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Fundamental Unpredictability in Multispecies Competition
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abstract: One of the central goals of ecology is to predict the
distribution and abundance of organisms. Here, we show that, in
ecosystems of high biodiversity, the outcome of multispecies com-
petition can be fundamentally unpredictable. We consider a com-
petition model widely applied in phytoplankton ecology and plant
ecology in which multiple species compete for three resources. We
show that this competition model may have several alternative out-
comes, that the dynamics leading to these alternative outcomes may
exhibit transient chaos, and that the basins of attraction of these
alternative outcomes may have an intermingled fractal geometry. As
a consequence of this fractal geometry, it is impossible to predict the
winners of multispecies competition in advance.

Keywords: biodiversity, chaos, resource competition, fractal basin
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More individuals are born than can possibly survive. A grain

in the balance will determine which individual shall live and

which shall die, which variety or species shall increase in number,

and which shall decrease, or finally become extinct. (Darwin

1859, p. 467)

Darwin, as this famous quote testifies, was well aware that
the outcome of competition may depend on tiny differ-
ences. Here, we show that Darwin’s “grain in the balance”
can have a fractal structure. This fine-grained fractal struc-
ture makes it impossible to predict the winners of multi-
species competition.

We consider a resource competition model widely used
in plankton ecology and plant ecology. Theory (León and
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Tumpson 1975; Tilman 1982, 1988; Huisman and Weissing
1995; Grover 1997) and experiments (Tilman 1977, 1982;
Sommer 1986; van Donk and Kilham 1990; Rothhaupt
1996; Huisman et al. 1999) based on this model reveal that
competition for one or two resources leads to a stable and
predictable species composition. Motivated by the early
findings of Gilpin (1975), May and Leonard (1975), Smale
(1976), and Armstrong and McGehee (1980), we recently
discovered that competition for three or more resources may
generate oscillations and chaotic fluctuations in species
abundances (Huisman and Weissing 1999, 2000, 2001).
Here, we show that the predictions of resource competition
models can become even more complicated. For this pur-
pose, we make a distinction between the “time course” of
competition and the “outcome” of competition. Chaos im-
plies that the time course of competition shows sensitive
dependence on initial conditions. That is, the long-term
dynamics of the species are unpredictable. However, in case
of a single chaotic attractor, it is still possible to predict
which of the species will persist and within which bounds
these species will fluctuate. In this article, we demonstrate
that multispecies competition can also become unpredict-
able in a more surprising sense: it may be impossible to
predict the outcome of competition. It may be impossible
to foretell which of the species will be excluded and which
will remain.

Competition Model

We consider n species competing for three abiotic re-
sources. Let Ni denote the abundance of species i, and let
Rj denote the availability of resource j. The dynamics of
the species depend on the availability of the resources. The
dynamics of the resources depend on the rates of resource
supply and the amounts of resources consumed by the
organisms. The model reads (León and Tumpson 1975;
Tilman 1977, 1982; Huisman and Weissing 1999)

dNi p N [m (R , R , R ) � m ],i i 1 2 3 idt

i p 1, … , n, (1a)
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Figure 1: Chaos on three resources. A, Time course of competition.
1, 2, 3, 4,Black p species red p species blue p species green p species

and 5. B, The corresponding chaotic attractor. The at-yellow p species
tractor is plotted using three of the five species, for the period from

to d. For parameter values, see appendix.t p 1,000 t p 4,000

ndRj
p D(S � R ) � c m (R , R , R )N ,�j j ji i 1 2 3 idt ip1

j p 1, … , 3. (1b)

Here, is the specific growth rate of species im (R , R , R )i 1 2 3

as a function of the resource availabilities, mi is the specific
mortality rate of species i, D is the resource turnover rate,
Sj is the supply of resource j, and cji is the content of
resource j in species i. We assume that the specific growth
rates follow a Monod equation (Monod 1950) and are
determined by the resource that is most limiting, as in
Von Liebig’s (1840) “Law of the Minimum”:

r R r R r Ri 1 i 2 i 3
m (R , R , R ) p min , , ,i 1 2 3 ( )K � R K � R K � R1i 1 2i 2 3i 3

