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Empirical measurements of hydrodynamics of swimming fish are very difficult. Therefore, modeling studies
may be of great benefit. Here, we investigate the suitability for such a study of a recently developed mesoscale
method, namely, multiparticle collision dynamics. As a first step, we confine ourselves to investigations at
intermediate Reynolds numbers of objects that are stiff. Due to the lack of empirical data on the hydrodynam-
ics of stiff fishlike shapes we use a previously published numerical simulation of the shapes of a fish and a
tadpole for comparison. Because the shape of a tadpole resembles that of a circle with an attached splitter plate,
we exploit the knowledge on hydrodynamic consequences of such an attachment to test the model further and
study the effects of splitter plates for objects of several shapes at several Reynolds numbers. Further, we
measure the angles of separation of flow around a circular cylinder and make small adjustments to the
boundary condition and the method to drive the flow. Our results correspond with empirical data and with
results from other models.
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I. INTRODUCTION

Mesoscale models of fluid dynamics have been used to
study many phenomena in fields such as physics and bio-
chemistry. Examples include flow around cylinders �1�, mo-
lecular diffusion �2�, polymers in flow �3�, and the formation
of micelles �4�. They have also been applied to study bio-
logical systems, mainly at the cellular level, for example red
blood cells in flow �5�. In the present paper we test whether
a mesoscale model of hydrodynamics, namely multiparticle
collision dynamics �6,7�, is suitable to study stiff fishlike
shapes in flow. This is part of a long-term project to investi-
gate the hydrodynamics of actively swimming fish, both
alone and in a group. We prefer a mesoscale model over the
numerical methods derived from the Navier-Stokes equations
of flow used for similar problems �8,9� because it allows us
to study the hydrodynamics of any shape without needing to
adapt a coordinate grid to it �10� or add additional assump-
tions, such as to impose vorticity �8� or to use a special
boundary condition for edges such as a tail fin �9�. Further,
since it is an off-grid method, it is one of the most suitable
mesoscale methods to extend with objects that deform, such
as an undulating fish.

The multiparticle collision dynamics model was intro-
duced by Malevanets and Kapral �6� and has since been used
to investigate a variety of microscale hydrodynamic systems
�3,11–13�. The model consists of a fluid of particles which
move and collide, whereby the collisions conserve both mass
and momentum. At the macroscale the system exhibits be-
havior that is consistent with the Navier-Stokes laws of hy-
drodynamics. Expressions for the viscosity and several trans-
port coefficients have been derived �14�, showing that the
model is correct as regards both short- and long-range hy-
drodynamics.

Although fish swim at high Reynolds numbers of 103 up
to 105 �15�, in the present study we confine ourselves to

intermediate Reynolds numbers �i.e., Re 10–110� which are
relevant for fish larvae �16�. We use these lower Reynolds
numbers for two reasons. First, it reduces computational ef-
fort, which scales quadratically with the Reynolds number.
Second, the comparability to earlier studies at the same Re
number of hydrodynamics of a circle and square �17,18�.

In this paper we confine ourselves to the study of stiff
shapes, with the aim to later extend the model to deformable
ones. Because empirical data on hydrodynamic traits of stiff
fish are lacking we use other data, namely, previously pub-
lished results of a numerical simulation of a fish and a tad-
pole �10,19�. Apart from this comparison we note that the
shape of a tadpole resembles that of a circle with an attached
splitter plate. This resemblance we exploit because much is
known about the hydrodynamic effects of splitter plates �20�.
Therefore we examine flow around, and drag of a circle with
and without a splitter plate attached to it. We do so for a
series of different Re numbers and object shapes. We further
verify our implementation for a circular cylinder with a new
measurement, namely, of the separation angle of flow. Our
results confirm the suitability of the model for the study of
the hydrodynamics of fishlike shapes.

