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Should attractive fathers have more sons? According to widespread verbal arguments, the answer is in the affirma-

tive, but formal models are lacking. We investigate the question by means of an ESS analysis of sexual selection and

sex ratio selection. The purpose of this paper is twofold: firstly, we show how an ESS approach can be used to model

the coevolution of female mate choice and male secondary sexual traits. In the ESS approach, the genetic

covariances of traditional genetic models of sexual selection are replaced by covariances between strategies. In com-

parison with population genetic and quantitative genetic models of sexual selection, the ESS approach is simpler and

yields more insight in the underlying selective forces. Secondly, we show that whether attractive fathers should have

more sons depends on the mechanism of sexual selection: sexual selection driven by the Fisherian runaway process

alone, without costs of choosiness, does not select for sex ratio specialization according to paternal attractiveness,

but the good-genes process causes selection to favor such specialization.
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1. Introduction

Sexual selection driven by female mate choice is

held responsible for much male extravaganza such

as conspicuous ornaments and elaborate courtship

displays (Darwin, 1859, 1871; Andersson, 1994).

Female choosiness itself is favored by selection if it

confers a net fitness benefit to females. Those bene-

fits are usually classified as either direct or indirect

benefits. Direct benefits of choosiness are improve-

ments of a female’s own reproductive success, due

to, for example, preferred males having better terri-

tories or providing more parental care (Hoelzer,

1989). Indirect benefits are obtained if offspring

sired by preferred males have relatively high repro-

ductive success, caused by inheritance of their fa-

ther’s high viability, fecundity, or attraction. Two

distinct mechanisms may explain how indirect bene-

fits can accrue to choosy females: Fisher’s runaway

process (Fisher, 1930) and the good-genes model

(e.g. Kirkpatrick, 1996). In Fisher’s runaway pro-

cess, choosiness evolves because sons of choosy fe-

males tend to have more offspring simply because

they are more attractive to other females. According

to the good-genes model, choosiness is favored be-

cause the preferred male’s character signals his good

genes, other than those that cause his attractiveness,

that he passes on to his offspring.

There is an obvious link between sexual selection

and the sex ratio: intrasexual competition for mat-

ings is more intense for the sex that is overrepre-

sented in the population. More recently, another link

between sexual selection and the sex ratio has been

postulated. Based on the idea that the offspring sex

ratio should reflect parental quality (Trivers and

Willard, 1973), it has been argued that it would be

adaptive for attractive males to produce a male-bi-

ased sex ratio. Several recent empirical studies,

mainly on birds, have investigated the correlation

between conspicuousness or phenotypic quality of

males and the sex ratio among the offspring of such

males (Burley, 1981; Westneat et al., 1995; Ellegren

et al., 1996; Sheldon and Ellegren, 1996; Svensson

and Nilsson, 1996; Westerdahl et al., 1997). The re-

sults were mixed: some studies found a positive cor-

relation, others found no correlation (review in Shel-

don, 1998). However, the theoretical status of the
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underlying idea is far from clear yet, being only

based on verbal reasoning that can be quite mislead-

ing in the context of sexual selection. Therefore

here, for the first time, we attempt to analyse this

idea by means of formal models.

It is not too surprising that a formal modelling ap-

proach has not been attempted thus far. The two

most commonly used theoretical methods to study

sexual selection, population genetic (PG) and quan-

titative genetic (QG) models, are not easily adapted

to incorporate variable sex ratios. PG models tend to

become very complicated, not only because the

number of loci to be considered increases, but also

because allele frequencies differ between the sexes.

Concerning the QG approach, it is not obvious to us

how conditional sex allocation can be incorporated

into QG models. In contrast, an evolutionarily stable

strategy (ESS) analysis has proven to be highly suc-

cessful in the context of sex ratio evolution

(Charnov, 1982; Frank, 1998). For this reason, we

first investigate whether, and to what extent, an ESS

analysis can also be applied in the context of sexual

selection. At first sight, it is perhaps surprising that

the “phenotypic” ESS approach (Weissing, 1996)

might be useful in the context of a process where ge-

netic variances and covariances play a crucial role

for the outcome of selection (Lande, 1981; Kirkpat-

rick, 1982). However, as we will show below, with

some reasonable assumptions, ESS models can be

constructed where the genetic covariances of QG are

replaced by covariances between strategies. An ESS

approach has been used before in the context of sex-

ual selection (Grafen, 1990a, b; Siller, 1998), but

without explicitly considering covariances between

strategies. Such covariances are important because

linkage disequilibrium may cause indirect selection

on traits that are not themselves subject to direct se-

lection. Moreover, previous game theory models of

sexual selection used rather ad hoc fitness functions.

