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Abstract Plant–soil feedbacks can have important implica-
tions for the interactions among plants. Understanding these
effects is a major challenge since it is inherently difficult to
measure and manipulate highly diverse soil communities.
Mathematical models may advance this understanding by

making the interplay of the various processes affecting
plant–soil interaction explicit and by quantifying the relative
importance of the factors involved. The aim of this paper is
to provide a complete analysis of a pioneering plant–soil
feedback model developed by Bever and colleagues (J Ecol
85: 561–573, 1997; Ecol Lett 2: 52–62, 1999; New Phytol
157: 465–473, 2003) to fully understand the range of pos-
sible impacts of plant–soil feedbacks on plant communities
within this framework. We analyze this model by means of a
new graphical method that provides a complete classifica-
tion of the potential effects of soil communities on plant
competition. Due to the graphical character of the method,
the results are relatively easy to obtain and understand. We
show that plant diversity depends crucially on two key
parameters that may be viewed as measures of the intensity
of plant competition and the direction and strength of plant–
soil feedback, respectively. Our analysis provides a formal
underpinning of earlier claims that plant–soil feedbacks,
especially when they are negative, may enhance the diver-
sity of plant communities. In particular, negative plant–soil
feedbacks can enhance the range of plant coexistence by
inducing competitive oscillations. However, these oscilla-
tions can also destabilize plant coexistence, leading to low
population densities and extinctions. In addition, positive
feedbacks can allow locally stable forms of plant coexis-
tence by inducing alternative stable states. Our findings
highlight that the inclusion of plant–soil interactions may
fundamentally alter the predictions on the structure and
functioning of above-ground ecosystems. The scenarios
presented in this study can be used to formulate hypotheses
about the ways soil community effects may influence plant
competition that can be tested with empirical studies. This
will advance our understanding of the role of plant–soil
feedback in ecological communities.
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Introduction

Ecologists have long recognized that interactions between
plants are mediated by many biotic (e.g., grazing, plant
competition, and facilitation) and abiotic factors (e.g., soil
texture, nutrient availability, and topography; Harper 1977;
Tilman 1988). More recent research has stressed the influ-
ence of the soil community on competitive interactions
between plants (Callaway et al. 2004; Klironomos 2002)
by exerting positive or negative effects on the growth of
specific plants (De Deyn et al. 2003; Gange et al. 1993;
Klironomos 2003; Olff et al. 2000; van der Heijden et al.
1998a; van der Heijden et al. 2003; van der Putten and van
der Stoel 1998; van der Putten et al. 1993). Therefore, plant–
soil interactions can potentially be of crucial importance for
species composition of plant communities and, more gener-
ally, the diversity of terrestrial ecosystems (van der Putten et
al. 2001; Wardle et al. 2004).

The interaction between a plant and the soil community,
referred to as plant–soil feedback, is a two-step process: the
presence of a specific plant changes the composition of the
soil community, which in turn alters the growth rate of that
specific plant (Bever 2003; Reynolds et al. 2003). Quanti-
fying the effect of soil organisms on plant growth and vice
versa is difficult due to the vast below-ground diversity, and
the technical problems inherent to measuring and manipu-
lating soil communities (Bever 2003; van der Putten et al.
2009). Therefore, there is a need for mathematical models
that can help to generate insight into the potential implications
of plant–soil feedbacks on species dynamics and diversity
(van der Putten et al. 2009).

Bever and colleagues (1997, 1999, 2003) developed such
a modeling framework. In a 2003 paper, Bever incorporated
plant–soil interactions in the classical Lotka–Volterra com-
petition model, an approach that motivated several subse-
quent modeling studies on similar topics (Bonanomi et al.
2005; Eppinga et al. 2006; Eppstein et al. 2006; Eppstein
and Molofsky 2007; Umbanhowar and McCann 2005).
Bever (2003) highlighted two implications of plant–soil feed-
back for the coexistence of two competing plant species: (1)
negative plant–soil feedback facilitates plant coexistence and
(2) negative plant–soil feedback drives oscillations in plant
abundances. These kinds of predictions are appealing to em-
pirical plant–soil ecologists because they can be tested with
relatively straightforward experiments (Bever 1994; Bever et
al. 1997), without requiring specific knowledge on the com-
position of soil communities or the effects of individual
soil-borne species on plant growth.

Bever only performed a partial analysis of his model,
thus leaving out a number of interesting predictions. A more
complete analysis of the “Bever model” (i.e., the model
developed in Bever 2003) is required to fully understand
the impact of plant–soil feedbacks on plant communities in

this framework. The first goal of our paper is to develop
intuitively appealing methods allowing such an analysis,
thereby pointing out various routes by which soil commu-
nities can affect plant diversity. A second goal is to refine
some of Bever’s (2003) conclusions, such as the usefulness
of the “feedback parameter IS” (which was introduced on
the basis of an earlier model) in the context of plant com-
petition, and the characterization of the parameter range for
which plant–soil feedback drives oscillations in plant abun-
dances. Our third goal is to highlight that oscillations in-
duced by negative feedbacks do not per se enhance plant
diversity. In fact, we will show that such feedbacks can
actually be detrimental for plant coexistence on a local scale.

We start this paper by introducing the Bever model in
“The Bever model” section. In the “Graphical analysis”
section, we analyze and predict the outcomes of the model
by means of a graphical method integrating plant–soil inter-
actions and plant competition. In the “Implications for plant
coexistence” section, we derive the implications of our
results for plant species coexistence, emphasizing some
new results and scenarios not considered by Bever (2003).
Finally, we discuss the implications of our results in the
“Discussion” section.

