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ABSTRACT

The evolution of quantitative characters depends on the frequencies of the alleles involved, yet these
frequencies cannot usually be measured. Previous groups have proposed an approximation to the
dynamics of quantitative traits, based on an analogy with statistical mechanics. We present a modified
version of that approach, which makes the analogy more precise and applies quite generally to describe
the evolution of allele frequencies. We calculate explicitly how the macroscopic quantities (i.e., quantities
that depend on the quantitative trait) depend on evolutionary forces, in a way that is independent of the
microscopic details. We first show that the stationary distribution of allele frequencies under drift,
selection, and mutation maximizes a certain measure of entropy, subject to constraints on the expectation
of observable quantities. We then approximate the dynamical changes in these expectations, assuming
that the distribution of allele frequencies always maximizes entropy, conditional on the expected values.
When applied to directional selection on an additive trait, this gives a very good approximation to the
evolution of the trait mean and the genetic variance, when the number of mutations per generation is
sufficiently high (4Nu. > 1). We show how the method can be modified for small mutation rates (4 Ny —
0). We outline how this method describes epistatic interactions as, for example, with stabilizing selection.

REDICTING the evolution of quantitative charac-
ters from first principles poses a formidable chal-
lenge. When multiple loci contribute to a quantitative
character z, the effects of selection, mutation, and drift
are difficult to predict from the observed values of the
trait; this is true even in the simplest case of additive
effects. The fundamental problem is that the distribu-
tion of the trait depends on the “microscopic details” of
the system, namely the frequencies of the genotypes con-
tributing to the trait. In an asexual population, long-
term evolution depends on the fittest genotypes, which
may currently be very rare. In sexual populations—the
focus of this article—new phenotypes are generated
by recombination in a way that depends on their
genetic basis. If selection is not too strong, we can
assume Hardy-Weinberg proportions and linkage
equilibrium (HWLE): this is a substantial simplifica-
tion, which we make throughout. Even then, however,
we muststill knowall the allele frequencies, and the effects
of all the alleles on the trait, to predict the evolution of a
polygenic trait. In this article, we seek to predict the
evolution of quantitative traits without following all
the hidden variables (i.e., the allele frequencies) that
determine its course.
For this purpose, several simplifications have been
proposed. The central equation in quantitative genetics
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is that the rate of change of the trait mean equals the
product of the selection gradient and the additive
genetic variance (LANDE 1976). This simple prediction
can be surprisingly accurate, since the genetic variance
often remains roughly constant for some tens of gen-
erations (FALCONER and MAckay 1996; BaArRTON and
KeiGHTLEY 2002). However, we have no general un-
derstanding of how the genetic variance evolves or,
indeed, what processes are responsible for maintaining
it (BURGER et al. 1989; FALCONER and MACKAY 1996;
BarTON and KriGHTLEY 2002). Even if we take the
simplest view, that variation is maintained by the
opposition between mutation and selection, the long-
term dynamics of the genetic variance still depend on
the detailed distribution of effects of mutations.
LANDE (1976), following KiMmura (1965), approxi-
mated the distribution of allelic effects at each locus as a
Gaussian distribution. However, this is accurate only
when many alleles are available at each locus and when
mutation rates are extremely high (TureLLr 1984).
BarTON and TureLLI (1987) assumed that loci are close
to fixation, but again this approximation has limited
application: in particular, it cannot apply when one
allele substitutes for another. Some progress has been
made by describing a polygenic system by the moments
of the trait distribution (BArRTON 1986; BARTON and
TureLLI 1987, 1991; TureLLI and BArRTON 1990). For
additive traits, a closely related description in terms of
the cumulants is a more natural way to represent the
effects of selection (BURGER 1991, 1993; TureLLI and
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F1Gure 1.—The frequency of favorable alleles at three loci
(left) and the mean of an additive trait, z (right). Initial fre-
quencies are 107°, 107%, 1077, and effects on the trait are 1, 2,
%, sothatz = p; +2p + %pg; the selection gradientis 3 = 0.01
(i.e., fitness is ¢P?).

BArRTON 1994; RATTRAY and SHAPIRO 2001). These
transformations are exact and quite general: they pro-
vide a natural description of selection and recombina-
tion and extend to include the dynamics of linkage
disequilibria as well as allele frequencies. A moment-
based description provides a general framework for
exact analysis of models with a small number of genes
and for approximating the effects of indirect selection
(BARTON 1986; BARTON and TURELLI 1987; LENORMAND
and OTTOo 2000; KIRKPATRICK ¢! al. 2002; RozE and
BarTON 2006); for some problems, simply truncating
the higher moments or cumulants can give a good ap-
proximation (TURELLIand BARTON 1990; ROUZINE et al.
2007). However, results are sensitive to the choice of
approximation for higher moments, and so the approx-
imation is to this extent arbitrary. The equations must
be truncated “by hand,” guided by mathematical trac-
tability rather than biological accuracy.

The fundamental problem is to find a way to ap-
proximate the “hidden variables” (in this context, the
allele frequencies), but we cannot hope to do this in
complete generality. Even with simple directional selec-
tion on a trait, the pattern of allele frequencies depends
on the frequencies of favorable alleles that may be ex-
tremely rare (p<1) and that will take ~(1/s)log((1/p))
generations to reach appreciable frequency. Thus,
undetectably rare alleles can shape future evolution,
without much affecting the current state. Figure 1 shows
an example where the trait mean changes as three
alleles sweep to fixation at different times and rates. By
choosing initial frequencies and allelic effects appro-
priately, we could produce arbitrary patterns of trait
evolution. We can hope to make progress only in
situations where the underlying allele frequencies can
be averaged over some known distribution, rather than
taking arbitrary values.

Despite this fundamental difficulty, progress can be
made in two ways. First, we can include random drift
and follow the distribution of allele frequencies, rather
than the deterministic evolution of a single popula-
tion. Then, we can hope that the distribution of allele
frequencies, conditional on the observed trait values,
will explore the space of possible states in a predictable
way. Second, we can allow selection to act only on the

observed traits and assume that the distribution of allele
frequencies spreads out to follow the stationary distri-
bution generated by such selection. That makes it much
harder (and perhaps impossible) for populations to
evolve into an arbitrary state with unpredictable and
idiosyncratic properties. There is an analogy here with
classical thermodynamics, in which molecules might
start in a special state, such that after some time they
concentrate in a surprising way: all the gas might rush
to one corner, for example. However, if all states with
the same energy are equally likely, this is extremely
improbable.

