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ABSTRACT 
Microsatellites  are  promising  genetic  markers for studying  the  demographic  structure  and  phyloge- 

netic history of populations. We present  theoretical  arguments  indicating that the  usefulness  of microsat- 
ellite  data  for  these  purposes may be  limited to a short  time  perspective  and to relatively  small  popula- 
tions.  The  evolution of selectively neutral  markers is governed by the  interaction of mutation  and  random 
genetic  drift.  Mutation  pressure  has  the  inherent  tendency  to  shift  different  populations  to  the same 
distribution of  alleles. Hence,  mutation  pressure is a homogenizing  force,  and  population  divergence 
is caused by random  genetic  drift.  In case  of  allozymes  or  sequence data, the diversifylng  effect  of drift 
is typically orders of magnitude  larger  than the homogenizing effect of mutation  pressure. By a simple 
model, we demonstrate  that the situation may be different  for  microsatellites  where mutation rates  are 
high  and  the  range of alleles is limited.  With  the help of computer  simulations, we investigate to what 
extent  genetic  distance measures applied to microsatellite  data  can  nevertheless  yield  useful  estimators 
for  phylogenetic  relationships or demographic  parameters. We show that  predictions  based  on  microsat- 
ellite  data  are  quite  reliable in small populations,  but that already in moderately  sized  populations  the 
danger of misinterpretation is substantial. 

M ICROSATELLITES are a class  of tandem  repeat 
loci, where alleles can be distinguished by their 

size (TAUTZ  1993). At these loci, a  mutation may alter 
the size  of an allele by adding or deleting one or more 
repeats. The mutation  rate is exceptionally high (e.g., 
LEVINSON and GUTMAN 1987;JEFFREYS et al. 1988; KELLY 
et al. 1991), implying a high degree of polymorphism. 
As a  consequence, microsatellites seem very promising 
for studying the genetic  structure of natural popula- 
tions. However, it is not yet clear which genetic distance 
measures are  adequate  for studying microsatellite data. 
The discussion centers around  the question whether 
distance should be based on  the variance in allele fre- 
quencies or on  the variance in repeat  number (GOLD- 

In this paper, we discuss a  general  problem  that ap- 
plies to all distance measures. The range of allele sizes 
found  at microsatellite loci is typically limited (e.g. ,  
GARZA et al. 1995).  Combined with the high mutation 
rate, this has important implications since genetic infor- 
mation  accumulated by a  population may rapidly decay. 
Generally, mutation is regarded as a  factor  that  en- 
hances  the  differentiation between populations. How- 
ever, when the  range of target alleles is limited, muta- 
tion will lead to the  reappearance of alleles lost in  the 
past. As a  consequence,  mutation may be viewed  as a 
homogenizing  factor  that  counteracts  the diversifying 
effects  of random  genetic drift. 

STEIN et d .  1995a; SLATKIN 1995). 
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To formalize this idea,  consider  a finite number of M 
alleles A I ,  . . . , AM,  segregating in an infinite population 
with discrete, nonoverlapping  generations.  Letf;  denote 
the relative frequency of allele Ai. Mutation pressure 
can be characterized by a probability matrix U = ( u ~ ) ,  
where uli denotes  the probability that allele AI mutates 
to allele Ai. Evolution under mutation pressure is then 
governed by the  recurrence equations: 

f :  = c %jJ; = ( U s  f ) , .  (1) 
I 

Under mild regularity assumptions on  the mutation 
matrix U, Markov theory (e .g . ,  KEMENYand SNELL 1976) 
predicts  that, irrespective of the starting  conditions, 
mutation  pressure will shift the  population to a fixed 
limit distribution of allele frequencies  that is implicitly 
given by 

f *  = u- f * .  (2) 

Hence, two separated  populations have the  inherent 
tendency to converge to the sameallele frequency distri- 
bution.  In other words, mutation pressure per se leads 
to genetic convergence rather  than to genetic diver- 
gence of subpopulations. 

Strictly speaking, this result only applies to infinite 
populations.  In finite populations,  genetic divergence 
is possible due to the diversifylng action of genetic drift. 
Whether  the  combined action of drift and mutation 
will lead to genetic divergence rather  than to genetic 
convergence will depend  on  the relative importance of 
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these factors. Obviously, the sampling effects leading to 
genetic drift will be strongest when population size N 
is small. On the  other  hand,  the  inherent tendency to 
converge to a limit distribution under mutation pres- 
sure is strongest when the number M of alleles is  small 
and when the  mutation rates are high. 

In the case  of  allozyme and sequence  data,  mutation 
rates are very  low  say) and/or  the  number of 
possible target alleles is large. As a consequence,  the 
homogenizing effect of mutation will typically be domi- 
nated by the diversifylng action of drift, even in rela- 
tively large populations.  In case of microsatellites, the 
situation is different. In fact, mutation rates are  orders 
of magnitude  higher say) and the number of 
alleles is typically smaller than 20 (e.g., BOWCOCK et al. 
1994; GARZA et a!. 1995; GOLDSTEIN et al. 1995a,b; ZHI- 
VOTOVSKY and SLATKIN 1995). We shall demonstrate 
that this may have important implications even for rela- 
tively  small populations.  In fact, the  interaction of drift 
and mutation does not necessarily lead to genetic diver- 
gence and genetic distance measures cannot be ex- 
pected to have the desirable property  that  the distance 
of two populations increases with the time of their ge- 
netic isolation. 

