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Abstract

We study a generalised model of population growth in which the state variable is population growth rate instead of

population size. Stochastic parametric perturbations, modelling phenotypic variability, lead to a Langevin system with two

sources of multiplicative noise. The stationary probability distributions have two characteristic power-law scales. Numerical

simulations show that noise suppresses the explosion of the growth rate which occurs in the deterministic counterpart.

Instead, in different parameter regimes populations will grow with ‘‘anomalous’’ stochastic rates and (i) stabilise at ‘‘random

carrying capacities’’, or (ii) go extinct in random times. Using logistic fits to reconstruct the simulated data, we find that even

highly significant estimations do not recover or reflect information about the deterministic part of the process. Therefore,

the logistic interpretation is not biologically meaningful. These results have implications for distinct model-aided

calculations in biological situations because these kinds of estimations could lead to spurious conclusions.

r 2006 Elsevier B.V. All rights reserved.
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Population dynamics are frequently modelled with simple equations that mimic some aspects of replicating
biological entities, such as division (in cells), fission (in modular organisms) or reproduction (in eukaryotes),
competition, and population-size limiting (saturation). These and other properties are represented by various
models. Frequently, the validity of these models is a matter of statistical goodness of fit with a specific data set.
However, these biological properties are not entirely of intrinsic nature to the individuals, or to the
populations themselves, but rather emerging ecological properties, i.e., the interaction between ‘‘individuals’’
and ‘‘environment’’. The models of population growth simplify (whenever it is possible) the potential
complexity of a detailed ecological description into simple equations.

Recently, we showed that a variety of biological growth models can be unified using a phase-space
decomposition using two dynamical variables, population size x and growth rate r [1] (analogous to a
particle’s position and momentum, respectively):

_x ¼ xr, (1a)
e front matter r 2006 Elsevier B.V. All rights reserved.
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_r ¼ rðyr� rÞ. (1b)

The constant r is the Malthusian parameter, and y is the intraspecific interaction coefficient. By varying these
two parameters it is possible to reproduce exactly a wide family of growth laws including exponentials,
logistics [2,22], Gompertzian [3], Potential [4,5], as well as allometric growth laws like Von Bertalanffy’s [4,6]
and West’s [7] equations, among others [1].

Although the deterministic behaviours can be associated with distinct biological scenarios [1], populations
are often influenced by some source of noise. Biologically, random ‘‘forces’’ are often related to environmental
and demographic fluctuations, as well as to intrinsic complex effects like genetic variability, mating, and
segregation. These environmental and genetic factors can be thought to be the determinants of the parameters
that describe the growth of a population. This conjecture means that they are (complicated) measures of
phenotypic expression. Thus to a first approximation we can model the effect of phenotypic variation as noise
over these parameters.

We can consider two sources of noise ZrðtÞ and ZyðtÞ affecting, respectively, the parameters y and r. The rate
equation (1b) linearly perturbed with r! rþ ZrðtÞ and y! yþ ZyðtÞ results in

_r ¼ rðyr� rÞ þ r2ZyðtÞ þ rZrðtÞ, (2)

where the ZiðtÞ have the usual properties of white noise:

hZiðtÞi ¼ 0,

hZiðtÞZiðsÞi ¼ dðt� sÞ�2i ,

hZyðtÞZrðtÞi ¼ g, ð3Þ

with h� � �i denoting expectations, and i ¼ r; y. Here, �i are the intensities of the noise sources, g is the
correlation between the two noise sources, and dðtÞ is Dirac’s delta function.

The resulting system is a Langevin equation where r is the drift term and yr2 can be thought as the force of
an external field [8]. Multiplicative noise, often represents fluctuating barriers or processes of anomalous
diffusion (i.e., diffusion where the probability of long steps is higher then in the normal case) [9–13]. Also,
multiplicative noise is a process that retains memory (i.e., is non-Markovian), and has been investigated in the
context of population growth and extinctions [14–16].

The stochastic differential equation (SDE, Eq. (2)) remains uncoupled from the size x. This gives an
operational advantage since the analyses of the SDE can be made in terms of r as a 1-dimensional system that
is relatively simple to handle.

