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Appendix |: Smulation model and likelihood functions

Simulation model: The simulation was initiated ®ngrating eight diploid virgin females with

Nioci Unlinked CSD loci that are all heterozygous. Eaohin female produced a single haploid
genome through meiosis to obtain a son for the eregbn mating. Subsequently, diploid
offspring were produced by combining the son's gemand one of both maternal genome
copies (randomly sampled for each offspring). Athmexperiment, all diploid offspring
produced by a mother were sired by the same sq@ioiDimales are produced if both genome
copies in a newly produced diploid offspring areritical. Diploid male survivak, was
implemented by comparing a random number, drawm frauniform distribution, against We
continued to generate adult diploid offspring frarsingle replicate until we matched the number
of diploid offspring that was produced for a pastar replicate in the actual experiment. Hence,
while diploid family size was equal to the obserwvatlies, the number of surviving diploid
males varied according tg;ands.

For each mother in the mother-son generation, @ ¢fenerated the same number of brother-
sister matings as in the experiment, unless a mbtw produced only diploid sons, which is a
realistic consequence of the stochasticity reguiam CSD-allele segregation with a limited
number of CSD loci. In that case, no brother-sistatings were performed for that particular
mother. This happened only rarely in our simulaidn the most likely case of having 100%
male broodsr{.. =1,s=1), this occurred in 386 simulations out of 50,0002% of all
replicates). Brother-sister matings were generbyechndomly sampling a daughter from the
mother's female offspring, and by generating adidon from that same mother. Again, a

mated daughter produced the same number of agidiidlioffspring as in the actual experiment.
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Likelihood functions: We denoted the proportiordgdloid malesk produced by a particular

motherk by x.. We ran 50,000 replicate simulations of the intneg experiment, resulting in

50,000 simulated deviates of each data poipt for each set of model parameters { nici, S}-
From a histogram of these simulated deviatgswe obtained a simulated density function

fu(xv) that informs us of the probability of the actdatapointx given the current parameters.
For each data poing, the density functiofy was obtained from the frequency histogram of the
simulated deviates, which was smoothened usingps oxf un() method (R version 2.12.1,

R Development Core Team 2011). Figure S1 showsamgle of the density functida The
function is discrete since a female's fecundityigalcan only consist of integers, but nonetheless
provides us with a likelihood value that refled¢ts simulated outcome. Hence, the likelihood

function for an individual datapoint is fu(xJv), and the total likelihood for the vectoof all
datapoints resulting from the experimentig | v,) = |_|quk(xk | v;). The overall likelihood

(taking logs and summing) is shown in Figure S, \uhlues ofL (x | v) are shown for varying
andnig={1; 2; 3}.

Comparisons between different models were carngdvith likelihood-ratio tests (LRTS). LRTs
are conventionally used to compare nested models gituations where one of the models is a
special version of the other, having additionabpaeters), with the null hypothesis that the data
are drawn from the simpler of the two models. Hoavel.RTs can also be applied to models
that are non-nested (i.e., where one model doekawat additional parameters compared to the
other), as is the case in our study. To do thisysesl the following approach (for details see
Lewis et al. 2011): First, when comparing two na@sted models (say, model A and model B),
one cannot simply assign one of both models adlanwael (unless prior information is

available). Instead, two reciprocal model companssare necessary, so that both models A and
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B are considered as a null model. The observed\althe likelihood ratio test statisticly:)/
L(x|vo) (see main text) falls into one of the followiogtegories:
1. An LRT with A as the null model is non-significabijt an LRT with model B is
significant. Model A is therefore preferred overdebB.
2. An LRT with B as the null model is non-significabyt an LRT with model A is
significant. Model B is therefore preferred overdabA.
3. Both LRTs (A as a null model, B as a null mode# significant: neither model can be
considered appropriate.
4. Neither of the LRTs (A as a null model, B as a mutidel) are significant: no
discrimination between the models is possible.
In case of a comparison between non-nested mcgisficance of the likelihood ratio test
statistic cannot be calculated from the chi-squaistlibution. Instead, we generated the
appropriate test distribution from the simulatiafishe experiment, assuming that the null
hypothesis is true. To generate the test distobubr a null hypothesis (which assumes the
particular parameter valugs), a set of 5,000 replicates was randomly samptad the full set

of 50,000 replicate simulations for the parametenkinationv,. Every single datapoink, ,

within each of these sampled replicates is now ases datapoint to calculate a likelihood ratio

using the density function mentioned above, aboee,

L(X Vo) I L(X [Vo) =D 0(In £, (R [v;) =In £, (X, | v,) . This step was repeated for all 5,000
sampled simulations, resulting in a distributiorb@d00 likelihood ratio test values that were
then used for null hypothesis testing, summarinetiable 3. An example of a distribution
q(lt(ik |v,)/L(X, |v0)) of likelihood ratio test values, in comparisorthie actual likelihood

ratio is given in Figure S3.



70  Although significance values are not correctednfioittiple comparisons, a Bonferroni correction

71 by multiplying significance values byri#1/6 does not alter our conclusions.



