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Levy Walks Evolve Through
Interaction Between Movement and
Environmental Complexity

Monique de Jager,™ Franz J. Weissing,? Peter M. J. Herman,*

Bart A. Nolet,>* Johan van de Koppel™*

Ecological theory predicts that animal movement is shaped by its efficiency of resource acquisition.
Focusing solely on efficiency, however, ignores the fact that animal activity can affect resource
availability and distribution. Here, we show that feedback between individual behavior and
environmental complexity can explain movement strategies in mussels. Specifically, experiments
show that mussels use a Lévy walk during the formation of spatially patterned beds, and models
reveal that this Lévy movement accelerates pattern formation. The emergent patterning in mussel
beds, in turn, improves individual fitness. These results suggest that Lévy walks evolved as a result
of the selective advantage conferred by autonomously generated, emergent spatial patterns in
mussel beds. Our results emphasize that an interaction between individual selection and habitat

complexity shapes animal movement in natural systems.

nimals must face the daunting complex-
Aity of the natural world when searching

for food, shelter, and other resources cru-
cial for survival. To cope with the challenge to
maximize the probability of resource encounters,
many organisms adopt specialized search strat-
egies (/, 2) that can be described by random
walks. Brownian and Lévy walks are prominent
examples of random walk strategies where both
the direction and step length of the constituent
moves are drawn from a probability distribution
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(I-4). These movement patterns differ in the
distribution of step lengths, which are derived
from an exponential distribution in the case of
Brownian motion, but follow a power-law dis-
tribution in case of Lévy motion (4—7), where
many short steps are occasionally alternated with
a long step. Model simulations have shown that a
Lévy walk provides faster dispersal (2, 3), more
newly visited sites (/, 2), and less intraspecific
competition than Brownian walks (4); it is there-
fore considered the most efficient random search
strategy in resource-limited environments where
food occurs patchily at locations unknown to the

searcher (/-3) and, most importantly, where the
resource distribution is largely unaffected by the ac-
tivities of the searching animal (8, 9). Although
shown to be optimal for only these specific con-
ditions, Lévy walks are broadly found in nature
(1, 10-12), suggesting that they are adaptive over
a wider range of conditions. To explain this wide
occurrence, we hypothesize that organisms them-
selves affect the availability and spatial distri-
bution of the resources upon which they depend
(13). Consequently, the movement strategies of
organisms can shape the environment.

On intertidal flats, the distribution of regularly
spaced clumps of mussels (Mytilus edulis) results
from the interaction between local mussel density
and the crawling movement of young mussels
(5, 14, 15). In particular, pattern formation in
mussel beds is attributable to two opposing mech-
anisms: cooperation and competition (/6). By
moving into cooperative aggregations, mussels
increase their local density, which decreases
wave stress and predation risk. Conversely, com-
petition for algae, which occurs on a larger spatial
scale than facilitation, prevents the formation of
larger clumps by limiting the number of mussels
within a long range. The interaction of local fa-
cilitation and long-range competition results in
the emergence of a patchy distribution of indi-
viduals, which simultaneously reduces risk and
minimizes competition for algae (/5). Hence, in
this system, the distribution of suitable settling lo-
cations, an important resource for mussels, is de-
termined by the existing distribution of mussels,
which develops in response to the movement of
its comprising individuals. Here, we investigate

Table 1. Goodness-of-fit (G), AIC weights, adjusted R?, and Lévy exponents for three classes of movement
strategies. The observed step length distribution is best explained by a Lévy walk or a truncated Lévy walk,

with Lévy exponents close to 2.

G AIC weights Adjusted R? Lévy exponent
Truncated Lévy walk 22.45 0.443 0.997 2.01
Lévy walk 47.22 0.428 0.997 2.06
Brownian walk -190.09 0.129 0.837 -
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whether the interplay between movement strat-
egy and habitat complexity results in the emer-
gence of Lévy walks in these self-organizing
mussel beds.

We first tested the hypothesis that mussel
movement is described by a Lévy walk (or a
truncated Lévy walk) against alternative models
reported in the literature, namely, a Brownian walk
and a composite Brownian walk (/7-79). We ob-
served the movements of 50 mussels during the
process of pattern formation and of 12 mussels
in solitary experiments in mesocosm tanks. Step
lengths were estimated by the distance between
two subsequent reorientation events (5). The
resulting step length distribution was compared
with the family of power-law distributions, P(/) =
CI'™", where P(l) is the probability of a step of
length / and C is a constant ensuring that the
total probability equals 1. The exponent u de-
fines the shape of the distribution and therefore
determines the resulting movement strategy. If
1 <p <3, the movement pattern corresponds to
a Lévy walk. When p approaches 1, the move-
ment is approximately ballistic, while it is approx-
imately Brownian when p approaches 3 (and for
> 3) (2, 5, 20) (fig. S2.2). The Lévy walks
found in nature typically have an exponent p of
~2(1, 10-12).

Our results show that mussels use a Lévy
walk during the process of pattern formation. On
the basis of maximum-likelihood estimation and
the derived goodness-of-fit (G), Akaike informa-
tion criterion (AIC), and the fraction of variance
explained by the model (R?), we found that Lévy
walk and truncated Lévy walk distributions, both
with p = 2, provided the best fit to the data over a
range of at least two orders of magnitude (5)
(Table 1, Fig. 1, and table S3.1). A possible al-
ternative explanation is that mussel movement
follows a composite Brownian walk, where move-
ment speeds are adjusted to local environmental
conditions (/7-21). Such a strategy can have a
step length distribution similar to that of a Lévy
walk and is therefore often overlooked. However,
when mussel movements were grouped by local
mussel density (the density of mussels within a
radius of 3.3 cm) and long-range density (the den-
sity of mussels within a radius of 22.5 cm), step
length distributions did not differ between the den-
sity categories, and mussels were found to per-
form a Lévy walk with u= 2, irrespective of the
local and long-range density (5) (table S3.2).
Hence, we reject the hypotheses of Brownian
walk and composite Brownian walk and con-
clude that mussel movement is best described by
a Lévy walk.

