗
3i)

)

(4.9)

Substituting Ñi in the equations corresponding to non-limiting resources of (4.8) we fully

specify the resource level point R̃ = (R̃1, R̃2, R̃3), and substituting the R̃j in equation (4.1b)

with Q̇ji = 0 we get the quotas, with Q̃ji = Q∗
ji for the limiting resource and Q̃ki > Q∗

ki for

the non-limiting ones.

The existence of the monoculture equilibrium implies that species i can grow when rare

(since S is above the ZNGI) and that the trivial equilibrium is always unstable. Monocul-

tures are internally stable (Legovic and Cruzado, 1997) against fluctuations in densities and

resources (the equilibrium is approached monotonously or after transient oscillations, see

Clodong and Blasius, 2004), but may be externally stable or unstable against invasion by

other species.
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Figure 4.1: Zero net growth isoclines (ZNGI) and equilibrium conditions for two resources.

(A). The ZNGI of species i is the L-shaped curve formed by the resource require-

ments R∗
1i,R

∗
2i; above the ZNGI species i grows, below the ZNGI it decreases.

Along the ZNGI the resource turnover Φ vector points to the resource supply

point S; and the slope of the consumption vector fi varies along the ZNGI, it

aligns with the ZNGI as resources increase. The resource equilibrium level R̃ of

the monoculture of i is the point where both vectors are parallel and opposite.

(B) A two-species equilibrium exists if both ZNGI cross and for supply points

in the “wedge” formed by consumption vectors (dashed lines). The equilibrium

is stable if each species consume comparatively more of the resource for which

it has the highest requirement, in this case if the slope of f2 is higher than the

slope of f1 (C). When each species consume comparatively less of the resource

that limits its own growth the equilibrium is unstable, here when the slope of f2
is smaller than the slope of f1.
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4.2.2.2 Multispecies equilibria

For two and more species equilibrium condition (I) requires the intersection of the species

ZNGI’s, thus they must have contrasting resource requirements. Out of many possible

configurations, the one that follows

R∗
11 > R∗

12 > R∗
13

R∗
22 > R∗

23 > R∗
21

R∗
33 > R∗

31 > R∗
32

(4.10)

in which species i has the highest requirement for resource i and the smallest for resource

i mod 3 + 1, allows the ZNGI to cross for all species combinations. For two species their

ZNGI cross along L-shaped lines:

1. (R1 = R∗
11,R2 = R∗

22,R3 > R∗
31)
⋃

(R1 > R∗
11,R2 = R∗

22,R3 = R∗
31) for species 1 limited

by resource 1 or 3, and species 2 limited by resource 2

2. (R1 = R∗
11,R2 > R∗

23,R3 = R∗
33)
⋃

(R1 = R∗
11,R2 = R∗

23,R3 > R∗
33) for species 1 limited

by resource 1, and species 3 limited by resource 2 or 3

3. (R1 > R∗
12,R2 = R∗

22,R3 = R∗
33)
⋃

(R1 = R∗
12,R2 > R∗

22,R3 = R∗
33) for species 2 limited

by resource 1 or 2, and species 3 limited by resource 3

And all three ZNGI met at the point R̂ = (R∗
11,R

∗
22,R

∗
33), where each species is limited by

the resource for which it has the highest requirement, i.e. species 1 by resource 1, species 2

by resource 2 and species 3 by resource 3.

The second equilibrium condition (II) requires that the resource supply point S falls in

the cone formed by the consumption vectors fi at the ZNGI intersection. In the well known

example of two species competing for two resources this is the requirement saying that the

supply point S lies in the wedge formed by the projections of the consumption vectors of

species 1 and 2 at the intersection point (R∗
11,R

∗
22) in the R1R2 plane (the “wedge” or “cone”

rule is nothing more than the application of the parallelogram rule of vector sum in two

and higher dimensions). The stability of the equilibrium can be addressed by comparing

the slopes of the consumption vectors: in Figure 4.1B the consumption vector of species 2

is steeper than the consumption vector of species 1, making the equilibrium locally stable;

in Figure 4.1C the opposite configuration results in the instability of the equilibrium.

4.3 analysis and results

The existence and local stability of equilibria depends on the species resource requirements

R∗
ji and consumption vector fi configurations. These in turn depend on multiple param-

eters, most importantly vji,Kji,qji, and varying them would allow to better describe the

dynamical behaviour of the competitive system.
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limit cycles in the droop model of multispecies competition

4.3.1 Bifurcation of equilibria

In line with the inequalities (4.10) let us assume that the species have resource requirements

R∗
11 = R∗

22 = R∗
33 = A

R∗
12 = R∗

23 = R∗
31 = B (4.11)

R∗
13 = R∗

21 = R∗
32 = C

A > B > C (4.12)

such that species i has the highest requirement for resource i, and all three ZNGI intersect

at the point (A,A,A) in resource space. Setting S1 = S2 = S3 > A, all monocultures are

feasible and the trivial equilibrium always unstable. Consumption rates at the intersection

are given by equation (4.3) with Kji = K and





v11 v12 v13

v21 v22 v23

v31 v32 v33



 =





u v w

w u v

v w u



 (4.13)

where

0 < u < 1, 0 < v < 1, w = 1 − u (4.14)

are the maximum consumption rates on resources for which requirements are the highest

(u), intermediate (v) or lowest (w). Cyclic parameter arrangements do not occur in nature,

but they capture the essential features of competition dynamics (May and Leonard, 1975;

Hofbauer and Sigmund, 1988; Li, 2001; Baer et al., 2006). We can investigate the effect of

different consumption patterns through a reduced number of parameters. For example, if

u → 1 then w → 0: consumption of resources with highest requirements is the highest and

consumption of resources with lowest requirements is the lowest. In the other end of the

spectrum, if u → 0 then w → 1: consumption is the highest for resources with the low-

est requirements, and lowest for resources with the highest requirements. At intermediate

values of u the discrepancy between consumption of resources with high and low require-

ments is small, and consumption upon resources for which requirements are intermediate

is relatively high.

The system is fully specified using growth and supply rates given by (4.2) and (4.4) with

Sj = D = mi = 1, A = 0.20, B = 0.15, C = 0.10 and K = 0.01 (parametrization details are

described in the Appendix). We proceed to study the bifurcation of equilibria as u varies

between 0 and 1, for v = 0.25 and 0.75 using XPPAUT (Ermentrout, 2002). Figure (4.2)

shows the corresponding bifurcation plots for species 1 (by symmetry species 2 and 3 show

exactly the same graphs, with the appropriate labeling for i and j).
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Figure 4.2: Bifurcation plots for species 1. (A) For v = 0.25 the three-species equilibrium

displays a sub-critical Hopf bifurcation and unstable periodic orbits. (B) For

v = 0.75 the periodic branch arising from the bifurcation changes from unstable

to stable, see Fig. 4.4 for details. Spi(j): species i is limited by resource j, BP:

branching point, HB: Hopf bifurcation, thick lines: stable equilibrium, thin lines:

unstable equilibrium, full circles: stable limit cycle, open circles: unstable limit

cycle.
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limit cycles in the droop model of multispecies competition

Equilibrium densities change in different ways with the bifurcation parameter. As u

changes monocultures experience limitation by different resources, as expected in equation

(4.9). For species 1 for example

Ñ1 = min

(

(1 − C)

wC/(K + C)
,

(1 − B)

vB/(K + B)
,

(1 − A)

uA/(K + A)

)

(4.15)

where the terms in parentheses correspond to limitation by resources 2, 3 and 1 respectively,

as u goes from 0 to 1. The sharp corners of the monoculture curves (Sp1) in Figure 4.2

indicate the limitation switch.

The pairwise equilibria (1-2, 1-3) occur as discontinuous curves (Sp1-Sp2 or Sp1-Sp3)

branching out from the monocultures or the extinct condition (N1 = 0). The focal species

or its competitor experiences different resource limitation in both branches, since the two

ZNGI cross in a L-shaped line. For intermediate values of u, condition (II) fails, and pair-

wise equilibria are not feasible. As in the case of monocultures, the species are limited by

their most needed resources when consumption is high on them, i.e. when u is big.

In contrast with monocultures and pairwise equilibria, the three species equilibrium

is described by a continuous curve (Sp1-Sp2-Sp3) since each species is always limited

by the resource for which it has the highest requirement. This equilibrium is character-

ized common resource concentrations R̂1 = R̂2 = R̂3 = A, and common species densities

N̂1 = N̂2 = N̂3 = N̂ which are independent of u (thus a flat line).

Stability also changes in different ways for the different equilibria. Low values of u result

in stable monocultures and extinction equilibria, instability of the three species equilibrium,

and pairwise equilibria being saddle points; thus, any positive initial condition leads to

one of the monocultures and the exclusion of the other two species. The opposite occurs

for high values of u where monocultures and extinction equilibria are unstable, the three

species equilibrium is stable, and pairwise equilibria being also saddle points; any positive

initial condition leads to stable coexistence of all species.

At intermediate values of u competitive oscillations occur, as seen in Figure 4.3. The fate

of such oscillations depends on the stability of the monocultures and the three-species equi-

librium. The three-species equilibrium changes stability through a sub-critical Hopf bifurca-

tion, i.e. where a branch of unstable periodic orbits overlaps the locally stable equilibrium.

For v = 0.25 the unstable limit cycle is the boundary of the three-species equilibrium attrac-

tion basin. Depending on the initial conditions all species may end up coexisting at stable

densities after oscillations damped out; or instead the oscillations increase in amplitude

until one species exclude all the others (Fig. 4.3A). As u further increases and species con-

sume comparatively more of the resources for which they have the highest requirements,

the attraction basin of the three-species community grows until it becomes globally stable.

For v = 0.75 stable limit cycles occur for a wide range of the bifurcation parameter; all

positive initial conditions result in non-equilibrium coexistence for all species (Fig. 4.3B).

Unstable limit cycles do also exist but confined to a very small interval, where the branch

of unstable cycles folds back into the much bigger branch of stable cycles, as pictured

in Figure 4.4. In this interval, positive initial conditions end up either in a three-species
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Figure 4.3: Competitive oscillations. (A) For u = 0.47 in Fig. 4.2A competition results in

stable coexistence or competitive exclusion with the winner depending on the

initial conditions (inset). (B). For u = 0.58 in Fig. 4.2B all species coexist through

competitive oscillations.

equilibrium or non-equilibrium coexistence, depending on the initial conditions. Beyond

the folding point competitive oscillations disappear and all positive initial conditions lead

to equilibrium coexistence without transient oscillations.

4.3.2 Competitive oscillations

The causes of competitive oscillations can be understood by phase plane analysis in species

space (Gilpin, 1975). Following Zhang (1991) we define species nullclines in the phase

space N1N2N3 as follows. Consider species 1 (alone or in company): it may be limited by

resource 1 thus R1 = A, or by resource 2 thus R2 = C or by resource 3 thus R3 = B. Using

equations (4.3), (4.13) and Kji = K the resource equilibrium conditions (4.7) for each case

are

XA = uN1 + vN2 + wN3

XC = wN1 + uN2 + vN3

XB = vN1 + wN2 + uN3

XY ≡ (K + Y)(S − Y)

Y
, Y = A,B,C

Now consider the surface of the polyhedron enclosed by the three planes above and

the N1 = N2 = N3 = 0 planes: for densities above this surface consumption reduces
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Figure 4.4: Enlarged portion of Figure 4.2B around the sub-critical Hopf bifurcation. The

unstable periodic branch folds back and becomes stable. Between the bifurcation

u = 0, 5859 and and the folding point u = 0, 5887 unstable limit cycles co-occur

with stable limit cycles.

the limiting resource of species 1 below its requirement, so a decrease in N1 follows; but

for densities below this surface consumption is low and the limiting resource of species

1 increases above the requirement, so an increase in N1 follows. Thus we can consider

this polyhedral surface as the nullcline of species 1, and similarly for species 2 and 3,

substituting (XA,XC,XB)T by (XB,XA,XC)T and (XC,XB,XA)T respectively. The nullclines

appear as polygonal curves when plotted on the phase planes N1N2,N1N3,N2N3, with

each segment corresponding to limitation by one resource, their intersections corresponding

to pairwise equilibria. We proceed to analyze the interaction between species pairs as we

do with with Lotka-Volterra models.

Using the same u and v as in Figure 4.3A the intersection of the nullclines of species

1 and 2 in N1N2 seen in Figure 4.5 correspond to an unstable equilibrium (represented

by the left branch of the Sp1-Sp2 curve in Figure 4.2A). The vector field indicates that

species 1 or 2 are able to exclude each other depending on the initial conditions, and by

symmetry the same result apply for the other two species pairs. Each monoculture is a

stable node, and from this perspective the dynamics corresponds to competitive exclusion

with the winner depending on the initial conditions. But as seen in the simulation, the

approach to the monoculture equilibrium is accompanied by oscillations. This happens

because of the following: species 3 can growwhen rare in certain portions of species 1 and 2

attraction basins in the N1N2 plane, and that the attraction basin of species 1 is much bigger

than the attraction basin of species 2. Thus for certain initial conditions, the exclusion of

species 2 by species 1 allows a temporal increase of species 3, and in consequence a decrease

in species 1 some time later. Considering the local dynamics in the N1N3 and N2N3 planes

suggests a spiral flow in the N1N2N3 phase space, in which the trajectories first approach

and then move away from the monocultures in the sequence 1 → 3 → 2 → 1 before the

final exclusion of all but one species.
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Figure 4.5: Graphical analysis in the N1N2 phase plane, with species 1 (solid), 2 (dashed)

and 3 (gray-white boundary) nullclines. Species increase for points below their

nullclines, and decrease for points above (for species 3 growth is positive in the

gray region, and negative outside). (A) Nullclines corresponding to species in

Fig. 4.3A. (B) Nullclines corresponding to species in Fig. 4.3B. See the text for

further description.

For the u and v used in Figure 4.3B, notice that this time pairwise equilibria do not exist

(the Sp1-Sp2 branch is absent for intermediate u in Fig. 4.2B). The vector field in Figure 4.5B

shows that species 2 exclude species 1, and by symmetry species 3 excludes 3 and species 1

excludes 3. Each monoculture is a saddle point, stable against invasion by one species but

unstable against invasion by the other; in other words the monocultures form a heteroclinic

cycle. As species 2 excludes species 1 it allows species 3 to grow when rare, and considering

species 1 vs species 3 and species 2 vs species 3 mutatis mutandis, we conclude that there

is a spiral flow in the interior of N1N2N3, with a sequence of competitive dominance 1 →
2 → 3 → 1. In this example any positive initial condition results in an oscillation that never

settles down because all feasible equilibria are unstable. The type of oscillations however,

have important consequences for diversity. The heteroclinic cycle may be an attractor, so

species will spent increasingly longer times at very low densities, which in real world

scenarios would imply their extinction, the destruction of the cycle and the emergence of a

single winner; or as in our example, the heteroclinic may be unstable, such that oscillations

move towards the interior and extinction is avoided.
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4.3.3 Sensitivity analysis

Needless to say our parametrization greatly reduces the degrees of freedom in the dynami-

cal system. We can remedy this to some extent and assess the robustness of our findings in

a wider scope. Consider equation (4.3) for the consumption rate of resource j by species i

when Rj = A

fji(A) =
vjiA

Kji + A
=

xA

K + A

where x = u, v,w according to the equation (4.13). Thus, for a given Kji there is a

vji






= u
Kji+A

K+A
for v11, v22, v33

= v
Kji+A

K+A
for v12, v23, v31

= w
Kji+A

K+A
for v13, v21, v32

(4.16)

satisfying the same consumption rate fji(A). Indeed, there is an infinite number of ways to

pick (vji,Kji) resulting in the same three-species equilibrium configuration for consumption

patterns fji(A), resources R̂1 = R̂2 = R̂3 = A and densities N̂1 = N̂2 = N̂3 = N̂ as before.

Sampling Kji from a uniform random distribution in the interval [0, 2K], the corresponding

vji have means v̄11 = v̄22 = v̄33 = u,v̄12 = v̄31 = v̄31 = v and v̄13 = v̄21 = v̄32 = w

(w = 1 − u). We numerically integrated many systems with randomly assigned parameters

(4th order Runge-Kutta, GNU Scientific Library Galassi et al. 2004, code available under

request). All these systems share the same three-species equilibrium state as the examples

in the cyclic parametrization, but their border equilibria are totally unrelated.

Figure 4.6A shows a simulation where vji and Kji belong to parameter distributions gen-

erated with the u and v used in Figure 4.3A. As in the cyclic case the competitive dynamics

results in full species coexistence or competitive exclusion with the winner depending on

the initial conditions. As predicted in the bifurcation analysis, the system displays oscilla-

tions, with species dominance sequence 1 → 3 → 2 → 1 as inferred from the phase plane

analysis. As would be expected from random parametrization, the oscillations periods

differ from case to case.

Figure 4.6B shows a simulation where vji and Kji belong to parameter distributions

generated with the u and v used in Figure 4.3B. As in the cyclic case regular competitive

oscillations occur, with species dominance sequence 1 → 2 → 3 → 1. Since vjiand Kji

are variable, so are are the amplitudes and periods of the oscillations, although they all

cycle around the exact same equilibrium point. In contrast with the cyclic case a significant

number of cases end up in competitive exclusion, which results from the existence of two-

species equilibria and locally stable monocultures (in other words, the species phase space

for these scenarios look similar to Fig. 4.5A, but not like in Fig. 4.5B). A few oscillations are

attracting heteroclinic cycles, with their periods and amplitudes increasing with time until

maxima and minima become indistinguishable from extinction and monoculture equilibria.
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A
u=0,47 v=0,25

0 5000
0

N

2

B
u=0,58 v=0,75

0 5000
0

N

1.5

Figure 4.6: Simulations with Kji sampled from the uniform distribution [0,0.01] and vji

computed with formula (4.16). Low-left panels show the density vs time scales

and the common equilibrium density N; legend for species: 1(line), 2(dash),

3(points). (A) With vji and Kji generated with u and v from Figure 4.3A the

system displays stable coexistence after oscillations dampen out, or competitive

exclusion with the winner depending on the initial conditions. (B) With vji

and Kji generated with u and v from Figure 4.3B the system displays regular

competitive oscillations, heteroclinic oscillations and competitive exclusion. 85
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We performed more simulations for larger samples (100 runs each), at different points in

the 0 < u < 1, with different distributions of Kji. We found that

• Very high values of v11, v22, v33 (corresponding to high u) result in stable coexistence

and very low values (corresponding to high w) in competitive exclusion.

• The variance in the amplitude and periods of limit cycles decrease if the distribution

of Kji shifts from [0, 2K] to [K, 3K].

• The variance in the amplitude and periods of limit cycles increase if the distribution

of Kji get wider from [0, 2K] to [0, 4K]. Competitive exclusion and heteroclinic cycles

become more frequent.

• For low values of v12, v23, v31 (corresponding to low v) the oscillation sequence is

1 → 3 → 2 → 1 and for high values it is 1 → 2 → 3 → 1.

The tendency to display competitive exclusion, stable coexistence, and oscillations accord-

ing to specific consumption patterns, is robust with respect to the consumption parameters

vji and Kji. Even the orientation of the cycles are consistently preserved. On the other

hand, the final state of the community is very sensitive to parameters changes, they modify

the amplitude and period of oscillations, whether cycles are regular or heteroclinic, and the

geometry of the attraction basins of equilibria.

4.4 discussion

Besides a considerable number of parameters affecting resource consumption and growth,

the dynamics of competition shows a consistent dependency on the species consumption

characteristics. Strong consumption on resources for which requirements are high is ex-

pected to lead to coexistence and high diversity, and weak consumption upon them is

expected to result in competitive exclusion and low diversity instead. When consumption

is neither high or low on these highly needed resources, competitive oscillations are to be

expected, and the sequence of oscillations is dictated by how strong are the consumption

rates on resources for which requirements are intermediate.

But this consistency is not reliable for predicting the final state of the community. The in-

terdependency of resource requirements and resource consumption lead to changes in the

species consumption characteristics between the community and monoculture equilibria.

The rules of the competitive game can be quite different between the community equilib-

rium and situations where some species are residents and others are invaders. The potential

for displaying many equilibria and strong dependence on initial conditions, makes the ac-

curate prediction of competitive outcomes a difficult task, even when the number of species

is a low as in the present study.

Competitive oscillations could develop in different ways. In the simplest scheme the

species form a strict non-transitive hierarchy of competitive dominance as in the game of

Rock-Paper-Scissors, two-species equilibria are absent and the monocultures form a hete-

roclinic cycle. If this cycle and the three-species equilibrium are unstable, we see stable

limit cycles. If the heteroclinic cycle is stable and the three-species equilibrium unstable,
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oscillations increase in amplitude and period and converge to the heteroclinic cycle. If

the heteroclinic cycle is unstable and the three-species equilibrium stable, oscillation will

dampen out and the system attains a stable coexistence equilibrium.

More complex dynamics result from the fact that the three-species equilibrium displays

a sub-critical Hopf bifurcation. This originates an unstable limit cycle that may be encircled

by a bigger stable one, as in the multispecies Monod model (Baer et al., 2006). Thus, some

initial conditions result in damped oscillations around the equilibrium, and some other

develop into cycles of increasing amplitude which end as stable limit cycles, heteroclinic

oscillations or extinctions. The dependency of the dynamics on the initial conditions is not

restricted to cases competitive exclusion, they are quite widespread.

Finally, it is important to notice that not all oscillatory dynamics are caused by non-

transitivity in competition. Rock-Scissors-Paper dynamics can not develop when two-

species equilibria exists, but the geometry of the attraction basins of the monocultures

could induce the trajectories to spiral before a stable equilibrium, be it a monoculture or

the three-species community, is attained. This configuration do also exists in Lotka-Volterra

models ("case 32" in Zeeman, 1993). Although transitory, we must consider that compared

with Lotka-Volterra and Monod models, it may take a long time and several up and downs

before the system settles down, due to the delay associated with the quota dynamics; a time

scale in which invasions or evolution may occur (Fussmann et al., 2003).

appendix: parametrization for bifurcation analysis

Let ri = r,mi = m,Kji = K, Sj = S and define the non-dimensional variables

t ′ = Dt, R ′
j = Rj/S, Q ′

ji = Qji/q, N′
i = qNi/S

where q is a positive quantity with the same units as Qji (e.g. one of the original qji). The

scaled version of our model is

dN′
i

dt
= N′

i(µ
′
i − m ′)

dQ ′
ji

dt
= v ′

jig(R ′
j) − µ ′

iQ
′
ji

dR ′
j

dt
= (1 − R ′

j) −

n∑

i=1

v ′
jig(Rj)N

′
i

µ ′
i = r ′ min

j

(

1 −
q ′

ji

Q ′
ji

)

, g(R ′
j) =

R ′
j

K ′ + R ′
j

with parameters

r ′ = r/D,m ′ = m/D,q ′
ji = qji/q, v ′

ji = vji/Dq,K ′ = K/S

We will omit the primes to avoid confusion. As motivated in the main text, suppose

circulant symmetry for the resource requirements R∗
ji and the matrix of maximum uptake

rates vji
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{R∗
ji} =





A B C

C A B

B C A



 , {vji} =





u v w

w u v

v w u





with A = 0.20, B = 0.15, C = 0.10, and u, v,w given by (4.14). Combining (4.6) and (4.5) we

construct a qji matrix which is also circulant

{qji} =





qA qB qC

qC qA qB

qB qB qA



 =

(

r − m

rm

)





ug(A) vg(B) wg(C)

wg(C) ug(A) vg(B)

vg(B) wg(C) ug(A)





with r = 1.5, m = 1, K = 0.01.

Our setup results in a three-species equilibrium where R̂ = (A,A,A) = (0.20, 0.20, 0.20)

and common species densities

N̂i =
(1 − A)

g(A)
× (u2 + v2 + w2 − uv − uw − vw)

(u3 + v3 + w3 − 3uvw)

but with u, v,w varying according to (4.14) the second quotient in the right hand side is

simply 1/(1 + v), thus N̂i = (1 − A)/(g(A)(1 + v)) = 0.84/(1 + v). R̂j and N̂i are invari-

ant regarding our bifurcation parameter u. The following is the corresponding XPPAUT

(Ermentrout (2002)) file for this system

--- Begin circulant.ode ---

# Parameters

par u=0.47, v=0.25

name s=1, k=0.01, r=1.5

name A=0.2, B=0.15, C=0.1

# Quota thresholds

qa=(r-1)*u*A/(r*(k+A))

qb=(r-1)*v*B/(r*(k+B))

qc=(r-1)*(1-u)*C/(r*(k+C))

# Growth rate

mu(x,y,z) = max(r*(1 - max( max( qa/x, qc/y ), qb/z) ),0)

# ODE System

# Consumers

dn1/dt = n1*(mu(q11,q21,q31)-1)

dn2/dt = n2*(mu(q22,q32,q12)-1)

dn3/dt = n3*(mu(q33,q13,q23)-1)

# Resources

dr1/dt = s -r1 -u*r1/(k+r1)*n1 -v*r1/(k+r1)*n2 -(1-u)*r1/(k+r1)*n3

dr2/dt = s -r2 -(1-u)*r2/(k+r2)*n1 -u*r2/(k+r2)*n2 -v*r2/(k+r2)*n3

dr3/dt = s -r3 -v*r3/(k+r3)*n1 -(1-u)*r3/(k+r3)*n2 -u*r3/(k+r3)*n3

# Quotas

# Sp1
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dq11/dt = u*r1/(k+r1) - mu(q11,q21,q31)*q11

dq21/dt = (1-u)*r2/(k+r2) - mu(q11,q21,q31)*q21

dq31/dt = v*r3/(k+r3) - mu(q11,q21,q31)*q31

# Sp2

dq12/dt = v*r1/(k+r1) - mu(q22,q32,q12)*q12

dq22/dt = u*r2/(k+r2) - mu(q22,q32,q12)*q22

dq32/dt = (1-u)*r3/(k+r3) - mu(q22,q32,q12)*q32

# Sp3

dq13/dt = (1-u)*r1/(k+r1) - mu(q33,q13,q23)*q13

dq23/dt = v*r2/(k+r2) - mu(q33,q13,q23)*q23

dq33/dt = u*r3/(k+r3) - mu(q33,q13,q23)*q33

# Initial values

init r1=1, r2=1, r3=1

init q11=1, q12=1, q13=1

init q21=1, q22=1, q23=1

init q31=1, q32=1, q33=1

init n1=1, n2=0.5, n3=0.9

# Settings

@ dt=0.01 bound=10000 total=4000 yp1=n1 yp2=n2 yp3=n3 \

ylo=0 yhi=2 xhi=4000 nout=200 nplot=3

--- End circulant.ode ---

89



Appendix: Parametrization for bifurcation analysis

90



5
COMMONAL IT IE S AND DISCREPANCIES AMONG MULT I SPEC IES

COMPET IT ION MODELS

Tomás A. Revilla and Franz J. Weissing

A variety of assumptions lead to a variety of mathematical models describing

the dynamics of competition. Here we review the properties of three important

competition models, ranging from the highly phenomenological to the highly

mechanistic. We study these models for the simple case involving competition

between two species, and for the more complex situation that is multispecies

competition. Under a number of simplifying but reasonable assumptions, we

found that all these models share the same rules regarding the existence of

coexistence equilibria, local stability, and to some extend global dynamics. We

also show how the small jump from two species to three, and two resources

to three, involves an very big increase in the complexity of the dynamics in all

models.