Here we derive fitness consequences from explicit

population dynamical models for the life history

context of the problem.

First we show that classical results of sexual se-

lection theory can also be obtained by an ESS analy-

sis. We will argue that the ESS approach provides a

better insight into the selective forces involved. The

power of the method is demonstrated by applying it

to the sex ratio problem. We show that, contrary to

the standard verbal arguments (e.g. Ellegren et al.,

1996), it may crucially depend on the mechanism of

sexual selection whether and how organisms should

bias the sex ratio of their offspring in relation to pa-

ternal attractivity.

2. An overview of the method

In this section we give a brief account of the ESS

methods we use in the rest of the paper. For a more

elaborate treatment, see Taylor and Frank (1996),

Frank (1998) and Pen and Weissing (2000).

2.1. Evolutionary stability of a single trait

A trait x* is considered evolutionarily stable (an

ESS, Maynard Smith, 1982) if a population exhibit-

ing this trait cannot be invaded by any mutant with

an alternative trait x ≠ x*. In other words: x* is an

ESS if it yields a higher fitness than any alterna-

tive x:

W(x, x*) < W(x*, x*) (1)

where W(x, x*) denotes the fitness of a mutant trait x

in a monomorphic resident population with trait x*.

This implies the equilibrium condition

∂
∂
W

x
x x= ∗

=0. (2)

Higher-order conditions must be checked to see if x*

corresponds to a local maximum or minimum and to

see if x* has additional stability properties (see

Geritz et al., 1998).

The fitness function W(x, x*) is derived from a

population dynamical model for a subpopulation of

mutants embedded in a resident population. Popula-

tions generally consist of several classes of individu-

als, classified according to sex or age or any other in-

teresting property. Transitions between different

classes of mutants from one time unit to the next are

summarized by the square matrix A = A (x, x*),

where each matrix element a
ij

= a
ij

(x, x*) represents

the per capita contribution of a class j individual mu-

tant to the class i individuals mutants one time unit

later. The asymptotic growth rate λ = λ(x, x*) of the

subpopulation of mutants, given by the dominant

eigenvalue of A, is a proper measure of fitness (Metz

et al., 1992), but is usually hard to calculate.

112 I. PEN and F. J. WEISSING



An alternative fitness function can be obtained by

a reproductive value approach (e.g. Taylor, 1996;

Pen and Weissing, 2000). This fitness function iden-

tifies the same evolutionarily stable strategies as λ,

but it is easier to calculate and often provides more

insights into the underlying selective forces.

Formally, this fitness function is given by

W x x v u a x xi j ij

i j

( , ) ( , ),
,

∗ = ∗∗ ∗∑ (3)

where the u
j
* are the class frequencies of the resident

population in demographic equilibrium and the v
i
*

are the reproductive values of the different classes of

resident individuals. Formally, the vectors u and v

are dominant right and left eigenvectors of the ma-

trix A(x*, x*). The equilibrium condition (2) is then

given by

∂
∂

∂
∂

W

x
v u

a

x
x x

i j

ij

x x
i j=

∗ ∗

= ∗
∗

= =∑ 0.
,

(4)

2.2. Evolutionary stability of multiple traits

In studying the coevolution of several traits, such as

the coevolution of female sexual preferences and

male secondary sexual traits, one has to consider the

possibility that correlations between traits occur,

such as a correlation between the degree of female

preference and the degree of male exaggeration.

Suppose, for example, that we are interested in the

coevolution of traits x and y. Selection on x is not

only governed by the “direct” effect of x on fitness,

quantified by ∂W/∂x, but also indirectly by the ef-

fects of y on fitness, quantified by ∂W/∂y, which

have to be taken into account if y is correlated with x.

If y were a function of x, the total effect of selection

on x would be quantified by the total differential of

W with respect to x:

dW

dx

W

x

dy W

dx y
= +∂

∂
∂
∂

. (5)

In the context considered here, y is not a function of

x but only correlated with x. To take this correlation

into account, it is convenient to replace dy/dx in (5)

with β
yx

, the statistical regression coefficient of y on

x (Taylor and Frank, 1996). In this way, the total se-

lection differentials on x and y are given by

dW

dx

W

x

W

y
yx= +∂

∂
β ∂

∂
(6a)

dW

dy

W

y

W

x
xy= +∂

∂
β ∂

∂
, (6b)

where the derivatives are evaluated at x = x* and

y = y*. The identification of the derivatives with the

regression coefficients is not exact in general, but if

x and y are from a bivariate normal distribution, then

it is “exact” (see Lande, 1976) because in that case

E E E( | ) ( ) [ ( )]y x y x xyx= + −β .