To address the question for what population sizes 
the genetic  structure of populations can be correctly 
inferred  from microsatellite data, we consider the step- 
wise mutation process (OHTA and &MUM 1973), one 
of  the  standard models for  mutation at microsatellite 
loci. Previous work has focused on  the infinite alleles 
version of this model ( e . 6 ,  OHTA and KIMURA 1973; 
K ~ M U W  and OHTA 1975; MORAN 1975). For this version, 
it could be shown that, even for  the high mutation rates 
typical for microsatellites, genetic isolation will lead to 
genetic  differentiation with respect to genetic distance 
measures such as Dl (GOLDSTEIN et al. 1995a) or R,qT 

(SLATKIN 1995). The empirical relevance of these re- 
sults may, however, be limited since the homogenizing 
force of mutation pressure is extremely weak or even 
absent in infinite alleles models. We shall therefore con- 
front  the infinite alleles version of the stepwise muta- 
tion model with a  more realistic version, which incorpo- 
rates the assumption that  the range of possible allele 
sizes at a microsatellite locus is restricted. 

First, we compare  the two versions  of the stepwise 
mutation  model with respect to  their  general  character- 
istics. Taking Dl as an example, we then study the conse- 
quences of a  constrained  range of allele sizes for  genetic 
distance measures. By means of computer simulations, 
we subsequently investigate some practical implications 
such as the use  of genetic distance measures for  the 
estimation of divergence time and  the reconstruction 
of phylogenetic relationships. Finally, we discuss the 
robustness of our results by considering  different  model 
parameters and by showing that  our conclusions do  not 
depend  on  the specific model  chosen,  but  that they can 
be drawn from other models as  well. Let us stress from 

the  beginning  that it is not  our purpose to present  the 
finite alleles version of the stepwise mutation process 
as the most adequate  model  for  mutation pressure at 
microsatellite loci. We rather use  this simple model to 
illustrate the  general  principle  that constraints on  the 
number of alleles may be relevant already in the  context 
of moderately sized populations. 

THE FINITE ALLELES VERSION OF THE 
STEPWISE MUTATION MODEL 

In its simplest version, the stepwise mutation model 
assumes that  each  mutation event at a microsatellite 
locus leads to the  addition or  the deletion of a single 
repeat. If  we assume that  addition and deletion of re- 
peats have the same probability, an allele with i repeats 
mutates to either i - 1 or to i + 1 repeats, each with 
probability p / 2 ,  where p is the mutation probability per 
gamete and generation. In other words, the mutation 
matrix Uis  given by u ~ + , , ~  = uz-l,i = p / 2 ,  u,, = 1 - p,  and 
uij = 0 otherwise. This one-step version of the stepwise 
mutation  model  appears to give a reasonable approxi- 
mation of the  mutation process at microsatellite loci 
(e.g., SHRIVER et al. 1993; VALDES et al. 1993; WEBER and 
WONG 1993) and is often assumed in theoretical studies 
(e.g., GOLDSTEIN et al. 1995a).  It  can, however, be easily 
modified to include larger mutation steps (e.&, GARZA 
et al. 1995; SLATKIN 1995). The mutation  frequency  at 
microsatellite loci appears to range from to IO-' 
(e.g., EDWARDS et al. 1992; WEBER and WONG 1993). 
Typically, we have used a value of p = lo-' for  our 
simulations. The effects of the  mutation  rate on  our 
results will be discussed later on. 

Theoretical research has centered  around  the infi- 
nite-alleles version of the stepwise mutation  model, 
which  assumes that  there  are  no constraints on allele 
size ( i .e . ,  allele size i ranges from --0c1 to +a). As a 
consequence of this assumption,  the  distribution of  al- 
lele sizes does, even in large populations, not converge 
to a characteristic limit distributionf".  Instead,  the dis- 
tribution of allele sizes wanders around indefinitely 
(MOW 1975).  The mean number of repeats does also 
not converge, giving two separated  populations an in- 
finite potential  for divergence. The expected number 
of alleles actually present in a finite population, how- 
ever, does converge to  an equilibrium value n, (&MUM 
and OHTA 1975). Moreover, the variance in repeat 
number converges to the value ( 2 N  - l ) ~  in a diploid 
population of  size N (MOWN 1975). Following 
GOLDSTEIN et al. (1995a), this variance can be expressed 
in terms of the average squared difference in allele size, 

DO = j$(i - j ) ' ,  (3) 

which  is  twice the variance in repeat  number.  Hence, 
Do has an equilibrium  expectation  that is approximately 
given by 

131 
. .  
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= 2 p (2N- 1) 4Np. (4) A 
(The small difference between the terms 2Nand  2N - 
1 will henceforth be neglected.) 

The infinite alleles  version of the stepwise mutation 
model is mathematically convenient, but its properties 
are  quite  different from those of a  more realistic finite 
alleles model (wandering distribution of allele sizes us. 
convergence to  a fixed limit distribution).  Therefore 
we consider a version of the stepwise mutation model 
where the maximum number of  alleles ( M )  is limited. 
Alleles are restricted to a  range of  sizes ( a  + 1, a + 2, 
. . ., a + M> with  alleles A, = a + 1, A2 = a + 2, . . ., AM 
= a + M. The shortest allele A, will only mutate to 
A2 and the longest allele AM only to AM-1, both with 
probability p/2. In our simulations we normally took 
M = 10, a value not  uncommon in microsatellite studies 
(e.g., BOWCOCK et al. 1994; GARZA et al. 1995; GOLDSTEIN 
et al. 1995a), but  the value M = 20  will be considered 
as  well. 