To examine why mussels adopt a Lévy walk,
we investigated the effect of movement strategy
on the rate of pattern formation by designing an
individual-based model (5). In this model, pat-
terns arise by the mussels’ decisions to stay at a
location or move away from it. We used experi-
mental data from a previous study to estimate the
parameters of this stop-or-move behavior (5, 15)
(fig. S2.2). Although step length distributions are

24 JUNE 2011

unaffected by mussel density, we found that the
probability that a mussel moves decreases with
short-range density (the density of mussels within
aradius of 3.3 cm) and increases with long-range
density (the density of mussels within a radius of
22.5 cm). On the basis of these parameters, sim-
ulated mussels stay in places where they can ag-
gregate with direct neighbors, but move away
from crowded locations where food becomes
limiting. If a simulated mussel moves, the move-
ment distance is randomly drawn from the power-
law distribution that corresponds to its movement

strategy. For a range of movement strategies
(1 <p<3), we observed the distance traveled until
a pattern has formed. Operationally, we say that a
pattern has formed when the density of simulated
mussels within 3.3-cm distance is on average 1.5
times as large as the density of mussels within
22.5-cm distance of an individual. Assuming
that the movement speed is constant, the rate of
pattern formation for each movement strategy
is proportional to the inverse of the average dis-
tance traversed by the mussels until a pattern has
formed (5).
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Fig. 1. Experimental and model results showing that mussel movement, which is best described by a Lévy
walk, generates patterns in mussel beds. (A) Frequency distribution of step lengths of all solitary mussels
(12 mussels, 12,401 steps). (B) Inverse cumulative frequency distribution of the step lengths. (C) Pattern
formation in an experimental mussel bed. (D) Pattern generated with our individual-based model.
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Fig. 2. The rate of pattern forma-
tion for various movement strategies.
Because we assume that movement
speed is constant, we can calculate
the rate of patterning as the normal-
ized inverse of the distance traversed
until a pattern is formed. A Lévy walk
with exponent u ~ 2 minimizes the
time needed to form a pattern.
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Simulations reveal that movement strategies
differ strongly in terms of the rate at which they
create patterns (Fig. 2). A Lévy walk with ex-
ponent = 2 generated a spatially heterogeneous
pattern more rapidly than did either ballistic move-
ment (L — 1) or a Brownian walk (i — 3). Spe-
cifically, the large steps associated with a small
value of u prevented quick formation of tight
clusters, whereas a larger value of i required many
small steps to create clustering. A Lévy walk with
W~ 2 seems to be the optimal trade-off between
finding dispersed conspecifics and maintaining
high local densities, thereby maximizing the rate
of pattern development. Hence, our simulation re-
sults suggest that a Lévy strategy with u = 2 is
optimal for pattern formation.

Because pattern formation both improves mus-
sel survival and decreases competition between
mussels (/4), the movement strategy of individ-
ual mussels is likely to be an important deter-
minant of fitness. However, strategies that lead to
a desirable outcome at the population level are
often not evolutionarily stable, as they can be
exploited by free-riding strategies (22). To de-
termine the long-term outcome of selection act-
ing on mussels differing in movement strategy
(i.e., their exponent w), we created a pairwise
invasibility plot (PIP, Fig. 3) by performing an
evolutionary invasibility analysis (5, 23, 24). The
values along the x axis of the PIP represent a
broad range of hypothetical resident populations,
each with a particular movement strategy char-
acterized by an exponent [ The y axis rep-
resents the exponents [, of potential mutant
strategies. The colors indicate whether a mutant
strategy Lmy can successfully invade a resident
strategy Wes—i.c., Whether mutant individuals
have a higher fitness than resident individuals in
the environment created by the resident popula-
tion. Intersections between the lines separating
the colored areas indicate the presence of an
evolutionary attractor, thus predicting the out-
come of selection on mussel movement strat-

Fig. 3. Pairwise invasibility plot
(PIP) indicating that the movement
strategy evolves toward a Lévy walk
with u = 2. For a range of resident
(x axis) and mutant (y axis) move-
ment strategies, the PIP indicates
whether a mutant has a higher (red)
or a lower (green) fitness than the
resident and, hence, whether a mu-
tant can invade the resident popu-
lation (23). Here, the PIP shows that
a Lévy walk with p = 2 is the sole
evolutionarily stable strategy (ESS).
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egies. Fitness was given by the product of mussel
survival (which is proportional to short-range
mussel density) and fecundity (which is inversely
proportional to long-range mussel density and the
energy invested in movement) (3).

The PIP reveals that a Lévy walk with p~2 is
the unique evolutionary attractor of the system
(Fig. 3) (23, 24). Specifically, a succession of in-
vasion events will lead to the establishment of a
resident population with p ~ 2, and a resident
population with p = 2 cannot be invaded by any
other movement strategy. We conclude that the
Lévy walk strategy observed in our experiments
(Fig. 1) not only has a high patterning efficien-
cy (Fig. 2) but is also an evolutionarily stable
strategy (Fig. 3).

