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Abstract

The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence

mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of

regulatory functions is the y-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces
a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for

population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the

dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation

is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter r and a
competition coefficient y. Distinct sign combinations of these parameters reproduce not only the family of y-logistics, but also the
van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical

points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the

recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth

of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The logistic equation is a paradigm for population
biology. This simple model, in its continuous (Verhulst,
1838; Pearl, 1927) or discrete (May, 1976) versions
describe two fundamental properties of population
biology, which are (i) the initial exponential rates of
growth, and (ii) density-dependent effects, like competi-
tion under limited resources, indicated by saturation
values. The discrete logistic equation, in itself opened a
new and broad field in biology related to chaotic
behaviours, and for which some experimental evidences
exist (Hanski et al., 1993; González et al., 2003b). The
continuous version of logistic growth, although sharing
properties with its discrete analogue, differs in some
e front matter r 2005 Elsevier Ltd. All rights reserved.
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aspects. It does not show intrinsic bifurcations as the
discrete version does, and is much more simple to treat
analytically.
Gilpin and Ayala (1973) and Gilpin et al. (1976)

introduced a model that ‘‘slightly’’ generalizes the
popular logistic equation. Their model, consists on
modifying the term corresponding to the density-
dependence with an exponent y

_x ¼ rx 1�
x

x1

� �y
" #

, (1)

where x is population size, the notation _x corresponds to
time derivative dx=dt, and r, y, and x1 are parameters
of the model. Compared to the logistic equation, their
‘‘global model’’ describes a population that converges in
time to the same size as the logistic growth, i.e. to the
carrying capacity x1. However, the exponent y gives
new interpretations to this sigmoid model of growth. If
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Table 1

Common regulation functions for different population growth models

Model Growth rate Malthusian parameter Interaction parameter Initial rate

Exponential rðxÞ ¼ a r ¼ 0 y ¼ 0 að0Þ ¼ aa0
Logistic rðxÞ ¼ rð1� axÞ r40 y ¼ 1 að0Þ40
y-Logistic rðxÞ ¼ r

y ð1� axyÞ r40 y40 að0Þ40
Gompertzian rðxÞ ¼ �r logðaxÞ r40 y ¼ 0 að0Þ40
Potential rðxÞ ¼ axy r ¼ 0 ya0 að0Þa0
von Bertalanffy rðxÞ ¼ �3rð1� ax�1=3Þ r40 y ¼ � 1

3
að0Þ40

West et al. (2001) rðxÞ ¼ �4rð1� ax�1=4Þ r40 y ¼ � 1
4

að0Þ40

In all these equations x is the size of the population, r is the Malthusian parameter, y is the competition coefficient, and a is a parameter determined
from environmental conditions. When populations grow to a saturation, a is related to the carrying capacity.
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y41 then intra-specific competition is high, and the
population takes more time to reach its asymptotic
value, termed carrying capacity. If 0oyo1 then
competition is lower and the carrying capacity is reached
earlier than in the corresponding logistic dynamics
(Gilpin and Ayala, 1973; Gilpin et al., 1976).
The y-logistic model, as it has been termed after-

wards, introduced a new concept on population ecology
that is the y-selection strategies (Gilpin and Ayala, 1973;
Gilpin et al., 1976). Originally, they proposed the model
to explain data from competing Drosophila systems after
failure to use a Lotka–Volterra-like model (Ayala et al.,
1973). Afterwards, non-competitive versions of the
system (i.e. one ‘‘allele’’ or one ‘‘species’’ model) have
been used in conservation ecology to model avian
population dynamics and calculate extinction times
(Saether et al., 2000), and also to estimate the effects
of environmental stochasticity on population growth
(Saether and Engen, 2002). Other population models
have included stochasticity to aid parameter estimation
and study the effect of environmental changes in caprine
populations (Saether et al., 2002). This model has also
been employed in community ecology to estimate
species abundance (Diserud and Engen, 2000). The y-
logistic equation is a ‘‘slightly more complicated model
[that] yields significantly more accurate results’’, using
the original words of Gilpin and Ayala (1973).
There are, however, other kinds of regulation terms

that have been successfully employed to model other
kinds of populations and growth. Sigmoid curves in
particular are attractive for biologists, but are not
necessarily described by y-logistic equations. The von
Bertalanffy (1966) equation, for example, is a sigmoid
curve that is frequently used in allometric modelling, as
well as the recently proposed (and controversial) curve
derived from bioenergetic considerations by West et al.
(2001). Another kind of sigmoid is given by the
Gompertz equation (Gompertz, 1825), which was
originally formulated to model human demographic
data. The Gompertz equation has become an important
tool in modelling tumour growth (Norton et al., 1976),
although applications include a wider range of topics.
All of these sigmoid share the property of reaching
carrying capacity, although they have different func-
tional forms (Table 1), which confere distinct dynamical
properties: inflection points, critical behaviours near
x ¼ 0, or rate of convergence to equilibrium.
However, not all populations obey saturated growth.