At an evolutionarily stable pair (x*, y*) both se-

lection differentials have to be equal to zero:

∂
∂

β ∂
∂

W

x

W

y
yx+ =0 (7a)

∂
∂

β ∂
∂

W

y

W

x
xy+ =0, (7b)

evaluated at x = x* and y = y*.

We will consider βxy and β
yx

as constants and as-

sume that they satisfy the non-degeneracy condition

β
xy
β

yx
≠ 1. This implies that the equilibrium condi-

tions (7a) and (7b) coincide with the conditions

∂
∂
W

x
x x= ∗

=0 (8a)

∂
∂
W

y
y y= ∗

=0. (8b)

Hence, the pairs (x*, y*) can be found by finding the

equilibria of x and y separately, without knowledge

of the coefficients β
xy

and β
yx

. However, whether

(x*, y*) corresponds to a maximum, as determined

by higher-order conditions, may depend on the val-

ues of β
xy

and βyx. A special case obtains if there is

no direct selection on one of the two traits, say

x: ¶W/¶x = 0. In that case the equilibrium condition

is given ∂W/∂y = 0, and since W is a function of x and

y, the equilibrium is usually a continuum (often a

“line of equilibria”).

In general, for n traits x1, ..., xn, the equilibrium

condition can be written as

β∇ =W 0, (9)

where ∇ is the gradient-operator (∂/∂x1,..., ∂/∂xn)

and β is the n × n matrix of “regression” coefficients.

If β has nonzero determinant, the equilibrium condi-
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tion is equivalent to ∇ W = 0. An equilibrium corre-

sponds to a maximum if the matrix ∇ (β∇ W), evalu-

ated at the equilibrium, is negative definite (has only

negative eigenvalues, see Lancaster, 1969).

3. ESS models of sexual selection

Below we present two ESS models that try to cap-

ture the essence of the two processes thought to be

most important in the evolution of female choice:

the Fisherian runaway process and the good-genes

process. In the next section we expand these models

to allow for variable sex ratios.

3.1. Fisherian runaway

There are two types of males: type 0 and type 1.

Type 1 males invest more than type 0 males into

some conspicuous trait. Males have mixed strategy

y, which is the probability that they will develop in

type 1 males. Males that develop into type 1 pay a

survival cost c, that is, their survival to adulthood

relative to type 0 males is given by 1–c.

Females have a certain preference x for type 1

males, which translates into them giving a propor-

tion α of matings to type 1 males, α = a(x) being an

increasing function of x. The number of matings per

type of male depends on the frequency of types and

the preference of females in the resident population

because mutant males and females are assumed to be

rare. Let there be u
f
* females in the resident popula-

tion, and u
m0

*, respectively, u
m1

* males of type 0 and

1. The per capita number of matings per type of male

are then given by

Q
u

u

f

m

0

0

1∗
∗

∗
=

− ∗( )α
(10a)

Q
u

u

f

m

1

1

∗
∗

∗
=

∗α
. (10b)

The two conditions taken together imply the con-

straint that the total number of matings by all males

must equal the total number of matings by all fe-

males:

u Q u Q uf m m

∗ ∗ ∗ ∗ ∗= +0 0 1 1. (11)

Assuming nonoverlapping generations and an

even sex ratio, the transitions between the different

classes of mutant individuals from one generation to

the next are summarized by the matrix

A =
1

2

1

1 1 1

1 1 1

0 1

0 1

0

Q Q

y y Q y Q

c y c yQ c yQ

∗ ∗

∗ ∗

∗

− − −
− − −

( ) ( )

( ) ( ) ( ) 1

∗
















. (12)

The first column represents females’ contribution to

the next generation, the second and the third the con-

tributions by type 0 and type 1 males, respectively.

The factor 1/2 reflects the fact that offspring inherit

1/2 of each parent’s genes, as we assume here.

It is easy to verify that the growth rate of the resi-

dent population (the dominant eigenvalue of A when

x = x* and y = y*) is given by λ* = 1. In other words,

we assume that the resident population is stationary,

females producing exactly one daughter on average.

The relative sizes of the three classes in the resident

population are given by the equation Au* = λ*u*,

where u* = ( , , )u u uf m m

∗ ∗ ∗
0 1 . Since the rows of A are

constant multiples of each other, the solution is pro-

portional to the multipliers:

u* = ( , , ( ) )1 1 1− ∗ − ∗y c y (13)

Note that these are the frequencies after viability se-

lection.

