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Abstract Predation risk is one of the major forces affecting phenotypic variation among

and within animal populations. While fixed anti-predator morphologies are favoured when

predation level is consistently high, plastic morphological responses are advantageous

when predation risk is changing temporarily, spatially, or qualitatively. Three-spined

sticklebacks (Gasterosteus aculeatus) are well known for their substantial variability in

morphology, including defensive traits. Part of this variation might be due to phenotypic

plasticity. However, little is known about sticklebacks’ plastic ability to react morpho-

logically to changing risks of predation and about the proximate cues involved. Using a

split-clutch design we show that odour of a predatory fish induces morphological changes

in sticklebacks. Under predation risk, i.e., when exposed to odour of a predator, fish grew

faster and developed a different morphology, compared to fish reared under low predation

risk, i.e., exposed to odour of a non-predatory fish, or in a fish-free environment. However,

fast growing comes at cost of increased body asymmetries suggesting developmental

constraints. The results indicate that sticklebacks are able to distinguish between predatory

and non-predatory fishes by olfactory cues alone. As fishes were fed on invertebrates, this

reaction was not induced by chemical cues of digested conspecifics, but rather by predator

cues themselves. Further, the results show that variation in body morphology in stickle-

backs has not only a strong genetical component, but is also based on plastic responses to

J. G. Frommen � L. Engqvist � M. Mehlis � T. C. M. Bakker � T. Thünken
Institute for Evolutionary Biology and Ecology, University of Bonn,
An der Immenburg 1, 53121 Bonn, Germany

J. G. Frommen (&)
Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences,
Savoyenstr. 1a, 1160 Vienna, Austria
e-mail: j.frommen@klivv.oeaw.ac.at

F. Herder � J. Schwarzer
Department of Ichthyology, Zoologisches Forschungsmuseum Alexander Koenig,
Adenauerallee 160, 53113 Bonn, Germany

L. Engqvist
Theoretical Biology Group, Centre for Ecological and Evolutionary Studies,
University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands

123

Evol Ecol
DOI 10.1007/s10682-010-9454-6



different environments, in our case different predation pressures, thus opening new

questions for this model species in ecology and evolution.

Keywords Phenotypic plasticity � Reaction norm � Predation risk � Induced defences �
Speciation � Schreckstoff

Introduction

Understanding the evolution and maintenance of phenotypic variation within and among

populations is of major interest in evolutionary ecology. Phenotypic plasticity, i.e., the

ability of a single genotype to produce different phenotypes in response to environmental

variation (see West-Eberhard 1989 for a review), may enable individuals to cope with new

environmental challenges and thus might facilitate colonisation of new habitats and per-

sistence under alternative ecological frameworks (Price et al. 2003; Wund et al. 2008).

Phenotypic plasticity increases variability, on which selection can operate, possibly

resulting in genetic assimilation, i.e., genetic changes in the same direction (Waddington

1942; Crispo 2007), eventually further reinforcing phenotypic differentiation (Pfennig

et al. 2010). Thus, plasticity might be an important prerequisite for genetic evolution: not

only it represents a new source of variability, but it can be, itself, exposed to selection

(Scheiner 1993; Schlichting and Pigliucci 1998; Pigliucci 2001).

Predation is one of the most crucial ecological factors influencing population dynamics

and diversification processes (Nosil and Crespi 2006). In the continuous presence of

predators, defensive structures or features have evolved in several groups of organisms

(e.g., Endler 1995; Tollrian and Harvell 1999), leading to phenotypic differentiation

between populations. Some of these differentiations have been shown to be genetically

based (e.g., Peichel et al. 2001; McKinnon and Rundle 2002; Langerhans et al. 2004).

However, anti-predator traits are often costly to maintain and thus disadvantageous in

predator-free environments (Harvell 1990). Therefore, when predation pressure changes

temporarily, spatially, or qualitatively, individuals which are able to respond flexibly to the

actual risk (i.e., phenotypically plastic individuals) are predicted to have fitness

advantages.