The Bever model

The “Bever model” (Bever 2003) studies the effect of two
soil communities with densities SA and SB on the growth of
two competing plant species with densities NA and NB

(Fig. 1). The dynamics of the system are described by the
following system of four differential equations:

dNA

dt
¼ rANA 1þ aASA þ bASB � NA þ cBNB

KA

� �
ð1aÞ

Fig. 1 Schematic representation of the interactions between two plants
A and B and their associated soil communities SA and SB
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dNB

dt
¼ rBNB 1þ aBSA þ bBSB �

NB þ cANA

KB

� �
ð1bÞ

dSA
dt

¼ SASB
NA � vNB

NA þ NB
ð1cÞ

dSB
dt

¼ SASB
vNB � NA

NA þ NB
ð1dÞ

The competition coefficients cA and cB are expressed as
the per capita effects of each species on the growth rate of
the competitor species (interspecific competition), relative
to the per capita effect on the growth rate of its own popu-
lation (intraspecific competition). rA and rB denote the in-
trinsic per capita growth rates of the plant species. KA and
KB are the carrying capacities of the plant species when
growing in isolation. SA and SB are the densities of the
two soil communities, where SA is specifically associated
with plant species A and SB with plant species B. The soil
community is positively affected by the relative abundance
of its associated plant species and negatively affected by the
relative abundance of the other plant species. The parameter
ν is a scaling factor that quantifies the relative strength of the
positive and negative effects of plants on soil community
growth. The effect of the soil communities on plant growth
is characterized by the parameters αA, αB, βA, and βB,
respectively, which can be either positive, negative, or zero.
The appearance of the product SA SB in (1c) and (1d) reflects
the fact that Bever originally derived his model for the
relative abundances of the two soil communities (Bever et

al. 1997). In fact, adding (1c) and (1d) yields dSA
dt þ dSB

dt ¼ 0
and, as a consequence, SA+SB0const. Scaling the total
abundance of the soil communities to one, we can express
SB in terms of SA (i.e., SB01−SA) and reduce system (1) to a
system of three differential equations. This system can be
written in the form:

dNA

dt
¼ ρANA 1� NA þ cBNB

kA

� �
ð2aÞ

dNB

dt
¼ ρBNB 1� NB þ cANA

kB

� �
ð2bÞ

dSA
dt

¼ SA 1� SAð Þ NA � vNB

NA þ NB

� �
ð2cÞ

The intrinsic growth rates ρA and ρB and the carrying
capacities κA and κB of the two plant species depend on the

densities of the soil communities, SA and SB01−SA, and
they are given by:

ρA ¼ ρA SAð Þ ¼ rA � 1þ aASA þ bA 1� SAð Þð Þ ð3aÞ

ρB ¼ ρB SAð Þ ¼ rB � 1þ aBSA þ bB 1� SAð Þð Þ ð3bÞ

kA ¼ kA SAð Þ ¼ kA � 1þ aASA þ bA 1� SAð Þð Þ ð3cÞ

kB ¼ kB SAð Þ ¼ kB � 1þ aBSA þ bB 1� SAð Þð Þ ð3dÞ
For the rest of this paper, we assume that aA; bA; aB;

bB > �1, thus preventing κA and κB from turning into neg-
ative equilibrium densities. All other model parameters are
assumed to be positive.

Graphical analysis

We analyze the Bever model in four steps. The first three steps
do not show new results, but introduce concepts and a line of
reasoning that is crucial for understanding our graphical meth-
ods in the final step. First, we discuss the effects of the soil
dynamics on plants growing in monoculture, which will lead
us to the concept of soil stability. Second, we consider the
effects of a fixed soil composition on plant competition, which
helps us to define the concept of competitive stability. Third,
we take into account the net effects of the plant–soil feed-
backs, and how to distinguish whether they are positive or
negative. Fourth, we integrate our criteria for soil stability,
competitive stability, and feedbacks in a graphical method for
the analysis of the complete system (2).

Plant monocultures

A monoculture of plant A is represented by Eqs. (2a, c) with
NB00. This monoculture has two equilibrium states: a first
one in which SA01 and NA ¼ kAð1Þ ¼ KA 1þ aAð Þ, and a
second one in which SA00 and NA ¼ kAð0Þ ¼ KA 1þ bAð Þ.
When 0<SA<1, Eq. (2c) implies that SA converges to 1
while SB converges to 0, i.e., the soil community associated
with plant A completely eliminates the soil community
associated with plant B. In dynamical terms, the first equi-
librium is stable with regards to perturbations in the soil
community, and it will be classified as soil-stable. Accord-
ingly, the second equilibrium is unstable with regards to
perturbations in the soil community, and it will be classified
as soil-unstable. Obviously, the same arguments apply to
monocultures of plant species B. For later reference, we give
the four monoculture equilibria a name: AA: soil-stable
monoculture of plant A, AB: soil-unstable monoculture of
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plant A, BB: soil-stable monoculture of plant B, and BA:
soil-unstable monoculture of plant B.

Effect of a static soil community on plant competition

When a soil community remains static, i.e., at constant
density, the coefficients ρA, ρB, κA, and κB are constant
and plant competition is described by a standard Lotka–
Volterra model. The dynamics of this model is well-known
(e.g., Case 2000): the outcome of competition depends on
the ability of each species to invade the monoculture of the
other species when this species is at its carrying capacity (κA
or κB, respectively). From Eq. (2a), it follows that species A
can invade the monoculture of species B if cBκB<κA,
implying cB<κA/κB. Similarly, species B can invade in the
monoculture of species A if cA<κB/κA. This leads to four
possible outcomes of competition (Case 2000). If species A
(resp. species B) is the only species able to invade the
monoculture of the other species, species A (resp. species B)
will win the competition. If both species are able to invade the
monoculture of the other species, both species will stably
coexist. If neither species is able to invade the monoculture
of the other species, one of the species will win the competi-
tion, the winner depending on initial conditions.