It is  easy to derive from (2) that for the finite alleles 
version  of the stepwise mutation model the limit distri- 
bution induced by mutation pressure is the uniform 
distribution over the M alleles. Hence, in equilibrium 
the  expected frequency of each allele is the same. At 
the limit distribution,  the  number of  alleles is n., = M 
and the average squared difference in allele size  is  twice 
the variance of the uniform distribution: 

As stated above, random genetic drift may prevent 
convergence to the limit distribution. Whether and how 
well this distribution is approached, will not only de- 
pend  on  the  population size and the  mutation rate but 
also on the  range of allele sizes M. In  a small popula- 
tion, only a small number of alleles can be maintained. 
As long as  only a fraction of  all  alleles is present,  the 
allele frequency distribution will wander around  and 
the infinite alleles  version  of the stepwise mutation 
model may provide a good approximation. Larger pop- 
ulations, however, can maintain all M alleles, and with 
increasing population size, the allele distribution will 
more and  more  tend toward the uniform limit distribu- 
tion. In such a case, the infinite alleles  version  of the 
stepwise mutation model will not apply. 

The question arises for which population sizes the 
infinite alleles  version of the stepwise mutation model 
is adequate.  To give an indication, we performed com- 
puter simulations of our finite alleles model for differ- 
ent population sizes. Figure 1 shows the  number of 
alleles n, and the average squared difference Do as a 
function of population size. The simulation results 
agree well  with the predictions of the infinite alleles 
model for small population sizes: N < 5000 for n,, and 
N < 500 for Do. In a larger population,  the infinite and 
the finite model give quite different results. n, reaches 
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FIGURE 1.-A comparison between the finite and  the infi- 

nite alleles version of the stepwise mutation  model. (A) The 
mean  number of alleles n, and (B) the  mean average squared 
difference  in allele size Do as a  function of population size. 
The symbols (+) indicate the  outcome of 1000 computer 
simulations based on  the stepwise mutation model with M = 
10 alleles and p = In this model, n, 5 M and is 
limited by ( M 2  - 1)/6 = 16.5. Solid lines correspond to the 
predictions of the infinite alleles version of the model (A, 
KIMURA and OHTA 1975; B, M O M  1975). The dashed line 
in (B) indicates the prediction of the finite alleles model  (see 
APPENDIX). 

its maximum Mwhen  N = 10,000 and Do approximates 
(M2 - 1)/6 when N = 100,000. 

In  the APPENDIX, it is shown  how Bo can be calculated 
for the finite alleles model. Even without such a calcula- 
tion, it is  easy to see that  the equilibrium prediction 
(4) of the infinite alleles model will be certainly mis- 
leading as soon as 

N >  -, 
M 2  - 1 

24Y 

In fact, for larger values  of N, the prediction (4) would 
increase beyond the value (5) for  a uniform distribu- 
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tion. Notice that (6) is quite restrictive. For M = 10 
and p = for  example,  a large discrepancy with the 
infinite alleles model is already expected  in moderately 
sized populations  (for N > 4125). 

CONSEQUENCES FOR GENETIC 
DISTANCE  MEASURES 

Several genetic distance measures have been devel- 
oped to quantify differences in  the allele frequency dis- 
tribution between populations.  These measures are, for 
example, used to estimate migration rates, divergence 
times, or phylogenetic relationships. Here we want to 
investigate to what extent  the reliability  of such esti- 
mates is affected by constraints on  the  range of allele 
sizes at a microsatellite locus. To this end, we focus on 
the most simple example,  the genetic differentiation of 
two populations  that resulted from a  common  parent 
population T generations ago. Both the  parent  and  the 
daughter  populations have a  constant size of Ndiploid 
(or equivalently 2Nhaploid) individuals. In  our sirnula- 
tions, reproduction  occurred  in discrete nonoverlap- 
ping  generations. A new generation was generated by 
sampling (with replacement)  2Nalleles from the previ- 
ous one. After reproduction,  mutation took place ac- 
cording to the stepwise mutation  model as described 
above.  First, a parent population was simulated for 6N 
generations giving Do enough time to reach its equilib- 
rium. Then, two daughter  populations were formed by 
sampling twice independently  2Nalleles from the par- 
ent population. 

Allele sharing (DAS)  is a  genetic distance measure 
that is based on allele frequencies only. It is defined as 
the probability that two alleles randomly chosen from 
both  populations  are not identical (e.g., GOLDSTEIN et 
al. 1995a).  Hence, with Jk denoting  the frequency of 
allele i in  population k ( k  = 1, 2): 

D A S  = Cj& = 1 - c J&. (7) 
it] z 

GOLDSTEIN et al. (1995a) argue  that,  for microsatel- 
lites, it is better to use a distance measure that takes 
account of the fact that alleles can be ordered according 
to size. They suggest to use the average squared differ- 
ence  in allele size between two populations: 

Dl = c51/& - jY .  (8) 
2.1 

Similarly,  SLATIUN (1995) proposes to replace the 
classical Fw statistic (WRIGHT 1951), which  is based on 
the variance in allele frequencies, by a new statistic R~w. 
For the infinite alleles version of the stepwise mutation 
model,  the R,Sr statistic shows the same relationship to 
coalescence times as F s l .  does in the classical model of 
arbitrary mutation.  In terms of Dl and Do and in case 
of  two populations, RS7. can be represented as 

0 
T -  

FIGURE 2.-Maximal range of linearity of the genetic dis- 
tance  measure D l .  At time 7 = 0, a  haploid  equilibrium popu- 
lation of size 2N is divided into two populations of size  2N. 
In  the infinite alleles model, Dl is expected to increase linearly 
with r according to EIDl(r)] = Do + 2p7, where Do = 4 Np. 
With a finite number of M alleles, however, Dl will not  in- 
crease beyond Dl = (M' - 1)/6. 

where no is the  mean of the Dos of the two diverging 
populations. 