The reproductive values of the three classes are

given by v*A = l*v*, where v* = ( , , )v v vf m m

∗ ∗ ∗
0 1 . Be-

cause the columns of A are constant multiples of

each other, a solution is easily seen to be

v∗ = ∗ ∗( , , ).1 0 1Q Q (14)

In English: the reproductive values of males are just

their average number of successful matings times

the reproductive value of a female.

There is clearly no direct selection on female

preference (there is no x in the matrix), since there

are no costs of choice (but see below) and the suc-

cess of a female’s sons depends on the strategy of

resident females. Hence ∂W/∂x = 0.

Inserting (11) into (4) yields the direct effect of

selection on the male trait y:

∂
∂
W

y
c v v

y y

m m

= ∗

∗ ∗= − −( )1 1 0 (15a)

= − −∗ ∗( ) .1 1 0c Q Q (15b)
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In other words, as long as the expected reproductive

success (viability times number of mates) of attrac-

tive sons is larger than that of unattractive sons,

(1 – c)Q Q1 0

∗ ∗> , selection favors an increase in y,

and vice versa.

According to (9), the total selection differentials

on x and y are given by

dW

dx
c Q Qyx= − −∗ ∗β [( ) ]1 1 0 (16a)

dW

dy
c Q Q= − −∗ ∗( ) .1 1 0 (16b)

An internal equilibrium, if it exists, is therefore

given by

*( ) .1 1 0− =∗ ∗c Q Q (17)

At this point the mating advantage of type 1 males is

exactly counterbalanced by their viability disadvan-

tage. Because Q0

* and Q1

* are functions of both x*

and y*, the equilibrium determined by (17) will usu-

ally not be unique.

Whether an internal equilibrium actually exists

depends on details of the choice process. In Kirkpat-

rick’s (1982) 2-locus population genetic model,

choosy females give a proportion p = au
m1

/ (u
m0

+

+ au
m1

) of their matings to type 1 males, whereas

non-choosy females give a proportion q = u
m1

/ (u
m0

+

+ u
m1

). Type 1 males are preferred over type 0 males

if and only if a > 1. Our model yields the same line of

equilibria if we let the females’ strategy x be such

that type 1 males get a proportion α = xp + (1 – x)q

of matings. This gives the following line of equilib-

ria:

y b b x∗ = + ∗0 1 (18)

with intercept b
0

= –[a (1 – c) – 1]–1 and slope b
1

=

–(1 – c) (1 – a) c–1b
0
–1. The line of equilibria is stable

if and only if the regression of y on x is sufficiently

small: βyx < 1/b
1
.

Alternatively, we can equate the female strategy

x with a and we get α = xu
m1

/ (u
m0

+ xu
m1

). In this case

there is again a (vertical) line of internal equilibria,

given by x* = 1/(1 – c), which is always unstable: if

initially x > 1/(1 – c), then y →1 and x →∞;if ini-

tially x < 1/(1 – c), then both y and x go to zero.

The main message of this and other models of the

Fisherian runaway process is that female preference

and exaggerated male traits can coevolve despite

natural selection against such male traits. Evolution

comes to a halt when the sexual selection advantage

of the male trait is exactly counterbalanced by the

natural selection disadvantage.

However, other models of the Fisherian runaway

process that yield a line of equilibria (Lande, 1981;

Kirkpatrick, 1982; Seger, 1985) are structurally un-

stable in the sense that a small cost of choosiness de-

stroys the line of equilibria (Bulmer, 1989). The

same is true for our model, in which costs of choice

are easily incorporated: the first row of the matrix

(12) can be multiplied by a factor of, say, 1 – k,

where k is an increasing function of choosiness x.

The outcome of this model is that there is no stable

internal equilibrium and female preference and the

costly male trait go to zero. Fisherian runaway mod-

els are therefore most relevant when female prefer-

ence preexisted for some reason not present in the

model.

3.2. A good-genes model

The other main idea about how females might get in-

direct benefits from being choosy is the good-genes

process. Females prefer males whose trait signals

their possession of genes that enhance the fitness of

their offspring. The main difficulty with this idea is

that natural selection tends to eliminate variation in

fitness (Charlesworth, 1987) and that some other

force must be invoked to conserve such variation.

Such forces may include biased mutation (Bulmer,

1989; Pomiankowski et al., 1991), and tempo-

ral/spatial fluctuation in the direction of natural se-

lection such as in cyclical host-parasite dynamics

(Hamilton and Zuk, 1982).

