-

Sex-ratio control erodes sexual selection, revealing
evolutionary feedback from adaptive plasticity

Tim W. Fawcett'>3, Bram Kuijper™?, Franz J. Weissing, and Ido Pen

Theoretical Biology Group, University of Groningen, 9700 CC, Groningen, The Netherlands

Edited by Stuart West, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 1, 2011 (received for review April 11, 2011)

Female choice is a powerful selective force, driving the elaboration
of conspicuous male ornaments. This process of sexual selection
has profound implications for many life-history decisions, includ-
ing sex allocation. For example, females with attractive partners
should produce more sons, because these sons will inherit their
father's attractiveness and enjoy high mating success, thereby
yielding greater fitness returns than daughters. However, previ-
ous research has overlooked the fact that there is a reciprocal
feedback from life-history strategies to sexual selection. Here, using
a simple mathematical model, we show that if mothers adaptively
control offspring sex in relation to their partner's attractiveness,
sexual selection is weakened and male ornamentation declines. This
weakening occurs because the ability to determine offspring sex
reduces the fitness difference between females with attractive
and unattractive partners. We use individual-based, evolutionary
simulations to show that this result holds under more biologically
realistic conditions. Sexual selection and sex allocation thus interact
in a dynamic fashion: The evolution of conspicuous male ornaments
favors sex-ratio adjustment, but this conditional strategy then
undermines the very same process that generated it, eroding sexual
selection. We predict that, all else being equal, the most elaborate
sexual displays should be seen in species with little or no control
over offspring sex. The feedback process we have described points
to a more general evolutionary principle, in which a conditional
strategy weakens directional selection on another trait by reducing
fitness differences.

evolutionary equilibrium | Fisher process | good genes | phenotypic
plasticity | sex-ratio bias

Conspicuous male ornaments such as brightly colored or
elongated feathers, loud vocalizations, and complex court-
ship dances are the hallmark of sexual selection, maintained
despite their obvious costs because females find them attractive
(1). This evolutionary force has profound implications for many
life-history decisions, including which sex of offspring to produce
and how to invest in them (2—-4). Provided the heritable benefits
of ornamentation are to some degree sex-limited, selection
favors a conditional strategy of sex allocation: Females mated to
attractive, highly ornamented males should overproduce sons,
whereas those mated to unattractive males should overproduce
daughters (3). This pattern of sex allocation has been supported
by a number of theoretical (5-7) and empirical (8-10) studies,
but no one has considered how it might feed back to alter
sexual selection. Here, we investigate the dynamic interplay
between sexual selection and sex-ratio adjustment. We first de-
velop a simple mathematical model in which male ornamenta-
tion, female preference, and the sex-allocation strategy can
coevolve and use this model to determine the direction of se-
lection acting on all of these traits. We then extend our analysis
to more biologically realistic conditions by using a series of
individual-based, evolutionary simulations, incorporating con-
tinuous variation in ornamentation and preference, a finite
population size, and stochastic factors such as genetic drift. This
dual approach allows us to uncover the evolutionary forces
linking sexual selection and sex allocation. After analyzing this
coevolutionary feedback process in depth, we show how the same
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principle extends to a wide range of other contexts in which se-
lection favors phenotypic plasticity in response to a directionally
selected trait.

Model

Basic Scenario. For the sake of tractability, we consider just two
types of males, which differ in their ornamentation (5, 11, 12):
those of type 0 lack ornamentation, whereas those of type 1 are
ornamented to a degree given by the evolvable trait ¢ (¢t = 0).
Ornamentation is costly in that it reduces survival to adulthood,
with the relative survival of type-1 (compared with type-0) males
given by vy, (v = 1). This cost reflects the energy or resources
invested in the development of secondary sexual traits or an
associated predation risk of being conspicuous (1).

Females are of one type only and have an evolvable preference
P (p = 0), which is costly and lowers their survival to v¢ (v¢ = 1).
This cost may arise because the female has to invest in sensory
apparatus for assessing males, or because she incurs a higher
predation risk while choosing a mate (13). Her preference makes
her more inclined to mate with an ornamented than a non-
ornamented male, resulting in a proportion a of females that
mate with the former type (note that a is not fixed but depends
on p, t, and the relative frequencies of type-0 and type-1 males).
Consequently, the expected number of mates is ¢; for an orna-
mented male and g, for a nonornamented male, with g; = g.

Crucially, females can adjust offspring sex ratios in relation to
their partner’s ornamentation: Sex allocation is determined by
the evolvable traits s, and sq, where s is the proportion of sons
produced when mated to a nonornamented male and s; the
proportion when mated to an ornamented male. Ornamentation
is heritable from father to son, except when mutations occur:
With probability g, the son of a nonornamented male is orna-
mented, and with probability yq, the son of an ornamented male
is nonornamented. In common with standard models of sexual
selection (14, 15), we assume that mutations are biased toward
the loss of ornamentation, i.e., that yy > uo. This bias prevents
fixation of the male ornament and thereby preserves the benefit
of female choice (15). Individuals are assumed to die before their
offspring become reproductively mature, so that generations are
nonoverlapping. Fig. 1 summarizes the sequence of events in our
model. Table 1 lists the variables and parameters with their
associated symbols.
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Fig. 1. Summary of the sequence of events in each generation of our
model. The survival of females (vs) and ornamented males (v;) to re-
production is reduced by the cost of their preference and ornament, re-
spectively (nonornamented males do not pay a cost; v, = 1). Reproducing
females give a proportion a of their matings to ornamented males, resulting
in an average number of mates g; for ornamented males compared with go
mates for nonornamented males (g, = qo). For each offspring produced,
the probability that it is a son is so for females with nonornamented partners
and s, for those with ornamented partners. With mutation probability uo,
the son of a nonornamented male is ornamented, whereas with mutation
probability x4, the son of an ornamented male is nonornamented (41 > uo,
i.e., mutations are biased toward the loss of ornamentation).