An approach along these lines was proposed by
PRUGEL-BENNETT and SHAPIRO (1994, 1997), RATTRAY
(1995), and PRUGEL-BENNETT (1997), as a general
framework for approximating the dynamics of poly-
genic systems. PRUGEL-BENNETT and SHAPIRO (1994,
1997), RATTRAY (1995), and PRUGEL-BENNETT (1997)
drew on analogies with statistical physics to propose an
elegant approach to approximating polygenic systems.
The distribution of microstates is chosen as that which
maximizes an entropy measure (see also VAN NIMWEGEN
and CRUTCHFIELD 2000; PRUGEL-BENNETT 2001; ROGERS
2003). PRUGEL-BENNETT and SHAPIRO (1994, 1997),
RaTTRAY (1995), and PRUGEL-BENNETT (1997) define
an entropy that is maximized by a multinomial allele
frequency distribution, which is sharply peaked around
equal allele frequencies. Thus, the procedure is to
assume maximum polymorphism, subject to con-
straints on the trait distribution. This averaging yields
a generating function from which observables (e.g.,
mean values, variance, and higher moments, as well
as correlations) can be obtained. This leads to good
approximations for a variety of problems, including mul-
tiplicative selection, pairwise epistasis, and stabilizing
selection (RATTRAY 1995); it describes the dynamics
of an arbitrary number of observable variables and pro-
vides a consistent way to deal with hidden microscopic
variables.

In this article, we use procedures analogous to
statistical thermodynamics, but adapted to population
genetics. First, we use an information entropy measure,
S, which is derived from population genetic consid-
erations and ensures an exact solution at statistical
equilibrium. This measure, which is proportional to
the quantity H, defined by BorTtz™MANN (1872), was
proposed by Iwasa (1988) and independently by SELLA
and HirsH (2005); see N. H. BARTON and J. B. CoE
(unpublished data). Second, we choose to follow a set of
observable quantities that includes all those acted on
directly by mutation and selection. This reveals a natural
correspondence between the observables and the evo-
lutionary forces that act on them, which is analogous to
extensive and intensive variables in thermodynamics
(N. H. BarTON and J. B. Cok, unpublished data). These
two innovations allow us to set out the method in a very
general way.
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Throughout, we make the usual approximations of
population genetics, that populations are at HWLE and
that drift, mutation, and selection are weak. Linkage
equilibrium is justified if selection and drift are not only
weak (s,1/2N <1) but also weak relative to recombina-
tion (s, 1/2N <r). We also assume only two alleles at
each locus. These assumptions allow us to describe
populations solely in terms of allele frequencies at nloci
(p=p1,...,pn) and to use the continuous-time diffu-
sion approximation.

We begin by analyzing the stationary distribution,
showing the analogy with thermodynamics. Iwasa
(1988) showed that the free fitness, which is the sum
of the log mean fitness and the information entropy
Sy (log(W) + (1/2N)Sy), always increases through time
and reaches a maximum at the classic stationary dis-
tribution of allele frequencies under mutation, selection,
and drift,

n
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where p; (¢=1, ..., n) are the allele frequencies at nloci,
¢i=1— p, Nis the number of diploid individuals, W is
the mean fitness, and  is the mutation rate (WRIGHT
1937). The normalizing constant Z plays a key role; it is
analogous to the partition function in statistical me-
chanics and acts as a generating function for the
quantities of interest, in the sense that its derivatives
give the expectations of the macroscopic quantities
(BArTON 1989). We then show how the rates of change
of expectations of observable quantities can be approx-
imated by averaging over this stationary distribution .
The crucial assumption here is that the distribution of
allele frequencies always has the form of Equation 1.
This is accurate provided that the system evolves as
a result of slow changes in the parameters, so that it
has time to approach the stationary state. By analogy
with thermodynamics, such changes are termed revers-
ible (Ao 2008; N. H. BARTON and J. B. Cog, unpublished
data).

After setting out the method in a general way, we
apply it to directional selection on an additive trait. In
this simple case, we can give closed-form expressions for
the generating function Z and hence for observables
such as the expectations of the trait mean, genotypic
variance, genetic variability, and so on. We then show
that our approximation to the allele frequency distri-
bution gives a good approximation to the dynamical
change in the trait distribution, even when selection
changes abruptly. However, the method works only
for high mutation rates (4NMw > 1) and breaks down
when 4N < 1. Nevertheless, we show how the method
can be adapted to the case where 4N is small. Finally,
we outline the application to cases such as stabiliz-
ing selection, where there are epistatic interactions for
fitness.

GENERAL ANALYSIS

Defining entropy: The key concept is of an entropy,
Sy, which measures the deviation of the population
from a base distribution ¢—in this case, the density
under drift alone. Entropy always increases as the pop-
ulation converges toward ¢ under drift. With selec-
tion and mutation, a “free energy”—the sum of the
entropy and a potential function—always increases
(Iwasa 1988). We show that the stationary distribution
maximizes Sy subject to constraints of the expected
value of aset of observable quantities. Thus, the dynamics
of these quantities can be approximated by assuming that
the entropy is always maximized, conditioned on their
values.

There is a wide range of definitions, interpretations,
and generalizations of entropy (e.g., RENY1 1961; WEHRL
1978; TsarrLis 1988); these have been applied to bi-
ological systems in various ways. Iwasa (1988) intro-
duced the concept of entropy into population genetics,
for a diallelic system of one locus under reversible mu-
tation and with arbitrary selection; he also considered a
phenotypic model of quantitative trait evolution. Iwasa
(1988) used an information entropy, also known as a
relative entropy (Gzyr 1995, Chap. 3; GEorGi 2003),
and defined as

suth) = [wiog|} | a5 @)

This is a function of the probability distribution of
allele frequencies, s, that evaluates the average entropy
of a function with respect to a given base distribution, ¢,
integrated over all possible allele frequencies, denoted
by dp= (dprdps ... dp,). It can be thought of as
the expected log-likelihood of ¢, given samples drawn
from a distribution {s; it has a maximum at ) = ¢, when
Suld] = 0. We denote it by a subscript H because it is
essentially the same as the measure introduced by
BortzMANN (1872) in his H-theorem.

The variation of Sy with respect to small changes in
i is

st == [ Jower

W] = Arlog) | )owdp, (3)
where N is a Lagrange multiplier associated with the
normalization condition J“q; dp =1 (N. H. BARTON and
J- B. Cok, unpublished data) (see supplemental infor-
mation A). Note that because § is normalized, [ dydp =
0. With no constraints other than this normalization,
setting 8S = 0 implies that the entropy is at an extreme
only if { = ¢; this is a unique maximum.

We are interested in a set of observable quantities, A;
which are functions of the allele frequencies in a
population. These might, for example, describe the dis-
tribution of a quantitative trait—for example, its mean
and variance. We need to find the distribution of allele
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frequencies, ¥, that maximizes the entropy, Sg[], given
constraints on the expected values of these observables,

<Aj>:
(A) = JA,-WZJ’- (4)

With these constraints, the extremum of Equation 3 is
calculated by including the Lagrange multipliers asso-
ciated with the Aj’s, defined for convenience as —2Na:

Y "
J(x +log {5 — Y 2NajA; | 8dp=0.  (5)
J

At the extremum, the term in parentheses should
be zero. This implies that the distribution that maxi-
mizes entropy, subject to constraints, is the Boltzmann
distribution

Uyp = %exp lz QNajAj] = %exp {QN&’ . A}, (6)
j

where we have expressed the Lagrange multiplier N as
Z = exp(\) and choose Z to normalize the distribution.
We show later that Z is a generating function for the
moments of the observables, AJ-. It will play a major role
in our calculations:

7- J¢ exp[2N(a - 7)) ap. 7)

We show that under directional selection and muta-
tion the a; can be identified with the set of selection
coefficients and mutation rates and the A; with the
quantities on which selection and mutation act (e.g.,
trait mean and genetic variability). The potential func-
tion Z]. Ajo; = a - A consists of the log-mean fitness,
log(W), plus a term representing the effect of muta-
tion, 2w} ;log(p;g;). Then, Equation 6 gives the
classical stationary density of Equation 1. (Note that
although a - A must equal the potential function,
which includes all evolutionary processes, apart from
drift, we still have some freedom to separate this into
components in a variety of ways. For example, di-
rectional selection on a set of traits could be repre-
sented by almost any linear basis. Nevertheless, there
will usually be a natural set of components that
represent different evolutionary processes. In addi-
tion, we are free to include additional observables that
are not necessarily under selection, and so have o; = 0.
These extra degrees of freedom will improve the ac-
curacy of our dynamical approximations.)