Keywords: competition, resource competition, nutrient storage, coexistence, competi-

tive exclusion, oscillations, initial conditions
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5.1 introduction

Competition is perhaps the most studied interaction in the fields of ecology and evolution.

Under competition the fitness of an individual is depressed by the presence of other indi-

viduals of the same or different species. Intraspecific competition is an important driving

force of evolution; while interspecific competition is an important factor in the structuring

of ecological communities (Begon et al., 2006). The causes of competition are in general

very simple, organisms are forced to share limited resources like food, water, space and

sexual partners. Competition manifests itself, however, in a multitude of ways. Individuals

can directly fight with their enemies, preventing their access to resources (direct aggression,

allelopathy); in that case we talk about interference competition. In contrast, competition can

be much more indirect, not involving physical contact, when individuals make the life of

their competitors more difficult by reducing the availabilities of resources, i.e. by consum-

ing these resources. This second form is typically called exploitative competition or resource

competition.

The study of competition has been greatly influenced by mathematical models. Here we

review the properties of three important models (section 5.2). The first is the classical Lotka-

Volterra model (Lotka, 1925; Volterra, 1926), which describes the dynamics of competition

by means of interaction coefficients. This model is quite general and can be applied to both

interference and exploitative competition. However, it is a phenomenological model that

does not easily allow to derive the interaction coefficients from first principles. The second

model, we call it the Tilman model, is more mechanistic since it does explain how competi-

tion originates from first principles of consumer-resource theory (León and Tumpson, 1975;

Tilman, 1977, 1982). The third model, the Quota model, is even more mechanistic in that

it allows to take resource storage into consideration. Quota models have become impor-

tant in recent times, because they can predict the outcomes of competition in fluctuating

environments (Ducobu et al., 1998), and because they are an important tool in the study of

ecological stoichiometry (Sterner and Elser, 2002).

The purpose of this chapter is to show that besides their different formulation, all these

models share very similar equilibrium and dynamical properties. We start by reviewing the

interaction for the simple case of two species and two resources (section 5.3). Thereafter, our

attention turns to the rules that determine the existence of equilibria (section 5.4) and local

stability (section 5.5) in multispecies and multiresource systems. In the end, we discuss to

which extend such local rules can be used to predict the global dynamics of competition

(section 5.6).

5.2 three competition models

5.2.1 The Lotka-Volterra model

For a long time the theoretical study of competition was dominated by the Lotka-Volterra

approach (Lotka, 1925; Volterra, 1926). The Lotka-Volterra competition model describes com-

petition among n species with population densities Ni using a set of differential equations
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dNi

dt
= Ni

{

ri −

n∑

k=1

aikNk

}

(5.1)

In essence equation (5.1) says that the per capita growth rate 1
Ni

dNi

dt
of species i is linearly

decreasing with the density of each population. For very low population densities, species i

tends to grow exponentially with the intrinsic per capita rate ri. The parameters aik, which

quantify how strongly the per capita growth rate of species i is depressed by the presence

of species k, are called the competition coefficients. The Lotka-Volterra model is purely phe-

nomenological; it does not refer to any explicit mechanism underlying competition, and

there is no a priory reason to assume that the presence of other species should have a linear

effect on a species per capita growth rate. Indeed the competition coefficients aik cannot be

derived from first principles but only measured a posteriori, e.g. after having performed a

competition experiment. Accordingly, the Lotka-Volterra model is mainly interesting as a

conceptual tool and it has very limited predictive power in real-world scenarios.

5.2.2 The Tilman model

A more mechanistic class of competition models, based on the explicit consideration of re-

source dynamics has been more successful in this respect (León and Tumpson, 1975; Tilman,

1982; Grover, 1997). The most studied formulation of resource competition is of the form

dNi

dt
= Ni {µi(R1, . . . ,Rm) − mi} (5.2a)

dRj

dt
= φj(Rj) −

n∑

i=1

cjiµi(R1, . . . ,Rm)Ni (5.2b)

The dynamics of population densities (5.2a) makes it explicit that the species are com-

peting for m limiting resources with concentrations R1, . . . ,Rm. The model assumes that

the per capita growth rate of each species i is a function µi of the resource concentrations,

minus the loss rates mi. The change in resource availabilities is modeled explicitly by equa-

tion (5.2b), where the resource consumption rates are proportional to the rate of growth of

the populations and to the per capita content of resource j per species i, i.e. growth and con-

sumption are coupled. In the absence of the consumers the resources follow independent

dynamics described the net resource supply rates φj. Since model (5.2) figures prominently

in the works of Tilman (1977, 1980, 1982, 1988), we will call it the Tilman model.

5.2.3 The Quota model

The mechanistic formulation of the Tilman model is very basic, but not always realistic. For

many systems, like algal communities, the growth rates are a direct function of the amount

of stored nutrients or quotas (Droop, 1970, 1973; Morel, 1987; Thingstad, 1987; Grover, 1992),

instead of the external concentration of resources. The new set of variables, the quotas,

93



commonalities and discrepancies among multispecies competition models

must be modeled accordingly. A minimum competition model accounting for the species

densities, resource concentrations and quotas is the following

dNi

dt
= Ni {µi(Q1i, . . . ,Qmi) − mi} (5.3a)

dQji

dt
= fji(Rj) − µi(Q1i, . . . ,Qmi)Qji (5.3b)

dRj

dt
= φj(Rj) −

n∑

i=1

fji(Rj)Ni (5.3c)

In this model the per capita growth rate µi of species i is a non-decreasing function

of the stored nutrient contents or quotas Qji. The metabolization of nutrients for repro-

duction and maintenance (µiQji) happens in proportion to the per capita growth rate µi

of the population of species i. According to (5.3b) , quotas increase by resource depen-

dent consumption fji, which are generally described by means of a saturating function

(Aksnes and Egge, 1991). Like in the Tilman model, equation (5.3c) indicates that the dy-

namics of the resources in the absence of the consumers is governed by the net supply

rate φj. However, resource consumption is not proportional to the growth rates, but to the

consumption rates, i.e. growth and consumption are decoupled.

The quota Qji is the variable counterpart of the fixed resource contents cji in the Tilman

model. Indeed, both Qji and cji have the same dimensions: resource concentrations per

biomass density. Since the modelling approach behind system equations (5.3) rely on the

concept of quotas, we will call it the Quota model.

Resource competition models (5.2) and (5.3) require to specify the form in which the

resources affect growth. This gives rise to a number of resource categories (Tilman, 1982).

The most studied categories are those of substitutable resources and essential resources. In

case of substitutable resources the absence of one resource can be compensated by increas-

ing the amounts of other resources (e.g. beans can be substituted by peas and vice versa).

In case of essential resources such compensation is not possible (e.g. lack of phosphorous

cannot be solved by increasing nitrogen and vice versa). For these two kinds of resources,

two special cases have received special attention. Resources are called perfectly substitutable,

if their effects on population growth are additive

µi =
∑

j

µji (5.4)

where µji describes the dependence of the per capita growth rate of species i on the avail-

ability of resource j. Resources are called perfectly essential, if they follow Liebig’s Law of the

Minimum (Von Liebig, 1840): at any given time the growth rate µi of species i depends only

on the most limiting resource. Mathematically Liebig’s law is expressed as

µi = min
j

[µji] (5.5)

where µji describes the dependence of the per capita growth rate of species i on the avail-

ability of resource j, when all other resources are overabundant (non-limiting).
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In the Tilman model (5.2) the µji are typically assumed to be monotonically increasing

functions of the resource concentrations µji(Rj), frequently modeled according to Monod’s

equation or Holling’s Type II functional response curve (Fig. 5.1a)

µji(Rj) =
riRj

Hji + Rj
(5.6)

where ri is the maximum per capita growth rate of species i, which is attained for saturating

concentrations of resource j, and Hji is the half-saturation constant for growth.

In the Quota model the µji are monotonically increasing functions of the quotas µji(Qji),

frequently modeled according to Droop’s (1973) formula (Fig. 5.1b)

µji = si

(

1 −
qji

Qji

)

(5.7)

where si is the called the apparent maximum per capita growth rate (Grover, 1997), attain-

able for saturating quotas of all resources and qji is a threshold quota level, below which

µji = 0. One must not confuse the asymptotic level ri of the Monod equation (5.6) with the

asymptotic level si of the Droop equation (5.7). In case of the Tilman model equation, the

maximum growth rate can be achieved under saturating resource concentrations. In case

of the Quota model, resource consumption rates fji(Rj) saturate (c.f. 5.8), preventing the

saturating quota levels (Grover, 1997).

The consumption rates fji(Rj), tend to be modeled under as saturating functions

fji(Rj) =
vjiRj

Kji + Rj

(5.8)

where vji is the maximum consumption rate, attainable under resource saturation, and

Kji is the half-saturation constant for consumption. As shown in Aksnes and Egge (1991),

equation (5.8) can be given a mechanistic interpretation.

Resources can be also classified according to their intrinsic dynamics as biotic (e.g. preys)

or abiotic (e.g. detritus, minerals, water). Biotic resources are “self-regenerating” and their

dynamics are frequently modeled using a logistic equation. Abiotic resources are typically

“supplied” by some external means (fertilizer, decomposition, etc), and they are frequently

modeled by a linear function

φj = D(Sj − Rj) (5.9)

where D is the resource turnover rate and Sj is the resource supply concentration. This form

of supply dynamics can be realized in a chemostat or approximated through serial dilution.

5.3 graphical analysis

Most of the results described in this section are already well known, in particular for the

Lotka-Volterra and the Tilman model. Nevertheless, a review is useful in order to set

the stage for the more general treatment of multi-species (and multi-resource) scenarios.

Competition models involving only two species can be easily studied by means of graphical

methods. In phenomenological models like the Lotka-Volterra model the analysis uses the
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(a) (b)

µ(R)

R Q

µ(Q)

q

mm

R* Q*

Figure 5.1: (a) In the Tilman model the per capita growth rate µ is typically a saturating

function of the resource concentration R. There is a concentration R = R∗ for

which the per capita growth and mortality rates are exactly balanced µ(R∗) = m.

(b) In the Quota model the per capita growth rate µ is a saturating function of

the nutrient quota Q, and is often assumed to be zero for quota levels below

a threshold value q. There is a quota level Q = Q∗ for which the per capita

growth and mortality rates are exactly balanced µ(Q∗) = m.

geometry of the species nullclines in “species space”, whereas in the Tilman and Quota

models this done in the “resource space”. In all these models, the system always converges

to an equilibrium, and sustained oscillations are not possible.

5.3.1 Lotka-Volterra model

The Lotka-Volterra model (5.1) for two competing species i, k = 1, 2 is as follows

dN1

dt
= N1{r1 − a11N1 − a12N2}

dN2

dt
= N2{r2 − a21N1 − a22N2}

The outcome of competition depends on the geometry of the nullclines of the two species

(Case, 2000), i.e. the set of species densities for which dNi/dt is equal to zero. These

nullclines take the form of curves in the N1N2-plane, also called the species space. The

nullclines of species 1 are the two straight lines N1 = 0 and r1 = a11N1 + a12N2. N1

increases in the region that is to the right of the first nullcline and to the left of the second

(Fig. 5.2, solid lines), and decreases outside of this region. The nullclines of species 2 are

N2 = 0 and r2 = a21N1 + a22N2. N2 increases in the region that is above the first nullcline

and below the second (Fig. 5.2, dashed lines), and decreases outside of this region.

The system is at equilibrium, i.e. dN1/dt = dN2/dt = 0, at the points where the null-

clines of the two species intersect (Fig. 5.2). There are three types of equilibrium:

1. The trivial equilibrium, i.e. the origin of the N1N2-plane where both species have zero

density (Fig. 5.2). In this point the per capita rates of change for both species are
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N1

r1/a12

N2
K1=r1/a11

K2=r2/a22
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K2=r2/a22

K2=r2/a22
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K1=r1/a11
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(a) (b)

(c) (d)

Figure 5.2: The outcome of the Lotka-Volterra model depends on the geometry of the null-

clines of species 1 (solid lines) and 2 (dashed lines). Species 1 increases (arrows

point right) in the region left to its “zero” nullcline (vertical axis) and right to

its “non-zero” nullcline (solid line), and decreases otherwise (arrows point left).

Species 2 increases (arrows point up) above its “zero” nullcline (horizontal axis)

and below its “non-zero” nullcline (dashed line), and decreases otherwise (ar-

rows point down). The intersection points of the nullclines (circles) correspond

to equilibrium states, that can be stable (filled circle) or unstable (open circle).

(a) The nullcline of species 1 is above that of species 2. Species 1 monoculture is

stable and species 2 monoculture is unstable. Species 1 wins. (b) The nullcline of

species 2 is above that of species 1. Species 2 monoculture is stable and species

1 monoculture is unstable. Species 2 wins. (c) The nullclines intersect at a equi-

librium point (N̂1, N̂2) that is above the thin dotted line connecting the two

monoculture equilibria. This makes both monoculture unstable and (N̂1, N̂2)

globally stable. (d) The nullclines intersect below the line connecting the two

monoculture equilibria. The community equilibrium (N̂1, N̂2) is unstable, and

both monocultures are stable. Depending on the initial conditions either species

1 or 2 wins.
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positive (since 1
Ni

dNi

dt
= ri > 0 if N1 = N2 = 0). Hence this equilibrium is always

unstable.

2. Themonoculture equilibria. In the absence of species 2, species 1 exhibits logistic growth

and converges to the carrying capacity K1 = r1/a11. The monoculture equilibrium

(N1,N2) = (K1, 0) is internally stable, i.e. stable as far as only perturbations of N1

are involved. The monoculture equilibrium is also externally stable, i.e. stable against

invasion by species 2, if the per capita growth rate of species 2 is negative at (K1, 0),

i.e. if r2 − a21K1 < 0 or, equivalently if r2/a21 < r1/a11. Likewise, the monoculture

of species 2 (N1,N2) = (0,K2) with K2 = r2/a22 is (internally and externally) stable

if r1/a12 < r2/a22.

3. The community equilibrium (also called coexistence or internal equilibrium). This cor-

responds to the intersection point of the nonzero nullclines.

In Figure 5.2, a community equilibrium exists in scenarios (c) and (d). In (c), both monocul-

tures are externally unstable. In such a case of mutual invasion, the community equilibrium

is stable. In (d), both monocultures are stable against invasion. In that case, the community

equilibrium is unstable, and depending on the initial conditions species 1 or species 2 wins

the competition.

Species 2 can invade the monoculture of species 1 if r2/a21 > K1 = r1/a11, while species

1 can invade the monoculture of species 2 if r1/a12 > K2 = r2/a22. Multiplicating these

criteria for mutual invasion yields the following criterion for coexistence

a11a22 > a12a21 (5.10)

Condition (5.10) is often interpreted as: coexistence requires the geometric mean
√

a11a22

of the intra-specific competition coefficients to be less than the geometric mean
√

a12a21 of

the inter-specific competition coefficients, or colloquially that intra-specific competition is more

intense than inter-specific competition. Notice that the stability criterion (5.10) is a necessary

but not a sufficient condition for the convergence of the system to a community equilibrium.

In fact, (5.10) can be satisfied in situations where a community equilibrium does not exist

like in cases (a) and (b) in Figure 5.2.

5.3.2 Tilman model

The competition of two species in model (5.2) has been extensively reviewed by Tilman

(1982) and others (Hsu et al., 1977; Smith, 1995; Grover, 1997). The first conclusion that

can be drawn is that two species cannot stably coexist on a single resource. This follows

from a simple argument. Suppose that two species are limited by the single resource Ri.

Each species i has a minimal resource requirement R∗
1i at which its growth rate is balanced

by its loss rate µi(R
∗
ji) = mi (Fig. 5.1a). Each species will decline whenever the resource

availability R1 is below the threshold value R∗
1i. Suppose now that species 1 happens

to have the minimum requirement for resource 1: R∗
11 < R∗

12. In that case, it will win the

competition, since the resource level R1 will fall below the threshold level of species 2 before

species 1 stops growing. This is the R∗-rule of competition for a single resource (Grover,
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R1

R2

(a)

R1

R2

(b)

µi>mi

µi<mi

R*
1i

R*
2i

µi>mi

µi<mi

Figure 5.3: For two resources the nullcline of a species correspond to those resource com-

binations where net growth is zero. For resource concentrations above the null-

cline a species increases, and for concentrations below it decreases. (a) In case

of perfectly substitutable resources, the nullcline is a straight line with negative

slope. (b) For perfectly essential resources the nullcline is an L-shaped line, the

“corner” of which is given by the resource requirements R∗
ji. These nullcline

geometries are idealizations, because in general, nullclines have more curved

shapes (like in Fig. 5.4).

1997). Put differently: two species can only coexist if they are limited by at least two

different resources. Notice that these are equilibrium arguments, if resource consumption

dynamics involves predator-prey cycles, two species can actually coexist on one resource

(Armstrong and McGehee, 1976), but not at equilibrium.

Let us therefore focus on the more interesting case where two species compete for two

resources. In principle, it is possible to study this model again in species space, like the

Lotka-Volterra model. However, it is much easier to perform the analysis in the R1R2-plane

or resource space. The reason for this is that for two resources the per capita growth rates

µi(R1,R2) are functions of the resource concentrations. According to (5.2a) the per capita

growth rate of species i is a zero if µi(R1,R2) = mi. The resource concentrations for which

this is a case form a line in resource space (see Fig. 5.3). This is the nullcline of species i, and

it is the two-dimensional extrapolation of the concept of resource requirement R∗. In the

zone between the nullcline and the resource axes, resource concentrations are insufficient

and species i will decline, whereas it will increase whenever resource concentrations are

above the nullcline. Depending on the type of resources, the nullclines can adopt many

distinct shapes (Tilman, 1982).

In the case of perfectly substitutable resources (5.4), the nullcline is a linear decreasing

function in the resource plane (Fig. 5.3a). Such scenario can be realized if the µji are linearly

dependent on the Rj. For perfectly essential resources the growth rates follows Liebig’s law

(5.5) as in µi = min[µ1i(R1),µ2i(R2)], thus µi = mi occurs if R1 = R∗
1i, R2 = R∗

2i or both,

i.e. along the L-shaped line (Fig. 5.3b) with a corner defined by the resource requirements

R∗
ji the concentration of j at which µi = mi when all other resources are overabundant.

These two examples are idealizations, in general the nullclines for substitutable and essen-
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tial resources adopt shapes like in Figure 5.4, the main difference is that for substitutable

resources the nullclines touch the axes, and for essential they don’t.

The outcomes of competition depend on the geometry of the nullclines of the two

species, their consumption patterns given by the cji and the resource supply concentra-

tions (León and Tumpson, 1975; Tilman, 1982; Grover, 1997). First of all, if the nullclines do

not intersect, the species whose nullcline lies closer to the origin is the best competitor for

both resources, and it always wins the competition (e.g. species 1 in Figure 5.4a, or species

2 in Figure 5.4b), provided that the resource supply point is above its nullcline. This fact

tells us that coexistence require trade-offs in resource requirements, that there cannot be

superior competitors. In order to achieve coexistence, a number of conditions must be met:

1. The nullclines must intersect. At the community equilibrium both species show zero

growth. Accordingly, the resource concentrations at equilibrium (R̂1, R̂2) have to be-

long to both nullclines and, hence, be at the intersection point of the nullclines. The

configuration of the intersection also tells us that each species is limited by a differ-

ent resource. For example, in Figures 5.4c and d, if R2 is fixed a little bit above the

intersection, R1 will decrease until the nullcline of species 1 is reached and species

1 stops growing, but still allowing species 2 to grow (since its nullcline is to the left

with respect to the nullcline of species 1). Thus, species 1 is limited by resource 1.

Following a similar argument, we conclude that species 2 is limited by resource 2 at

the intersection point. If we had changed the linetypes in the figure, we had con-

cluded that species 1 is limited by resource 2 and species 2 is limited by resource 1.

In essence, the more steep the nullcline, the more limited is a species by the resource

on the x-axis; conversely, the less steep the nullcline, the more limited is a species by

the resource in the y-axis.

• For perfectly essential resources, the nullclines are L-shaped (Fig. 5.3b), and they

can intersect only once. Assuming that species 1 has the highest requirement for

resource 1, R∗
11 > R∗

12, and species has the highest requirement for resource 2,

R∗
22 > R∗

21, the intersection is the point (R̂1, R̂2) = (R∗
11,R

∗
22), at which species 1

is limited by resource 1 and species 2 is limited by resource 2. In other words, in

a community equilibrium, each species will be limited by the resource for which

it has the highest requirement.

• In the more general case, if the nullclines are curved, they may intersect more

than once. In such a case, the identity of the limiting resource for each species

depends on the local geometry of each intersection, in the same way as described

before (e.g. put a magnifying glass around an intersection, and see if it looks like

in Figs. 5.4c and d, or with the linetypes interchanged).

2. The intersection of the nullclines must be achievable. This requires that dRj/dt = 0 for

(R̂1, R̂2) and the corresponding equilibrium densities (N̂1, N̂2). If resources are sup-

plied linearly as in (5.9) we have

D(Sj − R̂j) − cj1µ1(R̂1, R̂2)N̂1 − cj2µ2(R̂1, R̂2)N̂2 = 0
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Figure 5.4: The outcomes of competition between two species for two resources in the

Tilman model. The nullclines of the two species are plotted in resource space,

solid for species 1, dashed for 2. (a) The nullcline of species 1 lies below that of

species 2. In this case , species 1 outcompetes species 2 (provided that species 1

is able to persist on its own). (b) In the reverse nullcline configuration species 2

outcompetes species 1. (c) The nullclines intersect in a way that makes species 1

limited by resource 1, and species 2 limited by resource 2 (this is explained in the

text). At the intersection, the consumption vector of species 2, c2 = (c12, c22), is

steeper than the consumption vector of species 1, c1 = (c11, c21). Thus, species

1 is the highest consumer of resource 1 and species is the highest consumer of

resource 2. If resource supply if given by the chemostat equation (5.9), a two-

species equilibrium exists if the resource supply point S = (S1, S2) belongs to

the hatched “wedge” formed by the projection of the consumption vectors at

the intersection point. For this configuration of consumption vectors, the equi-

librium is stable (filled dot). If S does not belong to the wedge, then, depending

on the resource ratios, species 1 or 2 wins. (d) When c1 is steeper than c2 at the

intersection point, the two-species equilibrium (if it exists) is unstable (open dot)

and there will be a winner that depends on the initial conditions. This is the

same to say that each species prevents the invasion of the other, they mutually

exclude.
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Geometrically, this means that the supply point (S1, S2) lies in the region bounded

by two lines, the slope of which are given by the species consumption vectors c1 =

(c11, c21), c2 = (c12, c22) at the intersection of the nullclines, as in Figures 5.4c,d. If

the supply point happens to be outside of this region, a community equilibrium does

not exist and the supply ratios determine which species will eventually outcompete

the other.

3. The equilibrium must be stable. This requires that at equilibrium each species is the highest

consumer of its limiting resource. This is represented in Figure 5.4c, where at the inter-

section, species 1 consumes a higher proportion of resource 1 compared with species

2 and vice versa, since the slope of the consumption vector of species 2 (c22/c12) is

higher than the slope of the consumption vectors of species 1 (c21/c11) or

c11c22 > c12c21 (5.11)

The same nullcline configuration, but with species 1 having the highest consumption

ratio for resource 2 and species 2 the highest for resource 1 as in Figure 5.4d, results

in an unstable equilibrium, and either species 1 or species 2 wins the competition

depending on the initial conditions.

As we did in for the Lotka-Volterra model, we stress this time that inequality (5.11) is a nec-

essary but not sufficient condition for stability. It may happen that inequality (5.11) holds

at the nullcline intersection, but simultaneously, the resource supply point falls outside the

region bounded by the projection of the consumption vectors in Figures 5.4c, d. In such

a situation a community equilibrium does not exist, and one of the species always wins

the competition, depending on the resource supply ratios but independently of the initial

conditions. For example in Figures 5.4c, d, if S2/S1 is very high species 2 wins, and if S2/S1

very low species 1 wins.

For perfectly essential resources the graphical analysis is more simple, since the nullclines

are L-shaped (Fig. 5.3b). In this case we say that species 1 is limited by resource 1 if

R∗
11 > R∗

12 and that species 2 is limited by resource 2 if R∗
22 > R∗

21. For perfectly essential

resources coexistence is stable if each species is the highest consumer of the resource for which it

has the highest requirement.

5.3.3 Quota model

In the Quota model the instantaneous growth rates depend on the quotas (5.3a). However,

it is possible to demonstrate that in case of two species competing for one resource, the

R∗-rule of the Tilman model also applies for the quota models: the species with the lower

R∗ wins the competition (Smith and Waltman, 1994; Grover, 1997). In the quota model

the R∗
ji values are computed under the assumption that the system is in equilibrium and

fji(R
∗
ji) = miQ

∗
ji, where Q∗

ji is the quota level of resource j at which the per capita growth

rate of species i is balanced by its loss rate µi(Q
∗
ji) = mi (see Fig. 5.1b). In consequence,

coexistence between two species requires more than one resource.
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R1

R2

(a) (b)

Q1i

Q2i

µi>mi

µi<mi

µi>mi (long term)

µi<mi (long term)

Figure 5.5: (a) In the storage based model the nullcline of species i divides the quota space

of species i in zones of net positive and net negative growth. (b) The nullcline

in quota space can be mapped into a “quasi-nullcline” in resource space. If

resources are kept above the quasi-nullcline, species i will eventually grow, even

if their quotas were initially below its nullcline in the quota space. If resources

are kept below the quasi-nullcline, species i will eventually decline, even if their

quotas were initially above its nullcline in the quota space.

In case of two species competing for two resources, the dynamic equations (5.3a) indicate

that the line µi(Q1i,Q2i) = mi in the Q1iQ2i-plane is the nullcline of species i, in quota

space as seen in Figure 5.5a. Note that the quota space is species-specific, since it describes

the internal nutrient state of and individual of species i, but not the state of the external

resources R1 and R2, for which both species compete. We can therefore not employ the

nullclines of the two species in the same quota space and, accordingly, not consider the

intersection of nullclines in quota space. There is, however, a solution for this problem.

According to the quota dynamics (5.3b), at equilibrium fji(Rj) = miQji. Graphically, this

implies that the points along the nullcline in the quota space Q1iQ2i can be mapped one-

to-one into a line in resource space (i.e. the R1R2-plane) as seen in Figure 5.5b, which we

call the “quasi-nullcline”. This is explained with more detail in Chapter 3, and essentially

boils down to this: whenever all external resources are overabundant dQji/dt = fji(Rj) −

µiQji > 0 the quotas will increase above the nullcline in quota space, making species i

grow. Whenever all external resources are critically low, dQji/dt = fji(Rj) − µiQji < 0

the quotas will drop below the nullcline in quota space, making species i decline. Thus,

although the instantaneous growth is independent of the external resources, there is a

boundary in resource space that separates the regions of long term growth or decline: the

quasi-nullcline.

For the purpose of comparing the resource requirements of the two species, the quasi-

nullclines are as good as real nullclines. Thus, the outcomes of competition can be studied

graphically in resource space, using the same methodology as in the Tilman model (Fig.

