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Supporting Online Material
S1 Materials and Methods
S$1.1 Characteristics of mussel movement

Although mussel movement becomes limited with increasing shell size, young mussels are good
crawlers for many months after their metamorphosis (S1). During this period, mussels are able to
search for conspecifics and aggregate. Once arrived at a good quality location, with respect to the
number of neighbors and food availability, a mussel stops moving and attaches itself to the bed.
When conditions become less suitable, a young mussel can still detach itself and search for a better
location. This movement and attachment behavior at individual level directly affects the habitat
quality for others, thereby leading to spatial patterning in mussel beds.

S$1.2 Extraction of mussel movement data

Step lengths of young blue mussels (Mytilus edulis, 1.5-3 cm long) were obtained from
experimental data of Van de Koppel et al. (2008, S2). The blue mussels used in these experiments
were obtained from wooden wave-breaker poles near Vlissingen, the Netherlands. Experiments
were performed in a 120x80x8 cm containers filled with unfiltered seawater. Mussels were placed
on a 60x80 cm red PVC sheet. To record mussel movement, a Logitech QuickCam 9000 Pro webcam,
which was positioned about 60 cm above the water surface and attached to a computer,
photographed the mussels at 1 minute intervals for several hours. In total, 62 mussels were used for
the experiments, resulting in 19,401 steps. Tracks of twelve of these mussels (12,401 steps) were
obtained from isolation experiments, preventing the mussels from finding conspecifics and
creating clusters. To investigate density-dependence, the tracks of the other 50 mussels (7,000
steps) were obtained from pattern formation experiments (see Fig. 1b). In pattern formation
experiments, mussels are initially evenly distributed over the red PVC sheet, after which the
mussels start to move and create patterns.

The first method that we used for the extraction of step lengths was to simply calculate the
distance between two subsequent points using a 60 seconds interval. This time interval was
chosen since our observations revealed that time intervals between 40 and 80 seconds are most
adequate for monitoring mussel movements in our experiments.

In addition, we extracted step length distributions by applying two step length extraction methods
suggested by Turchin (1998, S3). In the ‘error radius method’ (illustrated in Fig. S2.1a), the
movements performed in n time intervals are aggregated into a single ‘step’ if the n-1
intermediate spatial positions are no more than a predefined distance x away from the line
connecting the beginning of the movement to the end of it. When applying this method, the value
of x was chosen by starting with a small value and then incrementing it iteratively until
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oversampling was minimized, i.e.,, until autocorrelation in the turning angle vanished.
Autocorrelation was calculated with the acf function in R (R version 2.10.0 © 2009 The R
Foundation for Statistical Computing). When the autocorrelation of n data points exceeded the
confidence interval derived with the acf function, the distance x was increased by 0.01 cm.

Turchin’s ‘angle method’ (illustrated in Fig. S2.1b) concerns the angle between movements. The
movements performed in n time intervals are aggregated into a single step if the angle between
the starting position and the end position is smaller than a predefined value Bnay.. When this value
is exceeded after the nth movement, the corresponding point becomes the starting point for the
next step. The threshold value B...x was also chosen iteratively, starting with a small angle and
gradually increasing it until the autocorrelation in turning angles vanished.

As shown in Table S3.1, the method used for estimating step lengths does not affect our
conclusions: in all cases, the data are best explained by a Lévy walk, where the pure Lévy walk
model performs almost as well as a truncated Lévy walk. In all cases, R*~values of the best-fitting
models exceed 0.995.

$1.3 Fitting movement types to step length data

The step length data of the mussel movements were used to create a step length frequency
distribution (Fig. 1a). When plotted on a log-log scale, a power-law probability distribution
P(l) = CI™* results in a straight line with slope - u. However, drawing conclusions from this kind
of presentation can be deceptive (54-S6). We therefore used a more robust method (S5) and first
determined the inverse cumulative frequency distribution of our data, which for each step length [
gives the fraction of steps with lengths larger or equal to L. This cumulative distribution is plotted
in Fig. 1b on a log-log scale. We compared this distribution with the cumulative probability
distribution of three random movement strategies: Brownian walk, Lévy walk, and truncated Lévy
walk.

