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A1 

Supplemental Text: Four Implementations of the Fisher 1 

Process 2 

A Population Genetics Model of the Fisher Process 3 

Genetic assumptions. The model of Kirkpatrick (1982) works with two haploid diallelic loci, of 4 

which P is the preference locus, with alleles P0 (no preference) and P1 (preference for 5 

ornamented males) and T the ornament locus, with alleles T0 (no ornamentation) and T1 6 

(ornamentation). The evolutionary dynamics can be described by keeping track of the changes of 7 

the relative frequencies ijx  of the haploid genotypes (‘haplotypes’) i jPT . It is often more 8 

convenient to describe the dynamics in terms of allele frequencies, that is the frequencies 9 

10 11p x x   of the preference allele P1 and 01 11t x x   of the ornament allele T1. For a complete 10 

description, one also has to keep track of linkage disequilibrium 00 11 01 10D x x x x  . In fact, the 11 

four haplotype frequencies ijx  can be recovered from p, t and D. In statistical terms, linkage 12 

disequilibrium corresponds to the covariance of the alleles with identical subscripts: D is positive 13 

if 1P  and 1T  or 0P and 0T  co-occur more often in the same individual than to be expected on basis 14 

of the allele frequencies p and t. The build-up of a positive association between 1P  and 1T  (a 15 

positive D) is the key ingredient of the Fisher process. To derive the evolutionary dynamics of p, 16 

t and D, we closely follow Bulmer (1989). 17 

Viability selection. The costs of expressing an ornament are assumed to be incurred during a 18 

period of viability selection, which precedes the mating stage. Ornamented males have a relative 19 

survival probability of 1 1v s   (0 < s < 1) in comparison to the viability 0 1v   of males without 20 

ornamentation. Since ornaments are sex-limited, only males incur costs (see Seger & Trivers 21 

1986, Albert & Otto 2005, where this assumption is relaxed). Costs of female preference are not 22 

considered in Kirpatrick’s (1982) model. Viability selection changes the frequency of 23 

ornamented males from t to 1mt = t v v , where 0 1(1 ) 1v t v tv st      is the mean viability of 24 
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males.  25 

Mating stage. We define Uij as the probability that a female with allele Pi mates with a male 26 

carrying allele Tj. P0 females mate at random, so that the probability of mating with T0 and T1 27 

males is identical to their respective frequency in the population, 00 1 mU = t  and 01 mU = t . In 28 

contrast, for females carrying the P1 allele the odds are a > 1 that she prefers a T1 male over a T0 29 

male, so that 11 10: : (1 )m mU U at t  . This way of exerting mate choice is known as ‘fixed 30 

relative preferences.’ It corresponds, for example, to a situation where females encounter males 31 

one at a time in a random sequence, until they accept a male for mating (Maynard Smith 1985). 32 

Other mechanisms of mate choice can lead to very different outcomes (e.g., the ‘best-of-N’ 33 

model, Seger 1985, or the ‘absolute preference’ model, Takahasi 1997). Kirpatrick’s model also 34 

assumes that all choosy females will eventually mate ( 11 10 1U U  ). Together with the above 35 

condition on 11 10:U U  this yields 10 (1 ) (1 )m m mU = t t at    and 11 (1 )m m mU = at t at  .  36 

Evolutionary dynamics. Once the frequency distribution of the various types of mating are 37 

known, the distribution of offspring genotypes can be derived in a standard way (taking into 38 

account recombination and Mendelian segregation). As shown in Bulmer (1989), this leads to the 39 

following system of difference equations describing how the allele frequencies p and t and the 40 

linkage disequilibrium D change from one generation to the next: 41 
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 (A1) 42 

where r is the recombination rate between the trait and the preference locus and A and B are 43 

defined as: 44 

 11 01 11 01( ) ( )
,

(1 ) (1 )
mp U U t t U U

A B
t t t t

   
 

 
. (A2) 45 

The factor 1
2  in the first two equations of (A1) reflects the fact that preference and ornament are 46 

only expressed in one sex. The first equation of (A1) shows that there is direct selection on the 47 
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ornament, which is characterized by the term A. This term includes two parts, corresponding to 48 

the mating advantage 11 01( )p U U  of ornamented males and the decline mt t  in ornament 49 

frequency in males due to natural selection. The second equation of (A1) shows that the 50 

preference allele changes in frequency as a correlated response to selection on the ornament 51 

allele: once there is a positive linkage disequilibrium D, p changes in the same direction as t. 52 

