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Abstract Division of labor in social insects is determinant
to their ecological success. Recent models emphasize that
division of labor is an emergent property of the interactions
among nestmates obeying to simple behavioral rules. How-
ever, the role of evolution in shaping these rules has been
largely neglected. Here, we investigate a model that integra-
tes the perspectives of self-organization and evolution. Our
point of departure is the response threshold model, where
we allow thresholds to evolve. We ask whether the thresh-
olds will evolve to a state where division of labor emerges in
a form that fits the needs of the colony. We find that division
of labor can indeed evolve through the evolutionary branch-
ing of thresholds, leading to workers that differ in their
tendency to take on a given task. However, the conditions
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under which division of labor evolves depend on the
strength of selection on the two fitness components consid-
ered: amount of work performed and on worker distribution
over tasks. When selection is strongest on the amount of
work performed, division of labor evolves if switching tasks is
costly. When selection is strongest on worker distribution,
division of labor is less likely to evolve. Furthermore, we
show that a biased distribution (like 3:1) of workers over tasks
is not easily achievable by a threshold mechanism, even under
strong selection. Contrary to expectation, multiple matings of
colony foundresses impede the evolution of specialization.
Overall, our model sheds light on the importance of consid-
ering the interaction between specific mechanisms and eco-
logical requirements to better understand the evolutionary
scenarios that lead to division of labor in complex systems.

Keywords Response threshold model - Specialization -
Emergent properties - Genetic task determination

Introduction

Division of labor can be understood as the partitioning of
work among specialists in a system, leading to an overall
higher performance of the system. The study of division of
labor is relevant across several disciplines, such as econom-
ics, robotics, and biology, having a central place in the
understanding of social evolution.

In eusocial insects, such as ants, bees, wasps, and
termites, division of labor among workers in the non-
reproductive caste is often considered to be determinant of
their ecological success (Holldobler and Wilson 1990). At any
given time, a colony performs different tasks in parallel, with
different workers or groups of workers performing these tasks.
For a long time, the central question regarding division of
labor in eusocial insects concerned how seemingly simple
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individuals (from a cognitive perspective) can coordinate to
perform the necessary tasks in an efficient manner.

Workers of an insect colony are not likely to have a general
overview of the state of the colony, nor does a central com-
mand exist that distributes workers among tasks. It has been
suggested that workers must make choices based on local cues
of different behavioral stimuli and information obtained from
nestmates (Gordon 1996; Bonabeau et al. 1997; Page and
Mitchell 1998). Task specialization and an adequate worker
distribution over tasks are not controlled by a central agency
but emerge through self-organization from the interactions of
workers with their environment and nestmates. Several mod-
els have explored various types of behavioral rules that can
lead to self-organized division of labor (reviewed in Beshers
and Fewell 2001; Johnson 2010). However, these models do
not address the question how these rules could arise in the first
place (Duarte et al. 2011). Due to the impact of division of labor
on colony productivity, and hence fitness, one would expect
that the behavioral rules underlying division of labor are tar-
geted by natural selection to produce adequate colony-level
responses (Page and Mitchell 1998). Self-organization models
tend to neglect the link between division of labor and colony
productivity. Contrastingly, models that explicitly analyze the
adaptive value of division of labor (Wakano et al. 1998; Wahl
2002; Tannenbaum 2007), tend to neglect the behavioral

mechanisms behind it, treating individual task specialization
and task generalization as fixed behavioral strategies. There is
an urgent need for integrating both approaches and to study the
interplay between behavioral mechanisms and evolution
(Bonabeau et al. 1997; Page and Mitchell 1998; McNamara
and Houston 2009). Few models have attempted to do this (see
Waibel et al. 2006; Tarapore et al. 2009). Moreover, these
models have not focused specifically on the evolution of
specialization and its relationship with colony fitness.

The integration of the perspectives of self-organization
and evolution is straightforward to achieve by clearly dis-
tinguishing between the timescale of self-organization
(within generations) and the timescale of evolution (between
generations). Within generations, individuals have a genetic
make-up that determines the behavioral rules to which they
obey. Division of labor may emerge from the interaction
between individuals. Depending on how well the emergent
outcome fits colony needs, colonies will achieve lower or
higher fitness, i.e., they will produce fewer or more repro-
ductive individuals. Due to selection in the course of the
generations, those behavioral rules that lead to adaptive
division of labor will thrive (as illustrated by Fig. 1).