Brownian walk

Brownian walk is a random movement strategy that corresponds to normal diffusion. The step
length distribution can be derived from an exponential distribution with A > 0:

f) = 2e~2, (1)
Lévy walk

The frequency distribution of step lengths that characterizes a Lévy walk has a heavy tail and is
scale-free, i.e. the characteristic exponent of the distribution is independent of scale. To fit a Lévy
walk to the data, a Pareto distribution (S7) was used:

f = ¢l (2)
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The shape parameter u (which has to exceed 1) is known as the Lévy exponent or scaling exponent
and determines the movement strategy (see Fig. S2.2). When u is close to 1, the resulting
movement strategy resembles ballistic, straight-line motion, as the probability to move a very
large distance is equal to the chance of making a small displacement. A movement strategy is
called a Lévy walk when the scaling exponent is between 1 and 3. When u approaches 1, the
movement is approximately ballistic, while it is approximately Brownian when u approaches 3
(and for u > 3). The Lévy walks found in nature typically have an exponent u of approximately 2
(S4, $8-510). C,, is a normalization constant ensuring that the distribution f () has a total mass
equal to 1, i.e. that all values of f (1) sum up to 1. If we impose the additional criterion that steps
must have a minimum length [,,;,,(0 < L,,;n < 1), this constant is given by
Co=@u-1ib . (3)

When fitting our data to a Lévy walk, we used the value of L,,;,, that provided the best fit of the
step length distributions to the actual data.

Truncated Lévy walk

A truncated Lévy walk differs from a standard Lévy walk in the tail section of the frequency
distribution; a truncated Lévy walk has a maximum step size and, as a consequence, loses its
infinite variance and scale-free character at large step sizes. The truncated Lévy walk was
represented by the truncated Pareto distribution, which can be described by the same function
f (1) as a standard Pareto distribution, but with different constant C,;:

p—1
C” = T-n 1-u- (4)
lmin ~ lmax
In a truncated Lévy walk, step lengths are constrained to the interval L, <1< l,4x. When
fitting our data to a truncated Lévy walk, we used those values of [,,;, and L4, that yielded the
best fit of the movement models to the data (l,;,;, = 0.42 cm and L,,,,, = 58.84 cm).

Goodness-of-fit and model selection

For the frequency distributions mentioned above, the fit to the step length data of solitary mussels
was calculated using Maximum Likelihood estimation by fitting the inverse cumulative frequency
distribution to that of the experimental data. By comparing the inverse cumulative distributions to
that of the data, Goodness-of-fit (G) and the Akaike Information Criterion (AIC) were calculated as
well as the variance explained by the fitted model (R?). The Goodness-of-fit method measures how
well the experimental data follows the frequency distributions of the movement strategies; the fit
is best when the G-value is closest to zero. The Goodness-of-fit value is calculated as

G=2Y0;In (2—:’), (5)
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where O is the inverse cumulative distribution of the experimental data and E is that of the fitted
movement strategies. We used the inverse cumulative distribution as this is the most robust
method to compare the observed and expected distributions (S5). The highest AIC weight, which is
calculated by comparing the AIC values, and the highest R? correspond to the movement type best
fitting the actual data (S11). This method was used for the analysis of the movement strategies of
the 12 solitary mussels, both individually and as a whole, using the step lengths obtained per
minute as well as those derived with the two methods of Turchin (see Fig. S2.1). Additionally, step
lengths obtained from pattern formation experiments were grouped for different combinations of
local density (within a radius of 3.3 cm) and long-range density (within a radius of 22.5 cm). These
groups of step lengths were used for determining the Lévy exponent at different densities, in
order to observe whether a composite Brownian walk exists in mussel movement (see Table S3.2).