To study the effects of multiplicative noise, and make precise the meaning of ‘‘anomalous growth’’ in
populations (in analogy to anomalous diffusion), first consider the probability distribution for the rates. In the
Itô interpretation of noise, the probability is given by the related Fokker Planck equation (FPE):

qtPðr;tÞ ¼ �qr½rðyr� rÞPðr;tÞ� þ 1
2
qrr½ð�

2
r � 2�r�ygrþ �2yr

2Þr2Pðr;tÞ�. (4)

Setting the time derivative equal to zero makes it possible to calculate the potential solution of the FPE on the
stationary regime PðrÞ (i.e., equilibrium solution), which gives

PðrÞ:¼Nðr�2Þr0þ1ð�20 � �0grþ r2Þr0�1 exp½2ð�cy0 � gcr0Þ tan
�1ð�cr� gcÞ�, (5)

where N is the integration constant, and

r0 ¼ r=�2r; y0 ¼ y=�2y; �0 ¼ �r=�y,

�c ¼ �
�1
0 ð1� g2Þ�1=2; gc ¼ gð1� g2Þ�1=2.

Fig. 1 shows that there are three distinct kinds of stationary distributions for the rates. The first thing that we
note, is that the correlation g modulates the transition from one distribution to another. Thus, for simplicity
for the further analyses we proceed setting g ¼ 0.
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Fig. 1. Potential solutions for the stationary Fokker Planck equation. (A) When 0oy20=8o�20ðr0 þ 1Þ, the distribution shows an exit

barrier at r ¼ 0; in this example r ¼ 1, �r ¼ 0:5, y ¼ 1, �y ¼ 0:1. (B) When 0o�20ðr0 þ 1Þpy20=8, besides the exit barrier, the distribution

also shows an analytic maximum; in this example r ¼ 1, �r ¼ 0:4, y ¼ 4, �y ¼ 1: (C) When �20ðr0 þ 1Þo0py20=8, the exit barrier disappears,
and the distribution is unimodal with an analytic maximum; the parameters are r ¼ �3, �r ¼ 0:5, y ¼ 2, �y ¼ 1:5. The insets plot the

distributions in log–log scale, showing that there are two characteristic scales. The left tail scales with an exponent of �2ð1þ r0Þ whereas
the right tail scales with an exponent of �4. The inflection points are close to the maximum.
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The first distribution (Fig. 1A) is monotonous decreasing, and the other two (Figs. 1B–C) have an analytic
maximum at

r� ¼
y0
4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0
4

� �2

� �20ðr0 þ 1Þ

s
.

The condition for having an analytic maximum is

y20
8
X�20ðr0 þ 1Þ. (6)

Fig. 2 outlines the regions where the inequality (6) holds. The parabolic curve (i.e., the boundary given by the
equality in Eq. (6)) divides the parameter space into three regions with different stationary regimes. The first,
when 0oy20=8o�20ðr0 þ 1Þ, corresponds to the space under the parabola (Fig. 2); in this case the probability
density is accumulated at r ¼ 0. The second region, characterised by 0o�20ðr0 þ 1Þpy20=8, corresponds to the
space over or under the parabola region (Fig. 2). The third region, defined by �20ðr0 þ 1Þo0py20=8, is the space
on the left of the parabola. In the two last regions, the probability mass of rates is distributed along the axis,
indicating that the growth rate can be persistent (i.e., non-zero). In the following of the paper, we will show
that each of these regions have distinct qualitative solutions in which the deterministic nature of the process is
‘‘forgotten’’, but the resulting dynamics of the population size look like exponential or logistic dynamics. We
will demonstrate however, that these two forms are entirely product of noise, hence fitting these models to the
realisations—although statistically significant—are spurious.

