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Concentrating on monomorphic populations in demographic steady
state, we give three different conditions under which the evolutionar-
ily stable life-history strategy can be characterized as the life-history
strategy at which a relatively simple function is maximal. Depending
on the way density dependence acts, this function, or fitness measure,
can be the life-time production of offspring, the population growth
rate, or another quantity from a large range of possible optimization
criteria. We illustrate this by examining the optimal age at maturity for
a hypothetical example organism. All of this demonstrates that, when
studying the evolutionary aspects of life-history characteristics, one
cannot escape the task of specifying how density dependence limits
population growth.

S.D. Mylius 2and O. Diekmann 3, Institute of Evolutionary and Ecological
Sciences, Leiden University, P.O. Box 9516, NL – 2300 RA Leiden, The
Netherlands.

Introduction

Optimization arguments in the evolutionary study of life-history strategies of-
ten start with the choice of a criterion of optimality, referred to as fitness meas-
ure. The two most widely used fitness measures are the population growth
rate r and the basic reproduction number R0. r Is also called the intrinsic rate
of natural increase or the Malthusian parameter, and is defined as the exponen-
tial population growth rate on a continuous time basis (see, e.g., Roughgarden
1979, Yodzis 1989). For a population in demographic steady state, we have
r = 0. R0 is also known as the expected life-time production of offspring, and
is defined as the multiplicative population growth rate on a discrete, genera-
tion basis (Roughgarden 1979, Yodzis 1989, Diekmann et al. 1990). In steady
state, we have R0 = 1: the population number stays constant from generation
to generation, so on average each individual will produce one offspring.
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But when should one work with r and when withR0 (Roff 1992, Stearns 1992,
Charnov 1993, Kozłowski 1993)? Moreover, in steady state r = 0 and R0 = 1,
so how can one maximize a quantity that assumes a given value (Kozłowski
1993, Maynard Smith 1993)? And how does optimization relate to the idea
of an evolutionarily stable strategy (ESS) (Roff 1992, Kozłowski 1993)? These
questions have now been a matter of debate for quite some time. Here we
present a simple framework to help clarify these issues.

We emphasize three things: (1) Evolutionary considerations should first of
all be based on an invasion criterion, not on an assumed, fixed, fitness meas-
ure. (2) The choice that actually has to be made concerns the way density de-
pendence (or environmental feedback) is supposed to act (Meszéna and Pásztor
1990, also see Michod 1979 and Pásztor 1988). (3) One can make this choice
such that the ESS is equivalently characterized as the life history that maxim-
izes R0 in any constant environment, at least for monomorphic populations
in demographic steady state. By making an alternative choice about the as-
sumed environmental feedback, one forces r to be maximized, and by making
other choices yet other quantities. Additionally, for more complicated kinds
of feedback, no simple optimization criterion may exist. The unpleasant fact
that we usually know little about the way density dependence operates in real
populations should not seduce us to pursue an ostrich policy.

The setting

We concentrate on the following situation: The individuals of a population are
characterized by their type T , a (possibly multi-dimensional) variable specifying
all relevant aspects of the life history in which they may differ; and the world in
which they live is fully characterized by the constant environmental condition E.
So R0 and r are completely determined by T and E. Now specify a population
dynamic model that makes the dependence on T and E precise and defines
R0(T , E) and r(T , E). (Often, one has an explicit formula for R0 as a function of
T and E, whereas r is implicitly defined by the Euler–Lotka equation; see, e.g.,
Roughgarden 1979 or Yodzis 1989.) A first key observation is

R0

>
=
<

1 if, and only if, r
>
=
<

0 . (1)

In our population model, density dependence acts through feedback to the
environment and for any given T the equation for population-dynamical equi-
librium, R0(T , E) = 1 (and hence the equation r(T , E) = 0), together with the
equations for E deriving from the feedback, define a unique solution for E. This
steady-state environmental condition we denote by E = η(T). So by definition

R0(T , η(T))− 1 = 0 = r(T , η(T)) . (2)

Now consider a monomorphic population consisting of individuals of a cer-
tain type Tres, where res stands for resident. If by mutation (or immigration) an
individual of type Tinv, where inv stands for invader, enters the population, the
question is whether or not its clan will initially grow exponentially. Only then
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In a stationary monomorphic population, with environmental condition η(Tres)
set by the resident with type Tres, the following test determines whether a
type Tinv can invade:

Is R0(Tinv, η(Tres)) > 1 ? a

{
Yes ⇒ invasion successful b

No ⇒ invasion fails c

a Notice that the test “Is r(Tinv, η(Tres)) > 0 ?” is completely equivalent.
b Notice that we do not take demographic stochasticity into account.
c Strictly speaking, the degenerate case R0(Tinv, η(Tres)) = 1 needs scrutiny and may

require more complicated second-order conditions, as in the case of evolutionary
games defined by a pay-off matrix.