II. METHODS

A. System overview

We investigate the hydrodynamics of objects held in place
in a channel. Although the model has been shown to perform
well in three dimensions �21�, we use two-dimensional simu-
lations to reduce computational effort. A schematic overview
of the system is shown in Fig. 1. The channel has width W
and length L. We set these to be the same as those used by
Lamura and Gompper �17,18�, against whose work we com-
pare our results. The width and length are both functions of
the cross section D of the object, with W=8D and L=50D.
This results in a blockage ratio B=D /W of 0.125 �17�. The
channel has solid walls at the top and bottom, and is periodic*c.k.hemelrijk@rug.nl
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in the x direction. All objects are represented as polygons so
that they may have any shape. We use a relatively wide sys-
tem so that the wake of the object will die out before it
encounters the object again. Flow goes from left to right. We
calculate the Reynolds number as

Re =
�vxD

�
, �1�

where � is the fluid density, vx is the flow speed along the
channel center far away from the object, and � is the dy-
namic viscosity which consists of two components �Eq. �4�,
see below�.

B. Multiparticle collision dynamics

The system consists of a two-dimensional homogeneous
space containing N identical particles of mass m. The posi-
tions xi and velocities vi of the particles are two-dimensional
vectors of continuous variables. Every time step �t the par-
ticles first move and then collide. Moving leads to new po-
sitions xi according to Eq. �2�,

xi�t + �t� = xi�t� + vi�t��t . �2�

To simulate collisions, a square lattice with mesh size a0
is used to partition the system. In each lattice cell, all par-
ticles simultaneously collide with each other, changing their
velocities according to

vi = v + ��vi − v� . �3�

Here v is the mean velocity of the particles in the grid cell
and � is a stochastic rotation matrix that rotates the veloci-
ties by either +� or −� �where � is a fixed system param-
eter�, with equal probability. It is the same for all particles
within a cell. The rotation procedure can thus be viewed as a
coarse-graining of particle collisions over space and time.
We set � to �

2 for three reasons. First, because it is the value
used in the studies to which we compare our results �17,18�.
Second, because Allahyarov and Gompper �21� showed that
the kinematic viscosity is lowest for this value of �, thus
maximizing the Reynolds number. Third, because rotation by
�
2 is computationally very fast.

An overview of parameter settings is shown in Table I.
From these parameters we derive the mean-free path, which

is the mean distance traveled by a particle before it collides.
This path length is given by the expression l=�t�kBT /m,
where kB is the Boltzmann constant, and T is the temperature
of the system. If the system temperature and thus the mean-
free path are low, and l�a0, the same particles will often
collide with each other on consecutive time steps, which
breaks Galilean invariance. To solve this problem we follow
the solution proposed by Ihle and Kroll �22� and displace the
lattice every time step by a vector with x and y components
which are randomly selected from the interval �0,a0�.

An important advantage of this method is that its simpli-
fied dynamics has allowed the analytic calculation of several
transport properties �14�. The most important one for this
study is the viscosity �, which consists of two components,

� = �kin + �coll, �4�

where �kin is the kinetic component of the fluid viscosity
while �coll is the collisional component. The simplified equa-
tions for the components of the viscosity, omitting param-
eters that are set to 1 in our simulations, are as follows:

�kin =
�

2
� �

�� − 1 + e−��
− 1� , �5�

�coll =
1

12
�� − 1 + e−�� , �6�

where � is the average number of particles per collision cell.
Since we use a density �=10, the viscosity in our simulation
units is 1.306.

C. Boundary conditions

At the macroscopic scale of organisms, there should be no
slip at the interface between a fluid and a solid. This means
that the fluid’s tangent velocity to any surface at the interface
should be zero—the so-called no-slip condition. We use two
complementary methods from previous implementations of
the model to ensure minimum slip, i.e., the virtual particle
rule of Lamura and Gompper �17�, and the random-reflect
boundary condition �12,23�, both of which are outlined be-
low.

Lamura and Gompper �17,18� enforce no-slip boundary
conditions in the collisional part of the model by including
virtual “solid” particles in cells which partially overlap the
solid. These virtual particles are included in the collisions
among particles. The velocities of the virtual particles are

FIG. 1. The simulation setup. W is the width of the channel, L is
its length �not to scale�, and D is the object diameter, measured
along the width axis.

TABLE I. Parameter values used.

Parameter name Symbol Value used

Temperature kBT 1.0

Lattice cell size a0 1.0

Collision rotation angle � �

2

Particle mass m 1.0

Particles per cell �average� � 10

Time step length �t 1.0
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drawn from a Maxwell-Boltzmann distribution of mean zero
and temperature kBT. The mean of zero reduces slip while
the temperature kBT causes the virtual particles to act as ther-
mostats.