(2)

where ri is the maximum specific growth rate of species i,
Kji is the half-saturation constant for resource j of species
i, and “ ” is the minimum function. This model for-min
mulation is widely used and particularly suited for primary
producers like phytoplankton (León and Tumpson 1975;
Tilman 1977, 1982; Sommer 1986; van Donk and Kilham
1990; Rothhaupt 1996; Grover 1997; Huisman and Weissing
1999). The model also provides a conceptual framework for
competitive interactions among terrestrial plants (Tilman
1982, 1988).

Chaos on Three Resources

Previous work based on this competition model revealed
periodic oscillations on three resources and chaos on five
resources (Huisman and Weissing 1999, 2001). Here, we
start by noting that competition for three resources is ac-
tually sufficient to generate chaos (fig. 1). We consider five
species. These five species form a complicated system that
can best be described by two competing cycles. Species 1–3
form one cycle. Here, species 1 is a strong competitor for
resource 3 but becomes limited by resource 1. Species 2 is
a strong competitor for resource 1 but becomes limited by
resource 2. Species 3 is a strong competitor for resource 2
but becomes limited by resource 3, and so on. This generates
cyclic dynamics (Huisman and Weissing 1999, 2001). The
second cycle has a similar structure but is now based on
species 1, 4, and 5. The two cycles are connected via species
1, and the system switches chaotically back and forth be-
tween the two cycles. This structure is clearly visible in figure
1B. Simulations reveal that the time course of competition
shows sensitive dependence on initial conditions, one of the
characteristic features of chaos. But the outcome of com-

petition is independent of the initial conditions. Whatever
the initial conditions, the system always ends up with the
same five species on the same chaotic attractor (fig. 1B).

Fractal Basin Boundaries

For slightly different parameter combinations, the chaotic
attractor of figure 1 breaks down and the two cycles become
disconnected. Thus, now there are two attractors, two limit
cycles to be precise. Simulations show that there is still a
period of transient chaos during which the dynamics switch
back and forth between the two limit cycles (fig. 2). The
duration of this transient period is highly variable; it may
last from !50 d to 11,500 d. In the end, the dynamics always
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Figure 2: Transient chaos of five species competing for three resources.
Depending on the initial conditions, the system settles at either (A) a limit
cycle with species 1–3 as winners of competition or (B) a limit cycle with
species 1, 4, and 5 as winners of competition. 1,Black p species red p

2, 3, 4, and 5. C,species blue p species green p species yellow p species
The corresponding trajectories in phase space. The two limit cycles are
indicated in blue. The red line is the trajectory corresponding to the time
course in A, which finally settles at the limit cycle on the left-hand side.
The green line is the trajectory corresponding to the time course in B,
which finally settles at the limit cycle on the right-hand side. For parameter
values, see appendix.

lead to one of the two limit cycles. If the system ends up
at the limit cycle with species 1–3 (fig. 2A), the availability
of resource 2 is too low for the persistence of species 4 and
5. If the system ends up at the limit cycle with species 1,
4, and 5 (fig. 2B), the availability of resource 3 is too low
for the persistence of species 2 and 3. Which of the two

limit cycles is reached depends on the initial conditions (fig.
2C).

To investigate this system in detail, we plot the outcome
of competition as a function of two parameters involved in
the initial conditions: initial abundance of species 2 and
initial abundance of species 4 (fig. 3). If species 1–3 win (as
in fig. 2A), the outcome of competition is color-coded blue.
If species 1, 4, and 5 win (as in fig. 2B), the outcome of
competition is color-coded yellow. This yields a complicated
pattern of speckles and stripes (fig. 3A). In the speckled
areas, the outcome of competition is very sensitive to the
initial conditions. If the speckled areas are magnified, new
speckles and stripes appear (fig. 3B). Thus, the basins of
attraction leading to the two alternative outcomes of com-
petition appear to have fractal basin boundaries (sensu Gre-
bogi et al. 1987).