Table 1: The invasibility test.

the invader can take over and drive the resident to extinction. By assumption,
the population dynamics leads to a steady state with constant environmental
condition E = η(Tres). So to answer the invasibility question we only have to
test whether R0(Tinv, η(Tres)) > 1 and r(Tinv, η(Tres)) > 0 (see table 1).

A type T̂ is called an ESS if no other type is able to invade when T̂ is the res-
ident (Maynard Smith and Price 1973, Maynard Smith 1982). Clearly this is only
the case if R0(T , η(T̂ )) is smaller than 1 for all T unequal to T̂ . Therefore T̂ is
an ESS if and only if T 7→ R0(T , η(T̂ )) is maximal for T = T̂ . (Here and below, we
use the notation T 7→ R0(T , E) to indicate that we consider R0(T , E) moment-
arily as a function of the variable T , with fixed E.) Because of (1) and (2) this is
equivalent to T 7→ r(T , η(T̂ )) being maximal at T̂ . Yodzis (1989, pp. 263–265),
Caswell (1989, pp. 256–258), and Charlesworth (1994) contain formulations of
this basic observation which are phrased in different words and symbols, but
which are actually identical. When applying these observations to particular
cases, it can be important to distinguish between local and global maxima. We
can define a local ESS by restricting Tinv to a neighbourhood of Tres, that is by
looking for local maxima of T 7→ R0(T , η(T̂ )).

It is important to bear in mind that the maxima of T 7→ R0(T , E) and T 7→
r(T , E) occur in general for different values of T ; it is only for E = η(T̂ ) and T̂
an ESS that these two functions are necessarily both maximal at T̂ .

The environment and density dependence

Often there exists a special environmental conditionV , to be called virgin, which
corresponds to the situation in which individuals experience no negative effect
(yet) from the presence of other individuals. In other words, V is the best
possible environment. One can then ask the question whether, perhaps, the
type which does best in the virgin environment, either in the sense that T 7→
R0(T , V) is maximal or in the (different!) sense that T 7→ r(T , V) is maximal,
is an ESS. As we will see, the answer depends on the way density dependence
acts. With respect to R0 and r one can prove (see appendix A) the following
two results:
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Result 1 (Reduction of life-time offspring production) If density dependence
has the effect that only the expected life-time production of offspring is reduced by
an E-dependent multiplication factor then T̂ is an ESS if and only if T 7→ R0(T , V)
is maximal for T = T̂ .

Result 2 (Uniform increase of mortality) If density dependence has the effect
that only the probability per unit of time of dying increases uniformly (in partic-
ular age-independently) then T̂ is an ESS if and only if T 7→ r(T , V) is maximal
for T = T̂ .

We conclude that both maximization of R0(T , V) and maximization of r(T ,
V) may be meaningful; it all depends on the precise form of the density de-
pendence.

If Result 1 applies, then T 7→ R0(T , E) is maximal at T̂ for any environmental
condition E, not just for E = V . An analogous observation can be made con-
cerning Result 2. So after all the “virgin” condition can be replaced by just any
environmental condition.

Another relatively simple situation results when E is one-dimensional and
E 7→ R0(T , E) is monotonic. Note that now the function η, which assigns to
a type the environmental condition at which a population will be steady, is
completely determined by the equation R0(T , E) = 1 (or equivalently r(T , E) =
0) and that the feedback map does not matter at all. In this case one can prove
(see appendix A):

Result 3 (One-dimensional environment) If E is one-dimensional and E 7→ R0(
T , E) is increasing (decreasing) then T̂ is an ESS if and only if the function η is
minimal (maximal) for T = T̂ .

The interpretation is obvious: The type that can keep its position under
the worst environmental conditions cannot be invaded by any other type. In
the special case where E corresponds to the concentration of food, this prin-
ciple is well known. In general one could call it a “negative optimization” or
“pessimization” principle.