Overview of the Method. Given this setup, we can use a repro-
ductive value approach (16-18) to obtain selection differentials
for male ornamentation, female preference, and conditional sex
allocation, which together describe how the system evolves. This

Table 1. Variables and parameters used in the model

Symbol Meaning

)7 Relative frequency of females

Yemi Relative frequency of type-i males (i = 0,1)

Zs Class-specific individual reproductive value of females

Zmi Class-specific individual reproductive value of type-i males
Vs Viability of females

Vi Viability of type-i males

a Probability that a female mates with a type-1 male

g; Average number of mates per type-i male

s Proportion of sons produced when mated to a type-i male
Ui Probability that the son of a type-i male mutates into the

alternative type
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approach involves three basic steps: (i) Determine the dynamics
of a resident population with trait value x for a given trait of
interest; (i) determine the invasion fitness of a rare mutant with
alternative trait value X within this resident population; and (iii)
determine how mutant fitness w depends on x and x. Below we
outline these steps in detail.

Dynamics of the Resident Population. We first consider the dy-
namics of a resident population with ornamentation level ¢,
preference p, and sex-allocation traits sy and s;. The numbers of
females, type-0 males, and type-1 males change from one gen-
eration to the next according to the transition matrix

1 [ A=) =s0) + a(l=s1)lve  qo(1—s0)vs
A =5k [(1=a)so(l=po) +asiuvmo goso(1—Ho)Vamo
(1= a)sopq + asi (1= py)Jvm qoSoHoVm1

q1 (1 — 51 )Vf
q15111Vm0
q1s1(1 = p1 Jvm
(1]

The factor 1/2 is a formality to prevent offspring being counted
twice (once via its mother and once via its father), whereas the
constant k is a scaling factor (equivalent to the average clutch
size) to ensure that the population is stable (in technical terms,
to ensure that the dominant eigenvalue is 1; see refs. 18 and 19).
The leftmost column of A represents the per-capita reproductive
output of females, the center column that of type-0 males, and
the rightmost column that of type-1 males. The three rows rep-
resent, from top to bottom, the result of this reproductive output
in terms of surviving females, type-0 males, and type-1 males in
the next generation.

The entries in the matrix are derived from the basic assump-
tions of our model. To give an example, take the leftmost entry
in the center row, which represents the reproductive contribution
of mothers to type-0 males in the next adult generation. There
are two scenarios in which a female gives birth to a type-0 son:
either she mates with a type-0 male (probability 1 — «) and
produces a son (probability so) who is unaffected by mutation
(probability 1 — ug), or she mates with a type-1 male (probability
a) and produces a son (probability s;) who mutates to a non-
ornamented state (probability x;). In either case, the survival of
that son to reproductive age is vy,o. The other entries in matrix A
are derived by using similar logic, detailed in ST Model.

The relative frequencies of females (yr), type-0 males (Ymo),
and type-1 males (yn,1) change from one generation to the next
according to the dynamic equation y,;; = Ay, where y is the
column vector (¥, Ymo, ym])T representing the relative frequencies
in the current generation (y,) and the next generation (y,+1),
respectively (note that the superscript T indicates transposition).
Explicit equations for y; and yn, are given in SI Model.

Invasion Fitness of a Rare Mutant. Now we ask whether rare
mutants with different values for the traits of interest can invade
the resident population. The dynamics of mutants are governed
by a matrix similar to A, with the appropriate parameters
replaced by their mutant counterparts:

[(1=a)(1=50) +a(1=51)Pr  qo(1—s0)Px
k| [(1=a)So(1—pg) + 8141 ]vmo - Goso(1 = pg)vmo
(1 =a)Sopg + 681 (1= p)Pm1 qoSotoVm1

6}1 (1 —51 )f/f
G1S1H1Vmo_
G1s1(1=py)Vm

[2]

1
B=3

Mutant phenotypes are equipped with a hat (™) to distinguish
them from resident phenotypes. Note that the probability & that
a mutant female mates with a type-1 male is distinct from the
corresponding resident probability @, because it is determined by
the female’s mutated preference p. Her viability v¢ also depends
on p, whereas that of mutant males ¥y,; depends on their mutant
level of ornamentation Z. In contrast, because type-0 males lack
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ornamentation altogether, their viability vy, and per-capita
number of mates g, are the same as for resident type-0 males and
so are left without a hat. The sex-allocation traits s, and s, receive
hats in the first column, representing the reproductive output of
mutant females, but not in the second and third columns because
mutant males are assumed to mate with resident females only
(due to the rarity of mutant females). Note that when the mutant’s
trait values are the same as those of the resident (x = ), matrices
A and B are identical.

The ability of mutant individuals to invade the resident pop-
ulation is given by their fitness w, which is the dominant eigen-
value of matrix B. Assuming mutations of small effect, the
selection differential dw/dx expresses how w depends on %, the
mutant value for the trait of interest. According to a standard
result (20) from evolutionary invasion analysis, this is

w TaB
o

'y, [3]

where y represents the relative frequencies of females, type-
0 males, and type-1 males in the resident population _gtechmcally,
a dominant right eigenvector of A), z = (zf, Zmo, Zm1) represents
their reproductive values (technically, a dominant left eigenvector
of A) and the derivatives are evaluated at the resident trait values.

