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abstract: This is a response to a recent article by Hanna Kokko
and William J. Sutherland (American Naturalist 152:354–366), who
consider evolutionarily stable territory acceptance rules for animals
that face the decision between settling on a poor territory now (which
is then retained for life) or waiting for better habitat to become
available later (taking a chance of dying before reproducing). In
contrast to these authors, we argue that the evolutionarily stable
threshold quality above which territories are acceptable does depend
on whether individuals compete for a single territory (queuing) or
for multiple territories (floating) and also on whether access to ter-
ritories is determined by a hierarchy among waiting individuals. More
specifically, we show the following: First, if the choice is between
floating and settling, the evolutionarily stable acceptance threshold
is such that threshold territories yield an expected lifetime repro-
ductive success (LRS) of , the survival probability of a floater.1 2 mF

Second, if the choice is between queuing and settling, the evolu-
tionarily stable threshold may correspond to any LRS between 1 2

and unity. Third, the number of nonbreeding individuals in themF

population is maximized at a threshold of unity. In other words, the
evolutionarily stable threshold does not maximize the nonbreeding
fraction of the population. We argue that models of territory choice
should carefully specify the mechanism of choice because some choice
processes (e.g., indiscriminate habitat use above the threshold) do
not admit an evolutionarily stable acceptance rule.
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Kokko and Sutherland (1998) recently presented a theory
of strategic territory choice by animals. The theory con-
cerns animals that face the dilemma whether to occupy a
poor territory now, which is then retained for life, or to
keep waiting for better habitat to become available later,
taking a chance of dying in the meantime (Ens et al. 1992,
1995; Zack and Stutchbury 1992). The basic question is,
What is the minimal acceptable territory quality or ac-
ceptance threshold favored by natural selection? More spe-
cifically, Kokko and Sutherland investigated how the evo-
lutionarily stable or optimal acceptance threshold depends
on two factors. The first factor concerns the number of
territories a waiting individual can simultaneously com-
pete for. “Floaters” compete for many territories simul-
taneously, while “queuers” (Ens et al. 1995) focus on just
one or a few territories. The second factor is the dominance
hierarchy among waiting individuals, the correlation be-
tween the order of joining the floaters or a queue and
priority in gaining access to a territory.

Under the assumption that the population in question
is stationary, Kokko and Sutherland report the following
results. First, if the individuals have to decide between
settling and floating, they should accept territories yielding
an expected lifetime reproductive success (LRS) above
unity and reject territories yielding an LRS below unity.
Second, the same evolutionarily stable strategy (ESS) is
obtained when the individuals have to choose between
settling and queuing. Third, the common ESS threshold
value of unity has the property that, for this value, the
number of nonbreeding individuals in the population is
maximized.

In other words, the ESS is robust, and it maximizes the
“buffer of surplus individuals.” From this, Kokko and
Sutherland draw some general conclusions regarding den-
sity dependence and the consequences of habitat loss.

Although we regard Kokko and Sutherland’s article as
an important step toward a general theory of optimal ter-
ritory choice, we are not convinced by their modeling
approach and by the derivation of their main results. In
particular, Kokko and Sutherland’s modeling approach al-
lows only the simplest of choice processes to be imple-
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mented, namely indiscriminate habitat use above the ac-
ceptance threshold. As Kokko and Sutherland themselves
point out, such behavior can be considered unstable if
individuals can seek the best available territory (ideal hab-
itat selection). Yet in Kokko and Sutherland’s model, there
is no room for ideal habitat selection; hence, there are no
grounds for their claim that, for such a choice process,
the optimal acceptance threshold equals unity. Kokko and
Sutherland’s model allows only indiscriminate habitat use
because they model population dynamics in continuous
time without a seasonal time structure. In essence, only
one territory becomes available at a time, floaters can never
choose between more than one territory, and, upon ac-
ceptance of the territory, owners start reproducing im-
mediately. This is mathematically convenient but biolog-
ically not very realistic. In fact, all empirical examples
discussed by Kokko and Sutherland concern vertebrates
that live in seasonal environments. Furthermore, in the
derivation of their main results, Kokko and Sutherland do
not account for the variation in LRS caused by the dis-
creteness of a queue.

As a consequence, two of Kokko and Sutherland’s re-
sults are incorrect or at least misleading. By means of a
slightly modified discrete time model, which makes the
timing of events and the process of territory choice more
transparent, we show the following: First, if individuals
have to decide between settling and floating, the optimal
acceptance threshold is below unity (it corresponds to an
LRS of , the survival probability of a floater). Sec-1 2 mF

ond, if individuals have to decide between settling and
queuing, in general neither nor unity is an ESS1 2 mF

(depending on the model parameters, the ESS threshold
can be any threshold between and unity). Third,1 2 mF

the number of nonbreeding individuals is maximized at a
threshold of unity.

In other words, the ESS depends on the options of non-
breeders, and it has no obvious relation with the size of
the nonbreeding fraction of the population. Accordingly,
it would be premature to draw general conclusions for
conservation biology.

Assumptions

We now give a list of the main assumptions underlying
our analysis, in addition to the standard assumptions of
an ESS analysis (e.g., Taylor 1996).

First, there is a large number of territories, differing in
quality. Animals can perfectly assess territory quality,
which is continuously distributed, according to a proba-
bility density that is independent of population size. Pro-
duction of offspring and mortality of territory owners may
vary with territory quality as long as fitness increases with

quality. Kokko and Sutherland’s assumption of quality-
independent mortality is a special case.

Second, individuals are either floating, queuing, or in
possession of a territory. Apart from these state variables
and territory quality, there is no other nonrandom source
of variation in mortality, competitive ability, or repro-
ductive performance.