Note that there is an alternative measure of entropy,
Sa, defined by the log density of states that are con-
sistent with macroscopic variables (AY (BarRTON 1989).

N. H. BArRTON and J. B. CoE (unpublished data) discuss
the relation between S and Sy and show that these two
measures converge when the distribution clusters close
to its expectation.

The generating function, Z: The normalizing con-
stant Z, which is a function of @, acts as a generating
function for quantities of interest. Differentiating with
respect to (w.r.t.) 2Nd we find that

Olog(Z)

3(27]\7(1]-) = <Aj>- (8)

Differentiating w.r.t. population size,
— = =(d-A). 9)

Differentiating again w.r.t. the & gives the covariance
between fluctuations in the A:

0%og(Z)
8(2NOL;)8(2NOLk)

= COV(A]',Ak) = C_j,k- (10)

This covariance matrix, which we denote C, plays an
important role in the dynamical approximation (LE
BELLAC et al. 2004, p. 64).

Analyzing the dynamics: As the system moves away
from stationarity, it will not in general follow precisely the
distribution that maximizes entropy. [This can be seen by
substituting the maximum entropy distribution from
Equation 6 with time-varying parameters &, as a trial
solution to the diffusion equation]. However, the distri-
bution of microscopic variables may nevertheless stay
close to a maximum entropy distribution (N1coLis and
PrIGOGINE 1977; DE GROOT and MAZUR 1984; GOLDSTEIN
and LEsowitz 2004). Our key assumption is that the
macroscopic variables change slowly enough that the
system is always close to a local equilibrium.

We show that the Lagrange multipliers, &, correspond
to forces that act on the observables, A: directional
selection acts on the trait mean, mutation on a measure
of genetic diversity U (see below), and so on. Crucially,
we assume that changes occur solely through changes in
the parameters d; arbitrary perturbations that act di-
rectly on the allele frequencies could have arbitrary
effects (as, for example, in Figure 1).

Assume that changes in allele frequency are deter-
mined by a potential function & - ;\', which can be writ-
ten as a sum of components oA, [In physics, energy
acts as a potential; in population genetics, mean fitness
plays an analogous role; it defines an adaptive landscape
such that allele frequencies and their means change at
rates proportional to the fitness gradient (WRIGHT
1967; LANDE 1976).] Our method works only for systems
whose dynamics can be described by a potential in this
way (although see Ao 2008). In an infinitesimal time 8¢,
the mean and mean-square changes are
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Mz o(a- A)
T (11a)
(opdp) =0 fori# ) (11b)
@t =1t (11¢)

The first equation, for (8p), is just WRIGHT’s (1937)
formula for selection, modified to include mutation.
The variance of allele frequency fluctuations, (3p?), is
the standard formula for random drift. Under the
diffusion approximation, this leads to the stationary
distribution of Equation 1, provided that the base dis-
tribution is defined as

= <ﬁl’z’%’> : (12)

Under the diffusion approximation, the rate of
change of (4;) is

A 94,
o =25 f<api> zzaw (3pp)
Z kak / (13)

where

]k—<

This relationship is exact, provided that the matrix B
and the vector V are evaluated at the current distribution
of allele frequencies. Equation 13 can also be derived
directly, by making a diffusion approximation to multi-
variate observables, where the deterministic terms are
a; =Y, (0A;/0p;)(piq:/2) ok, and the diffusion terms are
b; =+/p,q:;/2N (EwENs 1979; GARDINER 2004). If our
system is described by only one observable, we directly
recover the formula derived by Ewens (1979, pp. 136-137).

The local equilibrium approximation: In general, as
the system moves away from stationarity, it will not
precisely follow the distribution that maximizes entropy.
However, the distribution of microscopic variables may
nevertheless stay close to a maximum entropy distribu-
tion if the macroscopic variables change slowly enough
such that the system remains close to alocal equilibrium
at all times (PRIGOGINE 1949; KLEIN and PRIGOGINE
1953; NicoLis and PRIGOGINE 1977; DE GrooT and
Mazur 1984; GOLDSTEIN and LEBOWITZ 2004)

We now approximate B;; and V; by B¥,, V¥, assuming
the distribution in Equatlon 6 is evaluated at o*. We
know that at the stationary state, under parameters a*,

OA;j piqi OAy i O A
d V= g5,
St} - (S

(14)

expectations are constant, and so from Equation 13,
>k B + (1/2N) Vi* = 0. Therefore

8<A> ~ > By — af). (15)

k

The matrix Bj; is closely related to the additive
genetic covariance matrix. Making the link with
quantitative genetics is not quite straightforward,
because the A; are arbitrary functions of the allele
frequencies and need not be the means of actual traits
carried by individuals. Nevertheless, if we do regard
them as the means of some quantity, then 0A;/dp; is
twice the average effect of alleles at locus i. [Since we
assume HWLE, average effect is equal to average
excess (FALCONER and MAcgkAY 1996)]. Therefore,
Bj is the expected additive genetic covariance be-
tween Ajand A, the expectation being taken over the
distribution of allele frequencies. Moreover, if the oy
contribute to the log-mean fitness (rather than to the
component of the potential that describes mutation),
then they can be interpreted as selection gradients in
the usual way. Equation 15 thus gives the rates of
change of the expected trait means as the product of
the expected additive genetic covariance, and the
difference between the actual selection gradient, oy,
and the gradient that would give stationarity at the
current expectations, o This interpretation becomes
clearer when we consider specific examples, below.

In the theory of nonequilibrium thermodynamics,
equations similar to Equation 15 are called phenome-
nological equations (vaAN KaAMPEN 1957; DE GROOT and
Mazur 1984, Chap. IV). They were first postulated as
approximations to processes that are close to equilib-
rium. In such cases, the variables o* represent the
deviation from an equilibrium defined by a. These
equations are valid as long as a local equilibrium exists,
and (as suggested by Equation 13) it holds in general
that By ; = Bj;, (ONSAGER 1931; PRIGOGINE 1949).