Our study demonstrates an evolutionary feed-
back between individual movement behavior and
higher-level complexity and could explain the
evolution of Lévy walks in mussel beds. Rather
than being a direct adaptation to an externally
determined environment, Lévy movement in our
study was found to result from feedback between
animal behavior and mussel-generated environ-
mental complexity. In essence, a Lévy walk with
W =~ 2 creates a spatial environment in which just
this movement strategy can flourish.

Although our study addresses a specific sys-
tem, the assumption that search strategies can
evolve through feedback between animal move-
ment and environmental heterogeneity may be
broadly applicable. Such feedbacks may exist not
only in the search for conspecifics (as seen here
in mussels) but also in the search for resources
shared with conspecifics, because resource pat-
terns reflect the movement patterns of their con-
sumers. This applies, for instance, to the interaction
between herbivores and vegetation, which shapes
grasslands globally (25). Additionally, feedback
between movement strategy and habitat com-
plexity may arise when the spatial distribution of
a particular species depends on interactions with
a searching organism [as in predator-prey rela-

ESS

1.0
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tionships or animal-mediated seed dispersal (26)].
We conclude that the interaction between animal
movement and habitat complexity is a key com-
ponent in understanding the evolution of animal
movement strategies.
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E R RAT U M Post date 23 December 2011

Reports: “Lévy walks evolve through interaction between movement and environmental
complexity” by M. de Jager et al. (24 June, p. 1551). The statistical analysis of the mus-
sel movement contained errors, which were pointed out by V. Jansen. First, the data that
was used contained duplicates of a number of individuals, while other individuals had
accidentally been omitted. Second, the parameter X of the exponential distribution (which
describes the Brownian walk strategy) was mistakenly estimated without considering the
lower boundary of the data. Third, the AIC was estimated incorrectly, by using a least-
squares rather than a maximum-likelihood calculation. Additionally, the weighed AIC was
calculated incorrectly. These mistakes have been corrected using the methods of Edwards
et al. [A. M. Edwards et al., Nature 449, 1044 (2007)]; the results of the new analysis

are plotted in a new Fig. 1B shown here. In Fig. 1B of the original Report, a Rayleigh dis-
tribution was accidentally plotted instead of an exponential distribution to describe the
Brownian walk. In the statistical analysis, however, an exponential distribution was used
to describe a Brownian walk. Furthermore, the movement patterns of mussels in different
density treatments were reanalyzed after the comments of F. van Langevelde. The former
results were found to be erroneous due to an error in the script; the scaling exponent of
the movement strategy does not stay constant when mussel density increases. Although
some corrections were made to the data and movement analysis, the overall conclusion of
the paper that mussels adopt a Lévy walk, especially when alone, remains unchanged. We
thank V. Jansen and F. van Langevelde for bringing these issues to our attention.
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Supporting Online Material
S1 Materials and Methods
S$1.1 Characteristics of mussel movement

Although mussel movement becomes limited with increasing shell size, young mussels are good
crawlers for many months after their metamorphosis (S1). During this period, mussels are able to
search for conspecifics and aggregate. Once arrived at a good quality location, with respect to the
number of neighbors and food availability, a mussel stops moving and attaches itself to the bed.
When conditions become less suitable, a young mussel can still detach itself and search for a better
location. This movement and attachment behavior at individual level directly affects the habitat
quality for others, thereby leading to spatial patterning in mussel beds.

S$1.2 Extraction of mussel movement data

Step lengths of young blue mussels (Mytilus edulis, 1.5-3 cm long) were obtained from
experimental data of Van de Koppel et al. (2008, S2). The blue mussels used in these experiments
were obtained from wooden wave-breaker poles near Vlissingen, the Netherlands. Experiments
were performed in a 120x80x8 cm containers filled with unfiltered seawater. Mussels were placed
on a 60x80 cm red PVC sheet. To record mussel movement, a Logitech QuickCam 9000 Pro webcam,
which was positioned about 60 cm above the water surface and attached to a computer,
photographed the mussels at 1 minute intervals for several hours. In total, 62 mussels were used for
the experiments, resulting in 19,401 steps. Tracks of twelve of these mussels (12,401 steps) were
obtained from isolation experiments, preventing the mussels from finding conspecifics and
creating clusters. To investigate density-dependence, the tracks of the other 50 mussels (7,000
steps) were obtained from pattern formation experiments (see Fig. 1b). In pattern formation
experiments, mussels are initially evenly distributed over the red PVC sheet, after which the
mussels start to move and create patterns.

The first method that we used for the extraction of step lengths was to simply calculate the
distance between two subsequent points using a 60 seconds interval. This time interval was
chosen since our observations revealed that time intervals between 40 and 80 seconds are most
adequate for monitoring mussel movements in our experiments.

In addition, we extracted step length distributions by applying two step length extraction methods
suggested by Turchin (1998, S3). In the ‘error radius method’ (illustrated in Fig. S2.1a), the
movements performed in n time intervals are aggregated into a single ‘step’ if the n-1
intermediate spatial positions are no more than a predefined distance x away from the line
connecting the beginning of the movement to the end of it. When applying this method, the value
of x was chosen by starting with a small value and then incrementing it iteratively until
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oversampling was minimized, i.e.,, until autocorrelation in the turning angle vanished.
Autocorrelation was calculated with the acf function in R (R version 2.10.0 © 2009 The R
Foundation for Statistical Computing). When the autocorrelation of n data points exceeded the
confidence interval derived with the acf function, the distance x was increased by 0.01 cm.