Predator-induced morphological defences are famous examples for phenotypic plas-

ticity. They have been investigated in numerous taxa, especially in aquatic invertebrates

(Harvell 1990; Tollrian and Harvell 1999; Chivers et al. 2008). However, plastic mor-

phological responses to predators are less well documented in vertebrates. Here, research

have focused mainly on tadpoles of different anuran species (e.g., McCollum and

VanBuskirk 1996; Relyea 2001) and fishes of the genus Carassius. A classical field and

laboratory study by Brönmark and Miner (1992) showed that predatory pikes (Esox lucius)

induced an increase in body depth in crucian carp (Carassius carassius). Deep-bodied

individuals seemed to have a reduced risk of predation relative to shallow-bodied con-

specifics, because they showed enhanced escape performance, a higher percentage of

muscle mass (Domenici et al. 2008), and were more difficult to handle for piscivores

(Nilsson et al. 1995). However, the morphological changes also bear costs. Deep-bodied

individuals were bad food competitors and suffered hydrodynamic costs (Pettersson and

Brönmark 1997, 1999; Andersson et al. 2006). Recently, Chivers et al. (2008) demon-

strated a similar anti-predator response in a closely related species, the goldfish (Carassius
auratus).
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Three-spined sticklebacks (Gasterosteus aculeatus) are an ideal model system to study

morphological anti-predator responses. They own a bony body armour and dorsal and

pelvic spines which protects them against predators (e.g., Hoogland et al. 1956; Gross

1976). Still, they are typical prey species, with several fish, bird, and invertebrate species

frequently predating on them (e.g., Gross 1976; Reimchen 1980; Kemper 1995). In some

areas of the Baltic Sea, for example, they are the most abundant prey fish species (Mannki

and Vauras 1974). Sticklebacks show considerable morphological and behavioural varia-

tion both within and between populations. Populations facing high levels of predation

differ from predator-free populations in morphology (Bell and Foster 1994; Marchinko

2009). Differences in morphology are shown to have arisen by selective predation on more

vulnerable phenotypes (e.g., Reimchen 1980, 2000), and are thus reflecting genetic dif-

ferences. However, as a colonising and migratory species (e.g., Bell and Foster 1994),

sticklebacks often face changes in their environment, like different diets or levels of

predation pressure. Thus, there is a potential for the evolution of plastic responses. Indeed,

sticklebacks have been shown to respond plastically (in morphological traits) to different

environmental challenges (Day et al. 1994; Wund et al. 2008; Dingemanse et al. 2009).

The present study had three objectives: First, we wanted to deepen our knowledge of

phenotypic plastic responses to the risk of predation in a migratory population of three-

spined sticklebacks during early and late stages of their life. Second, we aimed to elucidate

which cues sticklebacks use for predator recognition, and third we wanted to investigate

potential costs of plastic responses.

Materials and methods

Experimental subjects and set-up

Three-spined sticklebacks from an anadromous, genetically heterogeneous population

(Heckel et al. 2002) were caught during their spring migration in April 2002 on the island

of Texel, the Netherlands. Here, they face predation pressure from different birds (Kemper

1995) and fishes, including perch (Perca fluviatilis; J. Hottentot, pers. communication),

during their whole life. Perch, which were used as predatory fish, were caught from the

floodplain of the River Rhine near the city of Rees, Germany. Roach (Rutilus rutilus),

which were used as non-predatory fish, were caught from Lake Müggelsee, Berlin,

Germany. All fishes were brought to the Institute for Evolutionary Biology and Ecology,

Bonn, where they were kept in large (750 l) outdoor tanks.