To model such a situation we again assume there

are two types of male (type 0 and type 1, the latter

carrier of the “good genes”). Type 1 males have a vi-

ability advantage of 1 + b relative to type 0 males.

Types inherit true from father to son, except that a

fraction ε of sons of type 1 males are of the inferior

type 0. This might be interpreted as mutation bias.

Females again give a proportion α of matings to

type 1.

Our assumptions translate into the following

transition matrix:
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1

2

1

1 1

1 1 0 1 1

0 1

0 1

1

Q Q

Q Q

b b Q

∗ ∗

∗ ∗

∗

− −
+ − + −


( )

( )( ) ( )( )

ε α ε
ε α ε












. (19)

The growth rate of the resident population is

again given by λ* = 1, and the relative class frequen-

cies in the resident population are given by

u* = (1, 1 – (1 – ε) α*, (1 + b) (1 – ε) α*). (20)

We use (10a) and (10b) to obtain the mating fre-

quencies of the two types of male in the resident

population:

Q0

1

1 1

∗ = −
− − ∗

α
ε α( )

(21a)

Q
b

1

1

1 1

∗ =
+ −( )( )

.
ε

(21b)

Normalizing the reproductive value v
f
* of females to

unity we obtain the following reproductive values

for the two types of male in the resident population:

v Qm0 0 1
1 1 2

1

1 1 2

∗ ∗= − ∗
− − ∗







 = − ∗

− − ∗
εα

ε α
α

ε)α( ) (
(22a)

v Qm1 1 1
1

1 1 2

∗ ∗= + − ∗
− − ∗







 =ε( α )

ε)α(

= − ∗+ + ∗
+ − − − ∗

1

1 1 1 1 2

α ε εα
ε) ε α( )( ( ( ) )

.
b

(22b)

The direction of selection on choosiness x is then

given by

∂
∂

α εW

x
b v v

x x

m m

= ∗

∗ ∗= ′ − + −( )[( ) ]1 1 1 0 (23a)

= ′
− − ∗

2
1 1 2

α ε
ε α( )

. (23b)

The right-hand side is clearly positive, indicating se-

lection for increasing preference for type 1 males.

This process can be halted at an internal equilibrium

for a sufficiently high cost of choosiness. Such a cost

can be incorporated in the model by multiplying the

first row by 1 – k, where k increases with choosiness

x. In equilibrium, the left-hand side of (23b) would

then be equal to k´/(1 – k*).

For simplicity, we have assumed that females are

able to distinguish between males bearing high-via-

bility genes and males bearing low-viability genes.

In other words, we have not addressed the important

topic whether and how male traits can serve as reli-

able indicators of “good” genes with respect to natu-

ral selection. We have neglected these aspects in or-

der to keep our models simple, but indicator

mechanisms (handicaps, Zahavi, 1975, 1977) can

easily be incorporated in an ESS model (see also

Grafen, 1990a, b; Siller, 1998). Our model also

makes the simplifying assumption that only male,

and not female, offspring have a survival benefit

(1 + b). The benefits of choosiness would of course

be larger if both, sons and daughters, would profit

from the good genes of their father. This could easily

be addressed by splitting the female stage into two

stages (type 0 and type 1 females). However, to keep

our models simple, we will not consider this exten-

sion here.

4. Sexual selection and the sex ratio

In this section we extend the models of the previous

section to analyse the verbal claim that it would be

adaptive for attractive fathers to have more sons.

The main result is that it may depend crucially on the

mechanism of sexual selection whether this is to be

expected.

We assume that females are in control of the sex

ratio, but the results are the same under paternal con-

trol. Females mated with a type 0 male (which hap-

pens with probability 1 – α) produce a sex ratio (pro-

portion sons) of s0, mated with a type 1 male (pro-

bability α) a sex ratio of s
1
. The average sex ratio is

given by S = (1 – α)s
0

+ αs
1
.