Turchin’s ‘angle method’ (illustrated in Fig. S2.1b) concerns the angle between movements. The
movements performed in n time intervals are aggregated into a single step if the angle between
the starting position and the end position is smaller than a predefined value Bnay.. When this value
is exceeded after the nth movement, the corresponding point becomes the starting point for the
next step. The threshold value B...x was also chosen iteratively, starting with a small angle and
gradually increasing it until the autocorrelation in turning angles vanished.

As shown in Table S3.1, the method used for estimating step lengths does not affect our
conclusions: in all cases, the data are best explained by a Lévy walk, where the pure Lévy walk
model performs almost as well as a truncated Lévy walk. In all cases, R*~values of the best-fitting
models exceed 0.995.

$1.3 Fitting movement types to step length data

The step length data of the mussel movements were used to create a step length frequency
distribution (Fig. 1a). When plotted on a log-log scale, a power-law probability distribution
P(l) = CI™* results in a straight line with slope - u. However, drawing conclusions from this kind
of presentation can be deceptive (54-S6). We therefore used a more robust method (S5) and first
determined the inverse cumulative frequency distribution of our data, which for each step length [
gives the fraction of steps with lengths larger or equal to L. This cumulative distribution is plotted
in Fig. 1b on a log-log scale. We compared this distribution with the cumulative probability
distribution of three random movement strategies: Brownian walk, Lévy walk, and truncated Lévy
walk.

Brownian walk

Brownian walk is a random movement strategy that corresponds to normal diffusion. The step
length distribution can be derived from an exponential distribution with A > 0:

f) = 2e~2, (1)
Lévy walk

The frequency distribution of step lengths that characterizes a Lévy walk has a heavy tail and is
scale-free, i.e. the characteristic exponent of the distribution is independent of scale. To fit a Lévy
walk to the data, a Pareto distribution (S7) was used:

f = ¢l (2)
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The shape parameter u (which has to exceed 1) is known as the Lévy exponent or scaling exponent
and determines the movement strategy (see Fig. S2.2). When u is close to 1, the resulting
movement strategy resembles ballistic, straight-line motion, as the probability to move a very
large distance is equal to the chance of making a small displacement. A movement strategy is
called a Lévy walk when the scaling exponent is between 1 and 3. When u approaches 1, the
movement is approximately ballistic, while it is approximately Brownian when u approaches 3
(and for u > 3). The Lévy walks found in nature typically have an exponent u of approximately 2
(S4, $8-510). C,, is a normalization constant ensuring that the distribution f () has a total mass
equal to 1, i.e. that all values of f (1) sum up to 1. If we impose the additional criterion that steps
must have a minimum length [,,;,,(0 < L,,;n < 1), this constant is given by
Co=@u-1ib . (3)

When fitting our data to a Lévy walk, we used the value of L,,;,, that provided the best fit of the
step length distributions to the actual data.

Truncated Lévy walk

A truncated Lévy walk differs from a standard Lévy walk in the tail section of the frequency
distribution; a truncated Lévy walk has a maximum step size and, as a consequence, loses its
infinite variance and scale-free character at large step sizes. The truncated Lévy walk was
represented by the truncated Pareto distribution, which can be described by the same function
f (1) as a standard Pareto distribution, but with different constant C,;:

p—1
C” = T-n 1-u- (4)
lmin ~ lmax
In a truncated Lévy walk, step lengths are constrained to the interval L, <1< l,4x. When
fitting our data to a truncated Lévy walk, we used those values of [,,;, and L4, that yielded the
best fit of the movement models to the data (l,;,;, = 0.42 cm and L,,,,, = 58.84 cm).

Goodness-of-fit and model selection

For the frequency distributions mentioned above, the fit to the step length data of solitary mussels
was calculated using Maximum Likelihood estimation by fitting the inverse cumulative frequency
distribution to that of the experimental data. By comparing the inverse cumulative distributions to
that of the data, Goodness-of-fit (G) and the Akaike Information Criterion (AIC) were calculated as
well as the variance explained by the fitted model (R?). The Goodness-of-fit method measures how
well the experimental data follows the frequency distributions of the movement strategies; the fit
is best when the G-value is closest to zero. The Goodness-of-fit value is calculated as

G=2Y0;In (2—:’), (5)
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where O is the inverse cumulative distribution of the experimental data and E is that of the fitted
movement strategies. We used the inverse cumulative distribution as this is the most robust
method to compare the observed and expected distributions (S5). The highest AIC weight, which is
calculated by comparing the AIC values, and the highest R? correspond to the movement type best
fitting the actual data (S11). This method was used for the analysis of the movement strategies of
the 12 solitary mussels, both individually and as a whole, using the step lengths obtained per
minute as well as those derived with the two methods of Turchin (see Fig. S2.1). Additionally, step
lengths obtained from pattern formation experiments were grouped for different combinations of
local density (within a radius of 3.3 cm) and long-range density (within a radius of 22.5 cm). These
groups of step lengths were used for determining the Lévy exponent at different densities, in
order to observe whether a composite Brownian walk exists in mussel movement (see Table S3.2).