$1.4 Computer Simulations
Individual based model

We developed an individual based model that describes pattern formation in mussels by relating
the chance of movement to the short- and long-range densities of mussels, following Van de
Koppel et al. (2008, S2). Whereas they modeled pattern formation in mussel beds by adjusting the
movement speed to the short- and long-range densities (S2), we extracted the stop and move
behavior of the mussels from the experimental data. In our model, 2500 ‘mussels’ (with a radius of
1.5 cm each) are initially spread homogeneously within a 150 cm by 150 cm arena. Each time step,
the short-range (D;) and long-range (D,) densities are determined for each individual, based on
mussel densities within a radius of 3.3 cm and 22.5 cm, respectively. These radii correspond to the
ranges in which we found significant correlations with the probability of moving in a multi-variate
regression analysis of our experimental data (F = 77.17, p << 0.001, R* = 0.622, df = 136). The
probability Py, that @ mussel moves is negatively related to the short-range density D; and
positively related to the long-range density D, (see Fig. S2.3), which causes mussels to stay in
places where they can aggregate with direct neighbors, but move away from crowded locations
where food becomes limiting. In the model, we used a linear relationship between P, and the
two densities:

Prove =a—bD; + cD,, (6)

which was obtained by applying linear regression to our experimental data (a = 0.63, b = 1.26, and
¢ = 1.05). If a mussel decided to move in our model, its step length / was chosen at random from a
power law distribution (512) with a given Lévy exponent p > 1:

1

l= Ln(1—x) k-1, (7)

where x is a random variable that is uniformly distributed over the unit interval (0 < x < 1), and
Lmin is the minimum distance traveled when moving (57), which we have set at 0.3 cm. Each
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simulation step, mussels move instantaneously from one location to another, though step lengths
were truncated when a movement path was obstructed by another mussel. This truncation was
calculated by determining the free movement path until collision, using a band width of 3 cm (the
size of a mussel) around the line segment connecting the mussels’ original location to its intended
destination. When a conspecific was located within this band, the mussel stopped in front of this
conspecific, thereby truncating its movement path. All movements occurred simultaneously and
all individuals in a simulation used the same movement strategy.

As differences occur in the average distance covered per simulation step between the movement
strategies (ballistic individuals move a larger distance per simulation step than Lévy or Brownian
walkers) and assuming that movement speed is constant, more time is needed for a ballistic step
than for a Brownian step. To avoid having Brownian movers switch more frequently between
moving and stopping than ballistic movers, we updated the state of either moving or stopping not
after each simulation step but after an average distance moved.

A simulation was finished when the average short-range density exceeded 1.5 times the mean
long-range density. At that moment, the total distance travelled was recorded. As we assume that
the movement speed is constant, the rate of patterning is proportional to the normalized inverse
of the distance traversed until a pattern is formed. Simulations were run for a range of Lévy
exponents (1 < u < 3), and for each value the rate of pattern formation was plotted as a function of
K. The model was implemented in Matlab version 7.9 (©1984-2009. The MathWorks, Inc.).

Evolutionary model

Evolutionary change was studied in a monomorphic resident population by investigating whether
the fitness of rare mutants is higher than that of the residents, implying that the mutants can
increase in frequency (S13, S14). After the mussels moved an equal distance, we recorded the
short-range density, the long-range density, and the fraction of mussels that was still moving, for
both the residents and the mutants. In a population with non-overlapping generations, fitness is
given by the product of survival probability and fecundity. We assumed that survival probability is
proportional to the local mussel density D; and that fecundity is inversely proportional to the long-
range density D, (as this density affects food supply) and to the time X spent on moving (as energy
spent on moving cannot be invested in offspring production). Dividing the fitness measures thus
obtained for a mutant and a resident results in a measure for the relative fitness of the mutant
strategy:

D D X
qut — 1,mut % 2,res % res . (8)
Dl,res Dz,mut Xmut

Mutant strategies with a relative fitness value larger than one will invade and potentially take over
the resident population. For any combination of resident and mutant movement strategy, the
relative fitness of the mutants is depicted in a pairwise invasibility plot (S14, see Fig. 3). In this plot,
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the color red indicates that the mutant has a higher fitness than the resident (F,,.: > 1), while the
color green indicates that the mutant cannot invade the resident population (F,,: < 1). The
intersection of the line separating these two scenarios (F,,: = 1) with the main diagonal of the
pairwise invasibility plot corresponds to an evolutionarily singular strategy (513, S14).