4.1. Fisherian runaway

The Fisherian runaway model of the previous sec-

tion is easily extended to allow for variable sex ra-

tios. The transition matrix (12) becomes

A =
1

2

1 1 1

1 1 1

0 0 1 1

0 0 1

− − −
− − −

∗ ∗ ∗

∗ ∗ ∗

S s Q s Q

S y s y Q s y

( ) ( )

( ) ( ) ( )

*

Q

S c y s c yQ s c yQ

1

0 0 1 11 1 1

∗

∗ ∗ ∗ ∗− − −

















( ) ( ) ( )

. (24)
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The population growth rate is λ* = 1 – S*, but we as-

sume that offspring survival is scaled in such a way

that the population is stationary. The class frequen-

cies in the resident population are proportional to

u* = ( , ( ), ( ) ).1 1 1− ∗ ∗ − ∗ ∗ − ∗S S y S c y (25)

To calculate the reproductive values we use the fact,

verified in the appendix, that in populations with

non-overlapping generations, the average reproduc-

tive value of all females equals the average repro-

ductive value of all males. For the present model,

this means

u v u v u vf f m m m m

∗ ∗ ∗ ∗ ∗ ∗= +0 0 1 1. (26a)

Using (25), this is equivalent to

1 1 10 1− ∗ = ∗ − ∗ + − ∗∗ ∗S S y v c y vm m[( ) ( ) ] (27)

where we have normalized v
f
* to unity. It is then

easy to verify that

v Q
s

S

s

S
m0 0

0 01

2

1

1

∗ ∗
∗

∗

∗

∗
= −

−
+









 (28a)

v Q
s

S

s

S
m1 1

1 11

2

1

1

∗ ∗
∗

∗

∗

∗
= −

−
+









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The direct effect of selection on female choice and

male exaggeration is given by

∂
∂

∂
∂

W

x

S

x
y v c y v

x x x x

m m

= =

∗ ∗

∗ ∗
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S

S1 0

1
1 2 (29a)

∂
∂
W

y
S c v v

y y

m m

=

∗ ∗

∗

= ∗ − −2 1 1 0[( ) ]. (29b)

Even in the absence of costs of choice, there is now

direct selection on female choice if there is sex ratio

differentiation (s s0 1

∗ ∗≠ ) and a biased average sex

ratio (S* ≠ ½). If the average sex ratio is male-biased

(S* > ½), then selection favors a preference for type

1 males if type 0 males have more sons than type 1

males (s s0 1

∗ ∗> ) and vice versa. Conversely, if the

average sex ratio is female-biased, then selection fa-

vors a preference for type 1 males if type 0 males

have more daughters (s s0 1

∗ ∗< ) and vice versa. Com-

parison with (15b) shows that the direction of selec-

tion on the male strategy y is not affected by sex ratio

differentiation.

The selection differentials for the sex ratios are

∂
∂

αW

s S
S

s s
1

0 0

1
1

1 2
= ∗

∝ − ∗
∗

− ∗( ) ( ) (30a)

∂
∂

αW

s S
S

s s
1

1 1

1
1 2

= ∗

∝ ∗
∗

− ∗( ). (30b)

Clearly, both selection differentials have the same

sign and selection on both sex ratios tends to restore

an even sex ratio. In other words, there is no selec-

tion for sex ratio specialization depending on the at-

tractiveness of males. The reason is that the sexual

selection advantage of attractive sons is exactly

counterbalanced by their viability disadvantage

when the Fisher process has reached an equilibrium.

Some degree of sex ratio specialization may never-

theless persists, as long as the average sex ratio is

close to evenness, but its direction is unpredictable

and governed by non-deterministic forces such as

genetic drift. This is confirmed by simulations

(Weissing et al., in prep.).

4.2. Good-genes model

Allowing for variable sex ratios, the transition ma-

trix (19) of the good-genes model in the previous

section becomes

A =
1

2

1 1 1

1

0 0 1 1

0 1 0 0 1 1

− − −
− +

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

S s Q s Q

s s s Q s Q
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( α) εα ε
s b s b Q1 1 11 1 0 1 1( )( ) ( )( )

.

+ − + −















∗ ∗ε α ε

(31)

The growth rate of the resident population is λ* = (1

– S*) and the class frequencies in the resident popu-

lation are proportional to

u* = ( , ( ) , ( )( ) ).1 1 1 10 1 1− ∗ − ∗ + ∗ + − ∗∗ ∗ ∗S s s s bα εα ε α (32)

Using (10a) and (10b), the mating frequencies of the

two types of male are

Q
S

s s
0

0 1

1 1

1

∗
∗ ∗

= − ∗ − ∗
− ∗ + ∗

( ) ( )

( )

α
α εα

(33a)
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S
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1

1

1

1 1

∗
∗

= − ∗
+ −( )( )

.
ε

(33b)
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Normalizing the reproductive value v
f
* of females to

unity, the reproductive values of the two types of

males in the resident population are given by

v
s

s s
m0

0

0 1

1 1

1 2

∗
∗

∗ ∗
= − ∗ −

− ∗ + ∗
( ) ( )
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α
α εα

(34a)
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b s sε α εα
(34b)

The direction of selection on choosiness is now

∂
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Note that for s s0 1

∗ ∗= = ½ this reduces to (23b).