For theoretical purposes, we can follow either the
expectations (A;) themselves or the parameters o that
would give those expectations atstationarity. In numerical
calculations, the latter is more convenient, because that
avoids calculating the o from the (A;) (a tricky inverse
problem). The rates of change of the o} are related to the
rates of change of the (A;) via the matrix 9(A;)/daf. Now,
since (A;) = 9 log(Z)/0(2Na¥), we have

(A} Dot = 2N [321og(2) /02N (2N )
= 2NCj;-

Thus, the relation between the (4;) and the o is via
the covariance of fluctuations, C¥, (Equation 10). In
matrix notation (equivalent to DE GRooT and MAzUR

1984, p. 36),
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ga* 1
=~ Ccx¥l.Br. (g —a* 16
or 2N (&-a), (16)

where Cis the matrix of covariances of fluctuations in
the A, and B is analogous to the additive genetic
covariance matrix.

Both of these are evaluated at the stationary distribu-
tion defined by a* For given &*, we find the (A) by
integrating using the density in Equation 6, or by

application of Equation 8.

DIRECTIONAL SELECTION, MUTATION, AND DRIFT

Analysis: The stationary distribution: We now apply this
method to a quantitative trait under directional selec-
tion, mutation, and drift. We first define a measure of
genetic variability (N. H. BArRTON and J. B. CoE, un-
published data),

U= 2210g(i7ﬂ]i); (17)
i1

which is 27 times the log-geometric mean heterozygosity
across loci (plus a constant); nis the number of loci. The
rate of change of p; due to symmetric mutation is
b(gi — p1) = (hia:/2)(O(1.U)/0p), as required by Equa-
tion 11a. Under our assumption of linkage equilibrium,
the rate of change of p; due to selection is (p;q;/2)/
(dlog( W)/0p;) (Equation 11a). The log mean fitness,
log(W), is a natural potential for the system and will be
expressed as a sum of components A - &, where the &@ are
a set of selection coefficients. We deal with the very
simplest case of exponential (directional) selection, but
note that the derivation applies to any form of selection
for which a potential function can be defined—most
obviously, the case where genotypes have fixed fitnesses
(see supplemental information A and D). If individuals
with trait value z have fitness ¢, then to leading order in
B, the mean fitmessis W = ¢P* Wright's equilibrium density
can then be written in the form of Equation 6, with A=
{z,U} and & = {B, n}:

Y= %;N(BHML’). (18)

Thus, the stationary distribution under mutation,
selection, and random drift is given by maximizing the
entropy subject to constraints on the expected genetic
diversity (U) and the expected trait mean (z). The
entropy is defined by Equation 2, with baseline distri-
bution & = [, (p:g:)"". Then, Equation 18 is the sta-
tionary distribution and is equal to Equation 1.

We have shown that a population evolving under
mutation, multiplicative selection, and drift will con-
verge to a stationary distribution that has maximum
entropy, Sy, given the expected trait mean and genetic
diversity. As we will see below, other forms of selection
can be represented by introducing other observables.

Each constrained observable will be conjugated with a
natural variable: in this example, the expected mean (z)
corresponds to the strength of directional selection (3,
and the expected diversity (U) to the mutation rate .
Information about the full distribution of the observ-
ables is contained in the normalizing constant Z, which
is a generating function that depends only on the natural
variables ;. In the next section, we calculate an explicit
expression for it.

The generating function for an additive trait: We have not
yet made any assumptions about the genetic basis of the
trait, z in general, there might be arbitrary dominance
and epistasis. We now assume that it is additive, with
locus ¢ having effect vy,

2= vi(Xi+ X 1), (19)
=1

where X;and X;* represent the allelic states (labeled 0 or
1) of the two copies of each of the nloci. With additivity,
exponential selection on the trait corresponds to
multiplicative selection on the underlying loci. If we
average over the population, where p; represents the
frequency of the X; =1 allele, and ¢; = 1 — p,, then the
mean and genetic variance are

= v,(pi— q),
i=1

More than two alleles could be allowed, but only for
special mutation rates that give detailed balance (that is,
there must be no flux of probabilityin the stationary state).

The normalization function Z can now be calculated
explicitly, using Equation 7. In this simple case of
directional selection on an additive trait, the integrand
separates out as a product over allele frequencies, and so

v, =2 Z y?p,—q,—. (20)
=1

-1

7= Jexp[QN (Bz+ nU)) <Hptql> dp (21a)

n

= (Jl 2NBYi(p—q) (pq)‘lNufl dp) (21b)
; 0

Il
—

3

_ <\/E2”N“F[4N|U«]0Fl E + 4N, (NB'Yi)Q:|)

(21c¢)

= | [(Vm(4NBy,) /D *NT (AN W] Ly,
i1

(1/2)(2NB;)),

(21d)

where I'(-) and o/ (:, -) are the gamma and the regular-
ized confluent hypergeometric functions, respectively.
We have also given an equivalent form, in terms of the
modified Bessel function of order v, L,(-).
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Finding the expectations (Up(z): The expectations,
variances, and covariances of z and U can be calculated
either by direct integration or by taking derivatives of
log(Z) wr.t. f and p (Equations 8 and 10). Explicit
formulas are given in supplemental information A.

Figure 2 shows how the expected values change for a
range of mutation rates and selection pressures, for a
population of individuals with nloci of equal effect, vy, =
1. As selection becomes strong relative to mutation, the
allele X = 1 tends to fixation, and (z) tends to n (top
right of Figure 2). As mutation becomes strong relative
to drift, allele frequencies tend to 3, and (z) tends to
zero (top left of Figure 2). The expected diversity, (U),
increases with mutation rate (bottom left of Figure 2)
and decreases slightly with the strength of selection
(bottom right of Figure 2). Figure 2 compares the
diffusion approximation with the Wright-Fisher model
for N=100. There is close agreement for (z) for all 4N
and for (U) when 4N > 1. In the discrete model,
(U) must be calculated excluding the fixed classes, since
Uwould otherwise be infinite. This has negligible effect
when 4Nw > 1 because fixation is unlikely. However,
when 4Nu < 1, there is a substantial probability of being
fixed, even when fixed classes must be dropped. Thus,
(U) depends on population size and differs substantially
from the diffusion approximation (compare bottom
series of dots with bottom curve in Figure 2, bottom
right). The stationary density is still close to the diffusion
approximation for polymorphic classes, and so for very
large N, when the prgtgability of actually being fixed
becomes small (~ Ol/m PN ldp<1), (U) in the dis-
crete Wright—Fisher model does converge to the diffu-
sion approximation. However, for population sizes in the
hundreds, there is still a very large discrepancy. We
consider the implications of small 4Ny, for the maximum
entropy method below.

For an additive trait, and equal allelic effects, the
distribution of allele frequencies is the same at each
locus, and so this simple case is essentially a single-locus
analysis. However, this is no longer the case when we
allow unequal allelic effects; more generally, if there is
epistasis for fitness, the allele frequency distributions at
each locus are no longer independent, and if there is
epistasis for the trait, we can no longer treat macro-
scopic variables as sums over loci.

Covariances of fluctuations, C, and additive genetic
variance, B: To approximate the dynamics, we need
the covariances of fluctuations, C, and the additive
genetic covariance, B, defined above. The matrix C,
which gives the variances and covariance of Uand %, is
calculated by taking derivatives of the generating
function (Equation 10; supplemental information A,
Equations A3-A6).