For particular cases of Eq. (2) the stationary distribution has been calculated before. When y and its noise
Zy term are absent, the equation recovers the geometric Brownian motion [17], whose stationary distributions
were shown to have power-law tails [9]. In this representation, the growth corresponds to a Gompertzian
growth. A power-law-tailed distribution is also found for the stationary distribution of an equation where
ra0 but which is not perturbed [18]. Also, a logistic case y ¼ 1 was analysed by Morita and Makino [19] using
perturbation techniques for a time-dependent solution. In log–log scale the distribution (5) is kinked near
rc ¼ �0 expðpy0=2�0ð1� r0ÞÞ, with a right-tail decreasing in a power-law fashion logPðrÞ� � 4 log r (insets in
Fig. 1). This is a result that can be derived directly from the particular case studied by Góra [18], because the
right tail of the distribution is independent of the parameters. Moreover, there is also a power-law behaviour
for small values of r which is given by logPðrÞ� � 2ðr0 þ 1Þ log r. These power-law tails lead to Tsallis
statistics [9,20]. Some relationships between exponents have been derived for a system related (but not
equivalent) to ours [21].
Fig. 2. The parameter space ðr; yÞ consists of four quadrants, corresponding to their sign combinations. The dotted lines indicate distinct

deterministic growth functions known in the literature: Potential ðPÞ r ¼ 0; logistic ðLÞ r40, y ¼ 1; Gompertzian ðGÞ r40, y ¼ 0; West

ðW Þ r40, y ¼ �1
4
; von Bertalanffy (VB) r40, y ¼ �1

3
; Exponential ðEÞ r ¼ 0, y ¼ 0. The solid curve represents the noise-transition points

between the three distinct regimes of the distributions of the rate: (a) inside the parabolic region 0oy20=8o�20ðr0 þ 1Þ; (b) above or below

the parabolic region 0o�20ðr0 þ 1Þpy20=8; and (c) at the left of the parabolic region �20ðr0 þ 1Þo0py20=8.
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Fig. 3. Realization of noisy rate dynamics. The dotted lines show deterministic solutions, while the continuous bold lines show the

stochastic realizations. It can be seen that when the deterministic rates decrease to zero, the stochastic dynamics will also decrease to zero.

Also, when deterministic rates explode the stochastic dynamics remain finite. These realisations correspond, respectively, to the regimes

and parameters of Fig. 1.
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The fast decrease of the right tail has an important consequence, which is the boundedness of the process. In
other words, it means that the fluctuations remain finite. The simulations of Fig. 3A show that when the
probability density is accumulated at r ¼ 0 the rates will stochastically reach zero and stay there forever.
Whenever this happens, the population freezes at its—random—current size.

Sibly et al. [22] performed an analysis where they fitted more than a thousand population time series to the
y-logistic model. Their analysis was based on the size-dependent per capita growth rate rðxÞ. The examples
they presented, show comparable patterns to the realisations obtained from our model (Fig. 3A). However, as
we can see in this figure, the stochastic trajectories are not centred on the deterministic trajectories, as it is
common for multiplicative perturbations. Therefore, the interpretation of the estimations in Ref. [22] differ
from the deterministic path, at least in the light of our model. We will return to this discussion later in the
article.

Other simulations, using a processes having stationary distribution with maxima, are shown in Figs. 3B–C.
In these cases, the rate does not explode in the time-window, even when these realisations (the deterministic
and the stochastic) have the same initial conditions which would lead to explosions in the absence of
perturbations.

Recently, Mao et al. [23] demonstrated that the deterministic explosions of ‘‘positive’’ logistic equations
(e.g. of the form _x ¼ axð1þ bxÞ) can be controlled with certain types of multiplicative noise sources. When
these fluctuations are present, populations will not diverge in finite time, although their purely deterministic
analogue does. The rate-representation introduced in this paper is also of quadratic form, thus the results of
Mao et al. [23] apply to Eq. (2). However, the biological interpretations change, because explosions are
suppressed in the rate rather than in population size.

As indicated by the distribution of the rates, probability is accumulated near the maximum, thus the rates
will be non-vanishing, jumping from very slow to high (but finite) values, making the size of the population
increase in bursts, reconstructing a devil’s staircase pattern (a staircase where all the steps are of different size
and height). Also, because the rate never reaches zero, the population grows unlimited.