Among non-saturated growths the first classical example
is exponential growth, typically employed to describe
bacterial cloning (Hershey, 1939), or simply as descrip-
tors for non-regulated conditions of growth. A ‘‘general
version’’ of the exponential is potential growth—which
actually shows some kind regulation but does not reach
a carrying capacity. Potential growth appears in tumour
biology (Hart et al., 1998), early-life evolution (Szathm-
ary and Demeter, 1987), lifehistory theory (Calder,
1984; Roff, 1986; Day and Taylor, 1997; Stearns, 2004),
as well as in allometry (Peters, 1983; Calder, 1984;
Brown and West, 2000). Potential growth functions is
typically a consequence of complex systems where there
are several levels of organization having a direct
consequence on growth (e.g. Szathmary and Demeter
(1987); West et al. (1997)).
Motivated by the y-logistic equation, this paper

introduces an alternative way to interpret and formulate
population dynamics models. The description explained
through out this paper reduces exactly to most common
population models, including the above-mentioned
growth dynamics (resumed in Table 1). With this new
formalism general scaling laws are derived, using initial
population size and carrying capacities. These scaling
laws, include the heuristic scaling introduced by West
et al. (2001) in allometry.
2. ‘‘Mechanics’’ of self-regulation

One of the central issues in population dynamics is to
determine the growth function that describes a parti-
cular population. Growth dynamics in general can be
expressed in the form

_x ¼ xrðxÞ. (2)
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The growth rate rðxÞ is an explicit function of the size
of the population x. Depending on the nature of the
self-regulation, rðxÞ has different functional forms (see
Table 1.) For a wide review of density dependence
functions, including (mainly) discrete dynamics, the
reader can refer to Henle et al. (2004).
Growth of a population is a contribution of two

terms: a replication term, whose contribution to the rate
is typically a positive constant indicating the number of
offspring per unit of time, or frequency of duplication,
and another term describing interaction and/or growth
inhibition, which is in itself dependent on x.
The logistic model, for example, describes growth

inhibition with a second-order term, i.e. x2. The y-
logistic generalizes this second-order term to one of an
arbitrary order greater than one, expressed by xyþ1. In a
biological sense, this nonlinear term is proportional to
the frequency of interactions that an individual must
have in order to produce population growth inhibition
(anergy) or promotion (synergy). For these examples,
the rate will be a decreasing line with x for the logistic
case, and a decreasing curve of order y for the y-logistic.
The idea in this paper is to express the dynamics of a

population using not only its size x as the variable of
interest but a decomposition where the rate r at which
the population grows is considered as a separate state
variable. The decomposition requires the knowledge of
how r changes in time, thus the starting point is to
determine the dynamics of r. This decomposition results
in a two-dimensional dynamical system (Ermentrout,
2002; Arrowsmith and Place, 1990) with the variables
ðx; rÞ 2 Rþ � R describing the population size and
replication velocity, respectively.

2.1. Exponential growth

In the case of the exponential growth, because
r ¼ const: ¼ a, the time derivative of the rate _r ¼ 0.
Thus the following trivial system:

_x ¼ xr, (3a)

_r ¼ 0, (3b)

is equivalent to exponential growth.
Integrating Eq. (3b) gives the constant a, which is

determined by the initial conditions of the system
xð0Þ; rð0Þð Þ. Later, substitution into Eq. (3a) recovers
the original expression in terms of one variable, i.e.
_x ¼ xa.

2.2. Logistic growth

For the logistic growth, it is necessary to define the
new variable r as

rðxÞ :¼rð1� axÞ, (4)
where r is the Malthusian parameter (Fisher, 1930), and
a40 is the inverse of the carrying capacity. Thus, the
rate equation again is expressed implicitly as _x ¼ xr, and
the time derivative for r is

_r ¼ �ra _x ¼ �raxr.

Regrouping, and then summing and subtracting 1 in the
parenthesis, it is possible to write

_r ¼ rð1� ax � 1Þr ¼ ðrð1� axÞ � rÞr.

The inner parenthesis of the last expression has the
explicit form of r. After replacing it with Eq. (4), the rate
equation becomes

_r ¼ ðr � rÞr. (5)

Therefore, to solve the dynamical system equivalent to
the logistic equation only one parameter and an initial
condition are needed. Actually, the initial condition
automatically defines the carrying capacity of the
population.
2.3. y-Logistic growth

The rate for the y-logistic is defined as

rðxÞ :¼
r
y
ð1� axyÞ. (6)

Following the same methodology as with the logistic
growth, it is not difficult to demonstrate that the implicit
form for the rate equation is

_r ¼ ðyr � rÞr. (7)

Although derived from the y-logistic, this last equation
is very general because it includes all the growth laws in
Table 1. In the limit y ! 1 the logistic equation is
recovered, and taking jointly the limits y;r ! 0 Eq. (7)
reduces to the simple form of exponential growth. Note
that from the logistic (5) it is not possible to take the
limit to the exponential formally, since it does not show
an explicit dependence on yð¼ 1Þ. To recover exponen-
tial growth from the explicit form of the logistic, the
limit would have to be taken as a ! 0. But then the rate
of the exponential growth will be r instead of a. In the
formalism presented in this paper a and r have distinct
properties. On the one hand, r is defined as a parameter
of the system, and as such may have a role in
bifurcations and global stability, while a is defined from
the initial conditions, so it does not play any role in local
or global stability (Arrowsmith and Place, 1990). Also a
particular population grows following a predefined
replication constant r, which is considered to be
determined at least in part by intrinsic factors, while
a is determined extrinsically by environmental condi-
tions which define the carrying capacity of the
system (MacArthur, 1962). Thus in this mechanistic
interpretation where r determines growth response, the
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environmental issues play no dynamical role unless they

are explicitly and dynamically affecting growth rate.
3. Generalized growth rates