$1.4 Computer Simulations
Individual based model

We developed an individual based model that describes pattern formation in mussels by relating
the chance of movement to the short- and long-range densities of mussels, following Van de
Koppel et al. (2008, S2). Whereas they modeled pattern formation in mussel beds by adjusting the
movement speed to the short- and long-range densities (S2), we extracted the stop and move
behavior of the mussels from the experimental data. In our model, 2500 ‘mussels’ (with a radius of
1.5 cm each) are initially spread homogeneously within a 150 cm by 150 cm arena. Each time step,
the short-range (D;) and long-range (D,) densities are determined for each individual, based on
mussel densities within a radius of 3.3 cm and 22.5 cm, respectively. These radii correspond to the
ranges in which we found significant correlations with the probability of moving in a multi-variate
regression analysis of our experimental data (F = 77.17, p << 0.001, R* = 0.622, df = 136). The
probability Py, that @ mussel moves is negatively related to the short-range density D; and
positively related to the long-range density D, (see Fig. S2.3), which causes mussels to stay in
places where they can aggregate with direct neighbors, but move away from crowded locations
where food becomes limiting. In the model, we used a linear relationship between P, and the
two densities:

Prove =a—bD; + cD,, (6)

which was obtained by applying linear regression to our experimental data (a = 0.63, b = 1.26, and
¢ = 1.05). If a mussel decided to move in our model, its step length / was chosen at random from a
power law distribution (512) with a given Lévy exponent p > 1:

1

l= Ln(1—x) k-1, (7)

where x is a random variable that is uniformly distributed over the unit interval (0 < x < 1), and
Lmin is the minimum distance traveled when moving (57), which we have set at 0.3 cm. Each
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simulation step, mussels move instantaneously from one location to another, though step lengths
were truncated when a movement path was obstructed by another mussel. This truncation was
calculated by determining the free movement path until collision, using a band width of 3 cm (the
size of a mussel) around the line segment connecting the mussels’ original location to its intended
destination. When a conspecific was located within this band, the mussel stopped in front of this
conspecific, thereby truncating its movement path. All movements occurred simultaneously and
all individuals in a simulation used the same movement strategy.

As differences occur in the average distance covered per simulation step between the movement
strategies (ballistic individuals move a larger distance per simulation step than Lévy or Brownian
walkers) and assuming that movement speed is constant, more time is needed for a ballistic step
than for a Brownian step. To avoid having Brownian movers switch more frequently between
moving and stopping than ballistic movers, we updated the state of either moving or stopping not
after each simulation step but after an average distance moved.

A simulation was finished when the average short-range density exceeded 1.5 times the mean
long-range density. At that moment, the total distance travelled was recorded. As we assume that
the movement speed is constant, the rate of patterning is proportional to the normalized inverse
of the distance traversed until a pattern is formed. Simulations were run for a range of Lévy
exponents (1 < u < 3), and for each value the rate of pattern formation was plotted as a function of
K. The model was implemented in Matlab version 7.9 (©1984-2009. The MathWorks, Inc.).

Evolutionary model

Evolutionary change was studied in a monomorphic resident population by investigating whether
the fitness of rare mutants is higher than that of the residents, implying that the mutants can
increase in frequency (S13, S14). After the mussels moved an equal distance, we recorded the
short-range density, the long-range density, and the fraction of mussels that was still moving, for
both the residents and the mutants. In a population with non-overlapping generations, fitness is
given by the product of survival probability and fecundity. We assumed that survival probability is
proportional to the local mussel density D; and that fecundity is inversely proportional to the long-
range density D, (as this density affects food supply) and to the time X spent on moving (as energy
spent on moving cannot be invested in offspring production). Dividing the fitness measures thus
obtained for a mutant and a resident results in a measure for the relative fitness of the mutant
strategy:

D D X
qut — 1,mut % 2,res % res . (8)
Dl,res Dz,mut Xmut

Mutant strategies with a relative fitness value larger than one will invade and potentially take over
the resident population. For any combination of resident and mutant movement strategy, the
relative fitness of the mutants is depicted in a pairwise invasibility plot (S14, see Fig. 3). In this plot,
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the color red indicates that the mutant has a higher fitness than the resident (F,,.: > 1), while the
color green indicates that the mutant cannot invade the resident population (F,,: < 1). The
intersection of the line separating these two scenarios (F,,: = 1) with the main diagonal of the
pairwise invasibility plot corresponds to an evolutionarily singular strategy (513, S14).



S2 Supporting Online Figures

A

Fig. S2.1. Step length calculation using the ‘error radius method’ (A) and the ‘angle method’ (B). In the first method (A), n
steps are aggregated into one move if the n-1 intermediate spatial positions are no more than x units away from the line
connecting the beginning of the step to the end of it. The second method (B) is based on reorientation events; when the
angle B (between the dotted black line and the solid black line) exceeds a certain threshold value, the corresponding point

is the next new point (after Turchin, 1998; S3).
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Fig. S2.2. The Lévy exponent p determines the shape of the step length distribution and thus the movement strategy.
When p is close to 1, the movement strategy resembles ballistic, straight-line motion (A, D), whereas the step length
distribution is similar to that of a Brownian walk when p approaches 3 (C, F). The movement strategy is referred to as a Lévy
walk when 1 < pu < 3 (B, E). A, B, and C show movement trajectories obtained with p = 1.01, 2, and 3, respectively. The
inverse cumulative step length frequency distributions (i.e. the fraction of steps that is larger than or equal to the
displacement length (l) that is given on the x-axis) are given by D, E, and F for i = 1.01, 2, and 3, respectively.
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S2.3. Experimental data shows that the probability of moving depends on short-range and long-range mussel

densities. (A) Local mussel density decreases the probability of moving; mussels tend to stay in denser clumps. (B) The
probability of moving positively correlates with long-range density; mussels move away from areas where competition is
high.



$3 Supporting Online Tables

Table S3.1. Summary of the model fits to the step length data. Goodness-of-fit (G), AIC weights and % variance

explained of each movement strategy fitted to the mussel data (Rz) for all three methods that were used to obtain the
step lengths. Truncated Lévy walk (TLW) corresponds best to the raw data and the data obtained using the error radius

method. Data acquired with the angle method was best described by a Lévy walk (LW). Lévy exponents ranged from
1.930 to 2.174, with a mean p of 2.032.