Third, switching between territories of different qualities
is not allowed. In essence, territories are kept for life.

Fourth, the population is stationary. Expected lifetime
reproductive success (LRS) is then a valid fitness measure
(Mylius and Diekmann 1995). However, the results below
are easily generalized to nonstationary populations by re-
placing LRS with reproductive value (Fisher 1930; Frank
1998).

Fifth, each individual has an acceptance threshold x such
that the individual accepts no territories or joins queues
yielding less than LRS .(x)

Sixth, in contrast to Kokko and Sutherland, we let
breeding occur in periodic discrete time intervals, the pe-
riod referred to as seasons or years. For our purposes, it
is convenient to think of a season as consisting of two
parts, a relatively short breeding season in which all re-
production takes place followed by a nonbreeding season
in which most of the mortality and competition for ter-
ritories takes place. The onset of the breeding season will
be used as the (arbitrary) time of census; that is, unless
stated otherwise, survival means survival from the onset
of one breeding season to the onset of the next breeding
season. In particular, LRS refers to the expected lifetime
production of offspring that survive until the onset of the
first breeding season after their birth. The minimum age
of first breeding is one season after birth.

Free Floating

In this section we analyze how natural selection affects
territory choice in populations with free floaters. Every
floater is assumed to compete for all territories simulta-
neously, and all floaters are equally likely to obtain a given
territory that becomes vacant. We first explain verbally
why we think floaters should be happy with some terri-
tories having an expected LRS smaller than unity. We then
verify this by a more rigorous analysis.

Verbal Arguments

Following the standard ESS approach, we consider a pop-
ulation in which all individuals have the same acceptance
threshold . To be evolutionarily stable, must be such∗ ∗x x
that the reproductive value of a floater equals the repro-
ductive value of an individual at a threshold quality ter-
ritory. For if this were not so, either the threshold territory
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owner has a higher reproductive value and the floater
would benefit from choosing a territory with quality x just
below , or the floater has a higher reproductive value∗x
and the threshold territory owner would benefit from
abandoning its territory and becoming a floater. In a sta-
tionary population, surviving offspring have an average
LRS of unity. Some surviving offspring become territory
owners in their first season; the rest become floaters. Since
floaters must have a lower LRS than the offspring that find
a suitable territory, the LRS of floaters must be less than
unity. But at an ESS, the LRS of threshold territory owners
equals that of floaters, hence the LRS of threshold territory
owners is also less than unity, in contrast to Kokko and
Sutherland’s result that LRS should be unity.∗(x )

More precisely, at an ESS, the LRS of floaters and own-
ers of threshold quality territories equals , where1 2 mF

mF denotes the yearly mortality of a floater. This can be
seen as follows: consider an individual that decides not
to breed in the current season. With probability mF , such
an individual will die and obtain an LRS of 0. With
probability , it will survive and obtain an LRS of1 2 mF

unity because, in a stationary population, this is the ex-
pected LRS of all individuals entering the population
(e.g., surviving offspring). Hence, the expected LRS of
an individual that decides to postpone breeding is

. At the ESS, the LRS ofm # 0 1 (1 2 m ) # 1 = 1 2 mF F F

a threshold territory owner must therefore also equal
.1 2 mF

Why do Kokko and Sutherland reach a different con-
clusion? They make a crucial assumption in their appendix
A, in the last paragraph before equation (A1). There it is
assumed that mutants with a threshold value only∗x ! x
breed on territories of quality but never on∗x ≤ q ! x
territories with quality . Clearly, if LRS , one∗ ∗≥ x (x ) = 1
has LRS , hence such mutants cannot increase in(q) ! 1
frequency. Is this a reasonable assumption? In our opinion,
there is no general reason to assume that a mutant with
threshold has no chance to find a territory with∗x ! x
quality . It is more plausible to assume that such a∗≥ x
mutant first competes with the residents for territories with
quality and, only if it fails, settles for territories with∗≥ x
quality . As shown below, such mutants can∗x ≤ q ! x
invade any population with threshold such that∗x
LRS .∗(x ) 1 1 2 mF

Biologically, Kokko and Sutherland’s assumption is
equivalent to a choice process of indiscriminate habitat
use above the acceptance threshold. Kokko and Sutherland
themselves claim that such behavior can be considered
unstable if an animal can seek the best territory available
(ideal habitat selection). Since Kokko and Sutherland’s
model does not allow for ideal habitat selection, their claim
that under such a choice process the optimal acceptance
threshold equals unity is unsubstantiated.

Analytical Results

In appendix A, we present a detailed analysis of an ESS
model identical to Kokko and Sutherland’s model, with
two modifications. First, breeding occurs in discrete time
intervals instead of continuously, and second, we allow
mortality of territory owners to depend on the quality of
their territory. Here we list the main results of the analysis.

Contrary to Kokko and Sutherland, we have the fol-
lowing result:

Result 1. In a stationary population with free floating,
the LRS of an individual breeding in a territory with ESS
threshold quality equals the LRS of a floater:∗x

.∗LRS(x ) = LRS = 1 2 mF F

In agreement with Kokko and Sutherland, we have the
following result:

Result 2. In a stationary population with acceptance thresh-
old , in order for the number of floaters to be maxi-∗x
mized, it is required that the LRS of individuals breeding
in a territory of threshold quality equals unity; that is,

.∗LRS(x ) = 1

In view of result 1, result 2 shows that, contrary to
Kokko and Sutherland’s result, floater population size is
not maximized in a population at the ESS threshold.