5.4). This is very convenient, since the analytical study of the Quota model for two species

and two resources can be very complicated (Li and Smith, 2007, Chapter 2), given the fact

that there are eight differential equations (two for the species, two for the resources, and
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four for the quotas). In contrast with the Tilman model, where the consumption vectors

ci = (c1i, c2i) are defined in terms of fixed resource contents, in the Quota model this role is

taken over by the consumption rates, and we define consumption as fi = (f1i(R1), f2i(R2)).

At the community equilibrium, when dQji/dt = 0, these two formulations are compatible,

because both fixed resource contents and quotas happen to represent equivalent concepts,

just that the first is a parameter and the second is a variable. If this equivalency is expressed

mathematically

[

f1i(R̂1)

f2i(R̂2)

]

︸ ︷︷ ︸
fi

= mi

[

Q̂1i

Q̂2i

]

.
= mi

[

c1i

c2i

]

︸ ︷︷ ︸
ci

turns out that both fi and ci differ by a constant mi but they have the same direction

and orientation. Of course, out of the resource equilibrium point, both vectors do not

coincide at all, since fi(R1,R2) is resource dependent, whereas ci is constant. Besides that,

the outcomes of the graphical analysis will be the same as the Tilman model (Turpin, 1988;

Hall et al., 2008, Chapter 3).

For example, if the quasi-nullclines of species 1 and 2 have the same arrangement as

in Figure 5.4a, species 1 always wins, and if they look as in Figure 5.4b, species 2 always

wins. Like in the Tilman model, a two-species equilibrium requires the intersection of the

quasi-nullclines, and that the resource supply point (S1, S2) belongs to the region defined

by the projection of the resource consumption vectors at the intersection (R̂1, R̂2). If the

quasi-nullclines are as depicted in Figure 5.4c, where species 1 is limited by resource 1 and

species 2 is limited by 2, coexistence will be possible when a two-species equilibrium exists

and if

f11(R̂1)f22(R̂2) > f12(R̂1)f21(R̂2) (5.12)

This inequality has the same interpretation as inequality (5.11): each species is the fastest

consumer of its limiting resource. If the direction of inequality (5.12) is reversed, coexistence

is unstable, and depending on the initial conditions, either species 1 or species 2 wins the

competition (this would correspond to a configuration of quasi-nullclines and consumption

vectors like in Fig. 5.4d).

In the special case of perfectly essential resources, Liebig’s law (5.5) applies and the

growth rate of species i is given by µi = min[µ1i(Q1i),µ2i(Q2i)]. In this situation the

nullcline of species i in quota space is a L-shaped line defined by two quota requirements,

i.e. the quotas Q1i = Q∗
1i and Q2i = Q∗

2i for which µi = mi. Given equation (5.3b) at

equilibrium, fji(R
∗
ji) = miQ

∗
ji, each quota requirement is associated to a unique external re-

source requirement R∗
ji. Consequently, for perfectly essential resources, the quasi-nullcline

of species i in resource space is also an L-shaped curve like in Figure 5.3b.

5.3.4 Comparison of the models

In case of only two species, we find strong commonalities among the three models. In

all of them, the system always ends up in an equilibrium state. In the particular case

104



5.3 graphical analysis

of the Lotka-Volterra model, stronger proofs confirm that oscillations and other kinds of

non-equilibrium dynamics are impossible (Smale, 1976; Hofbauer and Sigmund, 1988).

The equilibrium state can be the monoculture of one of the species, of a state of stable

coexistence. In case of the Lotka-Volterra model, the geometry of the nullclines do not allow

more than one coexistence equilibrium. The same is true in the Tilman and Quota models,

as long as the number of resources is one or two, and the nullclines have simple shapes like

in Figure 5.3. For this simple situations there are only four outcomes: (1) species 1 always

wins, (2) species 2 always wins, (3) both species coexist at stable densities, and (4 either

species 1 or species 2 wins the competition, the winner depending on the initial conditions.

In other words, with or without coexistence, competition always leads to an equilibrium

state. Another commonality is that mutual invasion always lead to stable coexistence.

In all models a requirement for coexistence is that intra-specific competition must

stronger than inter-specific competition. In other words, the less the interacting species

compete, the higher their chances to avoid exclusion. In the particular case of the Lotka-

Volterra model this statement takes the form of inequality (5.10), where the product of

the intra-specific competition coefficients is higher than the product of the inter-specific

coefficients. However, competition coefficients can not tell us why competition, intra- or

inter-specific, is strong or weak, since the mechanism for is absent in the model.

That is not the case for resource competition. By identifying which resource is limiting

each species, we conclude that in order to survive competition, a species must try to mo-

nopolize (be the fastest consumer) its most limiting resource. When each species do that,

the negative effects of resource depletion are minimized, inter-specific competition is weak

and both species may coexist (given the appropriate resource supply concentrations). In

contrast, when each species is least efficient in consuming its limiting resource, the effects

of resource depletion are maximized, inter-specific competition is strong, and the species

cannot possible coexist. This is reflected by inequalities (5.11) and (5.12). Coexistence re-

quires specialization on different resources, meaning that two species cannot coexist on

fewer than two resources, which is the “Competitive Exclusion Principle” (Gause, 1934).

The similarity between inequality (5.10) and inequalities (5.11) and (5.12) also suggests

an association between the competition coefficients of the Lotka-Volterra model and the

consumption rates of the resource based model, and this is often used to provide a resource-

based mechanistic interpretation of competition coefficients (MacArthur, 1969, 1970). The

form of the association, however, can differ greatly depending on the type of resource. To

illustrate this, consider a simplified version of the Tilman model for two different scenar-

ios: perfectly substitutable and perfectly essential resources. We make two simplifying

assumptions:

1. The dependence of the per capita growth rate on the resources is linear, i.e. µji = bjiRj

where bji is some conversion factor proportional to metabolic efficiency.

2. Competition takes place in a chemostat, where the resource renewal follows (5.9) and

mi = D.

In the case of perfectly substitutable resources the per capita net rate of change of species i

will becomes
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1

Ni

dNi

dt
= µi − D = b1iR1 + b2iR2 − D (5.13)

and the nullcline of i in the resource space will look as in Figure 5.3a. After long enough

time, but before reaching the equilibrium, a mass conservation or mass balance constraint

is achieved and the resource differential equations can be replaced by the algebraic relation-

ships (Grover, 1997):

Rj = Sj − cj1N1 − cj2N2 (5.14)

If we substitute (5.14) in (5.13), we can rearrange the result in a form that is equivalent to

the Lotka-Volterra model (5.1):

1

Ni

dNi

dt
= b1i(S1 − c1iNi − c1kNk) + b2i(S2 − c2iNi − c2kNk) − D

= b1iS1 + b2iS2 − D
︸ ︷︷ ︸

ri

− (b1ic1i + b2ic2i)
︸ ︷︷ ︸

aii

Ni − (b1ic1k + b2ic2k)
︸ ︷︷ ︸

aik

Nk (5.15)

Accordingly, the nullclines of two species competing for two resources are linear in the

space of species densities N1N2 as in Figure 5.2. Notice that the intrinsic growth rate ri

is defined with reference to the maximum abundance of the resources, which happens to

occur when population densities are very low. As expected, the coefficients for intraspecific

competition depend only on the consumption pattern of the focal species (i.e. depend on

the bji and cji for species i), whereas the interspecific coefficients depend on the consump-

tion patterns of the focal species i and its competitor k (i.e. depend on the bji, cji of species

i, and the cjk of species k).

Now, according to the Lotka-Volterra model, the coexistence of species i and k requires

that inequality (5.10) holds, i.e. aiiakk > aikaki. By substituting the definitions of the

competition coefficients in (5.15) and rearranging we obtain the following expression

(

b1i

b2i
−

b1k

b2k

)

c1ic2k >

(

b1i

b2i
−

b1k

b2k

)

c1kc2i

In this inequality, the term in parentheses is the difference between the slopes of the

nullclines in resource space. According to our examination of the geometry of nullcline

intersections, if species i is limited by resource 1 and species k is limited by resource 2, then

the slope of the nullcline of species 1 b1i/b2i, is higher than the slope of the nullcline of

species 2 b1k/b2k. Thus, the last inequality can be written as c1ic2k > c1kc2i. On the con-

trary, if species i is limited by resource 2 and species k by resource 1, then the last inequality

will become c1ic2k < c1kc2i. In both cases, the bigger side of the inequality corresponds to

the product of the consumption rates of the resources for which the species are limited at

equilibrium. In other words, both alternatives are equivalent to the coexistence requirement

(5.11) of the Tilman model.

In the case of perfectly essential resources, we notice some important geometrical differ-

ences. According to Liebig’s law, the per capita growth rate of species i will be expressed

as
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1

Ni

dNi

dt
= µi − D = min[b1iR1,b2iR2] − D (5.16)

and the nullcline of i will look as in Figure 5.3b. By substituting (5.14) in (5.16) and rear-

ranging:

1

Ni

dNi

dt
= min[b1i(S1 − c1iNi − c1kNk),b2i(S2 − c2iNi − c2kNk)] − D (5.17)

= min[(b1iS1 − D
︸ ︷︷ ︸

ri1

− b1ic1i︸ ︷︷ ︸
aii1

Ni − b1ic1k︸ ︷︷ ︸
aik1

Nk)

︸ ︷︷ ︸
resource 1 is limiting

, (b2iS2 − D
︸ ︷︷ ︸

ri2

− b2ic2i︸ ︷︷ ︸
aii2

Ni − b2ic2k︸ ︷︷ ︸
aik2

Nk)

︸ ︷︷ ︸
resource 2 islimiting

]

Essentially, this result means that the dynamics of species i can be governed by two

Lotka-Volterra equations, one that is valid when species i is limited by resource 1 and the

other when species i is limited by resource 2. Like in the case of substitutable resources, the

intra-specific coefficients depend only on the consumption properties of the focal species,

and the inter-specific coefficients depend on the properties of both species. In consequence,

the nullclines in the species space N1N2 are not linear, but polygonal lines as in Figure 5.6.

Each segment of a nullcline corresponds to a different limiting resource (Zhang, 1991). For

example, if species 1 is limited by resource 1, its nullcline will be r1 = b11c11N1 +b11c12N2,

but if its it limited by resource 2, its nullcline will be r1 = b21c21N1 + b21c22N2. Of course,

it is also possible that one of S1 or S2 is much bigger than the other, in which case due to

Liebig’s law of minimum, the nullcline of species i will display only one segment.

As long as we only consider only two essential resources, this qualitative difference in

the geometry of nullclines between perfectly substitutable and perfectly essential resources

does not affect any of the general conclusions regarding coexistence. One may think that,

since the nullclines for perfectly essential resources can have two segments, they may inter-

sect more than once. This however, is impossible, since that would imply that the nullclines

in resource space intersect in more than one point, which can not true (see Fig. 5.4). How-

ever, for three and more resources the situation becomes more complex. In contrast with

the two resources case, with three or more resources the nullclines in species space can

cross more than once (Zhang, 1991), because the corresponding nullclines in resource space

can cross at more than one point (e.g. with three resources, nullclines are surfaces, and two

of them would intersect along lines, that is, a continuous set of points). In other words,

with more than two resources, two species can display more than one coexistence equilib-

rium. Some of these equilibria are locally stable, and others are unstable. In consequence

the realization of coexistence or competitive exclusion will depend on the initial conditions.

Another situation in which multiple equilibria can also occur, involves just two resources.

This can happen if the nullclines (or quasi-nullclines) in resource space are curved.

5.4 existence of community equilibria

Competition between two species is simple enough to be approached by graphically. How-

ever, under resource competition, even the two species case starts to become complex when

considering three resources. Needless to say, adding more species also makes difficult to vi-

sualize the outcomes of competition using nullclines. In order to characterize and compare
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Figure 5.6: Nullclines of two species competing for two perfectly essential resources, per-

formed in the species space (solid for species 1, dashed for species 2). If the

resource supply concentrations are such that each species can be limited by two

resources, Liebig’s law dictates that the nonzero nullclines consist of linear seg-

ments (otherwise the nullclines will look straight as in Fig. 5.2). For a given

species i, the segment that intersects its own axis (e.g. N1 for species 1) corre-

sponds to a situation where species i is limited by the resource for which it has

the highest requirement. For the same species i, the segment that intersects the

axis of its competitor (e.g. N2 for species 1) corresponds to a situation where

species i is limited by the resource for which it has the lowest requirement. The

outcomes are the same as in the Lotka-Volterra model (Fig. 5.2): (a) species 1

wins, (b) species 2 wins, (c) coexistence, (d) mutual exclusion.
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the dynamics of the Lotka-Volterra and resource competition models in higher dimensions,

we must rely on more “analytical” methods and less on graphical ones. We will start in this

section, by studying the equilibrium states. In section 5.5, we approach the problem of the

local stability of equilibria by evaluating internal stability (stability of a community of resi-

dent species) and external stability (stability of a community against invasion). Finally, in

section 5.6 we will give some insights about the global dynamics of the competitive system,

particularly with respect to non-equilibrium dynamics, and multiple stable states.

5.4.1 Lotka-Volterra model

Consider community equilibrium in the Lotka-Volterra model, i.e. an equilibrium where

Ni > 0 for all species. From (5.1) with dNi/dt = 0, such an equilibrium is characterized by

a set of linear equations:

n∑

k=1

aikNk = ri (5.18)

Each equation represents a nullcline in a multidimensional species space. Figure 5.7a il-

lustrates the nullcline of species 1 for the special case of three species, which corresponds to

a plane in 3-dimensional resource space. N1 grows in the region “below” the nullcline and

decreases “above” the nullcline. For n species in general, a nullcline is a n − 1 dimensional

set (point, line, plane, volume, hypervolume, etc . . . ). Equilibria correspond to intersections

of nullclines as in Figure 5.7b. Notice that the three species equilibrium occurs in the “inte-

rior” of the species space, we call this point the internal equilibrium or community equilibrium.

Equilibria between two species occur on the “borders” (coordinate planes) of species space,

we call such intersections, border equilibria. Monocultures can also be considered border

equilibria.

But for three and more species it is more convenient to use the language of vectors and

matrices to state the conditions for the existence of equilibria. Thus, let start by defining a

column vector of n species densities N = (N1, . . . ,Nn)T and the n× n interaction matrix

A = {aik}. This allows us to write equation (5.18) in matrix form as AN = r, where

r = (r1, . . . , rn)T is the column vector of intrinsic growth rates. Technically speaking, the

equation AN = r has the solution N̂ = A−1r, where A−1 is the inverse of A (Case, 2000).

To be a meaningful solution, the vector N̂ thus obtained needs to have positive elements.

It can be shown (Chapter 3, Appendix A) that all the elements of N̂ are positive, and thus

a community equilibrium exists, if and only if the vector r lies in the cone spanned by the

columns of A (Fig. 5.8). If on the contrary, r does not belong to the cone, the intersection

of nullclines does not exist (because some nullclines are parallel), or it does exist but some

components of N̂ are negative.

The n-species community equilibrium is not the only coexistence of the system. There

can be other equilibria involving n − 1,n − 2, . . . down to species pairs, and monoculture

equilibria. For all these border equilibria equation (5.18) and the “cone rule” apply, but

the vectors and the community matrix involved include only the components (rows and

columns) that correspond to the species under consideration.
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Figure 5.7: Equilibrium analysis for the three species Lotka-Volterra model. (a) The null-

cline of species 1: N1 increases in the region below the plane and decreases

above it. The round dot is the carrying capacity K1 = r1/a11, or monoculture

equilibrium. (b) The nullclines of three species intersecting in one of many pos-

sible ways. The 3-species equilibrium corresponds to the intersection of the

three nullclines in the interior (star). An equilibrium between species i and k

corresponds to the intersection of its nullclines and the plane NiNk (plus signs).

The intersection of the nullcline of species i with its own axis (round dots) is

a monoculture equilibrium. All border equilibria (monocultures, and 2-species)

are internally stable but externally unstable, thus all three species coexist.

a1

a2

a3

a1

a2

(a) (b)

rr

Figure 5.8: A n-species Lotka-Volterra system has a positive solution (all N̂i > 0) if the

vector of intrinsic growth rates r = (r1, . . . , rn)T is contained in the cone formed

by the columns of the matrix of competition coefficients, ai = (ai1, . . . ,ain)T .

(a) The cone rule for a two-species system. (b) The cone rule for a three-species

system.
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5.4 existence of community equilibria

5.4.2 Tilman model

In the graphical analysis of the two-species Tilman model, we stated that a community

equilibrium has two requirements: the nullclines in resource space must intersect, and the

resource supply point must fall in the region spanned by the projection of the consumption

vectors at the intersection point. We will see how these conditions translate into higher

dimensions.

Let us start by considering a situation where the number of species and resources is the

same n = m (the more general situation n 6= m will be treated shorty after). In the n

dimensional resource space R1 · · ·Rn, the nullclines are n − 1 dimensional objects: surfaces

(3 resources), volumes (4 resources), and so on . . . in other words the multidimensional

extrapolation of the curves in Figures 5.3 and 5.4. The intersection n nullclines can be

one point R̂ = (R̂1, . . . , R̂n) or multiple discrete points R̂, R̂ ′, R̂ ′′, . . . etc. In the special case

of Liebig’s law (5.5) the growth rates are given by µi = minj[µji(Rj)], and the multiple

resource requirements R∗
ji, give the shape of the nullcline of species i. For example, if

n = 3 the nullcline of species i has the appearance of three adjacent sides of a cube, with

the corner given by the resource requirements R∗
1i,R

∗
2i,R

∗
3i. When two nullclines like these

intersect, they form a line, and the intersection of this line with the third nullcline results

in a point R̂ = (R̂1, . . . , R̂n). Such intersection is possible if and only if each species has the

highest requirement for one of the three resources. Thus, if n species are competing for n

perfectly essential resources, with species i having the highest requirements for resource i

(R∗
ii > R∗

ik, k 6= i), the intersection of the nullclines occurs exactly at one point:

R̂ = (R̂1, R̂2, . . . , R̂n) = (R∗
11,R

∗
22 . . . ,R∗

nn) (5.19)

If the number of species is bigger than the number of resources n > m, it is not possi-

ble (in general) for the nullclines to intersect. In consequence, there can not be n-species

equilibrium coexistence with less than n resources. This is the extension of the principle of

competitive exclusion for the multispecies case. On the contrary, if the number of species is

smaller than the number of resources n < m, the intersection of nullclines are not discrete

points, but continuous sets of points. For example, if n = 2 and m = 3 the nullclines of

the two species intersect along a line, if n = 2 and m = 4 the nullclines intersect forming a

surface.

The second requirement for equilibrium is that the intersection must be achievable, in

other words that R̂ corresponds to a resource equilibrium. As before, let us start again with

the assumption that n = m. According to equation (5.2b), in an equilibrium the species

densities and resource concentrations must satisfy
n∑

i=1

cjimiNi = φj(Rj) (5.20)

since µi = mi at equilibrium. This equation has the same form as (5.18), i.e. a linear system

in the population densities. For example if φi is given by (5.9) and mi = D, equation

(5.20) can be written as φ

D
= CN, where φ = (φ1, . . . ,φn) is the resource supply vector,

N is the vector of species densities, and C = {cji} is the consumption matrix, i.e. a matrix

whose columns correspond to the species consumption vectors ci = (c1i, . . . , cni)
T. If the
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determinant of C is not zero, we can compute the equilibrium densities as N̂ = D−1C−1φ̂,

in which φ̂ corresponds to the supply vector evaluated at the intersection of the nullclines in

resource space, i.e. φ̂ = φ(R̂). As in the case of the Lotka-Volterra model, the cone rule also

applies: N̂ is a community equilibrium if the supply vector φ falls in the cone formed by

the columns of the consumption matrix, the ci. In case of linear resource renewal as in (5.9),

the cone rule can be stated more explicitly as follows: the supply point S = (S1, . . . , Sn) falls

in the cone spanned by lines originating at the nullcline crossing R̂, with the orientation

(slope) of these lines given by the species consumption vectors ci. In the R1R2 space this

cone is the hatched “wedge” in Figures 5.4c,d.

As stated before, the nullclines could intersect at more than one point. This could happen

in two ways. First, under the assumption that n = m, the nullclines could intersect in

several discrete points (R̂, R̂ ′, R̂ ′′, . . .) if are they curved like in Figure (5.4). If the cone rule

holds at a given intersection point, that point corresponds to a community equilibrium. As

a second alternative, consider that the number of resources is higher than the number of

species considered. The intersection of nullclines will be a continuous set of points R. This

situation does in fact happens for n = m, because in addition to the n-species community,

we must consider all equilibria with n − 1,n − 2, . . . species, which also compete for the

same m resources. As an example, consider three species and three resources: the nullclines

of the three species intersect at one or more discrete points, but the nullclines of any species

pair intersect in along a lines. In this case the cone rule also holds because: (1) we can define

the supply vector and the cone of consumption vectors at any point in resource space, and

(2) the supply vector could be contained in the consumption cone at one point along the

intersection line. In principle, nothing prevents that this situation occurs more than once,

resulting in species-pair multiple equilibria.

5.4.3 Quota model

The requirements for equilibrium in the quota model are almost the same as in the Tilman

model. First, the quasi-nullclines in the external resource space must intersect. Second, the

resource supply vector must be part of the cone formed by the species consumption vectors.

In the multidimensional Quota model, the quasi-nullclines are defined in the same way

as in the two-dimensional resource space (Fig. 5.5): by mapping each point of the nullcline

of species i in its quota space Q1i · · ·Qmi into the resource space R1 · · ·Rm. If the number

of resources is equal or higher than the number of species (m > n), the quasi-nullclines

can intersect at more than one point, either because they are curved, or because the number

of resources is larger than the number of species considered. On contrary, if the number

of resources is less than the number of species (m < n) the quasi-nullclines will not (in

general) have a common intersection, and equilibrium coexistence is not possible at all.

In an equilibrium, the resource concentrations and species densities must satisfy the

equilibrium condition of the resources in (5.3c):

n∑

i=1

fji(Rj)Ni = φj(Rj) (5.21)
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These equations can be written in matrix form as φ = FN, where F = {fji(Rj)} is the

consumption matrix, and the columns of this matrix represent the species consumption

vectors fi = (f1i(R1), . . . , fni(Rn))T. If the number of resources is equal to the number of

species, species densities in a community equilibrium are given by N̂ = F̂−1φ̂ (provided

that the determinant of F̂ is not zero). The main difference between this solution at that

of the Tilman model, is that both the consumption matrix and resource the supply vec-

tor must be evaluated at the intersection of the quasi-nullclines. As in the Lotka-Volterra

and the Tilman models, the cone rule applies: a positive solution for N̂ requires that the

supply vector belongs to the cone formed by the consumption vectors at the nullcline inter-

section(s). In the case where resource supply is described by the chemostat equation (5.9),

the coexistence equilibrium exists if the resource supply point S = (S1, . . . , Sm) falls in the

cone formed by lines oriented according to the consumption vectors, at the quasi-nullcline

intersection(s).

The main difference with the Tilman model, is that in the Quota model, the cone formed

by the consumption vectors has different sizes (e.g. is more “open” or “closed”) and ori-

entations at the different intersection points, because the fi(R) are functions in resource

space.

5.4.4 Comparison

In the three models it is possible to relate the species densities in equilibrium, N̂i, using a

system of linear equations (5.18, 5.20 and 5.21). Such system can be written in matrix form

as (c.f. Table 5.1 for details):

MN̂ = ρ (5.22)

with N̂ = (N̂1, . . . , N̂n)T . In the Lotka-Volterra model M is the matrix of competition coeffi-

cients A = {aik} measuring the effect of species k upon i. The A matrix is usually called the

community matrix. In the Tilman model M is the matrix of resource contents C = {cji}, and

in the Quota model it is the matrix of consumption rates at equilibrium F̂ = {fji(R̂j)}. The

vector ρ contains positive terms, and its magnitude can be taken as an indication of how

“good” is the environment. For example, in case of the Lotka-Volterra model ρ is the vector

of the maximum per capita growth rates, which occur when population densities are low,

when (intra- and inter-specific) competition is negligible. In case of resource competition

models, ρ indicates how fast the resources recover from consumption.

Whether a solution N̂ for (5.22) is feasible or not, depends on several factors. In the

particular case of the Lotka-Volterra model the matrix M = A has the same number of rows

and columns, and N̂ can be computed as N̂ = M−1ρ, as long asM can be inverted. IfM can

not be inverted, this means that some of the rows or columns of M are linearly dependent,

in other words that some nullclines are parallel. If M can be inverted, it could happen that

the solution has one or more negative densities. In both cases, a feasible solution does not

exist, either because the nullclines do not intersect, or because they intersect outside of the

positive orthant.

For the resource competition models, the feasibility of N̂ requires the intersection of the

nullclines (Tilman model) or quasi-nullclines (Quota model) in the space of resources. In
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general, if the number of resources is less than the number of species, such intersection does

not occur, and the community equilibrium does not exist. If the number of resources and

species are equal, we can compute the N̂ by the method of matrix inversion like in the Lotka-

Volterra model, provided that M = C (Tilman model) or M = F̂ (Quota model) is invertible.

Likewise, the community equilibrium may not exist because some rows or columns of M

are linearly dependent, or simply because the solution contains negative densities. In the

more general case when the number of resources is higher than the number of species (e.g.

at the border equilibria), the solution(s) N̂ may be feasible, but we cannot use the method

of matrix inversion to find them (the number of rows and columns of M do not match).

Besides all these details, there is a common pattern in all models: the “cone rule” implies

the existence of community equilibria. The logic behind this rule has to do with the idea

that an equilibrium is a state in which all forces (in the most general sense) are exactly

balanced, such that the net effects are zero. In the case of the Lotka-Volterra model, the

community equilibrium is a state in which the tendency of population growth is counter-

balanced by intra- and inter-specific competition. In resource competition models a coex-

istence equilibrium corresponds to a state where resource renewal is counterbalanced by

resource consumption. Indeed, the equilibrium equation (5.22) can be rewritten as an exer-

cise in which mechanical forces must be balanced (e.g. like in Halliday and Resnick (1974)

textbook):

ρ −
∑

viN̂i = 0 (5.23)

where 0 is a vector of zeros, and the vector vi is the i-th column of M. In equation (5.23) ρ

can be interpreted as the force exercised by a stretched spring, vi as gravity and N̂i as the

mass of an object. In Figure 5.9b we can see that the different forces will cancel each other

only if the spring is contained in the cone defined by the force vectors associated with the

masses, and solving N̂i is analogous with finding the right masses wi. If the spring were

outside of the cone like in Figure 5.9c, force balancing requires that we change in the direc-

tion of gravity or the sign of one of the masses, which are both absurd (we could reposition

the objects or vary their masses, but that would represent a different system or equilibrium,

e.g. different consumption vectors or densities). Back to the original problem of equilib-

rium feasibility: since M is positive (e.g. gravity points downwards, never upwards) and ρ

is positive (e.g. springs pull when stretched, they do not push), N̂ will be positive (masses

are positive) if and only if the vector ρ belongs to the cone formed by the columns of M.

A multispecies system will have, in general, many equilibrium points, and in all of them

the cone rule applies. This can be justified again by means of the mechanical analogy.

Consider three objects: the cone associated with the equilibrium looks like the apex of a

pyramid with three faces (like in Fig. 5.8a). If we take away one of the objects, the cone

associated with the equilibrium of two objects looks as in Figures 5.9b or 5.8b, i.e. the

corner of a triangle. If we take away two objects, the cone associated to the equilibrium for

one object is just a line. The cone rule holds for all these “border equilibria”. The cone rule

also holds for all “internal equilibria”: just assume that the floor in Figure 5.9b is irregular.

