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Abstract The assembly of microtubules generates forces
that play a role in cellular motility processes such as the
motion of chromosomes during mitosis. Recently,
Mogilner and Oster proposed a model for the growth of
microtubules that agrees quantitatively with the force-
velocity relation measured for individual microtubules.
In addition, the authors predicted that the stall force for
any polymer consisting of N independently growing
proto®laments should increase as the square root of N .
We simulated this model and found that the stall force
increases linearly with N , and is in fact consistent with
the maximum force predicted by thermodynamic argu-
ments. We show that this discrepancy can be explained
by a more careful treatment of the ``o�-term'' in the
Mogilner-Oster model.
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Introduction

Forces generated by the assembly of microtubules are
thought to play a role in cellular motility processes such
as the motion of chromosomes during cell division
(InoueÂ and Salmon 1995). Both in vivo and in vitro,
microtubules switch between growing and shrinking
phases in a process termed dynamic instability (Desai
and Mitchison 1997). It has been shown that, during this
process, microtubules are able to generate both pushing
and pulling forces (InoueÂ and Salmon 1995). The
so-called force-velocity relation for a single growing
microtubule has recently been measured in vitro
(Dogterom and Yurke 1997). To understand this rela-

tion and to be able to predict the magnitude of the forces
that can be generated by protein assembly in general,
several models can be proposed.

Thermodynamic arguments

Let us consider a polymer consisting of N proto®la-
ments, where each proto®lament is a linear aggregate of
protein subunits. A microtubule, for instance, consists of
13 parallel proto®laments forming a hollow tube,
whereas actin ®laments have two proto®laments forming
a helix. The growth or shrinkage of such a polymer
results from the imbalance between the addition and
removal of protein subunits at the ends of the proto®l-
aments. Thermodynamic arguments state that the ratio
between the rate of subunit addition, kon, and the rate of
subunit removal, koff, is related to DG, the gain in
(Gibbs) free energy upon addition of one subunit, in the
following way (Hill 1987):

kon
koff
� exp�DG=kBT � �1�

where kB is Boltzmann's constant and T is the absolute
temperature. Note that, for microtubules, DG is ex-
pected to be di�erent depending on whether the polymer
is in a growing or shrinking phase. Growth of the
polymer involves the net assembly of tubulin-GTP,
whereas shrinkage involves the net disassembly of
tubulin-GDP. Here we do not consider sudden changes
in polymerization dynamics due to switching between
these two phases (dynamic instability), but only consider
the polymerization process in the growing phase itself.
When DG is positive in this phase, the on-rate exceeds
the o�-rate, resulting in a net growth of the polymer
with a velocity given by: m � d�kon ÿ koff�, where d is the
size of the protein subunit.

These same thermodynamic arguments predict that
the maximum force that can be generated by the as-
sembly of a polymer consisting of N proto®laments (the
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stall force) is given by DG divided by d=N , the added
polymer length per subunit (Hill 1987):

Fstall � DG
d=N

� NkBT
d

ln
kon
koff

� �
�2�

When a load force equal to Fstall is applied to the end of a
growing polymer the amount of work, Fstalld=N , that has
to be performed on average for the addition of a subunit
is exactly equal to the free energy of polymerization.
The system is in equilibrium and no net growth occurs.
In the presence of a ®nite force, F < Fstall, one expects
that the ratio between the on- and the o�-rate changes in
the following way:

k�on
k�off
� exp�DG=kBT � exp�ÿF d=NkBT �

� kon
koff

exp�ÿF d=NkBT � �3�

If the (arbitrary) assumption is made that the force has
no e�ect on the o�-rate, this leads to the following
prediction for the force-velocity relation:

m � d kon exp�ÿF d=NkBT � ÿ koff� � �4�

Brownian ratchet models

Thermodynamic arguments ignore the possible e�ects of
geometrical details of the growth process on the force-
velocity relation. More mechanistic arguments that take
these details into account are based on ``Brownian
ratchet'' models (Peskin et al. 1993). In these models a
barrier is pushed against the end of the growing polymer
with a force F . Subunits can add to the polymer only
when thermal ¯uctuations of either the polymer tip or
the barrier position allow for a gap between the end of
the growing polymer and the barrier large enough to
insert a new subunit. In the limit that thermal ¯uctua-
tions are fast compared to the frequency at which new
subunits attach, the on-rate is simply multiplied by the
probability for a gap of the correct size l to occur:
k�on � kon exp�ÿFl=kBT �.