Simulation Results

In order to check the analytical results, we have carried
out some individual-based computer simulations. Each in-
dividual was represented by a single haploid gene locus
coding for an acceptance threshold. In general, offspring
inherit the acceptance threshold of their parent, but with
a small probability, , the threshold mutated to a slightlyn

lower or higher value. A total of 1,000 territories were
present, with LRS uniformly distributed in the range [0,
5]. After a round of mortality of breeders and floaters,
free territories were selected in a certain order (see below),
and for each free territory, floaters were drawn in random
order until one was found, if at all, with an acceptance
threshold at least as low as the quality of the territory. We
used two different methods of selecting free territories,
reflecting different interpretations of a one-dimensional
acceptance threshold. In scenario 1, which is in line with
our interpretation, territories were selected starting with
the best and ending with the worst, based on the idea that
threshold quality territories are only acceptable at the end
of the “choosing season.” Scenario 2, selecting free terri-
tories in random order, is closer to Kokko and Sutherland’s
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Figure 1: Representative simulation examples of the evolution of acceptance thresholds. A, Evolutionary trajectories of the average acceptance
threshold. B, Acceptance threshold allele distributions after 20,000 generations. Two scenarios are depicted. In scenario 1 (solid line and dark bars),
individuals compete for the best available territory with quality above their individual threshold. In scenario 2 (dotted line and light bars), individuals
accept any random territory with quality above their individual threshold. For scenario 1, the population evolves toward a monomorphic state,
corresponding to an acceptance threshold close to 0.6, the survival probability of floaters. For scenario 2, the population evolves to a highly
polymorphic state where a broad range of acceptance thresholds coexist. Parameter values: mortality rate ; mutation rate perm = 0.4 n = 0.001F

offspring per generation; mutational changes drawn from .[20.01, 0.01]

implicit assumption that floaters accept threshold quality
territories at any time of the season.

Figure 1 shows representative examples of simulation
runs carried out according to both methods of selecting
free territories. The mortality rate of floaters was set at
0.4. At the start of the simulations, all individuals had the
same acceptance threshold of unity. In line with our result
1, when free territories are drawn from best to worst, the
acceptance threshold evolves to an average value close to
0.6, the survival probability of floaters. On the other hand,
when territories are selected at random, there exists no
stable acceptance threshold, but instead, a broad range of
acceptance thresholds coexists. This shows that the details
of the choice process are crucial for selection on a one-
dimensional acceptance threshold.

Strict Queuing

In contrast to floaters, who compete for all territories si-
multaneously, queuers focus on just one or at most a few
territories. In this section, we restrict our attention to pop-
ulations where queues have a strict hierarchy, such that
the longest-waiting queuer inherits the territory with cer-
tainty. Following Kokko and Sutherland, we say that an
individual has a threshold strategy x if it joins queues or
accepts empty territories only if these yield an expected

LRS of at least LRS(x). If no such queue or empty territory
is available, then the individual stays floating.

Kokko and Sutherland derive two results for stationary
populations with strict queuing: first, a threshold of unity
is the highest threshold such that no floaters are produced,
and second, the ESS threshold equals unity. Therefore,
according to Kokko and Sutherland, populations with
strict queuing have the same optimal acceptance threshold
as populations with free floating.

Verbal Arguments

Before we explain why we disagree, let us summarize the
gist of Kokko and Sutherland’s argument: in a population
with queuing, queue lengths will tend toward an equilib-
rium where it does not pay to move from one queue to
another. Territories differ in quality, but since the queues
are longest for the most profitable territories, all offspring
have, at the moment of joining a queue, the same expected
LRS, namely LRS(x), where x is the acceptance threshold.
In a stationary population, LRS(x) has to be larger than
or equal to unity. A value above unity cannot be evolu-
tionarily stable since, in this case, floaters would be pro-
duced and settling in a territory yielding an LRS of unity
is obviously a better option than floating. For LRS(x) =

, an individual joining a queue produces on average just1
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enough offspring to replace itself. Hence, no floaters are
produced.

Although quite plausible, these arguments are not valid
because, even in equilibrium, it is not true that all sur-
viving offspring have the same expected LRS when they
join a queue. The problem is that queuing inevitably leads
to significant variation in expected, not merely in realized,
LRS between offspring. One reason for this variation is
the discreteness of queue lengths. Suppose that LRS at the
territories is continuously distributed. Then, irrespective
of what the ESS is, the acceptable territories can be ar-
ranged into nonoverlapping intervals

[LRS , LRS ), [LRS , LRS ), ) , (1)0 1 1 2

where correspond to those territories that[LRS , LRS )i i11

have a queue length of i. Hence there is a whole spectrum
of territory qualities with the same queue length, and it
is obvious that an individual joining the queue for a ter-
ritory with has a lower LRS than an individualLRS = LRSi

joining a queue yielding LRS = LRS 1 e ! LRS .i i11

Why is this variation in expected LRS important? Sup-
pose that an acceptance threshold of unity is established
in the population. Then unity is the worst possible LRS
at the moment of joining a queue. Since individuals joining
a queue vary in their expected LRS, the average expected
LRS of individuals joining a queue is larger than unity. In
other words, queuing individuals produce on average more
offspring than necessary to replace themselves, and the
supernumerary offspring will have to become floaters. This
shows that the first claim of Kokko and Sutherland is not
correct: floaters are still produced at a threshold of unity.
Moreover, these floaters should accept any empty territory
yielding an expected LRS higher than , the expected1 2 mF