Under this circumstance, we can place the two objects in many ways (one on top of a bump

and the other in a depression, both on top of bumps, or both in depressions), but in all

cases a state of equilibrium demands that the spring ends up in the cone defined by the
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(a) (b)

w1 w2

-g2w2-g1w1

ky

-c2N2-c1N1

φ
"cone"

(c)

w1 w2

-g2w2-g1w1

ky

Figure 5.9: Interpretation of the “cone rule”, using Tilman’s model in (a) and a mechan-

ical example in (b). In Tilman’s model, the magnitude of the supply vector

φ is proportional to the distance between the supply point and the resource

concentrations (i.e. φj = D(Sj − Rj) according to (5.9)). In the mechanical ex-

ample the force exercised by the spring is proportional the elongation caused

by fixing to the roof (i.e. ky = k|∆y| according to Hooke’s law). In Tilman’s

model the consumption vector of a species is given by its resource contents as

ci = (c1i, . . . , cmi)
T , but the total consumption is proportional to the size of the

population Ni (a scalar). In the mechanical example, each object “pulls” the

spring along wires, where gi is the component gravity’s acceleration (g) along

the wire of object i. The force of the pull is proportional to the object’s mass

(giwi) . In both examples, the vector pointing upwards (φ or ky) belongs to the

cone defined by dashed lines, the slope of which are given by the vectors point-

ing downwards (ci or gi). In (c) the spring is attached to the roof, but outside of

the cone. As a consequence, an equilibrium of forces does not exist. To restore

the equilibrium, the vector associated to object 2 should point upwards and left,

but this would require that gravity (g) points left, or that w2 becomes negative!

115



commonalities and discrepancies among multispecies competition models

wires that joins the objects to the spring, otherwise there will be a net acceleration (ergo no

equilibrium).

5.5 stability of equilibria

The analogy with force balance implied by the cone rule does not mean that community

equilibria are stable, just only that they exist. In Figure 5.9a the competitive system is at

equilibrium, but it may happen that a tiny variation in densities (Ni) or resources (Rj)

results in further increase of decrease in the vectors. As a consequence the right-hand-side

of equation (5.23) may not return to 0 and the equilibrium is unstable (imagine a chair

balanced in one leg). In this next section we treat the issue of local stability properties of

the models in more detail.

5.5.1 Internal vs external stability

Graphical analysis (section 5.3) is very useful for assessing the stability of systems of two

species. High-dimensional scenarios however, require more powerful methods, which rely

on the analysis of the jacobian matrix of the system. But even for a small number of species

like n = 3, it can be very difficult to perform such analysis.

A partial solution to this problem starts by considering that given n species, there can be

many equilibria associated with communities made of n − 1,n − 2, . . . , 1 species, i.e. border

equilibria. In a border equilibria, we have two sets of species: the set K of residents for

which Nk > 0, and the set L of potential invaders for which Nl = 0. It can be shown

(Hofbauer and Sigmund, 1988; Case, 2000, Chapter 3) that an equilibrium is locally stable,

if and only if, it is both internally and externally stable. Internal stability refers to stability

against perturbations in the community of resident species K. External stability refers to

stability against invasion by small numbers of invaders from L.

By decomposing the difficult problem of stability into the smaller problems of internal

and external stability, it is often possible to obtain a qualitative picture of the global dynam-

ics of the competitive system (section 5.6). Of the two problems, external stability is much

easier to address than internal stability. Thus, we start with external stability and continue

later with internal stability.

5.5.2 External stability

In principle, external stability is more easy to study than internal stability. It boils down

to ask whether invaders can grow when rare in a system where the residents are in equi-

librium. Formally, a border equilibrium is externally stable if the growth rate of all the invaders,

considered independently, is negative. Notice that it is only necessary to consider each invader

separately (Case, 2000; Huisman and Weissing, 2001, Chapter 3), i.e. we do not have to

consider the simultaneous invasion of several invaders. The sign of an invader’s growth

rate is given its net per capita growth rate:
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1

Nl

dNl

dt
= rl −

∑

k∈K

alkÑk (5.24a)

1

Nl

dNl

dt
= µl(R̃1, . . . , R̃m) − ml (5.24b)

1

Nl

dNl

dt
= µl(Q̃1l, . . . , Q̃ml) − ml (5.24c)

where (5.24a) corresponds to the Lotka-Volterra model, (5.24b) corresponds to the Tilman

model, and (5.24c) to the Quota model.

In case of Lotka-Volterra model the net per capita growth rate is a function of the equilib-

rium densities of the residents, which is determined by equation (5.18), with Ni = 0 for all

the invader species. In case of three species, the sign of the net growth can be determined

by nullcline analysis. For example in Figure (5.7), consider species k = 1, 2 as the residents

and l = 3 the invader. We can see that the equilibrium point the residents (Ñ1, Ñ2, 0) lies

below the nullcline of species 3, the invader. In consequence, species can grow when rare,

N−1
3 dN3/dt > 0. We conclude that the border equilibrium (Ñ1, Ñ2, 0) is externally unsta-

ble. If the point were above species 3 nullcline, the resident community would be externally

stable.

In case of the Tilman model, the net per capita growth rate of an invader is a function of

the resource concentrations left by residents R̃j. In case of competition for three resources,

it would be possible represent graphically the conditions under which the invader’s net

growth rate is positive or negative: the resource equilibrium point (R̃1, R̃2, R̃3) is at the

intersection of the nullclines of the residents, if this point lies “above” the nullcline of the

invader, it will grow and the resident equilibrium is externally unstable. If (R̃1, R̃2, R̃3)

lies “below” the invader’s nullcline, the resident equilibrium is externally stable against

this invader. If (R̃1, R̃2, R̃3) lies below the nullcline of any possible invader, the resident

equilibrium is externally stable in general.

In the Quota model, the growth of an invader is a function of its quotas. Since an invader

is assumed to be rare, it has an insignificant influence on the external environment. How-

ever, the external environment has an enormous effect on the invaders, meaning that the

quotas of the invader attain a quasi-steady-state (Di Toro, 1980) with the external resource

levels R̃j, set by the residents. In consequence, the sign of the invader’s net growth depends,

indirectly, on the external resource concentrations. Thus the determination of the external

stability follows the same rules as in the Tilman model (Chapter 3). In using a graphical

representation, we conclude that a border equilibrium is externally stable if the resource

levels set by the residents are below the quasi-nullclines of all possible invaders.

5.5.3 Internal stability

In order to assess the internal stability of the equilibrium of the resident species (k ∈ K),

we just have to ignore the part of the system associated with the invaders (l ∈ L). That part

include the invaders population densities in case of the Lotka-Volterra and Tilman model,

as well as the quotas in case of the Quota model.
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The local stability the resident sub-system is determined by the properties of its jacobian

matrix. The jacobian matrix consists of the derivatives of the differential equations with

respect to the time dependent variables. An equilibrium point will be locally stable if the

all the eigenvalues of the jacobian matrix evaluated in that equilibrium have negative real

parts. An important special case corresponds to the equilibrium in which all n species are

present, i.e. the community equilibrium. The conditions for the stability of the community

equilibrium also apply to the internal stability of all border equilibria, since they are smaller

versions of the community equilibrium (they just happen to have less than n species). Thus,

we will focus on the stability of the community equilibrium.

5.5.3.1 Lotka-Volterra model

The jacobian matrix of the n-species equilibrium in the Lotka-Volterra model is given by

(Strobeck, 1973; May, 1974; Hofbauer and Sigmund, 1988; Case, 2000):

J= −DA (5.25)

In this equation D is the diagonal matrix formed by the products riN̂i. In case of two

species the equilibrium is globally stable if the determinant of the community matrix A is

positive, which is the same as inequality (5.10). This means that in a two-species Lotka-

Volterra system, internal stability is determined only by properties of the community ma-

trix.

5.5.3.2 Tilman model

In the Tilman model of n species and m resources, the jacobian matrix has n + m rows and

columns. Given two reasonable assumptions (Huisman and Weissing, 2001), the stability

of the equilibrium can be determined with a smaller jacobian having n rows and columns.

First, consider that the competition takes place in a chemostat. In this situation the resource

renewal is described by equation (5.9) and the species loss rates are equal to the resource

turnover rate mi = D. After enough time, a mass balance constraint allow us to replace

the differential equations of the resources with simple algebraic relationships (Appendix

A). Second, assume that resources are perfectly essential. Thus, at the equilibrium each

species growth rate becomes a function of a single resource, the resource for which it has

the highest requirement (this is a prerequisite for equilibrium). Let us assume that species

i is limited by resource i, i.e. µi = µi(Ri). Under these assumptions, the jacobian matrix of

the differential equations for the species densities (5.2a) adopts the form:

J= −DC (5.26)

whereD is a diagonal matrix whose elements are (∂µi/∂Ri)Ni evaluated at the equilibrium,

and C = {cji} is the matrix of resource contents.

For two species in equilibrium, it is easy to show (León and Tumpson, 1975; Tilman,

1980, 1982) that the eigenvalues of the jacobian have negative real parts if the determinant

of C is positive, i.e. when inequality (5.11) holds. In the two-species scenario, stability is

determined by the properties of the consumption matrix alone.
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5.5.3.3 Quota model

In contrast with the Lotka-Volterra and the Tilman models, the jacobian matrix in the Quota

model is much bigger. For example, a system of n species and m resources has a jacobian

matrix with n + m + n × m rows and columns, because in addition to the resources we

must consider all the quotas. Thus, a system of 2 species and 2 resources requires a 8× 8

matrix jacobian, and for 3 species and 3 resources we must deal with a 15× 15 jacobian.

This problem can be greatly simplified if we use the same assumptions as in the Tilman

model, i.e. competition takes place in a chemostat and mi = D, and resources are perfectly

essential (Appendix A). In addition, consider that the time scale of the quota dynamics is

much faster that that of resource consumption and population growth (Di Toro, 1980), such

that the quota is at quasi-steady-state (dQji/dt ≈ 0). This allows us obtain the jacobian

matrix of a much simpler system, that involves only the equations of the species densities

(Appendix B):

J = −DF̂ (5.27)

whereD is a diagonal matrix with elements N̂i∂µi/∂Ri and F̂ = {fji(R̂j)} is the consumption

matrix evaluated at the equilibrium. In Chapter 3, we do not employ the chemostat assump-

tion and quasi-steady-state for quotas, but the result is similar in some aspects. Notice, that

the derivative ∂µi/dRi makes sense only because of the quasi-steady-state assumption for

the quotas, such that ∂µi

∂Ri
= ∂µi

∂Qii

∂Qii

∂Ri
. In a quasi-steady-state, the quotas must respond

rapidly to keep up with changes in the external resources, so Qii ≈ Qii(Ri).

For two species and two essential resources the community equilibrium is stable if the

determinant of F̂ is positive, which coincides with the result of the graphical analysis (5.12).

There is strong support for the conjecture that this is a sufficient condition for the stability

of the community equilibrium (Li and Smith, 2007; Hall et al., 2008, Chapter 3) under less

restrictive assumptions than the ones used here.

5.5.4 Comparison

In the three models, external stability is decided when all the invasion rates of the invaders

considered alone are negative. Invasion rates are functions of different sets of variables: res-

ident densities (Lotka-Volterra model), resource concentrations (Tilman model), or invader

quotas (Quota model). However, in the resource competition models invasion rates also

depend on the residents densities in an indirect way. In the Tilman model for example, the

equilibrium condition of the resources (5.20) in the resident community K, can substituted

as R̃j = φ−1
j (

∑
k∈K

cjkÑk) in the net per capita growth rate of invader l (5.24b). Unfortu-

nately in case of the Quota model, there is not such a simple way to relate the net per capita

growth rate of an invader with the densities of the residents via the resources, even under

the chemostat and quota quasi-steady-state assumptions.

Internal stability is determined by the properties of the jacobian matrix at the equilib-

rium. Since the three models differ in the number and nature of the dynamical equations,

their jacobian matrices are different. However, given some simplifying assumptions, we

can reduce the number of equations in a n-species resource competition model (Tilman
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Model (equation) Equilibrium jacobian matrix Assumption

Lotka-Volterra (5.1) AN̂ = r J = −diag(r ◦ N̂)A none

Tilman model (5.2) CN̂ = 1
D

φ̂ J = −diag(∂µ

∂R◦N̂)C MBC

Quota model (5.3) F̂N̂ = φ̂ J = −diag(∂µ
∂R ◦ N̂)F̂ MBC+QSS

Table 5.1: Equilibrium equations and jacobian matrices. An equilibrium is internally stable

if all the eigenvalues of the jacobian matrix have negative real parts. The hat (^)

indicates evaluation at the equilibrium. The symbol ◦ denotes an element wise

product of vectors. MBC: mass balance constraint, QSS: quota at steady state.

and Quota) to the same number of equations of a n-species Lotka-Volterra model. The

corresponding jacobian matrix becomes:

J= −DM (5.28)

whereD is a diagonal matrix that contains the species densities at equilibrium multiplied by

rate terms, and M is the same matrix that determines the feasibility of the equilibrium (see

section 5.4): the community matrix A (Lotka-Volterra), the matrix of resource contents C

(Tilman model) or the consumption matrix F̂ at the equilibrium (Quota model). We will call

M simply the interaction matrix because it contains the direct effects of one the interaction

of species with another, or the indirect effects of the indirect interaction of one species on

another via shared resources. Table 5.1 put all this results together for comparison.

The similarity of the jacobian matrices tells us that in the proximity of the equilibrium,

both resource competition models behave similarly as the Lotka-Volterra model. Interest-

ingly, some important features of the local dynamics can be outlined by looking at the struc-

ture of the interaction matrix M instead of the full jacobian. For example consider the 3× 3

matrix M in Figure 5.10. The following pattern is found (Strobeck, 1973; May and Leonard,

1975; Gilpin, 1975; Hofbauer and Sigmund, 1988; Weissing, 1991; Huisman and Weissing,

2001, 2002; Revilla and Weissing, 2008):

1. If the diagonal elements are bigger than the off-diagonal elements (a > b, c; e >

d, f; i > g,h), the equilibrium is likely to be stable.

2. if the diagonal elements are smaller than the off-diagonal elements (a < b, c; e <

d, f; i < g,h), the equilibrium is unstable.

3. If the elements of the band above the diagonal are the biggest ones (b > a, c; f >

d, e; g > h, i), the system tend to display oscillations around the equilibrium. The

equilibrium may be stable or unstable.

From the first prediction follows a necessary but not sufficient condition for local stability:

stability requires that the determinant and the principal minors of M are positive. In terms

of the Lotka-Volterra model, this stability requirement is met when the intra-specific com-

petition coefficients tend to be much higher than the inter-specific coefficients. In terms of
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Figure 5.10: The structure of the interaction matrix M (A,C or F̂). The elements in bold are

greater than the elements in normal typeface in the same row or column. The

diagrams below illustrate the local dynamics in the proximity of the community

equilibrium. A closed circle denotes a stable equilibrium, an open circle an

unstable one.

both resource competition models, this requirement is met when each species tend to con-

sume more of those resources for which they experience the strongest limitation. For this

configuration, inter-specific competition is weak in comparisson to intra-specific competi-

tion. If the matrix M is diagonally dominant (a > b + c; e > d + f; i > g + h), we can make

an even stronger prediction: the equilibrium will be stable (this follows from Gershgorin’s

circle theorem, Strobeck, 1973).

The second prediction describe the opposite situation. For the Lotka-Volterra it means

that intra-specific coefficients tend to be small in comparison with inter-specific coefficients.

In terms of the resource competition models, each species tens to consume less of the

resources for which they experience limitation and comparatively more of the resources that

are limiting for other species. This creates an unstable situation in which any imbalance

in favor of one species gets amplified in time. Unstable equilibria are characterized by

matrices with negative determinants and principal minors.

The third prediction involves a matrix configuration lying between the two extremes

discussed above. In the Lotka-Volterra model, it is difficult to say which one, intra- or

inter-specific competition, is higher on average. In resource competition models, this con-

figuration corresponds to a scenario in which each species tend to consume those resources

for which they have intermediate requirements. If the determinant of the M is positive, the

equilibrium may be stable or unstable, but if negative, it will be unstable.

5.6 global dynamics

In this section, we try to relate the local stability of equilibria with the global dynamics.

We focus first on the scenarios that lead to competitive oscillations, and later on the less

studied but equally important cases in which the communities have alternative states.
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5.6.1 Competitive oscillations

The pioneer works of May and Leonard (1975) and Gilpin (1975) with the Lotka-Volterra

model revealed that a oscillations are possible for the 3-, 4- and 5-species scenario. Smale

(1976) showed that given a high enough number of species (n > 5) the Lotka-Volterra

equations are compatible with any kind of global dynamics (e.g. equilibrium, cycles, chaos).

In contrast, the classic two-species case only leads to equilibrium solutions (Smale, 1976;

Hofbauer and Sigmund, 1988).

For three species, competitive oscillations can be predicted using nullcline analysis. In the

example of Figure 5.11 we can see that 2-species equilibria do not exist. We can also see that

each species can be invaded only by one of the other species, but not by two. This indicates

that the monocultures are unstable, but in closer examination monocultures are externally

stable against one species and externally unstable against the other, i.e. monocultures are

saddle points. This results in a sequence of species replacements: species 1 excludes species

2, species 3 excludes species 1 and species 2 excludes species 3. The situation resembles

the game of Rock-Paper-Scissors: rock crushes scissors, paper wraps rock and scissors cuts

paper. For more species (Gilpin, 1975), such competitive oscillations will be caused by the

same mechanism, non-transitivity in competitive dominance.

The configuration of nullclines in Figure 5.11 corresponds to a community matrix where

the competition coefficients of the band above the diagonal are bigger than the other entries

of the matrix, i.e a12 > a11,a13; a23 > a21,a22; a31 > a32,a33. It turns out that such a

structure corresponds with the prediction of oscillations around the internal equilibrium

(section 5.5.3). Were the diagonal elements the biggest ones, we would have a configuration

of nullclines where each species can invade (Fig. 5.7) and a locally stable community equi-

librium (section 5.5.3). Thus the community matrix determines the stability of all equilibria

(internal, borders, monocultures) and the global dynamics of the system.

Non-transitivity can also explain the competitive oscillations in resource competition

models (Huisman and Weissing, 1999, 2001, 2002; Revilla and Weissing, 2008, Chaper 2, 3,

4). Consider three species, and three essential resources, in which species i tends to be more

limited by i. Using graphical analysis for each of the resource planes as in Figure 5.4, it is

possible to show that when each species tends to consume more of the resource for which

it has intermediate requirements, the monocultures will be externally stable against one in-

vader and unstable against the other, and that there would not be any 2-species equilibrium.

In consequence the system oscillates. A consumption matrix C (Tilman model) or F̂ (Quota

model) describing this consumption pattern will be a consumption matrix associated with

oscillations around the internal equilibrium (section 5.5.3). Like in the Lotka-Volterra model,

this is an example where the local stability of the internal equilibrium is related to the global

dynamics of the system.

Thus, in all the three models, the structure of the interaction matrix M (A, C or F̂), not

only determines the existence of internal equilibria and its local dynamics, it also plays a

role the determination of the global dynamics. The extent of this role, however, has its

limitations. With three species there are simply too many equilibrium configurations, and

thus many possible global dynamics. For example in the Lotka-Volterra model Zeeman

(1990) compiled a list of 33 phase plane configurations, some of them shown in Figure 5.12.
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Figure 5.11: Competitive oscillations in the Lotka-Volterra model. In this arrangement of

nullclines, 2-species equilibria do not exist. If we consider species pairs: species

1 excludes species 2, species 3 excludes species 1 and species 2 excludes species

3. This results in a sequence of species replacement 1 → 3 → 2 → 1 that drives

the oscillations. There is an internal equilibrium, the intersection point of the

three nullclines. If the internal equilibrium is stable, the system achieves a

stable 3-species equilibrium coexistence, but if the equilibrium is unstable the

oscillations will develop into limit cycles or heteroclinic cycles. Figure taken

from Gilpin (1975).
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Figure 5.12: The dynamics of the three-species Lotka-Volterra model can be represented

in a triangular phase plane or “simplex”. The vertex of the triangles represent

monoculture equilibria, the intersection of a trajectory and an edge represents a

border equilibrium, and the community equilibrium lies in the interior. Closed

circles denote stable equilibria, open circles denote unstable equilibria, and the

absence of a circle denote saddle points. This figure shows some of the 33

possible equilibrium configurations. Taken from Zeeman (1990).
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Case 27 for example, describe the dynamics associated with the nullplane configuration in

Figure 5.11, because there is a rock-paper-scissors oscillation involving the monocultures,

and an oscillatory dynamics around the community equilibrium. If the internal equilibrium

is stable the oscillations dampen out, but if it is unstable the oscillations persist in the form

of limit cycles or heteroclinic cycles. However, cases number 32 and 33 do not display a rock-

paper-scissors oscillation involving the monocultures, even though there are oscillations

around the community equilibrium. In these two cases the oscillations are transient.

The same complications occur in resource competition models (Baer et al., 2006, Chapter

4), plus more. In the Tilman model, the limiting resource of a species at the community

equilibrium may not be the same in a border equilibrium, but the consumption matrix C

is fixed for all equilibria. In case of the Quota model, we have that in addition the con-

sumption matrix F can have different configurations at the different equilibria. In addition,

the three models can display multiple limit cycles (Hofbauer and So, 1994; Baer et al., 2006,

Chapter 4). All these details tell us that the prediction of global dynamics in terms of the

community matrix (A) or the consumption matrix (C, F̂) must be regarded as statistical

rules or “rules of thumb”.

5.6.2 Multiple stable states

In the 2-species Lotka-Volterra model the only instance of alternative stable states corre-

sponds to the case where both monocultures are externally stable (Fig. 5.2d). In the 2-

species resource competition model, and as long as the nullclines (or quasi-nullclines) in

resource space have simple shapes (i.e. they intersect only once), we have the same situation

(Fig. 5.4d). In these simples cases, the single community equilibrium sits in the boundary

of the attraction basins of both monocultures.

It takes very little to change from this simple picture to a complex one. In the case of

the Lotka-Volterra model, the inclusion of a third species increases the number of border

equilibria. These border equilibria vary in their external and internal stability characteris-

tics, and the combined effect of their attractions and repulsions results in a complex global

dynamics in which the realization of coexistence itself becomes dependent on the initial

conditions. An example is case 26 in the classification of Zeeman (1990), shown in Fig-

ure 5.12: depending on the initial conditions the system may converge to the community

equilibrium state of high diversity, or to the monoculture of one of the species and low

diversity.

Given a set of n species, the number of border equilibria having k = 2 to n − 1 species in

the Lotka-Volterra model can be as high as

n−1∑

k=2

n!

k!(n − k)!

which increases rapidly with n. For example n = 3 can have 3 border equilibria, n = 4

can have 10, and n = 5 can have 27. As the number of species considered increases, the

diversity of a community becomes increasingly dependent on the initial conditions.

The situation for resource competition models is evenmore complex. Only in the simplest

case of substitutable resources and linear resource dependence, we can have nullclines in
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Figure 5.13: A possible configuration of nullclines in species space (the Ṅi = 0), for two

species competing for four perfectly essential resources. (a) The system has

three alternative stable states, the monocultures and the community equilib-

rium. Coexistence depends on the initial conditions. (b) The system has two

alternative stable states of coexistence. Depending on the initial conditions, the

species coexist as community in which species 1 is numerically dominant, or as

a community in which species 2 is numerically dominant. Figures taken from

Zhang (1991).

species space that resemble those of the Lotka-Volterra model (5.15), and we can expect a

similar amount of border equilibria. In more general cases however, the nullclines in species

space are nonlinear like in (5.17). According to Zhang (1991), when two species compete for

more than two essential resources, there can be than one 2-species equilibrium, as shown in

Figure 5.13. At each of these equilibria a species may be limited by the same resource or by

a different one. If we extrapolate these results to n species and m resources, we conclude

that the number of border equilibria is much higher than in the n-species Lotka-Volterra

model. Thus the influence of the initial conditions on the possibilities of coexistence are

much more important.

5.7 conclusions and implications

The Lotka-Volterra (5.1) , Tilman (5.2) and Quota (5.3) models, can be formulated in terms

of any number of species and resources, but most of time they are studied for the special

case of only two species and one or two resources. However, the insights from the graphical

analysis of these low-dimensional cases can be extrapolated, to the most interesting cases

of many species and many resources. As a result of such extrapolation, we found that

the same rules regarding the existence of equilibria and local stability apply to all of these

models. The ubiquitous “cone rule” for example, applies simply because the effect of any

species upon other species or resources is independent of the presence of the other species

(this however, would not be the case if higher order interactions take place (Abrams, 1983;

Morin et al., 1988)).
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In all the three models it is possible to define an interaction matrix M. In the Lotka-

Volterra model such matrix, the community matrix, is the collection of the direct effects

one species on all the others. In both resource competition models this is the consumption

matrix, and it contains the indirect effects of one species on all the others via the shared re-

sources. The interaction matrix determines the feasibility of the equilibrium and important

aspects of its stability. In cases where the number of species and resources is “low”, like

three species, we can rely on the structural properties of this interaction matrix to make

some predictions about the dynamics in the proximity of the equilibrium and the global

dynamics of competition. Thus for example, if each species tends to be the highest (compar-

atively) consumer of its most limiting resource, intra-specific competition (self-regulation)

is more intense that inter-specific competition, a situation that facilitates the assembly of

a community via invasion, and promotes the global stability of the community. On the

contrary, if each species tends to be the lowest consumer of its most limiting resource, intra-

specific competition is weak compared with inter-specific competition, the community will

be globally unstable and coexistence via invasion unlikely.

Between the extremes of strong intra-specific competition and strong inter-specific compe-

tition lies an extense region for which it is difficult to say that intra- and inter-specific com-

petition are comparable, on average. It may be in fact that the intra- and inter-specific effects

are comparable in magnitude, but it is also likely that each species tends to interact more in-

tensely with a some species and weakly with with rest. This last alternative can lead to non-

transitive relationships of competitive dominance, like in the game of Rock-Paper-Scissors.

Non-transitivity can generate oscillations and chaos (May and Leonard, 1975; Gilpin, 1975;

Huisman and Weissing, 1999, 2002; Revilla and Weissing, 2008), and these oscillations even

if transitory, may allow the coexistence of many species on few resources or delay the real-

ization of competitive exclusion. The feasibility of such competitive oscillations rest upon

the existence of trade-offs in competitive abilities (Huisman et al., 2001).

But as the number of species and resources increases, our ability to predict the global

dynamics in terms of the structure of the interaction matrix becomes very limited. As the

number of species and resources increases, the number of equilibrium configurations in-

creases rapidly, the identity of the limiting resources becomes more variable among the

different equilibria (Zhang, 1991), and the consumption patterns also vary among equilib-

ria (Chapter 4). We hypothesize that unless inter-specific competition is very weak or very

strong (or intra-specific competition very strong or very weak), multispecies competition

has a highly unpredictable global dynamic, with strong dependence on the initial condi-

tions (even when chaotic dynamics does not occur).