A community equilibrium exists if either both species or
none of the species can invade the monoculture of the other
species, i.e., if cA−κB/κA and cB−κA/κB have the same
sign. The community equilibrium is stable if the two species
can mutually invade each other. Multiplying both sides of
the invasion criteria cA<κB/κA and cB<κA/κB yields the
stability condition cAcB<1, which is often interpreted as
“interspecific competition is on average weaker than intra-
specific competition.” Summarizing:

existence of community equilibrium :

cA � kB=kAð Þ cB � kA=kBð Þ > 0

ð4aÞ

stability of community equilibrium : cAcB < 1 ð4bÞ
Figure 2 illustrates the conditions for equilibrium and

stability in a plot where the co-ordinate axes correspond to
the ratios of (soil dependent) carrying capacities: x0κB/κA
and y0κA/κB (this approach is similar in spirit as the “recovery
plane” analysis of Eppinga et al. (2006) where κB/κA−cA
and κA/κB−cB are plotted against each other). The relation
between x and cA determines whether B can invade the mono-
culture of A, while the relation between y and cB determines
whether A can invade the monoculture of B. The parameters x
and y are not independent but constrained by xy ¼ kB kA=ð Þ
kA kB=ð Þ ¼ 1 . In other words, all parameter combinations
describing a competitive plant system actually lie on the hy-
perbola xy01. If cAcB<1 (Fig. 2a), this hyperbola intersects the

coexistence region III, which means that stable coexistence is
possible for certain values of κB/κA. In the case of cAcB>1
(Fig. 2b), the hyperbola intersects the mutual exclusion region
IV and stable coexistence is not possible at all.

For future reference, we will use the term competitive
stability to refer to systems allowing a stable plant commu-
nity equilibrium (cAcB<1) and the term competitive insta-
bility for systems where only monoculture equilibria can be
stable (cAcB>1). As we shall see later on, the soil community
effects (indirectly) affect the balance between intra- and inter-
specific plant competition among the plant species. Therefore,
such soil community effects have the ability to shift the plant
system from one competitive regime to another.

Positive and negative plant–soil feedback

Given a pair of values of κA and κB determined by SA
(Eqs. 3c, d) the corresponding competitive system can be
represented as a point on the hyperbola xy01 in Fig. 2. Since
SA can vary from 0 to 1, all feasible competitive systems
can be mapped as a continuous set of points, i.e., a feasibility
arc. The two endpoints of the feasibility arc have the
coordinates:

SA ¼ 1 : x ¼ xA ¼ kBð1Þ
kAð1Þ ¼

kB 1þ aAð Þ
kA 1þ aBð Þ ;

y ¼ yA ¼ 1

xA
¼ kA 1þ aAð Þ

kB 1þ aBð Þ

ð5aÞ

SA ¼ 0 : x ¼ xB ¼ kBð0Þ
kAð0Þ ¼

kB 1þ bBð Þ
kA 1þ bAð Þ ;

y ¼ yB ¼ 1

xB
¼ kA 1þ bAð Þ

kB 1þ bBð Þ

ð5bÞ

Figure 3 pictures the feasibility arc as an arrow with its
head at SA01 (Eq. 5a) and its tail at SA00 (Eq. 5b). With
respect to the y-axis the arc can have an upward or a
downward orientation. If the orientation is upwards
(Fig. 3a), large values of SA correspond to systems close
to (or in) parameter regime I of Fig. 2a, where plant species
A is competitively dominant. Small values of SA correspond
to systems close to (or in) regime II where plant B is
dominant. In this situation there is a positive plant–soil
feedback in the sense that the dominance of one type of soil
community (SA or SB) favors the competitive dominance of
the associated plant species (A or B). Similarly, there is
negative plant–soil feedback if the arc points downwards
(Fig. 3b) because the dominance of one type of soil commu-
nity favors the competitive dominance of the plant species not
associated with the dominant soil community.
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The feedback is positive if yðSAÞ ¼ kAðSAÞ kBðSAÞ= is
increasing with SA (as in Fig. 3a) or, in other words, if
dy/dSA>0. This derivative is given by dy=dSA ¼
KAKB=k2

B

� � � JS, where
JS ¼ 1þ aAÞ 1þ bBÞ � 1þ aBÞ 1þ bAÞðððð ð6Þ

Since KAKB=K2
B is always positive, the plant–soil feed-

back is positive if Js>0 and it is negative if Js<0. In the
absence of plant–soil feedback (Js00), the feasibility arc
collapses into a single point (see the “Effect of a static soil
community on plant competition” section).

The importance of the sign of the plant–soil feedback was
pointed out by Bever and colleagues (Bever et al. 1997;

Bever 1999) who argued that positive feedback tends to
favor competitive dominance and, hence, species-poor plant
communities, while negative feedback tends to favor plant
coexistence. To quantify plant–soil feedbacks, Bever intro-
duced an interaction coefficient IS that is defined by

IS ¼ aA þ bB � aB � bA ð7Þ

There is a simple relationship between the coefficient IS
introduced by Bever, and the coefficient JS resulting from
our analysis

JS ¼ IS þ aAbB � aBbA ð8Þ

Fig. 2 Outcomes of the Lotka–Volterra system. The axes correspond
to the ratios of the carrying capacities: x ¼ kB=kA; y ¼ kA=kB . Since
y01/x, all feasible systems are constrained to the hyperbola xy01. Plant
B invades the monoculture of plant B if x>cA and plant A invades the
monoculture of B if y>cB. As a result the plane can be divided into four
invasibility zones I, II, III, and IV. aWhen cAcB<1, the hyperbola xy01

intersects region III, but not region IV. Hence, the community
equilibrium is stable (if it exists). b When cAcB>1, the hyperbola
xy01 intersects region IV but not region III. Now the community
equilibrium is unstable (if it exists), and depending on the initial
conditions, the system will either converge to a monoculture of
plant A or to a monoculture of plant B