Results

Analytical Results. Using the approach (5, 21) outlined in S/
Model, we can use Eq. 3 to obtain the following selection dif-
ferentials (16) for the traits p, ¢, 5o, and 51, evaluated at the
resident trait values (i.e., where p = p, 7 = t, §) = sp, and §; = 51):

(?;: %Zmyml +— Yot Zm1ym1 [5]
% B 1S—0a {%_ 2(11—§)]yf [6]

where § = (1—a)sp+ as; is the average offspring sex ratio.
Primes (') denote differentiation with respect to the trait
under consideration.

At the equilibrium for the sex-allocation traits sy and sy, the
selection differentials given by Eqgs. 6 and 7 must be zero (20),
and s0 zmo/qo = 1/[2(1-75)] and zm1 /g1 = 1/[2(1 =35)]. Thus, we
have zm0/qo = zm1/q1, which implies that the first term on the
right of Eq. 4 vanishes as well. Assuming that vi = dv¢/dp is
negative, i.e., that female choice is costly (13), it follows that the
selection differential for p is negative. Hence, at the sex-alloca-
tion equilibrium, selection cannot sustain a costly female pref-
erence. Sex-ratio adjustment dependent on male ornamentation
erodes the female preference to zero, and as a result, male or-
namentation will evolve to zero as well.

Numerical Results. A numerical implementation of this analytical
model, illustrated in Fig. 2, shows how conditional sex-ratio ad-
justment erodes sexual selection (see SI Model for full details of
the calculation). Initially, we fix the sex-allocation traits at 5o =
s1 = 0.5, such that offspring sex ratios are unbiased (Fig. 2, left of
the vertical dashed lines). Under these conditions, male orna-
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mentation and female preference evolve away from their survival
optima (at zero elaboration and zero preference, respectively) to
a stable, exaggerated level (Fig. 24), following predictions from
standard models of sexual selection (14, 15, 22, 23). Then, from
the point indicated by the dashed lines, we allow the sex-allo-
cation traits sy and s; to evolve. Conditional sex-ratio adjustment
evolves as predicted by theory (5, 6): Females mated to highly
ornamented males have more sons than those mated to less-
ornamented males (Fig. 2B, to the right of the dashed line).
[Note that s; is prevented from deviating too far from 0.5 be-
cause of counterselection to restore an even population sex ratio,
because type-1 males vastly outnumber type-0 males (6).] As
biased sex allocation develops, however, this strategy weakens
sexual selection, leading to a gradual decline in male ornamen-
tation and female preference (Fig. 24, right of the dashed line).

Thus, sexual selection favors conditional sex allocation, but
this plasticity then erodes sexual selection. Two main processes
are responsible for this erosion. First, sex-ratio adjustment allows
females with unattractive partners to mitigate the fitness disad-
vantage of low male ornamentation. In simple terms, ending
up with an unattractive male is not so disastrous if a female
can skew offspring production toward daughters. This plasticity
reduces the fitness benefit of female choosiness, which is selected
against because of its costs. Second, because choosier females
tend to mate with more ornamented males and, therefore, pro-
duce mainly sons, their strong preference genes will rarely be
expressed by their offspring. This masking lowers the average fe-
male preference in subsequent generations and, thereby, reduces
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Degree of exaggeration

Evolutionary time

1.0 1

oy)

058 5
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0.4 1
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Proportion of sons

0.0

Evolutionary time

Fig. 2. Sex-ratio adjustment erodes sexual selection (numerical results). A
shows the level of male ornamentation (t, blue) and female preference
(p, pink; note that this partly obscures the blue line), whereas B shows the
proportion of sons produced by females mated to nonornamented (so, light
green) and ornamented (s;, dark green) males. Offspring sex ratios are ini-
tially unbiased (so = 51 = 0.5), but they are allowed to evolve from the point
indicated by the vertical dashed lines. Male ornamentation and female
preference reach a stable level of exaggeration in the absence of sex-ratio
bias, then decline to zero as conditional sex allocation develops (subject
to counter selection on s; to restore an even population sex ratio; ref. 6) and
so and s; reach their optima. For the example shown, ¢, =0.2, ¢t =0.001, ¢, =
0.1, uo = 0.02, and u; = 0.3; the starting values for ornamentation and
preference were t = 0.5 and P = 1.5.
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the fitness benefit of male ornamentation. In effect, the condi-
tional strategy of sex allocation reduces the heritability of both low
attractiveness and strong preferences, undermining selection to
invest in costly ornamentation.

Individual-Based Simulations. Using individual-based computer
simulations, we can extend this analysis to a more realistic situ-
ation where male ornamentation and female preference vary
continuously and the evolutionary dynamics are subject to sto-
chastic demographic factors. We simulated a finite population in
which a costly male ornament and a costly female preference
could change over time through selection and mutation (see
Materials and Methods for full details). As in the earlier numerical
results, evolutionary change in the male ornament and female
preference follows predictions from standard analytical models of
sexual selection (14, 15, 22, 23), with both traits quickly evolving to
a stable, exaggerated level (Fig. 34, left of the dashed line).
Similar patterns are seen regardless of whether male ornamen-
tation is an arbitrary Fisherian trait (Fig. 3) or is a condition-
dependent indicator of “good genes” (see additional simulation
results in SI Results and Fig. S1).