GOLDSTEIN et al. (1995a) argue  that Dl is a useful 
genetic distance measure since, in  the infinite alleles 
version of the stepwise mutation  model, Dl is expected 
to increase linearly with divergence time 7. The slope 
of the  function describing this linear  relationship is 
equal to 2 p ,  independent of population size. The inter- 
cept is given by the value  of Do at the  moment of popula- 
tion subdivision. Hence. 

If  we assume that  the  parent  population was in equilib- 
rium when separation  occurred, Do = 4Np can be in- 
serted  for Do (0) : 

It is important to realize that this equation strongly 
reflects the  properties of the infinite alleles version of 
the stepwise mutation model. This is demonstrated by 
the following two observations. 

First, Equation 11 describes an  unbounded  function. 
In  contrast,  a limited number of alleles implies that 
population divergence must be  limited, too. This was 
also noticed by GOLDSTEIN et al. (1995a), who argue 
that  the ultimate population divergence is given by 

As a  consequence, Equations 10 and 11 can only be 
correct up to Dl.  This means that  the range of linearity 
of E(Dl) must lie between Do(0)  and D l  (see Figure 2).  

Second, as we  have shown above  (see  Figure l) ,  the 
derivation of Equation 4 for Do in equilibrium  crucially 
depends on the infinite alleles model. If the number of 
alleles is finite, J$, is not given  by 4Np. In  fact, L& is  always 
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FIGURE J.-Dynamics of the genetic distance measure Dl 
in the finite alleles model. At T = 0, a haploid equilibrium 
population of size 2N was divided  in two populations of size 
2N. The bold lines show the mean values of Dl over 500 
simulations (- , 2N = 200; - - -, 2N = 2000, e * * ,  2N 
= 20,000).  The thin straight lines correspond to the time 
course of Dl as predicted by the infinite alleles model. In the 
finite alleles model, Dl is limited by D l  = 16.5. Notice that 
D l ( 0 )  = 0.4 = 4Np for 2N = 200; D l ( 0 )  = 3 < 4Np for 2N 
= 2000; and D,(O) = 1 1  4Np for 2N = 20,000. 

smaller than twice the variance  of the uniform  distribution 
[see ( 5 ) ] ,  and it approaches 4 in  large  populations. (The 
APPENDIX shows  how can  be  calculated.) 

Taken  together, these arguments show that  for fi- 
nitely  many  alleles Equation l l  cannot be expected  to 
be a good predictor of the behavior of Dl. As the range 
of linearity is restricted, the slope 2p will not always 
offer a good description of the increase of Dl in time. 
Moreover, Equation 5 shows that  the  intercept 4Np can- 
not  be  correct  for large populations. Generally, the in- 
crease of Dl will not be properly predicted by Equation 
11 if the  population size N is large, if the maximal 
number of  alleles M is small, or if a  long time has passed 
since population  separation  occurred. 

Figure 3 illustrates these general observations. It is 
shown  how Dl changes with divergence time when the 
number of  alleles is limited. Clearly,  only for a very small 
population (2N = 200) and a relatively  small number of 
generations ( r  < 2000) the time course of Dl (7 )  is 
reasonably well described by Equation 11. In larger p o p  
ulations, the  intercept Dl(0)  is smaller than 4Np and 
D l ( r )  increases with a  much smaller slope than 2p. As 
expected, Dl  is approached asymptotically in all  cases. 
Interestingly, the increase in Dl ( 7 )  is approximately lin- 
ear even for relatively large population sizes (e.g., 2N 
= 20,000) and for a  longer time than  predicted by 
GOLDSTEIN et al. (1995a, Equation 4). This is possible 
since, with a restricted number of alleles, slope and 
intercept of D l ( r )  are  both  much smaller than in the 
infinite alleles model. 

PRACTICAL  IMPLICATIONS 
Estimation of divergence  time: One of the applica- 

tions of genetic distance measures is the estimation of 

the  number of generations T that two populations are 
genetically isolated ( .g . ,  SLATHN 1995). According to 
the infinite alleles  version  of the stepwise mutation 
model, this divergence time can be estimated by com- 
bining Equations 4 and 11 and eliminating p: 

E [ D ~ ( T ) ]  = Do + - 7, 
,. ho 

2N 

which leads to  the estimator 

In terms of RST, this can be rewritten as: 

SLATKIN (1995) derived the same estimator of the diver- 
gence time by a different method. By means of  com- 
puter simulations based on  an infinite alleles model, 
SLATKIN studied  a pair of populations diverging at 100 
microsatellite loci. He  found  that T , ~  is a relatively unbi- 
ased estimator of the real divergence time r and  that 
for such a large number of  loci the  standard  error of 
the estimate is small. 

However, Equations 14 and 15 are based on Equa- 
tions 4 and 11, which, as  we  have shown above, are  not 
correct if the  number of alleles is limited. One might 
therefore expect that, with constraints on allele size, 
the estimator T , ~  is unreliable. To check this, we simu- 
lated two populations diverging at 15 microsatellite loci. 
(We chose a smaller number of  loci than SLATKIN since 
rarely more  than 10 or 20 loci are available in empirical 
studies.) 

Our simulation results are illustrated by Figure 4. 
For 560 replicate pairs  of populations, the estimated 
divergence time T~~~ is compared with the  true diver- 
gence time T (dashed line). Although the mean value 
of the estimates 7,,1 (solid line) slightly underestimates 
the real value r ,  the estimator appears to be reasonably 
unbiased. However, there  are considerable differences 
in the estimates between replicates. With a population 
size 2N = 200, for example, at T = 2000, 90% of the 
estimates range from T , ~  = 710 to T ~ , ~  = 3740 genera- 
tions and 10% deviate  even more.  Hence,  the  standard 
error of the estimate is large, and it becomes even larger 
when a smaller number of loci is available (data  not 
shown). Accordingly, rest appears to be an unbiased but 
unprecise estimator of divergence time. 