Fig. 3 Effect of positive versus negative plant–soil feedback. The
range of possible soil communities (SA ranging from 0 to 1)
determines a feasibility arc, corresponding to a segment on the
hyperbola xy01. The direction of increasing SA is indicated by an
arrow head. a If the arrow points upwards (JS>0), increasing SA
shifts the system towards region I where plant species A wins the

competition (see Fig. 2). Hence, the soil community of A has a
positive effect on the competitive position of A (positive soil–
plant feedback). b If the arrow points downwards (JS<0), increas-
ing SA shifts the system towards region II where species B wins.
Hence, the soil community of A has a negative effect on A
(negative soil–plant feedback)
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Hence, in the case of parameter symmetry (i.e., aAbB ¼
aBbA ) Bever’s interaction coefficient IS correctly predicts
plant–soil feedback also in the case of plant–plant competi-
tion. JS generalizes IS to systems without parameter sym-
metry. In asymmetric scenarios, the difference between JS
and IS is often small. But it is easy to construct examples
where JS and IS differ in sign, that is, where Bever’s coef-
ficient IS does not correctly indicate the sign of the
feedback.

In analogy to Lotka–Volterra competition coefficients
we also define a net plant–soil feedback effect, which
can be derived from the ratio between effects on the
host plant (analogous to intraspecific competition) and
cross-effects on the other plant (analogous to interspe-
cific competition):

HS ¼ xByA ¼ 1þ aAð Þ 1þ bBð Þ
1þ aBð Þ 1þ bAð Þ ð9Þ

In view of (6), HS>1 implies that host-plant effects of a
soil community are more favorable than cross-effects, mean-
ing that plant–soil feedback is positive (JS>0). HS<1

implies that cross-effects are more favorable than host plant
effects, meaning that plant–soil feedback is negative. We
also want to remark that the natural logarithm of HS, which
has the literal signs (+ or −), as well as comparable scales for
positive and negative feedbacks, can be approximated by
Bever’s IS for small values of alphas en betas (i.e., first order
Taylor series).

Combining plant and soil dynamics

Combining the plots in Figs. 2 and 3 provides us with a
graphical method that is often sufficient for a complete
characterization of the dynamics of the coupled plant–soil
community described by Eq. (2). There are 20 different
ways in which the feasibility arc can intersect the four
parameter domains corresponding to the plant competition
scenarios I to IV (Fig. 4), which are characterized by the
monoculture invasion criteria. A detailed overview of the
scenarios is given in Appendix A.

Figure 5a depicts case 12, where the feasibility arc lies
completely within region II where only species B can in-
vade. We can therefore conclude that irrespective of the state

Fig. 4 Intersection of the feasibility arc of Fig. 3 with the invasion zones of Fig. 2. The arc is represented as an arrow which indicates the direction
of increasing SA. There are 20 scenarios, differing in the relative position and orientation of the feasibility arc with respect to the invasion zones
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of the soil only plant species B can grow in this
scenario. Thus the system converges to the monoculture
equilibrium BB in which SA00. In fact, in all cases
where the feasibility arc lies within regions I or II
(cases 1, 2, 11, and 12) one of the plants will always
win, irrespective of the initial conditions. When the arc lies in
region III (cases 3 and 13), each plant species can invade the
monoculture of the other species, implying that the two spe-
cies will stably coexist at equilibrium.When the arc lies within
region IV (cases 4 and 14) neither plant species can invade
when rare. Both plant monocultures are stable, and the winner
depends on the initial conditions (founder control; Bolker et
al. 2003). Summarizing, we can conclude that in the eight
scenarios where the feasibility arc lays completely inside one
of the four competition regions the qualitative outcome of
plant competition does not depend on the sign of the plant–
soil feedback.

Figure 5b depicts case 15, which is more complex be-
cause the feasibility arc spans two invasion zones. However,
the analysis is still straightforward. A monoculture of plant
B can never be stable, since the whole arc lies in the
parameter region where A can invade such a monoculture.
In parameter regime I, a monoculture of plant A is to be
expected in the absence of plant–soil feedback. However, as
long as plant A is in monoculture, the associated soil com-
munity SA will increase. Hence the system will be shifted
along the feasibility arc in the direction of the arrow, until
the plant coexistence regime III is reached. We conclude that
in this case the (negative) plant–soil feedback enables coex-
istence of the two plant species.

As indicated by Fig. 5, the position of the end point of the
feasibility arc with respect to the invasion zones tells us
whether a plant monoculture can be invaded or not, and

hence how the plant–soil interactions may determine the
plant dynamics. For a monoculture of plant A, the “head”
of the feasibility arc (SA = 1), which corresponds to the
equilibrium state AA, is relevant. This state can be invaded
by plant B if and only if cA<xA. By symmetry, a monocul-
ture of plant B corresponds to the state BB, which is located
at the “tail” of the feasibility arc (SA00) and can be invaded
by plant A, if and only if cB<xB. Multiplying these two

inequalities and noticing that xAyB ¼ xByAÞ�1 ¼ H�1
S

�
, we

obtain a necessary condition for mutual invasion of the two
monoculture equilibria:

cAcB < H�1
S ð10Þ

In the absence of plant–soil feedback (JS00 or HS01)
condition (10) turns into condition (4b) for the stable coex-
istence of the two plant species in the Lotka–Volterra com-
petition model. In line with the predictions of Bever and
colleagues (Bever 1999; Bever et al. 1997), condition (10)
leads to the conclusion that the conditions for plant coexis-
tence are more stringent in the case of a positive feedback
(whereH�1

S < 1), while they are more relaxed in the case of
a negative plant–soil feedback.