When E is food density and, for a simple unstructured population model,
equilibrium population size N̄ is inversely proportional to food density in steady
state, minimization of E amounts to maximization of N̄. This is the formula-
tion one frequently finds in the literature (e.g. Charlesworth 1994,pp. 184–186).
But the minimization of (one-dimensional!) food easily generalizes to popula-
tion models involving physiological structure whereas population size can be
measured in many ways (biomass, dry weight, numbers) and it is not neces-
sarily the case that each of these is maximized. Therefore we advocate the
formulation of Result 3 as it is given here.

Finally, we emphasize that there are many situations in which both Result
1 and Result 3 or both Result 2 and Result 3 apply (see the Cases 1, 3 and 5 of
the example below).

An example: optimal age at maturity

Consider a hypothetical organism. First we describe its life history in the virgin
environment. We distinguish juveniles and adults. The type of an individual
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Fig. 1: Plots of the functions R0(T , V), 10·ln(R0(T , V))/T and 10·r(T , V) for the
special case where the adult reproduction rate b(T) = 0 for T ≤ 1, and b(T) =
T − 1 for T > 1, the juvenile mortality rate µ1 = 0.25 and the adult mortality
rate µ2 = 0.1. (The results are qualitatively the same for other smooth non-
decreasing functions b(T) with 0 = b(0) < b(∞). ) The ESS’s T̂ corresponding
to the different Cases are indicated with dashed lines.

is given by the length T of its juvenile period. After becoming an adult, every
individual produces offspring at a constant rate, which depends on T . The
per capita death rates can be different for the two stages. To illustrate the
importance of the precise form of the density dependence we shall introduce
and compare several variants of (the effect of) the environmental variable E.
For details and explanations we refer to appendix B.

Case 1 The effect of the environmental condition (that is, density depend-
ence) is to tune the rate of offspring production, by multiplying it with an E-
dependent factor. Because the expected life-time production of offspring (R0) is
proportional to the rate of offspring production, this is a case in which Result 1
applies. Consequently, an ESS coincides with a point at which T 7→ R0(T , V) is
maximal. In Fig. 1 the graph of R0(T , V) is presented and the ESS is indicated.
To illustrate how Result 1 derives from the general situation we have added
Fig. 2. In general, an ESS is found by intersecting a curve where

R0(T , E)− 1 = 0 = r(T , E) (3)

with a curve defined by one of the following two conditions: (i) T 7→ R0(T , E) is
maximal, (ii) T 7→ r(T , E) is maximal. Such curves are shown in the B panes
of Fig. 2, while the A panes serve to indicate how they derive from three-
dimensional information. The key point is that in B1 we actually don’t need
to compute the curve where R0(T , E) = 1, since the other curve is a vertical
line. This is the computational simplification of Result 1 caught in a picture.

In the above, we have decomposed R0(T , E) in R0(T , V) and an E-dependent
multiplication factor. So alternatively, Result 3 may be invoked, with the multi-
plication factor in the role of E. (Clearly, the larger this factor, the larger R0 will
be, so E 7→ R0(T , E) is increasing.) At population-dynamical equilibrium, this
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Fig. 2: Plots of the functions R0(T , E) and r(T , E) for Case 1 of the example
in the text. The environment is parameterized by the multiplication factor for
the offspring production, f(E). Upper panes: R0 (A1) and r (A2) as functions
of T and f(E). Lower panes: Contour plots of the corresponding upper panes.
The contour lines of R0(T , f (E)) = 1 (B1) and r(T , f (E)) = 0 (B2) are indicated
with bold curves, and the maxima of T 7→ R0(T , f (E)) and T 7→ r(T , f (E)) with
dashed curves. Parameter values are the same as in Fig. 1.
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factor equals 1/R0(T , V). So pessimizing E is equivalent to optimizingR0(T , V).
�

Case 2 The effect of the environmental condition is to tune the juvenile death
rate, by adding an E-dependent term. Result 3 allows us to deduce that an ESS
coincides with a point at which T 7→ ln(R0(T , V))/T is maximal. (It is hard to
explain verbally why it should be exactly this function: those readers wishing
the mathematical argument should consult appendix B.)

This result is in the spirit of Results 1 and 2, in that we can restrict our
attention to what happens in the virgin environment, but we have to study a
function which is different from both R0 and r . In Fig. 1 the graph of this
function is presented and the ESS is indicated. �

Case 3 The effect of the environmental condition is to tune the adult death
rate, by adding an E-dependent term. Because adult death rate is inversely pro-
portional to adult life time, and expected life-time offspring production is pro-
portional to adult life time, we can again think of this case as of R0(T , E) being
composed of R0(T , V) and a multiplication factor, depending on the density-
dependent additional adult death rate. A twice as high (total) adult death rate
halves the expected life-time offspring production. So just as in Case 1, Result 1
and Result 3 apply. Even though the biological mechanism of density depend-
ence is completely different from that in Case 1, the result is exactly the same.