In our study, we consider the evolution of self-organized
division of labor by introducing evolution in a well-known
self-organization model, the response threshold model

-
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Fig. 1 Schematic representation of the model, encompassing the time
scale of self-organization (“work phase”) and the time scale of evolu-
tion (“selection phase”). At the start of each generation, M pairs of
reproductives found colonies, each with N workers. The colonies go
through a work phase where worker behavior is governed by the
threshold model of division of labor: depending on whether task-
specific stimuli are higher or lower than the genetically determined
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internal thresholds, workers will perform task 1, task 2, or do nothing.
Each task-specific stimulus increases from one time step to the next,
and it decreases again whenever a worker performs the task. After 7
time steps, colony fitness is determined as a function of the amount
work performed and its distribution over tasks. Colonies produce
reproductives proportionally to their fitness, and these individuals
found new colonies, which will enter a new work phase
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(Bonabeau et al. 1996; Bonabeau et al. 1998). This model
was chosen as point of departure because it has become a
reference model for task choice among empiricists (e.g.,
Detrain and Pasteels 1991; Page et al. 1998; O'Donnell
and Foster 2001; Weidenmiiller 2004; Robinson et al.
2009). The response threshold model assumes that individ-
uals have inherent thresholds to respond to stimuli associat-
ed with specific tasks and, in a group, the individuals with
the lowest threshold for a task will perform this task more
often. An intuitive analogy in terms of human behavior is
the sharing of house chores in humans: people with the
lowest threshold for dish-washing, for example, will re-
spond to the smallest accumulation of dishes, and will
therefore do the dishes most of the times. Division of labor
emerges from the differences between individuals in their
thresholds.

Different versions of the response threshold model have
looked at the effect of threshold reinforcement, colony size,
number of tasks and genetic diversity (Theraulaz et al. 1998;
Gautrais et al. 2002; Merkle and Middendorf 2004; Graham
et al. 2006; Jeanson et al. 2007; Gove et al. 2009) on
division of labor and colony performance. These studies
assume that task stimuli are well-mixed in the environment;
the cues used by individuals to choose tasks are therefore
global. A recent article has explored the effect of spatial
distribution of task stimulus on worker activity (Richardson
et al. 2011) based on response thresholds; the results of this
study suggest that a spatially explicit response threshold
model, with local cues, shows similar behavior as a non-
spatially explicit model with global cues, at least when only
one task is considered. Johnson (2010) showed that when
considering multiple tasks, the spatial distribution of task
stimuli can lead to short-term specialization, even in the
absence of thresholds. We are interested in the evolution
of long-term specialization, in which threshold distributions
are thought to play a large role. We therefore focus on the
simplest version of the response threshold model that allows
for division of labor, considering only two tasks and fixed
thresholds during worker lifetime (Bonabeau et al. 1996).

The initial model by Bonabeau et al. (1996) assumed
from the start that there were two groups of individuals in
a colony (referred to as castes), possessing different thresh-
olds for the existing tasks. When differences are assumed a
priori it is not surprising to find that individuals behave
differently and division of labor emerges. Our main goal is
to investigate under which conditions consistent differences
in individual thresholds may evolve from a homogeneous
population and thus give rise to division of labor. We also
test the ability of the response threshold model to generate
an adaptive distribution of workers over tasks.

We largely follow previous work on the response thresh-
old model when implementing the dynamics of task-
associated signals. If the stimulus for a task is above the

threshold value of an individual, the individual has a high
probability to perform the task; otherwise, the individual
will be less likely to perform the task. Task stimuli decrease
with work performed, making it less likely for individuals
with higher thresholds to become engaged in the task later
on. We start from homogeneous populations (where all
individuals have identical thresholds) and allow parameters
of the response threshold model to evolve, in order to
investigate the conditions under which threshold differenti-
ation (leading to division of labor) may evolve. In this
context we also examine how multiple mating affects the
evolution of thresholds and division of labor.

We focus on two aspects of division of labor: specializa-
tion, i.e., the probability that individuals stick to the same task,
and work distribution, i.e., the proportion of workers
performing the different tasks. Specialization may be adaptive
for two reasons: first, specialists may become more efficient at
their task, due to learning, training, or gain of valuable infor-
mation related to the task; second, specialization may allow
the colony to avoid the costs of switching tasks (due to
traveling time between task locations or cognitive costs)
(Dornhaus 2008). The distribution of workers over tasks is
also crucial since it should be adequate to the colony’s needs
(Gordon 1996).