Randomly chosen pairs of sticklebacks were allowed to spawn (see Frommen et al. 2008

for details). Clutches were taken out of the male’s nest 1 h after spawning, clutch sizes

ranged between approx. 110 and 300 eggs. In total 14 families were produced. Each clutch

was split into three equal-sized sub-families which were placed in one liter containers in

which larvae hatched. Right from the start of the experiment, eggs of the three sub-families

were exposed to the respective fish odours, i.e., were reared in perch conditioned, roach

conditioned or tap water, called ‘‘treatment-water’’ from now on (for the production of

treatment-water see below). Tank water was completely exchanged daily with treatment-

water to reduce the risk of fungal infections (Frommen et al. 2008) and to ensure continuous

exposure to the fish cues. At an age of 31 days groups were reduced to a size of 30 individuals

and were transferred to larger tanks measuring 30 cm 9 20 cm 9 20 cm (l 9 w 9 h). Here

they remained until an age of approximately 6 months. Thereafter, all sub-families of a

treatment group were placed into one large tank (100 cm 9 50 cm 9 40 cm). All tanks
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were cleaned and aerated using internal filters (Dohse Aquaristik, Gelsdorf, Germany).

Water in these tanks was exchanged 5 times a week by treatment-water (see below). Fry were

fed living Artemia nauplii in excess which were replaced at an age of 12 weeks by defrosted

adult Artemia and Chironomus larvae.

To produce the olfactory stimuli, i.e., treatment-water, for each family triplet group, three

tanks measuring 50 cm 9 30 cm 9 30 cm were filled with aerated tap water and placed on

a shelf above the stickleback tanks. In the first tank a single perch was placed (predator

treatment), in the second a single roach (fish-control treatment). The third tank served as

control treatment and contained no fish. Thus, corresponding to the 14 family triplet groups

used, 14 perches (median body size, quartiles (cm): 5.7, 4.6, 6.45) and 14 roaches (5.3, 4.55,

6.38) were used. They were size matched within each trial and did not differ significantly

(Wilcoxon matched-pairs signed-ranks test, Z = -1.689, P = 0.091). All fish were fed

daily with defrosted Chironomus larvae. Each tank was connected to the tank containing the

respective stickleback sub-families via a flexible tube. During the first 6 months approxi-

mately 15 l of stimulus water was flushed daily into the rearing tanks, excessive water from

the stickleback tanks drained off into a spillway system. After 6 months all perch and all

roach were placed each into a group tank (100 cm 9 50 cm 9 40 cm). Thus, there was one

tank containing olfactory stimulus of 14 perch, one containing stimulus of 14 roach and one

containing tap water. From now on, 60 l of stimulus water was added to the stickleback

holding tanks 5 times a week. Adding stimulus water lasted approximately 15 min per tank.

Thus, a habitat with predatory perch, a habitat with non-predatory fish and a fish-free habitat

was simulated using olfactory cues only.

The fish were kept in an air-conditioned room under standardised summer light regime

(day length 16L:8D, temperature 16 ± 1�C). At an age of approximately 6 month the

light-regime was changed to winter conditions (day length 8L:16D, temperature 16 ± 1�C)

for 12 months to prevent fish from reaching the sexual phase (Borg et al. 2004). After-

wards, summer light conditions were re-established.

Quantification of body shape and defensive morphology

Standardised pictures of the lateral body and of the pelvic spines of all juvenile stickle-

backs were taken at an age of 150 ± 2 days. For each specimen we took one lateral and

one ventral picture together with a size standard of 30 mm length. Lateral pictures were

made using a digital camera (Canon PowerShot G1 with macro lens) fixed on a tripod. To

obtain standardised pictures of the pelvic spines the ventral body of each stickleback was

arranged on a glass slide. This slide was placed upside down under a binocular, which was

connected with a digital camera (HV-C20AMP, Hitachi Denshi Ltd). Pictures were taken

through the glass. Again, a size standard of 30 mm length was included in each spine

picture. Additionally, all fish were weighed to the nearest milligram. For analyses we

calculated the body condition as BC = 100 mass(g)/standard length(cm)3, following

Bolger and Connolly (1989). Afterwards, fish were returned to their holding tanks. At an

age of 30 months, adult individuals were killed in chlorobutanol (1,1,1-trichloro-2-methoy-

2-propanol) and photographed and weighed again as described before. Additionally, sexes

were determined by visual judgement.