Another important conclusion of the present work is that given some reasonable assump-

tions, it is possible to transform the Tilman model (5.2) into a model that is more (5.15) or

less (5.17) similar to the classic Lotka-Volterra model. This transformation can also be done

for other simple resource competition models (e.g. MacArthur, 1969, 1970) using different

assumptions. In these transformations the general goal is to obtain a set of equations with

the form:

dNi

dt
= NiGi(N1, . . . ,Nn) (5.29)
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where the per capita rate function Gi can adopt any shape, simple or complicated, as long

as it is a decreasing function of the population densities (∂Gi/∂Nk < 0). Equation (5.29)

is the Generalized Lotka-Volterra model (GLV), of which the classical Lotka-Volterra model is

just a special case. Other examples include the θ-logistic competition model of Ayala et al.

(1973) and the energy and interference based models introduced by Schoener (1976). The

interesting thing about GLV’s is that almost any kind of complex dynamics can be expected

if the number of species is five or more (Smale, 1976). An important implication is that

if two different resource competition models can be transformed into a GLV, they can in

principle display similar complex dynamics, even if their mechanistic underpinnings are

different.

appendix a : the chemostat assumption

Let us assume that in both resource competition models (Tilman and Quota) , the dynamics

takes place in a chemostat. In such scenario the per capita loss rates of the populations

are equal to the flow rate of the chemostat, mi = D. Given enough time the total amount

of resource j, attains a steady-state value, irrespective if an equilibrium has been attained

or not. This allows us to substitute the differential equations of the resources by algebraic

relationships, reducing the dimensionality of the system.

In the Tilman model the total amount of resource j at time t, Tj(t), is the sum of the

external resource concentrations and the resources sequestered by the populations:

Tj(t) = Rj(t) +
∑

i

cjiNi(t) (5.30)

Taking time derivatives on both sides we get

dTj

dt
=

dRj

dt
+

∑

i

cji
dNi

dt

and replacing the expressions for dRj/dt and dNi/dt given in the model (5.2), the equation

above is:

dTj

dt
= D(Sj − Rj) −

∑

i

cjiµiNi +
∑

i

cji(µi − D)Ni

dTj

dt
= D[Sj − (Rj +

∑

i

cjiNi)]

dTj

dt
= D[Sj − Tj]

The last equation can be integrated from t = 0 to t = τ, which results in Tj(τ) =

Sj + [Tj(0) − Sj]e
−Dτ. As τ → ∞ the left-hand side of (5.30) converges to Sj, and the

concentration of the external resources can be expressed as:

Rj = Sj −
∑

i

cjiNi (5.31)
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Equation (5.31) is a mass balance constraint. In the Quota model we can also derive a

mass balance constraint. In the Quota model, the concentration of resource j stored by a

species is equal to its quota for that resource times its population density. Thus the total

concentration of resource j is:

Tk(t) = Rk(t) +
∑

i

Qki(t)Ni(t) (5.32)

Taking time derivatives on both sides we get:

dTj

dt
=

dRj

dt
+

∑

i

Qji
dNi

dt
+

∑

i

Ni

dQji

dt

and replacing the definitions of dRj/dt,dQji/dt and dNi/dt from (5.3) we obtain:

dTj

dt
= D(Sj − Rj) −

∑

i

fjiNi +
∑

i

Qji(µi − D)Ni +
∑

i

Ni(fji − µiQji)

dTj

dt
= D[Sj − (Rj +

∑

i

QjiNi)]

dTj

dt
= D[Sj − Tj]

And like in the Tilman model, the total concentration of resource Tj in (5.32) converges

to Sj given enough time, and the concentration of external resources is given by:

Rj = Sj −
∑

i

QjiNi (5.33)

appendix b: the jacobian matrix of the quota model

In order to obtain a simplified expression for the jacobian of the Quota model, we make the

following assumptions:

1. The number of species equals the number of resources.

2. Resources are perfectly essential according to equation (5.5).

3. Competition takes place in a chemostat, thus the mass balance constraint (Appendix

A) applies. Thus, the differential equations of the external resources Rj can ignored,

and Rj be substituted by (5.33).

4. The dynamics of the quotas are much faster than the dynamics of external resource

concentrations and population densities (Di Toro, 1980). As a consequence, the quotas

will be in a quasi-steady-state, i.e. they satisfy dQji/dt ≈ 0, even if the system is far

from the equilibrium. In consequence, the differential equations of the quotas can be

substituted by:

fji(Rj) ≈ µiQ̃ji (5.34)
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where Q̃ji is the steady state (not equilibrium!) quota.

These assumptions result in a reduced system formed by the n differential equations (5.3a).

The jacobian matrix of this subsystem has elements

∂Ṅi

∂Nk
= Ni

∂µi

∂Nk
+ (µi − D)

∂Ni

∂Nk

Since resources are perfectly essential µi is a univariate function in the vicinity of the

equilibrium. If species i is limited by resource i, them µi = µi(Qii) and by the chain rule

∂Ṅi

∂Nk
= Ni

∂µi

∂Qii

∂Qii

∂Ri

∂Ri

∂Nk
+ δik(µi − D)

where δik is 1 if i = k and 0 if i 6= k. Using (5.33) with Qik = Q̃ik we have ∂Ri/∂Nk = −Q̃ik

and replacing Q̃ik with (5.34)

∂Ṅi

∂Nk

= −Ni
∂µi

∂Qii

∂Qii

∂Ri

fik(Ri)

µk

+ δik(µi − D)

In the equilibrium µi = µk = D, and the last equation becomes

∂Ṅi

∂Nk
= −

N̂i

D

∂̂µi

∂Qii

∂̂Qii

∂Ri
fik(R̂i) (5.35)

where the ˆ indicates evaluation of variables and derivatives at the equilibrium. Equation

(5.35) can be written in matrix form as

J = −DF̂

J =
{

∂Ṅi

∂Nk

}

is the jacobian matrix of the reduced system. D = diag

{
N̂i

D
∂̂µi

∂Qii

∂̂Qii

∂Ri

}

is a

diagonal matrix with positive elements in the diagonal. And F̂ = {fik(R̂i)} = {fji(R̂j)} is the

consumption matrix.
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6
EFFECTS OF PLANT-SO IL FEEDBACKS ON THE DYNAMICS OF

COMPET IT IVE PLANT COMMUNIT IES

Tomás A. Revilla, G. F. (Ciska) Veen, Maarten B. Eppinga and Franz J. Weissing

Plant-soil feedback effects can have important consequences for interactions be-

tween plants. However, quantification of these effects is difficult due to the vast

belowground diversity and technical problems inherent to measuring and ma-

nipulating soil communities. Therefore, there is a need for mathematical models

to improve our understanding of plant-soil interactions. Pioneering mathemat-

ical models on plant-soil feedback effects have been developed by Bever and

colleagues (Bever et al., 1997; Bever, 1999, 2003). In their most recent version

of the model (“Bever model”) a few particular cases where plant-soil feedback

affected plant coexistence and dynamics were described, but an exploration of

all possible plant-soil feedback effects was not presented. The aim of our paper

is to provide a full analysis of the Bever model, which contributes to our general

understanding of plant-soil interactions and the consequences for plant commu-

nity dynamics and diversity. We analyzed the model by means of a new type

of graphical analysis, which provides a rather complete analysis of equilibria

and their stability, and is still relatively easy to perform and understand. We

found that plant coexistence could be explained by an interaction between net

soil feedback effect and competition strength between the plants. Net positive

feedback generally leads to species exclusion, but when competition coefficients

are small enough plant species can coexist. Net negative feedback enhanced

the range of plant coexistence by means of competitive oscillations. This result

highlights that plant-soil feedbacks may enhance plant community diversity.

Keywords: Graphical analysis, plant-soil feedback, coexistence, oscillations, diversity
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effects of plant-soil feedbacks on the dynamics of competitive plant communities

6.1 introduction

Ecologists have long recognized that interactions between plants are mediated by many abi-

otic (e.g. soil texture, nutrient availability, topography) and biotic factors (e.g. grazing, plant

competition and facilitation) (e.g. Harper, 1977; Tilman, 1988). More recent research has

stressed the influence, of below-ground biota (the soil community) on interactions between

plants (Klironomos, 2003; Callaway et al., 2004), by exerting positive or negative effects on

the growth of specific plants (van der Putten et al., 1993; van der Putten and Van der Stoel,

1998; van der Heijden et al., 1998; Olff et al., 2000; De Deyn et al., 2003; Klironomos, 2003;

van der Heijden et al., 2003). These effects have been shown to influence species at higher

trophic levels (e.g. plant herbivores and their predators) as well (Soler et al., 2005). There-

fore, interactions between soil communities and plants can potentially have a significant

influence on species composition and diversity in many different parts of an ecosystem

(van der Putten et al., 2001; Wardle et al., 2004).

The interaction between plant growth and soil communities, referred to as plant-soil

feedback, is a two-step process: the presence of a specific plant changes the composition

of the soil community, which in turn alters the growth rate of that specific plant (Bever,

2003; Reynolds et al., 2003). Quantifying the effect of soil organisms on plant growth, how-

ever, is difficult due to the vast below-ground diversity, and the technical problems inher-

ent to measuring and manipulating soil communities (Bever, 2003; van der Putten et al.,

2009). Therefore, a coupling of empirical results to mathematical models may improve our

understanding of the role of plant-soil interactions in community assembly and diversity

(van der Putten et al., 2009).

Pioneering work on coupling empirical soil feedback results to mathematical models

has been performed by Bever and colleagues (Bever et al., 1997; Bever, 1999, 2003). These

models are appealing to many empirical plant-soil ecologists because they do not require

specific knowledge on the diversity of soil communities, or the effects of individual soil-

borne species on plant growth. As a result, model predictions can be tested with rel-

atively straightforward experiments (Bever, 1994; Bever et al., 1997). Bever (2003) pro-

posed a framework that introduces plant-soil feedback into the classical Lotka-Volterra

competition model, which has motivated several subsequent model studies on simi-

lar topics Bonanomi et al. (2005); Umbanhowar and McCann (2005); Eppinga et al. (2006);

Eppstein et al. (2006); Eppstein and Molofsky (2007).

Using the model framework, Bever (2003) highlighted two particular cases where plant-

soil feedback affected coexistence of 2 competitive plant species: 1) negative plant-soil feed-

back facilitating coexistence between plants and 2) negative plant-soil feedback driving

oscillations in plant abundances (Bever, 2003). However, there may be more ways in which

plant-soil feedbacks can affect coexistence and dynamics of plant competitors which can be

revealed by a full analysis of the model, i.e., an exploration of all possible parameter com-

binations. Such an analysis contributes to our general understanding of plant-soil feedback

effects (van der Putten et al., 2009). The aim of our study is provide a complete analysis of

the model by Bever (2003), referred here as the ‘Bever model’. In section 2 we will introduce

the Bever model. In section 3 we will analyze the Bever model using a new graphical tech-

nique, which provides a rather complete analysis of equilibria and their stability, and is still
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SA SB

A B

αΑ

αΒ βΑ

βΒ ν1

−ν −1

cA

cB

Figure 6.1: Schematic representation of potential interactions between two plants A and B

and their associated soil communities SA and SB in the Bever model.

relatively easy to perform and understand. We will decompose the analysis into different

components. We start with the simplest scenario where 1 plant species (a monoculture)

is affected by a static soil community. The second component examines how a static soil

community can influence the outcome of competition between 2 plant species. Then, we

explain in which ways the soil community can influence the plant community, i.e. by ex-

erting positive or negative feedback. Finally, we combine plant and soil dynamics to show

the full analysis of the Bever model. In section 4 we will present insights provided by the

model to a few important aspects regarding plant-soil interactions: 1) we justify the defini-

tion of feedback in a mathematical model, 2) we study under which conditions plant-soil

interactions drive oscillations in plant abundances, 3) we discuss the consequences of oscil-

lations for plant species coexistence and plant community diversity and 4) we examine the

generality of our results obtained by invasion analysis and our new graphical technique.

6.2 the bever model

The "Bever model" (Bever 2003, Fig 6.1) studies the effects of two soil communities SA and

SB on two plant species A and B. Each soil community in the model is specifically associ-

ated with one of the plant species (Yeates, 1999; Wardle et al., 2004) that positively affects

the growth rate of that specific soil community. On their turn, specific soil communities can

have both positive and negative effects on growth of the plant they are associated with, and

on the competing plant species (e.g. van der Putten and Van der Stoel, 1998; De Deyn et al.,

2003; Klironomos, 2003), referred to as feedback effects. The dynamics of the plant popula-

tions A and B and the soil communities SA and SB are described by the following equations:
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dNA

dt
= rANA

{

1 + αASA + βASB −
NA + cBNB

KA

}

(6.1a)

dNB

dt
= rBNB

{

1 + αBSA + βBSB −
NB + cANA

KB

}

(6.1b)

dSA

dt
= SASB

NA − νNB

NA + NB
(6.1c)

dSB

dt
= SASB

νNB − NA

NA + NB
(6.1d)

Here Ni is the density of plant species i, ri is the intrinsic per capita growth rate of

species i, Ki is the carrying capacity of species i when growing in isolation, and ci is the

per capita effect of species i on the growth rate of the competitor species, relative to the per

capita effect of i on the growth rate of its own population. In the presence of soil effects,

each soil community is associated with one of the two plant species, where Si is the density

of the biota associated with plant species i.

NA and NB are the densities of the two plant populations, rA and rB are the intrinsic per

capita growth rates of the plant species, KA and KB are the carrying capacities of the plant

species when growing in isolation, and cA and cB are the competition coefficients which

are expressed as the per capita effects of each species on the growth rate of the competitor

species (interspecific competition), relative to the per capita effect on the growth rate of

its own population (intraspecific competition). SA and SB are the densities of the two soil

communities, where SA is specifically associated with plant species A and SB with plant

species B. In the absence of soil effects, the dynamics of the two competing plants species

are described by the Lotka-Volterra competition dynamics (6.1a,6.1b, for SA = SB = 0).

The species specific effects of the soil communities on their plants, αA and βB, for plant

A and B respectively, will be called “within” association effects, and the non-specific effects,

αB and βA , will be called “cross” association effects. The net feedback effect of soil com-

munity composition on plant community dynamics will depend on both within and cross

association feedback effects. These feedback effects can take any sign, in correspondence

with mutualistic or pathogenic relationships. In mutualistic relationships plant growth may

be favored by the presence of their symbionts, e.g. arbuscular mychorrhizal fungi (AMF),

which enhance plant access to limiting resources. On the other hand, soil pathogens and

root herbivores, e.g. root feeding nematodes, can negatively affect plant growth by direct

removal of nutrients from root tissue and by reduction of soil nutrient uptake (Bever et al.,

1997).

The effect of the plants on their respective soil communities is measured in relative terms,

where ν is the ratio of the effect of plant B on its soil community against the effect of A on

its soil community.

The model of Bever has been based on the dynamics of old-field communities (Bever,

1994). For these communities, it is reasonable to assume that both plant and soil com-

munities have reached a relatively constant biomass density, but that the abundance

of plant species still varies between years (Bever, 1994). Hence, it is assumed that

dSA/dt + dSB/dt = 0 implying that the sum SA + SB is constant. Bever models the soil
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communities as fractions of the total soil community. Hence, SA + SB = 1 and equations

(6.1c,6.1d) can be substituted by

dSA

dt
= SA(1 − SA)

NA − νNB

NA + NB
(6.2)

6.3 graphical analysis

Our analysis will focus on equilibria and their stability. In order to do this it will be useful

to split the analysis in several components. First, we discuss the effects of the soil dynamics

on plants growing in isolation, which lead us to the concept of soil stability. Second, we

consider the effects of a fixed soil composition on plant competition, which help us define

the concept of competitive stability. Third, we take into account the net effects of the plant-soil

feedbacks, and how to distinguish when they are positive or negative. Fourth, we integrate

our criteria for soil stability, competitive stability, and feedbacks in a graphical methodology

for the analysis of the complete system of equations (6.1a,6.1b) and (6.2).

6.3.1 Plant monocultures

Let us start by considering the absence of plant B, i.e. NB = 0. This means that plant A is a

monoculture, and its dynamical equation (6.1a) becomes

dNA

dt
= rANA

{

1 + αASA + βASB −
NA

KA

}

which has the structure of a logistic equation and where (after rearrangement) the carrying

capacity takes the form of

κA = KA(1 + αASA + βASB) (6.3a)

In the absence of plant B the soil dynamics (6.2) follows dSA/dt = SA(1 − SA), which is

positive for 0 < SA < 1. Because of the constraint SA + SB = 1, in a monoculture of A the

soil community associated with plant A completely eliminates the soil community associ-

ated with plant B. As a consequence, in the long term plant A attains a stable monoculture

equilibrium AA : KA(1 + αA) corresponding to the state where its soil biota is dominant

(SA = 1). There is another monoculture equilibrium AB : KA(1 + βA), corresponding to

dominance by B’s soil biota (SA = 0) which is unstable.

If we reverse the roles and consider plant B the monoculture, i.e. NA = 0, the soil

dependent carrying capacity of plant B will be

κB = KB(1 + αBSA + βBSB) (6.3b)

Mutatis mutandis, in the monoculture of B the soil community associated with plant B

completely replaces the soil community associated with plant A. Thus the monoculture of

B has two equilibria, BA : NB = KB(1 + αB) corresponding to dominance of A’s soil commu-

nity (SA = 1) which is unstable; and BB : NB = KB(1 + βB) corresponding to dominance of

B’s soil community (SA = 0) which is stable.
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Recapitulating, we have that AB is unstable regarding fluctuations in soil composition (to

increases above SA = 0), whereas AA is stable (to decreases below SA = 1) in this respect.

For this reason, we say that AB is soil-unstable and AA is soil-stable. On the other hand BB

is soil-stable (to increases above SA = 0) and BA is soil-unstable (to decreases below SA = 1).

The concept of soil stability is important not only for judging the stability of monoculture

equilibria but also for community equilibria that happen to be characterized by SA being 0

or 1.

It is important to remind that the monoculture equilibria AA,AB,BA,BB can only exist if

αA,βA,αB,βB > −1 respectively. This is an assumption that we will maintain for the rest

of this article.

6.3.2 Effect of a static soil community on plant competition

Consider a static soil composition, i.e. dSA/dt = dSB/dt = 0. In that case the Lotka-

Volterra equations alone (6.1a,6.1b) suffice to describe the plant competition. The conditions

for coexistence or exclusion can be found by means of the graphical analysis of the system

nullclines (Case, 2000), which are

κA = NA + cBNB (6.4a)

κB = NB + cANA (6.4b)

for plants species A and B respectively, at a given fixed composition of the soil community.

It is a standard result from Lotka-Volterra competition theory that a community equilibrium

where both A and B coexist does exist when one of the following two conditions are met

• cA < κB/κA and cB < κA/κB. In this case both monocultures can be invaded by the

other species, and the coexistence equilibrium is globally stable.

• cA > κB/κA and cB > κA/κB. In this case both monocultures are stable, and the

community equilibrium is unstable. The outcome of competition depends on the

initial conditions.

Hence a community or “interior” equilibrium does exist whenever

(

κB

κA
− cA

)(

κA

κB
− cB

)

> 0 (6.5)

and such equilibrium is stable whenever cAcB < 1 (i.e. interspecific competition is on

average weaker than intraspecific competition).

It is useful to illustrate the conditions for equilibrium and stability using a plot like in

Figure 6.2. Let define the ratios of (soil dependent) carrying capacities x ≡ κB/κA and

y ≡ κA/κB, thus the relation between x and cA determines whether B can invade the

monoculture of A, while the relation between y and cB determines whether A can invade

the monoculture of B. For given cA and cB all feasible plant competitive systems belong to

the hyperbola xy = 1 in the xy plane. If cAcB < 1 (Fig. 6.2a), this hyperbola intersects the

coexistence region (doubly hatched area), which means that stable coexistence is possible
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Figure 6.2: Outcomes of the Lotka-Volterra system (6.1a,6.1b). The plane is divided into

four invasibility zones I, II, III, IV, such that B invades if x > cA and A invades

if x > cB, where x ≡ κB/κA,y ≡ κA/κB are the carrying capacity ratios in (6.5).

(a) If cAcB < 1 stable equilibria exist at the intersection of the hyperbola xy = 1

with zone III, in which A and B invade. (b) If cAcB > 1 unstable equilibria exist

at the intersection of xy = 1 with zone IV, where neither A or B can invade, and

depending on the initial conditions A or B wins the competition. Intersection at

I or II do not result in equilibrium, instead A or B always wins, respectively.

for certain ratios κB/κA. But in case of cAcB > 1 (Fig. 6.2b), the hyperbola intersects the

mutual exclusion region and stable coexistence is not possible at all.

Summarizing, for a given soil composition, monocultures and community equilibria (if

they exist) are classified as stable or unstable regarding fluctuations in population densities.

As we did before with respect to soil fluctuations, it is proper to define competitive stability:

a monoculture is competitively stable if it cannot be invaded, or competitively unstable if it

is invadable; a community equilibrium is competitively stable if cAcB < 1, or competitively

unstable if cAcB > 1.

6.3.3 Positive versus negative feedbacks

According to (6.3), in the total absence soil feedback effects (αA = αB = βA = βB = 0)

κA = KA and κB = KB for any value of SA. As a consequence x = KB/KA and y = KA/KB,

i.e. all feasible competitive systems are represented by a single point of the hyperbola

xy = 1 in Figure 6.2 no mater the soil composition. In the presence of soil feedbacks

we have instead that x and y vary with SA, which can take any value between 0 and 1.

This means that all feasible competitive systems belong to a continuous portion or of the

xy = 1 hyperbola, which we will refer to as the feasibility arc or simply the “arc”. Figure 6.3

indicates that the coordinates of the end points of this arc are
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Figure 6.3: Effects of soil feedbacks on the feasibility of equilibria. Since soil composition

SA is bounded by [0,1] the set of feasible Lotka-Volterra systems belong to a fea-

sibility arc of the unit hyperbola xy = 1, the end points of which are determined

by the feedback ratios γA,γB. (a) If γAγB > 1 the net feedback is positive, plants

attain maximum relative densities when their associate soil biotas are dominant,

i.e. κA/κB is maximum at SA = 1, and κB/κA is maximum at SA = 0. (b)

If γAγB < 1 the net feedback is negative, and plants attain minimum relative

densities when their associated soil biotas are dominant.

at SA = 0 : x = γB, y = γ−1
B

at SA = 1 : x = γ−1
A , y = γA

where the quantities γA and γB are

γA =
KA(1 + αA)

KB(1 + αB)
, γB =

KB(1 + βB)

KA(1 + βA)
(6.6)

According to the model’s description (equations 6.1 and Fig. 6.1) we can interpret γA

and γB in the following way. If we consider plant species A, the numerator of γA turns out

to be the maximum monoculture density that A attains with its associated soil community,

i.e. due to “within” association feedback; on the other hand the denominator of γA is the

maximum monoculture density that B attains due to “cross” feedbacks. Thus γA measures

the net contribution of the feedback for plant A after accounting the non-specific effects of

its soil community, i.e. losses, towards plant B. For this reason we call γA the feedback ratio

for plant A, and similarly γB will be the feedback ratio for plant B. The product γAγB of the

feedback ratios will tell us the size and orientation of the hyperbolic arc

• γAγB > 1: species specific (within) feedback benefits are stronger than non-specific

(cross) feedback benefits. As shown in Figure 6.1a κB/κA is maximum if SA = 0 and

κA/κB is maximum if SA = 1 (SA increases along xy = 1 from lower-right to upper-

left). A consequence of this is that a plant species is less vulnerable to invasion when
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its associated soil biota is dominant (i.e. the difference x− cA decreases as SA → 1 and

y − cB decreases as SA → 0). In other words the (geometric) average or net feedback

is positive, i.e. log(γAγB) > 0.

• γAγB < 1: non-specific (cross) feedback benefits are stronger than specific (within)

feedback benefits. This time 6.1b shows that κB/κA minimum SA = 0 and κA/κB

is minimum at SA = 1 (SA increases along xy = 1 from upper-left to lower-right).

In this case, plants become more prone to be invaded when its associated soil biota

is dominant (i.e. the difference x − cA increases as SA → 1 and y − cB increases

as SA → 0). In this case the (geometric) average or net feedback is negative, i.e.

log(γAγB) < 0.

We can envision the plant competitive system as “moving” along the feasibility arc of the

hyperbola xy = 1 as we vary the soil community composition. If the net feedback is positive

the system moves “up” if we raise SA, or “down” if we raise SB. If the net feedback is

instead negative, these directions are reversed. Such changes in SA and SB are driven by

the abundance of the plants, meaning that there is a feedback that drives the system up or

down these arcs in the combined plant-soil system.

The size of the feasibility arc increases with the absolute magnitude of the net feedback,

| log(γAγB)|. Thus, in the absence of net feedback effects (αA = αB = βA = βB → γAγB =

1) the arc degenerates into a point of the unit hyperbola, and the plant community becomes

a soil-independent Lotka-Volterra system, as if feedbacks were zero as discussed at the

beginning.

6.3.4 Combining plant and soil dynamics

Combining the plots in Figures 6.3 and 6.2 provides us with a graphical method that is often

sufficient for a rather complete characterization of the dynamics of the coupled plant-soil

community described by equations (6.1a), (6.1b) and (6.2). As Figure 6.4 shows, there are

20 different ways or “cases” in which the feasibility arc can intersect the invasion zones. We

will highlight two particular cases to illustrate the derivation of coexistence and invasion

conditions in terms of competition coefficients and feedback ratios, and in the next section

we treat more complex but interesting cases. See the Appendix A for a complete overview

of the cases. Our graphical method is in the same spirit as the “recovery plane” analysis

of Eppinga et al. (2006), in which the factors on the left-hand-side of inequality (6.5) are

plotted against each other.

Figure 6.5a depicts case 12, where all feasible systems fit entirely in the region where

only species B invades (II). As there are no other equilibria to consider (since the arc does

not intersect III or IV), we conclude that independently of the state of the soil, only species

B can grow in this system. Thus, species B and the system converges to the monoculture

equilibrium BB in which SA = 0. In fact, in all cases where the feasibility arc lies within

zones I or II (cases 1, 2, 11 and 12), one of the plants always wins, independently of the

initial conditions. When the arc lies in zone III (cases 3 and 13) both can invade and coexist.

And when it lies in zone IV (cases 4 and 14) neither can invade when rare, and the winner

depends on the initial conditions, an outcome that is called founder control (Bolker et al.,
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Figure 6.4: Intersection of the feasibility arc of Fig. 6.3 with the invasion zones of Fig. 6.2.

The arc is represented as an arrow, thus indicating its orientation: the “head”

(x = γ−1
A ,y = γA) corresponds to SA = 1 and the “tail” (x = γB,y = γ−1

B )

to SA = 0. A monoculture of species A will follow the orientation of the arc

(SA increases), whereas a monoculture of plant B will move in the opposite

sense (SB increases). There are 20 intersection “cases”, differing in the relative

position and arc orientation with respect to the invasion zones. The location of

the end points (head & tail) with respect to the invasion zones determines if a

species can invade or not.
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Figure 6.5: Graphical analysis of two cases depicted in Fig. 6.4. (a) In case 12 the feasibil-

ity arc occurs in a zone where only species B can invade (II) and a coexistence

equilibrium is not possible, thus species B always wins. (b) In case 15 the mono-

culture of species A would evolve towards the SA = 1 end of the arc, which lies

in a zone where species B can invade (III). The monoculture of B will instead

evolve towards the SA = 0, located in the zone where species A can invade (I).