Method Model G AIC weights Adjusted R>  Lévy exponent
Step per Truncated Lévy walk 33.60 0.446 0.999 2.127
minute

Lévy walk 64.54 0.431 0.999 2.174

Brownian walk -119.43  0.123 0.878 -
Error radius Truncated Lévy walk -2.69 0.437 0.997 1.967
method

Lévy walk 3.93 0.401 0.995 2.045

Brownian walk -344.85  0.163 0.898 -
Angle method  Truncated Lévy walk 36.43 0.445 0.995 1.930

Lévy walk 73.20 0.453 0.996 1.946

Brownian walk -106.00 0.103 0.734 -




Table S3.2. Lévy exponent during pattern formation. Lévy exponents for step lengths in different local and long-range
density groups, for all three methods that were used to obtain the step lengths. Low/Low = both low local and long-
range densities; Low/High = low local and high long-range density; High/Low = high local and low long-range density;
High/High = both high local and long-range densities. Pattern formation in mussel beds produces an environment with
high local densities and low long-range densities. There is no significant correlation between Lévy exponent and the
degree of patterning, as well as any other relationship between the exponent and mussel density; we can therefore
reject the hypothesis of a composite Brownian walk, where movement speeds are adjusted to local environmental
conditions ($15-518).

Method Low/Low Low/High High/Low High/High
Step per minute 2.05 2.05 2.06 2.05
Error radius 2.00 2.07 2.05 2.05
method

Angle method 2.00 2.00 2.00 2.00
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Movie S1

1201187S1.mov: Time-laps movie showing the movement behavior of a single mussel, with the

corresponding movement track plotted as the mussel is moving. The video covers nearly a two hour

time period (QuickTime movie, 11 MB), with images taken every 10 seconds. We acknowledge Aniek

van den Berg for running this movement experiment.

Matlab code:

IBM1201187S1.m: Individual Based model of mussels moving into a self-organized pattern. The code
was written for Matlab version 7.9.0 (R2009b © The Mathworks, Inc.) and shows the distribution of
mussels after each simulation step.
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Comment on “Lévy Walks Evolve
Through Interaction Between Movement
and Environmental Complexity”

Vincent A. A. Jansen,™* Alla Mashanova,* Sergei PetrovskiiZ

de Jager et al. (Reports, 24 June 2011, p. 1551) concluded that mussels Lévy walk. We confronted
a larger model set with these data and found that mussels do not Lévy walk: Their movement is
best described by a composite Brownian walk. This shows how model selection based on an
impoverished set of candidate models can lead to incorrect inferences.

Lévy walk is a form of movement in
A which small steps are interspersed with

very long ones, in such a manner that
the step length distribution follows a power law.
Movement characterized by a Lévy walk has no
characteristic scale, and dispersal is superdiffu-
sive so that individuals can cover distance much
quicker than in standard diffusion models. de Jager
et al. (1) studied the movements of individual
mussels and concluded that mussels move
according to a Lévy walk.

The argument of (/) is based on model se-
lection, a statistical methodology that compares
a number of models—in this case, different step
length distributions—and selects the model that
describes the data best as the most likely model to
explain the data (2). This methodology is used to
infer types of movements of animals (3) and has
led to a number of studies that claim Lévy walks
are often encountered in the movement of ani-
mals. The methodology in (/) contrasts a power-
law distribution, which is indicative of a Lévy
walk, with an exponential distribution, which
indicates a simple random walk. If one has to
choose between these alternatives, the power-law
distribution gives the best description. However,
if a wider set of alternatives is considered, this
conclusion does not follow.

Heterogeneity in individual movement be-
havior can create the impression of a power law
(4-6). Mussels” movement is heterogeneous as
they switch between moving very little or not at
all, and moving much farther (1, 7). If mussels
switch between different modes, and in each mode
display Brownian motion, this suggests the use of
a composite Brownian walk, which describes the
movement as a sum of weighted exponential dis-
tributions. We confronted this plausible model
with the mussel movement data (8).

Visual inspection of the data shows that the
cumulative distribution of step lengths has a humped

15chool of Biological Sciences, Royal Holloway, University of
London, Surrey TW20 OEX, UK. 2Department of Mathematics,
University of Leicester, Leicester LE1 7RH, UK.

*To whom correspondence should be addressed. E-mail:
vincent.jansen@rhul.ac.uk
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pattern that is indicative of a sum of exponentials
(Fig. 1A). We applied a model selection pro-
cedure based on the Akaike information criterion
(AIC) (2, 3). We compared six different step
length distributions: an exponential distribution,

A

a power law, a truncated power law, and three
hyperexponential distributions (a sum of two,
three, or four exponentials to describe composite
Brownian walks). We did this for the data trun-
cated as in (/) (Fig. 1A) as well as all the full,
untruncated data set (Fig. 1B). In both cases, we
found that the composite Brownian walk con-
sisting of the sum of three exponentials was the
best model (Fig. 1 and Table 1). This convinc-
ingly shows that the mussels described in (/) do
not do a Lévy walk. Only when we did not take
the composite Brownian walk models into
account did the truncated power law model
perform best and could we reproduce the result
in (1).