Body shape was quantified from lateral pictures using a set of 16 homologous land-

marks (Fig. 1), using the tps software (Rohlf 2003). The standard length was measured as

the distance between landmarks 1 and 13. The length of the first two dorsal and both pelvic

spines were measured two times from the pictures using the software ImageJ 1.34

(Abramoff et al. 2004). For analysis we used the mean value of each spine.
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Statistical analyses

Body measures

Data were analysed using R 2.4.1 (Ihaka and Gentleman 1996). Because of a technical

error, pictures of six juvenile sibling groups were lost. Thus, the analyses of juveniles were

based only on 8 families. For analyses of juvenile measurements, family was entered as

random factor. Because adults were no longer kept in family groups this was not done for

analyses of adults. Due to juvenile mortality the original sample size was reduced. In total

we analysed 80 fish from perch conditioned water, 106 from roach conditioned water, and

102 from tap water. Group size did not differ significantly between treatment groups

(mean ± SD, perch: 12.8 ± 6.5, roach: 13.2 ± 5.5, tap water: 10.0 ± 8.4; F2,6 = 1.48,

P = 0.3). Nevertheless, as also shown in many other fish species (e.g., Holopainen et al.

1997), group size significantly influenced body length (P \ 0.01) and was therefore

included in all final models to control for this source of residual variance. We applied

mixed-effect linear models using the lme function of the nlme library (Pinheiro and Bates

2000). This routine uses maximum likelihood parameter estimation. Tests of statistical

significance were based on likelihood ratio tests, which follow a v2-distribution.

We analysed body circumference as the summed length of the left and right pelvic

spine, the first dorsal spine and body height, where body height was defined as the distance

between the pelvic spine and the first dorsal spine (landmarks 5 and 8, see Fig. 1). At both

the juvenile and adult stage, the length of all four spines correlated strongly within indi-

viduals (for juveniles all r [ 0.73, all P \ 0.0001; for adults all r [ 0.64, all P \ 0.0001).

We therefore, performed a principal component analysis in order to obtain a one-dimen-

sional variable of spine length, which was then used for subsequent analyses. To measure

pelvic spine asymmetries we used the absolute differences between the length of right and

the left spine. When testing for treatment effects, a first omnibus test was carried out. If this

test indicated significant differences between groups, three pairwise Sidak-adjusted post-

hoc tests were performed (Sokal and Rohlf 1995).

Body shape

Effects of size and position were removed from the data using the ‘‘Generalized Procrustes

Analysis’’ procedure (Zelditch et al. 2004) implemented in the IMP software package

(Sheets 2002). After superimposition, the data were translated into Partial Warps using the

thin-plate spline model (Bookstein 1989). These linearly transformed variables are suitable

for use with standard multivariate statistical methods, since they carry the same number of

variables as degrees of freedom (Zelditch et al. 2004). In a first step, variance in shape

according to experimental treatments was estimated by a multivariate analysis of variance

(MANOVA) using CVAgen6o (Sheets 2002). All PCs with more than 2% explanatory

power were then tested separately for homogeneity of variance using one-way ANOVA
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Fig. 1 Positioning of the
landmarks used in geometric
morphometric analyses
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followed by Tukey HSD post-hoc tests in case of equal or Welch tests with Dunnet T3

post-hoc tests in case of unequal variances implemented in PAST v. 1.70. (Hammer et al.

2001). The whole procedure was carried out for juvenile and adult sticklebacks separately.

Differentiation in shape between adult groups was visualised as displacement vector for

each landmark on a deformation grid relative to a reference.

Results

Juvenile body measures

The PC-analysis yielded one single significant factor (PC1, Eigenvalue: 3.75; proportion of

variance: 93.5%). This principal component 1 is a combined score of all four spine lengths.