As a consequence both can grow when rare and coexist.

2003). Thus, whenever the feasibility arc lies completely inside an invasion zone, the qual-

itative outcomes of plant competition do not depend on the net direction of the feedback,

positive or negative.

In Figure 6.5b we show case 15, which is a bit more complex because the feasibility arc

spans two invasion zones. In a monoculture of plant A, the soil composition will change

towards the SA = 1 end of the arc, which lies in the invasion zone of species A and B

(III). In contrast, in the monoculture of species B, the soil composition change towards the

SA = 0 end of the arc, which lies in the invasion zone of species A (I). We conclude that in

this case, soil community effects enable coexistence of the two plant species.

As indicated by Figure 6.5, the position of the arc’s end points with respect to the invasion

zones tell us whether a plant can invade or not. Whenever plant A is a monoculture, it will

attain the equilibrium state AA which corresponds to the SA = 1 end of the arc. Thus AA

can be invaded plant B if only only if

cA < γ−1
A (6.7)

and by symmetry, the monoculture of plant B attains the equilibrium state BB correspond-

ing to the SA = 0 end of the arc, which can be invaded by plant A if and only if

cB < γ−1
B (6.8)

Combining both inequalities, we obtain a necessary condition for mutual invasion

(cAcB)(γAγB) < 1 (6.9)
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which coincides with the requirement for stable coexistence in Lotka-Volterra models

(cAcB < 1) in the absence of net feedback (αA = αB = βA = βB). This lead to the predic-

tion that the more negative the feedbacks (low γAγB) the higher the chances of coexistence

via mutual invasion. On the other hand if feedbacks are strongly positive (high γAγB), co-

existence via mutual invasion demands lower competition strength (low cAcB). Back to the

graphs in Figure 6.4: when the feedback is negative, further decrease of the product γAγB

widens the feasibility arc, until the end points fall in the zones where monocultures can be

invaded. When feedback is positive, further increase of the product γAγB also widens the

feasibility arc, but this time the arc has the reverse orientation and in consequence the end

points will end up in zones where monocultures cannot be invaded; to make coexistence

possible again, cA or cB must be lowered such that the arc is forced to lie inside the mutual

invasion zone III.

Although quite similar with standard Lotka-Volterra theory, conditions (6.7,6.8) and (6.9)

only tells us about invasion. As we will show, neither conditions (6.7,6.8) are sufficient, nor

condition (6.9) necessary, for plant coexistence in general.

6.4 results and discussion

In this section, we employ the graphical method presented in section 3 to address some

important aspects of the plant-soil interaction. First of all, we justify our definition of net

positive and net negative feedbacks. Second, we study the mechanism by which competitive

oscillations emerge in Bever’s model. Third, we discuss the consequences of competitive

oscillations for the maintenance of plant diversity. And lastly, we critically examine the

generality of results obtained by means of invasion analysis and our graphical methodology.

6.4.1 Positive and negative feedbacks

As seen in Figure 6.3 we use the product γAγB to unequivocally discriminate between

scenarios in which the net plant-soil feedback is positive or negative. If γAγB > 1 the

net feedback is positive, i.e. self-enhancing, because each plant attains its highest relative

abundance –as measured by ratios of soil dependent carrying capacities κA/κB– when its

associated soil biota is dominant. On the other hand, if γAγB < 1 the net feedback is

negative, i.e. detrimental, because the pattern is the absolute opposite.

In contrast with us, Bever employs the soil feedback interaction coefficient IS = αA −

αB − βA + βB to distinguish between net positive IS > 0, and net negative IS < 0, plant-soil

effects. In previous works IS was originally meant to be used in models without density

dependence (Bever et al., 1997; Bever, 1999), and its extrapolation for the present system

requires to consider equivalent competitors (Bever, 2003), e.g. parameter symmetry.

In most cases our criterion and Bever’s coincide, but it is very easy to find examples

where it does not. Let for example have αA = −0, 06,βB = 0, 52,αB = −0, 41,βA = 0, 95,

this results in IS = −0, 08 indicating negative feedback according to Bever and γAγB =

1, 242 indicating positive feedback according to us. Discrepancies in the opposite direction

are possible too, e.g. αA = 0, 76,βB = −0, 95,αB = 0, 18,βA = −0, 62 results in IS = 0, 25

(Bever positive) and γAγB = 0.196 (us negative). Since IS cannot tell apart net positive or
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negative feedback in all cases as γAγB does, we consider our choice the most appropriate

in the present context.

We can reconcile both approaches, by deriving a net interaction coefficient that relaxes

the assumption of parameter symmetry:

IS = log(γAγB) = log(1 + αA) − log(1 + αB) − log(1 + βA) + log(1 + βB) (6.10)

Equation (6.10) only converges to IS ≈ αA − αB − βA + βB for small values of the feed-

back coefficients. This suggests that when relatively strong plant-soil community effects are

measured in empirical home vs. away experiments, it is necessary to use equation (6.10) to

predict the consequences of plant-soil feedbacks for the plant community.

6.4.2 When do oscillations occur?

Perhaps one of the most interesting results in Bever (2003) is a numerical example showing

that species that cannot coexist in the absence of feedback, can do so by means of compet-

itive oscillations under net negative feedbacks. When trying to run the same example, we

found instead that a coexistence equilibrium is rapidly achieved. We concluded that the ex-

ample provided is a numerical artifact due to the use of inappropriate integration methods.

As a consequence we tried to figure out how and under which conditions are oscillations

possible.

Population cycles are frequently associated with predator-prey dynamics. Competi-

tive oscillations however, are a common feature in Lotka-Volterra equations (Gilpin, 1975;

May and Leonard, 1975) and resource competition models (Huisman and Weissing, 2001;

Revilla and Weissing, 2008). In these models, oscillations require at least three competitors

such that species P outcompetes species R, S outcompetes P and R outcompetes S, as in the

Rock-Paper-Scissors game. Mathematically, the monocultures of R, P and S are connected

by means of heteroclinic orbits, i.e. a sequence of paths R → P → S → R forms a cycle.

Although the Bever model involves only two plant competitors, it has in fact four monocul-

tures: AA,AB,BB,BA, and this allows us to construct an heteroclinic cycle as follows.

First, let us assume that conditions (6.7) and (6.8) hold. This means that both plants

monocultures can be invaded when their associated soil biotas are dominant, in other words

AA and BB are unstable against invasion. Second, let us assume each monoculture cannot

be invaded when the invader’s soil biota is dominant, in other words AB and BA are stable

against invasion. The conditions that allow this to happen can be easily found. Consider

the monoculture AB of plant A where NA = KA(1 + βA),NB = 0, SA = 0; substituting it in

equation (6.1b) shows that plant B cannot invade this equilibrium (dNB/dt|AB
< 0) if

cA > γB (6.11)

on the other hand in the monoculture BA of plant B we have NB = KB(1 + αB),NA =

0, SA = 1; and its substitution in equation (6.1a) shows that plant A cannot invade this

equilibrium (dNA/dt|BA
< 0) if

cB > γA (6.12)
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Figure 6.6: Competitive oscillations. (a) The monoculture of species A evolves from a non-

invadable (I) to an invadable (II) condition, and the monoculture of B from non-

invadable (II) to invadable (I); in both directions, the system passes through

the zone of unstable community equilibria (IV). (b) The parameter space is

mapped into a phase space where circles represent equilibria (white: unstable,

gray:saddle) at the corresponding invasion zones (this mapping is explained in

Appendix A). The diagonal line represents the A-B nullcline (species A grows

towards the right B grows towards the left), and the dashed line is the soil

nullcline (SA increases in the right, and decreases in the left); their intersection

corresponds to the internal equilibrium predicted in (a). Monocultures are com-

petitively or soil stable, but not both: they are saddle points forming a hetero-

clinic cycle around the internal equilibrium AB which is competitively unstable.

The system oscillates permanently.

In a the graphical representation of Figure 6.4, conditions (6.7,6.8) and (6.11,6.12) can

simultaneously occur if and only if: the SA = 1 end point of the feasibility arc lies in the

zone where only plant B invades (II), and if the SA = 0 end point of the arc lies in the

zone where only plant A invades (I); in other words only for cases 19 and 20. Let see what

happens in case 20, shown in detail in Figure 6.6a:

1. at SA = 1 plant B invades AA: the system moves towards BA (AA → BA)

2. BA is soil unstable: the system moves towards BB (BA → BB) and SA → 0

3. at SA = 0 plant A invades BB: the system moves towards AB (BB → AB)

4. AB is soil unstable: the system moves towards AA (AB → AA) and SA → 1

Thus the four monoculture equilibria are saddle points connected through heteroclinic or-

bits in the sequence AA → BA → BB → AB → AA. That is how oscillations originate, and

Figure 6.6b shows a representation of the corresponding dynamics, where plants A and B

take turns trying to outcompete each other.
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Figure 6.7: Competitive oscillations for increasing competition strength cAcB. Top row

shows plants A (solid line) and B (dashed line) densities, bottom row indicates

the soil composition. In (a) cA = 0, 885 and cB = 0, 98, oscillations damped

out. In (b) cA = 1, 005 and cB = 0, 98, oscillations persist as limit cycle. In (c)

cA = 1, 05 and cB = 0, 98, oscillations are heteroclinic. The other parameters are

as in Bever (2003): rA = 0, 7; KA = 100; rB = 0, 5; KB = 120; αA = −0, 03; βA =

0, 1; αB = 0, 1; βB = −0, 2 and ν = 0, 8.

Figure 6.7 shows the temporal evolution of such oscillations. Using Bever’s parametriza-

tion the system always converges to a coexistence equilibrium (Fig. 6.7a). By increasing

the strength of competition, cAcB, this equilibrium becomes unstable and give rise to limit

cycles (Fig.6.7b). With further increases in competition strength the cycles become hete-

roclinic, i.e. oscillations attain very low minima for increasingly longer times (Fig. 6.7c).

Heteroclinic oscillations are considered mathematical artifacts: sooner or later one plant

species will get extinct in real life scenarios. If cA or cB become too large, one of the con-

ditions, (6.7) or (6.8), is no longer fulfilled. At this point, the heteroclinic cycle driving the

oscillations no longer exists.

As indicated by this numerical example, the local stability of the community equilibrium

changes from stable to unstable when the product cAcB is smaller than 1 (cAcB ≈ 0, 975),

which is in contrast with the standard Lotka-Volterra stability threshold cAcB = 1. This is a

consistent result and it can be explained by our graphical method as follows. Competitive
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oscillations require that the arc end points SA = 0 and SA = 1 lie in zones I and II respec-

tively; consequently, the arc joining them must pass trough zones III or IV which explains

the existence of an “internal” coexistence equilibrium AB : N̂A > 0, N̂B > 0, 0 < ŜA < 1

(and the non-existence of “border” equilibria, i.e. with ŜA = 0 or 1). If the arc intersects

zone IV (Fig. 6.6a), the internal equilibrium is competitively unstable (cAcB > 1); thus

oscillations will persist. On the other hand, if the arc intersects zone III instead, the internal

equilibrium is competitively stable (cAcB < 1), which is necessary but not sufficient to guar-

antee stability; thus oscillations can persist or vanish. Summarizing: the equilibrium AB is

always unstable if cAcB > 1, but cannot guaranteed to be stable if cAcB < 1. Conclusion:

the cAcB stability threshold of an internal equilibrium is lower than 1 (Appendix B), i.e.

cAcB = 1 − ǫ (6.13)

where ǫ is a positive quantity. If the soil equilibrium composition ŜA happens to be very

close to 0 or 1, or if there is parameter symmetry for rA = rB,KA = KB,ν = 1 and cA = cB =

c (but not for αA,αB,βA,βB), we recover the standard Lotka-Volterra stability threshold.

Since it is geometrically impossible to place AA in the exclusive invasion zone of B (II)

and BB in the exclusive invasion zone of A (I) when γAγB > 1, oscillations cannot develop

under net positive feedback. We conclude that persistent competitive oscillations, that

means limit cycles, require: 1) net negative feedback γAγB < 1, 2) mutual invasion, and 3)

unstable community equilibria.

6.4.3 Does negative soil feedback enhances coexistence?

An important conclusion of Bever (2003) is that net negative feedbacks enhance coexistence

and promote high diversity, while net positive feedbacks leads to exclusion and low diver-

sity. This can be understood graphically: it is easier to conceive soil-stable monocultures

AA(SA = 1) and BB(SA = 0) inside the invasion zones of plants B (II) and A (I) respec-

tively if the feasibility arc in Figure 6.2 is oriented according to the pattern of net negative

feedbacks as in Figure 6.3a, compared with the opposite orientation under net positive

feedbacks as in Figure 6.3b.

But since negative feedbacks can in theory lead to competitive oscillations, we have to

evaluate their consequences for the long term dynamics of the community. On the one

hand, coexistence through oscillations is coexistence after all: no species can be excluded

(in a mathematical sense). On the other hand, coexistence through oscillations is a rela-

tively uncertain mode of coexistence: populations can be driven close to very low densities

in which case extinction may occur due to demographic stochasticity (as in the enrichment

paradox of Rosenzweig, 1971). Thus, successful invasion (6.7,6.8) does not imply the real-

ization of long term coexistence.

To get an idea why this is an important issue, let us compare the occurrence of limit

versus heteroclinic cycles using the pattern seen in Figure 6.6 as an example. There, os-

cillations develop above cAcB = 0, 975 (i.e. between Figs. 6.6a,b) and must end some-

where below cAcB = 1, 559 the point where the requirement for mutual invasion (6.9) does

not hold anymore. If we consider cAcB = 1, 029 (Fig. 6.6c) as the switching point be-

tween limit cycles and heteroclinic cycles, then limit cycles occur for a rather small region
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(1,029−0,975
1,559−0,975

× 100 ≈ 9, 2%) in parameter space in comparison with heteroclinic cycles. In

other words, a small increase in the strength of competition results in a very large increase

in the amplitude of oscillations, and thus the risk of extinction.

In addition, equation (6.13) predicts that oscillations may occur in a system for which the

plants would otherwise coexist at stable densities in the absence of net feedback (i.e. when

1 − ǫ < cAcB < 1 and αA = αB = βA = βB). Unfortunately, the extend of destabilization

brought by negative feedbacks cannot be evaluated in the present model, since we do not

have an explicit algebraic expression for the quantity ǫ in appearing in (6.13).

If competitive oscillations turn out to be a common feature, Bever’s conclusion regarding

the role of negative feedbacks in the maintenance of diversity could be considered prema-

ture, because of the destabilizing effects on stable communities. On the other hand, in a

spatial context the risks associated with large amplitude oscillations can be compensated

by migration; and heteroclinic cycles could also mean local opportunities for invasion, and

regional persistence.

6.4.4 Invasion requirements and coexistence requirements

Invasion analysis is a powerful technique for the analysis of dynamical systems in ecology

and evolution (Case, 2000). When properly used, invasion criteria are very useful to predict

the range of dynamics that a dynamical system can possibly display. In the present context,

by considering (6.7) and (6.8), and the direction of the net feedback, we can list all possible

dynamics of Bever’s model as in Table 6.1.

However, there can be some limitations using invasion analysis which can be illustrated

by the following example. Consider a scenario of net positive feedback (γAγB > 1) as in

Figure 6.8a (case 5), where the feasibility arc of the competitive system is such that cA > γ−1
A

and cB < γ−1
B , and mutual invasion criterion (6.9) does not hold: plant species A is able to

grow when rare since (6.8) holds, but plant species B cannot since (6.7) does not hold.

However, coexistence may still be possible. As indicated in Figure 6.8a, the SA = 0 end

point of the arc lies in zone III, which means that there is a competitively stable plant

community equilibrium when SA = 0. Following our previous notation, let call this equi-

librium ABB since the soil is dominated by B’s soil biota. If the ratio of plant equilibrium

densities is NA/NB < ν then according to (6.2) dSA/dt < 0, thus for small fluctuations

vanish and ABB is soil stable. Thus, ABB is a local attractor because is competitively stable

and soil stable. The other end point of the arc SA = 1 lies in zone I, where a coexistence

equilibrium is not possible and plant A attains a competitively stable and soil stable mono-

culture AA, i.e. another local attractor. As a consequence, the system has two alternative

stable states: the coexistence equilibrium ABB dominated by B’s soil community and the

soil-stable monoculture AA dominated by A’s soil community, as shown in Figure 6.8b.

In contrast if at ABB the density ratios are NA/NB > ν then dSA/dt > 0 and small

fluctuations of SA increase, making ABB soil unstable, while AA remains stable in both

senses (soil and competitively). In this case A always wins, as predicted by the invasion

criterion.

This example illustrates two things. The first is a limitation in our graphical analysis,

which cannot address soil stability in all the cases, like it does with respect to competitive
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Figure 6.8: Alternative stable states. (a) In this configuration a monoculture of species A

evolves from an invadable (III) to a non-invadable zone (I), whereas a mono-

culture of B can be invaded always: coexistence by means of mutual invasion

is ruled out. However, there are coexistence equilibria because the feasibility

arc intersects the zone of mutual invasion (III). (b) The phase space shows the

equilibria (white: unstable, black: stable, gray: saddle) and the invasion zones.

The diagonal line representing the A-B nullcline (both species grow towards it)

intersects SA = 0 giving rise to the coexistence equilibrium ABB predicted in

part (a). If the vertical dashed line representing the soil-nullcline (SA increases

to the right, and decreases to the left) intersects the A-B nullcline there will be

an internal equilibrium AB that is a saddle point; and depending on the initial

conditions the system moves towards the monoculture of AA dominated by A’s

soil biota, or towards the coexistence equilibrium ABB dominated by B’s soil

biota.
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Positive net feedback

γAγB > 1

Negative net feedback

γAγB < 1

Both invade

cAγA < 1

cBγB < 1

1. Stable coexistence (SA = 1)

2. Stable coexistence (SA = 0)

3. Stable coexistence (SA = 0 or

SA = 1, depends on initial

conditions)

1. Stable coexistence

(0 < SA < 1)

2. Competitive oscillations

A invades

cBγB < 1

B does not

cAγA > 1

1. A wins

2. A wins or stable coexistence

(depends on initial condi-

tions)

A wins

B invades

cAγA < 1

A does not

cBγB > 1

1. B wins

2. B wins or stable coexistence

(depends on initial condi-

tions)

B wins

None invade

cAγA > 1

cBγB > 1

A or B wins (depends on initial

conditions)

A or B wins (depends on initial

conditions)

Table 6.1: The sign of the net feedback and the invasion criteria determine the outcomes of

the model. In case of stable coexistence the soil composition is indicated. In case

of exclusion, the soil composition consists entirely to the one associated with the

winner (SA = 1 if A wins, SA = 0 if B wins).

stability (in other words we cannot infer the magnitude of ν in the graphs). Second, it

shows the limitations of invasion analysis. Invasion analysis is a powerful technique for

the analysis of dynamical systems in ecology and evolution (Case, 2000), perhaps the best

example is the classical Lotka-Volterra model where mutual invasion and stable coexistence

are synonymous. But if the model being considered displays multiple equilibria and alter-

native stable states, as is the present case, it is erroneous to state that mutual invasion is a

requisite for coexistence.

Nevertheless, when properly used, invasion criteria remain very useful for predicting the

range of dynamics that a dynamical system can possibly display. In the present context,

invasion conditions (6.7) and (6.8), and the direction of the net feedback, allow us to list all

the possible dynamics of Bever’s model as shown in Table 6.1.
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6.5 general conclusions

In this paper we performed a more complete analysis of the Bever (2003) model to get

more insight in plant species coexistence and dynamics and the potential role of plant-soil

feedback affecting those. We found that plant species coexistence could be explained by an

interaction between net soil feedback (γi) and competition strength (ci) between the plants,

i.e. when feedback becomes more positive competition coefficients have to be lower in or-

der to allow plant coexistence. This means that more negative plant soil feedback result in

higher chances for coexistence. Negative soil feedback has been suggested previously as

one of the mechanisms to explain plant species coexistence and consequently to maintain

plant diversity (Bever et al., 1997; van der Heijden et al., 2008). Results of different recent

empirical studies, as well as a meta-analysis of more than 300 plant-soil feedback exper-

iments, indeed provide evidence for this hypothesis (Bever, 1994; Mills and Bever, 1998;

De Deyn et al., 2003; Kulmatiski et al., 2008; Bradley et al., 2008).

We addressed four important issues concerning plant-soil feedback effects. First, we dis-

cussed the definition of feedback in a mathematical model. We showed that the assumption

of parameter symmetry that is needed to calculate Bever’s interaction coefficient (IS) can be

relaxed when introducing the relative feedback coefficient, log(γA,γB). Our results show

that especially in experiments where large soil community effects are measured, it may be

important to use the relative feedback coefficient to assess plant community consequences.

Second, we found that negative soil feedback can drive oscillations in plant abundances,

but only under different conditions than presented by Bever. Stability of soil-driven plant

dynamics was dependent on the competition strengths between the plants, i.e., the more

competitive the plants were, the less stable coexistence was. We do not know how realistic

it is that oscillations in plant abundances in nature are driven by soil feedback, because

the range in which we found oscillations was very narrow and cycles quickly resulted in

heteroclinic cycles, which in real life scenarios will probably result in extinction of one of

the two plant species. We are not aware of any empirical study directly testing the ef-

fect of negative soil feedback on plant oscillations. However, there are suggestions that

soil-borne pathogens may play an important role determining plant community dynam-

ics (Olff et al., 2000). Moreover, different studies showed that soil feedback can enhance

succession (van der Putten et al., 1993; De Deyn et al., 2003) and thus, can drive plant com-

munity dynamics. However, these dynamics are not necessarily oscillations of the same

plant species, but may be different plant species succeeding each other.

Third, we discussed the consequences of oscillations for plant community diversity. We

found that in the presence of negative soil feedback plant coexistence was possible un-

der conditions that would otherwise lead to competitive exclusion of one of the two plant

species. This was coexistence by means of oscillations of plant abundances, i.e., soil feed-

back increased the range in which oscillations occurred. Thus, in the presence of soil feed-

back oscillations would occur in situations that would otherwise allow stable coexistence

between the plant species. Therefore, we can conclude that net negative plant-soil feedback

can either promote or limit plant community diversity, depending on the role of oscillations

on plant diversity. On the one hand, negative feedback enlarged the range in which plants

could coexist, thus in that sense coexistence and consequently diversity was enhanced by
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soil feedback. On the other hand, soil feedback can be viewed as a factor destabilizing

plant species coexistence, because it causes oscillations in situations that otherwise would

allow stable coexistence between the plant species. In real life scenarios the oscillations,

especially the heteroclinic cycles may enhance chances for exclusion of one of the plant

species, thereby reducing plant diversity.

Fourth, we presented an overview of the dynamics of the model analyzed with our new

graphical method. The Bever model, relatively simple at first sight, already showed quite

complex dynamics, however, this new graphical technique provided a rather complete anal-

ysis of equilibria and their stability and is still relatively easy to perform and understand.

Results obtained by the graphical analysis agree with results from the mathematical anal-

ysis. Although our new technique was very useful in providing a full model analysis and

overview of all scenarios, we have to conclude that there were some limitations because it

could not address soil stability in all cases.

Most of our general conclusions agree with Bever, i.e., that plant species coexistence is

dependent on an interplay between net plant-soil feedback and competition strength and

that negative soil feedback can drive plant community dynamics. However, some of our

results disagreed with Bever’s findings. First, we found that it was better to express net

soil feedback as the relative feedback coefficient log(γAγB), instead of the interaction coeffi-

cient (IS). Second, we found that even under positive feedbacks, in general associated with

species exclusion and loss of plant diversity, plant species are able to coexist if competition

coefficients are low enough. Therefore, we conclude that mutual invasion is not a necessary

requirement for coexistence, yet it does increase chances a lot. Third, soil feedback driven

oscillations as presented by Bever were probably caused by the use of inappropriate inte-

gration methods, since redoing the simulations with similar parameter settings resulted in

stable coexistence between the two plant species. However, we were able to find a range of

parameters under which plant-soil interactions led to sustained oscillations.

Although most of the insights gained from the Bever model and our new analysis coin-

cide, we still think we have to be careful translating these findings to the real world. On the

one hand because the model is relatively simple. For example, one assumption of the model

is that the soil community is always saturated, i.e. SA + SB = 1. In old-field ecosystems this

assumption may hold (Bever, 1994), but extrapolation to other systems may be difficult. To

get better insight in plant-soil interactions and their consequences for community dynam-

ics and diversity, it would be useful to develop a more mechanistic model. On the other

hand, oscillations in plant abundances occurred in a very narrow range and may result in

exclusion of one of the plant species easily. Therefore, we cannot be sure whether it is likely

to discover a phenomenon like the oscillations in nature. Finally, the oscillations extended

the range where plant coexistence was possible, which led to the important conclusion that

soil feedback may enhance plant diversity. However, this form of non-equilibrium coexis-

tence may lead to stochastically driven extinction of plant species in real ecosystems. An

outstanding challenge is to examine whether plant oscillations occur in nature under the

conditions predicted by the model, and their role in maintaining plant diversity.
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appendix a : graphical analysis

Figure 6.4 is useful for classifying and describing the main features of the dynamics in

terms of the invasion conditions. For example in cases 1, 2, 11 and 12 it is easy to see that

only one species A or B always wins, because only one of them is able to grow for any soil

composition. In cases 4 and 14 we have that any resident species will be protected against

invasion, and any equilibrium that may exist will be competitively unstable, for any soil

composition.

However, cases 3, 5-10, 13, 15-20 are more complicated. In these situations, it is sometimes

useful to have a graphical representation in the familiar form of a phase space and nullclines.

Although this is possible for three-dimensional system like the Bever mode, the following

two-dimensional representation is more convenient:

3 (positive feedback) 13 (negative feedback)
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AA BA

BB AB

AA
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The phase space is constructed according to the following rules:
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• The horizontal axis indicates the plant composition: plant A is dominant on the right,

plant B on the left. The vertical axis indicates soil composition: A’s soil biota is

dominates on the top, B’s soil biota dominates on the bottom.

• The corners represent the plant monocultures, with AB,BB corresponding to SA =

0, and AA,BA corresponding to SA = 1. Depending on the competitive stability

conditions (6.7, 6.8, 6.11, 6.12) and their soil stability, the corners are classified as

stable, unstable or saddle points.

• The invasion zones intersected by the feasibility arc become the domains of attraction

in the phase plot, placed in the same order as they are encountered by traversing the

arc from SA = 0 to 1 (and using the same fill patterns).

• If the arc intersects zones III or IV the corresponding domain of attraction in the phase

plot is divided by a diagonal line. This line, representing coexistence equilibria, is the

plant nullcline, i.e. a nullcline for the plant composition, not the plant densities. In case

of intersecting zone III, the plant composition moves towards the line (communities

are competitively stable). In case of intersection with zone IV, the plant composition

moves away from the line (communities are competitively unstable).

• The plane is divided by vertical that represents the non trivial soil nullcline: SA in-

creases at the right of the line (NA > νNB in eq. 6.2), and decreases at the left

(NA < νNB in eq. 6.2). The smaller the ν the bigger the portion of the plane where

SA increases, and viceversa. The top (SA = 1) and the bottom (SA = 0) sides of the

plane are trivial soil nullclines.