Mussel movement is best described by a
composite Brownian walk with three modes of
movement with different characteristic scales be-
tween which the mussels switch. The mean move-
ment in these modes is robust to truncation of the
data set, in contrast to the parameters of the power
law, which were sensitive to truncation [Table 1;

Fig. 1. The step length
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Table 1. Model parameters and Akaike weights. The maximum likelihood parameter
estimates, log maximum likelihoods (ML), AIC values, and Akaike weights are
calculated (for details, see SOM) for the data shown in Fig. 1, A and B. The Akaike
weights without the composite Brownian walks are given in brackets. We analyzed the

TECHNICAL COMMENT

full data set (*) with X, = 0.02236 mm, and the data set truncated as in (2) (1) with
Xnin = 0.21095 mm. For X,., the longest observed step length (103.9mm) was
used. The mix of four exponentials is not the best model according to the AIC
weights. It gives a marginally, but not significantly, better fit and is overfitted.

Models Formula Parameters* Parameterst ML AIC Weight

Exponential P(X = x) = he =) A =1.133 A =0.770 —3136.89* 6275.78* 0 (0)*
(Brownian —2558.671 5119.37% 0 (Ot
motion)

Power law PUX =x) = bixh u=1.397 u=1.975 —2290.10* 4582.20* 0 (0 *
(Lévy walk) L -1002.32t 2006.64t 0 (0.006)f

Truncated PX =X) = ==X ™ u=1.320 w=1.960 -2119.55 4241.10* 0+
power law -997.29% 1996.58t 0 (0.994)1
(Lévy walk) 2 )

Mix of two PX =x)= Z pije il xmn) p = 0.073, p = 0.127, —906.15* 1818.31* o*
exponentials =1 A = 0.122, A = 0.123, -1022.441 2050.871 ot
(Composite with Z pi=1 A, =3.238 Ay = 3.275
Brownian walk) =1

3 e —ta)

Mix of three P =x)= " pjeHusmn py = 0.034, py = 0.063, —861.55* 1733.11* 0.881*
exponentials f=13 p> = 0.099, p, = 0.210, —966.701 1943.40 1 0.873t
(Composite with Z pi=1 Ay = 0.069, Ay = 0.072,

Brownian walk) =1 Ao = 0.652, A, = 0.832,
4 ) Az = 3.613 A3z = 4.309

Mix of four PX =x)= Z pihje i) p, = 0.014, p, = 0.017, —861.55* 1737.11* 0.119*
exponentials f=14 p> =0.034, p2 = 0.060, —966.631 1947.26t 0.127t
(Composite with Z pi=1 p; = 0.085, ps = 0.202,

Brownian walk) =1 A1 = 0.656, M = 0.377,
A = 0.069, A2 = 0.070,
As = 0.652 Az = 0.902,
Ag = 3.613 Agq = 4.345

also see supporting online material (SOM)]. This
analysis does not tell us what these modes are, but
we speculate that it relates to the stop-move
behavior that mussels show, even in homoge-
neous environments (/). We speculate that the
mode with the smallest average movement
(~0.4 mm) is related to nonmovement, combined
with observational error. The next mode (average
movement ~1.5 mm) is related to mussels moving
their shells but not displacing, and the mode with
the largest movements (on average 14 mm, about the
size of a small mussel) is related to actual dis-
placement. This suggests that in a homogeneous
environment, mussels are mostly stationary, and
if they move, they either wobble or move about
randomly. Indeed, if we remove movements smaller
than half the size of a small mussel (7.5 mm), the
remaining data points are best described by
Brownian motion. This shows that mussel move-
ment is not scale invariant and not superdiffusive.

de Jager et al’s analysis (/) does show that
mussels do not perform a simple random walk
and that they intersperse relatively long displace-
ments with virtually no displacement. However,
one should not infer from that analysis that the
movement distribution therefore follows a power
law or that mussels move according to a Lévy
walk, and there is no need to suggest that mussels

must possess some form of memory to produce a
power law—like distribution (9). Having included
the option of a composite Brownian walk, which
was discussed in (/) but not included in the set of
models tested, one finds that this describes
mussels’ movement extremely well.

Our analysis illustrates why one has to be
cautious with inferring that animals move accord-
ing to a Lévy walk based on too narrow a set of
candidate models: If one has to choose between a
power law and Brownian motion, often the power
law is best, but this could simply reflect the
absence of a better model. To make defensible
inferences about animal movement, model selec-
tion should start with a set of carefully chosen
models based on biologically relevant alterna-
tives (2). Heterogeneous random movement often
provides such an alternative and has the addition-
al advantage that it can suggest a simple mech-
anism for the observed behavior.
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O VHVIEN

Response to Comment on “Lévy Walks
Evolve Through Interaction Between
Movement and Environmental Complexity”

Monique de Jager,™ Franz J. Weissing,z Peter M. ]. Herman,*

Bart A. Nolet,>* Johan van de Koppel™?*

We agree with Jansen et al. that a composite movement model provides a better statistical
description of mussel movement than any simple movement strategy. This does not undermine
the take-home message of our paper, which addresses the feedback between individual
movement patterns and spatial complexity. Simple movement strategies provide more insight
in the eco-evolutionary analysis and are therefore our model of choice.

he purpose of our paper (/, 2) was to
Tdemonsirate that movement strategies are

shaped by the interaction between individ-
ual selection and the formation of spatial com-
plexity on the population level. We showed that
in a family of movement models ranging from
ballistic motion, to Lévy walk, to Brownian mo-
tion, a Lévy walk with exponent u = 2 is the
optimal strategy for mussels involved in
pattern formation. Within this family of models,
a single parameter (the scaling exponent )
distinguishes between the different movement
strategies. We intentionally chose a one-dimensional
strategy space that can easily be used in pairwise
invasibility analyses and the subsequent pair-
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(NIOO-KNAW), Post Office Box 50, 6700 AB Wageningen,
Netherlands.