The implication of this fractal geometry is that, within
the speckled areas in figure 3, the predicted outcome of
competition depends on the resolution at which the initial
conditions are measured. Because initial conditions cannot
be measured at infinite precision, it is impossible to predict
with certainty what the outcome of competition will be.

Adding More Species

One might argue that limit cycles seem rare in ecosystems
and that, hence, fractal basin boundaries are probably not
something to worry about in the real world. There is an
alternative possibility, however. Usually there are many spe-
cies in an ecosystem, and some species may destroy the
cyclic pattern. For example, consider a chaotic system of
five species competing for three resources (fig. 4). At t p

d, we add three new species, labeled species 6, 7, and1,000
8. These three species are potential winners. Species 6 is a
strong competitor for resource 1; species 7, a strong com-
petitor for resource 2; and species 8, a strong competitor
for resource 3. It turns out that, within 100–200 d after
invasion, one of the three added species becomes dominant
(fig. 4A–4C). But which one? Again, we color-code the win-
ner: yellow for species 6, red for species 7, and green for
species 8. The winner appears to be extremely sensitive to
the initial conditions (fig. 5). In fact, the fine-grained pattern
in figure 5 is almost random. Thus, despite knowledge of
all species traits and species interactions, it is impossible to
predict in advance which of the species will become dom-
inant. Only predictions in terms of probabilities make sense.

Discussion

We have shown that, for certain species combinations,
competition for limiting resources generates fractal basin
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Figure 3: Fractal basin boundaries based on the five species of figure 2.
The X-axis varies the initial abundance of species 2; the Y-axis varies the
initial abundance of species 4. Pixels are colored blue if species 1–3 win.
Pixels are colored yellow if species 1, 4, and 5 win. Part of A is magnified
in B. In the speckled areas, the outcome of competition is very sensitive
to the initial conditions. For parameter values, see appendix.

Figure 4: Transient chaos of eight species on three resources. Depending
on the initial conditions either (A) species 6 wins, (B) species 7 wins, or
(C) species 8 wins. For parameter values, see appendix.

boundaries. Fractal basin boundaries are known for several
dynamical systems (Moon and Li 1985; Grebogi et al. 1987;
Sommerer and Ott 1993; Nusse and Yorke 1996; Neubert
1997). To the best of our knowledge, this is the first ex-
ample of fractal basin boundaries in resource competition

models. The fractal geometry implies that the tiniest dif-
ferences in initial conditions may lead to a different out-
come of competition. Because it is impossible to measure
infinitesimally small differences, it is impossible to predict
the winners of multispecies competition with certainty.

We are still puzzled by the biological implications of these
findings. First, in the real world, many factors have sto-
chastic and unpredictable effects on the species composition
of ecosystems. Few biologists would, therefore, argue against
the suggestion that nature can be unpredictable. The un-
predictability observed in this competition model, however,
is at a much more fundamental level. Our results demon-
strate that the winners of competition can be unpredictable
in a fully deterministic setting without any stochastic ele-
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Figure 5: Fine-grained fractal basin boundaries based on the eight species
of figure 4. The X-axis varies the initial abundance of species 2; the Y-axis
varies the initial abundance of species 4. If species 6 wins, the pixel is
colored yellow. If species 7 wins, the pixel is colored red. If species 8 wins,
the pixel is colored green. The tiniest change in initial conditions can lead
to a different winner of competition. For parameter values, see appendix.

ments. Second, whenever multispecies competition is un-
predictable in a deterministic sense, the focus of research
may shift toward probability calculus. Species with appro-
priate traits will still have a higher probability of dominating
than species with inappropriate traits. Third, our results
show that competition is unpredictable for certain species
combinations. The results do not tell whether this unpre-
dictability is a rare curiosity or a common phenomenon in
the real world. Hence, our findings can best be interpreted
as proof of principle or as a morality play that illustrates
the potential complexity of multispecies interactions.