We then allowed a conditional strategy of sex-ratio adjustment
to evolve by incorporating two additional traits, s_ and s, (6).
These traits determine a female’s sex-allocation strategy, with s_
(0 =s_ = 1) being the chance of producing a son when mated to
a male with below-average ornamentation and s, (0 < s, < 1)
that when mated to a male with above-average ornamentation.
Starting from a situation in which offspring sex ratios are un-
biased (s_ = s; = 0.5), conditional sex-ratio adjustment gradually
develops as predicted by theory (5, 6): Females mated to highly
ornamented males overproduce sons, whereas those mated to
less-ornamented males overproduce daughters (Fig. 3B). [Note
that with continuous variation in male ornamentation, s_ and s,
become biased to a similar extent (6).] This strategy then
weakens sexual selection, leading to a gradual decline in male
ornamentation and female preference (Fig. 34, right of the
dashed line).

When male ornamentation is a condition-dependent indicator
of good genes (23), sexual selection is weakened to a lesser ex-
tent than when it is a purely Fisherian trait (SI Results). In the
former case, the heritable benefits for a female who mates with
an attractive male are not entirely sex-limited; although only her
sons can profit from their father’s ornamentation genes, both her
daughters and her sons will inherit his genes for viability. Thus,
even when females exert a great degree of control over the sex of
their offspring, it still pays to mate with more ornamented males.
This difference notwithstanding, for both Fisherian and good
genes models of sexual selection, ornamentation and preference
are substantially reduced as conditional sex allocation develops.

To check that sex-ratio adjustment is directly responsible for
this decline, we ran another set of simulations in which strategies
with varying degrees of sex-ratio bias were introduced partway
through (Fig. 4). Initially, with the sex ratio fixed at 0.5, the male
ornament and female preference quickly evolve to a stable, ex-
aggerated level as before. We then introduced a biased sex-
allocation strategy for all females, causing them to produce more
sons when mated to an attractive partner and more daughters
when mated to an unattractive partner. The effect on sexual
selection is dramatic. For a moderate degree of bias, s, = 0.7
and s_ = 0.3, very rapidly the ornament and preference drop to
approximately one-half of their original level of expression.
Adjustment strategies involving weaker biases result in a smaller
drop, whereas with stronger biases the decline in ornamentation
is even sharper (Fig. 4).

Our simulation results confirm that the equilibrium levels of
female preference and male ornamentation are substantially
lower when sex-ratio adjustment is possible. In effect, sexual

15928 | www.pnas.org/cgi/doi/10.1073/pnas.1105721108
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Fig. 3. Coevolutionary dynamics of sexual selection and sex allocation (in-
dividual-based simulations). A shows the level of male ornamentation
(t, blue) and female preference (p, pink) under Fisherian sexual selection,
whereas B shows the female sex-allocation strategy in the same set of simu-
lations based on traits s, and s_, where s, (dark green) is the probability of
producing a son when her partner has above-average ornamentation and s_
(light green) is the probability of producing a son when he has below-average
ornamentation. Offspring sex ratios are initially unbiased (s, = s_ = 0.5), but
they are allowed to evolve from the point indicated by the vertical dashed
lines. All values are shown as the mean (solid line) + SD (stippling) from 20
replicate simulation runs. For parameter values, see Materials and Methods.

selection undermines itself by favoring a conditional strategy of
sex-ratio adjustment based on male attractiveness.

Discussion

Previous theory (5, 6) has confirmed the empirical suggestion (3)
that variation in male sexual displays favors conditional sex allo-
cation by females. Here, we have shown an unexpected conse-
quence of this process: that by reducing the fitness difference
between females with attractive and unattractive partners, this
sex-allocation strategy undermines the same selective force that
created it, causing male ornamentation to decline. Moreover,
because choosier females tend to mate with more highly orna-
mented males and, therefore, produce sons, their stronger pref-
erence genes are likely to be masked in the next generation,
weakening sexual selection still further. Our evolutionary simu-
lations predict a lower level of sexual display than in cases where
facultative sex-ratio adjustment is not possible. This finding
implies that, all else being equal, the most exaggerated secondary
sexual traits should be seen in species with little or no control over
offspring sex. For instance, we might expect that species with
genotypic sex determination will have more exaggerated sexual
ornamentation than closely related species with temperature-
dependent sex determination, assuming that the latter mechanism
affords parents greater control over the sex of their offspring.

It is known that the evolution of phenotypic plasticity in a
quantitative trait can alter the evolution of the average pheno-
type for that trait (24-27). Here, we have shown a related effect:
that plasticity in one trait (sex-ratio bias) can alter the evolution
of another trait (ornamentation) on which it is conditional. We
propose that this phenomenon is not restricted to sex allocation,
but is an example of a more general principle. Whenever heri-
table variation in fitness is maintained for a given trait, selection
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Fig. 4. Stronger degrees of sex-ratio bias have stronger eroding effects on
sexual selection. The plots show the level of male ornamentation (t, blue)
and female preference (p, pink). Offspring sex ratios are initially unbiased
(s, = s_ = 0.5), but from the point indicated by the vertical dashed line,
females use a fixed sex-allocation strategy conditional on the male’s orna-
mentation. Three different degrees of sex-ratio bias are shown: s, =s_=0.5
(50-50, i.e., no bias); s, =0.7,s_=0.3 (70-30); and s, = 0.9, s_ = 0.1 (90-10). All
values are shown as the mean (solid line) + SD (stippling) from 20 replicate
simulation runs. For parameter values, see Materials and Methods.

should favor any conditional strategy that improves the fitness
prospects of the least successful phenotypes, but in doing so, it
erodes selection on the trait.