LRS of a floater. It is therefore obvious that the second
claim of Kokko and Sutherland is also not correct: an
acceptance threshold of unity is too strict since a popu-
lation with a threshold of unity could be invaded by slightly
less choosy mutants. Hence, variation in expected LRS
among queuers leads us to conclude that the ESS accep-
tance threshold should be lower than unity and, in fact,
somewhere between and unity. We will show later1 2 mF

that, depending on the model parameters, any value be-
tween and unity can be realized as an ESS accep-1 2 mF

tance threshold.
These general arguments show that, in a queuing sys-

tem, variation in expected LRS among offspring is inev-
itable and that this variation may have important evolu-
tionary implications. There are three major determinants
of variation in expected LRS. First, there is discreteness.
As argued above, the discreteness of queue lengths will
always induce variation in expected LRS, even in contin-
uous time (the scenario considered by Kokko and Suth-

erland). Discreteness of seasons further increases the var-
iation in expected LRS. Because more than one individual
per queue may die in a given season, more than one off-
spring may join the same queue. When queues are strict,
one of the offspring ends up lower in the hierarchy. The
third determinant of variation in expected LRS is overall
habitat quality. More productive habitats with more high-
quality territories and/or more protected habitats with
lower mortality lead to longer queues. Since longer queues
have smaller stochastic fluctuations in the number of
queuers that die per season, there will be lower variation
in expected LRS.

Analytical Results

In order to derive the optimal acceptance threshold, we
must answer the question, What is the lowest expected
LRS for an individual that joins a queue or settles in an
empty territory? If we assume that individuals always join
the best queue available, then, for each queue length, there
is exactly one interval of territory qualities where territories
have that queue length. Let us denote by LRSi the LRS at
the lowest-quality territory with queue length i. LRS0 then
equals the LRS at the lowest-quality territory that is oc-
cupied. Hence, LRS0 equals the optimal acceptance thresh-
old. If ai is the probability that an individual at the bottom
of the hierarchy in a queue of length i ever obtains the
territory (in a strict queue this is the probability for the
individual at the end of the line), then the lowest expected
LRS in a queue of length i is given by aiLRSi. Clearly,
queue lengths are in equilibrium if and only if

a LRS = a LRS = ) = a LRS , (2)0 0 1 1 n n

where and n is the maximal queue length. Thea = 10

variation in expected LRS of queuing individuals is related
to the difference between the ai. To see this, consider two
individuals who were the last ones to queue for territories
yielding an LRS just below and just above LRSi, respec-
tively. The first one can expect an LRS of almost

while the second has an expected LRS that doesa LRSi21 i

not much exceed . The difference betweena LRSi i

and aiLRSi can be considerable (fig. 2). For ex-a LRSi21 i

ample, a0LRS1 is at least twice as large as a1LRS1, since
and . The latter inequality is a special casea = 1 a ≤ 1/20 1

of

1
a ≤ , (3)i 1 1 i

which is derived in appendix B.
Our verbal arguments showed that the optimal accep-

tance threshold in populations with queuing must be∗x
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Figure 2: Equilibrium queue lengths including territory owner (thin line)
and expected LRS for individuals at the end of the queue (thick line) as
a function of territory quality in a population with strict queuing. Notice
the large variation in expected LRS. Mortality rate of queuers and territory
owners set at .m = 0.4

Figure 3: Quality of the worst occupied territory, , as a func-LRS = F /m0 0

tion the quality of the best territory, LRSmax = Fmax /m, for different mor-
tality rates in populations with strict queuing. The quality of the worst
occupied territory increases with overall habitat quality. Territory quality
q is exponentially distributed according to the probability density function

, where .exp (2lq)/l l = 20

such that LRS is between unity and . In fact, as∗(x ) 1 2 mF

shown in appendix B and illustrated in figure 3, the op-
timal acceptance threshold can have any value between

and unity.1 2 mF

Result 3. For any given value y between (the LRS1 2 mF

of a floater) and unity, the model parameters can be chosen
such that territories at ESS threshold quality yield an∗x
LRS of y: LRS .∗(x ) = y

Simulation Results

Figure 4 depicts an example of an evolutionary trajectory
of the average acceptance threshold in a population with
strict queuing. The computer simulations were carried out
in a similar fashion as in scenario 1 for populations with
free floating. After each round of reproduction and mor-
tality of queuers and territory owners, individual floaters
and surviving offspring were assigned in random order to
the queue or territory with the highest expected LRS, as
long as this expectation exceeded or equaled their genet-
ically encoded threshold value. Otherwise they remained
floating.

The example shows that the average acceptance thresh-
old evolves downward from unity to a value close to 0.6.
After about 5,000 generations, the average acceptance
threshold becomes smaller than the LRS at the worst oc-

cupied territory. In appendix B, we explain that this is
because acceptance thresholds between the LRS at the
worst occupied territory and the survival probability

of floaters are selectively neutral.1 2 mF

Discussion

On the basis of models for optimal territory choice rather
similar to the models studied by Kokko and Sutherland
(1998), we arrived at markedly different conclusions. The
discrepancies mainly arise because Kokko and Sutherland
modeled population dynamics in continuous time. Al-
though mathematically more convenient, this modeling
approach has a number of drawbacks. When infinitesimal
time steps are the focus, attention is directed away from
the mechanism of the choice process. As a result, Kokko
and Sutherland are led to the rather implausible assump-
tion that mutants that are less choosy than the rest of the
population always end up at territories of a rather bad
quality. This assumption restricts the choice process to one
of indiscriminate habitat use above the acceptance thresh-
old, even though Kokko and Sutherland claim that their
model applies to a much wider range of choice strategies.