In the random-reflect boundary-condition particles that hit
the solid get a new randomly chosen velocity. The new ve-
locity is relative to the surface and consists of a tangential
component vt and normal component vn, drawn from the
following distributions �12,23�:

P�vt� 	 e−
vt
2
, �7�

P�vn� 	 vne−
vn
2
. �8�

Here, 
= m
2kBT . Since the new velocities are Maxwell-

Boltzmann distributed with temperature kBT and a mean ve-
locity tangential to the surface of zero, this method reduces
slip and has the additional advantage that it makes solids act
as thermostats. We prefer this method over the bounce back
reflection used by Lamura and Gompper �17� in which par-
ticles reverse their velocity when they hit a solid. At small
scales, a surface is not smooth and thus random reflection is
a better approximation.

When particles move, they may collide with a solid. Be-
cause the particles keep moving after a collision, a series of
collisions can occur within one time step �t if there are
multiple objects or if the shape of the object is complex. We
therefore use the following iterative procedure.

For each particle, the time �t it has spent moving during
this time step is set to 0. Then, as long as �t is smaller than
the length of a time step �t �Table I�, the particle keeps
moving. Its projected movement is calculated from its veloc-
ity vector vi as follows: vi��t−�t�. If this line intersects a
solid, a collision occurs at the collision point xcoll and �t is
increased by the amount of time it took to move there. The
particle is assigned a new random velocity following Eqs. �7�
and �8�. If �t is smaller than �t, it keeps moving, starting
from xcoll and checking for collisions in the same manner.

D. Flow

The expected flow profile in an empty channel is known
as Hagen-Poiseuille flow. This flow is characterized by a
parabolic flow profile in a cross section of the channel, with
the speed in the x direction on each point of the y axis given
by

vx�y� =
4vmax�W − y�y

W2 , �9�

where vmax is the maximum speed, in the center of the chan-
nel of width W.

To create flow we apply a constant force mg in the x
direction to all fluid particles �21�. In an experiment this
force would correspond to a pressure drop per unit length
given by �P /�x=−�mg. We use a Galilean-invariant thermo-
stat �12� to keep the system temperature constant. Due to the
no-slip condition the channel walls exert a shear force, which
increases with the flow speed and the viscosity �. The sys-
tem is stable when the gravitational force on the fluid is

exactly balanced by this shear force. In this steady state the
flow is laminar Hagen-Poiseuille flow, with the speed in the
center of the channel vmax given by

vmax =
�W2g

8�
. �10�

This method to create flow is different than that used by
Lamura and Gompper �17,18�, who imposed the Hagen-
Poiseuille distribution �Eq. �9�� directly on particles in a
“driving” section of their simulation. However, this causes a
significant disruption of the flow: in the simulation area di-

FIG. 2. The separation angle �i. The four lines are estimates of
the minimum and maximum separation angle on each side of the
object.

FIG. 3. �Color� Flow fields around a tadpole shape. �a� From
Ref. �10�, �b� in our model, and �c� in our model with added leglike
protrusions. Color indicates flow speed, with high speed indicated
by red and low speed by blue. Our simulations are at Reynolds
numbers of approximately 105, based on the cross-channel size of
the object. Figure �a� reproduced with permission of the Company
of Biologists.

FLOW AROUND FISHLIKE SHAPES STUDIED USING … PHYSICAL REVIEW E 79, 046313 �2009�

046313-3



rectly adjacent to the driving section large vortices are
formed along the channel walls, and the density of the fluid
increases. Furthermore, the overall flow velocity in the chan-
nel does not become uniform, with significantly reduced flow
speeds further away from the driving section due to channel
friction. We therefore use gravity-driven flow.

If the system starts at rest, the time required to reach this
steady state depends on the system size. This was approxi-
mately 50 000 time steps for the larger system sizes we ex-
amined. However, since we can estimate the final vmax using
Eq. �10�, we can initialize the system with Hagen-Poiseuille
flow of the appropriate speed using a Maxwell-Boltzmann
distribution of temperature kBT, with an average speed in the
y direction of zero, and an average speed in the x direction
according to Eq. �9�. This means that for the empty channel
the system does not need time to stabilize.