In case of a large population (Figure 4B), the agree- 
ment between r and 7,1 is quite surprising, as  we  have 
shown  above that in this  case Equation 11 is not correct. 
However, the estimator T~~~ is not based on Equation 11 
but  on Equation 13. The fact that T~~~ appears to be a 
relatively reliable estimator indicates that, in the con- 
text of a limited number of alleles, Equation 13 is appli- 
cable to a  rather  broad  (but restricted) time horizon, 
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FIGURE 4.-Reliability of estimated  divergence  time T,,~. At 
T = 0, a haploid  equilibrium  population of size 2Nwas divided 
into two populations of size 2N. In (A) 2N = 200, and in (B) 
2N = 20,000. T was estimated  on  the  basis of Equation 14 by 
averaging D, and  over 15 loci. The  dashed  straight  line 
corresponds  to  the  real  divergence  time,  the  solid  line  to  the 
mean  estimate 7, over 560 simulations.  The  hatched  area 
resulted by discarding  the  5%  largest and the 5% smallest 
estimates.  Hence, this area  corresponds  to a 90% confidence 
interval of the  estimate T,,~ over 15 microsatellite  loci. 

whereas Equation 11 is certainly not applicable. Notice 
that Equation 13 is more  general since it does not in- 
clude  a specific value for &. In fact, ho is not  equal 
to 4Np but has to be calculated as indicated in the 

Dependence  on  demographic  history: Up to now we 
have assumed that  the two diverging populations are of 
the same size  as the  parent  population. This assumption 
simplifies the theoretical analysis, but it may be  quite 
unrealistic. For example,  population subdivision may 
result from the  founding of  small island populations 
from a large mainland  population, or it may be associ- 
ated with bottlenecks caused by external  disturbance. 
Although a  thorough study of such historical demo- 
graphic scenarios is beyond the  scope of this paper, we 
want to  demonstrate  that  demographic events can be 
essential for  the conclusions that  are drawn from ge- 
netic distance measures. To illustrate this, we show that 

APPENDIX. 
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FIGURE 5.-The same situation as in Figure 4, but now two 
diverging  populations of size 2N = 200 originate  from an 
equilibrium parent  population of size 2N = 20,000. Even in 
a short time  perspective, r,( is no  longer a reliable  estimator 
of r. 

the  conditions  at  the  moment of population subdivision 
may  have dramatic consequences for  the estimation of 
divergence time. 

We consider  the simple scenario that two small di- 
verging populations of constant size 2N = 200 result 
from a large equilibrium population of  size 20,000. Fig- 
ure  5 shows that in this case Equations 14 and 15 no 
longer provide an unbiased estimator of divergence 
time. The differences between replicates are  enormous 
and  the mean value r,, overestimates r by a wide  mar- 
gin. Notice that  after  about only 400 generations,  the 
true value T does no longer fall  within the 90% range 
of the estimates. 

This discrepancy between r and T,,, can be explained 
by the fact that Do does not remain constant when the 
population size changes. In the  parent population of 
size 2N = 20,000, h, = 11 (see Figure 1 ) .  This value is 
much higher  than  the equilibrium value f i t ,  = 0.4 of 
the  daughter  populations of  size 2N = 200. Hence DO 
will decrease from - 11 to -0.4 in each daughter popu- 
lation, and Equation 14 will systematically overestimate 
the value  of 7. 

We conclude  that  the  conditions  at  the time of popu- 
lation separation may be of utmost importance  for  the 
dynamics  of genetic distance measures. Estimates  of  di- 
vergence time always reflect assumptions on  the history 
of a  population and  other demographic events. How- 
ever, although playing a crucial role, demographic his- 
tory is  typically not known  in practice. 

Reconstruction of phylogenetic  relationships: GOLD- 
STEIN et al. (1995a) studied the reliability  of Dl and 
allele sharing DAsfor the reconstruction of phylogenetic 
relationships. To this end, they considered evolution 
along  a three-taxon tree of  variable length. In their 
simulations, an equilibrium population of 2N haploid 
individuals was divided in two populations of size 2N. 
After b generations, one of the  daughter populations 
was split again, and after b more generations the genetic 
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FIGURE 6,"Reliability of Dl and DAs in  recovering  the  correct  phylogeny.  The  percentage  of  correctly  inferred  phylogenetic 
trees using Dl (A) and DAs (+) is plotted  against  tree  length 26 on a logarithmic  scale.  Population  sizes are 2N = 200 (A and 
B) or 2N = 20,000 (C and D), the  number of loci is five (A and C) or 15 (B and D). B corresponds to  Figure 2 of GOLDSTEIN 
el al. (1995a).  The values shown are the results  of  560 independent  simulations.  Notice  that a random guess  would  infer 33% 
correct  trees. 

distances between the resulting three  populations were 
compared.  The  proper phylogenetic relationship was 
inferred by assuming that the pair of populations with 
the smallest distance had  been  separated last. In  a  popu- 
lation with 2N = 200, using 15 loci, GOLDSTEIN et al. 
found  that  the distance measure Dl was superior to DAs 
for 2b > 500 generations. 

To investigate the robustness of these results in the 
context of a limited number of alleles, we studied  the 
same  model as GOLDSTEIN et al. (1 995a). However, as 
before, we restricted the  number of alleles (A4 = 10) 
and we used different  population sizes (2N = 200 and 
2N = 20,000). Moreover, we considered five loci  as well 
as 15 loci. Figure 6 illustrates some of our results. Even 
for these highly simplistic trees  the  percentage of cor- 
rectly inferred trees is quite low. In  case of five loci, this 
percentage is only -60%, while a  random guess  would 
render 33%. Notice that the estimates based on Dl get 
less accurate  in  larger  populations, as expected on  the 

basis  of our earlier  arguments. The same arguments 
lead to the  prediction  that DAs, too,  should  perform 
worse in larger populations. However, for  the popula- 
tion sizes considered  here, this was not  the case. In 
contrast,  the estimates based on DA,Y were more  accurate 
in the  larger  population. As a  consequence, DAs was 
superior to Dl in  the larger population. 