The three versions of the model studied above,
namely exponential, logistic and y-logistic, conform just
a part (in fact a minority) of the possible outcomes of
the system. They were derived by some nonnegative
combinations of parameters y and r. These, and other
dynamics admitting also negative values for y and r,
conform a dynamical system that generalizes most
classic types of population growth (Table 1). In other
words, the model presented herein is a unification of
several growth dynamics. Resuming, population growth
can be described in a general form by the two equations

_x ¼ xr, (8a)

_r ¼ ðyr � rÞr, (8b)

referred to from now on as growth equation and rate

equation, respectively.
Although the rate (8b) indicates that regulation

mechanisms are independent of population size, per

capita response is a contribution of both, individual
reproduction (related to the parameter r) and interac-
tion with other individuals (related to the parameter y).
The units of the parameter r are inverse of time

(frequency), and it gives the characteristic time-scale at
which individuals down-regulates the reproduction rate
when, for example, the population approaches an
equilibrium state like carrying capacity or extinction.
The parameter y, is non-dimensional, but it sets the
density scale at which the interaction of an individual
with the population affects its reproduction rate.
4. Fixed points and stability analysis

The rate (8b) encloses all the information of the fixed
points of the population dynamics. The rate equation
has two fixed points, namely, r0 ¼ 0 and r1 ¼ r=y.
Intuitively r0 corresponds to the non-trivial equilibrium
point of the growth equation, i.e. when the rates become
zero the population is in a stationary equilibrium
between reproduction and mortality. This means that
r0 is a steady state under balanced regulation.
Take for example the explicit form of the rate for the

y-logistic equation

r0 ¼ 0 ¼ rðx
Þ ¼
r
y
ð1� aðx
Þ

y
Þ

that implies x
 ¼ a�1=y, and which corresponds to the
carrying capacity. In this case, the population has a
finite size, balanced by reproduction (replication at the
individual level) and mortality (competition at the
population level).
The biological meaning of the second equilibrium

point, r ¼ r1, is not so obvious. From well-known cases,
like the y-logistic equation, it is possible to realize that
the population has a fixed point in x
 ¼ 0. However, the
fixed point given by the rate (6) means that

r1 ¼
r
y
¼ rðx
Þ ¼

r
y
ð1� aðx
Þ

y
Þ,

which implies directly x
 ¼ 0. Thus r
 ¼ r1 is equivalent
to x
 ¼ 0.
The system (8) suggest a third fixed point:

ðx
; r
Þ ¼ ð0; 0Þ. This point, however is a paradoxical
point, since both, the rate and the population size
cannot be simultaneously zero, unless r; y, and a are
zero.
The stability of these fixed points, can be studied with

the eigenvalues method (Ermentrout, 2002; Arrowsmith
and Place, 1990). The Jacobian matrix of the system
(8) is

Jðx; rÞ ¼
r x

0 2yr � r

 !
. (9)

Each of the two eigenvalues of this matrix, lx and lr are
derived from evaluating the Jacobian in the fixed points
(Caswell, 2000). For the first fixed point, P0 ¼ ðx0; r0Þ ¼
ðx
; 0Þ (where x
 is the asymptotic value obtained by
equating x
 ¼ r�1ð0Þ, like for example, carrying capa-
city), leads to the eigenvalues

lx0 ¼ 0,

lr0 ¼ �r. (10)

Now, evaluation of the Jacobian matrix in the second
fixed point, i.e. P1 ¼ ðx1; r1Þ ¼ ð0;r=yÞ gives the eigen-
values

lx1 ¼ r=y,

lr1 ¼ r. (11)

A fixed points will be stable if both of its eigenvalues are
negative, and unstable if any of them eigenvalues is
positive. Since r and y can take any real value, the
stability of the fixed points P0 and P1 depends only the
signs of these two parameters, but not in their
magnitudes.
However, some properties are already evident. First,

none of the fixed points can be foci, since the eigenvalues
cannot take imaginary values, thus oscillations and
cycles cannot occur. Second, the fixed point P0 has a
null eigenvalue, lx0 ¼ 0 (Eq. (10)), indicating that there
is a invariant set xinv that has ‘‘null’’ stability, meaning
that the point at which every trajectory intersects xinv,
(a) depends entirely on the initial conditions ðxð0Þ; rð0ÞÞ,
and (b) is fixed. This implies that distinct orbits intersect
xinv at different points. The dynamical equations imply
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Fig. 2. This regime of the phase space corresponds to the first

quadrant in Fig. 1, where r; y40. There are two types of growth. If the
initial conditions are below the separatrix rð0Þor=y, then the

population grows as a y-logistic. The intersection of the orbits at r ¼

0 correspond to carrying capacities. Initial conditions are above the

separatrix (rð0Þ4r=y), growth in a cooperative way, where interactions
between individuals accelerate population increase.
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that xinv(also termed stable manifold) corresponds to
r ¼ 0 for all nonnegative values of size x.
According to the signs of r and y, Eqs. (10)–(11)

indicate that there are four distinct possible sign
combinations for the eigenvalues. For each of these
combinations, termed regimes, particular patterns in the
trajectories occur. This suggests several types of
equilibria, convergence to equilibrium (which corre-
sponds to growth dynamics), and transitions between
the distinct regimes or types of equilibria (bifurcations),
as shown in Fig. 1.
The first quadrant in Fig. 1 where r and y are both

positive, corresponds to a phase space that has an
unstable node at P1 ¼ r=y. The trajectories that start
below this point, i.e. rð0ÞoP1 are attracted to xinv