For a single proto®lament (N � 1), these models
predict a force-velocity relation identical to the one given
in Eq. (4), and no clear distinction exists between the two
approaches. For N � 2 or larger, this result may still be
expected to hold if the geometry of the growing polymer
is such that the gap size needed for the addition of every
subunit is equal to d=N (Peskin et al. 1993). Or, in other
words, if the applied force a�ects the addition of every
subunit and the growth of every proto®lament contrib-
utes to the work. However, experimental measurements
of the force-velocity relation suggest that this is not the
case for growing microtubules (Dogterom and Yurke
1997). In these experiments it was found that the velocity
decreases faster with the applied force than predicted by
Eq. (4). One way to interpret this result is that in fact
only a few of the proto®laments are able to contribute to

the work, and that therefore the exponential decay of the
velocity is faster than predicted by Eq. (4).

Recently, Mogilner and Oster proposed a model that
explicitly takes into account the growth geometry of a
multi-proto®lament polymer in the simplest way. They
introduced a generalized ratchet model in which they
considered a polymer consisting of N independently
growing proto®laments with a barrier pushed against the
longest ®lament (Mogilner and Oster 1999) (Fig. 1). In
this model the proto®lament length distribution is free to
evolve, depending on the local rates of addition and
removal of subunits, while possible interactions between
the neighboring ®laments are ignored. It is assumed that
the force a�ects the rate of subunit addition only for
®laments whose tips are within a distance smaller than d
from the barrier, and that the local on-rate for such
®laments only depends on the gap that needs to be cre-
ated between the leading tip and the barrier.

When the authors treated the ®lament tip distribution
as a continuum, they were able to solve this model nu-
merically in the limit that koff is zero. They found that
for any ®nite force a steady state ®lament tip distribu-
tion is reached. The number of ®lament tips within a
distance d from the leading ®lament, considered to be

Fig. 1 Discrete version of the Mogilner-Oster model for a polymer
with N � 5 independently growing ®laments. A force F is applied at a
barrier supported by the leading ®lament. Initial conditions ®x the
distance between neighboring ®laments at r � d=N , so that at every
position denoted by n �x � nr� at most one ®lament tip can be found.
The probability to ®nd a ®lament tip at position n is given by pn,
where p0 � 1. The on-rate is given by kon for every ®lament whose tip
is at a position n � N . When n < N , the on-rate is given by
kon exp�ÿF Dxon=kBT �, where Dxon is the length added to the polymer
by the growth of that ®lament. The o�-rate is given by koff for every
®lament. Dxoff is the length subtracted from the polymer when the
leading ®lament loses a subunit. At the stall force the two
con®gurations shown are in equilibrium: p3Dxonkon
exp�ÿFstall2r=kBT � � koffDxoffp2�1ÿ p1� [see Eq. (11b)]
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the number of ``working'' ®laments, was indeed found to
be smaller than N and to increase with increasing force.
For N � 13 (the case of microtubules) the resulting
force-velocity relation was found to be remarkably
consistent with the experimental data, despite the fact
that koff was taken to be zero.

The authors then used this model to predict the stall
force for a multi-proto®lament polymer. They intro-
duced a ®nite koff in the force-velocity relation and found
that the stall force depends on the square root of the
number of ®laments:

F �stall �
kBT
d

�������
kon
koff

s ����
N
p

�5�

Here we argue that within this model the stall force is
instead linear in N as predicted by thermodynamic ar-
guments [Eq. (2)], as can be readily seen from a simu-
lation of the Mogilner-Oster model for ®nite koff. We
show how this result can be obtained analytically from a
discrete version of the model by a more careful treat-
ment of the term describing the removal of subunits in
the force-velocity relation (the ``o�-term'').

Methods

Simulations of the Mogilner-Oster model

We simulated the growth of a polymer consisting of N
parallel ®laments (see Fig. 1 for N � 5), each consisting
of a linear array of subunits with size d. As an initial
condition the ®rst (upper) ®lament was chosen to be the
longest ®lament and a barrier was placed at its tip. The
tip of the second ®lament was placed a distance d=N
from the barrier, the third at 2d=N , and so forth. This
choice of tip positions corresponds to an initial condi-
tion in which all the tips are evenly distributed over an
interval of size d. A load force F was applied to the
barrier.