Model structure
Within-colony dynamics

Individuals are assembled in M colonies with a fixed num-
ber N of workers (unless stated otherwise, M=1,000 and N=
100 in our simulations). Within-colony dynamics largely
follows Bonabeau et al. (1996) (see sections A and B of
the Electronic supplementary material (ESM)). Individuals
possess a threshold for each of the two existing tasks (6;, i=
1, 2) that may differ among individuals and is fixed through-
out the work phase. At T discrete time steps ¢ (0<¢<T, where
T=100 in our simulations), we assess all individuals for task
choice in a random order. Individuals perceive task-
associated stimuli S; with an error &; drawn from a normal
distribution of mean 0 and standard deviation c=1. For a
given task, the individual is willing to perform the task if the
perceived stimulus is larger or equal to the threshold. Oth-
erwise, the individual will not perform the task. This is
summarized by the function:

1, i Site>0
¢(Si79ia€i)—{()’ if Si+e<6; .

Individuals not motivated to perform any task will stay
idle. Individuals motivated to perform one of the tasks will
work on the task (Fig. 1). If individuals are motivated to do
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both tasks, they will perform one of the tasks at random. We
assume that when an individual works on a task, the
corresponding stimulus is immediately reduced (see below).
Hence, different individuals may perceive different levels of
stimulus for two reasons: the error (or noise) in stimulus
perception and the order in which stimuli are assessed.

In line with the Bonabeau et al. (1996) model, stimuli
change in time as follows: there is a constant increase J;
with every time step and a decrease of a; with every active
worker, where ¢; is the efficiency of work (how many work
units an individual can do per time step). The stimulus
dynamics is therefore described by the equation:

Si(t + 1) = Sl‘(l) + 5,‘ — 'A,'(t) (2)

where A4,(f) is the number of workers active with task i at
time step z In our simulations, §; and «; have the same
values for all individuals and tasks (6,=1 and «;=0.03),
unless indicated otherwise. These values were chosen be-
cause preliminary simulations indicated that these values
required the engagement of a majority of workers but were
still well within the work capacity of the colonies. The
chosen values are also equivalent to the values of stimulus
increase used in Bonabeau et al. (1996), thereby rendering
comparisons between the models easier.

Stimulus values have a lower boundary at zero; if re-
duced below zero by a worker, the stimulus is reset imme-
diately to zero. There is no upper boundary to the stimulus
level.

Fitness

For the evolutionary analysis, we considered two scenarios
on how colony fitness depends on the work performed. In
each scenario, we make assumptions on how colony pro-
ductivity w(?) at time step ¢ might depend on the work
performed on tasks 1 and 2 (4;(¢¥) and A,(?), respectively).
Subsequently, we assume that colony fitness W is propor-
tional to the geometric mean of these productivity values
over time (neglecting the first ten time steps, to avoid
initialization effects).

In our standard scenario, we assume that the productivity
at a given time unit is given by the weighted geometric
mean of A4;(t) and A4,(t):

w(t) = @F 0] =40 -p (0 (0 ()

where A(f) = A;(¢) + A2(¢) is the total number of acts per-
formed for both tasks andp; = 4, (¢) /A(t) is the proportion of
work devoted to task i. The exponent 3 is a weighing factor
indicating the relative importance of tasks 1 and 2, with 0
<(<1. If B=1/2, then both tasks are of the same importance;
if 5=3/4, the optimal work distribution is 3:1, with task 1
being performed three times more than task 2. Considering
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different values of 3 allows us to test the ability of colonies to
achieve different adaptive worker distributions. The multipli-
cation of different components forces colonies to work for
both tasks; working for only one task results in zero fitness.

As we will see, the above scenario puts much emphasis
on the total amount of work done, downplaying the distri-
bution over tasks. To correct for this, we considered another
scenario (Eq. 4). We changed Eq. (3) by strongly accentu-
ating the effect of the work proportion p;:

(p1(t) — mz) | @

w(t) = A(¢) - exp (— Y

The second term in Eq. 4 is a Gaussian with maximum in
p1=03 that drops rapidly to zero if the “standard deviation” o
is small (in our simulations, 0=0.1).

To start a new generation, each colony produces a num-
ber of reproductives proportional to the colony’s fitness. M
pairs of reproductives are drawn at random from the off-
spring pool to form the new colonies. In the version of the
model where colony foundresses are multiply mated (poly-
andry), M foundresses are first chosen at random; for each
foundress, m mates are then chosen at random. We also
considered the situation where both parents mated multiply
(polygynandry), but since the results did not differ from
polyandry they will not be presented here.

Ten replicate simulations of every parameter combination
were run for each model, for 40,000 generations.

Inheritance

New individuals in a colony originate from the mating of the
two parents of the colony, or from the mating of the colony
foundress with one of m males, in the case of multiple
mating. Offspring production occurs at two moments: a
fixed number of N workers are produced before the start
of the working phase, and reproductive offspring is pro-
duced at the end of the working phase. In case of multiple
matings, paternity is equally shared among males; for each
offspring, the father is chosen at random from the males
with which the female has mated.