High scores are associated with long spines (factor loadings: left pelvic spine 0.977, right

pelvic spine 0.976, first dorsal spine: 0.949, second dorsal spine, 0.966). When controlling

for family descent and group size, rearing condition significantly influenced both standard

length, body mass as well as the condition of juvenile fish (Table 1; Fig. 2). Juveniles from

the perch water treatment were larger and heavier than the juveniles from both the roach

water and from the tap water treatment (Table 1; Fig. 2, all P \ 0.0001), whereas there

were no significant differences between the roach and the tap water treatment (standard

length: P = 0.40; mass: P = 0.37, Table 1). Juveniles from the perch water treatment

were in significantly better body condition than the juveniles from the roach water treat-

ment (P = 0.0003), whereas juveniles from the tap water treatment were in intermediate

condition (perch vs. tap water: P = 0.67; roach vs. tap water: P = 0.056).

Additionally, in juveniles, treatment also significantly influenced spine length, body

circumference, eye width, but not pelvic spine asymmetry (Table 1). Juveniles from the

Table 1 Results of a mixed-effect linear model analysing the effect of juvenile rearing condition on
various body measures

Perch Roach Tap water v2 P

Standard length 26.67 ± 0.60a 25.17 ± 0.50b 24.8 ± 0.51b 27.4 <0.0001

Body weight 0.289 ± 0.020a 0.220 ± 0.017b 0.211 ± 0.017b 42.9 <0.0001

Body condition 1.375 ± 0.040a 1.285 ± 0.033b 1.347 ± 0.034ab 13.6 0.001

Spine length (PC1) 0.298 ± 0.172a -0.018 ± 0.141b -0.064 ± 0.145b 12.8 0.002

Body circumference 25.34 ± 0.70a 23.68 ± 0.58b 23.50 ± 0.60b 23.0 <0.0001

Eye width 2.584 ± 0.046a 2.467 ± 0.038b 2.429 ± 0.039b 28.4 <0.0001

Spine asymmetry 0.136 ± 0.026 0.112 ± 0.021 0.125 ± 0.022 2.46 0.29

Controlled for standard length variation

Spine length (PC1) -0.0216 ± 0.092 0.0072 ± 0.071 0.0470 ± 0.072 1.57 0.46

Body circumference 24.03 ± 0.38 23.81 ± 0.30 24.00 ± 0.30 2.57 0.28

Eye width 2.49 ± 0.023 2.48 ± 0.018 2.47 ± 0.018 3.79 0.15

Spine asymmetry 0.135 ± 0.026 0.112 ± 0.021 0.126 ± 0.021 2.38 0.30

In the analysis presented in the upper panel, family descent (random effect) and group size were entered as
controlling factors. Parameter estimates are given by the adjusted mean values ± CI; in the upper panel for
mean group size 15.67, in the lower panel for mean standard length 25.35. Tests for statistical significance
are based on the difference in log-likelihood (df = 2) from the full model (df = 6). Means with the same
superscript letter do not differ significantly

Significant differences (P \ 0.05) are given in bold
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perch water treatment had significantly longer spines, wider body circumference, and

larger eyes than the individuals from the roach (spine length: P = 0.007; body circum-

ference: P \ 0.0001; eye width: P \ 0.0001) and the tap water treatment (spine length:

P \ 0.002; body circumference: P \ 0.0001; eye width: P \ 0.0001). The roach and the

tap water individuals, however, did not differ significantly in any of these measures (spine

length: P = 0.90; body circumference: P = 0.82; eye width: P = 0.20). Standard length

was significantly associated with all these measures except for pelvic spine asymmetry

(spine length: 0.23 ± 0.007, v2 = 425.0, df = 1, P \ 0.0001; body circumference:

0.98 ± 0.02, v2 = 632.2, df = 1, P \ 0.0001; eye width: 0.068 ± 0.002, v2 = 483.7,

df = 1, P \ 0.0001; pelvic spine asymmetry: 0.0005 ± 0.0016, v2 = 0.094, df = 1, P =

0.76). When controlling for this variation in standard length by entering it as a covariate in

the analyses, there was no significant effect of juvenile rearing condition on any of the

traits measured (Table 1). Thus, perch water individuals differed in the absolute measures

of spine length, body circumference and eye width but not relative to body standard length

(Table 1).