(Fig. 2.) However, if the initial conditions are rð0Þ4P1,
then the orbits are upper unbounded, and growth is
unlimited. This means that the line r ¼ r=y is the
separatrix for the two possible dynamics.
Maintaining r40 and decreasing y ! 0, the systems

shows a discontinuous (i.e. first-order) transition
(Fig. 1). Because the position of the fixed point
Fig. 1. The value of the fixed point r1 (shown as a shade) as a function

of the parameters r and y. The four dots inside the four quadrants
correspond to the main four classes of models, and the four dots on

top of the axes are bifurcation points. The arrows follow the

explanation in Section 4. In quadrant I, r1 is an unstable node; the

point at y ¼ 0, following the arrow, is a bifurcation point (r1 is at

infinity). In quadrant II, r1 is a saddle. Following the arrow to r ¼ 0

another bifurcation point is found. In this point, the invariant set xinv

changes its stability from stable (attractive) to unstable. In quadrant

III, r1 continues to be a saddle. Following the arrow to the point at

y ¼ 0 another bifurcation is found. The stability of r1 changes in

quadrant IV to a stable node. Finally, returning to quadrant I, another

bifurcation is found at r ¼ 0 where r1 changes to an unstable node,

and xinv becomes stable again. The white dashed lines represent the

growth rates listed in Table 1.

Fig. 3. In this regime, corresponding to quadrant II in Fig. 1 with r40
and yo0 two types of growth are possible. The initial conditions above
the separatrix at r ¼ r=yðo0Þ reproduce sigmoid growth curves which
converge to a carrying capacity that corresponds to the intersection of

the orbits at r ¼ 0. If the initial conditions are below the separatrix,

then the interactions are anergistic and the population decreases

hyperbolically, and become extinct in a finite time.
P1 ¼ r=y increases as y decreases, at y ¼ 0 this P1
disappears at infinity. In this case, when y ¼ 0, xinv

retains its stability (note that the eigenvalues associated
to xinv, lx0 does not depend on y), and all orbits in the
system converge to xinv, for all initial conditions.
When yo0-and maintaining r40-the system is in

quadrant II (Fig. 1), and its properties change: P1 is a
saddle (i.e. unstable) point (now there is one positive
eigenvalue in Eq. (11)). The invariant manifold xinv still
retains it attracting stability (Fig. 3).
If the initial conditions rð0Þ4� r=y, then the orbits

intersect xinv as in the previous regime (Fig. 3). Note that
yo0, thus these initial conditions include a region where
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Fig. 5. An invasion-extinction regime corresponding to quadrant IV in

Fig. 1 with ro0; y40. This regime is of threshold type. Invasion
occurs in a synergistic way when rð0Þ40, although when the conditions
are met for extinction, i.e. rð0Þo0 the population vanishes decreasing
exponentially.
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negative rates diverge (meaning then that population
decreases in size toward zero).
From this point in the second quadrant of the

parameter space (Fig. 1), decreasing r to zero while
maintaining yo0 leads to a continuous (or second
order) transition. Here, the stable varieties xinv and the
separatrix P1 collapse onto each other.
Because at this point lx1 ¼ lr1 ¼ 0, we cannot infer

about the dynamical properties of the nullcline at r ¼ 0
with the eigenvalues method. However, with a perturba-
tion on each side of the fixed point, it is possible to
determine the stability. Then if Dr is the perturbation (a
trajectory slightly displaced from the fixed point), the
rate equation for the regime where r ¼ 0 and yo0 is

_Dr ¼ �jyjDr2,

thus the system always responds diminishing the rate.
Consider the solution RðtÞ of the perturbation to the rate
equation (note that there is no ‘‘first order’’ approxima-
tion in the rate equation for this case)

RðtÞ ¼
Dr

1þ Drjyjt
.

If the perturbation is positive, the rate will be damped to
zero asymptotically. This means that the population will
grow potentially. If the perturbation is negative, the rate
will decrease to �1, in a finite time given by
te ¼ ðDrjyjÞ�1.
Thus xinv repels the orbits on its left (initial conditions

rð0Þo0), and asymptotically attracts the orbits on its
right (initial conditions rð0Þ40).
In the third quadrant of the parameter space, where

yo0 and ro0, the eigenvalue lx140 but lr1o0
(according to the relationships Eqs. (11)). Thus P1 is
again a saddle point. In this case the trajectories grow
Fig. 4. An invasion-extinction regime, corresponding to quadrant III

of Fig. 1, where r; yo0. This regime represents dynamics that show
threshold behaviour. If the initial rate is rð0Þ40 the population can
invade asymptotically exponential with rate r=y. If initial conditions
are rð0Þo0 the population may go extinct in finite time with the rate
decreasing hyperbolically.
x ! 1, and xinv is a separatrix that repels the orbits on
its neighbourhoods. Fig. 4 shows several trajectories for
this regime.
Proceeding in direction to the fourth quadrant,

maintaining ro0 and decreasing y ! 0, once again a
discontinuous transition is found, where ðx; rÞ ! 1,
and xinv still repels the trajectories from each side.
The last regime when y40 and ro0, is characterized

by being the only one where P1 is a stable point (Fig. 5).
xinv is a separatrix: for those initial conditions such that
rð0Þo0 (i.e. negative rates), the populations decrease to
zero sigmoidally, and if the initial conditions are rð0Þ40,
then the population increases hyperbolically to x ! 1.
5. Carrying capacity