Indeed we found that positive feedback generally enhances
plant monocultures (cases 7–10), while net negative feedback
enhances plant coexistence (cases 15, 16, 19, and 20). Howev-
er, we found a few exceptions where plants can coexist under
positive feedback (cases 5 and 6), and where negative feedback
drove the system towards plant monocultures (cases 17 and
18). Therefore, in contrast to standard Lotka–Volterra theory,
monoculture invasion conditions as those considered above do
no longer provide a complete picture of the outcome of plant
competition. In the “Implications for plant coexistence”

Fig. 5 Graphical analysis of two scenarios discussed in the text. a Case
12 in Fig. 1: the whole feasibility arc is lying in region II. In this case,
species B will win the competition, and the soil composition will con-
verge to SA00 (i.e., the “tail” of the arrow). bCase 15 in Fig. 1: the tail of

the arc is in region I, whereas the head is in region II. As long as the
system is in region I, SA will increase. Eventually region III will be
reached, corresponding to the stable coexistence of the two plant species
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section, we will demonstrate in more detail that the two plant
species can stably coexist even in cases where condition (10)
for the mutual invasibility of the two plant monocultures is not
satisfied.

Implications for plant coexistence

Can plant–soil feedback drive community oscillations?

One of the most important conclusions from Bever (2003),
resulting from a numerical example, is that negative plant–
soil feedback can enhance coexistence by inducing compet-
itive oscillations. However, a mathematical analysis of the
same example (Revilla 2009) reveals that these oscillations
rapidly dampen out and that the system converges to a stable
coexistence equilibrium. (Only, when numerically integrat-
ing the model with a large integration step size we obtained
the oscillations described in Bever’s Fig. 1c.). Therefore, we
first explore if and under what conditions oscillation can
arise in the Bever model.

Population cycles are frequently associated with preda-
tor–prey dynamics, but they are also a common feature in
Lotka–Volterra competition models (Gilpin 1975; May and
Leonard 1975) and in resource competition models
(Huisman and Weissing 2001; Revilla and Weissing
2008). In these models, oscillations require at least three
competitors such that species R outcompetes species S, S out-
competes P, and P outcompetes R, as in the Rock–Scissors–
Paper game. Mathematically, the monocultures of R, P, and S
are connected by heteroclinic orbits, i.e., a sequence of paths

R→P→S→R that forms a cycle. Although the Bever model
involves only two plant competitors, it has in fact four mono-
culture states (AA, AB, BB, BA). This allows us to construct a
heteroclinic cycle as follows.

Consider the configuration corresponding to case 20
in Fig. 6a. From the positioning of the end points of
the feasibility arc in competition regimes I and II,
we can conclude that the following inequalities are
satisfied:

xB < cA < xA and yA < cB < yB ð11Þ

As discussed above, the inequalities cA<xA and cB<yB
imply that both plant monocultures can be invaded by their
plant competitor when their associated soil communities
(i.e., soil community A is associated to plant monoculture
A, and soil community B to plant monoculture B) are
dominant. In other words, AA and BB are competitively
unstable. The inequalities xB<cA and yA<cB imply that the
two monocultures cannot be invaded when the invader’s soil
biota is dominant. In other words, AB and BA are competi-
tively stable. However, as shown in the “Plant monocultures”
section, these two equilibria are not soil stable. In such a
situation, we expect a cyclic sequence AA→BA→BB→
AB→AA of successions or at least oscillations following this
sequence (Fig. 6b).

This is confirmed by Fig. 7 which depicts the time course
of the system under the above scenario. For Bever’s param-
eterization (Fig. 7a; corresponding to Bever 2003, Fig. 1c),
the system exhibits damped oscillations that converge to a

Fig. 6 Graphical analysis (a) and dynamical analysis (b) of case 20 in
Fig. 1. a As long as the system is in region I, SA will increase, driving
the monoculture of A from an uninvasible state into an invasible state.
Similarly, as long as the system is in region III, SA will decrease,
driving the monoculture of B toward an invasible state. In both direc-
tions, the system passes through the zone of unstable community
equilibria (IV). b The parameter space is mapped into a phase space
where circles represent equilibria (white, unstable; gray, saddle) at the
corresponding invasion zones (see Appendix A for details on mapping

into the phase space). The diagonal line represents the A–B nullcline
(species A grows towards the right B grows towards the left), and the
dashed line is the soil nullcine (SA increases in the right and decreases
in the left); their intersection corresponds to the internal equilibrium
predicted in (a). Monocultures are either competitively stable or soil
stable, but not both: they are saddle points forming a heteroclinic cycle
around the internal equilibrium AB which is competitively unstable.
The system converges to a heteroclinic orbit (the border of the phase
space)
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coexistence equilibrium. By increasing the intensity of com-
petition, cAcB, this equilibrium becomes unstable and gives
rise to a limit cycle (Fig. 7b). With a further increase in
competition intensity the cycle becomes a heteroclinic orbit,
i.e., the system “visits” the four monoculture equilibria in a
cyclic fashion, remaining in the vicinity of each monocul-
ture state for increasingly longer times (Fig. 7c).

In Fig. 7a, b, cAcB<1 and the parameter configura-
tion corresponds to case 19 in Fig. 1. Now the feasi-
bility arc intersects parameter region III for stable
competitive coexistence. In the absence of soil commu-
nity effects, there exists a stable coexistence equilibri-
um, but this equilibrium can be destabilized when soil
community effects are incorporated. This is indeed the
case if the competition intensity cAcB is just below 1 (as
in Fig. 7b). In fact, it can be shown analytically (Revilla
2009) that stable equilibrium coexistence (as in Fig. 7a)
is only possible if cAcB<1−δ, where δ is a positive
quantity that can be calculated from the remaining sys-
tem parameters. In Fig. 7c, cAcB>1, as a consequence,
the parameter configuration corresponds to case 20 in
Fig. 1, where the feasibility arc intersects parameter
region IV for mutual competitive exclusion (see also
Fig. 6a). In this region, there exists a coexistence

equilibrium, but this equilibrium is unstable. As a con-
sequence, the sequence of events described unfolds,
and the system converges to the heteroclinic cycle
AA→BA→BB→AB→AA (see Fig. 6b).