Hence, (A1) captures the essential features of the Fisher process. 53 

Equilibria. Solving for the equilibria by setting 0t  and 0p , one finds a set of boundary 54 

equilibria that constitute either loss of the ornament (t=0), or fixation of the ornament (t=1). 55 

Internal equilibria have to satisfy 0A  . A straightforward calculation yields: 56 

 
1 1

,
1 1 1 (1 )

s s a
A pB B

st st t a s t

 
   

    
 (A3) 57 

This implies that the equation 0A   is equivalent to 58 

 
1 ( (1 ) 1)

(1 )( 1)

a s t
p s

s a

  


 
  (A4) 59 

and that the internal equilibria constitute a line with a slope determined by the interplay of 60 

natural and sexual selection. For a given combination ( , )p t  on this line of equilibria, the 61 

equilibrium value of D can be obtained by solving 0D  , a quadratic equation in D. Since 62 

0A  , this equation can be simplified considerably. It turns out that the solution of 0D   does 63 

not depend on the recombination rate r. In other words, at equilibrium the statistical association 64 

between preference and ornament alleles does not depend on physical linkage. 65 

Figure 2a in the main text depicts the line of equilibria and the dynamic behavior of 66 

Kirkpatrick’s model. As predicted by Fisher (1915) the preference allele P1 has to be sufficiently 67 

common initially to give rise to nonzero frequencies of the ornament allele T1 (although this 68 

depends on the preference function, Takahashi 1997). Once P1 is sufficiently common it either 69 

gives rise to polymorphism in which both T0 and T1 alleles coexist or to fixation of the T1 allele. 70 

Notice that the approach to the set of equilibria is roughly linear. The slope of the ‘lines of 71 
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approach’ is affected by the ‘genetic’ parameter r. In contrast, the line of equilibria itself only 72 

depends on the ‘fitness’ parameters s and a. 73 

Costly preferences. As already noted by Kirkpatrick (1982) and further investigated by 74 

Pomiankowski (1987) and Bulmer (1989), the line of equilibria in Figure 2a is extremely 75 

sensitive to small deviations in the model assumptions. For example, the addition of the slightest 76 

costs of a female preference leads to a breakdown of the line of equilibria to a single equilibrium 77 

point in which mate choice is absent ( 0, 0p t  ). Additional assumptions (like mutation bias) 78 

are then needed to explain the evolution of costly ornaments and preferences (see Figure 3 in the 79 

main text). 80 
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A quantitative genetics model of the Fisher process 81 

Lande's (1981) quantitative genetics implementation of the Fisher process assumes that the 82 

female preference p and the male ornament t are continuous, normally distributed characters. 83 

Viability selection. As in the population genetics model considered above, the costs of 84 

expressing an ornament are assumed to be incurred during a period of viability selection. The 85 

survival probability v(t) of a male carrying an ornament t is given by a Gaussian function 86 

   
2

1
2exp .

t θ
v t =


    

   
 (A5) 87 

Hence selection is stabilizing, and each deviation from the optimal ornament value   (with 88 

respect to viability selection) leads to a decrease in survival. The smaller the term   the stronger 89 

deviations from   are punished by natural selection. Hence 1/ω reflects the strength of viability 90 

selection against exaggerated ornaments. Exponential fitness functions like the Gaussian above 91 

are popular in quantitative genetics models, since the distribution of traits (here: male ornaments) 92 

after selection is again normal. Like Kirkpatrick’s model, Lande’s model does not consider costs 93 

of female choosiness. 94 

Mating stage. The female “preference” is any character leading to non-random mating with 95 

respect to the male ornament. The tendency of a female with preference p to mate with an adult 96 

male with ornament value t is given by a preference function  p|tψ . Lande (1981) discusses 97 

three different preference functions, but here we focus on one of them:    apt=p|tψ exp . In this 98 

