
INTRODUCTION

In 1887, on the occasion of his 60th birthday,
King Oscar II of Sweden organized a scientific
contest to address an intriguing question: Is the
solar system stable? Do the planets of our solar
system remain in the orbits they are currently
occupying, will they slowly spiral towards the 
sun, or will they gradually wander off in space?
Poincaré, a French mathematician, was inspired by
the problem. He made a number of discoveries that
drastically changed our understanding of dyna-
mical systems. In particular, Poincaré found that
the dynamics of two bodies encircling each other
is well behaved, but that the dynamics of three, 
or more, interacting bodies is so entangled that
their trajectories may become irregular and unpre-
dictable (Poincaré 1892). Poincaré’s pivotal con-

tributions to the so-called ‘three-body problem’
marked the first steps in chaos theory.

Like astronomers, biologists are often con-
fronted with complex interactions between dif-
ferent entities. Yet, most competition theory
developed by theoretical biologists over the past
century was concerned with competition between
two species only (e.g. Lotka 1932; Gause 1934).
Textbook theory predicts that competition
between two species generally leads to a stable
outcome where, depending on the circumstances,
either one species survives or else both species
coexist (Tilman 1982). In sharp contrast to the
emphasis of biological theory on competition
between two species, the biodiversity in natural
communities is generally overwhelming. A single
milliliter of water or a single microgram of soil
may contain hundreds of different species. It is
questionable whether the simple rules deduced
from the two-species theory will be generally
applicable to competition in such highly diverse
communities. Recently, we followed an earlier 
trail (Gilpin 1975; May & Leonard 1975; Smale
1976) indicating that multispecies competition
can, indeed, be considerably more complex than
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two-species competition. Model simulations
revealed that multispecies competition for three,
or more, resources may lead to oscillations and
chaotic fluctuations in species abundances
(Huisman & Weissing 1999, 2001a). Mathemati-
cal proofs support these simulation results
(Huisman & Weissing 2001b; Li 2001; Smith &
Li 2001). These non-equilibrium dynamics, in
turn, may allow the coexistence of many species on
a few limiting resources. Hence, competitively
induced non-equilibrium dynamics, ‘competitive
chaos’ in short, may provide a potential explana-
tion for the biodiversity of many communities 
(Huisman & Weissing 1999, 2000; Huisman et al.
2001).

The results of Huisman and Weissing (1999,
2000, 2001a, 2001b) were based on one specific
class of competition models. More specifically, the
model assumed Von Liebig’s (1840) Law of the
Minimum. According to Liebig’s Law, the growth
rate of a species is fully determined by the resource
that is most limiting. Resources that obey Liebig’s
Law are frequently referred to as perfectly essential
resources (sensu Tilman 1982). One may criticize
Liebig’s Law on both biological and mathematical
grounds. From a biological point of view, it is
known that several essential resources do not
follow Liebig’s Law but show interactive effects.
Such resources are called interactively essential
resources (sensu Tilman 1982). Iron and nitrogen
are good examples. Iron is a component of the
enzymes nitrate reductase and nitrite reductase
(Timmermans et al. 1994). As a consequence, the
combination of iron and nitrate does not obey
Liebig’s Law but iron and nitrate have interactive
effects on phytoplankton growth (Price et al. 1991;
Maldonado & Price 1996). In fact, many resource
combinations might have interactive effects at the
physiological level. From a mathematical point of
view, the minimum operator commonly used to
model Liebig’s Law implies that the growth rate of
a species is not a continuously differentiable func-
tion of resource availability. One might argue that
this mathematical feature introduces model arte-
facts and, thus, that results obtained with Liebig’s
Law might not be robust.

For these reasons, the present paper investigates
whether our previous findings on ‘competitive
chaos’ are restricted to perfectly essential resources,
as in Liebig’s Law, or whether these non-
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equilibrium dynamics occur on interactively essen-
tial resources as well.

METHODS

The model

We consider a number of n species competing for
k resources. Let Ni denote the abundance of species
i, and let Rj denote the availability of resource 
j. The dynamics of the species and resources are
described by the following competition model
(León & Tumpson 1975; Tilman 1982; Huisman
& Weissing 1999):

(1a)

(1b)

Here mi(R1, . . . ,Rk) is the specific growth rate of
species i as a function of resource availabilities; mi

is the specific mortality rate of species i; D is the
system’s turnover rate; Sj is the supply concentra-
tion of resource j; and cji is the content of resource
j in species i.