For simplicity, all individuals are haploid and genetically
characterized by two genes, encoding the two task thresh-
olds as real numbers, #,>0 and 6,>0. When a new individ-
ual is produced, with probability » (the recombination rate)
it inherits one threshold from the mother and the other
threshold from the father. With probability 1—r the individ-
ual inherits both thresholds from the same parent. The
recombination rate lies between zero, when the two thresh-
olds are inherited as one gene, and one half, when the
thresholds segregate independently. For the simulations
shown in the main text, 7=1/2. We show results for »=0 in
the ESM.
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Mutations occur with probability p per gene whenev-
er new offspring is formed. The mutation step size is
drawn from a normal distribution of mean zero and
standard deviation o,. Thresholds must be equal or
larger than zero; when a mutation causes thresholds to
fall below zero, they are reset to zero. No upper limit is
set to the value of thresholds. In order to speed up
evolution we chose a high mutation probability (11=0.1). This
choice was compensated by the use of a relatively
small mutation step size (0,=0.1).

Specialization

When an individual starts a task, we determine whether this
is the same or a different task than the one previously done.
The probability g of performing the same task in two sub-
sequent time steps is a measure of individual specialization.
We average g over all workers in a colony, and normalize
the mean g by dividing it by the probability that individuals
would stay in the same task due to chance alone. This
probability is given by p? + p3, where p, and p, correspond
to the colony’s proportion of acts for task 1 and 2, respec-
tively. Note that individuals that remained idle for the entire
simulation are not taken into account for the calculation of g.

Cc
0

a log counts b log counts
01234567 012345867

1

It can be shown that 0 < q/(p% +p3) <2. To obtain a
standardized measure for the degree of mean worker spe-
cialization, we subtract 1 to obtain:

q
pi+ 13 ®
Hence, D varies from —1 to 1. For D=0, § = p;°> + p3,
implying that, individuals choose tasks randomly. D=1 is
achieved if all individuals fully specialize on one task, thus
dividing labor. D=-1 indicates that individuals always
switch between tasks from one time step to the next. In
our simulations, D was always larger than or equal to zero.

Results
Evolution of thresholds and the work distribution

Figure 2 shows a representative simulation for the standard
fitness scenario (Eq. 3) and 8=0.75. All replicates showed
essentially the same behavior. In less than 4,000 genera-
tions, both thresholds evolved to zero levels (Fig. 2a, b). At
first, a certain degree of specialization evolved in some
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Fig. 2 Evolutionary simulation of the response threshold model, for
(=0.75, under fitness scenario (Eq. 3). Frequency distributions of
thresholds (a, b), specialization (¢), work proportion (d), and the total
amount of work performed (e) over evolutionary time are shown.
Thresholds for both tasks were initialized at ten for all individuals.
The graphs show the first 4,000 generations. Grey scales on top
indicate the frequency distribution of the trait depicted over M colonies
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(M=1,000). Within about 2,000 generations, the two thresholds 6, and
0, evolve to values close to zero (threshold values of each colony’s
parents are shown). Throughout the simulations, the proportion of
work spent on task 1 (p;; d), was close to 0.5, although a work
distribution of p; = = 0.75 would have been optimal. Specialization
D first increased and later dropped to zero again. The total amount of
work (4=A4,+4,) increased over evolutionary time
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colonies (D varying between 0 and 0.5), but specialization
disappeared as soon as both thresholds reached zero
(Fig. 2c). Throughout evolutionary time, the evolved value
of p; was always close to 0.5 (Fig. 2d). Hence, both tasks
were performed equally often, even though a value of
Py =B =0.75 would have been optimal. In view of the
drop in threshold values, it is not surprising that the
total amount 4 of work performed increased in the
course of evolutionary time (Fig. 2e).

In many other simulations (see below) we also found that
selection in favor of a biased work distribution is not very
efficient and that the work distribution tends to stay close to
a value of p;=0.5. To understand this, we took a closer look
at the self-organization part of the model, namely at the
stimulus dynamics (Eq. 2). At equilibrium (AS;=0), the
number of workers for task i is:
Z,’ = 5,‘ / a; (6)

Therefore, at stimulus equilibrium, the number of work-
ers in each task depends solely on the stimulus parameters
and not on the threshold values (see section B of the ESM).
As long as the values of §; and «; are the same for all tasks

(as in our simulations), Z,-Will take the same value for all
tasks i. Hence, any value of the thresholds should result in
the same (unbiased) distribution of workers over tasks,
given that stimulus equilibrium can be reached. Note, how-
ever, that the threshold values might affect whether and after

how many time steps a stimulus equilibrium is reached in a
simulation. These considerations are corroborated by (non-
evolutionary) simulations of the work phase of the response
threshold model (see Fig. S6 of the ESM).