The additive genetic covariance matrix B is defined
in Equation 13, in terms of the derivatives 0A;/0p;. For
the observables {U,z}, these are {2(q; — p;)/(pigi), 2}
Using the relation (¢; — p,~)2 =1—4pq,
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FicUrE 2.—Dependence of (z), (U) on Nu, NB. The solid
curves show the diffusion approximation, while the dots
show exact values for the Wright-Fisher model with N =
100. The plots against Nu (left column) show N3 = 0.1, 1,
10; those against NB (right column) show Nu = 0.1, 1, 10.
Agreement between discrete and continuous models is close
for (z) and for 4N > 1, but the diffusion approximation
fails to predict (U) when 4N = 0.1 (bottom series of dots
at bottom right). (For the discrete model, (U) is calculated
omitting fixed classes.)
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Note  that  B..= <Z?’:l(p,;qi/2) (aa/a,,l)2> —
> <2Y?piqi> is just the expected genetic variance for
the trait z, (v,), consistent with our interpretation of Bas
a genetic covariance matrix. For this model, B has a
simple form:

(M 20 (23)
o MmO

Remarkably, Bdepends only on (z) and not directly on
the distribution of allelic effects, y. Note that the
expected genetic variance (v,) = 2(Nw/NB)(z), even
with unequal allelic effects. This can be understood by
seeing that the rates of change of (z) due to mutation,
—2.(z), and due to selection, B(v.), must balance at
statistical equilibrium. In the limit where selection
becomes weak, both (z) and NB tend to zero, and the
expected genetic variance tends to a definite limit.

The coefficient By includes the expectation of
1/(piq;), which diverges when 4Nu < 1. Because the
rate of change depends on By i (w* — u) (Equation 23),
thatimplies that w* must be held fixed at its actual value
(i.e., p* = ). In effect, therefore, (U) can no longer be
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included in the approximation. We discuss the implica-
tions of this constraint below.

Approximating the dynamics: Evolution of the expecta-
tions: We can now use Equation 15 to approximate the
rates of change of the expectations (U), (z):

These equations are proportional to the difference
between the actual parameters {p, B} and the parame-
ters that would give a stationary distribution with the
current expectations, {p*, B*}. To iterate these recur-
sions, we would need to find {p* B*} from (U),(z),
which is troublesome. It is more straightforward to work
with the rates of change of {w*, B*}, which are found by
multiplying the rates of change of the expectations
(Equation 24) by the inverse of the covariance of
fluctuations, C (see Equation 16 and supplemental
information A, Equation A6). However, because C
depends on the allelic effects in a complex way (see
supplemental information A, Equations A3-A5), the
full dynamics do depend on the distribution of allelic
effects, y;.

In the following sections we test the accuracy of this
local equilibrium approximation against two situations:
an abrupt change in 3 or w or a sinusoidal change in
or . An abrupt change seems the strongest test of our
approximation, while a sinusoidal change allows us to
find how the accuracy of the approximation decreases as
changes become faster. For the moment, we focus on
high numbers of mutations (4Nu > 1). We begin by
considering the case of equal effects, where the distri-
butions at all loci are the same. We also discuss results
for the case where most loci have small effect, but some
have large effect: the patterns are similar to the
symmetric case of equal effects, and so we detail them
in supplemental information C. Throughout, we com-
pare the approximation with numerical solutions of the
diffusion equation: these are close to solutions of the
discrete Wright-Fisher model provided that 4Nu > 1
(Figure 3).

Equal allelic effects: 1f all loci have equal effects on the
trait, and if selection acts only on the trait, and not on
the individual genotypes, then under directional selec-
tion the distribution of allele frequencies will be the
same at each locus and will be independent across loci.
Thus, we need follow only a single distribution, whose
time evolution is given either by numerical solution of
the diffusion equation or as an expansion of eigenvec-
tors (CRow and KimUra 1970, p. 396). However, the
maximum entropy approximation is still nontrivial,
even in this highly symmetric case, since it approximates
the full distribution by a few degrees of freedom, such as
{(21og(pq)), {p — ¢)}. Also, note that with other forms of
selection, the allele frequency distribution is not in-
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FIGURE 3.—(Top) Calculation of genetic variability (U)
(left) and trait mean (z) (right) and over time, with Ny =
0.6 as NB changes from —2 to +2 at time ¢ = 0. The horizontal
lines show the stationary values. The solid curves show the ap-
proximation, and the dashed curves show numerical solutions
to the diffusion equation; these are not distinguishable on
this scale. (Bottom) Changes over time in the parameters
w* (left) and B* (right), calculated using the approximation
of Equation 16. Time is scaled to 2N generations.

dependent across loci: for example, with stabilizing
selection populations cluster around states where the
sum of allele frequencies is close to the optimum.

Abrupt change in NB: First, assume that a system is at
equilibrium with evolutionary forces B, and po. These
forces are then abruptly changed to new values 3 and .,
and the system moves toward its new stationary state.
Figure 3 shows that for moderately high mutation rates
(N = 0.6), and for an abrupt change of selection from
N3 = -2 to +2, the approximation is extremely
accurate, as compared with the numerical solutions of
the diffusion equation. The expected genetic diversity,
(U), increases as the allele frequencies pass through
intermediate values, but returns to its original value as
(z) moves from —2 to +2 (top left). This transient
increase in diversity is mainly due to the change in mean
allele frequencies: there is only a small transient change
in p* (bottom left). The distribution of allele frequen-
cies predicted by the approximation is always close to
the actual distribution (not shown).

For a lower mutation rate of Nu = 0.3, close to the
critical value of N = i, the effective mutation rate
hardly changes: it is held close to the actual value of
Nw = 0.3 (Figure 4, bottom left). The approximation is
still accurate, although there is an appreciable discrep-
ancy in (U) (Figure 4, top left). For a still lower mutation
rate of N = 0.1, below the threshold where By, diverges,
p* must necessarily be held equal to the current mutation
rate, i (Figure b, top left). Then, there is a poor fit to the
transient increase in expected diversity, (U), but the
dynamical approximation to (z) remains accurate (Figure
5, top right). (Because p* must be held fixed at its
actual value when 4Nw < 1, (U) is not now included
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FiGUre 4.—The accuracy of the approximation for Nu =
0.3. NB changes from —0.7 to +0.7 at time ¢ = 0. Otherwise,

details are as in Figure 3.

in the approximation, which therefore now depends
on fitting one variable, rather than two.)

Abrupt change in Nw.: Figure 6 shows the effects of an
abrupt change in mutation rate from Nu = 0.3 to 1.
Here, the approximation does poorly when mutation rate
increases abruptly, even when 4N is always >1 (Figure 6,
left side). It does perform better when the mutation rate
decreases abruptly, however (¢ > 5 in Figure 6).

Fluctuating selection: As well as examining the effects of
an abrupt change in selection, we have also looked at
the effects of oscillating selection. If fluctuations are
sufficiently slow, then the maximum entropy approxi-
mation converges to the exact solution. At the other
extreme, when fluctuations are rapid, populations ex-
perience an average selective force and behave as if
there was a constant selective pressure. The approxima-
tion is accurate over the whole range of fluctuation fre-
quencies (supplemental information B).