Juvenile body shape

Juvenile sticklebacks from the three different rearing regimes could be separated along the

first two CV axes. The first axis separates sticklebacks reared under roach water conditions

from the two other rearing conditions (axis 1: Lambda = 0.66, v2 = 114.02, df = 56,

P \ 0.001), the second axis separates the perch water treatment from the two other

treatments (Axis 2: Lambda = 0.84, v2 = 47.14, df = 27, P = 0.01). Shape variation in

both CV axes loaded mainly on a composition of body depth (relative vertical position of

dorsal spine landmarks 5, 7, 9 vs. anal fin origin landmark 10; CV1 and CV2) and head

shape (mainly orientation of snout landmarks 1, 2 in CV1; a composition of snout ori-

entation and head depth by mainly vertical variation in landmarks 4 and 15 vs. 3 in CV2;

see Fig. 1 for landmarks). Comparisons of eight single principal components with more

than 2% explanatory power for the respective groups revealed no significant differences

between the three rearing conditions (one-way ANOVA, all P [ 0.05).

Fig. 2 The effect of rearing conditions on a juvenile standard length and b juvenile spine length. Estimates
are given as mean ± CI

Evol Ecol

123



Adult body measures

For adults, the PC-analysis yielded a single significant factor (PC1, Eigenvalue: 3.21,

proportion of variance: 80.4%; factor loadings: left pelvic spine 0.923, right pelvic spine

0.904, first dorsal spine: 0.888, second dorsal spine, 0.870). Both standard length and body

condition but not body mass were significantly influenced by rearing condition (Table 2).

Adult sticklebacks reared in tap water were significantly smaller than the adults from the

other treatments (both P \ 0.05), yet were of similar mass and thus in better condition

(both P \ 0.0001). Perch water and roach water individuals did not significantly differ in

any respect (standard length: P = 0.99; Fig. 3; condition: P = 0.13).

In contrast to the juvenile measurements, neither adult spine length, nor body cir-

cumference, nor eye width differed significantly between treatments (Table 2). However,

pelvic spine asymmetry was significantly influenced by rearing conditions (Table 2;

Fig. 3). Adults from the perch water treatment had significantly more asymmetrical pelvic

spines than adults from the roach water treatment (P = 0.013) and from the tap water

treatment (P = 0.005). These differences remained significant when differences in stan-

dard body length were controlled for. When controlling for standard length, adults reared

in tap water had significantly longer spines than sticklebacks reared in perch water

(Table 2, P = 0.021). Thus tap water adults were smaller than perch water adults but

showed relatively longer spines. Furthermore, there were significant differences between

the sexes (Table 2), with males being smaller and showing higher condition factors.

Adult body shape

The CVA/MANOVA revealed two significant axes separating the three treatment groups.

The first axis separated tap water specimens from both perch and roach water sticklebacks

(Lambda = 0.082, v2 = 170.35, df = 56, P \ 0.001, 84.39% explanatory power; Fig. 4),

whereas the second axis separated perch water specimens from the two other groups

(Lambda = 0.52, v2 = 45.39, df = 27, P = 0.015, 15.61% explanatory power; Fig. 4).

Adult sticklebacks reared under perch and roach water conditions differed mainly in body

depth from the tap water treatment group (Fig. 4, CV1). The perch water treatment

sticklebacks differed from the other two groups, mainly in head parameters and minor

shape differences concentrated to the back region (Fig. 4, CV2).