Notice that the conditions (11) imply that HS ¼ xByA <

xAyB ¼ H�1
S , which is only possible for HS<1 or, equiva-

lently, JS<0. As a consequence, the above scenario for the
development of oscillations can only occur in case of
negative plant–soil feedback. Since the analytical results
of Revilla (2009) suggest that this is the only route to
oscillations in the Bever model, we conclude that com-
petitive oscillations will only occur if two requirements
are met: (a) the plant–soil feedback is negative and (b)
both soil-stable monoculture equilibria are susceptible to
invasion.

Does negative plant–soil feedback enhance coexistence?

Coexistence between plant species is favored when each
plant species can invade the monoculture of the other
species. This is possible in many scenarios (Fig. 1
scenarios 1, 2, 3, 11, 12, 13, 15, 16, 19, and 20). When
we exclude the scenarios where feedback does not de-
termine invasion (1, 2, 3, 11, 12, and 13) we can see

Fig. 7 Competitive oscillations due to a cyclic succession of compet-
itive instability and soil instability. The top panels show the densities
of plant A (solid line) and B (dashed line); the bottom panels depict the
density of the soil biota SA. The parameter values KA0100, KB0120,
rA00.7, rB00.5, ν00.8, αA0−0.03, αB0βA00.10, βB0−0.20, and
cB00.980 are kept fixed, while the competition coefficient cA is in-
creased from cA00.885 in (a) via cA01.005 in (b), to cA01.050 in (c).
Scenario (a) corresponds to Bever’s (2003) Fig. 4c with increasing
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intensity of competition, the asymptotic behavior of the system
changes from convergence to a stable coexistence equilibrium in (a),
via convergence to a limit cycle in (b) to convergence to a heteroclinic
orbit in (c). In this example, soil–plant feedback is negative
(Js0−0.434). Because of xA≈1.36, yA≈0.73, xB≈0.87, yB≈1.15, the
conditions (13) for the cyclical succession AA→BA→BB→AB→AA

are satisfied



that only negative plant–soil feedback allows mutual
invasion. Although this generally enhances plant coex-
istence, it does not necessarily lead to equilibrium co-
existence. Instead, as shown in the previous paragraph
oscillations can occur. If these oscillations take the form
of a limit cycle, the two plant species will still stably
persist, although not in equilibrium. But the oscillations
can also take the form of a heteroclinic cycle, where the
populations are repeatedly driven to very low densities.
In the mathematical model, they still survive, but in the
real world local extinction can occur. Thus, in case of a
heteroclinic cycle mutual invasibility of the two mono-
cultures may not result in long-term coexistence.

To assess the relative importance of limit cycles
versus heteroclinic cycles, we investigated the pattern
in Fig. 7 numerically. Using continuation-bifurcation
analysis software (program: XPPAUT, Ermentrout
2002), we found that as cAcB increases, regular oscil-
lations start at cAcB00.977 (where a Hopf bifurcation
occurs). Already at cAcB00.998, these oscillations turn
into a heteroclinic orbit. Switching between the four
monoculture states persists until cAcB01.559 (at this
point, the requirement for mutual invasion (12) is no
longer satisfied, and the chain of heteroclinic orbits
connecting the four monocultures is broken). Thus,
while the system does not converge to equilibrium for
0.977<cAcB<1.559, a limit cycle only occurs for the
much smaller range 0.977<cAcB<0.998. In other words,
more than 95 % of the parameter range corresponding
to non-equilibrium dynamics corresponds to the occur-
rence of heteroclinic cycles, and hence, to eventual
extinction.

Accordingly, negative feedback has a much smaller po-
tential for the facilitation of plant coexistence than Bever’s
analysis seems to suggest. One should notice, however, that
in a spatial context, the risk of extinction via the large-
amplitude oscillations associated with a heteroclinic cycle
may be counteracted by the repeated re-immigration of the
locally extinct species. Under such conditions, also a heter-
oclinic cycle can allow the regional coexistence of the plant
species.

Coexistence as an alternative stable state

The previous example highlights that plant–soil feed-
backs can generate competitive dynamics that are not
observed in standard competition models. In this sec-
tion, we will also show an example of how soil com-
munity effects can fundamentally alter the stability of
equilibria. This has important implications for the utility
of invasion criteria to analyze stability. When properly
used, invasion criteria are very useful to predict the
range of dynamics that a dynamical system can possibly
display. In the present context, we can list all possible
dynamics of Bever’s model (Table 1) by just consider-
ing whether AA and BB can be invaded or not (i.e.,
whether cA<xA, cB<yB hold or not), and the direction
of the feedback (the sign of JS). However, as illustrated
by the following example an invasion analysis can also
have its limitations.

Consider the scenario in Fig. 8a (case 5) where the
feedback is positive (JS>0) and where cA>xA and cB<yB. In
this case, condition (10) for mutual invasibility does not
hold: while plant A is able to invade the monoculture of
plant B (since cB<yB), plant B cannot invade the mono-
culture of plant A (since cA<xA does not hold). How-
ever, stable coexistence may still be possible. As
indicated in Fig. 8a, the “tail” of the feasibility arc
(SA00) lies in zone III, which means that for SA00
there is a competitively stable community equilibrium.
Following our previous notation, this equilibrium will
be denoted by ABB since the soil is dominated by B’s
soil biota, as seen in Fig. 8b. Provided that NA<vNB,
this community equilibrium is a stable attractor: accord-
ing to Eq. (1c), this condition ensures dSA/dt<0; and
hence, the soil stability of ABB (in addition to the
competitive stability of this equilibrium). Interestingly,
ABB is not the only attractor: the “head” of the feasi-
bility arc (SA01) lies in zone I, where plant coexistence
is not possible and plant A attains a competitively
stable and soil stable monoculture AA.