‘psychophysical model,’ females with 0p   always prefer the most extreme males most; the 99 

sign of p determines the direction of the preference and the magnitude of p determines how 100 

strongly a female discriminates between males differing in ornamentation.  101 

Evolutionary dynamics. It is one of the basic insights of quantitative genetics theory that the 102 

evolution of the mean values of two sex-limited traits in a population with discrete, non-103 

overlapping generations can be described by the ‘multivariate breeder's equation’ (Lande & 104 
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Arnold 1983). There are various version of this equation that differ in their description of 105 

selection and their assumptions on the multivariate distribution of traits (Walsh & Lynch 2012). 106 

Here we follow the approach of Pomiankowski et al. (1991) that is relatively broadly applicable 107 

in case of weak selection: 108 

 
ln( )1
ln( )2

t tp m

t ttp p f
p p

G G W tt

G G W pp 


     
          

 (A6) 109 

The matrix in (A6) is the so-called G-matrix, consisting of the additive genetic variances tG  and 110 

pG  of male traits and female preferences and the additive genetic covariance tpG  describing the 111 

(additive) genetic association between trait and preference. The vector to the right is the gradient 112 

vector of (relative) individual fitness (male fitness mW  and female fitness fW ) with respect to the 113 

individual trait values. The factor 1
2  reflects the sex-limited expression of traits and preferences. 114 

In Lande’s model, the net effect of viability selection and mating preferences on the ornament 115 

trait is given by 116 

 
2

ln( )
.m

t t
p p

W t
ap

t


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

 
 


 (A7) 117 

In the absence of direct selection on female preferences (no costs of choosiness), 118 

ln( ) 0fW p   , and (A6) can be written as 119 

 

1
2 2

1
2 2
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



    
 

    
 

 (A8) 120 

Comparing (A8) with (A1) shows a close correspondence between Kirkpatrick’s and Lande’s 121 

model. If we assign the numerical values 0 and 1 to the alleles 0P  and 1P  and to 0T  and 1T  in 122 

Kirkpatrick’s model, the allele frequencies p and t in this model correspond to the averages p  123 

and t  of these numerical values; the term (1 )t t  in the first equation of (A1) corresponds to the 124 

variance ( tG ) in t-values; and the linkage disequilibrium D corresponds to the covariance ( tpG ) 125 
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between p- and t-values. Finally, the term A in (A1) corresponds to ln( )mW t   in Lande’s 126 

model. 127 

Equilibria. The equilibria of Lande’s model ( 0t p    ) are given by 128 

 
2

.
t θ

p
a


  (A9) 129 

Hence when plotting the mean preference p  against the mean trait value t  a line of equilibria 130 

results with slope 21 a  (see Figure 2b in the main text). If tG  and tpG  are constant, the 131 

evolutionary trajectories are straight lines with slope 132 

 ,tp
pt

t

Gp
b

t G


 


 (A10) 133 

corresponding to the (additive) genetic regression coefficient of the preference on the trait. If this 134 

regression is weak (more precisely: if the regression line is less steep than line of equilibria, or 135 

21tp tG G a ), then evolution will proceed towards the line of equilibria (as in Figure 2b of 136 

the main text). If the genetic regression is strong, any positive selection on t quickly increases the 137 

level of p as well. In this case a self-reinforcing runaway process occurs and evolution will 138 

proceed away from the line of equilibria. 139 

Costly preferences. Any costs of female preferences will strongly change the dynamics of 140 

Lande’s model. The line of equilibria collapses to a single equilibrium point, located at the values 141 

maximizing male and female survival (i.e., pθ=p , tθ=t ). As in S1, additional assumptions 142 

(like mutation bias) are needed to explain the evolution of costly ornaments and preferences (see 143 

Figure 3 in the main text). 144 

 145 
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An Adaptive Dynamics Model of the Fisher Process 146 

Over the years several sexual selection models have been developed that make use of 147 

evolutionary game theory or adaptive dynamics (Pen & Weissing 2000, Kokko et al. 2002, 148 

McNamara et al. 2003, Fawcett et al. 2011). All these models have in common that they consider 149 

the invasion prospects of a rare mutant phenotype in an otherwise monomorphic ‘resident’ 150 

population. 151 

Here, we discuss Pen &Weissing’s (2000) model for the Fisher process. This model considers a 152 

class-structured population consisting of females and two types of male: non-ornamented males 153 