*To whom correspondence should be addressed. E-mail:
m.dejager@nioo.knaw.nl
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wise invasibility plots. It also keeps focus on the
main differences in movement strategy, contrast-
ing ballistic movement, Brownian diffusion, and
long-tailed step length distributions, as in Lévy
walks. As is often the case, the better fit of the
complex model (i.e., composite Brownian walk)
trades off with the elegance and clarity of the
simpler model.

Nevertheless, it might be interesting to ex-
amine the mechanisms behind the composite
Brownian walk that was observed in our mussel
movement data by Jansen et al. (3). Below, we
investigate three possible causes of the observed
movement pattern: (i) mussels switch between
multiple movement modes because of changes
in environmental conditions; (ii) the (collective)
composite Brownian walk might be an ensem-
ble of different individual Brownian walks; or
(iii) internal switches between movement modes
exist, with which mussels try to approximate a
Lévy walk.

The first possible mechanism behind a com-
posite Brownian walk is that mussels switch be-
tween movement modes in response to changes
in environmental conditions. For example, a
composite Brownian walk will result if animals

3

Pl
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switch between local Brownian search within a
resource patch and straight-lined ballistic search
between patches (4-6). Because the solitary mus-
sels in our experiment were situated in a bare,
homogeneous environment, repeated switches
between movement strategies induced by chang-
ing environmental conditions do not provide a
plausible explanation for the observed compos-
ite walk.

A second possible explanation for the ob-
served composite Brownian walk could be
that variation in individual movement behavior
can explain the improved fit by the composite
Brownian model (7)—for example, multiple dif-
ferent Brownian walks together make up the
observed composite walk. To investigate this,
we examined the individual movement tracks
of the 12 mussels in our experiment. We indeed
found a large variety of movement trajectories
(Fig. 1); some mussels moved a large distance,
whereas others stayed approximately at the
original location. We fitted a Brownian walk,
a Lévy walk, a truncated Lévy walk, and two
composite Brownian walks to these individual
movement trajectories, using the corrected data
set and the analysis suggested by Jansen et al.
(2, 3). The analysis (Table 1 and Fig. 2) reveals
that, in most cases, a Brownian walk fitted very
poorly to the data. A truncated Lévy walk pro-
vided large improvement over a Brownian walk,
whereas a composite Brownian walk provided
only small further improvement in fit, indicating
that even at the individual level, composite
behavior might underlie a long-tailed movement
pattern.

A third possibility to mechanistically under-
pin the improved fit by a composite Brownian
walk is that mussels use an internal switching rule
to alternate between movement modes, indepen-
dent from external triggers. Our study (/, 2)
shows that a long-tailed step length distribution
is a rewarding strategy for mussels living in, and
contributing to, a spatially complex system. It is
not obvious, however, how an animal should
achieve such a step length distribution in prac-

Fig. 1. Movement trajec-
tories of the 12 mussels on
which we based the model
fitting in (1, 4).
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Table 1. Comparison of five movement models (Brownian walk, BW; Lévy walk, LW; truncated Lévy
walk, TLW; composite Brownian walk with two movement modes, CBW2; composite Brownian walk
with three movement modes, CBW3) for the eight mussels for which sufficient data (n > 50) were
available. For each mussel, the table presents the Akaike information criterion (AIC) and the Akaike
weights (WAIC) for the five movement models. The minimal AIC value (corresponding to the best
model) is shown in bold. The Akaike weights correspond to the relative likelihood of each model
(8). For all model fits, we used a lower boundary (l;,) of 0.2 mm.

BW LW TLW CBW2 CBW3

Mussel

AIC wAIC AIC  wAIC AIC  wAIC AIC wAIC AIC wAIC
A 1917.4 0.000 1262.7 0.000 1236.6 0.000 1192.4 0.006 1182.12 0.994
B 1293.2 0.867 2030.8 0.000 1618.1 0.000 1297.2 0.117 1301.2 0.016
D 330.4 0.000 282.5 0.000 256.1 0.000 209.1 0.502 209.2 0.498
F 1101.7 0.000 642.3 0.000 628.9 0.054 638.8 0.000 623.2 0.945
G 1410.7 0.000 792.4 0.000 770.8 0.000 761.6 0.001 748.5 0.998
H 625.5 0.000 775.6 0.000 750.3 0.000 519.9 0.881 523.9 0.119
| 2177.2 0.000 1650.0 0.000 1592.5 0.003 1582.1 0.620 1583.1 0.376
L 1455.8 0.000 1179.0 0.000 1129.0 0.002 1123.2 0.033 1116.4 0.966

Fig. 2. Inverse cumula- .
tive frequency distribution
(e.g., the fraction of step
lengths that is larger than
or equal to a given step
length) of the movement
patterns of 12 individual
mussels (thin dashed and
dotted lines) and the com-
bined data set (thick line
and large dots).
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TECHNICAL COMMENT

tice. It is possible that animals approximate a
Lévy walk by adopting an intrinsic compos-
ite movement strategy with different modes
(which do not necessarily need to be Brown-
ian). The observation by Jansen ef al. (3) that
a composite walk yields a better fit to the ob-
servations thus suggests an interesting solu-
tion for this problem, which is worth further
investigation. However, we think it most ad-
visable to examine this switching behavior by
means of temporal and spatial correlations of
movement steps within animal tracks rather
than fitting multimodal models to step size
distributions. In our opinion, the observation by
Jansen et al. (3) does not change the overall con-
clusion of our paper (/), but it may contribute to
a better understanding of the behavioral mech-
anisms by which animals achieve their optimal
movement strategy.
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