In order to evaluate whether the observed differentiations were biased by imbalanced

sampling, regressions between the CVA scores and centroid size were carried out. Linear

regressions revealed no significant effect of size (CV1 vs. size: r = -0.16, P = 0.14; CV2

vs. size: r = -0.01 P = 0.91), meaning that the observed differentiation cannot be

explained by size. Comparisons of eight single Principal Components with more than 2%

explanatory power for the respective groups revealed significant differences in Principal

Components 1, 3 and 5 (Table 3). PC 1 separated all treatment groups from each other

(Fig. 5; Table 3), PC3 separated tap water from perch and roach water (Table 3), PC5

separated tap water and roach water sticklebacks (Table 3). Analysing male and female

fish separately did not change the described pattern (data not shown).

Discussion

The present study focused on the hypothesis that in three-spined sticklebacks predator

odours induce part of the variation in morphological anti-predator traits, like already
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Fig. 3 The effect of rearing conditions on a adult standard length and b adult pelvic spine asymmetry.
Estimates are given as mean ± CI

Fig. 4 Differentiation of the three treatment groups of adult sticklebacks along the first two CV axes.
Deformation grid with displacement vectors for CV1 (a) and CV2 (b)
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demonstrated in other animal species (e.g., Brönmark and Miner 1992; Holopainen et al.

1997; Lass and Spaak 2003; Hettyey et al. 2010). Body shape, spine length, condition

factor and standard length of juveniles and adults were quantified after rearing full-sibs

Table 3 Results of the one-way ANOVA and Tukey’s pairwise comparisons on differences in body shape
between the three treatment groups of adult sticklebacks

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Anova

F2,84 14.17 1.29 22.34 2.69 4.56 0.20 0.27 0.07

P <0.0001 0.28 <0.0001 0.074 0.013 0.82 0.27 0.93

Posthoc perch vs. roach

Q 3.91 1.88 2.00 1.17 1.28 0.79 1.04 0.45

P 0.019 0.38 0.34 0.69 0.64 0.84 0.25 0.95

Posthoc perch vs. tap water

Q 3.55 0.16 8.95 2.03 2.85 0.78 0.65 0.49

P 0.037 0.99 <0.0001 0.33 0.12 0.85 0.89 0.94

Posthoc tap water vs. roach

Q 7.46 2.04 6.96 3.21 4.13 0.006 0.38 0.004

P <0.0001 0.16 <0.001 0.066 0.0125 [0.99 0.96 [0.99

Eight principal components comprising most explanatory power ([2%) were tested

Significant differences (P \ 0.05) are given in bold

Fig. 5 Boxplots showing the differentiation between the treatment groups of adult sticklebacks in the first
principal component, comprising for 46% of the total variance
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under regular perch water (predator-treatment), roach water (non-predator-treatment, fish

control) and tap water treatment (treatment control). Three character complexes showed

significant differences between perch water and tap water treatments, but also indicated a

response to roach odour compared to tap water controls. Juvenile sticklebacks grew sig-

nificantly faster when exposed to perch odour than under both control treatments. Fast

growth is a widespread strategy in prey animals to reduce predation risk (see Relyea 2007

for a review). The increased growth rate came along with significantly longer dorsal and

pelvic spines (Table 1; Fig. 2). Higher juvenile growth rates were however correlated with

enhanced levels of spine asymmetry (Table 2). Both groups reared under fish odour had

deeper bodies compared to the tap water treatment (Table 3; Fig. 4).

A plastic response to predation pressure by developing an increased body depth as was

observed here has also been reported from other fish, e.g., crucian carp and goldfish

(Brönmark and Miner 1992; Chivers et al. 2007; Chivers et al. 2008). There, the phe-

nomenon has been discussed as defence against gape-limited predators or as adaptation

allowing enhanced turning rates, which are expected to improve chances for escaping from

fish predators (Webb 1984; Sibbing and Nagelkerke 2001; Domenici et al. 2008). Fol-

lowing these ideas, sticklebacks with deeper bodies should show increased survival

compared to slender ones when facing fish predation; deeper bodies should however be

costly in terms of hydrodynamics, foraging efficiency and also have possibly metabolic

costs (DeWitt et al. 1998; Relyea 2002b; Andersson et al. 2006). Plastic pathways of

response to environmental cues during development should be clearly advantageous

compared to fixed genetic responses when predatory regimes are variable (Miner et al.