In the growth dynamics, the explicit rate equations
(Table 1) involve a constant a which does not appear in
the implicit form of the dynamical system (8). Integrat-
ing the growth equation leads naturally to the constant
a, as it did in the calculations of the exponential and y-
logistic equations in Section 2. Once the initial condi-
tions are defined the constant a is determined. In
quadrants I and II xinv is stable, and the point at which
the orbits intersect xinv correspond to the carrying
capacity of the system, x1. The value of a is related to
the carrying capacity as: x1 ¼ ðaÞ�1=y. Moreover, all
sigmoid dynamics are represented in these two quad-
rants. When y40 the trajectories correspond to logistic
and y-logistic dynamics, whose applications range from
populations of flies (Gilpin and Ayala, 1973) to
mammals (Saether et al., 2002). For y ¼ 0 the dynamics
correspond to Gompertzian growth, which has been
widely applied in tumour biology to investigate distinct
aspects of tumour response and regression (Norton
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et al., 1976; Norton and Simon, 1977), as well as
microbiological models (Kozusko and Bajzer, 2003).
Whenever yo0 ontogenetic growth laws, like the model
by von Bertalanffy (1957), or the model by West et al.
(2001), are included in this regime.
Thus by itself a plays no particular role in the stability

of the system. In this formalism the growth rate is an
adaptive mechanism that responds to the environmental
conditions, which enter as the initial conditions.
Different initial conditions result in different growth
models. Previous formulations included the carrying
capacity as a predefined constant, entering explicitly in
the model as the parameter a or x1. This constrains the
dynamics to a particular model, and also suggests that
the growth of a population is not dependent of the
environment (MacArthur, 1962). In this formalism the
growth rate is an adaptive mechanism that responds to
the environmental conditions. The same model can grow
toward distinct carrying capacities (or even change its
qualitative form to an unlimited growth) just by
changing the initial conditions. Explicit models with
predefined carrying capacity, need extra assumptions for
model selection. In this formulation the mechanism
for regulation remains robust against environmental
changes.
6. Scaling laws

Several systems that look very different may actually
have exactly the same dynamics when they are properly
scaled in time and size. Scaling is common phenomenon
in physics (Kadanoff, 2000). However, in biology only
recently scaling hypotheses in dynamical processes are
being proposed (West et al., 1997, 2001; Brown and
West, 2000; Brown et al., 2004; Kozlowski and
Konarzewski, 2004). Whenever systems can be scaled,
it is no longer important (in the dynamical sense) the
precise values of the constants. The growth law of the
population remains invariant whenever proper relation-
ships between the constants and the variables are
considered.
To determine the scaling laws for the solutions of

the system (8) it is convenient to replace r ! yr, which
gives

_x ¼
1

y
rx, (12a)

_r ¼ rðr � rÞ. (12b)

Denoting the solution for the system (8) as ðX ðtÞ;RðtÞÞ

growth equation yields

X ðtÞ :¼xð0Þ exp
1

y

Z t

0

RðsÞds

� �
, (13)
where xð0Þ is the initial condition for xðtÞ. Rearranging
this system, we get

X ðtÞ

xð0Þ

� �y

¼ exp

Z t

0

RðsÞds

� �
. (14)

The right-hand side of the last equation is independent
of y. Thus, populations described by the system (8) are
always scalable to their initial sizes, and interaction
exponent y (except, maybe for the bifurcation points.)
Further rescaling is possible for the right-hand side.

The solution to the rate equation can be written in the
form

RðtÞ :¼r 1þ ert r
rð0Þ

� 1

� �� 	�1
(15)

and changing the time variable as

T ! �rt � log
r

rð0Þ
� 1

� �
(16)

and also changing properly the differential in the
integral in Eq. (13) to dT 0 ¼ rdt, then the result of
the integral is, in scales of T

X ðtÞ

xð0Þ

� �y

¼
1þ eT0

1þ eT
. (17)

The variable T depends on the initial condition rð0Þ
whose meaning is not so obvious.
Although scaling laws are general, in practice (e.g. in

allometry) scaling laws are relevant when populations
reach a carrying capacity. Suppose then that the
population achieves a carrying capacity x1 given by
x1 ¼ a�1=y. Using the explicit form of rðtÞ (Eq. (6)), it
results that the term inside the logarithm in the rescaled
time (Eq. (16)) is

r
rð0Þ

� 1

� ��1

¼
xð0Þ

x1

� ��y

� 1. (18)

Substituting the relation (18) into the time transforma-
tion (16), and rearranging terms in Eq. (17)

xðtÞ

x1

� ��y

¼ 1�
xð0Þ

x1

� ��y

� 1

" #
e�rt. (19)

To conclude, define the new scaled variables as:

w ¼
xðtÞ

x1

� ��y

,

t ¼ rt � log
xð0Þ

x1

� ��y

� 1

" #
(20)

with which the general scaling law obeys

w ¼ 1� e�t. (21)

This scaled dynamical expression is valid for all (non-
zero) sign combinations of r and y.
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6.1. Scaling at the bifurcation points

The scaling law (Eq. (21)) cannot be defined for
Gompertzian or potential growth, because the general
solutions for the size and rate equations (8) are not
necessarily Eqs. (13) and (15). It is necessary to proceed
calculating the solutions of Gompertzian and potential
growth, and then derive the scaling laws.