S2 Supporting Online Figures

A

Fig. S2.1. Step length calculation using the ‘error radius method’ (A) and the ‘angle method’ (B). In the first method (A), n
steps are aggregated into one move if the n-1 intermediate spatial positions are no more than x units away from the line
connecting the beginning of the step to the end of it. The second method (B) is based on reorientation events; when the
angle B (between the dotted black line and the solid black line) exceeds a certain threshold value, the corresponding point

is the next new point (after Turchin, 1998; S3).
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Fig. S2.2. The Lévy exponent p determines the shape of the step length distribution and thus the movement strategy.
When p is close to 1, the movement strategy resembles ballistic, straight-line motion (A, D), whereas the step length
distribution is similar to that of a Brownian walk when p approaches 3 (C, F). The movement strategy is referred to as a Lévy
walk when 1 < pu < 3 (B, E). A, B, and C show movement trajectories obtained with p = 1.01, 2, and 3, respectively. The
inverse cumulative step length frequency distributions (i.e. the fraction of steps that is larger than or equal to the
displacement length (l) that is given on the x-axis) are given by D, E, and F for i = 1.01, 2, and 3, respectively.
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S2.3. Experimental data shows that the probability of moving depends on short-range and long-range mussel

densities. (A) Local mussel density decreases the probability of moving; mussels tend to stay in denser clumps. (B) The
probability of moving positively correlates with long-range density; mussels move away from areas where competition is
high.
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Table S3.1. Summary of the model fits to the step length data. Goodness-of-fit (G), AIC weights and % variance

explained of each movement strategy fitted to the mussel data (Rz) for all three methods that were used to obtain the
step lengths. Truncated Lévy walk (TLW) corresponds best to the raw data and the data obtained using the error radius

method. Data acquired with the angle method was best described by a Lévy walk (LW). Lévy exponents ranged from
1.930 to 2.174, with a mean p of 2.032.

Method Model G AIC weights Adjusted R>  Lévy exponent
Step per Truncated Lévy walk 33.60 0.446 0.999 2.127
minute

Lévy walk 64.54 0.431 0.999 2.174

Brownian walk -119.43  0.123 0.878 -
Error radius Truncated Lévy walk -2.69 0.437 0.997 1.967
method

Lévy walk 3.93 0.401 0.995 2.045

Brownian walk -344.85  0.163 0.898 -
Angle method  Truncated Lévy walk 36.43 0.445 0.995 1.930

Lévy walk 73.20 0.453 0.996 1.946

Brownian walk -106.00 0.103 0.734 -




Table S3.2. Lévy exponent during pattern formation. Lévy exponents for step lengths in different local and long-range
density groups, for all three methods that were used to obtain the step lengths. Low/Low = both low local and long-
range densities; Low/High = low local and high long-range density; High/Low = high local and low long-range density;
High/High = both high local and long-range densities. Pattern formation in mussel beds produces an environment with
high local densities and low long-range densities. There is no significant correlation between Lévy exponent and the
degree of patterning, as well as any other relationship between the exponent and mussel density; we can therefore
reject the hypothesis of a composite Brownian walk, where movement speeds are adjusted to local environmental
conditions ($15-518).

Method Low/Low Low/High High/Low High/High
Step per minute 2.05 2.05 2.06 2.05
Error radius 2.00 2.07 2.05 2.05
method

Angle method 2.00 2.00 2.00 2.00
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Movie S1

1201187S1.mov: Time-laps movie showing the movement behavior of a single mussel, with the

corresponding movement track plotted as the mussel is moving. The video covers nearly a two hour

time period (QuickTime movie, 11 MB), with images taken every 10 seconds. We acknowledge Aniek

van den Berg for running this movement experiment.

Matlab code:

IBM1201187S1.m: Individual Based model of mussels moving into a self-organized pattern. The code
was written for Matlab version 7.9.0 (R2009b © The Mathworks, Inc.) and shows the distribution of
mussels after each simulation step.