To illustrate the general nature of our argument, we give
examples from a range of contexts that do not involve sex allo-
cation. The first concerns kleptoparasitism (28), in which one
animal steals food that a conspecific has caught before the latter
can eat it. Selection for good hunting skills is expected to be
strong in any predatory species, but there may still be substantial
variation in hunting success because of mutations in polygenic
traits affecting the development of motor skills. If poor hunters
adopt kleptoparasitic behavior, however, this conditional strat-
egy will reduce fitness differences based on hunting success and,
thereby, weaken selection on hunting ability. Combined with the
costs incurred by parasitized hunters, the weakened selection may
lead to a decline in hunting skills that, in turn, will reduce the
benefits of stealing. Thus, selection on hunting ability and klep-
toparasitism interact in a highly dynamic fashion.

The second example involves polygynous mating systems in
which access to females is determined by male dominance rela-
tions. In such systems, there will be strong selection for male
characteristics related to dominance, such as large body size. Slight
differences between males in these characteristics early in life may
largely determine their relative positions in the dominance hier-
archy, leading to substantial differences in lifetime reproductive
success. If small males adopt a “sneaker” tactic (29), however,
allowing them to achieve significant reproductive success by sub-
versive means, this conditional strategy will reduce fitness differ-
ences between males of high and low dominance rank and, thereby,
weaken selection on body size. This weakening of selection, in turn,
will alter the selection—mutation balance, allowing greater levels of
genetic variation for body size to persist in the population.

Our final example deals with costly dispersal. In many plant
and animal species, dispersal away from the natal habitat may be
favored despite the energetic cost or mortality risk associated
with this movement. The benefits of dispersal will typically be
frequency-dependent, with the greatest pressure to disperse oc-
curring when most individuals stay at home. However, if indi-
viduals that forgo dispersal can adapt better to overcrowding, for

. Andersson M (1994) Sexual Selection (Princeton Univ Press, Princeton, NJ).

2. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio
of offspring. Science 179:90—92.

3. Burley N (1981) Sex ratio manipulation and selection for attractiveness. Science 211:
721-722.

4. West SA (2009) Sex Allocation (Princeton Univ Press, Princeton, NJ).
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example, through niche construction, then the strength of se-
lection on dispersal will be weakened. Selection favors a strategy
that mitigates the fitness disadvantage of staying in the natal
habitat, and this plasticity erodes directional selection on the
ability to disperse away from that habitat.

These diverse examples show that our model applies to a broad
range of contexts. The evolutionary feedback process we have
described is likely to be a widespread and important force main-
taining phenotypic variation in the face of directional selection.

Materials and Methods

Details of the Individual-Based Simulations. The individual-based simulations
were similar to those described in an earlier paper (6). In the main text, we
focus on Fisherian sexual selection, whereas the simulations for good genes
sexual selection are presented in S/ Results. We modeled a population of
5,000 individuals, each with diploid, autosomal genetic values for the fol-
lowing traits: p, coding for preference (expressed only by females); t, coding
for ornamentation (expressed only by males); and two sex-allocation traits, s_
and s, (expressed only by females). The value for p can take any real number,
whereas t is limited to positive values and s_ and s, are limited between
0 and 1. We chose to restrict t to positive values because this range might
better represent certain forms of male display (30), for example, the height
of a plumage crest, but we obtain similar results when male ornamentation
can also take negative values (see additional simulation results in S/ Results
and Fig. S2). Female preference and male ornamentation are both assumed
to be costly; survival to maturity is maximized for p = 0 and t = 0 and declines
away from these optima as specified by the functions exp(-c;p?) and
exp( - cmt?), where ¢t and ¢, are positive constants.

For reproduction, females are drawn from the population with a chance
proportional to their survival probability. Each surviving female then samples
10 males, again weighted by survival probability, and chooses one of them on
the basis of his ornamentation. The chance that she picks a given male is
proportional to exp(cypt), where ¢, is a positive constant scaling the im-
portance of ornamentation to female choice. Thus, females with a positive
preference (p > 0) prefer more ornamented males, those females with
a negative preference (p < 0) prefer less ornamented males and those
females with p = 0 mate randomly. To facilitate sexual selection, we started
the simulations with a positive preference (22, 30); the same process occurs
when starting from a situation of random choice, but it takes longer.

Each mating produces a single offspring, whose genetic values are de-
termined by standard Mendelian inheritance. We assume that there is no
genetic dominance and that the loci are unlinked. Offspring sex is determined
by the father’s ornamentation and the mother’s sex-allocation strategy: the
probability of producing a son is s, when the father’s ornamentation level is
above average and s_ when it is below average. For each trait, we assume
that mutations occur in a small fraction of offspring (with probability u, for
p, ue for t, and us for s_ and s,), causing the genetic value to change upward
or downward by an amount drawn from a uniform probability distribution
(up to a certain maximum amount). Upward and downward mutations are
equally likely except in the ornamentation trait t, for which we assume that
a downward mutation bias reduces ornamentation by an average amount g
(6, 15). Reproduction continues until a total of 5,000 offspring have been
produced, at which point all of the adults die and are replaced by the off-
spring generation. The same cycle of events was repeated for 100,000
generations, which is the timespan depicted in our figures. Computer code
for the simulations is available from the authors upon request.