We also studied a broader  range of phylogenetic trees 
by looking at  the  percentage of proper estimation for 
trees with variable branch lengths. We defined b1 as 
the  number of generations between first and second 
branching  and /+ as the  number of generations between 
second  branching  and  the  moment of measuring ge- 
netic distances. The results of our simulations are 
shown in Figure 7. Clearly, a large divergence time be- 
tween the first and  the second  branching and a  short 
time after  the second branching (6 ,  % &), renders  a 
high percentage of correct estimates. On  the  other 
hand, if both  population subdivisions took place shortly 
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FIGURE 7.-Contour  plots  indicating  the  reliability  of D, (A and C) and DAs (B and D) in recovering  the  correct  phylogeny 
for varying  branch  lengths, b, and h2. A and B correspond to  15  loci  and a population  size 2 N  = 200, C and D to  five  loci  and 
2N = 20,000. In the white area, the  percentage of correct  estimates is high (P > 95%), in the  light gray area, it is intermediate 
(50% < P < 95%), in the  dark  area, it is low (P < 50%). The  dashed  diagonal  line  corresponds  to  the  case of equal branch 
lengths as in Figure 6. 

after each other  and  the genetic distance was measured 
after  a  long time (b ,  < b), phylogeny reconstruction 
gets very unreliable. Again, the most striking result is 
the  finding  that Dl is not a good estimator when the 
population size is large and  the  number of  available 
microsatellite loci is small. 

In contrast to the results of GOLDSTEIN et al. (1995a), 
it appears  that even  in a  longer time perspective, DA,v is 
superior to D l ,  at least in larger populations. GOLDSTEIN 
et al. explain their findings by their observation that DA.5, 
while being superior with respect to variance, is inferior 
to Dl with respect to expectation. The latter may not be 
the case when the  number of alleles is limited. 

We have argued above that all genetic distance mea- 
sures, including Dl and DAS, should perform worse in 
larger  populations if the  number of alleles is limited. 
Here we observed this effect for D l ,  but  not  for DA.7. 

We expect, however, that  the  performance of DAS will 
deteriorate  for larger population sizes than those con- 
sidered  here. 

EVALUATION  OF  MODEL  ASSUMPTIONS 

The simulations presented above  were  all  based on  a 
rather specific  stepwise mutation model with a relatively 
small number ( M  = 10) of  possible alleles and a rela- 
tively high mutation rate ( p  = lo-'). Our results clearly 
illustrate the  general  point  that constraints on allele 
size and  the resulting possibility  of  back mutations have 
a homogenizing effect in that  different populations are 
shifted toward the same limit distribution of alleles. It 
is,  however, not  our intention to advocate the model 
and  the  parameters chosen as the most adequate choice 
for studying mutation pressure at microsatellite loci.  In 
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our opinion, any such choice would be premature since 
at present  the  mutation process at microsatellite loci 
is only poorly understood (e.g. ,  ELLEGREN et al. 1995; 
RUBINSZTEIN et al. 1995; AMOS and RUBINSZTEIN 1996). 
To get  an impression of the robustness of our results, 
we  will nevertheless consider different  parameter values 
and  an alternative model  for  the  mutation process. 

Dependence on M: Up to now, the maximal number 
of alleles was restricted to M = 10. In fact, about 10 
alleles are  quite  often  found in empirical studies. More- 
over, a value  of Do = 20  is quite typical for natural 
populations, indicating a value  of M = 11 according to 
Equation 5 (D. GOLDSTEIN, personal communication). 
However, the actual number of  alleles found will cer- 
tainly underestimate  the maximum M, and Bo will  typi- 
cally be smaller than ( M 2  - 1)/6 in moderately sized 
populations (see Figure 1B). In other words, M might 
actually be larger than 10. 

To study the consequences of a larger range of allele 
sizes, we repeated our simulations by putting  the maxi- 
mal number of alleles to M = 20. Some of the results 
are  presented  in Figures 8 and 9. Figure 8A  shows that 
in large populations the equilibrium value  of Do does 
again differ from the infinite-alleles expectation Bo = 
4Np. In contrast to M = 10 (Figure lB) ,  the discrepancy 
is not yet present  at Np = 1, but it becomes visible 
around Np = 5. Figure 8B  shows that  the time course 
of Dl differs again significantly from the infinite-alleles 
expectation 11. Compared with M = 10 (Figure 3) ,  
however, the  upper limit is much larger (Dl = 66.5), 
and it is not approached within 20,000 generations. 
Accordingly, Dl increases almost linearly for  a  much 
larger number of generations. As a  consequence,  the 
bias in  the estimate of the divergence time between two 
populations remains small,  even in a somewhat longer 
time perspective (compare Figures 4 and 9). Still,  how- 
ever, the  standard error of the estimate is  very large 
and extreme care should be taken when applying such 
an unbiased but unprecise estimator in practice. 

Dependence on p: For a given set of microsatellite 
loci the  mutation frequency p is  typically not known, 
and it may even be variable  between and within  loci. 
Although mutation rates ranging from lo-* to are 
often  reported in the  literature (LEVINSON and GUTMAN 
1987; JEFFREYS et al. 1988; KELLY et al. 1991; EDWARDS et 
al. 1992;  WEBER and WONC 1993),  the value  of 
chosen in our simulations may be too high. The precise 
value  of /A will be  important for the  rate  of genetic 
differentiation: a  higher value  of p increases the relative 
importance of mutation pressure and it therefore re- 
duces the diversifjmg action of genetic drift. 