6.1.1. Potential growth

The solution for the potential growth dynamics is
given also by Eq. (13). Consider then, that the solution
to its rate equation is

RðtÞ :¼ rð0Þð1� rð0ÞtÞ�1. (22)

In this case, the initial condition rð0Þ is not expressed in
terms of a carrying capacity. Potential growth or decay
does not reach an asymptotic value. Thus rð0Þ can only
be defined in terms of the integration constant a. Upon
integration and rearranging of terms, the following form
is found:

X ðtÞ

x0

� ��y

¼ 1� at. (23)

The scaled variables can then be defined as

w ¼
X ðtÞ

x0

� ��y

,

t ¼ at (24)

with which the general scaling law obeys

w ¼ 1� t, (25)

that is simply a decreasing line.

6.1.2. Gompertzian growth

Consider now the solution to the size equation for the
Gompertzian Growth

X ðtÞ

xð0Þ
¼ exp

Z t

0

Rðt0Þdt0. (26)

The main difference between Eq. (13) and the last
equation is that the former can be scaled with the
exponent y, which for the Gompertzian Growth case is
zero.
Consider then the solution RðtÞ to the rate equation

RðtÞ :¼ rð0Þe�rt. (27)

Thus the general solution for Gompertzian growth is

X ðtÞ

xð0Þ
¼ exp log

xð0Þ

x1

� �
e�rt � 1

 �� 	

, (28)

where the initial condition rð0Þis expressed as

rð0Þ ¼ �r log
xð0Þ

x1

. (29)
Eq. (28) can be rearranged to give

log
xðtÞ

x1

¼ exp �rt þ log log
x1

xð0Þ

� 	
. (30)

Thus, defining the dimensionless variables

w ¼ logðx1=xðtÞÞ,

t ¼ rt � log logðx1=xð0ÞÞ, (31)

then the scaled dynamics results as

w ¼ e�t, (32)

that is a decreasing exponential.
Although, the scaling behaviour is completely defined

for all the dynamics in the phase space, it is still
interesting to determine how the scaling law Eq. (21) is
related to the scaling laws Eqs. (25) and (32).
Direct evaluation of r ¼ 0 or y ¼ 0 does not give the

scaling laws for Gompertzian or potential growth.
However, Taylor expansion on the parameters r and y
to the linear term around the critical values, result in the
scaling laws of the critical points.
Note that in order to give a precise meaning to the

transformations equations (20), the initial condition for
the rate equation was transformed to its explicit form.
It is necessary, however, to make this transformation
after the limits are taken in the scaled variables
equations (20).
7. Discussion

Thee simple model derived in this paper is rich in
qualitative solutions since it resumes several growth
rates that often appear in the literature, which include
several levels of biological organization. The examples
alluded in the text range from cellular populations of
prokaryotes, cellular populations in eucariots, in onto-
geny and cancer, to population biology of mammals and
birds, to community ecology. It is a nice result that all of
these kinds of growth can be described by such simple
equations that resumes the main features of populations,
in the traditional sense of showing density dependence,
and in the distinct interpretations introduced in this
paper.

7.1. Extinctions and invasions

Environmental changes, are know to ‘‘unbalance’’
some populations. In this model, environment enters as
initial conditions; translations of the r-component in the
phase space can model changes in the environment.
Suppose that a population is in its carrying capacity,
and suddenly the trajectory is perturbed. This will
placed the trajectory in an orbit out of equilibrium.
Thus the population will converge to a new carrying



ARTICLE IN PRESS
H.P. de Vladar / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 9
capacity. However, if the perturbation is strong enough,
then the orbit where the dynamics is placed could belong
to a basin of attraction leading to extinction or invasion.
As a first example, consider global warming. The

metabolic theory of ecology, proposed by Brown et al.
(2004) proposed considers that the carrying capacity of a
population is temperature-dependent through a Boltz-
mann factor. This dependence can be expressed as
x1 ¼ K0 expðE=kTÞ, where K0 is a parameter depend-
ing on mass, resources, etc., E is the energy of the
limiting metabolic reaction, k is Boltzmann’s constant,
and T the absolute temperature.
Suppose a population that is in its carrying capacity at

a temperature T0 x1 ¼ K0 expðE=kT0Þ. If suddenly the
temperature increases to T1, the change in the rate due
to temperature increase can be calculated, introducing
the Boltzmann factors for population size in the explicit
form of rate (e.g. Eq. (6))

Dr ¼
r
y
1� exp

yE

kT0T1
ðT1 � T0Þ

� �� 	
o0. (33)

This means that the population is taken out from
equilibrium. Carrying capacities exist whenever r40
(for any value of y). According to Eq. (33) the
population will attain a new lower carrying capacity.
Thus the model of Brown et al. (2004) and this
formulation imply that temperature cannot induce
population extinction. To induce an extinction the
exponential term would have to change sign, which is
not possible for any temperature (it is always possible
however, to consider such changes that although they
theoretically do not imply extinctions, numerically are
so small that in real-life populations could disappear.)
Kin selection, is a second example. The saturated

dynamics, comprised in quadrants I and II of Fig. 1,
have other co-existing behaviours which support Ha-
milton’s rule which points out that if the cost of an
altruistic behaviour is such that it benefits a genetically
related individuals, then the strategy can be selected
(Hamilton, 1963, 1964). In this way, a population
consisting of cooperative individuals can grow faster
than expected by exponential models. This can happen
when ao0 in quadrant I (Fig. 2), because growth is
accelerated as a result of the interaction between the
individuals. Notice that for a0or=y

r
y
ð1þ jajxyÞ4a0 (34)

for all x; and even if a04r=y, there exists some x such
that for x4 x the inequality holds. Thus in this region of
the phase space, population growth is faster than
exponential.
However, Hamilton’s rule has another consequence.