For the results shown in the main text, the parameter values were ¢, = 1.0,
¢;=0.001, ¢, = 0.5, yp = p¢ = ps = 0.05 and g = 0.02, with the average genetic
values in the initial population setatp=1,t=0, ands, =s_ = 0.5. How-
ever, the eroding effect of sex-ratio adjustment is seen for a wide range of
parameter values, whenever sexual selection leads to exaggerated male
ornamentation.
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S| Model

Full Derivation of the Resident Transition Matrix A. Here, we explain
how we derived the entries of the transition matrix A (Eq. 1),
which governs the dynamics of a resident population with or-
namentation level ¢, preference p, and sex-allocation traits sy and
s1. We reproduce the matrix here for clarity:

1 [(]—a)(l —S(])+a(1 —Sl)]Vf q0(1 —So)Vf ql(l —Sl)Vf
A=5k| [(1-a)so(l—po) +asuu Vo goso(L=po)Vmo  qr8141Vmo
[(A—a)sopg +asi(L—pp)lvm  qosopovmt  q1s1(1—py)vm1
[S1]

To recap: The first column of A (a;) represents the per-capita
reproductive output of females, the second column (a,) that of
type-0 males, and the third (a3) that of type-1 males. The three
rows represent, from top to bottom, the result of this re-
productive output in terms of surviving females, type-0 males,
and type-1 males in the next generation. We will use the notation
a,n to represent the element occupying the nth row and mth
column of matrix A.

The top-left entry (a;;) represents the per-capita reproductive
contribution of mothers in the current generation to mothers in
the next generation. A proportion 1 — a of their matings are with
nonornamented males, with whom a proportion 1 — s of the
offspring they produce are daughters. The remaining @ matings
are with ornamented males, with whom a proportion 1 — s; of
the offspring they produce are daughters. In both cases, these
daughters survive to reproduce with probability vy.

The middle-left entry (a»;) represents the per-capita repro-
ductive contribution of mothers in the current generation to
nonornamented fathers in the next generation. A proportion 1 —
a of these mothers’ matings are with nonornamented males, with
whom a proportion s, of the offspring they produce are sons;
with probability 1 — ug, these sons are unaffected by mutation
and, therefore, inherit their father’s lack of ornamentation. The
remaining o matings are with ornamented males, with whom
a proportion s; of the offspring they produce are sons; with
probability 4, these sons lose their father’s ornamentation
through mutation. In both cases, these nonornamented sons
survive to reproduce with probability vp.

The bottom-left entry (as;) represents the per-capita re-
productive contribution of mothers in the current generation to
ornamented fathers in the next generation. A proportion 1 — a of
these mothers’ matings are with nonornamented males, with
whom a proportion sy of the offspring they produce are sons;
with probability 4, these sons mutate into the ornamented state.
The remaining o matings are with ornamented males, with whom
a proportion s; of the offspring they produce are sons; with
probability 1 — x4, these sons are unaffected by mutation and,
therefore, inherit their father’s ornamentation. In both cases,
these ornamented sons survive to reproduce with probability v,,;.

The top-center entry (aj,) represents the per-capita re-
productive contribution of nonornamented fathers in the current
generation to mothers in the next generation. The expected
number of mates for these fathers is go. A proportion 1 — s of
their offspring are daughters, who survive to reproduce with
probability vy.

The middle-center entry (a,,) represents the per-capita re-
productive contribution of nonornamented fathers in the current
generation to nonornamented fathers in the next generation.
The expected number of mates for these fathers is go. A pro-
portion s, of their offspring are sons, who inherit their father’s

Fawcett et al. www.pnas.org/cgi/content/short/1105721108

lack of ornamentation with probability 1 — y, and then survive to
reproduce with probability vp,o.

The bottom-center entry (a3;) represents the per-capita re-
productive contribution of nonornamented fathers in the current
generation to ornamented fathers in the next generation. The
expected number of mates for nonornamented fathers is go. A
proportion s, of their offspring are sons, who mutate into the
ornamented state with probability o and then survive to re-
produce with probability v,,;.

The top-right entry (a;3) represents the per-capita re-
productive contribution of ornamented fathers in the current
generation to mothers in the next generation. The expected
number of mates for these fathers is ;. A proportion 1 — s; of
their offspring are daughters, who survive to reproduce with
probability vy.

The middle-right entry (a,3) represents the per-capita re-
productive contribution of ornamented fathers in the current
generation to nonornamented fathers in the next generation.
The expected number of mates for ornamented fathers is g;. A
proportion s; of their offspring are sons, who mutate into the
nonornamented state with probability y; and then survive to
reproduce with probability vpo.

Finally, the bottom-right entry (as3) represents the per-capita
reproductive contribution of ornamented fathers in the current
generation to ornamented fathers in the next generation. The
expected number of mates for these fathers is g;. A proportion s;
of their offspring are sons, who inherit their father’s ornamen-
tation with probability 1 — y; and then survive to reproduce with
probability vp,.