Nevertheless, it is worth emphasizing that we have used
one of the standard competition models of ecology (Tilman
1982) with parameter values chosen within a realistic range
for phytoplankton species. Based on extensive simulations
(not shown), we conjecture that an essential ingredient for
fractal basin boundaries in this model is the presence of
multiple species or multiple sets of species that are each
potentially strong enough to wipe out their competitors. We
obtained fractal basin boundaries with a minimum con-
stellation of five species and three resources (fig. 3). Prelim-
inary simulations indicate that adding more species and
more resources to this model greatly widens the potential

for fractal basin boundaries and associated unpredictable
outcomes.

As a potential area of application, consider toxic phy-
toplankton. There are thousands of phytoplankton species.
Most phytoplankton species are relatively harmless. A few
species, however, are highly toxic, causing massive fish kills
and a human health threat (Burkholder et al. 1992; Codd
1995; Anderson and Garrison 1997). Water managers try
to forecast the occurrence of toxic phytoplankton species.
Yet few predictive models appear successful (Anderson and
Garrison 1997). One explanation for this predictive failure
might be that phytoplankton assemblages consist of nu-
merous species competing for a handful of resources, pre-
cisely the set of conditions used in this article. As the
theory presented here suggests, under such circumstances,
even with full knowledge of all species traits, it may be
fundamentally impossible to forecast the dominance of
toxic species.

In conclusion, our results show that multispecies com-
petition is a very complicated process. For certain species
combinations, Darwin’s (1859) “grain in the balance” can
have a fractal structure. As a consequence, the winners of
multispecies competition can be as unpredictable as a throw
of the dice.
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APPENDIX

Numerical Procedures and Parameter Values

Numerical simulations are based on a fourth-order Runge-
Kutta procedure with a fixed time step of 0.01 d. The
model is parametrized for phytoplankton. We use r p 1i

d�1 and d�1 for all species andm p D p 0.25 S p 10i j

mmol L�1 for all resources. These are typical values for
phytoplankton grown in chemostats (Tilman 1977, 1982;
Sommer 1986; van Donk and Kilham 1990; Rothhaupt
1996; Grover 1997; Huisman et al. 1999). Unless stated
otherwise, initial conditions were for all spe-N (0) p 0.1i

cies and for all resources. Half-saturation con-R (0) p Sj j
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stants, Kji, and resource contents, cji, are given in matrices
K and C below. Different columns represent different spe-
cies, and different rows represent different resources.

Figure 1 uses species 1–5 of figure 4. In figures 2 and 3,

0.20 0.05 1.00 0.05 1.20
K p 0.25 0.10 0.05 1.00 0.40 ,[ ]

0.15 0.95 0.35 0.10 0.05

0.20 0.10 0.10 0.10 0.10
C p 0.10 0.20 0.10 0.10 0.20 .[ ]

0.10 0.10 0.20 0.20 0.10

Initial conditions are default, except in figure 2A,N (0) p2

, and figure 2B, .0.1 N (0) p 0.22

In figures 4 and 5,

0.20 0.05 0.50 0.05 0.50 0.03 0.51 0.51
K p 0.15 0.06 0.05 0.50 0.30 0.18 0.04 0.31 ,[ ]

0.15 0.50 0.30 0.06 0.05 0.18 0.31 0.04

0.20 0.10 0.10 0.10 0.10 0.22 0.10 0.10
C p 0.10 0.20 0.10 0.10 0.20 0.10 0.22 0.10 .[ ]

0.10 0.10 0.20 0.20 0.10 0.10 0.10 0.22

Species 1–5 start at , each with default initial abun-t p 0
dances, except figure 4A, ; figure 4B,N (0) p 0.1 N (0) p2 2

; and figure 4C, . Species 6–8 invade at0.18 N (0) p 0.32

d, each with an abundance .t p 1,000 N (1,000) p 0.1i

Figures 3 and 5 have a resolution of 400 # 400 p
simulations. The simulations were obtained by160,000

four personal computers running in parallel at a clock
speed of MHz for several days.4 # 450
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