Unequal allelic effects: So far, we have assumed equal
allelic effects. This ensures that the allele frequency
distribution is the same at each locus, so that we are
essentially analyzing a single-locus problem. This is not
entirely trivial, since we are approximating the full allele
frequency distribution by two variables, {(z), (U)}.
However, we now turn to the more challenging case of
unequal allelic effects at nloci: now, we are summarizing
n distinct distributions by two variables. We do, however,
assume that the allelic effects are known.

We draw allelic effects at 10 loci from a gamma
distribution, with mean 1 and standard deviation %:

v, = {1.69,1.47,1.15,1.05,1.04,1.03,1.01,0.81,0.500, 0.401}.
(25)

The maximum range of the traitis =) _,y, = 10.15,
and the maximum genetic variance 1S Upax =
% Z}il v? = 11.66. Twenty-five percent of this is contrib-
uted by the locus of largest effect, and 54% by the largest
three loci.
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FIGURE 5.—The accuracy of the approximation for Nu =
0.1. NB changes from —0.7 to +0.7 at time ¢ = 0. The effective
mutation rate, Nw¥, is held fixed at Nu (bottom left). Other-
wise, details are as in Figure 3.

Figure 7 shows the response of the mean and the
genetic variance, as selection changes from NB = —2 to
+2, with Nu = 0.3 throughout: the approximation
matches well. There is a transient increase in the genetic
variance as allele frequencies pass through intermediate
values. In Figure 7, the shift is by 3.08 genetic standard
deviations.

In supplemental information C, we show how the
accuracy of the approximations diminishes as Nu
approaches , in a similar way to Figures 3-5.

LOW MUTATION RATES: 4N < 1

Failure of the maximum entropy approximation:
When the number of mutations produced per genera-
tion is small (4N < 1), populations are likely to be close
to fixation. The diffusion approximation still works
surprisingly well: it predicts the allele frequency distri-
bution accurately even adjacent to the boundaries
(p=1/2N, 1—-1/2N). The maximum entropy ap-
proximation also makes accurate predictions for the
change in trait mean, provided that the mutation rate is
kept fixed (Figure 5, top right). However, the approx-
imation does not allow changes in w* when 4Nu < 1.
Formally, the coefficient B,y (Equation 23) diverges,
which implies that the effective mutation rate must
always be held equal to the actual mutation rate
(w* = ). Thus we lose 1 d.f. from the dynamics. What
causes this pathological behavior?

The key point is that near the boundary, the allele
frequency distribution changes on a much faster time-
scale than in the center: the characteristic timescale of
random drift is determined by the number of copies of
the allele in question. Thus, the shape of the distribution
atthe center and the shape at the edge are uncoupled, so
that it may be impossible to adequately approximate the
whole distribution as being close to the stationary state.
Near the boundaries, selection is negligibly slow relative
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FIGURE 6.—The mutation rate increases abruptly from
Nuw = 03 to Nw =1 at ¢ = 0 and then changes back at
t = b; throughout, N3 = 1. The horizontal dashed lines show
values at the stationary states, the dashed curves show numer-
ical solutions of the diffusion equation, and the solid curves in
the top row show the approximation.

to mutation and drift, and the allele frequency distribu-
tion rapidly takes the form p***~', even while the bulk of
the distribution remains unchanged (Figure 8). For
example, suppose that 4Nu changes from <1 to >1. The
density at the boundaries immediately falls to zero, and
the distribution takes on a two-peaked shape that cannot
be approximated by any of the family of stationary
distributions. Conversely, when 4N falls below the
threshold, small singularities immediately develop at
the boundaries, representing fixed populations, but it
takes a long time for the bulk of the population to
approach fixation. This asymmetry explains why the
maximum entropy approximation is much more accu-
rate when 4N falls than when it rises (Figure 6, ¢t > 5).

We can gain some insight by analyzing the limit of
4Np. — 0, when populations are almost always fixed for
one of the 2" genotypes. With directional selection, the
probability of fixation of one or the other allele is inde-
pendentacross loci and equals P; = 1/(1 + exp(—4NBYy,)),
where v; is the effect of alleles at the ith locus. Pop-
ulations will jump from fixation for “0” to “1” as a
result of the fixation of favorable mutations, at a rate
4N WRYy,;/(1 — exp(—4NBy;)), and in the opposite di-
rection due to fixation of deleterious alleles, at a rate
that is slower by a factor exp(—4NBvy,). In this simple
case, it is easy to write down the dynamics at each locus,

ap, Q PP
i 4N pBy; (1 T NBY T ] o ANBY
(Pi—P) 5 1
:4N“"B’Ylﬁ7 WherePi:W7

(26)

noting that this does have a sensible limitas § — 0:9,P=
w(1 — 2P), which is correct for neutral alleles. The trait
mean changes as

F1GURE 7.—The accuracy of the approximation with un-
equal allelic effects, vy, given by Equation 25. N3 changes from
—2 to +2 at time ¢ = 0; N = 0.5 throughout. Otherwise, de-
tails are as in Figure 3.

dz) ~ o(Pi— P)
—— = 4N 2vi————. 27

The maximum entropy approximation simplifies the
problem by assuming that the P; always follow a
stationary distribution, determined by a single parame-
ter B* with P, =1/(1+ exp(—4NB*y,)). Thus, pro-
vided we know the allelic effects, we can deduce the P;
from the observed (z), without knowing the distribution
at the n loci individually. From Equation 24, assuming
that u = p*, we have

d@) _yNu
dt  "NB

(B —B*). (28)

This can be understood by seeing that at equilibrium,
selection must balance mutation, so that B*y,(p;q;) =
wi(p: — ¢;) at each locus if the P; follow a stationary
distribution with parameter 3* The rate of change of
the trait mean is

ZQ(BY?@NM — wy£pi — 4))

3

— Z 2%7,(@-%) — 22 = 2(2) (BB* - 1)»

equal to Equation 28.

It is easy to show that the maximum entropy approx-
imation, Equation 28, converges to the exact solution,
Equation 27, for small NBv; this is confirmed by Figure
9, for MB = 0.2, in an example with equal effects, y;= 1.
However, for stronger selection (NB = 2, thick lines in
Figure 9), the maximum entropy approximation under-
estimates the initial rate of increase. That is because the
approximation is that the initial state, in which P; = 0.02
at all loci, is caused by strong selection against the 1
allele; such selection would necessarily cause low stand-
ing variation, and so the prediction is for a slow response
when the direction of selection is reversed. However, as
soon as selection is reversed, populations fix new favor-
able mutations at a rate that is independent of the
previous standing variation. Thus, the method that led
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Ficure 8.—Failure of the maximum entropic distribution
of allele frequencies at the borders for changing mutation
rates. Top panel, dotted curves: the genuine distribution,
given by the diffusion equation; solid curves show the maxi-
mum entropic distribution. The bulk of the distributions is
well approximated initially (curves toward the right; ¢ = 0)
and close to equilibrium (bell-shaped curves; ¢t = 5). Bottom
left panel: the max-entropic distribution at different times
(from ¢ = 0 to ¢ = 5, top to bottom) near the edge p = 1 in-
correctly predicts that there is no fixation, compared the dif-
fusion equation solutions at different times (from ¢=0to (=5,
top to bottom) near the edge p = 1, which shows that some ge-
notype fixes (bottom right panel). Numerics are as in Figure 6.

to Equation 24, which was developed for polymorphic
populations, fails as 4Nw — 0.