The effect of the  mutation rate on  our simulation 
results is,  however,  highly predictable. All calculations 
as  well  as simulations with other values  of p indicate 
that it is only the  product Np that matters and  not  the 
mutation rate p per se. Hence all  results reported thus 
far for the  mutation rate p = directly apply to the 
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FIGURE &-The  average squared differences in allele size 
within (Q,) and between ( 4 )  populations when the maximal 
number of alleles is M = 20. (A) As in Figure lB, the equilib 
rium value of Bo is plotted against population size (but notice 
that it is expressed in terms of 2Np). +, the mean outcome 
of computer simulations based on the stepwise mutation 
model with M = 20 alleles; - - -, the analytical prediction 
(see APPENDIX); and - , the prediction of the infinite- 
alleles  version of the stepwise mutation model. For M = 20, 
the limiting value of Do is 66.5. (B) As in Figure 3, the change 
in Dl is shown as a function of the time that has elapsed since 
the splitting of two populations of size 2N (- , 2 N  = 200; 

tions of the infinite alleles  version of the stepwise mutation 
model, the bold lines represent the outcome of computer 
simulations based on the finite alleles  version  with M = 20. 
Notice that the limiting value D l  = 66.5 is not  approached 
within 20,000 generations. 

mutation rate p = if the  population size N is re- 
placed by  1ON. In particular, the  dependence of the 
equilibrium value of Do on the  population size in Figure 
1B holds for all  values  of p if the abscissa is relabeled 
in terms of Np,  as in Figure 8A. 
An alternative model: For  illustrative purposes, we 

have modified the stepwise mutation model as little as 
possible, by just imposing strict limits upon  the range 
of allele sizes.  Of course, a fixed range of allele sizes 

-" , 2 N  = 20,000). The thin lines correspond to the predic- 
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FIGURE 9.-Reliability of the estimator T,, for M = 20. 
Compared  with  Figure 4, the range of divergence times T 
(abscissa) is doubled. The mean estimate =,(solid line) and 
i t s  90%  confidence interval (hatched area) show  that T,, is 
less biased, but also less precise than for M = 10. 

with constant mutation rates along  the whole range can 
hardly be  considered realistic. We would like to stress, 
however, that our main conclusions do  not  depend  on 
the details of the model: the crucial point is that genetic 
differentiation due to genetic drift will be limited when- 
ever the limit distribution of the  mutation process has 
a finite variance. 

To illustrate this general principle, we present an- 
other simple model, which  basically  allows an infinite 
range of allele sizes but which does  not lead to  a uni- 
form limit distribution. Assume  that-as  in the “classi- 
cal” stepwise mutation model-the probability for  an 
“upward” mutation (increasing  the  length of the allele 
by one  repeat) is constant and equal to Y = p/2. In 
contrast, longer alleles have a  higher probability to dis- 
integrate  than  shorter alleles, i.e., the probability 6, of 
a “downward” mutation  (reducing  the  length of an 
allele Ai+, by one repeat) is positively related with j .  

Let  us for simplicity assume that 6, is directly propor- 
tional to ju 

S . = - v  j 
l a  (16) 

where a is a  constant of proportionality. Notice that 
upward mutations have a  higher probability than down- 
ward mutations (u > 6,) whenever j < a while the 
opposite is true whenever j > a. With these assump 
tions, it is  easy to see that  the limit distribution f* of 
the mutation process satisfies the relation 

Hence f* is essentially a Poisson distribution: 

f5, = - e”’ 
ai 
i! 

with mean  allele size E(i) = a + 1 and variance 
var(i) = a. 

Notice that  the model does  not impose a limit on 
allele size, but  that  the variance is nevertheless limited. 
It is instructive to compare the behavior of  this  specific 
infinite-alleles  version  of the stepwise mutation model 
with that of the finite-alleles  version considered earlier. 
Recall that  the finite-alleles model has a uniform limit 
distribution over the Malleles, with variance ( M 2  - 1)/ 
12. To compare  the finite-alleles model with M = 10 
with the infinite-alleles model characterized by (16), we 
chose a = ( M 2  - 1)/12 = 8.25. With this value of a, 
we found  that bo has not only the same maximal  value, 
but also that  the increase of 6” with population size 
(Figure 1B) is almost identical in both models. The same 
holds true for other aspects  of the models.  For example, 
the estimation of divergence time leads to results that 
are indistinguishable from those in Figure 4. However, 
the  number of  alleles present may increase far beyond 
M = 10 in the model without limits on allele size. 

The infinite-alleles model specified by (16) is proba- 
bly not  more realistic than  the finite-alleles model con- 
sidered earlier. However, the comparison of both mod- 
els illustrates the  important  point  that  our results are 
not artifacts of a specific model, but consequences of 
far more  general principles. 

CONCLUSIONS 

In view  of their  abundance  and high degree of  poly- 
morphism, microsatellites are highly promising for ana- 
lyzing the genetic and demographic  structure of popu- 
lations. However, a major drawback  of microsatellites 
is the limited range of allele sizes combined with the 
high mutation rate. As a  consequence,  the potential for 
genetic divergence is limited, and genetic information 
specific for  a  population may easily be lost due to muta- 
tion. Already in moderately sized populations, the ho- 
mogenizing force of mutation pressure can dominate 
the diversifying force of random genetic drift. Only  in 
small populations and in a  short term perspective, ge- 
netic differentiation at microsatellite loci is  likely to 
occur. 