This example illustrates three points. First, a locally
stable community equilibrium is not necessarily globally

Table 1 Plant community composition for different scenarios of plant invasion and net plant–soil feedback

Net positive feedback JS>0 Net negative feedback JS<0

Both plants invade
cA<XA, cB<yB

Stable coexistence with SA01; stable coexistence with SA00; stable
coexistence with SA00 or 1, depending on the initial conditions

Stable coexistence with 0<SA<1, competitive
oscillations, limit cycles or heteroclinic cycles

A invades cB<yB,
B does not cA>xA

A wins or stable coexistence, depending on the initial conditions A wins

B invades cA<xA
A does not cB>yB

B wins or stable coexistence, depending on the initial conditions B wins

None invade
cA>xA, cB>yB

Winner depends on the initial conditions Winner depends on the initial conditions
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stable. In addition to the community equilibrium (here
ABB), there can be other stable attractors (here AA), and
the competitive outcome depends on the initial condi-
tions. Second, invasion analysis is a very powerful
technique, but it has its limitations. In the above exam-
ple, ABB can be stable even in the absence of mutual
invasibility (the monoculture equilibrium AA cannot be
invaded by plant species B). Third, since our graphical
analysis reflects an invasion analysis, it also has its
limitations. In the above example, the stability of ABB

depends on the magnitude of the parameter ν, while ν
does not play a significant role in the graphical analysis.

Our conclusion that mutual invasibility is not re-
quired for stable plant coexistence is not only of theo-
retical interest, but also of empirical relevance. In fact,
many experimental studies on plant–soil feedback use a
set-up that is quite comparable to a mathematical inva-
sion analysis (i.e., introduction of a plant species in a
community dominated by other species). The above
example demonstrates that—in contrast to classical com-
petition theory—predictions on plant coexistence that
are solely based on the outcome of invasion experi-
ments have to be treated with care.

Discussion

In this paper, we aimed at a better understanding of
plant species dynamics and coexistence in the presence
of plant–soil feedback. To this end, we developed math-
ematical and graphical techniques allowing a rather
complete analysis of Bever’s (2003) model. We found

that plant species coexistence is possible if the intensity
of interspecies competition (cAcB) is smaller than H�1

S , a
parameter closely related to the net plant–soil feedback
parameter JS. When plant–soil feedback is positive,
plant coexistence is more difficult to achieve than in
the pure competition model. In contrast, a negative
plant–soil feedback allows plant coexistence under more
relaxed conditions and thus has the potential to enhance
plant community diversity (Bever et al. 1997; van der
Heijden et al. 2008). Recent empirical studies, as well
as a meta-analysis of more than 300 plant–soil feedback
experiments, indeed show that negative feedback favors
coexistence and diversity (Bever 1994; Bradley et al.
2008; De Deyn et al. 2003; Kulmatiski et al. 2008;
Mills and Bever 1998).

Most of the results from our graphical analysis have
an intuitive explanation because plant–soil feedback
contributes to the competitive strength of the plant spe-
cies. For example, in the case of negative plant–soil
feedback (JS>0), the competitive position of a plant is
weakened when its associated soil community increases
(i.e., the system shifts towards the region where the
other plant species wins, Figs. 2 and 3). However,
plant–soil interactions do not affect the competition
intensities cA and cB, and hence, also not the stability
of an internal equilibrium if it exists (Fig. 2).

While our analysis supports Bever’s conclusion that
negative feedback favors coexistence, we also demon-
strated that the standard criterion for plant coexistence
(the mutual invasibility of monocultures) is not a nec-
essary condition for coexistence. As a consequence,

Fig. 8 (a) Graphical analysis and (b) phase space analysis of case 5 in
Fig. 1. (a) In this configuration a monoculture of species A is not
invasible by B (and hence stable), while a monoculture of species B is
invasible by A. As explained in the text, the community equilibrium
corresponding to the tail of the feasibility arc can also be a stable
equilibrium. Hence, the system allows two alternative stable states. (b)
The phase space shows the equilibria (white, unstable; black, stable;
gray, saddle) and the invasion zones. The diagonal line representing

the A–B nullcline (both species grow towards it) intersects SA00
giving rise to the coexistence equilibrium ABB predicted in part (a).
If the vertical dashed line representing the soil-nullcline (SA increases
to the right and decreases to the left) intersects the A–B nullcline there
will be an internal equilibrium AB that is a saddle point; and depending
on the initial conditions the system moves towards the monoculture of
AA dominated by A’s soil biota or towards the coexistence equilibrium
ABB dominated by B’s soil biota
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plant coexistence under positive feedback is more likely
than Bever’s (2003) analysis suggests. Surely, in natural
situations positive plant–soil feedback, for example,
mediated by the presence of arbuscular mycorrhizal
fungi is often associated with an increase in the domi-
nance of a particular plant species and a reduction in
diversity (Hartnett and Wilson 1999). Moreover, exotic
plant species that escaped from species-specific soil
pathogens may still profit from mutualistic root sym-
bionts in their new range which favors their dominance
(Callaway et al. 2004; Klironomos 2002). However, it
has also been shown that positive plant-soil feedbacks
can enhance plant coexistence. For example, the pres-
ence of arbuscular mycorrhizal fungi may enhance plant
diversity in grasslands (Grime et al. 1987; van der
Heijden et al. 1998b) by promoting seedling establish-
ment and enhancing the competitive ability of subordi-
nate plant species (Grime et al. 1987; van der Heijden
et al. 2008).