Maximum entropy for 4Np. — 0: When mutation is
rare, populations are almost always fixed for one of the
2" genotypes, and an ensemble of populations (or
equivalently, the probability distribution of a single
population) evolves as a result of jumps between
genotypes, mediated by fixation of single mutations.
The stationary distribution is proportional to W2V,
multiplied by a factor that reflects the pattern of
mutation rates (Iwasa 1988; SkrLLA and HirsH 2005);
this can be derived as the limit of Equation 1 for small
4N (N. H. BARTON and J. B. Cok, unpublished data).
We can go further and apply the maximum entropy
method to this process. This gives an approximation for
the dynamics of macroscopic quantities such as (z), so
that we do not need to follow the full distribution across
the 2" genotypes. In the simplest case of directional
selection on an additive trait, with equal allelic effects,
this gives no benefit, since the distribution of fixation
probability is independent across loci and, moreover, is
the same at each locus: the problem therefore involves
just a single variable, P However, with unequal effects,
the maximum entropy approximation does give a useful
simplification, since we do not need to follow the
individual P;. With epistasis for fitness or for the trait,
the advantage would be greater, since we would then
avoid following the full probability distribution, across
the 2" genotypes. (Note thatin the limit of 4N — 0, the

(2)n
1

Np=2

NpB=0.2

4Nppt

=1

F1cUure 9.—Comparison between the exact solution (Equa-
tion 27) and the maximum entropy approximation (Equation
28), in the limit of low mutation rates (4Nw — 0). Initially, the
probability that a locus is fixed for the “1” allele is P= 0.02 at
all loci, so that (z)/n = —0.99; all alleles have effect y = 1. Se-
lection NB = 0.2 or NB = 2 is then applied, and the trait mean
shifts to a new equilibrium, in which a fraction P=1/(1 +
exp(—4NB)) of loci are fixed for the 1 allele. When selection
is weak (M3 = 0.2), the maximum entropy approximation is
barely distinguishable from the exact solution. However, when
selection is strong (NB = 2), the maximum entropy approxima-
tion (dashed lines) underestimates the initial rate of change.

model applies regardless of the pattern of recombina-
tion, because only one locus evolves at a time.)

We now apply the maximum entropy approximation
to directional selection on an additive trait, assuming
that4Nw — 0, butallowing for unequal allelic effects, ;.
(This is distinct from the previous section, since we now
apply maximum entropy to the limiting system, rather
than apply the limit of 4Nu — 0 to the full maximum
entropy approximation.) The system is described by
a single local variable, B*, defined implicitly by
(m =Y, v,tanh[2NB*y,]; the assumption is that at each
locus, (P; — Q;) = tanh[2NB*y,], asif the ensemble were
at a local stationary state under a selection gradient $*.
Thus

d{z) dpP;
Sy
Qi Pie—4NB'Yz
= Z2W <4NHB%‘<1 T o INBY, T 14 VB

- ) tanh[2NB*y,]
_ 4NMB§Z:'W (1 - mnh[?NBy])

(29)

It is easier to work in terms of B3*. Multiplying by
dB*/dz, we obtain a closed equation for B*:

9 tanh[2NB*y;
9 > (1 - W)

a8 _
di " > v7 (1 — tanh[2NB*y,]?)

(30)

When selection is weak (2NB*y,;<1), Equation 29
simplifies to 4N >, v?(B — B*). Since 2NB* > . v? ~
(z) in this limit, this converges to (4N >, v?)B — 2u.(z).
The exact solution, Equation 27, converges to the same
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limit with weak selection. This is as expected, since when
selection is weak, the population approaches a mutation—
drift equilibrium, with genetic variance (4Np Y, v?);
the trait mean then changes ata rate (4Np >, v?)B due
to selection and —2u(z) due to mutation.

Figure 10 shows an example where selection is strong,
changing abruptly from NB = —4 to +4. The effects of
10 loci are drawn from a gamma distribution, as in
Equation 25. The predictions for the mean are in-
distinguishable (Figure 10, left). There are substantial
errors in the predictions for the underlying allele
frequencies, with the rate of change of alleles of small
effect being greatly overestimated (Figure 10, bottom
curve at right) and that of alleles of large effect being
slightly underestimated. However, these errors almost
precisely cancel in their effects on the mean.

DISCUSSION

The maximum entropy approximation: A fundamen-
tal aim of quantitative genetics is to understand the
evolution of the phenotype, without knowing the un-
derlying distribution of all possible gene combinations.
Assuming linkage equilibrium simplifies the problem,
which then depends only on the allele frequencies rather
than on the full distribution of genotypes. However, if we
include random drift, as well as selection and mutation, a
full description of the stochastic dynamics requires the
distribution of allele frequencies—a formidable task. We
know that in general, we cannot predict phenotypic
evolution without knowing the frequencies of all the
relevant alleles: the future response to selection may
depend on the frequencies of alleles that are currently so
rare that they have negligible effect on the phenotype
and so are essentially unpredictable. To avoid this
difficulty, we make the key assumption that selection
and mutation act only on observable quantities. Then,
the distribution of allele frequencies tends toward a
stationary state that depends only on those forces. If
selection could instead act on individual alleles, it could
send the population into arbitrary states by picking out
particular alleles (e.g., Figure 1). Selection on individual
alleles would be analogous to Maxwell’s demon, which
perturbs individual gas molecules to generate improb-
able states that violate the laws of classical thermody-
namics (LEFF and Rex 2003).

Populations tend toward a stationary state that max-
imizes entropy—that is, the distribution of allele fre-
quencies spreads out as widely as possible, conditional
on the average values of the quantities that are acted on
by selection and mutation. The maximum entropy
approximation to the dynamics amounts to assuming
that the allele frequency distribution always maximizes
entropy, given the current values of the observed
variables, even though those variables may be changing.
This approximation converges to the exact solution
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FIGURE 10.—The maximum entropy approximation (Equa-
tion 29), made assuming that populations jump between
fixed states, gives an accurate prediction for the change in
mean (left): this is indistinguishable from the exact solution
(Equation 27). The population is initially at equilibrium with
directional selection N3 = —4; selection then changes sign
abruptly. Allelic effects are given by Equation 25. Predictions
for the underlying allele frequencies are less accurate. (Right)
Allele frequencies at the locus with the strongest effect
(v, = 1.69), with intermediate effect (y; = 1.04), and with
the weakest effect (y; = 0.401), reading left to right. Solid
lines show the maximum entropy approximation (Equation
29), and dashed lines show the exact solution (Equation 27).

when changes in mutation and selection (&) are slow.
However, we find that even if selection abruptly changes
in direction, predictions for the trait mean are re-
markably accurate.