Previously, we considered perfectly essential
resources. That is, we assumed that the specific
growth rates in Equations 1a and 1b follow a 
combination of Monod’s (1950) equation and Von
Liebig’s (1840) Law of the Minimum (Huisman &
Weissing 1999, 2001a, b):

(2)

where ri is the maximum specific growth rate of
species i, Kji is the half-saturation constant for
resource j of species i, and MIN is the minimum
operator.

In the present paper, we consider interactively
essential resources. More specifically, we assume
that the specific growth rates are determined by
the product of several Monod terms:
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We will summarize the competitive ability of 
a species i for a given resource j by its resource
requirement Rji* (Tilman 1982). Rji* is defined 
as the availability of resource j at which species 
i remains stationary, assuming that all other
resources are in ample supply. That is, according
to equations 1a and 3,

(4)

This shows that, all else being equal, a low half-
saturation constant for a particular resource
implies a low Rji*. We will say that the species
with lowest Rji* for a particular resource is the 
best competitor for that resource (Armstrong &
McGehee 1980; Tilman 1982). We will say that 
a species consumes most of a resource if it has 
a higher content of this resource than all other
species.

The key difference between perfectly essential
resources and interactively essential resources can
be visualized by means of zero isoclines (Tilman
1982). The zero isocline of a species i, plotted in
resource space, indicates all resource availabilities
at which species i remains stationary (i.e. dNi/dt =
0). For resource combinations above and to the
right of its zero isocline, this species will increase.
For resource combinations below and to the left of
its zero isocline, this species will decrease. Zero
isoclines based on perfectly essential resources have
a right angle corner, which indicates a sudden
switch from limitation by one resource to limita-
tion by another resource (Fig. 1a). In contrast, zero
isoclines based on interactively essential resources
have a rounded corner, which indicates a smooth
transition from limitation by one resource to 
limitation by another resource (Fig. 1b).

RESULTS

Competitive oscillations

Consider three species competing for three
resources. Even with three species only, it is a
tremendous task to investigate all potential para-
meter combinations in a systematic manner. We,
therefore, parametrized the model for phytoplank-
ton species, with a timescale expressed in days (d).
To keep the model parametrization as simple as
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possible, we assume that all species have a maximal
specific growth rate of ri = 1 d–1, and a specific
mortality rate of mi = D = 0.25 d–1. Furthermore,
we assume that each of the resources has a resource
supply concentration of Sj = 10 mmol l–1. These
parameter values are within the range of typical
values for phytoplankton species grown in
chemostats (De Nobel et al. 1997; Ducobu et al.
1998; Huisman et al. 1999).

The half-saturation constants, Kji, and resource
contents, cji, are given in matrices K and C, respec-
tively. Different columns in these matrices repre-
sent different species, and different rows represent
different resources. Assuming three species and
three resources we consider the following K matrix
and C matrix.

According to the C matrix, species 2 consumes
most of resource 1, species 3 consumes most of
resource 2, and species 1 consumes most of
resource 3. Recall from equation 4 that as we
assumed that all species have similar ri and similar
mi, a species with a low Kji for a particular resource
is a strong competitor for that resource. Thus, we
can distinguish a number of different scenarios,
depending on the value of a in the K matrix:
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Fig. 1. Zero isoclines for (a) perfectly essential
resources and (b) interactively essential resources.
Above and to the right of the zero isocline, net growth
is positive. Below and to the left of the zero isocline,
net growth is negative.



Assume a > 1 gives a scenario in which each
species consumes most of the resource for which it
is the worst competitor. In this case, our simula-
tions reveal that competition leads to stable co-
existence (Fig. 2a). It is interesting to note from
Fig. 2a that the coexistence equilibrium can be
approached by means of damped oscillations.