The fact that the thresholds evolve to zero (Fig. 2a, b) is
perhaps the most remarkable result of the simulations. Once
the thresholds have disappeared, the whole threshold mech-
anism breaks down. Individuals are always motivated to
perform any of the tasks, and individuals do not differ in
their task preference.

In the simulations considered thus far, the thresholds
presumable converged to zero because this maximizes the
total amount work a colony can do. In fact, all individuals
are busy all of the time when their thresholds are equal to
zero. An obvious reason for this outcome might be the
choice of fitness scenario (Eq. 3), giving a high premium
to an increase in 4. For this reason, we also considered the
alternative fitness scenario (Eq. 4).

The evolutionary outcome changed when selection on a
biased work distribution was made very strong, as in fitness
scenario Eq. (4). Figure 3 shows the outcome for parameter
values 3=0.75 and 0=0.1. Now, the threshold #, for the
“favored” task 1 still converged to zero, but the threshold for
the other task, 6,, exhibited evolutionary branching (Geritz
et al. 1998) (Fig. 3a, b). In other words, a polymorphic
population results where part of the population has 6,
values close to 10, while the rest of the population has
higher values that increase to values around 25. Due to
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Fig. 3 Evolutionary simulation of the response threshold model, for
(=0.75, under fitness scenario (Eq. 4) (¢=0.1). Graphical conventions
follow Fig. 2. M=100. 0, decreases to zero (a) and 6, branches (b). A
proportion of colonies shows worker specialization, with D values
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larger than 0.5 (¢). Coinciding with the drop of #; to zero, work
proportion, p; increases slightly but does not reach the optimal value
of 0.75 (d). Total amount of work, 4, also increase over evolutionary
time (e)
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branching, p; evolved to a higher value than 0.5 but
still it remained at a considerably lower level than the
optimal value p, = = 0.75 (Fig. 3d). Averaging across
replicates, 33.8+£3.8 % (mean+SD) of colonies show a
high degree of specialization (D ranging between 0.5
and 0.7; Fig. 3c). Specialization arises in those colonies
where the parents differ in their values at the 6, locus
(Fig. S5 of the ESM).

Evolution of division of labor under these circumstances
is a side-effect of selection on work ratio. Increasing thresh-
olds leads to colonies achieving stimulus equilibrium later
during the simulation; hence, overall, less work will be
done for the task with the highest thresholds. Colonies
which are polymorphic for 6, have an advantage be-
cause workers with 6,=10 will maintain the stimulus at
a level between 15 and 20 (results not shown), hence
below 6#,=25. Consequently, in monomorphic colonies,
fewer workers are willing to perform task 2 than in
polymorphic colonies.

Evolution of specialization

In the previous simulations specialization only evolved when
a bimodal distribution of thresholds evolved due to evolution-
ary branching (as in Fig. 3b). This indicates that the distribu-
tion of thresholds is key to the emergence of specialization.
Indeed, a bimodal distribution of thresholds is assumed
from the start in the self-organization model of Bonabeau
et al. (1996). This model considers two “castes” of
workers (“majors” and “minors™) such that §, ™ > g, minors
and 6™ < ™ Not too surprisingly, the minors
specialize on task 1 while the majors specialize on task 2.
We obtained the same result under less constrictive conditions
when initializing a population by drawing individual thresh-
olds from two bivariate normal distributions (Fig. S6b in the
ESM). As in the model of Bonabeau et al. (1996), task
specialization converged to the maximal level D=1.

The question therefore arises when such a distribution of
thresholds can evolve from scratch, starting from a homo-
geneous population. In Fig. 3, the diversification of thresh-
old 6, was driven by strong selection for a biased work
distribution. To exclude this effect, we will from now on
assume 3=0.5. Moreover, we will mainly focus on our
standard fitness scenario (Eq. 3); in the ESM, we briefly
present the results for fitness scenario (Eq. 4).