We have used a discrete-time approach for a number
of reasons: it is more realistic, and one has to be more
explicit about the timing of events and the nature of the
choice process. This is certainly necessary when one wants



518 The American Naturalist

Figure 4: Representative simulated evolutionary trajectory of average
acceptance threshold (solid line) in population with strict queuing. The
dotted line indicates LRS at the worst occupied territory, which stabilizes
around 0.67. The average acceptance threshold can evolve below this
value because acceptance thresholds below this value are selectively neu-
tral (see app. B). Parameters values as in figure 1.

to do to computer simulations, which is a useful way to
check analytical results. We ourselves have detected some
inconsistencies in Kokko and Sutherland’s exposition after
simulations had suggested a very different outcome. Fi-
nally, a seasonal time structure suggests that more complex
choice strategies should be considered than those that
Kokko and Sutherland considered (and we, too, in order
to make our results comparable to theirs). It is plausible
that animals should get less choosy as the breeding season
approaches. In other words, optimal acceptance rules are
likely to vary with time in the season, rather than corre-
sponding to a fixed threshold value. The one-dimensional
threshold values considered in this article should therefore
best be regarded as the minimum value of a time-depen-
dent, or, more generally, a state-dependent strategy (Mc-
Namara and Houston 1996; Houston and Lang 1998),
because the minimum value determines what one actually
observes at the population level in terms of territory oc-

cupancy. Kokko and Sutherland’s approach is inconsistent
with this interpretation because a mutant that is less
choosy than the rest of the population need not always be
in a state in which it should be least choosy.

We have not really investigated systematically what the
effects are of the two factors considered by Kokko and
Sutherland, the number of territories individuals can com-
pete for and the hierarchy among waiting individuals. Just
like Kokko and Sutherland, we have only looked at the
extremes, free floating and strict queuing. We found dif-
ferent outcomes for the two extremes, which can be due
to either factor. What are the likely effects of each factor
separately?

It seems very likely that a hierarchy based on age tends
to select for higher acceptance thresholds. The reason is
that waiting per se automatically leads to a higher expected
future success because, for a waiting individual, the future
number of competitors will be lower than the present
number. The reproductive value of floaters and queuers
will therefore be higher than in populations without a
hierarchy among waiting individuals. According to our
result 1, owners of threshold territories should then also
have a higher reproductive value.

It is more difficult to envision what the effect might be
of the number of territories an animal can compete for.
We saw that the discreteness of queues tends to increase
the variation in expected LRS between offspring, compared
to populations with floating, where all floaters have the
same expected LRS. An increase in variation means there
are more “unlucky” individuals with a relatively low ex-
pected LRS. These unlucky individuals should therefore
accept relatively low-quality territories. Thus, all else being
equal, it seems that queuing, when compared to floating,
should select for a lower acceptance threshold.
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APPENDIX A

Optimal Acceptance Threshold under Free Floating

Consider an area with a large number of potential territories. Territory quality q is continuously distributed according
to a probability density p(q). The area harbors a “normal” (as opposed to “mutant”) population composed of nF
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floaters and nB territory owners or, more compactly, breeders. Normal individuals accept any territory with a quality
of at least . The number of occupied territories is therefore given by∗x

`

∗n (x ) = C p(q)dq, (A1)B E
∗x

where C is a constant of proportionality. Floaters have yearly mortality mF , independently of the threshold quality
. The yearly mortality of a breeder may depend on the quality q of its territory. The mean mortality of∗x m = m (q)B B

breeders is then

`
m (q)p(q)dq∗∫x B∗m̄ (x ) = . (A2)B ` p(q)dq∗∫x

The yearly production of surviving offspring on a territory of quality q is given by F(q). The mean yearly production
then equals

` F(q)p(q)dq∗∫x∗F(x ) = . (A3)` p(q)dq∗∫x

The expected LRS(q) at a territory of quality q is given by , the yearly production of offspring times lifeF(q)/m (q)B

expectancy . Clearly, for q to be a useful measure of quality, we want LRS(q) to be an increasing function of1/m (q)B

q. For there to be any floaters at all, average production of offspring, , must of course exceed average mortality,∗F(x )
. The yearly probability that a floater finds an acceptable territory is denoted by .∗ ∗m̄ (x ) a(x )B

We now have sufficient information to write down the dynamics of the normal population: a population in seasonnt

t determines the population in the next season according to , which is short forn n = Ant11 t11 t

n (1 2 a)(1 2 m ) (1 2 a)F nF F F= . (A4)[ ] [ ][ ]¯n a(1 2 m ) 1 2 m 1 aF nt11 tB F B B

The population converges at geometric rate to a stable demographic equilibrium with a fixed ratio of floatersu /uF B

to breeders, given by a dominant right eigenvector of . In equilibrium, the population has a yearly growthu = (u , u ) AF B

rate, , equal to the dominant eigenvalue of . Following Kokko and Sutherland, we assume that the population is∗l A
stationary; that is, we set . Mortality is then exactly balanced by natality:∗l = 1

∗ ∗ ∗ ∗ ∗ ∗¯ ¯u (x )m (x ) 1 u (x )m (x ) = u (x )F(x ). (A5)B B F F B

The stable ratio of floaters to breeders is therefore given by

∗ ∗∗ ¯F(x ) 2 m (x )Bu (x )F = . (A6)∗u (x ) mB F

Note that this reflects the requirement that must be larger than for there to be any floaters at all. We can use¯F mB

this equation to determine the threshold value for which floater population size is maximized. Using (A1)–(A3)∗x
and omitting the positive constants C and mF , we can rewrite (A6) as

` `

∗u (x ) ∝ F(q)p(q)dq 2 m (q)p(q)dq. (A7)F E E B
∗ ∗x x

Applying the fundamental theorem of calculus, we get
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∗du (x )F ∗ ∗ ∗[ ]= p(x ) m (x ) 2 F(x )B∗dx