For a clear wake structure to develop behind a static ob-
ject in the channel, the simulation must be run until it stabi-
lizes. In that case the flow profile far away from the object is
still parabolic, but due to the drag of the object it is slower

TABLE II. Drag coefficients for various shapes, with and with-
out attached splitter or leglike protrusions. Reynolds numbers are
shown both based on width as is common in physics �width� and on
length as is common in biology. All Reynolds numbers discussed in
this paper are width based. All simulations are two dimensional.

Shapes without and with splitter

Shape Re �Width� Re �Length� CD CD with splitter

Square 80 80 1.8 1.45

Circle 115 115 1.22 1.05

Flat Plate 70 1.75 2.0 1.7

Fishlike shapes without and with legs

Shape Re �Width� Re �Length� CD CD with legs

Tadpole 110 528 1.01 1.01

Straight fish 110 724 0.97 1.22

Undulated fish 110 724 1.9 N.A.

FIG. 4. Results of simulations for basic shapes. �a� The recirculation length for the circular cylinder as a function of the Reynolds number.
Data from Ref. �18� ���, this study ���, and Ref. �27� ���. Note that steady recirculation only occurs at Reynolds numbers below 45. �b� The
drag coefficient for the square cylinder as a function of the Reynolds number. Data from Ref. �18� ���, and this study ���. �c� The drag
coefficient for the circular cylinder as a function of the Reynolds number. Data from Ref. �28� ���, Ref. �18� ���, and this study ���.
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than estimated by Eq. �10�. Tests showed that at the Rey-
nolds numbers we examined the speed is lower by about
60% if an object is present, therefore we initialize the system
with Hagen-Poiseuille flow of vmax 60% slower than ex-
pected for the empty channel. Such an initialization of the
flow field reduces the time required to reach the steady state
by approximately 50% compared to starting the simulation
from a resting fluid.

E. Measurements

The recirculation length in the regime of steady recircu-
lation �17� is measured as the length of the area of recircu-
lation in the wake of the object. It is defined as the distance
from the rear end of the cylinder to the end of the wake. We
define the end of the wake as the rearmost point on the cen-
tral axis where the average flow in the x direction is zero. We
express the recirculation length in terms of the object diam-
eter D.

The drag coefficient CD �17� is defined as

CD =
2Fx

�mv2D
, �11�

where Fx is the force on the object in the direction of flow �in
ma0�t−2� caused by the change of momenta of the colliding
particles, �m is the density of the fluid �in ma0

−2� which equals
the density of particles � due to our choice of parameters
�Table I�, v �in a0�t−1� is the flow speed in the center of the
channel far away from the object, and D is the cross-channel
width of the object measured in a0.

The angle of separation is the angle between the central x
axis and the separation point. A separation point is defined as
a point close to the surface where the flow velocity tangential
to the surface is zero �of course everywhere on the surface
the average tangential velocity is zero because of the bound-
ary conditions�. An object in low-Reynolds flow always has
separation points at angles 0 and 180, but at sufficiently high
Reynolds numbers two new separation points occur toward
the rear of the object. To measure the separation angle of
these two new separation points, we draw a line from the
center of the object to the separation point, and measure the
angle � between that line and the central x axis �Fig. 2�. As
can be seen from Fig. 2, the precise angle of separation is
difficult to determine because the flow is stochastic. We
therefore estimate a minimum and maximum separation
angle at each side of the object by hand, and use the average
of these four values.

All programs were implemented in C

 and simulations
were run on single Intel Core2 Duo PCs. Data analysis and
visualization were done with MATLAB® �24�. The tadpole
form was traced from a figure of a cross section of a bullfrog
tadpole �Rana catesbeiana� by Liu et al. �10�. The fish shape
was traced from a figure of a cross section of a mullet �Che-
lon labrosus� by Müller et al. �25�. Simulation time for the
largest simulation, namely of a fish shape at Reynolds num-
ber 110, took approximately 10 days.

III. RESULTS

When we compare the flow field of the tadpole in our
model to that in the numerical model by Liu et al. �10,26�, it
appears to be qualitatively similar as regards the area of low
flow speed around the tail �Figs. 3�a� and 3�b��. In further
agreement with their results, the addition of leglike extru-
sions to it changes neither the flow field nor the drag coeffi-
cient �Fig. 3�c��. This confirms the conclusion of Liu et al.
�10� that the location of leg growth in tadpoles is neutral in
terms of drag.