In order to investigate whether evolution can shape col-
onies with a high degree of task specialization, we consider
a scenario where worker specialization has a direct positive
effect on colony fitness. To this end, we assume that switch-
ing between tasks is costly in terms of time. This is a simple,
mechanistic cost that may result from the fact that tasks are
spatially distributed (Sendova-Franks and Franks 1995),
without having to make assumptions on the cognitive

aspects of task performance. In our model, the switching
cost is a time delay: individuals switching tasks must wait ¢
time steps before engaging in the new task. We investigated
values of ¢ ranging from one to eight time steps). Evolution
of worker specialization occurred for ¢>2, in a highly con-
sistent way across replicates. In all replicate simulations, the
increase in specialization was associated with multiple evo-
lutionary branching of the two thresholds in the population.
A typical simulation is shown in Fig. 4. Some colonies
achieved a high degree of specialization, but there was much
variation in specialization across colonies (Fig. 4c). This
outcome was again highly consistent across simulations
(Fig. S12a in the ESM). Averaging across replicate simula-
tions, 55.6+£2.8 % (mean+SD) of the colonies showed a
value of D>0.5 at the end of 40,000 generations. As a result
of specialization, individuals are able to avoid the cost of
switching and the number of working periods increases
(Fig. 4e). Across colonies, there is a clear positive relation-
ship between specialization and the number of working
periods achieved (Fig. S8 in the ESM).

The level of specialization of the colonies depends on
the thresholds possessed by the parents of the colony.
When parental thresholds are similar for both tasks
(i.e., elmother _ alfather and ezmother _ ezfather )’ colonies
show low mean specialization due to high similarity of
thresholds among workers (Fig. S9 in the ESM). When parental
thresholds differ for both tasks, colonies show higher mean
specialization. Yet, notably, maximal specialization (D=1) is
never reached, even when switching costs are very high (results
not shown). This can be understood by considering an example:
a colony where parental thresholds are §;, ™% = g,m°her — 10
and 0, fther — g, father _ 4. Owing to recombination, workers
produced in this colony will fall into 4 types according to their
thresholds: 0,=6,=10; 6,=60,=40; 6,=10 and 6,=40; and
0,=40 and 6,=10. The first two types of workers will have
no preference for either task, the third type will be more likely
to perform task 1 and the fourth type will be more likely to
perform task 2. Hence, the mean level of specialization in the
colony is decreased by the presence of workers of types 1 and 2.

The work distribution was also variable across colonies
(Fig. 4d), in a consistent way across simulations (Fig. S10b
in the ESM). Averaging across simulations, 73.3+£2.2 %
(mean+SD) of the colonies show a proportion of work for
task 1 between 0.45 and 0.55 (Fig. 4d).

Under strong selection on worker distribution (fitness
scenario (Eq. 4)), specialization typically did not evolve
when (=0.5, for any of the switching costs tested (see
Fig. S13 in the ESM).

Effects of multiple mating

It is often assumed that multiple mating of the queens has a
beneficial effect on division of labor in social insect colonies
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Fig. 4 Evolutionary simulation of the response threshold model, when
switching tasks is costly (¢=2) and §=0.5, under the standard fitness
scenario (Eq. 3). The setup of the simulations and the graphical con-
ventions are identical to Fig. 2. Both thresholds diverged quickly into
equally spaced multiple branches (a, b). Worker specialization in-
creased quickly in the first 500 generations, with 55.6+2.8 % (mean

(Oldroyd and Fewell 2007). To investigate whether this
effect also occurs in the threshold model, we allowed foun-
dresses to mate m = 2, 5, 10, or 15 times. As shown in
Fig. 5, the number of matings does indeed have a strong
effect on the evolution of specialization. Perhaps surprising-
ly, however, the evolved degree of specialization decreased
with the number of matings. When females mated with two
different males, the simulation results resemble those in the
monogamy scenario considered in “Evolution of specializa-
tion.” However, fewer branches of the thresholds evolved
within the runtime of a simulation (see example simulation
in Fig. S14 in the ESM), and a lower proportion of colonies
achieved D>0.5 (Fig. 5a). When increasing the number of
matings, threshold branching and the associated evolution
of specialization occurred in fewer and fewer simulations.
For m =5, 10, and 15 matings, the number of simulations in
which the thresholds branched within 40,000 generations
was eight, five, and two out of ten replicates, respectively.

Discussion

In our study, we have analyzed the response threshold
model (Bonabeau et al. 1996) from an evolutionary perspec-
tive. Previous work considered colonies with a priori differ-
entiated castes, where it is not too surprising that division of
labor will emerge. Our study shows that evolution, starting
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+SD) of the colonies having a D value larger than 0.5 (¢). The work
distribution varied among colonies around p;=0.5 (d). In the first
generations, colonies have perform a low amount of work (e), reflect-
ing the fact that workers switching tasks have to stay idle for c=2 time
periods. Part of the population recovers from this cost by evolving
specialization

from fully undifferentiated, unspecialized workers, can lead
to a state where differentiated workers divide labor in a self-
organized manner. The trajectory to specialization involves
evolutionary branching (Geritz et al. 1998) at the loci influ-
encing task choice. Evolution of division of labor occurred
when task-switching incurred costs to the colony, in terms of
time that individuals had to spend inactive when transition-
ing between tasks. Interestingly, task specialization also
evolved without direct benefits of specialization when
task-related thresholds branched for other reasons (strong
selection in favor of a biased distribution of workers over
tasks).