The same distributions of Fig. 1 appear for negative rates. The course of the population is the opposite, i.e.,
decreasing, although the distribution is the same (in absolute value): (i) if the distributions have an analytic
maximum, the rates will remain finite and fluctuating, meaning that population will decrease erratically but
monotonously and therefore populations will become extinct in random times; (ii) if the distributions do not
have an analytic maximum, then r reaches zero stochastically (Fig. 3A), and then the populations will stabilise,
again at a ‘‘random carrying capacity’’.

The distribution (5) is not normalisable whenever r0 þ 140, because it diverges when r! 0. This means
that r ¼ 0 is an exit barrier, and hence once the rate reaches zero it will stay there. This limit is the same if
taken from the left, thus the rate cannot either jump to a negative value once it reaches zero. For instance the
rates maintain their sign or become null, but never change sign. The meaning is that when the rates are
stationary, an initially growing populations will continue to grow, or at most, cease growing but they will not
suddenly shrink. Therefore, the converse is also true: populations that started shrinking, will not suddenly
change its course and grow. They will continue to shrink until extinction, or reach a stable value.

The dynamics results in distinct realisations that can give drastically different solutions, when compared, for
example, to the deterministic solution. Fig. 4A shows that the equilibrium value of the populations can be very
different from the deterministic carrying capacity. Thus the observed equilibrium value of the populations is
no longer determined by the initial conditions, as in the deterministic case [1]. Actually, the carrying capacity is
now a random variable. For example, in Fig. 4A the size equation is solved for several realisations of the
process (2). For the naive eye, the distinct realisations could be seen as distinct ‘‘noisy logistics’’ with different
carrying capacities. Comparing the realisations to a logistic equation gives highly significant fits, even when
the data come from a common process having the same values of the parameters.

In order to determine if we can recover deterministic information of the processes, we performed
simulations of 250 randomly selected values of r; y and for each we performed 30 realisations. To every
growth curve we least-squares-fitted a logistic model, and calculated its parameters r̂ and x̂1. Fig. 4B shows a
scatter plot of the estimated vs. the deterministic values of the Malthusian parameter, showing a poor
relationship. Other correlations are presented in Table 1. These results show that the reconstructions are
totally spurious since they do not reflect any information of the generating process. But because the dynamics
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Fig. 4. (A) Integrations for population size for distinct realizations of the same process when y20=8o�20ðr0 þ 1Þ using the parameters

r ¼ 1; �r ¼ 0:5; y ¼ 1; �y ¼ 0:5. The bold line shows the deterministic dynamics and the thin lines are realization for the population size.

The dotted lines are logistic estimations. In these cases, the estimated Malthusian parameters range between r̂ 2 ð0:8; 1:5Þ. Carrying
capacities range from x̂1 2 ð1; 10

3Þ, and the deterministic carrying capacity is x1 ¼ 10:0. All of the estimations have a regression

coefficient R240:995 with p-values less than 10�3. (B) Correlation between the estimated and generating Malthusian parameters, from

7500 simulation spanning 250 distinct pairs of uniformly distributed values of r 2 ½0; 2�, y ¼ ��0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr0 þ 1Þ

p
, using �r ¼ 1:0, �y ¼ 0:1. The

radii of the circles are 10�3 logðSEÞ ðSE ¼ standard errorÞ. The continuous line is the linear trend, which gives r̂ ¼ 0:389591þ 0:371044r
with R2 ¼ 0:2873 ðpo2:2� 10�16Þ. The dotted line is a linear trend weighted with the inverse of the standard error of each estimation:

r̂ ¼ 0:91300þ 0:22528r with R2 ¼ 0:3393 ðpo2:2� 10�16Þ. Comparing these two estimations we see that even in the best case (the

weighted regression) the predictive power is poor. (C) Integration for population sizes for distinct realisations of the process when

y20=8X�20ðr0 þ 1Þ using the parameters r ¼ �3, �r ¼ 0:3, y ¼ 2, �y ¼ 1:5. The bold line represents the deterministic dynamics, and the thin

lines the realisations for population size. The dotted lines are estimations for the exponential growth. The estimated values for the

exponential growth parameter are in the range of ð21:8; 26:0Þ. All the estimations have a regression coefficient R240:998 with p-values less

than 10�16. The graph is in semi-log scale.
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Table 1