Finding the Relative Frequencies. For consistency, it is required that
all females (relative frequency y;) have the same reproductive
output as all males (Vo + Ym1), in other words that

a1yt = AYmo + a3Ymi1- [S2]

This equation is helpful in finding the dominant eigenvalue 4 of
A, which is the long-term growth rate of the resident pop-
ulation. Let y = (¥, Ymo» ym])T be the dominant right eigen-
vector of A, containing the stable relative class frequencies; this
eigenvector is given by Ay = 1y, or, in terms of the columns of
A, ajys + agymo + azym1 = Ay. Substituting S2 into this equation,
we get ly = 2a1ys =>4 = 2a1; = k(1 —5)v¢, where 5 = (1 —a)so+
asy is the average offspring sex ratio. The long-term growth
rate is therefore equal to the per-capita number of surviving
daughters. Note that k gets rescaled by density dependence so
that in a stable population 4 = 1, i.e., k = 1/(1 —5)vs (see refs. 1
and 2). For the rest of our analysis, we do not need an explicit
solution for the stable class distribution, but it will prove useful
to have explicit equations for y; and yy,1:

2pr = (1 =8)veyr + qo(1 —s0)veymo + q1 (1 —s1)viym1,  [S3a]
2ym1 = [(1—a)sopp + as1(1 — pg)[vmiye + GoSoHgVm1Ymo
+q151(1 = gy )Vm1ym1. [S3b]

Calculating the Selection Differentials for a Rare Mutant. The tran-
sition matrix B, as given in Eq. 2, is as follows:

10f4
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1 [[A=a)(d=5)+ad=8)Pt  qo(1-so)r  qu(L—s1)%
B=-k| [(1-&)S0(1-po) +aS14vmo qoso(1—po)vmo  q151p1vmo
[(1=a)Sopg + @81 (1 = py)[Pm qoSopoVm1 q151(1 = py )om1
[S4]

where mutant phenotypes have hats (™) to distinguish them from
resident phenotypes. This matrix describes the dynamics of rare
mutant individuals in the resident population.

To quantify the invasion prospects of mutants, we investigate
the sensitivity of B’s dominant eigenvalue w with respect to small
changes in the mutant trait values. If z and y are left and right
eigenvectors of A, then according to a standard result (3),

ow

_ T
i y; [S5]

where X is the mutant value for the trait of interest and the
derivatives are evaluated at the resident trait values. Because
we are mainly interested in the direction of selection, we will
ignore the denominator of the right-hand side (which is always
positive). The vectors y and z correspond to the stable class
distribution and class reproductive values for the resident pop-
ulation (3). As with y, it is not necessary to calculate the repro-
ductive values z explicitly, but we do need the following
equations for the reproductive values of type-0 and type-1 males:

24 zmo = qo[(1 —so)veze + 50(1 — pg)VmoZmo + SoptgVmizmi] [S6al

22 zm1 = q1[(1 =s0)veze + $141Vm0Zmo + $1(1 = g1 )Vm1zm1]. [S6b]
Now we can work out the selection differential for p, using the
numerator of the right-hand side of Eq. S5. Writing v’y = dv¢/dp

and o' = da/dp, we get

ow o7 @ Go—sve+vi(1-5) qo(1—sovi qi(1—s1)vi
%2 a'[s1p1 = s0(1 = pp)] 0 0 y
a'[s1(1 = py) = sopo] 0 0
[S7a]
. a'(so—s1)ve + V't /ve[(1 =5)ve y¢
:Z_ +q0(1_s0)vf ym0+LI1(1—S1)Vf le] [S7b]
22 a'[s1py —so(1 = po)] e
a'[s1(1 = 1) = sopo) vt
is3a) oy a/(S() —Sl)Vf + (Vf/Vf)Zﬂ Yt
=% a'lsipg —so(1—pg)] ye [S7¢c]
a'fs1(1- Ml)—soﬂo]yf
[SSa.b] [Zﬂ—zﬂ} Ve +Enyf- [S7d]
q1 q0 Vi

Likewise, the selection differential for ¢, with primes denoting
differentiation with respect to ¢, is

ow T 0 0 a;3q'1/q:
FaEY 0 0 aiq'1/q y
az1V'mi/Vmi  432V'm1/Vmi @330V m1/Vm1 +4'1/q1)
[S8a]
2T a13(q"1/q1)ymi
=51 a23(q"/q1)ym
(@31t 4+ a32Ymo + @33 Ym1 )V m1 /Vm1 + @33(q'1/q1)Ym1
[S8b]
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o a13(q'1/q1)ymi
2 a23(q"1/q1)ym
24(V'm1 /Vm1)ym1 + a33(q"1/q1)ym1

[$3b) [S8c]

1
= ﬂ(q'l /q1)(@132¢ + a23Zmo + @33Zm1) Ym1 + (Vim1/Vm1) Zm1 Ymi
[S8d]

[S6b

=](q’1/q1)zm1ym1 + (Vi1 /Vm1) Zm1 Ymi - [S8e]

Next we turn to the sex-allocation traits. The selection differential
for sg is

ow 1-a

%~ 201 sy [59a]

—vt + (1= g) Vim0 Zmo + HoVm1 Zm1] Yt

l-a ViZ¢ 1 —S0
=774 = |- 1- m0 4m ml4m
2(1_5)”{ o T veze + (1= pg)Vmo Zmo + HoVm1Z 1} Vi
[S9b]
- 1-a ViZg 2(1 —§)sz [S9C]
T 2(1-sve| o qoso ™ M
1 a|Zmo 1
= : S9d
50 [610 2(1 —5)]% (591
whereas that for s, calculated in a similar way, is
ow  alzm 1
— === . 1
63‘] 51 [q1 2(1 —g):|yf [S 0]

The selection differentials S7d, S8e, S9d, and S10 form Egs. 4-7.