Our results highlight an important drawback of the behav-
ioral architecture encapsulated in the response threshold mod-
el. We have shown that, at stimulus equilibrium, the
distribution of workers over tasks is not governed by the
distribution of thresholds in the population, but by the param-
eters of the stimulus dynamics. Even when selection on a
particular distribution of workers over tasks is strong, the
response threshold mechanism does not easily evolve a worker
distribution that differs from the requirements imposed by the
stimulus dynamics parameters. This constraint is relevant for
the course and outcome of evolution. While it is easy to
imagine how internal properties like thresholds could differen-
tiate in the course of evolution, this is much less so for the
properties of the stimulus dynamics. At least for tasks in which
the stimulus corresponds to environmental cues such as
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Fig. 5 Evolution of worker specialization, D, in example simulations with different number of matings, m, under the standard fitness scenario
(Eq. 3). The evolved level of differentiation decreases with the number of matings

temperature, humidity or food availability, the stimulus
dynamics will be mainly externally imposed and hence,
not subject to evolution. This general property of the
threshold model indicates how the model could be put to the
test experimentally. Our analysis leads to two specific empir-
ical predictions. First, when placed under the same stimulus
conditions, colonies with different distributions of thresholds
should eventually produce the same distribution of workers
over tasks. Second, when placed under different stimulus
conditions, colonies with the same threshold distribution
should, in a predictable manner, achieve different distributions
of workers over tasks.

In our standard scenario, specialization only evolved
under relatively high switching costs (i.e., when switching
costs lead to a 25 % or larger decrease in colony perfor-
mance; Fig. S7 in the ESM). When costs were lower, the
evolutionary tendency toward low thresholds was dominant,
hampering evolutionary branching. In nature, the costs in-
volved in switching tasks are most likely dependent on the
tasks considered. It is plausible to consider that high costs,
time-wise, are involved in switching between tasks like
foraging and nursing, since the physical location of these
tasks is far apart. Furthermore, to switch between such tasks,
individuals may also “pay” physiological costs—for exam-
ple, in the honey bee, the transition to foraging implies
physiological changes which take some time to reverse
(Huang and Robinson 1996). However, for other tasks
which are closely located and/or physiologically inde-
pendent, such as nursing and maintenance of nest tem-
perature, it is not plausible to consider high switching
costs and we would expect switching to occur more

often between these tasks, as seen in middle-aged honey
bees (Johnson 2003).

The main constraint on specialization in the current
implementation of the threshold model is the need for
non-random variation, where a part of the colony must
have 6;>>0,, and the other part #;<<60,. Note that here
division of labor is an emergent property, since it results
from the interaction of individuals with different combi-
nations of thresholds. The fact that threshold values in
the population evolve into multiple branches (i.e., the popu-
lation is polymorphic for threshold values) decreases the
probability that individuals inherit similar threshold
values, thus helping in creating the diversity needed
for specialization.

Such a constraint implies that the optimal colony phenotype
is destroyed by recombination. In accordance with this argu-
ment, we observed higher values of specialization in simula-
tions where thresholds evolved in complete linkage (see
section E of the ESM). Yet, even in the absence of recombi-
nation, a part of the colonies showed no specialization, owing
to the pairing of individuals with non-complementary thresh-
olds. In natural systems, the lack of division of labor resulting
from unfavorable combinations of parents could be avoided
through the evolution of disassortative mating. If mating would
preferentially occur between reproductives with a com-
plementary threshold, a much higher degree of task
specialization within the colony would result. Unfortu-
nately, little is known about mate choice in social
insects and it seems that it is unlikely to be an important force
in species such as ants and termites where males cannot
mate multiply (Boomsma et al. 2005).
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There is some evidence that multiple mating has beneficial
effects on division of labor owing to genetic task determina-
tion (e.g., Oldroyd and Fewell 2007). Improved colony per-
formance and increased disease resistance due to high intra-
colony genetic diversity are the two major explanations for the
presence of multiple mating in several species of eusocial
insects (Brown and Schmid-Hempel 2003). A few theoretical
studies, based on the response threshold model, have sup-
ported the hypothesis that multiple mating does have benefi-
cial effects on colony performance (Graham et al. 2006; Gove
etal. 2009; Tarapore et al. 2009). In view of this evidence, our
finding that increased number of matings did not facilitate the
evolution of specialization is surprising. A possible explana-
tion is that mutations in threshold values do not have as strong
an effect on colony fitness if the foundress is multiply-mated.
Under single-mating, a male and female with thresholds vary-
ing in the opposite direction (i.e., at the extremes of the
threshold distribution), would produce a colony with consid-
erably higher fitness, thus leading to a quick spread of the new
alleles in the population. If the female is multiply-mated,
parentage of workers will be shared equally among males
(the majority of which not carrying the beneficial mutations)
and only a small proportion of workers within the colony will
possess the threshold combination leading to specialization.
Our results suggest that multiple mating may only promote
specialization if genetic diversity in task-choice alleles is
already present. Our findings are also in line with previous
work that showed that, in general, multiple mating decreases
the variance in colony performance, and therefore is less
beneficial when the average colony performance is poor
(Rueppell et al. 2008). In our model, average colony perfor-
mance can be considered poor when task switching is costly
and colonies are monomorphic. These results once again
illustrate how adding evolution to self-organization models
may lead to different insights and conclusions.