�

Case 4 The effect of the environmental condition is to tune both, and in the
same degree, the juvenile and the adult death rate, by adding an E-dependent
term. This is just what is covered by Result 2. Consequently, an ESS coincides
with a point at which T 7→ r(T , V) is maximal. In Fig. 1 the outcome of a nu-
merical calculation of r(T , V) is presented graphically and the ESS is indicated.

�

Case 5 The effect of the environmental condition is to tune the length of the ju-
venile period T , by adding an E-dependent term. (Note that the rate of offspring
production should not be affected by the increase in the juvenile period as we
imagine that the environmental conditions are changed in such a way that it
takes more time to complete the same physiological development.) During this
extra period before maturation, individuals experience the constant juvenile
mortality rate, so R0(T , E) can be decomposed in R0(T , V) multiplied with the
E-dependent probability of surviving the extra juvenile period. Consequently,
Result 1 and Result 3 apply. This is yet another mechanism of density depend-
ence which nevertheless leads to the same evolutionary outcome as we found
in the Cases 1 and 3. �

Comparing the five cases in Fig. 1, we note once more that it depends on
the precise way in which density dependence limits population growth, which
length of the juvenile period is an ESS. We also conclude that, even in a station-
ary population, it is not just a matter of taste whether to use r or R0 in other
than steady-state environmental conditions as a fitness measure, as seems to be
suggested in, for example, Kozłowski (1993).
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Concluding remarks

We have seen that in steady state the use of two indicators, the basic reproduc-
tion number R0 and the intrinsic growth rate r , for population growth is not at
all a problem since the ordering relative to 1 and 0, respectively, is always the
same. Moreover, one can consider R0 as well as r to be maximal, even though
their values are constrained to 1 and 0. This is because they are functions of
two variables, one referring to the environment, which is determined by the
resident, and the other to the (type of the) invader. The maximization is with
respect to the (type of the) invader. It is important to bring this out explicitly
in the notation.

In the literature one finds that several fitness criteria are being used and
it seems a matter of taste which one one should choose (but see also Pásztor
et al. 1995). However, the question which traits are maintained by evolution
should be answered by an ESS argument. There is only one master fitness
concept, deriving from the invasion criterion, which can be formulated as the
average exponential growth rate of the invader, growing in the environment set
by the resident (Metz et al. 1992). In this environment, R0 and r are necessarily
both maximal at the ESS. Depending on the way density dependence acts, the
invasion criterion may have an alternative equivalent formulation in terms of
a maximization criterion for a specific fixed fitness measure, such as R0 or r
under “virgin”, or other standard, environmental conditions. From a general
viewpoint, however, R0 and r under standard environmental conditions are but
a special selection of a much larger range of possible optimization criteria. We
have presented three results that enable the characterization and calculation
of life history ESS in a relatively simple manner, given reasonable assumptions
on the way density dependence delimits population growth.

To make life simple, there are many important things that we have ignored
here: (1) Evolutionary dynamics (Does a successful invader take over? What
“type substitution sequence” do we get? Do we obtain convergence to an ESS?
See, e.g., Taylor 1989). (2) Non-equilibrium attractors for population dynamics
(Tuljapurkar 1989, Metz et al. 1992). (3) Demographic stochasticity. (4) Poly-
morphic population compositions. (5) The case where the effective dimension
of E is greater than one. Our aim has been to demonstrate that life is indeed
extremely simple within this limited set-up. Yet there are many papers in the
literature from which a different picture emerges, despite the fact that the same
restrictions are made.

When studying the evolutionary aspects of life-history characteristics in
terms of R0, r or any other fitness measure under standard environmental
conditions, one implicitly makes an assumption about the way density depend-
ence limits population growth. Therefore, it seems worthwhile to disentangle
the component influences of density dependence on natural populations.
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Appendices

A. The rationale behind the optimization principles

The virgin environment

Result 1 If environmental deterioration reduces the expected life-time pro-
duction of offspring by a certain factor then we can write, for some function f
with 0 ≤ f(E) ≤ 1,

R0(T , E) = f(E)R0(T , V) .