Numerical Simulations. For numerical simulations, we need to
make some additional specific assumptions. Let r = exp(c,pt)
be the odds that a resident female with preference p chooses a
type-1 male with ornamentation level ¢ over a type-0 (non-
ornamented) male, where ¢, is a positive constant. Then the
probability a that such a female will mate with a type-1 male is
given by

= m [S11]
Ym0 +7Ymi1

Eq. S11 is actually an implicit equation for a, because the class
frequencies y,,; will depend on a. However, for a mutant female,
the class frequencies are constant, giving o' = a(1 —a)(dr/dp)/r.
The odds that a type-1 male with mutant ornamentation level 7 is
chosen by a resident female is 7 = exp(c,pi), which makes his
expected number of mates

7
q —_— S12
& ymO +YYm1 [ ]

and, therefore, ¢'1/q1 = (dr/dt)/r. Likewise, §o =y¢/(Ymo+
rym1) = qo (the expected mating success of mutant and resident
type-0 males is identical because neither expresses an ornament).
Finally, we assume (as in the individual-based simulations)
that viability decreases according to a Gaussian function with
pand
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vy = exp( —cfpz) [S13a]

Vm1 = exp( — cmt”) [S13b]
and vy, = 1.

Evolutionary dynamics can be modeled by using the dynamic
equationx = dw/dx|,_; for the traits p, , 5o, and s;. An example is
shown in Fig. 2.

SI Results

Good Genes Sexual Selection. For the good genes simulations, we
included an extra trait, v, to model genetic variation in viability,
which affects survival to adulthood. Female survival now de-
pends on her viability and her expressed preference, as specified
by the function v-exp(—cgp?), whereas male survival is pro-
portional to v-exp(—cmy?), where y denotes his expressed
ornamentation. This ornamentation is assumed to be condition-
dependent, with y = #v, which means that males of higher via-
bility are more ornamented for a given value of ¢. Thus, male
ornamentation acts as a conditional indicator of genetic viability
(4). Females choose on the basis of this condition-dependent
ornamentation; so now the chance that a given male is picked
from the sample of 10 males is proportional to exp(c,py).
Likewise, sex-ratio adjustment by females is based on the ex-
pressed ornamentation of her chosen partner, so it depends on
y rather than ¢. Mutations occur in both ¢ (with probability ;)
and v (with probability y,), but in contrast to the Fisherian

1. Pen |, Weissing FJ (2000) Towards a unified theory of cooperative breeding: The role of
ecology and life history re-examined. Proc Biol Sci 267:2411—2418.
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the need to be specific about density dependence. Oikos 74:218—224.

3. Otto SP, Day T (2007) A Biologist’s Guide to Mathematical Modeling in Ecology and
Evolution (Princeton Univ Press, Princeton, NJ).

A 77 1

Degree of exaggeration

simulations, those mutations in ¢ are unbiased (g = 0). Instead,
biased mutations are assumed to affect the viability trait v, re-
ducing its value by an average amount 4 (h > 0) and, thereby,
maintaining genetic variation between males (4, 5).

Fig. S1 shows the results of these good genes simulations with
parameter values ¢, = 1.0, ¢y = 0.0025, ¢y, = 0.5, p, = py = p, =
us = 0.05, and & = 0.02 and average genetic values starting at
p=1,1t=0,v=0.01, and 5. =5_ = 0.5. As in the Fisherian
simulations, male ornamentation and female preference co-
evolve to exaggerated levels under sexual selection, but then
decline as sex-ratio adjustment develops.

When Ornamentation Can Take Negative Values. We ran additional
simulations in which the genetic value for ornamentation could
take any real number, as in some previous models of sexual se-
lection (4, 6). Otherwise, the details of the simulations were kept
the same, with male survival maximized for ¢+ = 0 and declining
away from this optimum according to the function exp(—cmt?),
where c, is a positive constant.

Fig. S2 shows the results of these simulations for Fisherian
sexual selection with parameter values ¢, = 1.0, ¢; = 0.001, ¢, =
0.5, up = pr = pg = 0.05, and g = 0.02 and average genetic values
starting at p =1 and 7 = 0. The sex-allocation traits were ini-
tially fixed at s, =s_ = 0.5, but partway through the simu-
lations, we allowed these traits to evolve. As before, male orna-
mentation and female preference coevolve to exaggerated levels
under sexual selection, but then decline as sex-ratio adjustment
develops.
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Fig. S1. Coevolutionary dynamics of good genes sexual selection and sex allocation (individual-based simulations). A shows the level of male ornamentation
(t, blue) and female preference (p, pink) under good genes sexual selection, whereas B shows the female sex-allocation strategy in the same set of simulations
based on traits s, and s_, where s, (dark green) is the probability of producing a son when her partner has above-average ornamentation and s_ (light green) is
the probability of producing a son when he has below-average ornamentation. Offspring sex ratios are initially unbiased (s, = s_ = 0.5) but are allowed to
evolve from the point indicated by the vertical dashed lines. All values are shown as the mean (solid line) + SD (stippling) from 20 replicate simulation runs.
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Fig. S2. Coevolutionary dynamics of sexual selection and sex allocation when ornamentation can evolve either above (positive) or below (negative) its survival
optimum, as in some previous models of sexual selection. A shows the level of male ornamentation (¢, blue) and female preference (p, pink) under Fisherian
sexual selection, whereas B shows the female sex-allocation strategy in the same set of simulations based on traits s, and s_, where s, (dark green) is the
probability of producing a son when her partner has above-average ornamentation and s_ (light green) is the probability of producing a son when he has
below-average ornamentation. Offspring sex ratios are initially unbiased (s, = s_ = 0.5) but are allowed to evolve from the point indicated by the vertical
dashed lines. All values are shown as the mean (solid line) + SD (stippling) from 20 replicate simulation runs.
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