This is that aggressive behaviours can also be selected,
provided that damage is induced to ‘‘negatively related’’
(i.e. unrelated) individuals (as it has been reported for
wasps Gardner and West (2004).) This kind of
behaviour is recovered for quadrant II (Fig. 3) where
any interaction between individuals results in mutual
annihilation indicated by a40 s. When the initial
conditions are rð0Þo� r=y, the rate decreases. Solving
the rate equation (8b), shows that r ! �1 asymptoti-
cally (Fig. 3) when t ! te, where

te ¼
1

r
log

rðx0Þ

rðx0Þ � r=y

� �
,

thus extinction occurs in finite time.
Another example, mentioned in the text above, is the

extinction of sparrows (Saether et al., 2000). In order to
have the risk of finite-time extinctions from previously
stable populations, it is necessary that (a) the population
dynamics belongs to quadrant II of Fig. 1, and (b) there
is a perturbation such as mentioned above. The
estimated mean value for the population of sparrows
is ŷ ’ 1, indicating that the population is logistic.
However, the estimate distribution for y allows a small
but not negligible probability for �1:5oyo0. If this is
the case, then a real risk of finite-time extinction exists.

7.2. Lifehistories

In lifehistory theory, the central problem is resource
allocation for adaptive strategies. Survival and repro-
duction in distinct stages determine of the net growth of
an individual (Day and Taylor, 1997; Stearns, 2004). In
non-reproductive stages of life, i.e. before maturity,
resources are mainly devoted to growth. The energetic
content allocated to growth depends on the size of the
body. This dependence follows a potential growth
function, where the exponent y is indicative of some
length scale of the physiological processes (Calder, 1984;
Stearns, 2004).
According to the rate equation (8b), initial stages in

development have to be dominated by the term yr2,
which implies that resources are devoted to growth. This
term is dominant at low densities, when the exponent
yo0. This condition is met in the von Bertalanffy (1957)
and West et al. (2001) equations, and well as in most
allometric growth relationships (Calder, 1984). When
reproduction becomes a priority, less energy is devoted
to growth. In this case the term rr is not negligible,
indicating that the organism is partitioning the resources
between growth and survival.

7.3. Allometry and scaling

The scaling laws derived in Section 6 are general
formulas showing that scaling is rather a rule than an
exception. This gives an broader view to the open
discussion of whether the West et al. (2001) equation is
legitimate or not (Kozlowski and Konarzewski, 2004).
In terms of these formulations, although numerically
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different, West’s equations and its classical competitor,
van Bertalanffy’s equation, have the same qualitative
behaviour.
The model (8) reproduces the von Bertalanffy (1966)

equation. This equation can be written in the following
form:

_x ¼ ax2=3 � bx. (35)

It is possible to rearrange this equation, to express it as
the system (8), for which the parameters are then

r ¼
b

3
; y ¼ �

1

3
. (36)

The exponent � 1
3
follows from the hypothesis that mass

is proportional to the third power of length, and the
parameter b is related to individual reproduction. The
parameter a is related to the carrying capacity of
the population, thus it does not appear in the
transformations.
Another example in this regime is West’s ontogenetic

growth equation (West et al., 2001), given by

_x ¼ am1=4 1�
x

x1

� �1=4" #
. (37)

The parameters for the rate equation are then

r ¼
a

4x
1=4
1

; y ¼ �
1

4
. (38)

The exponent � 1
4
derived from fractal patterns of fluid

transport systems like circulatory system or plant
vascularization (West et al., 1997; Brown et al., 2004)
and is also supported by empirical data (West et al.,
2001).
The parameter r in this case depends explicitly on the

carrying capacity x1. This suggests that in ontogenetic
growth, these two quantities could be correlated,
implying that the macroscopic growth, i.e. the cell
population, is ‘‘transmitting’’ information to the micro-
level, i.e. single-cell dynamics and thus it could imply
existence of self-organization (this has been demon-
strated for Gompertzian growth (Molski and Konarski,
2003)).
In both models, van Bertalanffy and West, r40 and

yo0, belonging to the same region in the parameter
space (Fig. 1)

7.4. Cancer

The growth of tumours have been very well studied
through distinct kinds of mathematical and computa-
tional models (Wheldon, 1988). In vitro and experi-
mental frameworks have shown that they grow
according to a Gompertzian Law (Norton et al.,
1976). The Gompertzian law, a sigmoid curve that
grows toward a carrying capacity, implies that resources
in a tumour are devoted to reproduction, as indicated
by y ¼ 0. In the rate-based scheme the orbits are
attracted to the invariant set xinv for any initial
condition.
Molski and Konarski (2003) demonstrated that the

Gompertz equation is the result of self-organization
(cooperativity), in such a way that the response of each
cell is coherently correlated to the state of the whole
population. In their model, Molski and Konarski (2003)
found a Gompertzian regression rate (shrinking) solu-
tion. In the formalism presented inhere the Gompertzian
regression solution corresponds to ro0 and yo0 with
initial conditions rð0Þo0. This kind of decreasing size
tumours appear under external perturbations (which
actually leave the rate equation invariant) are applied,
like radiation or chemotherapy treatments (González et
al., 2003a; de Vladar and González, 2004).
8. Concluding remarks