∗ ∗ ∗[ ]= p(x )m (x ) 1 2 LRS(x ) , (A8)B

since . Hence, in order for the floater population size to be maximized, LRS at a threshold∗ ∗ ∗ ∗LRS(x ) = F(x )/m (x ) (x )B

quality territory must equal unity. This proves result 2.
The yearly probability for a floater to find an acceptable territory must equal the ratio of the yearly number∗a(x )

of territories that become available through the death of their owners and the number of competitors for those
territories. The number of territories that become available is given by , and the number of competitors∗ ∗m̄ (x )u (x )B B

equals the sum of the number of surviving floaters, , and the number of surviving offspring,∗(1 2 m )u (x )F F

. Hence,∗ ∗F(x )u (x )B

∗ ∗m̄ (x )u (x )B B∗a(x ) = . (A9)∗ ∗ ∗(1 2 m )u (x ) 1 F(x )u (x )F F B

Dividing numerator and denominator by and substituting (A6) yields∗u (x )B

∗m̄ (x )mB F∗a(x ) = . (A10)∗ ∗¯F(x ) 2 m (x )(1 2 m )B F

The relative reproductive values of floaters and breeders are determined by a dominant left eigenvector v =
of , which is a solution of . The usual interpretation of reproductive values (Fisher 1930; Frank∗(v , v ) A l v = vAF B

1998) is that represents the probability that a gene drawn at random from a population in the faru v /(u v 1 u v )F F BF F B

future is present in a floater now. It is easily verified that, for , up to a constant multiplier,∗l = 1

v = 1 2 m , (A11)FF

∗F(x )
∗v (x ) = . (A12)B ∗m̄ (x )B

The reproductive value of a floater in a stationary population is just its probability of survival, given that the reproductive
value of a breeder equals its expected lifetime reproductive success. Note that the expected lifetime reproductive success
of a breeder, or rather the expected lifetime reproductive success of floater, given that it will ever find a territory, is
not equal to the expected lifetime reproductive success averaged over all territories:

` `∗ ∗F(x )m (q)[F(q)/m (q)]p(q)dq [F(q)/m (q)]p(q)dq∗ ∗∫ ∫F(x )x B B x B
= ( = . (A13)` `∗ ∗[ ]m̄ (x ) m(x )m (q)p(q)dq p(q)dq∗ ∗∫ ∫Bx B x

The reason is that not all territories become available at the same rate. In fact, territories with quality q become
available at a rate proportional to the mortality rate mB(q).

In order to prove result 1, we investigate the fate of mutants accepting territories of quality . First we consider∗x ( x
more choosy mutants that only accept territories with a quality higher than , say of at least , where e is∗ ∗x x = x 1 e

a small positive number. Later we examine the fate of mutants with a lower than normal standard. The mutants’
growth rate is determined by the dominant eigenvalue of , with the normal threshold replaced by the∗l = l(e) A x
mutant threshold . Clearly, for , . Now suppose is an ESS. Since the normal population is∗ ∗ ∗x = x 1 e e = 0 l(e) = l x
stationary with yearly growth rate , for any , the mutants must have a yearly growth rate . This∗l = 1 e 1 0 l(e) ! 1
implies that for to be an ESS, we must have∗x
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­l ≤ 0. (A14)F­e e=0

According to a standard result (e.g., Taylor 1996), this is equivalent to

­A
v u ≤ 0, (A15)F­e e=0

where and u represent reproductive values and equilibrium densities of the normal population (i.e., for ),v e = 0
respectively.

Differentiating with respect to e, one obtainsA

′′ ∗ ′ ∗ ∗ ∗ ∗­A 2a (x )(1 2 m ) 2a (x )F(x ) 1 [1 2 a(x )]F (x )F= ′ , (A16)′ ∗ ′ ∗ ′ ∗ ∗ ∗ ∗F [ ]¯a (x )(1 2 m ) 2m (x ) 1 a (x )F(x ) 1 a(x )F (x )­e F Be=0

where the primes denote differentiation. In order to calculate these derivatives, we need to know how the mutant’s
life-history parameters depend on e. This is easy for the average mutant territory owner’s mortality and∗m̄ (x 1 e)B

reproduction , which are given by, respectively,∗F(x 1 e)

`
m (q)p(q)dq∗∫x 1e B∗m̄ (x 1 e) = , (A17)B ` p(q)dq∗∫x 1e

` F(q)p(q)dq∗∫x 1e∗F(x 1 e) = . (A18)` p(q)dq∗∫x 1e

To find the yearly probability for a mutant floater to obtain a suitable territory is a bit more tricky because∗a(x 1 e)
it requires an extra assumption. Following Kokko and Sutherland, we assume that decreases with e because∗a(x 1 e)
fewer territories become available through the death of their owners, while the number of competitors stays constant.
This is reasonable when territory qualities are randomly distributed over space (relaxing the assumption would actually
result in a queuing system). It implies that

∗ ∗m̄ (x 1 e)u (x 1 e)B B∗a(x 1 e) = ∗ ∗ ∗(1 2 m )u (x ) 1 F(x )u (x )F F B

`
m (q)p(q)dq∗∫x 1e B∗= a(x ) . (A19)`

m (q)p(q)dq∗∫x B

The derivatives are now calculated by applying the fundamental theorem of calculus, yielding

∗p(x )′ ∗ ∗ ∗¯ ¯m (x ) = [m (x ) 2 m (x )] , (A20)B B B ` p(q)dq∗∫x

∗p(x )′ ∗ ∗ ∗F (x ) = [ F(x ) 2 F(x )] , (A21)` p(q)dq∗∫x

∗ ∗m (x )p(x )B′ ∗ ∗a (x ) = 2a(x ) . (A22)`∗m̄ (x ) p(q)dq∗∫B x
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By inserting these derivatives in (A16), we see that every element of the matrix is a multiple of the positive factor
. We can omit this factor without changing the sign of (A16), which is therefore proportional to`∗p(x )/ p(q)dq∗∫x

∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗¯ ¯a (m /m )(1 2 m ) a (m /m )F 2 (1 2 a ) F 2 F( )B B F B B ∗ ∗ . (A23)∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗[ ]¯ ¯ ¯2a (m /m )(1 2 m ) m 2 m 2 a (m /m )F 1 a F 2 F( )B B F B B B B

Now it is a just a matter of inserting (A10) and some tedious algebra to show that the ESS criterion (A15) corresponds
to

∗ ∗(1 2 m )m (x ) 2 F(x ) ≤ 0, (A24)F B

or equivalently,

∗F(x ) ∗= LRS(x ) ≥ 1 2 m . (A25)F∗m (x )B

Hence, we have shown that precisely those threshold strategies yielding an LRS greater than or equal to∗x 1 2
at the threshold are stable against invasion by choosier mutants. Let us now investigate the fate of mutants with amF

lower than normal standard, accepting territories with quality . We assume that mutants first compete for∗x = x 2 e

the same territories as normal individuals. If a mutant fails to obtain such a territory, it will compete for the territories
with quality . If the mutant fails again, it becomes a floater. A fraction , given by (A10), of the∗ ∗ ∗x ≤ q ! x a = a(x )
mutants acquires territories with the same quality distribution as the territories occupied by normal individuals. Hence
they have the same expected mortality and reproductive output , given by (A2) and (A3), respectively. Of the

∗∗m̄ FB

mutants not settling in a territory with quality , a proportion settles in a territory of quality .∗ ∗ ∗≥ x b x 2 e ≤ q ! xe

Obviously, should be an increasing function of e, and should tend to 0 as e goes to 0. Mutants with territoryb be e

quality have average reproductive output and yearly mortality which tend to and∗ ∗ ∗x 2 e ≤ q ! x F(e) m (e) F(x )B

, respectively, as e tends to 0. The remaining fraction of the mutants become floaters.∗ ∗m (x ) (1 2 b )(1 2 a )B e

Of the three types of mutants there are mutants with territories of quality , with territory quality∗m q ≥ x mB L

, and floating mutants. These numbers change from one season to the next according to∗ ∗x 2 e ≤ q ! x m m =F t11

, where andTBm m = (m ,m ,m )t F L B

∗∗ ∗ ∗(1 2 b )(1 2 a )(1 2 m ) (1 2 b )(1 2 a )F(e) (1 2 b )(1 2 a )F e F e e ∗∗ ∗ ∗B = b (1 2 a )(1 2 m ) 1 2 m (e) 1 b (1 2 a )F(e) b (1 2 a )F . (A26)e F B e e ∗∗ ∗ ∗ ∗¯a (1 2 m ) a F(e) 1 2 m 1 a F F B

Proceeding as we did before, an ESS threshold must obey∗x

­B
lim v u ≤ 0. (A27)

­eer0

Here is the vector of reproductive values of the three types of mutant, given by a dominant left eigenvectorv = (v , v , v )F L B

of B. In the limit, as , the reproductive values tend toe r 0

v = 1 2 m , (A28)FF

∗F(x )
v = , (A29)L ∗m (x )B

∗F(x )
v = . (A30)B ∗m̄ (x )B

As one would expect, as e tends to 0, the reproductive values of mutant floaters and breeders tend to those of normal
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floaters and breeders, given by, respectively, (A11) and (A12). The reproductive value of an individual with avL

threshold quality territory is then just its expected LRS. The vector is proportional to the frequencyu = (u , u , u )F L B

distribution of the three types of mutant in demographic equilibrium, given by a dominant right eigenvector of B. As
e goes to 0, the vector elements tend to

∗ ∗¯u = F(x ) 2 m (x ), (A31)F B

u = 0, (A32)L

u = m . (A33)B F

These are, of course, the same as determined by (A6).
Applying the ESS condition (A27) yields

∗( )2 1 2 m ∗ 2F(x ) F
′ ∗ ∗b (0)(1 2 a )v (1 2 m ) ∗ F(x ) u ≤ 0. (A34)F 

0 ∗ 0 

The second column of the matrix is irrelevant because by (A32) the second element of u equals 0. The inequality is
equivalent to

′ ∗ ∗b (0)(1 2 a )[(1 2 m )u 1 F(x )](v 2 v ) ≤ 0, (A35)F F L F

which reduces to orv ≤ vL F

∗F(x ) ∗= LRS(x ) ≤ 1 2 m . (A36)F∗m (x )B

To summarize, in view of (A25), is evolutionarily stable against choosier mutants if LRS , while we∗ ∗x (x ) ≥ 1 2 mF

have just shown that is evolutionarily stable against less choosy mutants if LRS . Hence, with∗ ∗ ∗x (x ) ≤ 1 2 m xF

LRS is the only ESS.∗(x ) = 1 2 mF

APPENDIX B

Optimal Acceptance Threshold under Strict Queuing

In this appendix, we verify that, under strict queuing, the optimal acceptance threshold can take any value between
, the survival probability of a floater, and unity. To keep the analysis tractable, we make the simplifying assumption1 2 mF

that queuers and territory owners have the same yearly mortality m, independent of territory quality. Following Kokko
and Sutherland, we let territory ownership correspond to position 0 in the queue. As argued above, queue lengths are
in equilibrium if and only if

a LRS = LRS , (B1)i i 0

where LRSi denotes the LRS at the territory quality where queue length increases from to i and ai representsi 2 1
the probability of ever obtaining the territory when in position i of the queue. We shall first show that when seasons
are discrete, ai is bounded above by , the corresponding probability in Kokko and Sutherland’s continuous-1/(1 1 i)
time framework. This result allows us to prove that for the special case of a uniform territory quality distribution, in
a stationary population without floaters the worst occupied territory can yield an LRS anywhere between 0 and