The selection differentials for the sex ratios are

given by
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∂
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It can be shown that there are two possible sex ratio

equilibria (assuming ε < ½):

( , )

,

( ) ( )
,

s s0 1

0
1

2
1

1 1

2 1 1

∗ ∗ =
∗



 


 ∗ ≥ −

− ∗ −
− ∗ −

α
α ε

α ε
α ε

if

1 1

2 1
1

−








 ∗ < −








 ε

α εif

(37)

For both equilibria a male-biased sex ratio is pro-

duced by females with attractive males, and a fe-

male-biased sex ratio by females with unattractive

males. The second equilibrium requires that type 0

males are preferred over type 1 males, hence the first

equilibrium would be observed if females prefer

type 1 males. Note that in this equilibrium females

with unattractive males produce a more biased sex

ratio than females with attractive males. Selection

on choosiness, as measured by (35) tends to vanish

as the sex ratio equilibria are approached, because

sex ratio specialization tends to reduce the variation

in genetic quality of offspring for sexual selection to

act on. The end result would be a slightly weaker sex

ratio trend than predicted by the two equilibria.

These results are confirmed by a computer simula-

tion study (Weissing et al., in prep.).

5. Discussion

5.1. Comparison with other methods

Most models for the coevolution of female sexual

preferences and male secondary sexual traits are ei-

ther quantitative genetic models or population ge-

netic models. Here we briefly discuss the pros and

cons of these approaches and our ESS approach.

5.1.1. Population genetic models

The most important advantage of population genetic

(PG) models (Kirkpatrick, 1982; Seger, 1985) is that

they are “closed”: correlations between female pref-

erence and male traits are not introduced as fixed pa-

rameters but are “explained” by the model itself.

The main drawback of PG models is their com-

plexity. Even the simplest two-locus haploid models

yield intimidating formula’s that are difficult to in-

terpret. Diploid models are even worse in this re-

spect (Tomlison, 1988; Gomulkiewicz and Has-

tings, 1990; Heisler and Curtsinger, 1990). More-

over, it is not clear whether the results of PG models

are robust with respect to genetic assumptions. It is,

for example, not clear under what circumstances

diploid models lead to the same conclusions as hap-

loid models. Another disadvantage of PG models is

that they can harbor only a very limited amount of

genetic variation. As a consequences, no real “run-

away” can be simulated.

5.1.2. Quantitative genetic models

The quantitative genetic (QG) approach has the ad-

vantage that the models are easier to handle than PG

models. Plus, the assumption that male traits and fe-

male preferences are multifactorial is more realistic

than the few-loci assumption of most PG models.

On the downside, most QG models of sexual selec-

tion (e.g. Lande, 1981; Pomiankowski et al., 1991;

Twasa et al., 1991; but see Barton and Turelli, 1991;

Kirkpatrick, 1996) assume constant genetic vari-

ances and covariances, while it is obvious that such

parameters change “in reality” (Turelli, 1984; Roff,

1997; Lynch and Walsh, 1998).
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Another disadvantage of the QC methodology is

the assumption of normally distributed traits. This

permits only a certain class of fitness functions to be

used, namely those that maintain normality in the

population (Lande, 1976; but see Turelli and Barton,

1994), usually exponential functions with simple

exponents (see Pomiankowski et al., 1991; Iwasa et

al., 1991). Such “phenomenological” fitness func-

tions make it hard to implement specific mecha-

nisms of sexual selection.

5.1.3. ESS models

The ESS approach used here has the advantage that

by neglecting the underlying genetic processes the

models become relatively simple and transparent.

This allows a greater emphasis on a biologically in-

terpretable description of the selection process.

Moreover, the method is applicable to relatively

complex life histories for which a well-developed

theory of fitness functions exist, based on demo-

graphic matrix models and reproductive values. For

example, in our models there is a direct link between

female fitness and male fitness because the repro-

ductive value of a parent is a weighted sum of the re-

productive values of its sons and daughters. Such a

direct link is missing in the QC models of Iwasa et

al. (1991), where male and female fitness are linked

only through the correlations between traits. It is

possible to combine the QC approach with the fit-

ness function approach of an ESS analysis where re-

productive values are explicitly derived from popu-

lation dynamical and demographic considerations

(Day and Taylor, 1996), but in the context of sexual

selection this has not been done yet.