(♂0) and males expressing an ornament (♂1). Evolvable traits are the females’ preference p for 154 

mating with ornamented males and the tendency t of a male to develop the ornament, that is, the 155 

probability to develop into a male of type 1. The aim is to find evolutionarily stable values p* and 156 

t* that cannot be invaded by any mutant phenotypes. 157 

Viability selection. The survival probability of ornamented males is reduced by a factor 1 s  158 

when compared to non-ornamented males. Males that express an ornament survive with 159 

probability 1-c, whereas males without an ornament survive with probability 1. Costs of female 160 

preferences are not considered in Pen & Weissing’s model but included in later extensions 161 

(Fawcett et al 2011). 162 

Mating stage. Females have a certain preference p for type 1 males, which translates into them 163 

giving a proportion   of their matings to type 1 males, ( )p   being an increasing function 164 

of p. For mutants and residents alike, the number of matings per type of male depends on the 165 

preference *p  of the females and on the relative frequency of the two types of (adult) males in 166 

the resident population. This follows from the assumption that mutant females and males are 167 

rare. Let *
fu , *

0mu  and *
1mu  denote the density of females, type 0 males and type 1 males in the 168 

resident population, respectively. Then the per capita number of matings per type of male, *
0Q  169 

and *
1Q , can be derived from the consistency requirements * * * *

0 0 (1 )m fQ u u   and * * * *
1 1m fQ u u , 170 
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where * *( )p  : 171 

 
* * * *

* *
0 1* *

0 1

(1 )
, .f f

m m

u u
Q Q

u u

 
   (A11) 172 

Stage-transition matrix. Assuming non-overlapping generations and a stationary resident 173 

population producing an even primary sex ratio (i.e., each female producing on average one male 174 

and one female offspring), the transitions between the different classes of mutant individuals 175 

from one generation to the next are summarized by the stage-transition matrix 176 

  
* *

0 1
* * * *

0 1
* *

0 1

1
1

, , 1 (1 ) (1 ) .
2

(1 ) (1 ) (1 )

Q Q

p t p t t t Q t Q

s t s tQ s tQ

 
      
    

A  (A12) 177 

This matrix should be interpreted as follows. The first column characterizes the per capita 178 

contribution of a mutant female to female mutants, type 0 male mutants and type 1 male mutants 179 

in the next generation, respectively. The first element is equal to 1, since a female produces on 180 

average one (surviving) female offspring. In addition, the female also produces on average one 181 

male offspring. With probability 1 t  this male will be of type 0 (no ornamentation) and survive 182 

to adulthood. With probability t, the male will be of type 1 and survive with probability 1 s  to 183 

adulthood. The other two columns correspond to the contributions of type 0 and type 1 mutant 184 

males to the various types of mutants in the next generation. These columns correspond to 185 

column 1 multiplied by the per capita number of matings ( *
0Q  and *

1Q ) of the two types of male. 186 

The factor 1
2  in (A12) reflects the fact that each individual has one father and one mother and 187 

prevents double counting of offspring. Notice that the matrix elements do not depend on p, and 188 

that the dependence on *p  and *t  is indirect (via *
0Q  and *

1Q ). 189 

Invasion fitness. The dominant eigenvalue  * *, ,W p t p t  of the stage transition matrix A  190 

corresponds to the ‘invasion fitness’ of the rare mutant. For the resident population, the dominant 191 

eigenvalue is equal to one (reflecting the fact that this population is stationary). If 1W  , the 192 
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mutant will increase in relative frequency, while it will go extinct if 1W  .  193 

To determine the properties of the invasion fitness function, we first have to investigate the stage 194 

transition matrix  * * * *, ,res p t p tA A  of the resident population. The right eigenvector of the 195 

dominant eigenvalue 1 gives the stable distribution of the three types of individuals in the 196 

resident population (which via (A11) affect *
0Q  and *

1Q ): 197 

 * * * * *
0 1: : 1: (1 ) : (1 ) .f m mu u u t s t    (A13) 198 

The left eigenvector of resA  corresponds to the reproductive values of the three types: 199 

 * * * * *
0 1 0 1: : 1: : .f m mv v v Q Q  (A14) 200 

Using a standard result of life history theory (Taylor 1996), the dependence of  * *, ,W p t p t  on 201 

p and t can now be determined without actually calculating invasion fitness (which can be quite 202 

tedious). In fact, the partial derivatives of W at * *( , )p t  are of the form: 203 

 
* *

*T * *T *( , | , )
/ .