If 1 > a > 0.25, then each species consumes
most of the resource for which it is the intermedi-
ate competitor. In this case, most of our simula-
tions reveal that competition generates species
oscillations, although some simulations lead to
competitive exclusion. The oscillations can be in
the form of either limit cycles or heteroclinic
cycles. More precisely, if 1 > a > 0.60, then our
simulations indicate that oscillations are in the
form of limit cycles (Fig. 2b). Essentially, limit
cycles are oscillations with a constant frequency. 
If 0.60 > a > 0.30, then our simulations indicate

178 J. Huisman and F. J. Weissing

that oscillations are in the form of heteroclinic
cycles (Fig. 2c). Heteroclinic cycles are oscilla-
tions that gradually slow down. That is, the cycle
period lengthens, but the cyclic movement never
stops. If 0.30 > a > 0.25, then our simulations
show that competition leads to competitive exclu-
sion with a winner that depends on the initial 
conditions.

If a < 0.25, then each species consumes most 
of the resource for which it is the best competitor.
In this case, simulations reveal that competition
leads to competitive exclusion with a winner that
depends on the initial conditions (Fig. 2d).

Non-equilibrium coexistence

It is well known for competition models like 
equation 1 that, at equilibrium, the number of
coexisting species cannot exceed the number of
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Fig. 2. Competition between three species for three interactively essential resources (1,2,3). (a) Stable coexistence
(a = 1.2), (b) limit cycle (a = 0.9), (c) heteroclinic cycle (a = 0.5), (d) competitive exclusion where the winner
depends on the initial conditions (a = 0.2). Initial conditions: Rj(0) = Sj, N1(0) = 0.11, N2(0) = 0.12, N3(0) = 0.13.



limiting resources (Armstrong & McGehee 1980;
Tilman 1982). However, fluctuations in species
abundances, even when generated by competition,
may allow the coexistence of multiple species on a
few resources. Earlier, we found this phenomenon
of non-equilibrium coexistence for perfectly essen-
tial resources (Huisman & Weissing 1999, 2001a;
Huisman et al. 2001). Here, we illustrate the same
phenomenon for interactively essential resources.
Figure 3 shows a specific example of seven species
coexisting on three interactively essential
resources. The K matrix and C matrix used to 
generate Fig. 3 are as follows:
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Competitive chaos

On five interactively essential resources, multi-
species competition may generate chaos. Accord-
ing to our simulations, competitive chaos on 
five resources occurs in the great majority of 
cases that assume that each of the species consumes
most of the resource for which it is the intermedi-
ate competitor. An example is shown in Fig. 4,
which is based on the following K matrix and C
matrix:
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Fig. 3. Non-equilibrium coexistence of seven species on three interactively essential resources. Initial conditions:
Rj(0) = Sj; species 1–3 start at t = 0 days with N1(0) = 0.11, N2(0) = 0.12, N3(0) = 0.13; species 4 and 5 invade at t =
1000 days with N4(1000) = N5(1000) = 1.0; species 6 and 7 invade at t = 2000 days with N6(2000) = N7(2000) = 1.0.



Please note from the K matrix and C matrix that
this example, indeed, assumes that each of the
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species consumes most of the resource for which it
is the intermediate competitor.

DISCUSSION

Competition for three or more perfectly essential
resources may generate oscillations and chaotic
fluctuations in species abundances (Huisman &
Weissing 1999, 2001a, 2001b; Li 2001). The
present paper shows that similar dynamics can be
found on interactively essential resources as well.
Hence, the observation that resource competition
may generate non-equilibrium dynamics does not
hinge on Liebig’s Law of the Minimum. Instead,
our results indicate that the dynamics of com-
petition depend on the relationship between the
resource requirements and the resource consump-
tion characteristics of the species. Generally speak-
ing, we find that competition for interactively
essential resources generates: (i) stable coexistence
if species consume most of the resources for which
they are poor competitors; (ii) non-equilibrium
dynamics if species consume most of the resources
for which they are intermediate competitors; 
and (iii) competitive exclusion with a winner that
depends on the initial conditions if species
consume most of the resources for which they are
strong competitors. This is in line with the pre-
vious findings for perfectly essential resources
(Huisman & Weissing 2001b). We emphasize that
these predictions should be interpreted as rules of
thumb; they are not mathematical theorems. The
rules are not always strictly obeyed (see the case
0.30 > a > 0.25 discussed above), but do capture
the general patterns of literally thousands of 
simulations.

In conclusion, our findings demonstrate that
competitively generated oscillations and chaos are
not restricted to perfectly essential resources, but
occur on interactively essential resources as well.
This suggests that competitively generated non-
equilibrium dynamics may occur on a wide variety
of different resource types.
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