The correlation coefficient between the parameters and estimators for the logistic estimations are very low, indicating that the fits have

little predictive power with respect to the deterministic part of the process, even thought they could be considered virtually perfect

r y r̂

r̂ 0.532 0.301

x̂1 �0.0712 �0.0290 �0.0119

H.P. de Vladar, I. Pen / Physica A 373 (2007) 477–485484
resemble a logistic realisation, accepting a null hypothesis that the biological phenomena determining growth
are of logistic nature is true, statistically speaking. However, our calculations show that stochastic processes
can account for the same qualitative and quantitative description. Therefore, simple analysis like least squares
fits are not enough to confirm the logistic hypothesis.

There is an analogous effect for the case when the rates are persistent. Once the stochastic rates are in
stationarity, the resulting population dynamics resembles exponential growth. In the deterministic exponential
growth, the initial condition of the rate determines the growth parameter [1]. Although under our scheme, the
growth process is non-Markovian thus the initial conditions of ðx; rÞ do not affect the stationary distribution
(5). As a consequence, the expected or averaged rates are spurious estimators of an exponential dynamic
(Fig. 4C). A similar problem was described by Renshaw [24] when demographic stochasticity is present in an
exponentially growing population.

At this point it is necessary to make a distinction between the outcomes of noise sources coming from
demographic or phenotypic stochasticity. The first has been studied and experimentally supported [24,25,27].
This kind of stochasticity is such that randomness affects the population through events of accidental
mortality or occasional migrations (and is analogous to energy input coming from a heat bath). In these cases,
the populations would fluctuate, for example, close to carrying capacities, and thus information for the
deterministic part of the dynamics can be extracted by averaging. The second type, i.e., parameter
stochasticity, is more related to fluctuations in phenotypes, which results from the ‘‘superposition’’ of genetic
and environmental processes. However, from the perspective of our model, where carrying capacities are not
an intrinsic property of the environment, this averaging might not make biological sense. As we said, an
average of the stochastic trajectory does not recover the deterministic path, like in Fig. 4. Of course,
populations might still be subject to demographic stochasticity, and therefore show fluctuations around a
stable size. In this case, we would be presented with an additional noise source ZM , more related to the
measuring techniques, perturbing the size equation as:

_x ¼ xrþ ZM , (7)

that gives the fluctuating pattern over the stable size. (This is a problem known as filtering: when the
measuring procedure has additional noise sources, not taking them into account in the estimations, may bias
the interpretation of the underlying process [17].) Considering this source of fluctuations is more related to
time series estimation than to the biological aspects of our model. Therefore, we shall not discuss it in further
detail, and we defer the reader to Ref. [26] for a method to overcome these kinds of problems.

To summarise, we have presented an analysis of a novel population growth model that is based on
fluctuations in the per-capita growth rate, rather than in the growth variable. The result, is that the rate always
remains finite, either because rate explosions are suppressed, or because rate is damped to zero stochastically.
As a consequence, and depending on the relationship between the deterministic parameters and noise, the
model reproduce patterns that resemble exponential and logistic (sigmoid) growth. It is important to notice
that these behaviours are irrespective on how the deterministic population would grow. These forms are
determined by the fluctuations and not from the biological processes of birth and death, at least not in the
conventional interpretation and description. When y20=8X�20ðr0 þ 1Þ then the resulting population grows
anomalously, but with bounded fluctuations, and resembles an exponential growth. When y20=8o�20ðr0 þ 1Þ
then the populations grow toward saturation. However, this result challenges the idea of a carrying capacity,
that is supposed to describe self-regulatory processes and an intrinsic property of the environment. Here, it is
an emerging property from the fluctuations. In both cases, and more critically in the second (the logistic),
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statistical fits to the realisations are highly significant. But since the effects of randomness override the
deterministic forces of the system, making these statistical estimations becomes unreliable. In the context of
our formulation, the question about rate estimations looses its sense, because forecasting using the classic
deterministic models proves useless. Thus fluctuation analysis might prove more informative about the
stochastic driving forces. In this way, estimations and forecasting can give other statistical solutions to
classical and new problems, using our different perspective, that is, when populations are subject to
phenotypic stochastic variability.
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