• A coexistence equilibrium corresponds to the intersection of the plant nullcline with

a soil nullcline, trivial or not. For this reason, there can be border equilibria where

SA = 0, SA = 1 or an internal equilibrium where SA is intermediate. Depending on

its location with respect to the attraction domains and the non trivial plant nullcline,

an equilibrium is declared stable, unstable or a saddle point.

Because of symmetry, we do not show cases 6, 8, 16 and 18 because they are qualitatively

equivalent to cases 5, 7, 17 and 18 (by swapping the “A” and “B” labels). Cases 3 and 13 are

very similar in the stability of their monocultures, and because of having border equilibria.

However, they display qualitatively different dynamics. Under net positive feedbacks (case

3) the system can display alternative stable states: coexistence with dominance of plant A

and its soil community or coexistence with dominance by plant B and its soil community.

On the other hand, under net negative feedbacks (case 13) there can not be alternative

stable states, and oscillations may develop (though we suspect they dampen out given the

geometry of the nullclines).

The majority of cases under net positive feedback result in competitive exclusion. How-

ever, some can display alternative stable states, and coexistence depending on the initial

conditions (5 and 6). On the other hand, the majority of scenarios under net negative feed-

back promote mutual invasion and coexistence (17 and 18 are the exceptions), including

non-equilibrium coexistence through oscillations (19 and 20).
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appendix b: stability of the internal equilibrium

Consider an internal equilibrium AB, where NA > 0,NB > 0 and 0 < SA > 1. We already

know that if the net feedback is positive (γAγB > 1) AB lies in the zone of competitive

instability (zone IV in 6.6a). Thus, under net negative feedback the community equilibrium

will be always unstable, and the oscillations will persist.

Thus, from here onwards we will consider that the net feedback is negative (γAγB < 1).

In this case AB is locally stable if and only if all eigenvalues λ of the jacobian matrix of the

dynamical system (6.1a,6.1b,6.2) evaluated at AB

J =







−rANA

KA
−cBrANA

KA
rANA(αA − βA)

−cArBNB

KB
−rBNB

KB
rBNB(αB − βB)

SA(1−SA)

NA+NB
−ν

SA(1−SA)

NA+NB
0






(6.14)

have negative real parts. The eigenvalues of J are the solutions of the characteristic equation

λ3 − T(J)λ2 + M(J)λ − D(J) = 0 (6.15)

where T(J) = ∂F
∂NA

+ ∂G
∂NB

, M(J) = ∂F
∂NA

∂G
∂NB

− ∂F
∂NB

∂G
∂NA

− ∂F
∂SA

∂H
∂NA

− ∂G
∂SA

∂H
∂NB

and D(J) =
∂G

∂NA

∂H
∂NB

∂F
∂SA

+ ∂H
∂NA

∂F
∂NB

∂G
∂SA

− ∂F
∂SA

∂H
∂NA

∂G
∂NA

− ∂G
∂SA

∂H
∂NB

∂F
∂NA

are respectively the trace, the

sum of the principal minors and the determinant of the jacobian matrix. According to the

Routh-Hurwitz criterion all eigenvalues have negative real parts if and only if:

1. T(J) < 0

2. D(J) < 0

3. M(J) > 0

4. −T(J)M(J) + D(J) > 0

where

D = −
SA(1 − SA)rArBNANB

NA + NB

{
(βA − αA)(1 + cAν)

KB

+
(αB − βB)(cB + ν)

KA

}

(6.16)

M =
rArBNANB(1 − cAcB)

KAKB

+ ν
SA(1 − SA)[rB(αB − βB) + rA(βA − αA)]

1 + ν
(6.17)

− TM + D =

{
rANA

KA

+
rBNB

KB

}{
rArBNANB(1 − cAcB)

KAKB

+ ν
SA(1 − SA)[rAδA + rBδB]

1 + ν

}

−
SA(1 − SA)rArBNANB

NA + NB

{
δA(1 + cAν)

KB
+

δB(cB + ν)

KA

}

(6.18)

Simple inspection of (6.14) shows that the first condition always holds. Before continuing

with 2, 3 and 4, let assume Asumption 1: that the net feedback is negative because αB,βA >
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αA,βB and define δA = βA − αA > 0 and δB = αB − βB > 0. Thus condition 2 holds since

D is negative. Condition 3 holds if and only if

cAcB < 1 +
KAKBSA(1 − SA)[rAδA + rBδB]

rArB(NA + NB)
(6.19)

and for condition 4 we will employ two more assumptions in order to check its valitidy.

Assumption 2: consider an equilibrium in which SA is very close to 0 or 1, such that the

product SA(1 − SA) is very small. These circumstances allows to approximate equation

(6.18) by

− TM + D ≈
{

rANA

KA

+
rBNB

KB

}{
rArBNANB(1 − cAcB)

KAKB

}

(6.20)

and condition 4 holds if and only if cAcB < 1, which already validates condition 3.

Assumption 3: let consider the symmetry rA = rB = r, KA = KB = K, ν = 1 and cA =

cB = c (but not for αA,αB,βA,βB). As a result, plant equilibrium densities must be

N̂A = N̂B = N and −TM + D can be easily factored as follows

− TM + D =
2rN

K

{
r2N2(1 − c2)

K2
+

SA(1 − SA)r(δA + δB)

2

}

−
SA(1 − SA)r2N(1 + c)(δA + δB)

2K

=
rN

K

{
2r2N2(1 − c2)

K2
+ SA(1 − SA)r(δA + δB) −

rSA(1 − SA)(1 + c)(δA + δB)

2

}

=
rN

K

{
2r2N2(1 − c2)

K2
+ SA(1 − SA)r(δA + δB)

[

1 −
1 + c

2

]}

=
rN

K

{
2r2N2(1 − c)(1 + c)

K2
+ SA(1 − SA)r(δA + δB)

1 − c

2

}

=
rN(1 − c)

K

{
2r2N2(1 + c)

K2
+

SA(1 − SA)r(δA + δB)

2

}

(6.21)

The quantity in curly braces is positive, so the sign of TM − D is that of 1 − c. Thus for

c < 1 both condition 4, and also condition 3, holds and the internal equilibrium is locally

stable.

Only under after making three assumptions we obtain the result that the stability of AB

changes exactly at cAcB = 1. Thus in general, the stability threshold cannot be cAcB = 1.

Since we already know that any equilibrium is competitively unstable if cAcB > 1 (6.2b), we

must conclude that under net negative feedbacks the internal equilibrium remains stable as

long as

cAcB < 1 − ǫ

where ǫ is a positive quantity smaller than 1.
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afterthoughts

The major part of my thesis focused on the dynamics of multispecies resource competi-

tion. In this final chapter I want to put my results in a broader context, looking ahead to

get an idea how they are affected if additional features are taken into account.

Ecological communities are highly complex, yet they also display consistent spatial and

temporal patterns that seem to be quite robust, independent of many details. An example is

Damuth’s (1981) rule that population density N tends to be inversely proportional to body

mass w to the power of −3/4: N ∝ w−3/4. Another example is the empirical law that the

number S of species found in an area of size A tends to obey a power law S ∝ Az where z

is a scaling exponent (MacArthur and Wilson, 1967). It is a major challenge to understand

these empirical laws in terms of ecological mechanisms.

Physics provide us with examples on how such understanding can be achieved. My fa-

vorite example is the ideal gas theory. Empirical observation reveals under low pressures

the pressure P, volume V and temperature T of a gas are related by the ideal gas law

PV = nRT , in which n is the number of moles of gas and R is the universal gas constant.

One mole is 6.02 × 1023 molecules, a quantity that dwarfs the number of individuals in

ecological communities. How does the dance of a virtually infinite number of molecules

results in the gas law? In physical theory, an answer is given by a surprisingly simple

model that considers a gas as a huge collection of point particles that encounter randomly

and exchange energy in elastic collisions (Halliday and Resnick, 1974). Real interactions

between these particles are not taken into consideration. Such a gas does not exist in the

real world, but the model is nevertheless useful since it demonstrates how macroscopic

state variables like P and T are related with particle properties like masses and velocities.

At a later stage, particle interactions were included in the model (Moore, 1972), yielding

the Van der Waals equation, which considerably improves the ideal gas law, though not

being perfect. Even in this more sophisticated model, some of the main conclusions of the

simpler theory hold (for example, that temperature is directly proportional to the mean

kinetic energy of molecules). Despite its many oversimplifications, the kinetic theory of

gases allows physicists to connect the classical mechanics of individual particles with the

phenomenological laws of thermodynamics. Had Galileo, Newton and their followers in-

cluded all intricacies of the real world from the start in their models, today’s physics would

still be a descriptive science (Nabi, 1981).

Can we apply similar approaches in ecology? A promising example is the Metabolic

Theory of Ecology (MTE) (Brown et al., 2004). This theory starts with the simple assump-

tion that all physiological rates are limited by metabolism. Moreover, MTE maintains that

metabolism scales with body mass according to Kleiber’s law and with respect to tempera-

ture according to the Arrhenius equation (Moore, 1972). Since ecological rates (e.g. growth,

mortality, predation) are dependent on metabolic rates, MTE is able to predict a multitude

of ecological relationships (Brown et al., 2004). For example, the −3/4 exponent in Damuth’s

rule is viewed as a direct consequence of the 3/4 exponent in Kleiber’s law.

These predictions of are based on extremely simplified assumptions concerning the up-

scaling from biochemical principles to individual metabolism and from individual organ-

isms to the population, food web and even ecosystem level. Until now, such upscaling

has not reached the level of sophistication found in physics, since it is not really rooted

in lower-level principles. Moreover, interactions among individuals and populations are
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Newtonian dynamics
2 particles: easy
3 particles: tough

Competition dynamics
2 species: easy
3 specles: tough

Ideal gas
theory

Multiparticle
systems
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systems

Mechanistic approach
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Physics Ecology
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Figure 7.1: In physics, it is a general insight that it is relatively easy to study the mechanics

of two particles, but very difficult to do so for three or more particles. Thanks to

statistical mechanics it is nevertheless possible to describe large systems consist-

ing of many particles, as it happens with the ideal gas law. In ecology, we face a

similar challenge. There are large scale patterns, like species-area relationships,

yet there is no firm theory that explains how these patterns arise as a conse-

quence of ecological interactions among the many components of an ecosystem.

typically neglected or trivialized. One of my original goals was to see whether, and to what

extent, such interactions matter for understanding higher-level patterns and processes.

The interactions of only two species are generally quite easy to understand. For example,

the competition among two species has a simple dynamics: the systemwill always converge

to an equilibrium that is easy to characterize. The interaction of three or more species can,

however, be highly complex. For example, the competition among three or more species can

lead to oscillations (Gilpin, 1975; May and Leonard, 1975; Zeeman, 1993), and deterministic

chaos is possible in case of more than three species (Smale, 1976; Arneodo et al., 1982). This

is reminiscent to the situation in classical mechanics where two-particle dynamics is simple,

but three-particle dynamics is highly complex and often chaotic (Fig. 7.1). In analogy with

the transition from a mechanistic to a statistical description in physics, one might wonder

whether a mechanistic view of the interaction of multiple populations will also give rise to

simple statistical rules.

To address this, I considered the most basal type of ecological interaction, namely the

competition of autotrophic organisms for abiotic resources such as mineral nutrients or

light. The goal was to uncover the rules governing such competition, on the way to an-

swering question like: is a mechanistic view of multispecies competition consistent with

the statistical patterns predicted by a theory like MTE? The mechanistic analysis of multi-

species competition turned out to be a difficult enterprise, and in fact it became the main

focus of my thesis. The main insights obtained are summarized in section 1 of this chapter.

Section 2 is more speculative, since I try to extrapolate my findings on competition to more

complex ecological scenarios like food webs. In section 3, I get back to the original aim at

linking MTE and species interactions.
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7.1 competition

In simple models of competition for essential resources Huisman and Weissing (2001) for-

mulated a few "rules of thumb" concerning the predicted outcome of competition for several

relationships between resource requirements and resource consumption patterns:

1. If each species tends to consume most of the resources for which it has the highest

requirements, the system will tend to equilibrium where as many species will coexist

as there are limiting resources.

2. If each species tends to consume most of the resources for which it has the lowest

requirements, competitive exclusion is to be expected. It depends on the initial condi-

tions which species will outcompete all its competitors.

3. If each species tends to consume most of the resources for which it has intermedi-

ate requirements, competitive oscillations and chaotic dynamics are to be expected.

Even in a homogeneous environment, more species can stably coexist than there are

limiting resources.

At equilibrium, not more species can stably coexist than there are limiting resources (the

Principle of Competitive Exclusion, Gause, 1934; Hardin, 1960; Grover, 1997). However,

under non-equilibrium conditions, many more species can persist than the number of re-

sources. It has been argued (Huisman and Weissing, 1999) that this might offer a solution

for the paradox of the plankton, the observation that hundreds of competing algal species

do coexist on a handful of mineral resources in an homogeneous medium (Hutchinson,

1961).

This is, however, still an open question. The mathematical model that produces the

aforementioned results (e.g. the "Monod model" described by equations (7.17) ignores an

important characteristic of algae that is crucial in competition under fluctuating resource

conditions, namely the ability to store resources (Ducobu et al., 1998). It is therefore natural

to ask: are the above rules of thumb robust? how likely are competitive oscillations in the

presence of the buffering effects of storage? how is the dynamics of competition affected by

the delay between resource uptake and resource-limited growth?

In order to explore these questions I considered the following resource storage model of

multispecies competition

dNi

dt
= Ni {µi(Q1i, . . . ,Qmi) − mi}

dQji

dt
= fji(Rj) − µi(Q1i, . . . ,Qmi)Qji (7.1)

dRj

dt
= φj(Rj) −

n∑

i=1

fji(Rj)Ni

Here Ni is the density of species i, Rj is the concentration of resource j and Qji is the

content of resource j stored per species i also called the quota. The net dynamics of species i

results from the balance between its growth rate µi and its mortality mi rate. The dynamics
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of the quotas result from the balance between consumption fji and their metabolization at

a rate that is proportional to growth µiQji (dilution by growth, Grover, 1997). The resource

balance depends on the net supply rate φj and its consumption by all species. In numerical

simulations µi, fji and φj are given by

µi(Q1i, . . . ,Qmi) = ri min
j

[

1 −
qji

Qji

]

(7.2)

fji(Rj) =
vjiRj

Kji + Rj

(7.3)

φj(Rj) = D(Sj − Rj) (7.4)

where µi follows the Droop (1973) formula and Liebig’s (1840) law of the minimum for

perfectly essential resources; ri is the maximum growth rate, and qji is the threshold

growth quota, such that µi = 0 if Qji 6 qji. Resource consumption attains its maxi-

mum vji under saturating resource concentrations, and Kji is the half-saturation constant

(Aksnes and Egge, 1991). Resources follow the dynamics of a chemostat where D is the

resource turnover rate and Sj the resource input concentration (Grover, 1997).

Simulations

In Chapter 2, I performed an extensive computer simulation study of the storage model,

in order to find out whether, and to what extent, the "rules of thumb" formulated by

Huisman and Weissing (2001) extend to this more complex class of competition models.

The general conclusion was that the rules of thumb hold fairly well in the multispecies stor-

age model. Equilibrium coexistence occurs in virtually all cases where species tended to

consume most of the resources for which they had the highest requirements; and competi-

tive exclusion was observed in all cases where consumption was highest for the least needed

resources When species tend to consume most of those resources for which they have in-

termediate requirements, competitive oscillations do indeed occur regularly. However, in

a substantial proportion of the simulations (about 75%) these oscillations were transitory,

collapsing into competitive exclusion or stable coexistence at equilibrium.

The storage model is inherently more complex than the model without storage. To illus-

trate this, let us consider a specific scenario where five species compete for five resources.

In models without storage, such a scenario can be characterized by 50 parameters, namely

5 × 5 consumption rate parameters cji and 5 × 5 half-saturation constants Hji, which di-

rectly translate into the 25 resource requirement parameters R∗
ji. In our case, I chose the

following parameter configuration (where rows correspond to resources and columns cor-

respond to species):

[R∗
ji] =















1, 9 1, 8 1, 6 1, 6 1, 4

1, 3 1, 9 1, 8 1, 8 1, 6

1, 7 1, 3 2, 0 1.8 1, 7

1, 7 1, 6 1, 3 1, 8 1, 7

1, 9 1, 8 1, 7 1, 5 1, 9















, [cji] =















1.2 1.0 3.4 3.0 1.8

2.0 1.8 0.8 3.4 2.8

2.6 2.2 1.2 0.8 3.2

3.4 2.4 2.2 1.8 1.2

1.6 3.6 2.2 2.0 1.0















(7.5)
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In this configuration species 1 has the highest requirement for resource 1, species 2 for

resource 2 and so on (bold R∗
ji), and each species consume most of the resources for which

it has intermediate requirements (bold cji). According to the rules of thumb, this pattern

should generate oscillations or chaos, and it does, as seen in Figure 7.2a.

In the storage model, resource requirements and consumption rates depend on the 75

model parameters vji,Kji and qji in an intricate and non-linear way. Starting with a set of

consumption and growth parameters, it is extremely difficult (or infinitely frustrating) to

tell if the resource requirements and consumption rates will match a given pattern. The

opposite however, is straightforward: given R∗
ji and cji (and knowing that at equilibrium

the fji of the storage model is equal to micji of the model without storage), an infinite set of

parameter combinations vji,Kji,qji can be generated, which all lead to the same resource

requirements and consumption patterns at equilibrium (Chapter 2, Appendix). In other

words, for each specific model without storage, there are infinitely many realizations of the

storage model sharing the same characteristics of resource limitation and resource uptake

at the community equilibrium. The question is whether all of these realizations exhibit at

least qualitatively the same dynamics as the model without storage.

Figure 7.2b exemplifies that the answer to this question is negative. The figure shows 20

realizations of the storage model. The parameters of these realizations are chosen at random

but with one restriction: they reproduce the same resource requirements and consumption

pattern at equilibrium (7.5) as the model without storage in Figure 7.2a. Like in the simpler

model used as template, all realizations of the storage model have a tendency to exhibit

oscillations. Indeed, many display a the similar chaotic dynamics (the cycle of species 1-2-4

is interrupted at irregular intervals by the rise and decline of species 3 and 5). However,

a small but significant number of realizations display regular oscillations, and in few of

them some actually species went extinct (see also chapters 3 and 4). These simulations

show another distinctive feature of the storage model, which is that the time scale of the

dynamics is much longer than in models without storage.

Stability and dynamics

The analytical study of the multispecies storage model is not an easy task. Given n species

and m resources, the storage model consists of n + m + n × m time dependent variables

(species + resources + quotas). For example 2 species and 2 resources results in an 8-

dimensional system, 3 species and 3 resources in a 15-dimensional system, and our previous

numerical example is 35-dimensional. The jacobian matrices associated with these systems

have (n + m + n × m) rows and columns, making it quite unlikely to ever obtain general

and ‘nice’ criteria for the stability of equilibria. At present only the case of two species has

been studied in some detail by Li and Smith (2007).

In Chapter 3, I derived some partial results on stability, which are more broadly applica-

ble to higher-dimensional storage models. I showed that – like models without storage – the

local dynamics around each equilibria is strongly dependent on the consumption pattern

of the competing species, i.e., on the structure of the consumption matrix [fji] evaluated

at equilibrium. Compared with the jacobian matrix the consumption matrix has only n

rows and m columns, simplifying the analysis considerably. More importantly, the stability
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Figure 7.2: Competition of five species for five resources in the absence (a) and presence

(b) of resource storage. The simulations are all based on a specific configura-

tion of resource requirements and consumption patterns ((7.5) in the text). Each

species tends to consume most of those resources, for which it has intermediate

requirements. (a) The model with no storage is fully specified by the param-

eter combination (7.5). As predicted by rules of thumb, the system exhibits

(chaotic) oscillations. (b) The storage model is only partly specified by resource

requirements and consumption patterns. The 20 panels show simulation runs

for randomly chosen realizations of the storage model, which are all compati-

ble with the imposed parameter configuration (7.5). Some of these simulations

display similar dynamics as the model without storage, others display regular

oscillations, and even the extinction of one or two species. The time scale of the

dynamics of the storage model (shown in the lower left panel) is considerably

longer compared with its non-storage equivalent.
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criteria do not depend on the functional form of the underlying model parameters µi, fji

and φj. Hence, the results are quite robust and not dependent on details.

In contrast with the model without storage (where the consumption rates are assumed

to be constant), the consumption matrix [fji] of the storage model is not fixed, but varying

from one equilibrium to the next: the matrix [fji] may be identical to the matrix [cji] in (7.5)

at the 5-species equilibrium, but it can have a totally different structure at any of the 4-, 3-

. . . and 1-species equilibria. Thus, the "rules of thumb" regarding consumption become

local rules in the storage model.

As shown in Chapter 4, another important aspect varying from one equilibrium to the

next is the identity of the limiting resource. In an n-species equilibrium, each species must

be limited by a different resource: that resource, for which it has the highest requirement.

In the neighborhood of other equilibria with fewer than n species, a species may be limited

by a different resource than in the n-species equilibrium. As a consequence, the dynamics

becomes strongly dependent on the initial conditions. Such changes in resource limitation

become important whenever more than three resources are considered. They are not an

exclusive feature of the storage model, but a consequence of framing essential resources in

terms of Liebig’s law. However, since both theory and experiments on resource competition

tend to focus on the special case of two resources, this issue has not received the attention

it deserves (Zhang, 1991; Hu and Zhang, 1993).

As the dimensionality of the system increases, both in species and in resources, the long

term dynamics becomes more dependent on the initial conditions, even in the absence

of deterministic chaos. But the consumption patterns can be still responsible for major

features of the competitive dynamics, since they determine the tendency for displaying

non-equilibrium dynamics, which affecs biodiversity in shorter time scales. For example,

it may happen that the long term deterministic attractor of a system is an equilibrium

state where one species exclude all others. However, transitory oscillations can delay the

approach to such state of low diversity, and thus maintain a high number of species. In

case of storage models such delays can be considerable (Fig. 7.2).

Comparisons of competition models

Without or with storage, resource competition models share many dynamical features with

the much simpler multispecies Lotka-Volterra model for competition. All three models

can exhibit multiple stable states, stable and unstable limit cycles, and chaos (Gilpin, 1975;

May and Leonard, 1975; Smale, 1976; Arneodo et al., 1982; Zeeman, 1993). As I showed in

Chapter 5, the equilibrium states and local stability of resource competition models (with

and without storage) depend on the structure of the consumption matrix ([cji] or [fji]),

whereas in Lotka-Volterra models equilibrium and stability are governed by the community

matrix; the matrix of competition coefficients. These matrices can be related to each other,

although the form of the relationship depends on the mechanistic details of the consumer-

resource interaction.

In view of these similarities between the mechanistic resource competition models and

the phenomenological Lotka-Volterra model, we can generalize the “rules of thumb” of
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resource competition (Huisman and Weissing, 2001) as rules of thumb relating the relative

intensity of inter- and intra-specific competition:

1. weak interspecific competition leads to stable coexistence at equilibrium;

2. strong interspecific competition leads to competitive exclusion with the winner de-

pending on the initial conditions;

3. intermediate interspecific competition can lead to all of the above, but also to compet-

itive oscillations and chaos.

In the Lotka-Volterra model, interspecific competition is considered "weak" when the in-

traspecific coefficients of the community matrix tend to be higher than the interspecific

coefficients; it is considered "strong" if the opposite is true. In resource competition models,

interspecific competition is "weak" if each species has the strongest effect (via consumption)

on its ‘own’ limiting resource than on the limiting resources of other species; it is "strong"

if the opposite is true.

Scenarios of "intermediate" interspecific competition, are more difficult to define. In-

termediate could mean that all interspecific effects are of similar magnitude. In terms of

resource competition that would be roughly equivalent to a situation where the consump-

tion ratios for each species are comparable. Without knowing the resource requirements,

it is difficult to determine if such situations lead to equilibrium non-equilibrium or non-

equilibrium dynamics.

The other “intermediate “ scenario occurs when each species tends to impose strong

effects on a given subset of its competitors and weak effects on the rest, such that the

average effects are approximately similar for all species. Under resource competition, this

is achieved when each species tends to display high consumption rates for the most critical

resources of some species, and low consumption rates for the most critical resources of the

rest. In a minimal community of three species this results a non-transitive hierarchy of

competitive dominance, like in the Rock-Scissors-Paper game where Rock blunts Scissors,

Scissors cuts Paper, and Paper captures Rock (Weissing, 1991). As long as all three strategies

are present, no one is a clear winner and they chase each other forever; thus they coexist.

Incomplete dominance as in the Rock-Scissors-Paper game, has been invoked to explain

the maintenance of biodiversity not just in the context of resource competition, but in more

general ecological and evolutionary contexts (Buss and Jackson, 1979; Sinervo and Lively,

1996; Kerr et al., 2002; Laird and Schamp, 2006). In order to survive, organisms do not have

to be superior for all characteristics; it suffices to compensate weaknesses in some aspects

with strengths in other aspects.

Like in the Lotka-Volterra model, the outcome of resource competition is the consequence

of the dominance relationships among the species, independently of the mechanistic details

of resource consumption. This does not mean that mechanistic detail is unimportant; such

detail is required in order to explain how the dominance relationships arise in the first place.

This is reminiscent of the description for the ideal gas given at the beginning of this chapter.

Classical thermodynamics can tell us what is the relation between pressure and volume a

given temperature, but what is exactly temperature? Enter statistical mechanics: temperature

is a measure of the mean kinetic energy of the gas particles. Classical thermodynamics is

phenomenology, statistical mechanics gives the explanation.
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Non-transitivity as in the Rock-Scissors-Paper game appears to be an essential feature

for competitive oscillations. Interestingly, competitive oscillations can occur between two

species, where non-transitivity is ruled out by definition. In Chapter 6 this was explored by

means of a plant-soil interaction model in which the competitive displacement of one plant

by another turns the winning plant vulnerable to invasion at a later time. In this plant-soil

model, the state of the soil community (composed of mutualists, consumers and parasites)

leads to a switch in plant dominance in a predictable and cyclical way.

7.2 food webs

I focused on purpose on competition for essential and abiotic resources. This choice makes

growth rates easy to model, and interactions among resources (like competition among

prey species) can be neglected. Although complex, the major features of the competitive

dynamics are explainable by a few rules of thumb. However, these rules might be overshad-

owed by interactions across trophic levels, since in the real world competitive communities

are embedded in food webs. In this context, are there competitive oscillations on substi-

tutable resources? Does competition among the resources affects consumer dynamics? Are

competitive oscillations affected, suppressed, enhanced by predation or herbivory?

In this section will try to approach these questions by means of a simple but realistic

example considering competing plants and competing herbivores, linked in a food web by

means of the Rosenzweig-MacArthur equations (Rosenzweig, 1971)

dNi

dt
= Ni

{
c
∑

j ejipjiRj

1 + h
∑

j pjiRj

− m

}

dRj

dt
= rRj

{

1 −

∑
k ajkRk

K

}

−
∑

i

cpjiRjNi

1 + h
∑

k pkiRk
(7.6)

Ni and Rj denote the densities of herbivores and plants respectively. Plants compete accord-

ing to the Lotka-Volterra model, where r is the intrinsic rate of growth and K is the carrying

capacity. ajk are the competition coefficients, i.e. the ratio of the effect of plant k on plant

j with respect to the effect of plant j on itself, which is assumed to be one (ajj = 1). Plants

are substitutable resources for the herbivores. They are consumed according to Holling’s

type II functional response, where c is the attack rate, h is the resource handling time and

pji is the proportion of resource j in the diet of consumer i, a measure of the foraging effort.