The analogy between the population genetics of
quantitative traits and statistical mechanics is intrigu-
ing. As well as suggesting methods for approximating
phenotypic evolution, it also helps us to better un-
derstand the scope of statistical mechanics, by showing
that it does not depend on physical principles such as
conservation of energy (Ao 2008). Selection can be seen
as generating information, by picking out the best-
adapted genotypes from the vast number of possibilities,
despite the randomizing effect of genetic drift. This is
analogous to the way that a physical system does useful
work, despite the tendency for entropy to increase. Such
issues are discussed by N. H. BArToN and J. B. Cok
(unpublished data) and by H. P. bE VLADAR and 1. PEN
(unpublished data). Here, we concentrate on the use of
maximum entropy as an approximation procedure.

Provided that the number of mutations, 4Nw, is
constant, and not too small, the method accurately
predicts the evolution of the trait mean—even when
allelic effects vary across loci, and even when selection
changes abruptly. This accuracy even when parameters
change rapidly is surprising, because the underlying
allele frequencies may not be well predicted (e.g., Figure
10). Indeed, Prigel-Bennett, Rattray, and Shapiro make
accurate predictions even though they use an arbitrary
entropy measure that does not ensure convergence to
the correct stationary distribution. Although we believe
that our entropy measure is the most natural for
quantitative genetic problems, and it does guarantee
convergence to the stationary state, it may be that the
maximum entropy approximation is an efficient
method for reducing the dimensionality of a dynamical
system, even when an unnatural measure is used.
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The maximum entropy method predicts the full allele
frequency distribution from just a few quantities, such as
the expected trait mean, (z). We do still need to know the
genetic basis of the trait—for an additive trait, we must
know the allelic effects. We could hardly expect to
predict the evolution of phenotype without knowing
anything about its genetic basis. However, we could
apply the method knowing just the distribution of allelic
effects, which could be estimated in a number of ways:
by detection of QTL, from evolutionary arguments
about plausible distributions (e.g., ORrR 2003), or from
the distribution of allele frequencies at synonymous and
nonsynonymous sites (e.g., LOEWE et al. 2006).

Extension to dominance and epistasis: We have
analyzed only the simplest case, of directional selection
on an additive trait. An extension to allow dominance is
straightforward, since the loci still fluctuate indepen-
dently of each other, and the generating function, Z,
can still be written as a product of integrals across loci.
Extension to more than two alleles is also possible, but
only under the restrictive condition that mutation rates
allow for detailed balance and hence for an explicit
potential function. Similarly, alleles at different loci may
interact in their effect on the trait. If such epistasis
involves nonoverlapping pairs of loci, then calculations
can still be made, but require integrals over pairs of
allele frequencies. Although it is beyond the scope of
this article to present such calculations, it is important
to point out that, despite the technical difficulties, the
method itself is general and as such it does not depend
on the selective scheme, epistatic model, number of
alleles, etc.

It is relatively straightforward to allow for stabiliz-
ing selection on an additive trait. In this case, allele
frequency distributions at different loci are no longer
independent. However, they are coupled only via a
single variable, the trait mean: if this lies above the
optimum, then all loci experience selection for lower z
and vice versa. This simple coupling allows explicit
solutions for the stationary distribution and for the rate
of jumps between metastable states. These calculations
are given in BArRTON (1989) and CovYNE et al. (1997,
Appendix). We outline the maximum entropy approx-
imation to the dynamics of stabilizing selection in
supplemental information D.

For complex models, involving epistasis between
large numbers of genes, calculation of the maximum
entropy approximation (i.e., of the matrices B¥, C¥) by
numerical integration would not be feasible. They could
still be calculated by a Monte Carlo method: one would
fix the parameters &* and simulate the distribution to
determine the expectations (A) The matrix C¥* could be
found from the covariance of fluctuations, and the
matrix B* from Equation 13. The two matrices, B(a*)
and C(d*), would then give the dynamics on the
reduced space of a*; this would be feasible numerically
for two or three variables. Of course, this approach

involves the same kind of computation as a direct
simulation. Our claim is that the reduced dynamics will
be approached, regardless of the initial allele frequency
distribution: the system is expected to move close to the
lower-dimensional space defined by the maximum
entropy approximation. The implication is that we
could predict the evolution of the expectations (A) by
a closed set of equations, without knowing the actual
allele frequency distribution. This will require that we
know the genetic basis and mutability of the trait and
that selection acts only on that trait.

Low mutation rates (4N < 1): We describe mutation
and selection by wusing a potential function
pU +log(W), where U =23 log(piq:), and include
the variable (U) together with selected variables such as
the expectation of the trait mean, (z). However, this
approach fails to describe the effects of changes in
mutation rate when 4Nu < 1, because then populations
are likely to be close to fixation, in which case Udiverges.
The fundamental problem is that the distribution at the
boundaries changes rapidly as mutation rate changes,
while the bulk of the distribution does not. We can,
however, extend the method to the case where 4Ny is
very small, because then populations jump between
fixation for one or the other genotype, through the
substitution of single mutations. This limit is in fact
more general, in that it applies even with linkage or with
asexual reproduction. It could be extended to give a
more accurate approximation for appreciable 4Nw, by
calculating the probability of a jump between states of
near fixation, taking into account the polymorphism at
other loci (see BARTON 1989).

Long-term response to selection: A basic and long-
standing puzzle in quantitative genetics is the success of
artificial selection: in moderately large populations,
traits respond steadily to selection for =100 genera-
tions, with little change in additive genetic variance and
often with concordance between replicates (BARTON
and Kr1GHTLEY 2002). This is surprising, because the
genetic variance is expected to change as alleles sweep
through the population. However, if the distribution of
allele frequencies is proportional to (pg)*™', as we
assume, and if 4N is small, then the additive genetic
variance is expected to stay constant for long periods
under directional selection. This is because the baseline
distribution ¢ (p) = (pg) ' is uniform when transformed
to a logit scale [i.e., d(z) = constant for z = log(p/¢)].
Since log(p/¢q) increases linearly with time under di-
rectional selection, that implies that the increase in
genetic variance due to rare alleles increasing to become
common is precisely balanced by the decrease due to
common alleles approaching fixation. Thus, the re-
sponse to standing variation is expected to continue
steadily at a rate d(z)/dt=4NpBY v for ~(1/s)
log (2N) generations, whereas if alleles were typically
polymorphic (as would be the case if 4Nw > 1), it would
continue for only ~(1/s) generations. Of course, the
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response will continue indefinitely as a result of new
mutation, at just the same rate. This is because variation
is initially maintained in a balance between mutation
and drift; the genetic variance is not affected by di-
rectional selection, and so the rate of response stays the
same even as it shifts from alleles that were originally
present to new mutations.

The stationary density under mutation, selection, and
drift has been exploited before to help understand the
evolution of quantitative traits (e.g., KEIGHTLEY and HiLL
1987; KeicHTLEY 1991). In this article, we have shown
that the dynamics of polygenic traits can be accurately
approximated by assuming that the underlying distri-
bution of allele frequencies always takes this stationary
form. We are now starting to get detailed estimates of
the distribution of allele frequencies and of allelic
effects on traits and on fitness (e.g., LOEWE et al. 2006;
Bovko et al. 2008): it may be that we will soon be able to
use such data to apply the methods developed here to
natural and artificial populations.
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