Colony size has been argued to influence division of
labor, with larger colonies having more specialized workers
(Anderson and McShea 2001). Previous work on threshold
models supports this argument (Gautrais et al. 2002; Merkle
and Middendorf 2004; Jeanson et al. 2007). In our study, we
focused on a colony size of 100 individuals, but we also
considered colonies consisting of 20, 50, 500, and 1,000
individuals. Colony size did not qualitatively affect the results
obtained for any of the studied colony traits (see Fig. S17 in
the ESM). The discrepancy between previous models and ours
is likely owing to differences in the implementation of the
stimulus dynamics and of the threshold mechanism itself. A
more technical comparison of different threshold models
would be useful to fully understand how colony size can
influence division of labor under a threshold mechanism.

In evolutionary models of division of labor, choosing an
adequate measure of colony productivity or fitness can be
rather complex. In real social insects, the actual relationship
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between workload completed, ratio of work over tasks, and
colony fitness is not well defined. Here we tested two func-
tions which give emphasis to different fitness components.
Using a fitness function that gives high priority to the distri-
bution of workers over tasks produced different results than
our standard fitness scenario. Even in the absence of switching
costs, evolutionary branching of (one of the) thresholds and
worker specialization evolved. However, even under these
circumstances, the limitations of the threshold model
remained and the optimal work ratio was not achieved. Inter-
estingly, the same fitness scenario (Eq. 5) that induced task
specialization in the absence of switching costs (for the case
(5=0.75, favoring a biased distribution of workers over tasks)
prevented task specialization even in case of high switching
costs when a 1:1 work distribution was optimal (5=0.5). This
is likely because branching of thresholds introduces variation
in the work distribution, and colonies that deviate from the
optimal 1:1 work ratio are severely punished. Hence, in con-
trast to the other fitness function, the selective pressure on
work distribution functions as an obstacle to the evolution of
specialization. This illustrates that the simple architecture
encapsulated in the threshold model cannot cope opti-
mally with multiple selective pressures.

Several other avenues of research would be fruitful for
future studies. One possibility is to consider more open
behavioral architectures, for example using evolvable neural
networks, where external stimuli are picked up and further
processed by various layers of neurons, which eventually
determine what kind of behavior results from the given
input. Recent studies using neural networks indicate that a
diversity of evolutionary outcomes is conceivable under a
more open architecture, some of which are impossible in the
fixed response threshold model, such as the possibility for
the stimulus of one task to influence directly the behavioral
output for another task (Lichocki et al. 2012; Duarte et al. in
press). Such an open architecture can overcome the constraint
of the threshold model that only specific worker distributions
over tasks are feasible.

Another avenue of research is to consider the role of
phenotypic plasticity as a source of differentiation among
workers. Here, we consider behavior to be entirely determined
by genetic factors, but in reality it has been found that devel-
opmental plasticity plays an important role in generating inter-
individual variation (Oster and Wilson 1978; Robinson 1992;
Weidenmiiller et al. 2009). Likewise, experience has also been
shown to have an effect on task choice in real colonies
(Ravary et al. 2007). In an evolutionary version of the rein-
forced threshold model, where thresholds change after task
performance, we observe that experience-based specialization
overcomes the limitations imposed by recombination and
random mating (Duarte et al., in preparation).

Our study is one of the first in a framework where
complex adaptive systems are seen as the result of the
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interplay of natural selection and self-organization. More
such studies are needed to help clarify the roles of these
two forces in shaping such systems.
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