For each time step we choose N times randomly one
of the ®laments. If the ®lament tip was at a distance
larger than d from the barrier, a subunit was added with
probability konds, and a subunit was removed with
probability koffds, where ds is the duration of the time
step. For ®lament tips within a distance d from the
barrier these probabilities were konds exp�ÿF �dÿ x�=
kBT � and koffds, respectively, where x is the distance
between the ®lament tip and the barrier. Note that the
e�ect of force on the on-rate is related to the gap size
needed between the longest ®lament and the barrier,
given by dÿ x. After addition of a subunit to any ®la-
ment within a distance d from the barrier, this ®lament
became the new leading ®lament and the barrier was
moved to the position of its tip.

After the distribution of ®lament tips was allowed to
reach steady state, the growth velocity was computed by
dividing the displacement of the barrier over m time

steps by mds. This was repeated for di�erent values of F
to obtain the force-velocity relation (Fig. 2). The stall
force was estimated by locating the force where this re-
lation crosses the zero-velocity axis. At the stall force the
distribution of ®lament tips was averaged over m time
steps to obtain the probability distribution of tip posi-
tions (inset Fig. 2).

The force-velocity relation

Analytically, the velocity of the growing polymer is
obtained by considering the average change in length of
the polymer (or position of the barrier) per unit of time,
assuming the system is in a steady state. This change is
just the di�erence between the length added due to
subunit assembly and the length subtracted due to sub-
unit removal:

m � mon ÿ moff � hk�on�F �Dxoni ÿ koffhDxoffi �6�
To compute the velocity we need to introduce qx, the
average number of ®lament tips present at distance x
from the barrier. It is important to note that our choice
of initial conditions imposes a number of restrictions on
qx. First of all, ®lament tips can only be found at dis-
tances given by multiples of d=N from the barrier. It is
therefore convenient to choose the shift r � d=N as our
unit of length, and measure distances as multiples of r.
Furthermore, at most one ®lament can be at a given
distance from the barrier at any given time. qx can
therefore be replaced by the probability 0 � pn � 1 to

Fig. 2 The force-velocity relation for growing microtubules. Squares
are the experimental data from Dogterom and Yurke (1997). Solid
lines are simulation results of the discrete Mogilner-Oster model for
two di�erent values of koff. Thick line: koff � 50minÿ1 (kon � 200
minÿ1); thin line: koff � 10minÿ1�kon � 160minÿ1). Other parame-
ters: N � 13; d � 8 nm; kBT � 4:1 pNnm; ds � 10ÿ3 min; m � 5�
105. Dashed lines are the corresponding curves predicted by Eq. (4).
Stars indicate the stall forces predicted by Eq. (2) for the two cases.
Note that the simulation results are not very sensitive to the value of
koff in the range where the experimental data were taken. Inset:
simulation result for the probability distribution of ®lament tip
positions at the stall force predicted by Eq. (2) for koff � 50min)1.
The x-axis gives the distance of the tip to the barrier
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®nd a ®lament at position n, at a distance x � nr from
the barrier. Note that p0 has to be equal to 1, since there
is always one ®lament tip at the barrier. At any given
time, the tip of any ®lament can only be found at dis-
tances from the barrier that are separated by multiples
of d � Nr, and ®nally, the total number of tips has to be
equal to N . We can therefore impose:X1
n�0

pn � N �7a�

X1
i�0

pn�iN � 1 for n < N �7b�

With this in mind, we compute the on-term in Eq. (6).
Any ®lament tip located at a position n < N from the
barrier will add a length Dxon � �dÿ x� � r�N ÿ n� to
the polymer at a rate given by:

k�on�F � � kon exp�ÿF �N ÿ n�r=kBT � �8�
The total average contribution due to addition of su-
bunits is thus given by:

mon �
XNÿ1
n�0

pn�N ÿ n�rkon exp�ÿF �N ÿ n�r=kBT � �9�

This expression is the discrete analogue of the term for
the average growth velocity derived by Mogilner and
Oster (1999).

To compute the o�-term in Eq. (6) we note that only
the removal of a subunit from the longest ®lament leads
to a decrease in polymer length. The decrease in length
Dxoff upon removal of a subunit from the longest ®la-
ment is equal to the distance of the next longest ®lament
from the barrier. This distance equals r with probability
p1; 2r with probability p2�1ÿ p1�, etc. The average de-
crease in polymer length per unit time is thus given by:

moff � koff

"
rp1 �

XNÿ1
n�2

nrpn

Ynÿ1
j�1
�1ÿ pj�

 !