W t p t p
=

t t

 
 

A
v u v u  (A15) 204 

Inserting (A13), (A14) and the partial derivatives of (A12) into this equation yields: 205 

 
* *

* *
1 0(1 ) , 0.

t t p p

W W
s Q Q

t p 

 
   

 
 (A16) 206 

The total selection differentials are then given by:  207 

 

 
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* *
1 0

* *
1 0
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  

       

 (A17) 208 

where yxb  is the statistical regression coefficient of y on x (Taylor & Frank 1996), which is 209 

assumed to be a positive parameter. 210 

Evolutionarily singular strategies. At an internal ‘equilibrium’ both selection differentials in 211 
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(A17) have to be zero, leading to the condition * *
1 0(1 )s Q Q  , which can be simplified to 212 

* *( )t p . Once again, this condition describes a whole set of equilibria. For many preferences, 213 

this set is again a straight line. Assume, for example, that females have ‘fixed relative 214 

preferences’ as in Kirkpatrick’s model with probability *p  while they mate at random with 215 

probability *1 p . Then *( )p  is given by 216 

 
* *

* * *1 1
* * * *

0 1 0 1

( ) (1 ) .m m

m m m m

au u
p p p

u au u u
   

 
 (A18) 217 

Equating this expression with *t  yields the same line of equilibria as in Kirkpatrick’s model (see 218 

Figure 2c in the main text). The approach to equilibrium (via a sequence of gene substitution 219 

events), which is also indicated in Figure 2c, can be derived from the canonical equation of 220 

adaptive dynamics theory (Geritz et al 1998). 221 

Individual-Based Simulation Models of the Fisher Process 222 

Individual-based models of sexual selection are the most recent addition to the set of tools to 223 

analyze evolutionary models (Grimm & Railsback 2005); a growing number of sexual selection 224 

models makes use of this versatile technique (e.g., Lorch et al 2003, Gavrilets et al. 2007, Kokko 225 

et al 2007, Fawcett et al 2007). Here, we discuss an individual-based model on Fisherian sexual 226 

selection that is used by Fawcett et al (2007). The source code of this simulation can be found at 227 

http://www.rug.nl/biol/theobio/fisher.cpp. A flow diagram of the model is given in Supplemental 228 

Figure 2. 229 

Initialization. An individual-based simulation starts with a definition of the individuals initially 230 

present and their properties. For sake of comparison to the previous analytical models, we 231 

assume that individuals are genetically characterized by their alleles at two haploid loci, one 232 

coding for a male ornament t and the other coding for a female preference p. However, we 233 

emphasize that individual-based simulations easily allow for the implementation of complex 234 

genetic architectures and genotype-phenotype maps (e.g., Ten Tusscher & Hogeweg 2009). The 235 
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population is initialized by generating a large collection of males and females (say, n=2000 236 

males and n=2000 females) and randomly assigning ornament and preference alleles to each 237 

individual according to some prespecified distribution (e.g. a bivariate normal distribution) (see 238 

Supplemental Figure 2, step 1). 239 

Viability selection. Subsequently, the population of males enter a procedure that determines their 240 

survival (see Supplemental Figure 2, step 2), whereas all females survive. The simulation 241 

assumes that a male's survival probability v is given by a Gaussian function 2( ) exp( )v t ct  , 242 

where the parameter c determines the strength of viability selection. However, in contrast to the 243 

aforementioned deterministic models, survival is implemented in a stochastic fashion (i.e., by 244 

letting a chance process decide whether a given male will die or survive). In Supplemental 245 