Another advantage of the ESS approach is that it

is relatively easy to incorporate specific mecha-

nisms of mate choice or sex ratio control. Especially

in vertebrates where the chromosomal mechanism

of sex determination is likely to interfere with per-

fect sex ratio control (Krackow, 1995), an explicit

mechanistic approach may yield additional insight

(e.g. Pen et al., 1999).

A disadvantage of our ESS approach, shared with

the QG approach, is the introduction of unexplained

variance and covariance coefficients. However, in

principle it is possible to set up a model for these

terms, as is common practice for ESS models in a

kin selection context, where the regression coeffi-

cients represent coefficients of relatedness (see Tay-

lor and Frank, 1996; Frank, 1998; Pen, 1999). Kirk-

patrick (1996) has done just this for a QG model of

sexual selection.

5.2. Implications for sex ratio control

It has been argued verbally on several occasions that

it would be adaptive for parents to produce more

sons when the father is relatively attractive (e.g.

Burley, 1981; Ellegren et al., 1996; Westerdahl et

al., 1997). However, our results suggest that whether

parents are expected to adjust the sex ratio of their

offspring in relation to paternal attractiveness may

depend on the mechanism of sexual selection under-

lying the evolution of male attractiveness.

Under a purely Fisherian runaway process biased

sex ratios are not necessarily expected, because in

equilibrium the mating advantage of attractive

males is offset by their viability disadvantage. Sons

may inherit the attractiveness of their father, but

they also inherit the associated handicaps.

Our model of Fisherian runaway assumes that fe-

male choice is not costly. According to some mod-

els, the Fisherian process by itself does not lead to

stable exaggeration of male characters when female

choice is costly (Pomiankowski, 1987). If it is true

that costly choice can only be maintained if the sons

of choosy females have higher fitness than the sons

of less choosy females, then it seems possible that

some degree of sex ratio specialization will be se-

lected for. Explicit models are required to test this

logic.

Under the good-genes process, our results sug-

gest that it is possible that selection favors attractive

males to have more sons than unattractive males. In

our model we have assumed that only sons benefit

from having an attractive father. If daughters would

also benefit from the good genes passed on by their

father, it seems likely that selection for biased sex

ratios will be weaker and might even be reversed if

daughters benefit more than sons.

The empirical evidence (reviewed by Sheldon,

1998) is mixed: sometimes attractive fathers do pro-

duce more sons, sometimes they do not. This might

reflect differences in the underlying process of sex-

ual selection, as our models suggest, but the data to

test this possibility are not available yet. It might be

interesting to test the logic of our results in a labora-

tory setting where the regime of sexual selection
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would be under experimental control, and where ge-

netic variation in the sex ratio is available.
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APPENDIX

Equality of male and female reproductive

values

Here we show that in populations with non-overlap-

ping generations and symmetric genetics the aver-

age reproductive value of females equals the aver-

age reproductive value of males.

There is an arbitrary number of discrete classes of

females and males. The matrices F and M represent

the contributions, measured in numbers of individu-

als, by females in the current generation to the fe-

males and males of the next generation. Now con-

sider a focal genetic locus and let π
ij

(i,j Î {f,m})

represent the proportion of genes at that locus a sex-i

offspring inherits from its sex-j parent. Then πffF

and πmfM represent, respectively, the genetic contri-

bution by females to the females and males of the

next generation. Likewise, πfm

~
F and πmm

~
M denote

the genetic contribution of males to the females and

males of the next generation. Note that πif + π
im

= 1,

that is, an offspring’s gene must come from one of

its parents. The total genetic flow from one genera-

tion to the next can then be represented by the block

matrix

A =
π π
π π

ff fm

mf mm

F F

M M

~

~









. (A1)

Under symmetric genetics, all πij are identical to ½,

and the total contribution to each sex by females

equals the total contribution to each sex by males:

Fu Fuf m= ~
(A2a)

Mu Muf m=
~

(A2b)

where u
f
and um denote the class-frequencies in de-

mographic equilibrium of females and males, re-

spectively.

The reproductive values v
f
and v

m
of females and

males, respectively, are given by

λv v F v Mf f m= +1

2

1

2
(A3a)

λv v F v Mm f m= +1

2

1

2

~ ~

(A3b)

where λ denotes the population growth rate, the

dominant eigenvalue of A. Hence,

λv u v Fu v Muf f f f m f= +1

2

1

2
(A4a)

λv u v F u v M um m f m m m= +1

2

1

2

~ ~

. (A4b)

But by (A2a) and (A2b) the two right-hand sides are

identical and it follows that

v
f
u

f
= v

m
u

m
(A5)

which is what we wanted to show.
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