To illustrate these general points, we have  investi- 
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gated a finite alleles  version  of the stepwise mutation 
model. Typically, we assumed that maximally M = 10 
alleles occur  at each locus, that  the mutation frequency 
is p = lop3, and that only 15 microsatellite loci are 
available. We arrived at  the following conclusions: 

In small populations ( N  < 500, say), the constraints 
on allele size do  not  appear to  be relevant. In large 
populations ( N  > 5000, say), however, the predic- 
tions of the finite alleles model differ significantly 
from those of infinite alleles model (Figure 1). For 
more  general  parameter combinations, Equation 6 
gives an indication for  the population size  above 
which the infinite alleles approximation of the step- 
wise mutation model will become unreliable. 

Only in small populations and in a  short term perspec- 
tive ( N  < 1000 and T < 2000, say), the increase of the 
genetic distance Dl with divergence time is properly 
described by the  linear Equation 11 of GOLDSTEIN et 
al. (1995a) (Figure 3). With a constrained number 
of alleles, the range of linearity of Dl is  always limited. 
For the time range where Dl is approximately linear, 
the time change of Dl is reasonably well described by 
Equation 13. In  contrast to the infinite alleles model, 
Bo is smaller than 4Np. 

Dl and R.sT can be used to estimate the divergence time 
of populations. The bias in the estimate is surprisingly 
small,  even in relatively large populations (2N = 
20,000, Figure 4). However, the  standard error of the 
estimates is  very large if the estimate is based on only 
a  moderate  number of microsatellite loci. 

Genetic distance is highly  sensitive to the  demographic 
history  of diverging populations. As a  consequence, 
the reliability  of estimates of population parameters 
will be strongly affected by bottlenecks or fluctuations 
in population size. For example, divergence time will 
be systematically overestimated if two divergent island 
populations resulted from a larger mainland popula- 
tion (Figure 5). 

Average squared distance Dl and allele sharing DAs both 
perform badly  in the reconstruction of phylogenetic 
relationships (Figures 6 and 7). Remarkably, DAs, a 
distance measure only  based on allele frequency and 
not  on allele size, may be superior to D l ,  especially 
in large populations and in a (relatively) short time 
perspective. In any  case,  many microsatellite loci 
(much  more  than 15, say) are  required to correctly 
infer  a given phylogenetic relationship. This finding 
is also supported by the results of ZHIVOTOVSKY and 
FELDMAN  (1995), who study the distribution of ge- 
netic distances in an infinite alleles  version of the 
stepwise mutation model. 

Qualitatively, our conclusions do not  depend  on the 
specific choice of the model parameters M and p. 
However, if more  than  about M = 10 allele sizes are 
feasible and/or if the  mutation  rate is smaller than 
p = notable discrepancies between the finite- 

and  the infinite-alleles version  of the stepwise muta- 
tion model only occur  at larger population sizes. 

Our results do not reflect specific  aspects  of the model 
assumptions but  rather general principles underlying 
the interplay of genetic drift and  mutation.  In fact, 
virtually  all  results  were  qualitatively and quantita- 
tively reproduced by a stepwise mutation model with 
infinitely many  alleles but  inhomogeneous mutation 
rates. The homogenizing force of mutation pressure 
gets important whenever mutation  tends to shift the 
population to a limit distribution with finite variance. 

Summarizing we conclude that genetic distance mea- 
sures based on the infinite alleles  version of the stepwise 
mutation model may perform fairly  well in a short-term 
perspective and in the  context of small populations of 
constant size.  Beyond  this context microsatellite data 
should be treated with care since there is a considerable 
danger of misinterpretation. 
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APPENDIX 

In this APPENDIX we show  how to calculate the ex- 
pected equilibrium value  of the average squared differ- 
ence in allele size, D o ,  in  case  of the "allele version  of 
the stepwise mutation model. We make  use of a  method 
developed by OHTA and KIMURA (1973).  It is  easy to 
see that Do can be expressed in the form 

Do = i2C,  (AI) 
2 

where C, is the sum of the  product of the frequencies 
of alleles i repeats apart: 

Cl = CJJ+,.  (A2) 
I 

Hence, to calculate D o ,  it is sufficient to derive the M 
values Co, C1, . . ., CM-, in equilibrium. OHTA and KI- 
MURA (1973) show for the infinite alleles  version  of the 
stepwise mutation model that  the Cj satisfy the following 
differential equations: 

dC0 
d T  
- = 4Np[C, - C,] + 1 - Co (A34 

(Time is measured in units of 2N  generations, so 
T = t/2N.) 

With a finite number of M alleles, i ranges from 0 
to M - 1. Moreover, some mutations assumed in the 
derivation of  (A3) do  not occur since the allele of  mini- 
mal (maximal) size cannot  mutate to an allele of 
smaller (larger) size. Consider, for example, the M - i 
pairs of  alleles that  are i repeats apart (as in Ct) .  Then, 
mutations that  enlarge  the allele size cannot  occur at 
one of the alleles  in each of the two pairs containing 
the smallest and the largest allele. Now assume that  the 
allele frequencies are uniformly distributed, as  in the 
limit distribution. Then, mutation to a larger allele is 
not possible  in a fraction 1/(M - i) of those alleles 
joined  together in the  parameter C,. As a  consequence, 
system  (A3)  has to be changed to: 

+ 1 - Co (A4a) 

for 0 < i < M - 1 (A4b) 

In equilibrium, all dCi /dT are  equal to 0, yielding 
a system  of M linear equations for the unknowns Ci. 
Insertion of the solution of  this  system into (Al) yields 
the equilibrium value of Do. Figures 1B and 8A show 
that  computer simulations are in good agreement with 
this prediction. 