Our results provide a mechanistic understanding of
how negative plant–soil feedback can drive oscillations
in plant species abundances. Oscillations could occur in
situations where plants would otherwise competitively
exclude each other, meaning that oscillations can enable
coexistence. We also found, however, that oscillations
along a heteroclinic orbit could occur in situations
where plants would otherwise stably coexist, meaning
that oscillations can also enable stochastic extinction.
Therefore, negative plant–soil feedback does not neces-
sarily enhance coexistence in all situations. Although
many studies indicated that negative plant–soil feedback
can be important driving plant dynamics (Olff et al.
2000) and ecological succession (De Deyn et al. 2003;
van der Putten et al. 1993), there are no studies directly
testing its impact on competitive oscillations. Yet, some
of these empirical studies show that soil-borne organ-
isms have the potential to decline the competitive
strength of plants to such an extent that can be replaced
by others (van der Putten and van der Stoel 1998; van
der Putten et al. 1993).

We introduced two alternative interaction coefficients
JS and HS. These coefficients are more generally appli-
cable to the current model, than Bever’s IS. In the
original plant–soil feedback model of Bever et al.
(1997), plant abundances as well as soil communities
are accounted in terms of proportions (not densities) and
plant competition is “apparent” (sensu Holt 1977), being
a by-product of the feedbacks. As a consequence, the
original Bever et al. model (1997) has only two out-
comes that can be predicted in terms of plant–soil
feedback effects, i.e., the sign of IS. In contrast, the
version of the Bever (2003) model that we studied

here is a modification of the Lotka–Volterra model. This
model has more degrees of freedom because plant densities
can vary independently, and because this model contains
additional parameters related to resource competition.
Consequently, equilibrium stability and global dynamics
cannot be fully accounted for by solely considering
combinations of feedback effects (IS, JS, HS), but must
consider resource competition (parameters cA and cB) as
well. In this study, we have shown how Bever’s coeffi-
cient IS can be generalized to capture situations involv-
ing plant competition as well (JS or HS).

A major strength of the plant–soil feedback modeling
approach introduced by Bever and colleagues is its close
connection to experimental plant–soil feedback pot experi-
ments (Bever 1994; Bever 1999; Bever et al. 1997). How-
ever, the assumption of exponential plant growth, made in
the original version of the model, is problematic, even in
shorter-term pot experiments. This may be one reason why
the original model does not predict the outcome of such
experiments very well (Kulmatiski et al. 2011). By linking
plant–soil feedback to the classical Lotka–Volterra compe-
tition model, Bever (2003) included plant competition in his
model. By providing the mathematical and graphical tools
for analyzing this more complicated model, we hope to
facilitate the extension of the plant–soil feedback approach
to longer-term experiments and field situations.
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Appendix A: Graphical analysis

Figure 4 is useful for classifying and describing the
main features of the dynamics in terms of the invasion
conditions. For example in cases 1, 2, 11, and 12, it is
easy to see that only one species A or B always wins
because only one of them is able to grow for any soil
composition. In cases 4 and 14, any resident species
will be protected against invasion, and any equilibrium
that may exist will be competitively unstable, for any
soil composition.

However, cases 3, 5–10, 13, and 15–20 are more
complicated. In these situations, it is sometimes useful
to have a graphical representation in the familiar form
of a phase space and nullclines. Although this is possi-
ble for a three-dimensional system like the Bever
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model, the following two-dimensional representation is
more convenient:

The phase space is constructed according to the following
rules:

& The horizontal axis indicates the plant composition:
plant A is dominant on the right, plant B on the left.
The vertical axis indicates soil composition: A’s soil
biota dominates on the top, B’s soil biota dominates on
the bottom.

& The corners represent the plant monocultures, with AB,
BB corresponding to SA00, and AA, BA corresponding
to SA01. Depending on the competitive stability con-
ditions (7, 8, 11, 12) and their soil stability, the corners
are classified as stable, unstable, or saddle points.

& The invasion zones intersected by the feasibility arc be-
come the domains of attraction in the phase plot, placed in

the same order as they are encountered by traversing the
arc from SA00 to 1 (and using the same fill patterns).

& If the arc intersects zones III or IV, the corresponding
domain of attraction in the phase plot is divided by a
diagonal line. This line, representing coexistence equi-
libria, is the plant nullcline, i.e., a nullcline for the plant
composition, not the plant densities. In the case of inter-
secting zone III, the plant composition moves towards
the line (communities are competitively stable). In the
case of intersection with zone IV, the plant composition
moves away from the line (communities are competi-
tively unstable).

& The plane is divided by vertical that represents the non-
trivial soil nullcline: SA increases at the right of the line
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(NA>vNB in Eq. 2), and decreases at the left (NA<vNB in
Eq. 2). The smaller the v the bigger the portion of the
plane where SA increases, and vice versa. The top (SA01)
and the bottom (SA00) sides of the plane are trivial soil
nullclines.

& A coexistence equilibrium corresponds to the intersec-
tion of the plant nullcline with a soil nullcline, trivial or
not. For this reason, there can be border equilibria where
SA00, SA01, or an internal equilibrium where SA is
intermediate. Depending on its location with respect to
the attraction domains and the non-trivial plant nullcline,
an equilibrium is declared stable, unstable or a saddle point.

Because of symmetry, we do not show cases 6, 8, 16, and
18 because they are qualitatively equivalent to cases 5, 7,
15, and 17 (by swapping the “A” and “B” labels). Cases 3
and 13 are very similar in the stability of their monocultures,
and because of having border equilibria. However, they
display qualitatively different dynamics. Under net positive
feedbacks (case 3) the system can display alternative stable
states: coexistence with dominance of plant A and its soil
community or coexistence with dominance by plant B and
its soil community. On the other hand, under net negative
feedbacks (case 13) there cannot be alternative stable states,
and oscillations may develop (though we suspect they
dampen out given the geometry of the nullclines).

The majority of cases under net positive feedback result
in competitive exclusion. However, some can display alter-
native stable states, and coexistence depending on the initial
conditions (5 and 6). On the other hand, the majority of
scenarios under net negative feedback promote mutual in-
vasion and coexistence (17 and 18 are the exceptions),
including coexistence through oscillations (19 and 20).
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