The parameter eji is the conversion yield of resource j into biomass of consumer i (Grover,

1997), and m is the constant mortality rate of the consumers.

This Rosenzweig-MacArthur model has the link structure of a small food web em-

bedded in a larger one as in Figure 7.3. There are three types of interactions to con-

sider. The first is competition among the herbivores which can lead to competitive os-

cillations (Huisman and Weissing, 1999). The second is competition among plants which

can lead to competitive oscillations too (Gilpin, 1975; May and Leonard, 1975). And the

third are the plant-herbivore interactions, which may lead to prey-predator oscillations

(Rosenzweig and MacArthur, 1963).
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Figure 7.3: An experimental food web studied by Benincà et al. (2008) which displays

chaotic dynamics. The “sub-web” formed by primary producers and their

consumers (rectangle) has the same consumer-resource link structure as the

Rosenzweig-MacArthur model (eqns. 7.6) discussed in the text.

Effects of lower trophic levels

Let us turn our attention to the consumer species. Complex dynamics like competitive

oscillations require trade-offs, e.g. higher requirements for certain resources must be bal-

anced by low requirements for others. In chapters 1 - 4 we employed parameter matrices

to express such trade-offs (as in section 2). The same can be done for this model. Consider

three consumers and three resources and the following parameters

[eji] =





ǫ 0 1 − ǫ

1 − ǫ ǫ 0

0 1 − ǫ ǫ



 , [pji] =





π 0 1 − π

1 − π π 0

0 1 − π π



 , [ajk] =





1 α α

α 1 α

α α 1





(7.7)

where each herbivore consumes only two out of three resources, or alternatively each pair of

herbivores only competes for one resource. A trade-off exists, in which the high conversion

yield of one resource is compensated by a low conversion yield for the other (0 < ǫ < 1).

A second trade-off concerns the diet, in which the high consumption of one resource is

compensated by the low consumption of the other resource (0 < π < 1).

Let us assume that plants do not compete (α = 0), and that each plant is the most nu-

tritive resource for a different herbivore: plant 2 for herbivore 1, plant 3 for herbivore 2,

and plant 1 for herbivore 3 (ǫ < 1/2). In Figure 7.4a, where the herbivore diets are biased

towards the most nutritive resource (π < 1/2) the system develops competitive oscillations.

These are not predator-prey oscillations because: (1) the carrying capacity is too low to

sustain predator-prey oscillations ("paradox of enrichment" Rosenzweig, 1971), (2) there is

a regular sequence of invasions and displacements and (3) the elimination of one herbivore

destroys the cycle and leads to a community dominated by one herbivore (the elimination

of one plant also destroys the cycle, but herbivores can coexist since their resources are

substitutable). In Figure 7.4b the diet has switched such that the less nutritive resource

is favored (π > 1/2). This makes the competitive oscillations short lived, and they are re-

placed by a predator-prey cycle. Interestingly, this parametrization does not allow sustained
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Figure 7.4: Dynamics of the Rosenzweig-MacArthur model of three competing herbivore

species (linetypes correspond to species) feeding on three competing plant

species. (a) Reference scenario that is characterized by the parameter setting

r = K = c = h = 1,m = 0.1; and eji,pji,aji given by (7.7) with ǫ = 0.4, π = 0.1

and α = 0. Here the plants do not compete and herbivory is biased towards

the most nutritive resource. In this scenario the herbivores display competitive

oscillations. (b) The herbivores diet changes to π = 0.7, which is now biased

towards the less nutritive resource. As a consequence the competitive oscilla-

tions are substituted by a predator-prey oscillation, in which the community of

herbivores act as if they were a single herbivore (the thick line shows the aver-

age plant density). (c) If the plants are allowed to compete in part b (by setting

α = 0.1), the herbivore’s competitive oscillations are restored, but the amplitude

is lower than the in reference scenario. (d) Raising the carrying capacity to K = 2

in the reference scenario induces predator-prey oscillations, which combine with

the competitive oscillations.
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predator-prey oscillations for any pair herbivore-plant. Instead, the oscillation is between

the community of herbivores acting as a single predator, and the plant community acting

as a single prey.

In Figure 7.4c the plants are allowed to compete with each other (α > 0). We can see that

competitive oscillations develop again, but this time their amplitudes are smaller than in the

case where the plants do not interact. However, starting from a different initial condition

(not shown) the oscillations are transitory and the system approaches an equilibrium. This

may indicate the existence of a subcritical bifurcation, as discussed in Chapter 4.

Until now, the carrying capacity K was kept low, implying that predator prey oscillations

cannot be sustained. It is well known that consumer-resource models develop oscillations

when the carrying capacity increases Rosenzweig, 1971, or when the handling (h) time

increases. In Figure 7.4d, the carrying capacity was raised and as a consequence the system

displays a mixture of competitive and predator- prey oscillations.

Thus, competitive oscillations can develop in competition for substitutable resources. As

in competition for essential resources, the type of dynamics depends on the consumption

patterns, in this case represented by the matrix [pji]. But in the context of a food web, inter-

actions among the resources can in effect modify and even mask the competitive dynamics

in the trophic level under study.

Effects of higher trophic levels

We can also change our perspective by focusing on the plants as the competing species

instead of the herbivores. For this purpose consider the following parameter configuration

[eji] =





1 0 0

0 1 0

0 0 1



 , [pji] =





1 0 0

0 1 0

0 0 1



 , [ajk] =





1 α β

β 1 α

α β 1



 (7.8)

where the plants display Lotka-Volterra competitive oscillations in the absence of the herbi-

vores when β < 1 < α (May and Leonard, 1975). The herbivores are this time specialist con-

sumers. Figure 7.5 shows that competitive oscillations under this scheme are very fragile,

because as soon as one of the consumers is gone, the resulting imbalance in herbivory leads

to the collapse of the cycle. On the other hand, if herbivores are generalists (eji = pji = 1/3,

not shown) oscillations do not show up at all.

In these examples we clearly see that the competitive dynamics within a trophic level is

affected by interactions across trophic levels. In the simple model considered above, the

simulations suggest that oscillations are more strongly suppressed by higher than by lower

trophic levels. For the sake of simplicity, a symmetric parametrization was chosen, and

plant interactions were modeled in a non-mechanistic ways. Thus the model considered

above can be improved and extended in various ways.

We have only seen simple forms of coupling between predator-prey and competitive

oscillations, like forcing (Fig. 7.4b) and superposition (Fig. 7.4d). Coupled oscillators

(Hastings and Powell, 1991; Vandermeer, 1993; Huisman and Weissing, 2001; Benincà et al.,

2008) are implied in the onset of chaos (Hastings and Powell, 1991; Vandermeer, 1993;

Huisman and Weissing, 2001; Benincà et al., 2008), and they have been found to be respon-
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Figure 7.5: Dynamics of three competing plant species (linetypes correspond to species). In

the absence of herbivores, the plants can display competitive oscillations. (a)

In the presence of three specialist herbivores the consumption pressure is well

balanced, and the plant competitive oscillations persist. (b) After the elimination

of a single herbivore, the competitive cycle collapses, leaving a system of one

herbivore and two plants. Parameters: r = K = h = 1,m = 0.1, c = 0.7; and

eji,pji,aji given by (7.8) with α = 0.8,β = 1.2.

sible for the chaotic dynamics displayed by the food web in Figure 7.3 (Benincà et al., 2009).

But chaos resulting from the interaction of predator-prey and competitive oscillations is yet

to be found.

7.3 metabolism

The Metabolic Theory of Ecology (Brown et al., 2004) (MTE) states that large-scale patterns

in communities and ecosystems (e.g. community structure, size distributions, biodiver-

sity gradients) reflect the physical constraints imposed on the metabolism of individu-

als. According to MTE individual metabolic rates M, from microorganisms to whales

(Gillooly et al., 2001), scales with body mass/size w and ambient (absolute) temperature

T as follows:

M = Mow
3/4e−E/kbT (7.9)

According to this “master equation”, the body mass dependence follows Kleiber’s law,

and the temperature dependence follows the Arrhenius law, where E corresponds to the

mean activation energy of biochemical processes (0,6 - 0,7 eV) and kb is Boltzmann’s con-

stant (Moore, 1972). Whether there is a universal metabolic rule is a hotly debated topic in

ecology (Agrawal, 2004, special issue on MTE). On the other hand the prospect of a unified

metabolic law is appealing, and the master equation of MTE has been already considered

in the study of the stability (Brose et al., 2006) and emergence (Loeuille and Loreau, 2005)

of complex food webs.

According to MTE the equilibrium population densities scale with body mass and tem-

perature as

N ∝ λw−3/4e
E/kbT (7.10)
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where λ is the rate of resource supply (Brown et al., 2004; Savage et al., 2004). By means of

simple algebra, several mass and temperature scaling relationships follow, like community

metabolism, primary production, even biodiversity (which is not a rate). For example, at a

given temperature and resource supply, the total metabolism of a whole population should

scale as N×M ∝ w−3/4 ×w
3/4 = w0. In other words, the total metabolism does not depend

on body mass (the so-called "energetic equivalence rule"): the energy per unit area used by

a population is independent of the body mass of its individuals. This energy equivalence

rule has been extended to whole communities (Enquist et al., 1998; Allen et al., 2002): it

implies that the energy consumption of a community is independent of the body mass

distribution of its constituent populations.

It is important to realize that the main predictions of MTE (like the energy equivalence

rule) were derived in a highly simplified manner, without paying attention to the intricacies

of ecological interactions. In this section, I will show that such ‘details’ may matter a lot. At

the same time I will show how to integrate the microscopic details of resource consumption

and competition dynamics with the basic assumptions of MTE.

Populations

Although the MTE acknowledges the effects of resource availability, it ignores the under-

lying mechanisms of consumer-resource interactions. Using the Droop (7.2), uptake (7.3)

and chemostat (7.4) equations in the resource storage model (7.1), I will illustrate why such

level of detail is relevant.

In the equilibrium, the density of a single consumer species that is limited by a single

resource is given by

N = D (S − R∗)
r − m

rmq
(7.11)

where the resource requirement R∗ is related to the basic model parameters as follows

R∗ =
Krmq

v(r − m) − rmq
(7.12)

In principle, all these parameters (r,m, v,K,q) may be dependent on body size and tem-

perature. It is a standard assumption of MTE, that the specific growth rate r and the specific

death rate m are proportional to mass specific metabolism (r,m ∝ M/w):

r = row−1/4e−E/kbT (7.13a)

m = mow−1/4e−E/kbT (7.13b)

In phytoplankton, resource consumption is a surface- and diffusion-limited process. Ac-

cording to the mechanistic model of Aksnes and Egge (1991), it is plausible to assume that

the maximal consumption rate v and the half-saturation constant for consumption K scale

with body mass and temperature as follows:
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v = vow
2/3e−E/kbT (7.14a)

K = Kow
1/3

e−E/kbT

d(T)
(7.14b)

In line with MTE, I made the assumption that the temperature dependence of v is de-

scribed by the Arrhenius equation. In contrast, K is affected by molecular diffusion. I as-

sumed that the diffusion coefficient d(T) is an linearly increasing function of temperature;

which implies that K increases with T but at a lower pace than v.

There is currently no causal theory that explains how the threshold quota q depends on

body mass and temperature. Two studies (Grover, 1989; Irwin et al., 2006) indicate that

q is positively related to body mass. Let us therefore for the moment assume a generic

relationship like this

q = qowνf(T) (7.15)

where f(T) accounts for the (hitherto unknown) effect of temperature.

If we now substitute equations (7.13a, 7.13b, 7.14a, 7.14b, 7.15) in (7.12) and subsequently

in (7.11), we obtain a relationship between equilibrium population densityN and bodymass

and temperature. At first sight, this relationship is much more complicated than equation

(7.10), which is one of the most basic predictions of MTE. However, equation (7.10) might

still hold by approximation.

In order to see whether this is the case, let us make the plausible assumption that in our

simple storage model the resource input concentration is much higher than the resource

requirements of our consumer species (S ≫ R∗). In this case, equation (7.11) simplifies to

N ≈ DS

[

ro − mo

romoqo

]

w
1/4−νe

E/kbT

f(T)
(7.16)

Now the result has at least some resemblance with the prediction of MTE. For example,

density is directly proportional to the resource supply rate if λ ≡ DS. However, mass

and temperature dependencies do not agree with (7.10). According to the scarce evidence

available (Grover, 1989; Irwin et al., 2006) the allometric coefficient of the threshold quota q

is lower than one, around ν ≈ 0.7 ; thus N ∝ w−0.45 which implies that population energy

use N × M scales with mass as w0.3 and the energetic equivalence rule does not follow.

With respect to temperature dependence the situation is unclear because we do not know

the form of f(T).

From this very simple consumer-resource model we can conclude that the dependence

of population densities on body mass and temperature is much more intricate than MTE

suggest – even if one systematically applies the line of argumentation typically used by

MTE.

Communities

The Metabolic Theory of Ecology ignores or caricaturizes the role of competitive interac-

tions. In order to study this issue, we have to integrate resource competition models with
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metabolic dependencies. For the purpose of illustration, I will here replace the storage

based model of multispecies competition by the much simpler model without storage:

dNi

dt
= Ni {µi(R1, . . . ,Rm) − mi}

dRj

dt
= D(Sj − Rj) −

∑

i

cjiµi(R1, . . . ,Rm)Ni (7.17)

µi(R1, . . . ,Rm) = ri min
j

[

Rj

Hji + Rj

]

The growth rates µi are functions of the resource densities in the external environment,

which are modeled by combining Liebig’s law of the minimum and the Monod equation.

ri is the maximum growth rate of species i under resource saturation, and Hji is the half-

saturation constant for the growth of species i on resource j. cji is the fixed resource content

of resource j in an individual of species i. The remaining parameters (mi,D, Sj) have the

same meaning as in the storage based model.

As indicated by (7.10) MTE predicts that density scales with size as Ni ∝ w
−3/4

i . In a

stable community the densities of the competitors N̂i must satisfy the following system of

linear equations

D(Sj − R̂j) =
∑

i

cjimiN̂i (7.18)

implying that no more species than resources can coexist at equilibrium (principle of com-

petitive exclusion). Thus, the derivations that follow apply to communities with low diver-

sity. The equilibrium concentration of resource j corresponds to the maximum requirement

of resource j among all consumers R̂j = maxi[R
∗
ji]. For model (7.17) the resource require-

ments are given by

R∗
ji =

riHji

ri − mi

Following MTE, the specific growth and death rates are proportional to mass specific

metabolism (Mi/wi): ri = row−1/4e−E/kbT and mi = mow−1/4e−E/kbT . On the other

hand, there is no theory explaining how half-saturation constants for growth scale with

body mass and temperature. (In contrast, the half-saturation constants for consumption

in the storage model do have a mechanistic interpretation, allowing to make judicious

guesses on their dependency on body mass and temperature.). Following common practice

(Vasseur and McCann, 2005; Lopez-Urrutia et al., 2006), I therefore assume that the Hji are

constant and not dependent on body mass or temperature. As a consequence R∗
ji, and thus

R̂j in (7.18) are as well independent of both body mass and temperature.

Given that cji is defined as the amount of resource j contained in an individual of species

i, it is reasonable to assume that cji represents a fraction of the body mass, that is

cji = γjiwi, γji < 1
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where γji can be defined as a compositional or stoichiometric coefficient. As in the case of

the half-saturation constant, let us assume that cji is independent of temperature.

At equilibrium, the population densities (which are given by the linear equations (7.18))

must be of the form

N̂i =

[

DGi

mo

]

w
−3/4
i e

E/kbT (7.19)

Here Gi is the determinant of the matrix of stoichiometric coefficients γji, but after the

substitution of the i-th column by the vector of differences between the resource supply and

equilibrium concentrations (S1 − R̂1, S2 − R̂2, . . .)
T . As an illustration, consider two species

competing for two resources in a rich environment (where Sj ≫ R∗
ji). In such a situation,

the terms G1 and G2 are of the form:

G1 =
S1γ22 − S2γ12

γ11γ22 − γ12γ21

, G2 =
S2γ11 − S1γ21

γ11γ22 − γ12γ21

(7.20)

but for more than two species and resources, the Gi are even more complex.

Equation (7.19) displays a similar mass and temperature dependence as predicted by the

MTE in (7.10), in the sense that Ni scales with mass to the −3/4, and with temperature as in

the Arrhenius law. However, the dependence of the Gi on the resource supplies (Sj) and on

the stoichiometric coefficients (γji) is nonlinear and complicated. As a result, it is uncertain

whether the term in square brackets of (7.19) is close to a common factor, i.e. a “universal

constant”, for all species involved. Thus, there is not a priori reason to assume that a plot

of log(N) versus log(w) or T−1 will reveal a linear relationship as predicted by MTE. In

other words, the effects of resource and species stoichiometry can obscure the effects of the

Kleiber and Arrhenius laws.

Real world scenarios

The density-mass relationship (7.19) is restricted to homogeneous environments where the

number of species is limited by the number of resources. In reality, environments can be

spatially heterogeneous, thus allowing the coexistence of a much higher number of species

than resources, provided there are trade-offs in resource requirements and consumption

(Tilman, 1982). The rationale is as follows: consider n species competing for two resources,

in a region fractionated into several sites. Each site x differs in the resource input concentra-

tions of the two resources S1(x), S2(x). Thus, each site x can harbor 2, 1 or 0 plant species

from the pool of n. If two species, for example i = a,b coexist in site x, their equilibrium

densities N̂a(x) and N̂b(x) are the solutions of (7.18). If there is enough variation in re-

source supply ratios all species pair equilibrium combinations are feasible at the regional

scale. The resource ratios also determine the numerical representation of each species at

the local level, thus the details of their distribution say which species, and thus which body

masses become more frequent in the regional scale.

To see if the density-mass relationship (7.10) predicted by MTE holds in highly diverse

ecosystems, I performed a simulation that considers 100 species competing for two essential

resources according to the resource competition model (7.17), in an heterogeneous environ-

ment. Such environment consists of 10000 sites, each with resource supply concentrations
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Sj taken from a normal distribution with a mean of 10 and standard deviation of 2. I will

assume that the environment has a homogeneous temperature.

The species body masses were generated according to wi = 10u∆ where u is uniformly

distributed in [0, 1] and ∆ = 1, . . . , 10 is the order of magnitude of body mass variation. A

small amount of site specific variation was introduced as a normal deviate with mean zero

and standard deviation 0.1wi.

To promote local coexistence of at least two species for some combinations of resource

supplies I imposed the following conditions. (1) The resource requirements were sampled

uniformly along the trade-off line R∗
1i + R∗

2i = 1. (2) The resource contents where generated

according to the ratios c2i/c1i = R∗
2i/R∗

1i, such that each species consume resources in

proportion to its requirements. In addition the actual values of c1i and c2i are fractions

of the species body mass, something that is achieved by introducing a linear trade-off

c1i + c2i = 0.2wi (i.e. resource contents make 20% of the body mass). Thus, body size

determines the total amount of resource contents, but not their relative proportions or

stoichiometry.

Let Ni be the total density of species i, which is the sum of the densities of i in all the

sites where it is present, alone or coexisting with a competitor. According to MTE a double

logarithmic plot of Ni versus wi must produce a line with slope of −3/4, independently

of the local effects and competition. Figure 7.6 shows the slopes of these density-mass

relationships for many simulations, plotted against the order of magnitude of the body

mass variation (∆). For small body mass ranges the resulting slopes are highly variable,

with a tendency for values higher than −3/4, and in very few cases even positive. The

dispersion decreases as the body mass range increases, and the slopes accumulate around

−3/4 at the end of the axis, as predicted by MTE. Surprisingly, the amount of variation

explained by body mass remains high along the axis of mass variation (around 70-80%).

We can conclude that body mass is an important factor in structuring communities (sug-

gested by the coefficient of determination). However, under low ranges of mass variation

the body mass dependence does not reflect the quarter power law of the mass-metabolism

scaling exponent (7.9), indeed the relationship tends to be weaker in most cases. Most

competitive interactions take place among similarly sized organisms, within 3 orders of

magnitude in size variation. This means that functional traits (e.g. consumption ratios)

and locality (e.g. supply concentrations), play the most important roles in structuring real

communities Tilman et al. (2004), obscuring the metabolic dependence suggested by MTE.

This simulation and the results from the previous sections illustrate that the predictions

of MTE are very sensitive to simplifying assumptions regarding physiology, interactions

and scale. Of course, I made a made a number of simplifying assumptions regarding these

factors, for example:

1. The consumption ratios match the requirement ratios, so competition is weak. Ac-

cording to Loeuille and Loreau (2006) increased competition within food webs results

in density-mass slopes that are more negative than −3/4.

2. Competition is limited to two resources, which leads to equilibrium dynamics only.

For three and more resources oscillations and chaos are possible, and there can be

many alternative stable states. Does allometry has any relevance under such complex

scenarios?
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Figure 7.6: Density-mass relationships in competitive communities. The top panel indicate

the slopes of the double logarithmic plots of density vs mass, for 100 simulated

communities, each consisting of 100 species competing for 2 resources in an

heterogeneous environment. They are plotted against the order of magnitude

of the variation in body mass. According the Metabolic Theory of Ecology, the

slopes must be close to −1/4 (horizontal line). The bottom panel shows the

coefficients of determination of the density-mass relationships above.
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7.3 metabolism

3. Species stoichiometry is independent of body mass. The reality is that consumption

ratios cji : cki are mass dependent. For example, heavier plants (trees) have much

more carbon per total weight than lighter plants (weeds).

This simulation and relationships like (7.16) and (7.19) can be seen as first attempts towards

a statistical description of communities that integratesMTE, consumer resource interactions,

and resource competition theory, one of my original goals.

Temperature

Many parameters of the models discussed in this chapter are physiological rates (maxi-

mum growth rates, maximum consumption rates, mortalities) which in turn depend on

biochemical processes. Thus the exponential increase of these rates with temperature could

be explained by the Arrhenius law, although there are other relationships and mechanisms

(Ahlgren, 1987) that may fit rates vs temperature equally well (Brauer et al., 2009).

However, realistic models of temperature dependence must also account for positive and

negative effects on biological rates. It is true that starting from low temperatures, warming

increases reaction rates (Fig. 7.7a) enhancing metabolism. But biological rates are mediated

by enzymes, which means that after some point further warming results in alterations of

protein structure, rapid loss of activity, and irreversible denaturation. Physiological rates

display a dome or bell shaped response to temperatures (Fig. 7.7b), with optima that are

species specific (Tilman et al., 1981; Savage et al., 2004). Both views, the monotonic increase

“à la Arrhenius”, and the “dome shaped” describing the temperature niche, can be rec-

onciled if each species spans a portion of an exponentially increasing curve (Fig. 7.7b,

Eppley, 1972; Gillooly et al., 2002). But this of course would imply that a universal tem-

perature dependency (Gillooly et al., 2001), if such thing exist, is a very complex emergent

phenomenon and not the direct manifestation of the Arrhenius law.

We could leave aside this issue and just plug in the Arrhenius function in dynamical

models (e.g. Vasseur and McCann, 2005; Lopez-Urrutia et al., 2006). But, there is still the

problem that there are temperature dependent parameters which are not rates, or that result

from combining rates. For them, the dependence on temperature cannot be described by

means of a simple Arrhenius factor. In the storage model for example, resource uptake is

limited by diffusion, the rate of which scales linearly with temperature. As a result, the

half-saturation constant of consumption K scales with temperature at a lower rate than

the maximum consumption rate v, and for low resource concentrations the overall rate of

consumption (f ≈ v/K) becomes directly proportional to temperature (Aksnes and Egge,

1991).

In the Monod equation the half-saturation constant is known to increase or to decrease

with temperature (Tilman et al., 1981; Nedwell and Rutter, 1994; Rutter and Nedwell, 1994).

To illustrate how simple functional relationships like theMonod equation could lead to com-

plex temperature dependencies, I will consider an analogy with enzyme kinetics. According

to a Michaelis-Menten mechanism (Moore, 1972), population growth can be represented by

an autocatalytic reaction scheme
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Figure 7.7: (a) The rates of simple chemical reactions increase monotonically with temper-

ature. (b) The rates of enzyme based reactions increase with temperature until

a maximum is attained. Further warming results in rapid loss of enzyme activ-

ity. Physiological rates should respond in similar ways. (c) The initial positive

response to temperature of different species can be described by a common ex-

ponential envelope (dashed curve) (Eppley, 1972).

R+N
k1
⇋
k2

RN
k3→ 2N (7.21)

where R represents a substrate unit and N an autoreplicating enzyme; but for us ecologists

they are resources and individuals respectively. The reversible reaction on the left corre-

sponds to the process of resource consumption and the irreversible reaction on the right

corresponds to reproduction. Consumption results in the formation of an intermediate

complex RN (in analogy to the quota in the storage model) with rate constant k1. RN can

be destroyed with rate constant k2 (analogous to excretion or respiratory losses), or it can

be converted into a new individual with rate constant k3 and the population doubles. By

assuming a quasi steady state approximation for RN concentration, the specific growth rate

of the population will be

µ =
rR

H + R

where

r = k3, H =
k2 + k3

k1

are the maximum growth rate and the half-saturation constant respectively.

Using Arrhenius’s law ki = Ai exp (−Ei/kbT) we can see that the maximum growth rate

behaves according to the predictions of MTE. However, for the half-saturation constant

H =
A2e−E2/kbT + A3e−E3/kbT

A1e−E1/kbT

where small differences in Ei can result in the net increase, decrease or both with respect to

temperature.
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7.4 concluding remarks

Temperature can influence community dynamics in different ways. Through the phys-

iological rates, warming can shorten the time scales of ecological processes (Brown et al.,

2004), and trigger stability changes in simple food chains (Vasseur and McCann, 2005).

However, the net effects of temperature in multispecies community models can be very

difficult to asses, because temperature changes many parameters simultaneously. Just in

the Monod model, on the one hand variation in growth and mortality parameters influence

the local stability of equilibria; on the other hand variation in the half saturation parameters

determine resource requirements and thus the existence of equilibria.

7.4 concluding remarks

Multispecies competition models display very complex dynamics, with strong dependence

on the initial conditions. However, despite the many degrees of freedom, it seems that a

few rules of thumb can be used to predict the major features of the competitive dynamics.

If these rules are robust to the underlying mechanistic assumptions (e.g. resource storage,

resource classification, functional responses), we may be able to summarize the most impor-

tant features of individual and population level interactions, simplify complexity, and make

community ecology a more predictive science. It is still an open question if the complex

dynamics induced by competition manifest under more realistic circumstances, in which

the competitors belong to whole food webs. The first steps towards answering these issues

were presented in this chapter.

As shown in the last sections, an integration of the Metabolic Theory of Ecology and

multispecies resource competition theory is achievable and can be fruitful. Such integra-

tion reveals that consumer resource interactions, competition and ecological stoichiometry

add significant amounts of variation in populations sizes, not explained by allometry and

temperature. These exercises also highlight an important complication, which is that an

important number of size and temperature dependent parameters are not biological rates,

thus they cannot be adequately modeled by means of simple relationships as suggested by

the Metabolic Theory of Ecology.
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