2005). This is likely the case in the migrating stickleback population analysed here:

individuals have to cope with a wide array of alternative habitats, associated to a likewise

wide array of fish- and other predators. Predominantly heritable specialisation by adaptive

divergence would in contrast lead to alternatively specialised populations in which indi-

viduals mate assortatively (Dieckmann et al. 2004; Gavrilets 2004). In fact, adaptive

divergence driven by ecological selection pressure is well documented in various classic

examples of lake-dwelling sticklebacks (Schluter 2000; Bolnick and Lau 2008), as well as

in migrating-resident stickleback pairs (McKinnon et al. 2004), and in different resident

lake or riverine populations (Reusch et al. 2001; Hendry et al. 2009 for a review).

Adult fish reared in roach water were of comparable size to fish reared in perch water

but larger than fish reared in tap water. An explanation for this might be that juvenile roach

and sticklebacks often have similar diets (Horppila and Nurminen 2009) and thus are

competing for food. The larger size of roach water fish might thus be a response to a

perceived amount of competition. In crucian carp for example both predation risk and

intraspecific competition has been shown to influence morphology (Holopainen et al.

1997). A similar pattern has been described in wood frog tadpoles (Rana sylvatica) which

developed larger bodies and smaller tails, both in the presence of conspecific and heter-

ospecific competitors (Relyea 2002a).

Juvenile fish reared in perch water grew faster and had larger absolute spine length than

fish reared in tap water (Figs. 2, 3). However, for adults these patterns changed. Fish in the

predator-treatment were still larger, yet spine length was similar between treatments. Thus,

fish reared in tap water had even larger relative spine length than fish from the predator-

treatment (Table 2). An explanation for this seemingly counter-intuitive result could be

that there might be an optimal spine length, beyond which spines become weaker and more

fragile. Fish reared in perch water, which grow larger as an adaptive response to predation

pressure, thus ultimately, have spines which are similar in absolute length, but smaller
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relative to body size. This result suggests that absolute spine length might not be plastic but

rather genetically fixed and cannot be further increased in the examined population.

The influence of environmental stress on developmental stability has been described in a

wide range of organisms (Parsons 1990; Møller and Swaddle 1997). The present corre-

lation of asymmetry, growth rate and increasing body depth is most likely caused by

metabolic constraints arising from plastic responses. The enhanced level of asymmetry

accompanying increased growth and body depth might be a direct consequence of ener-

getic costs required for this response causing development instability (Relyea 2002b). As

female sticklebacks are known to prefer symmetric males as mating partners (Mazzi et al.

2003), asymmetries might be a cost of fast growing. Individuals, thus, might face a trade-

off between morphological anti-predator responses and attractiveness. On the other hand,

significant departures from bilateral symmetry might also be explained by direct selection

(Reimchen and Bergstrom 2009).

Morphological modifications in prey species are usually triggered by chemical cues

(Wisenden and Chivers 2006). Alarm cues released from damaged or consumed conspe-

cifics have been shown to induce morphological defences in fish (e.g., Chivers et al. 2007;

Januszkiewicz and Robinson 2007; Chivers et al. 2008). Although fish can assess predation

risk by olfactory cues and behave accordingly (e.g., Kusch et al. 2004), it often remains

unknown whether predators’ own or prey-related cues induce morphological change in

prey. Perch only induced plastic responses in crucian carp when fed on crucian carp, but

not when fed on an invertebrate diet (Brönmark and Pettersson 1994). In concordance with

this result, pike which were not fed on crucian carp failed to induce a response (Stabell and

Lwin 1997). In contrast, the present study shows that sticklebacks are able to react mor-

phologically to olfactory predator cues even when predators were fed on invertebrates.

Furthermore, this response appeared to be highly specific, that is, the morphological

changes varied whether the other fish species was a predator or not.
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