The y-logistic equation has become a paradigm in
ecology. Modelling populations with it has been an
important tool to confront actual problems about
density-dependent ecology. The transformation intro-
duced in this paper gives a good insight into the meaning
of the quantities appearing in the equations, namely
r, y, and a (either in its interpretations as carrying
capacity or not).
There are, of course, more examples for each of the

growth types described in this paper. However, more
interesting is that there are regimes that have not been
reported. This is not surprising, because they conform
distinct types of indeterminate growth, which usually is
assumed to be ‘‘exponential’’. However, these distinct
types of explosions, can have important consequences in
disciplines like biotechnology, where a strict control of
growth is necessary. If for some reason, a population is
wrongly manipulated, such that it spreads ‘‘indetermi-
nately’’ then the distinct types of growths should be
managed distinctly.
However, in the opinion of the author, the most

important result is that the rate equation is explicitly
independent of the population size. The results pre-
sented in this paper, are derived from a simple
mathematical transformation, which surprisingly results
in a very broad class of regulatory mechanism.
Although this is a result that may apply only to the
simple systems included in this work, it is puzzling why
and how the regulatory mechanisms act.
The two terms of the rate equation (8b), from a more

abstract perspective, correspond to two processes that
constitute regulation: reproduction, which comes from
an individual level, and sensitivity to population
interaction. Depending on the context, the sensitivity
to the population can be of synergistic or anergistic
nature. The two regulation processes, could be thought



ARTICLE IN PRESS
H.P. de Vladar / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 11
of as fragmentation and condensation reactions:

x�!
r
2x (reproduction),

Nx�!Mx (population sensitivity). (39)

If M4N then the population experiences synergy
in growth (i.e. population interaction promotes
growth). If MoN then the population experiences
anergy in growth (i.e. population interactions avoid
growth).
The term �rr in the rate equation indicates that the

population is growing or ‘‘relaxing’’ to a fixed point.
Since r is the inverse of the relaxation time for the rate,
then the bigger r is the smaller the time to let the
mechanism to relax, and thus the fastest to reach
limiting population size at xinv.
The second term of the rate equation is related to the

interaction between individuals in the population. This
term can be compared to a ‘‘potential’’ indicating some
kind of resource potentiating (either synergistically or
anergistically) from the interaction. The kind of inter-
action, is given by the sign of y and by the environ-
mental conditions, i.e. by a.
The relationship between r and y determining the

distinct types of growth rates, gives distinct types of
behaviours for distinct initial conditions which can
result in cooperative, competitive, or aggressive strate-
gies. These are strategies that can be sought directly
from the rate equation. If a population is behaving
cooperatively, then it means that the rate begins over a
threshold such that it grows unlimited, because there is a
benefit improving growth resulting from the interaction.
In this case, the resources have to be unlimited, so
cooperativity improves resource allocation for repro-
duction. In the case of competition, usually the
scenario is that resources are limited, and there must
be an equilibrium between reproduction and survival.
But if the population presents aggressive behaviours,
then the initial rate of the population is below the
threshold where it goes extinct in finite time or
exponentially.
The exponential growth is a particular case in which

no regulation mechanism (thus interactions) is present in
the population. Increase is based only in individual
reproduction, and the per capita response is totally
independent of the state of the system.
The distinct qualitative solutions (regimes) for popu-

lation growth have an underlying symmetry. The
regression equation for population shrinking is in
general obtained by inverting the time arrow, changing
t ! �t0. However, time-inverting the rate equation does
not produce the desired result. In order to obtain the
regression dynamics from the size-rate decomposition,
besides inverting the time arrow, it is necessary to invert
the rate variable r ! �r0. Thus a time reversed equation
results in the transformed system

_x ¼ xr0, (40a)

_r0 ¼ ðyr0 þ rÞr0. (40b)

Notice that these transformations are equivalent to
change the sign of the Malthusian parameter r. This
transformation for population shrinking, can be re-
garded as a reflexion of the parameter space (Fig. 1) with
respect to the y-axis. Thus, although most of the
relevant population dynamics are in quadrants I and
II in Fig. 1, their corresponding regression dynamics are
in quadrants III and IV.
The decomposition presented in this work, is a change

in the paradigm of population dynamics. The Eq. (8) are
very general, but still simplistic because there are many
biological aspects left aside. Take for example the Allee
effect (Allee, 1931). This is a density dependent growth
mechanism, not represented in the rate equation.
Actually, including Allee effect in population growth,
leads to a polynomial rate equation of higher order than
2. There is however no general law that can be derived
(at least, including the forms found in the literature).
Other example in non-random mating, which could lead
to distinct forms of density dependence, maybe through
a frequency-dependent parameter y. In this case the
form of the rate equation derived here will not necessary
be valid.
It remains to investigate based on lifehistory theory

for which kind of resource allocation the density-
independent rate equation can be derived. This is a
work currently under development that is expected to
help to give conclusions about other biologically
relevant aspects not included in this work.
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de Vladar, P.H., González, J.A., 2004. Dynamic response of cancer

under the influence of immunological activity and therapy.

J. Theor. Biol. 227 (3), 335–348.

Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dyna-

mical Systems: A Guide to Xppaut for Researchers and Students.

Society for Industrial & Applied Math.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Dover,

New York.

Gardner, A., West, S.A., 2004. Spite among siblings. Science 305,

413–414.

Gilpin, M.E., Ayala, F., 1973. Global models of growth and

competition. Proc. Natl Acad. Sci. USA 70 (12), 3590–3593.

Gilpin, M.E., Case, T.J., Ayala, F.J., 1976. y-selection. Math. Biosci.
32, 131–139.

Gompertz, B., 1825. On the nature of the function expressive of the

law of human mortality, and on a new mode of determining the

value of life contingencies. Philos. Trans. R. Soc. London 123,

513–585.
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