� Nr
YNÿ1
j�1
�1ÿ pj�

#
�10�

where the ®nal term accounts for the possibility that the
distance between the two longest ®laments is larger than
d � Nr. In the article by Mogilner and Oster the o�-
term was simply taken to be koffd, leading to the pre-
diction of the stall force given by Eq. (5).

Results

We found in our simulations of the Mogilner-Oster
model that the stall force depends linearly on the num-
ber of ®laments, and is in fact exactly given by the
thermodynamic stall force given by Eq. (2) (Fig. 3). This
same result can also be obtained analytically. At the stall
force Fstall the net velocity is zero and mon � moff. The

system is in equilibrium, which means we can impose a
detailed balance condition between all pairs of tip con-
®gurations that can be transformed into each other by a
single subunit addition or removal event. An example is
given in Fig. 1: the two con®gurations shown are in
equilibrium so that we can write p3Dxonkon exp
�ÿFstall2r=kBT � � koffDxoffp2�1ÿ p1� for Dxon � Dxoff �
2r. All terms in the on-term [Eq. (9)] and the o�-term
[Eq. (10)] can thus be matched in the following manner:

p0Nrkon exp�ÿFstallNr=kBT � � koffNr
YNÿ1
j�1
�1ÿ pj� �11a�

pNÿnnrkon exp�ÿFstallnr=kBT �

� koffnrpn

Ynÿ1
j�1
�1ÿ pj� for 0 < n < N �11b�

konpn�N � koffpn for n > 0 �11c�
where the last equation gives the detailed balance con-
dition for subunit addition and removal events that do
not a�ect the length of the polymer. With the conditions
imposed by Eqs. (7) we only need Eq. (11c) to ®nd the
full solution for pn: given that p0 is equal to 1, Eq. (7b)
says that piN � 0 for every i > 0; for every n > 0 we have

pn�N � koff
kon

pn

[Eq. (11c)], which, for 0 < n < N , givesX1
i�0

pn�iN �
X1
i�0

koff
kon

� �i

pn � 1

[Eq. (7b)]. With

Fig. 3 Stall force as a function of the number of ®laments for the same
values of koff as in Fig. 2. The symbols are simulation results and the
dashed lines are the values predicted by Eq. (2)
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X1
i�0

koff
kon

� �i

� kon
kon ÿ koff

this leads to the following solution:

p0 � 1 �12a�
piN � 0 for i > 0 �12b�

pn�iN � kon ÿ koff
kon

koff
kon

� �i

for 0 < n < N and i � 0

�12c�
This solution was also found in our simulations (see
inset Fig. 2). For any n, Eqs. (11a) and (11b) now give
the same stall force as predicted by thermodynamic
arguments [Eq. (2)]:

Fstall � NkBT
d

ln
kon
koff

� �

Discussion

We have shown in this article that a discrete version of
the Mogilner-Oster generalized ratchet model leads to
the same prediction for the stall force of a multi-
proto®lament polymer as predicted by simple thermo-
dynamic arguments. We believe that the di�erent
prediction given by Mogilner and Oster (1999) is the
result of an oversimpli®cation of the o�-term in the
force-velocity relation.

This result leads to the suggestion that geometrical
details of the growth process may in¯uence the force-
velocity relation for forces smaller than the stall force,
but that they do not in¯uence the stall force itself. In
Fig. 2 we compare the full force-velocity relation pre-
dicted by simple thermodynamic arguments [Eq. (4)]
with our simulations of the Mogilner-Oster model. The
two curves converge for F � 0 and F � Fstall, but give
di�erent results in between. In our simulations of the
Mogilner-Oster model we found the same stall force

independent of the exact choice of the initial shift be-
tween neighboring proto®lament tips. We also found the
same result when we assumed that the force a�ected
both the on- and the o�-rate in a way consistent with
Eq. (3) or when we introduced an energy term connected
to lateral interactions between neighboring subunits (a
full description of the discrete model will be published
elsewhere).

Experimentally, it may thus be expected that infor-
mation about the details of the growth process and the
geometry of the polymer tip can be obtained from the
shape of the force-velocity curve, but not from the end
points. For the di�erent situations mentioned above we
always found the same stall force, whereas clear di�er-
ences were found elsewhere in the force-velocity curve (to
be published). Figure 2 furthermore clearly shows the
danger of trying to infer information about the stall force
from experimental data in the range available so far. In
this range the theoretical curve predicted by the present
model shows very little sensitivity to the exact value of koff.
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