Figure 2 (step 2) males with larger ornaments are more likely to die, but individual males may, 246 

by chance, escape mortality.  247 

Mating stage. The surviving males and all females then enter another procedure, in which 248 

females choose mates. As in the deterministic models, female mate choice can be implemented in 249 

various ways. For example, fixed relative preferences can be implemented by sequentially 250 

assigning randomly drawn males to each female, until one of these males is accepted by the 251 

female for mating. The probability of accepting any given male depends on both, the female’s 252 

preference and the male’s ornament. Alternatively, each female is confronted with a random 253 

sample of N males and subsequently mates with the male most closely fitting to her preference 254 

(‘best-of-N’ model). A third alternative (implemented by Fawcett et al. 2007) combines the two 255 

approaches above: each female samples N males and subsequently mates with male i with a 256 

probability that is proportional to i's attractiveness value to the female. Supplemental Figure S2 257 

step 3 shows that large ornamented males are on average more often chosen by females with 258 

high values of the preference, but stochastic variation in mate sampling and mate choice reduces 259 

the strength of assortative mating to a certain extent. 260 

Reproduction and mutation. After having chosen a mate females reproduce, having their 261 
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offspring sired by their mate of choice. In the simulation model considered here, all females 262 

contribute effectively two offspring to the next generation, at a 1:1 sex ratio (see Supplemental 263 

Figure 2, step 4). As a consequence, the population size remains constant over the generations. 264 

Upon reproduction, mutation takes place (see Supplemental Figure 2, step 5). The current model 265 

assumes a continuum-of-alleles model of mutation, in which preference and ornament alleles 266 

present in an individual mutate with probabilities μp and μt respectively. When mutation takes 267 

place, a deviate from a normal distribution with mean 0 and standard deviation σμ is added to the 268 

current allelic value. The life cycle then repeats itself and males of the next generation enter the 269 

juvenile survival stage. 270 

Evolutionary dynamics. Figure 2d in the main text illustrates the course of evolution of an 271 

individual-based simulation. For similar parameter values as in Lande’s model (Figure 2b), the 272 

system converges to Lande’s line of equilibria and subsequently ‘drifts’ along this line. The 273 

irregularities in the evolutionary trajectory clearly illustrate the stochastic nature of an 274 

individual-based simulation.  275 
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Supplemental Figure 1  
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Supplemental Figure 1. The evolution of female preferences for multiple indicators of male 334 

quality. Panel A: multiple female preferences for redundant signals only evolve to stable levels 335 

when the cost of expressing multiple preferences is sufficiently low (Iwasa & Pomiankowski 336 

1994). Panel B: In contrast, when the cost of expressing multiple preferences is higher, the cost 337 

of expressing the first preference ( 01 p ) blocks the evolution of any additional preferences 338 

( 02 p ), and the evolution of a particular preference towards nonzero equilibrium levels 339 

depends on initial conditions. Panel C: Nonequilibrium dynamics of preferences and ornaments 340 

(for example due to sexual conflict over signaling) can lead to the establishment of multiple 341 

preferences for redundant indicators, even when high costs of female preferences would preclude 342 

the evolution multiple preferences at equilibrium (van Doorn & Weissing 2006). Panel D: 343 

multiple female preferences for indicators that each signal distinct components of male quality 344 

(“multiple messages”) can evolve to stable levels, even in the face of high costs (van Doorn & 345 

Weissing 2004).  346 
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Supplemental Figure 2.  
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Supplemental Figure 2. Flow diagram of an individual-based simulation, reflecting a 347 

population of Arnold’s bird of paradise (Arnold 1985) that experiences the Fisher process. Step 348 

1: the population is initialized by generating a population of n males (that vary in tail length) and 349 

n females (that vary in their preferences for tail length, p). Step 2: male viability selection takes 350 

place, in which males with the smaller ornaments are most likely (but not certain) to survive. 351 

Step 3: female choices takes place based on ornaments and preferences (see Supplement S4) and 352 

the eventual choices are indicated by black arrows. Males with large ornaments are likely (but 353 

not certain) to achieve a high mating rate. Step 4: after fertilization by their male of choice, 354 

females reproduce and give rise to the next generation of males and females. Step 5: mutation 355 

events can take place (indicated by μ) that can either increase or decrease values of ornaments 356 

and preferences (indicated by + or -). After mutation, the next cycle of the program starts again at 357 

step 2. 358 
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