Since 1 = R0(T , η(T)) = f(η(T))R0(T , V) we find that f(η(T)) = 1 /R0(T ,
V) and consequently that

R0(Tinv, η(Tres)) =
R0(Tinv, V)
R0(Tres, V)

,

which directly implies Result 1. The same conclusion holds when R0(T , E) =
f1(E)R0(T , V)− f2(E). �

Result 2 In the virgin environment, r(T , V) is the unique real root of the
Euler–Lotka equation ∫∞

0
e−rx l(x)m(x)dx = 1 ,

where l(x) represents the probability of surviving to age x andm(x) the birth
rate at age x. If environmental deterioration uniformly increases the mortality
rate, say with a term g(E), for some function g with g(E) ≥ 0, then r(T , E) is
the unique real root of the equation∫∞

0
e−rx e−g(E)x l(x)m(x)dx = 1 .

We now see immediately that

r(T , E) = r(T , V)− g(E) .

Since 0 = r(T , η(T)) = r(T , V) − g(η(T)) we find that g(η(T)) = r(T , V)
and consequently that

r(Tinv, η(Tres)) = r(Tinv, V)− r(Tres, V) ,

which directly implies Result 2. The same conclusion holds when r(T , E) =
g1(E) r(T , V)− g2(E). �

A closer look at the algebra above reveals that Results 1 and 2 hold for any
environmental condition E, not just for E = V .
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The one-dimensional environment

Result 3 Suppose that E 7→ R0(T , E) is increasing (decreasing). If η is minimal
(maximal) at T̂ then for all T ≠ T̂ we have

R0(T , η(T̂ )) < R0(T , η(T)) = 1 ,

from which we conclude that T̂ is an ESS. If, on the other hand, there exists a T
such that η(T) <(>) η(T̂ ) then

R0(T , η(T̂ )) > R0(T , η(T)) = 1 ,

so T can invade and T̂ is not an ESS. �

B. The equations that go with the example

Adult individuals with type T produce offspring at a rate b(T). The per capita
death rate equals, say, µ1 during the juvenile period and µ2 during the adult
period. Then the probability of surviving until adulthood is e−µ1T and the ex-
pected life time as an adult is 1/µ2. Hence

R0(T , V) =
b(T) e−µ1T

µ2

and r(T , V) is the unique real root of the Euler–Lotka equation

b(T) e−(µ1+r)T

µ2 + r
= 1 .

Case 1 If environmental conditions tune the actual rate of offspring production
then we have b(T , E) = f(E)b(T) for some function f with 0 ≤ f(E) ≤ 1, so
that

R0(T , E) = f(E)R0(T , V) .

So we can apply Result 1, to deduce that the ESS coincides with a point at which
T 7→ R0(T , V) is maximal. According to Result 3, at this point should also
f(η(T)) = 1/R0(T , V) be minimal, as it clearly is. �

Case 2 If environmental conditions tune the actual juvenile death rate then
we have µ1(E) = µ1 + h(E) for some function h(E) ≥ 0, so that

R0(T , E) =
b(T) e−(µ1+h(E))T

µ2
= e−h(E)T R0(T , V) .

According to Result 3, an ESS coincides with a point at which h(η(T)) is max-
imal. Solving the equation R0(T , E) = 1 , we find h(η(T)) = ln(R0(T , V))/T .

�

Case 3 If environmental conditions tune the actual adult death rate then we
have µ2(E) = µ2 + h(E) for some function h(E) ≥ 0, so that

R0(T , E) =
b(T) e−µ1T

µ2 + h(E)
= µ2

µ2 + h(E)
R0(T , V) .
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Either invoke Results 1 and 3 or make a transformation of the environmental
variable to conclude that this case leads to the same evolutionary outcome as
in Case 1. �

Case 4 If environmental conditions tune the actual juvenile and the actual
adult death rate equally then we have µi(E) = µi + g(E) for i ∈ {1,2} and
some function g(E) ≥ 0, so that r(T , E) is the unique real root of the Euler–
Lotka equation

b(T) e−(µ1+g(E)+r)T

µ2 + g(E)+ r
= 1 .

We now see immediately that

r(T , E) = r(T , V)− g(E) .

So according to Result 2, an ESS coincides with a point at which T 7→ r(T , V) is
maximal. �

Case 5 If environmental conditions tune the actual length of the juvenile period
without affecting the rate of offspring production b(T) then we have

R0(T , E) =
b(T) e−µ1(T+h(E))

µ2
= e−µ1h(E) R0(T , V)

for some function h(E) ≥ 0. Either invoke Results 1 and 3 or make a transform-
ation of the environmental variable to conclude that this case is equivalent to
Cases 1 and 3. �
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