, where n denotes the queue length at the best territory. The worst territory can therefore have a value(n 1 1)/(n 1 2)
below , at which point floating is the better option. Since n can become arbitrarily large, the optimal acceptance1 2 m

threshold can have any value between and unity.1 2 m

Let us denote by pkj the probability that an individual at position k in a queue will have position in the0 ≤ j ≤ k
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next season. This probability is given by the probability that the individual survives, times the probability that1 2 m

exactly individuals of position !k die. Hence,k 2 j

k k2j j11p = m (1 2 m) . (B2)kj ( )k 2 j

The probability of ever obtaining the territory when in position k equals the probability pkj to reach position j inak

the next season times the probability aj of ever obtaining the territory when in position j, summed over all j:

k k
k k2j j11a = p a = m (1 2 m) a . (B3)O Ok kj j j( )k 2 jj=0 j=0

Factoring out ak from the right-hand side, ak can be expressed in terms of the :a (j ! k)j

k21 k k2j j11O m (1 2 m) aj( )k 2 jj=0

a = . (B4)k k111 2 (1 2 m)

For a territory owner the probability of ever reaching its own territory is of course unity; that is, . The fora = 1 a0 k

are then easily computed iteratively. For example,k 1 0

m(1 2 m) 1 2 m
a = = . (B5)1 21 2 (1 2 m) 2 2 m

This quantity cannot exceed one-half, which means that the LRS of the first queuer behind the territory owner is less
than one-half of the territory owner’s LRS. In fact, it follows by induction that

1
a ≤ . (B6)k 1 1 k

To see this, suppose for that we have . Thenj = 0, ) , k 2 1 a ≤ 1/(1 1 j)j

kk21 k2j j11O m (1 2 m) [1/(1 1 j)]j=0 ( )k 2 j
a ≤ ,k k111 2 (1 2 m)

k111 m 1
= 1 2 ≤ . (B7)

k11[ ]1 1 k 1 2 (1 2 m) 1 1 k

Clearly, we also have

1
lim a = and lim a = 0. (B8)k k1 1 kmr0 mr1

The right-hand side of (B7) is identical to the value of ak obtained by Kokko and Sutherland in their continuous-
time framework. Hence, when seasons are discrete, the LRS at any position in the queue is always lower than the LRS
at the same position in continuous time.

In a stationary population without floaters, the average LRS of territory owners must equal the average number of
queuers per territory, denoted by , plus the territory owner itself; that is,k̄
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F
¯= 1 1 k. (B9)

m

Let the worst occupied territory yield an LRS of , the best territory an LRS of , and let the longest queueF /m F /m0 max

in the population have length n. In a population where queue lengths are in equilibrium, there will be n switch points,
territory qualities where queue length increases by 1. The LRS at a switch point where queue length increasesF /mi

from to i is given byi 2 1

F Fi 0
a = . (B10)i

m m

For a given combination of mortality rate m and productivity at the highest-quality territory, the equilibriumFmax

conditions (B9) and (B10) determine the maximum queue length n and the productivity at the lowest-qualityF0

occupied territory. Now let us assume that is larger than . We claim that selection favors an acceptanceF /m 1 2 m0

threshold no larger than . To see this, suppose the acceptance threshold is larger than . In that case, someF /m F /m0 0

individuals would become floaters, which have an expected LRS of . Strictly speaking, is not an ESS1 2 m ! F /m F /m0 0

because, as long as individuals always choose the best available queue or territory, individuals with an acceptance
threshold lower than never end up on a territory with expected LRS smaller than . Hence, in populations inF /m F /m0 0

equilibrium, as long as , there is no selection against individuals with an acceptance threshold lower thanF /m ≥ 1 2 m0

, and the acceptance threshold may drift to lower values than .F /m F /m0 0

What remains to be shown is that can have any value below unity. For a given maximum queue length n, theF /m0

maximum value of is clearly obtained when the best territory is the last switch point, that is, when .F /m F = F0 max n

Equations (B9) and (B10) allow us to calculate n and . Figure 3 shows numerical solutions for exponentiallyF /m0

distributed territory qualities. For uniformly distributed territory qualities, we can find an explicit solution. Rewriting
(B9) as

n21O (F 2 F)i1 F F i=0 i11 i0 n1 = 1 1
n21( )2 m m O (F 2 F)i=0 i11 i

n21(n 2 1)F 2O Fn i=1 i
= 1 1 (B11)

F 2 Fn 0

by (B10) and rearranging

n212[(n 2 1)/a ] 2 2 O (1/a )F 2 n i=1 i0 = 1 . (B12)
m (1/a ) 1 1 [(1/a ) 2 1][(1/a ) 1 1]n n n

by (B8) as , this tends to 0, and as , this tends tom r 1 m r 0

n212(n 2 1)(n 1 1) 2 2O (i 1 1)2 n 1 1i=1
1 = . (B13)

n 1 2 n(n 1 2) n 1 2

By continuity, there is a small m such that is near . We can obtain any by choosing anF /m (n 1 1)/(n 1 2) n ≥ 00

appropriate ; hence, for sufficiently small , we can get to be smaller than . We can also chooseF F F /m 1 2 m Fn n 0 n

sufficiently large such that can have any value smaller than unity but larger than . The optimal acceptanceF /m 1 2 m0

threshold can therefore have any value between and 1.1 2 m
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