In contrast, when we add such extrusions to a fish shape,
the drag coefficient increases by 25%, from 0.97 to 1.22. The
drag coefficient is also higher for an S-shaped fish than for a
straight one with an increase of 95%, from 0.97 to 1.9,
�Table II�.
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The shape of a tadpole and its drag coefficient resemble
those of a circular cylinder with an attached splitter plate
�Table II�. As regards the recirculation length and drag coef-
ficient of the circular cylinder and the drag coefficient of the
square cylinder �Fig. 4�, our results resemble those of the
model by Lamura and Gompper �17� as well as empirical
data �27,28�. Furthermore, the angles of separation of flow
�Fig. 5� fall within the range of empirical data from Wu et al.
�29�.

We test in our model the hydrodynamics of attached split-
ter plates by measuring the drag of a circular cylinder over a
range of Reynolds numbers, both with and without an at-
tached splitter plate. Due to the splitter plate, the drag coef-
ficient of the cylinder becomes higher at low-Reynolds num-
bers due to additional friction drag �Fig. 6�. At higher
Reynolds numbers �Fig. 6� however, the splitter plate stabi-
lizes the wake and delays the onset of vortex shedding �Fig.
7�, which lowers the drag. We find that at these Reynolds
numbers splitter plates also reduce the drag of a square cyl-
inder and flat plate �Table II�.

IV. DISCUSSION

The results of our simulations show that at intermediate
Reynolds numbers the multiparticle collision dynamics
model is suitable to investigate the hydrodynamics of fishlike
shapes. Our quantitative measurements agree with data of
empirical and model studies. Thus, the model is robust
against adjustments of the boundary conditions and the
method to drive the flow. Further, flow around shapes of fish
and tadpoles qualitatively resembles that of numerical inves-
tigations �10�.

As to the measurements of the recirculation length �Fig.
4�a��, these tend to be too low at higher Reynolds numbers
both in our results and in those of Lamura and Gompper
�17,18�. This arises probably because the wake sometimes
deviates from the central axis along which it is measured,
and this deviation will cause an underestimation. The size of
this error is larger if the wake is longer, and therefore it is
larger at high Reynolds numbers. This is due to the consid-
erable stochasticity of flow. Another consequence of this sto-
chasticity is that to maximally reveal patterns of flow, drag
et cetera, data had to be averaged over an interval of many
time steps �to the order of hundreds�. This interval was still
much shorter than the cycle of the phenomena we studied.
Note that this averaging is common practice in studies of
multiparticle collision dynamics.

It is likely that the width-to-length ratio and blockage ra-
tio of the channel have an effect on flow and drag. We did
not study this however, because our future work will concern
flow that is not confined between walls.

In the future we intend to study the hydrodynamics of the
locomotion of fish. Fish swim at Reynolds numbers between
103 and 105 as measured by biologists, which is much higher
than those used in this study. However, the following factors
will help us to work in the model in the correct range of
Reynolds numbers. First, the Re numbers measured by biolo-
gists are based on the length of the fish, those by physicists
on its thickness. This reduces the Re number to about one-
fifth. Second, we may study these undulating fish at some-
what lower Re numbers because real fish swim in three di-
mensions �3D�, whereas our model is a representation in two
dimensions �2D�. Two dimensions restrict the degrees of
freedom of movement and hence, all phenomena—such as
recirculation, vortex shedding, and turbulence—occur at half
�or less� the Reynolds number of that in 3D �Table III�. Thus,
wakes of fish in our model may develop sooner too.

We conclude from our results that the multiparticle colli-
sion dynamics method is suitable for the study of flow
around stiff fishlike shapes. We will therefore proceed to
investigate its suitability for the study of fish that move.
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FIG. 7. Streamlines for flat plate, circle, and square with and
without splitter plate attached. The Reynolds number is approxi-
mately 80. Note that the flat plate and splitter plates are thicker than
the mesh cell size a0. The cross-channel diameter of the objects is
the same in all cases.

TABLE III. Critical Reynolds numbers for the onset of flow
phenomena for circular cylinder �2D� �29–31� and sphere �3D�
�31,32�.

Flow phenomenon Re 2D Re 3D

Recirculation 10 25

Vortex shedding 45 280

Turbulence 1.2�105 4.7�105
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